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Abstract

The problem of finding of the ferromagnetic and antiferromagnetic "broken symmetry" so-

lutions of the correlated lattice fermion models beyond the mean-field approximation has been

investigated. The calculation of the quasiparticle excitation spectrum with damping for the

single- and multi-orbital Hubbard model has been performed in the framework of the equation-

of-motion method for two-time temperature Green's Functions within a non-perturbative ap-

proach. A unified scheme for the construction of Generalised Mean Fields (elastic scattering

corrections) and self-energy (inelastic scattering) in terms of Dyson equation has been gener-

alised in order to include the presence of the "source fields". The damping of quasiparticles,

which reflects the interaction of the single-particle and collective degrees of freedom has been cal-

culated. The "broken symmetry" dynamical solutions of the Hubbard model, which correspond

to various types of itinerant antiferromagnetism have been discussed. This approach comple-

ments previous studies and clarifies the nature of the concepts of itinerant antiferromagnetism

and "spin-aligning field" of correlated lattice fermions.
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1 Introduction

The problem of the adequate description of the strongly correlated lattice fermions has been
studied intensely during the last decade, especially in context of Heavy Fermions and High-Tc
superconductivity [?] - [?]. The behaviour and the true nature of the electronic states and
their quasiparticle dynamics is of central importance to the understanding of the magnetism
in metals and Mott-Hubbard metal-insulator transition in oxides, the heavy fermions in rare-
earths compounds and the high-temperature superconductivity (HTSC) in cuprates. Recently
there has been considerable interest in identifying the microscopic origin of these states [?].
Antiferromagnetic correlations may play an important role in the possible scenario of normal
and superconducting behavior of these compounds. Some of the experimental and theoretical
results show that antiferromagnetic spin fluctuations are really involved in the problem. This
idea has stirred a great deal of discussion in recent times [?]. An appealing but phenomenological
picture of HTSC, known as nearly antiferromagnetic Fermi liquids (NAFL) approach, has been
developed to explain many anomalous properties of cuprates [?]. This approach predict the detail
phase diagram for cuprates [?] and present arguments which suggest that the physical origin
of the pseudogap found in quasiparticle spectrum below critical temperature is the formation
of a precursor to a spin-density-wave-state. While the NAFL's scenario is appealing, it has
apparently not yet been derived from fully microscopic considerations. The problem of the role
of antiferromagnetic spin fluctuations for HTSC has recently been the subject of many papers
(for recent review see e.g. Ref. [?]). These investigations call for a better understanding of the
nature of solutions (especially magnetic) to the Hubbard and related correlated models [?] -
[?]. The microscopic theory of the itinerant ferromagnetism and antiferromagnetism [?], [?] of
strongly correlated fermions on a lattice at finite temperatures is one of the important issues
of recent efforts in the field [?] - [?]. In some papers spin-density-wave (SDW) spectrum was
only used without careful and complete analysis of the quasiparticle spectra of correlated lattice
fermions. The aim of this paper is to investigate the intrinsic nature of the "broken symmetry"
(ferro- and antiferromagnetic) solutions of the Hubbard model at finite temperatures from the
many-body point of view. In the previous papers we set up the formalism and derived the
equations for the quasiparticle spectra with damping within single- and multi-orbital Hubbard
model for the uniform paramagnetic case. In this paper we apply the formalism to consider
the ferromagnetic and antiferromagnetic solutions. It is the purpose of this paper to explore
more fully the notion of Generalized Mean Fields (GMF) [?] which may arise in the system
of correlated lattice fermions to justify and understand the "nature" of the local staggered
mean-fields which fix the antiferromagnetic ordering. The present work brings together the
formulation of the itinerant antiferromagnetism of various papers. For this aim we rederive the
SDW spectra by the Irreducible Green's Functions (IGF) method [?] taking into account the
damping of quasiparticles. This alternative derivation has a close resemblance to that of the BCS
theory of superconductivity for transition metals [?], [?] with using the Nambu representation
(c.f. [?]).This aspect of the theory is connected with the concept of broken symmetry, which is
discussed in detail for the present case. The advantage of the Green's function method is the
relative ease with which temperature effects may be calculated.
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2 Itinerant Antiferromagnetism

The antiferromagnetic state is characterized by a spatially changing component of magnetization

which varies in such a way that the net magnetization of the system is zero. The concept of

antiferromagnetism of localized spins which is based on the Heisenberg model and two-sublattice

Neel ground state is relatively well founded contrary to the antiferromagnetism of delocalized

or itinerant electrons. The itinerant-electron picture is the alternative conceptual picture for

magnetism [?].

We now sketch the main ideas of the concept of itinerant antiferromagnetism. The simpli-

fied band model of an antiferromagnet has been formulated by Slater [?] within single-particle

Hartree-Fock (H-F) approximation. In this approach he used the "exchange repulsion" to keep

electrons with parallel spins away from each other and to lower the Coulomb interaction energy.

Some authors consider it as a prototype of the Hubbard model. However the exchange repulsion

was taken proportional to the number of electrons with the same spins only and the energy gap

between two subbands was proportional to the difference of electrons with up and down spins.

In the antiferromagnetic many-body problem there is an additional "broken symmetry" aspect.

For antiferromagnet, contrary to ferromagnet, the one-electron H-F potential can violate the

translational crystal symmetry. The period of the antiferromagnetic spin structure L is greater

than the lattice constant a. To introduce the two-sublattice picture for itinerant model one

should assume that L = 2a and that the spins of outer electrons on neighbouring atoms are

reversed to each other. In the other words, the alternating (H-F) potential viσ = —av exp(iQRi)

where Q = (Π/2, Π/2) corresponds to a two-sublattice AFM structure. To justify an antiferro-

magnetic ordering with alternating up and down spin structure we must admit that in effect

two different charge distributions will arise concentrated on atoms of sublattices A and B. This

is picture which accounts well for quasi-localized magnetic behavior.

The earlier theories of itinerant antiferromagnetism were proposed by des Cloizeaux [?] and

especially Overhauser [?] (in context of the investigation of the ground state of nuclear matter).

Then Overhauser [?] have applied this approach for the explanation of the anomalous properties

of dilute Cu — Mn alloys, have suggested an antiferromagnetic mechanism that requires neither

two-body interactions between paramagnetic solute spins, nor a sublattice structure (c.f. [?]).

Such a mechanism may be recognized by considering a new type excited state of the conduction

electron gas. He invented the static SDW which allow the total charge density of the gas to

remain spatially uniform. Overhauser [?] - [?] suggested that the H-F ground state of a three

dimensional electron gas is not necessarily a Slater determinant of plane waves. Alternative sets

of one-particle states can lead to a lower ground-state energy. Among these alternatives to the

plane-wave state are the SDW and CDW ground states for which the one-electron Hamiltonians

have the form

H = (p2/2m) -G(axcosQz + σysinQz) (1)

( spiral SDW; Q = 2kFz )

and

H = (p2/2m) - 2Gcos(Qr) (2)



( CDW; Q = 2kFz )

The periodic potentials in above expressions leads to a corresponding variation in the electronic

spin and charge densities, accompanied by a compensating variation of the background. The

effect of Coulomb interaction on the magnetic properties of the electron gas in Overhauser's

approach renders the paramagnetic plane-wave state of the free-electron-gas model unstable

within the H-F approximation. The long-range components of the Coulomb interaction are

most important in creating this instability [?]. It was demonstrated [?] that a nonuniform static

SDW is lower in energy than the uniform (paramagnetic state) in the Coulomb gas within the

H-F approximation for certain electron density.

The H-F is the simplest approximation but neglects the important dynamical part. To include

the dynamics one should take into consideration correlation effects. The role of correlation

corrections which seems tend to suppress SDW state as well as the role of shielding and screening

were not fully clarified [?]. Overhauser remarked that SDW ground states do not occur for δ-

function interactions, whatever their strength. This question was investigated further in Ref. [?].

An instability of the paramagnetic Hartree-Fock state against a state with different orbitals for

different spins was interpreted as a magnetic phase transition.

It is important to note that in the Slater and des Cloiseaux models an electron moving in a

crystal does not change its spin. In these models the main processes are related with pairing

of electrons having the same spin, one from each of the two sublattices. In the Overhauser's

approach to itinerant antiferromagnetism the combination of the electronic states with different

spins (which pairs opposite spins) is used to describe the SDW state with period Q. The first

approach is obviously valid only in the simple commensurate two-sublattice case and the later is

applicable to the more general case of an incommensurate spiral spin state. The general SDW

state have the form

Ψ p σ = χpσ cos(θp/2) + xP+Q-a sin(θp/2) (3)

The average spin for helical or spiral spin arrangement changes its direction in (x-y) plane. For

the spiral SDW states a spatial variation of magnetization correspond to Q = (πa )(1,1).

The antiferromagnetic phase of chromium [?], [?] and its alloys has been satisfactorily explained

in terms of the SDW within a two-band model [?]. It is essentially to note that chromium be-

comes antiferromagnetic in a unique manner. The antiferromagnetism is established in a more

subtle way from among the spins of the itinerant electrons than the magnetism of collective

band electrons in metals like iron and nickel. The essential feature of chromium which makes

possible the formation of the SDW is the existence of "nested" portions of the Fermi surface [?].

The formation of bound electron-hole pairs takes place between particles of opposite spins; the

condensed state exhibits the SDW.

The recent attempt to describe antiferromagnetic insulator at T = 0 using a one-electron ap-

proach was made in Ref. [?]. To do this, the authors proposed to overcome the inadequacies

of standard local-spin-density theory by adding a spin-dependent magnetic pseudopotential to

Kohn-Sham equations.

For the Hubbard model [?] the qualitative phase diagram was calculated by Penn [?]. Unfortu-

nately, his work give the clear physical picture but do not emphasize the lattice character of the

tight-binding or Wannier fermions as well as the essence of the anomalous spin-flip averages.



The Hubbard model is a simplified but workable model for the correlated lattice fermions and

the applicability of the SDW Overhauser concept to highly correlated tight binding electrons on

a lattice deserve the careful analysis within this model. In earlier papers [?] - [?] the single- and

multi-orbital Hubbard model have been inspected with respect to antiferromagnetic solutions in

the mean-field approximation mainly.

3 Hubbard Model

The Hubbard model has been widely recognised as a workable model for a study of the correlated

itinerant electron systems. For the sake of completeness we shall discuss the single-orbital and

multi-orbital cases separately.

3.1. MULTI-ORBITAL HUBBARD MODEL

To demonstrate the advantage of our approach we shall consider the quasiparticle spectrum of

the lattice fermions for degenerate band model. Let us start with the second quantized form of

the Hamiltonian taking the set of the Wannier functions [φλ(r — Ri)]. Here λ is the band index

(λ= 1,2,...5).

H = J2 *£Tai<Tajw + g J2 J2 <iot,jP\W\m'f,nS>afUTaf^7,amy<T>anS<T (4)
ij[iva ij,mn afi^i&aa'

For a degenerate d-band the second quantized form of the total Hamiltonian in the Wannier-

function representation then was reduced to the following model Hamiltonian

H = H1 + H2 + H3 (5)

The kinetic energy operator is given by

The term H2 describes one-centre Coulomb interactions

1 1

ijia ijiv 00'

^ \7~^ T i-t r \ 1 V~^ 7- + 4-

• ill

1
/ j ln.v&iila&ip,—o&il,

In addition to the intrasite intraorbital interaction U^ which is the only interaction present in

the single-orbital Hubbard model, this term contains three more kinds of interorbital interac-

tions.

The last term H3 describes the direct intersite exchange interaction

ij aa'



The definition of various integrals in H is obvious. It is reasonable to assume that:

U^ = U; Vta, = V; 1^ = I; J?f = Jij. (9)

This Hamiltonian differ slightly from the analogous Hamiltonian of Ref. [?] where the only in-

trasite interaction terms of the second-quantized Hamiltonian of the d-band were taken into

consideration.

3.2. SINGLE-ORBITAL HUB BARD MODEL

The model Hamiltonian which is usually referred to as Hubbard Hamiltonian [?]

H = 12 tija+iσajσ + U/2 Y. ni°ni-° ( 1 0 )
ijσ iσ

includes the intraatomic Coulomb repulsion U and the one-electron hopping energy tij. The

electron correlation forces electrons to localize in the atomic orbitals, which are modelled here

by the complete and orthogonal set of the Wannier wave functions [<j)(r — Rj)]- (The Wannier

representation, which is unitary transformation of the Bloch representation is an important

background of the Hubbard model. It is well known that in one-dimension the Wannier functions

decrease exponentially but less is known about two- and three-dimensional cases.) On the other

hand, the kinetic energy is reduced when electrons are delocalized. The main difficulty of the

right solution of the Hubbard model is the necessity to taking into account of the both these

effects simultaneously. Thus, the Hamiltonian (10) is specified by two parameter: U and effective

electron bandwidth

The band energy of Bloch electrons e(k) is defined as follows

k

where the N is the number of the lattice sites. It is convenient to count the energy from the

center of gravity of the band, i.e. tii = J2ke(k) = 0. The effective electron bandwidth A and

Coulomb intrasite integral U define completely the different regimes in 3 dimension depending

on parameter γ = A/U. It is usually a rather difficult task to find interpolation solution for

the dynamical properties of the Hubbard model. We evidently have to to improve the early

Hubbard's theory taking account of variety of possible regimes for the model depending on elec-

tronic density, temperature and values of γ. It was the purpose of the papers [?], [?] to find the

electronic quasiparticle spectrum in a wide temperature and parameters of the model range and

to account explicitly for the contribution of damping of the electronic states when calculating

the various characteristics of the model. In the past years many theoretical papers have been

published , in which the approximative dynamical solution of the models (5) and (10) have been

investigated by means of various advanced methods of many-body theory. Despite the consider-

able contributions to development of the many-body theory and to our better understanding of

the physics of the correlated electron systems, the fully consistent dynamical analytical solution

of the Hubbard model is still lacking. To solve this problem with a reasonably accuracy and

describe correctly an interpolating solution one need more sophisticated approach than usual

procedures which have been developed for description of the interacting electron-gas- problem.
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4 Irreducible Green's Functions Method

Recent theoretical investigations of strongly correlated electron systems have brought forth sig-

nificant variety of the approaches. To describe from the first principles of the condensed matter

theory and statistical mechanics the physical properties of strongly correlated systems we need

to develop a systematic theory of quasiparticle spectra.

In this paper we will present the approach which allows one to describe completely the quasi-

particle spectra with damping in a very natural way. This approach has been suggested as

essential for various many-body systems and we believe that it bear the real physics of Highly

Correlated Systems [?], [?]. The essence of our consideration of the dynamical properties of

many-body system with strong interaction is related closely with the field theoretical approach

and use the advantage of the Green's functions language and the Dyson equation. It is possible

to say that our method tend to emphasize the fundamental and central role of the Dyson equa-

tion for the single-particle dynamics of the many-body systems at finite temperature.

In this Section, we will discuss briefly the novel nonperturbative approach for description of the

many-body dynamics of the HCES. The list of many-body techniques that have been applied

to strongly correlated systems is extensive. In this paper it will be attempted to justify the use

of a novel Irreducible Green's Functions (IGF) method for the dynamical solution of the corre-

lated electron models. A number of other approaches has been proposed and the our approach

is in many respect an additional and incorporate the logic of development of the many-body

techniques. The considerable progress in studying the spectra of elementary excitations and

thermodynamic properties of many-body systems has been for most part due to the develop-

ment of the temperature dependent Green's Functions methods. We have developed the helpful

reformulation of the two-time GFs method which is especially adjusted [?] for the correlated

fermion systems on a lattice. The very important concept of the whole method are the General-

ized Mean Fields. These GMFs have a complicated structure for the strongly correlated case

and are not reduced to the functional of the mean densities of the electrons, when we calculate

excitations spectra at finite temperature. To clarify the foregoing, let us consider the retarded

GF of the form

Gr = « A(t), B{t') » = -iO(t - t') < [A(t)B(t% >,η = ±1. (11)

As an introduction of the concept of IGFs let us describe the main ideas of this approach in a

symbolic form. To calculate the retarded GF G(t — t') let us write down the equation of motion

for it:

ωG(ω) =< [A, A+]η > + « [A, H}_ | A+ » u . (12)

The essence of the method is as follows [?]. It is based on the notion of the "IRREDUCIBLE"

parts of GFs (or the irreducible parts of the operators, out of which the GF is constructed) in

term of which it is possible, without recourse to a truncation of the hierarchy of equations for the

GFs, to write down the exact Dyson equation and to obtain an exact analytical representation

for the self-energy operator. By definition we introduce the irreducible part (ir) of the GF

[A,H]_\A+ » = « [A,H}_ -zA\A+ » . (13)



The unknown constant z is defined by the condition (or constraint)

<[[A,H]*,A+]v>=0 (14)

From the condition (14) one can find:

= <[[A,H]_,A+]V> > M1
Z <[A,A+]V> Mo { }

Here M0 and M1 are the zeroth and first order moments of the spectral density. Therefore,

irreducible GF are defined so that it cannot be reduced to the lower-order ones by any kind

of decoupling. It is worthy to note that the irreducible correlation functions are well known in

statistical mechanics. In the diagrammatic approach the irreducible vertices are defined as the

graphs that do not contain inner parts connected by the G°-line. With the aid of the definition

(13) these concepts are translating into the language of retarded and advanced GFs. This

procedure extract all relevant (for the problem under consideration) mean field contributions

and puts them into the generalized mean-field GF, which here are defined as

To calculate the IGF ir « [A,H]_{t),A+{t') » in (12), we have to write the equation of

motion after differentiation with respect to the second time variable t'. The condition (14)

remove the inhomogeneous term from this equation and is the very crucial point of the whole

approach. If one introduces an irreducible part for the right-hand side operator as discussed

above for the "left" operator, the equation of motion (12) can be exactly rewritten in the

following form

G = G° + G°PG°. (17)

The scattering operator P is given by

P = (Mo)"1 ir «[A,HU[A+,H\-»ir (Mo)-\ (18)

The structure of the equation (17) enables us to determine the self-energy operator M, in

complete analogy with the diagram technique

P = M + MG°P. (19)

From the definition (19) it follows that we can say that the self-energy operator M is defined as a

proper (in diagrammatic language "connected") part of the scattering operator M = (P)p. As a

result, we obtain the exact Dyson equation for the thermodynamic two-time Green's Functions:

G = G° + G°MG, (20)

which has well known formal solution of the form

G = [(G0)-1 - M]"1 (21)

Thus, by introducing irreducible parts of GF (or the irreducible parts of the operators, out of

which the GF is constructed) the equation of motion (12) for the GF can be exactly (but using
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constraint (14)) transformed into Dyson equation for the two-time thermal GF. This is very

remarkable result, which deserve the underlining, because of the traditional form of the GF

method did not included namely this point. The projection operator technique has essentially

the same philosophy, but with using the constraint (14) in our approach we emphasize the

fundamental and central role of the Dyson equation for the calculation of the single-particle

properties of the many-body systems. It is important to note, that for the retarded and advanced

GFs the notion of the proper part is symbolic in nature [?]. However, because of the identical

form of the equations for the GFs for all three types (advanced, retarded and causal), we can

convert in each stage of calculations to causal GFs and, thereby, confirm the substantiated nature

of definition (19)! We therefore should speak of an analog of the Dyson equation. Hereafter we

will drop this stipulation, since it will not cause any misunderstanding. It should be emphasized

that scheme presented above give just an general idea of the IGF method. The specific method

of introducing IGFs depends on the form of operator A, the type of the Hamiltonian and the

conditions of the problem. The general philosophy of the IGF method lies in the separation

and identification of elastic scattering effects and inelastic ones. This last point is quite often

underestimated and both effects are mixed. However, as far as the right definition of quasiparticle

damping is concerned, the separation of elastic and inelastic scattering processes is believed

to be crucially important for the many-body systems with complicated spectrum and strong

interaction. Recently it was emphasized especially that the anomalous damping of electrons (or

holes) distinguishes cuprate superconductors from ordinary metals. From a technical point of

view the elastic (GMF) renormalizations can exhibit a quite non-trivial structure. To obtain this

structure correctly, one must construct the full GF from the complete algebra of the relevant

operators and develop a special projection procedure for higher-order GF in accordance with a

given algebra. It is necessary to emphasize that that there are an intimate connection between

adequate introductions of mean fields and internal symmetries of the Hamiltonian.

5 Symmetry breaking solutions

In many-body interacting systems, symmetry is important in classification the different phases

and in understanding the phase transitions between them [?] - [?]. According to Bogolubov [?](

c.f. [?] ) in each condensed phase, in addition to the normal process, there is an anomalous

process (or processes) which can take place because of the long-range internal field, with a

corresponding propagator. The anomalous propagators for interacting many-fermion system

corresponding to the ferromagnetic (FM) and antiferromagnetic (AFM) long-range ordering are

given by

FM : Gfm ~ « aka; a+_a » (22)

AFM : Gafm < ^

In the SDW case, a particle picks up momentum Q — Q' from scattering against the the periodic

structure of the spiral (nonuniform) internal field, and has its spin changed from σ to a' by the

spin-aligning character of the internal field. The Long-Range-Order (LRO) parameters are:

FM : m = 1/N ] T < a+aak.a > (23)
kσ



A F M : M Q

kσ

It is important to note that the long-range order parameters are the functions of the internal

field, which is itself a function of the order parameter. There is a more mathematical way of

formulating this assertion. According to the paper [?], the phrase "symmetry breaking" means

that the state fails to have the symmetry that the Hamiltonian has. True broken symmetry

can arise only if there is infinitesimal "source fields" present. Indeed, for the rotationally and

translationally invariant Hamiltonian the suitable source terms should be added:

J24aak-* (24)
kσ

AFM : s/iBHj2akaak+Q-*
kQ

where ε —>• 0 at the end of calculations.

Symmetry breaking solutions of the Overhauser type (3) show that the vector Q is a measure of

the inhomogeneity or breaking of translational symmetry. It is interesting to note the remark

of paper [?](c.f. [?]) about antiferromagnetism, for which "a staggered magnetic field plays the

role of symmetry-breaking field. No mechanism can generate a real staggered magnetic field in

an antiferromagnetic material". The Hubbard model is a very interesting tool for the analyzing

of this concept [?] - [?].

Penn [?] shown that antiferromagnetic state and more complicated states (e.g. ferromagnetic)

can be made eigenfunctions of the self-consistent field equations within an "extended" mean-

field approach, assuming that the "anomalous" averages < afaai-a > determine the behavior the

system on the same footing as "normal" density of quasiparticles < a+iσaiσ >. It is clear, however,

that these "spin-flip" terms broke the rotational symmetry of the Hubbard Hamiltonian. For

the single- band Hubbard Hamiltonian the averaging < al_aai>a >= 0 because of the rotational

symmetry of the Hubbard model. The including of the " anomalous" averages lead to unrestricted

H-F approximation. The rigorous definition of the unrestricted Hartree-Fock approximation

(UHFA) has been done recently in Ref. [?]. This approximation has been applied also for the

single-band Hubbard model (10) for the calculation of the density of states. The following

definition of UHFA has been used:

iii-adia =< rii-a > a i a - < al_aaia > a,i-a (25)

Thus, in addition to the standard H-F term, the new, the so-called "spin-flip" terms, are retained.

This example clearly show that the nature of the mean-fields follows from the essence of the

problem and should be defined in a proper way. So, one need the properly defined effective

Hamiltonian Heff. We shall analyse below in detail the proper definition of the irreducible GFs

which include the "spin-flip" terms. For single-orbital Hubbard model this definition be modified

in the following way:

ak+paap-\-q-aaq-a\aka >>w = < < ak+paap-\-q-aaq-a

5pfi < nq-a > Gka- < ak+padp+q-cr > « aq-<r\a~L » " ( 2 6 )

From this definition follows that such a type of introduction of the IGF broaden the initial

algebra of the operator and initial set of the GFs. That means that "actual" algebra of the

10



operators must include the spin-flip terms at the beginning, namely: (aiσ, aiσ+, niσ, afaai-a)

The corresponding initial GF will have the form

<< ai-a\aja +

With this definition we introduce the so-called anomalous (off-diagonal) GFs which fix the

relevant vacuum and select the proper symmetry breaking solutions. In fact, this approximation

has been investigated earlier by Kishore and Joshi [?]. They clearly pointed out that they

assumed that the system is magnetized in x direction instead of conventional z axis. The detailed

investigation and classification of the magnetic and non-magnetic broken symmetry solutions of

the three-band extended Hubbard model for CuO2 planes of high-Tc superconductors was made

in Ref. [?] within mean-field approximation.

6 Dynamical Properties

In many-body interacting systems quasiparticle dynamics can be quite non-trivial. In this

Chapter the problem of the adequate description of the many-body dynamics of the multi-orbital

Hubbard model will be discussed in the framework of equation-of-motion approach for two-

time thermodynamic Green's Functions. Our main motivation was the intention to formulate

the consistent theory of dynamical properties of the Hubbard model taking into account the

symmetry breaking (magnetic) solutions.

This formulation gives to us an opportunity to emphasize some important issues about the

relevant dynamical solutions of the strongly correlated models of fermions on a lattice and to

formulate in a more sharp form the ideas of the method of the Irreducible Green's Functions

(IGF) [?]. This IGF method allows one to describe the quasiparticle spectra with damping of

the strongly correlated electron systems in a very general and natural way and to construct

the relevant dynamical solution in a self-consistent way on the level of Dyson equation without

decoupling the chain of the equation of motion for the GFs.

The interplay and the competition of the kinetic energy and potential energy affects substantially

the electronic spectrum. The renormalized electron energies are temperature dependent and

the electronic states have a finite life times. These effects are most suitable accounted for by

the Green's functions method. We shall use the (IGF) method of Section 4. To give a more

instructive discussion let us consider the single- particle GF of lattice fermions, which is defined

as

G^,(ij;t — t') =« ai^a{t),a^v(J,{t') »= —iO(t — t') < [aina{t),a^V(jl{t')}+ >=
r+00

1/2 π duexp(-iujt)Gl^/(ij;uj) (27)

Actually, this GF is a matrix (10x10) in the joint tensor product vector space of spin and orbital

momentum. The diagonal elements of this matrix GF are normal propagators, while the off-

diagonal elements are anomalous. The equation of motion for the Fourier transform of the GF

has the form

]T A>"*{im)G%,(mj; u) = 5tJ5^5aa, + ^ [ ^ ^ ( i m ) « am^nmaa|a+ a, » (28)
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Here we have introduced the notations

A>"*(im) = tv5mt5^a - C ; B^iim) = {V -

B^ = [U5^a + V{1 - S^Sim; B^{im) = Jim(l - 5tm)

Let us introduce, by definition, an "irreducible" GF in the following way

(29)

1 ^ (30)

- < nmaai > 5mi « ail3a\a%a' » - < aifiaatiaa-y > « O'maaM'jva' »

According (14), the following constraint should be valid

< [(at^nmaaif
r\a+va,}+ >= 0 (31)

Substituting (30) in (28) we obtain the following equation of motion in the matrix (in spin space)

form

+ (32)

where

0 J '

and

(34)

< nia[ >

a*«Tam«t > + < a«4amaJ.

,

niai >;

n/t ^ (Jim, (35)

and similar expressions for E21 and E22 with reversed spin indices. The higher-order GF have

the form

D =

= aiainmai\a+v[

(36)
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and R have the following structure

R =

To calculate the higher-order GF D1, D2, R1 and R2, we will differentiate the r.h.s. of it with

respect to the second-time variable (t’). Combining both (the first- and second-time differen-

tiated) equations of motion we get the "exact" ( no approximation have been made till now)

" scattering" equation

] )Gβν0(nj;ω) (37)
mna/3

Here we have introduced the generalized mean-field (GMF) GF G0 according to the following

definition

Y (38)

The scattering operator P has the form

3 E ' m n : w » ^ S " " ' ; " 0 (39)
P21 (rnn;u) P2

Let us write down explicitly the first matrix element

P?f(mn;u) = ^2[B^(im)(^« am^nma]\a+

nv^nn^ »^)Bf(nj) + (40)

Here we present for brevity the explicit expression for a part of Hamiltonian (5) only without

last term. Using (17) - (19) we find the Dyson equation in the Wannier basis

] ) (41)
mna/3

The equation (41) is the central result of the present consideration.

7 Quasiparticle Formulation

Let us first consider how to describe our system in terms of quasiparticles. For a translationally

invariant system, to describe the low-lying excitations in terms of quasiparticles one has to make

a Fourier transformation

(42)

13



The Dyson equation (41) in the Bloch vector space are given by

; ω) = G^(k; u) al3(; ω)Mαβ(k; ; ω) (43)

afi

= [U6au

The renormalized energies in the mean field approximations are the solutions of the equation

YjF^{k)G^{k-u) = \bilv (44)
a

Using (44) we find

E%(k) = [u- ea{k)]5av - (1 - 5av){V - I)Kff - (45)

)SavN^];

- (46)

; (47)

(48)

^ (49)

The spectrum of electronic low-lying excitations without damping follows from the poles of the

single-particle mean-field GF

For the degenerate Hubbard model (V = I = J = 0) we get

E^{k) = [u- ea{k) -

(En E12\[Gon G
I F T? n
\ti2\ -C/22 / \(j021

0

Here Go denotes a matrix in the space of band indices. If we put the spin-flip contributions

E\2 = E2i = 0

then the quasiparticle spectra are given by

det\En\ = 0 ; det\E22\ = 0

For the multiorbital Hubbard model (5) we find

G%U(LU) = [LU- ea(k) - UN? -V^O-- <W(^f + ^f) + / E ( 1 " ^)iVf J"1 (51)

Finally we turn to the calculation of the damping. In the general case to find the damping

of the electronic states, one needs to find the matrix elements of self-energy in (43). Thus we

have
G\\ G\2 \ _

G21 G22 = I )
From this matrix equation we have

G11 = (Gon — S n ) ~ ; G21 = (G021 —

G12 = ( G Q " 1 2 - )~ ;; G22 = (Co"22 - £22)" ;

1V112

M 2 2

- 1

(52)

(53)

14



Where true self-energy has the form

En = Mn - E12E22

lM21 + {M12E22

1 + (M12 - E12)E22

lM22(E22 - M^)" 1 ] (M21 - E2l) (54)

The elements of the mass operator matrix M are proportional to the higher-order GF of the

following form

(ir) . . + + + ( i r) ,p

For the explicit approximate calculation of the elements of the self-energy it is convenient to

write down the GFs in (54) in terms of correlation functions by using the well-known spectral

theorem [?]:

f(iv) ^ ^ -\- -\- -\- ^ \(*'"))P>\
V UJk-\-p(X(Tl p-\-Ql/(J2 QV(J2 ftA-sBd1* VLMJ4. T-\-SfMT4 -^ -^ )

1 f+°° duo' , ,a ,, ,, f+o° , . u , ,,
— d ω r ( e x p ( p w ) + 1) / exp(—iut)dt
2vr J-c '-oo ^ — ^ J-oo

qνσ2 >^'P) (55)

Further insight is gained if we select the suitable relevant "trial" approximation for the correla-

tion function on the r.h.s. of (55). In this paper we show that the earlier formulations, based

on the decoupling or/and diagrammatic methods can be arrive at from our technique but in a

self- consistent way. Clearly that the choice of the relevant trial approximation for correlation

function in (55) can be done in a few ways. For example, the reasonable and workable one may

be the following "pair approximation" [?], which is especially suitable for the low density of the

quasiparticles:

<7 > (56)

Using (56) in (55) we obtain the approximate expression for the self-energy operator in a self-

consistent form (the self-consistency means that we express approximately the self-energy oper-

ator in terms of the initial G F and, in principle, one can obtain the required solution by suitable

iteration procedure):

^̂

UJ + UJ\ — L02 — Cc>3

durdu.du, j v ( w i > W 2 > W 3 ) [ ( n ) a T ) ( T T ) + (tT)(TI)aT)] +
UJ + UJ\ — Cc>2 — Cc>3

p j dujidujidujs J V ( W I > W 2 > W 3 ) [ ( U ) ( U ) ( T T ) + (TI)ai)(IT)]) (57)
J UJ +UJl — UJ2 — OJ3

where we have used the notations

1, Ω2, Ω3) = [n(ω2)n(ω3) + n(ω1)(1 - n(ω2) -
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9kaa'{u) = —ImGkaa,{uo + iε); n(ω) = [
7T

Here we present for brevity the explicit expression for a part of Hamiltonian only without last

term. The equations (43) and (57) form a closed self-consistent system of equations for the

single-electron GF for the Hubbard model, but for weakly correlated limit only. In principle,

one may use on the r.h.s. of (57) any workable first iteration-step forms of the GFs and find

a solution by repeated iteration. It is most convenient to choose as the first iteration step the

following simple one-pole approximation:

gkσ(ω) ^ Δ(Ω - β(kσ)) (58)

Then, using (58) in (57), one can get for the self-energy an explicit expression. However, the

actual explicit calculations will be much more transparent if we confine ourselves of the single-

orbital Hubbard model to discuss more explicitly the reliability of the present approach.

8 Antiferromagnetic Single-Particle States

The technique for obtaining antiferromagnetic solutions to the correlated fermions on a lattice

is presented in this section for single-orbital Hubbard model (10). In general, it can be easily

applied for multiorbital extended Hubbard model.

As discussed above, the self-consistent approach to calculation of the one-particle properties

requires the calculation of the following GF

i ) (59)
ajσ+ « aia\aj + )

The equation of motion for the Fourier transform of the GF has the form

J2Mim)G(mj;u) = 5^5^ + U « aiani-a\ap » (60)
m

where

)0ωδ f 0 (61)
U {WO mi — him) J

Using the definition of the irreducible parts the equation of motion can be exactly transformed

to the following form

Y &(ij;u) (62)

where

^ -^m ~ U < "*"* > } ~U < a ^ * > ) ( 6 3 )

ωδmi -tim - U < niσ >) J
To calculate the irreducible higher-order GF Dir we have to write the equation of motion for it.

After introducing the irreducible parts for the right-hand-side operators we find

_ =U'D1(ij;u) (64)
n

where

) (ir) %<T + ~ C T jσ>> (ir ) (65)
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Then equation of motion for the GF can be exactly transformed into the following scattering

equation

ω ) G 0 ( n j ; ω ) (66)

(67)

where the generalized mean-field GF G0 reads

and the scattering operator P have the form

- n- \n+n •
- • \ _ TT2

ij,u)-u

+

The Dyson equation (41) then will be reduced for the single-band Hubbard model to the following

form

(ij;ω) =G0(ij;ω) + YJGo(im-uj)M(mn-uj)G(nj-uj) (69)

The mass operator M(mn;ω) = U2P(p)(mn;ω) describes the inelastic (retarded) part of the

electron-electron interaction. For purposes of analogy with the theory of superconductivity [?]

let us write the Hartree-Fock (elastic) part of the Coulomb mass operator (not included in (68)):

M (im) = U
< > <niσ>)

(70)

To obtain workable expressions for various parts of the mass operator we use the spectral the-

orem, inverse Fourier transformation and make relevant approximation in the time correlation

functions. In analogy with the theory of superconductivity the suitable approximation which

describe the interaction between the charge and spin collective excitations can be written as

a + ( J ( t ) a + _ ( J ( t ) a r a _ ( J ( t ) a m ( J a + _ ( J a m _ ( J >%r

< a+nσ(t)amσ >< nn-a{t)nm-a

a+ ( J(t)a r a_ ( J(t)am ( Ja+_ ( J

a+ ( J (t)a+_ ( J (t)a m ( J a m _ ( J

a+_ ( J (t)a r a _ ( J (t)a m ( J a+_ ( J

a+ ( J (t)a r a _ ( J (t)a+_ ( J a m _ ( J

a+ ( J(t)a+_ ( J(t)a+_ ( Jam_ ( J

a+_ ( J(t)am_ ( J

a r a_ ( J(t)a+_ ( J

a+a(t)am-

a+_ ( J(t)am

am-a(t)am (71)

The suitable or relevant approximations follows from the concrete physical conditions of the

problem under consideration. We consider here for illustration the contributions from charge

and spin collective degrees of freedom. We get

72)

f Im « n

\Im « |

Im « S7a\S'Jj

Im « SJσ>>

>>ω1 Im << ai

CJl Im < < aj_

ω1 Im « ai-a

1 Im «

% »u

Im

aj_<J
Im

ω1 Im <

Im <<

•Ul I m

-,,,, /TO

aJ_CT > > ω 2

17



It shows that it is possible to do all calculations in the localized Wannier basis as we did while

deriving the equations for the strong coupling superconductivity in transition metals [?]. This

has the great advantage for consideration of disordered transition metal alloys.

As for the translationally invariant crystal with broken symmetry the following special Fourier

transform should be performed for the generalized mean-field GF G0(ij;ω) (67)

k;ω) (73)

k

G021(ij;ω) = J^exp [i(k + Q)Ri — ikR
k

s~i22f:- \ \ ^ \j(h -\- O\( R- R

k

The result of this transformation is then

'uo-EfF{k + Q) An(k) \
io-E^F(k)J

where

= β(k) + U <nσ> (75)

aiaaf_a

It is evident that one can define the Overhauser's angle θk

c o s 2 θ k°k-
In Overhauser's notations A|j_(A;) = A^{k) = A . The self-consistent set of equations for

determining of the SDW (or "gap") order parameter A , chemical potential /x and averaged

moment < sz > is

sz >=

The above expressions were derived for correlated itinerant fermions on a lattice within Hubbard

model and for finite temperatures. These equations were also deduced in previous papers in the

course of their analysis. Here we deduced it using more sophisticated arguments of the IGFs

method in complete analogy with our description of the Heisenberg antiferromagnet at finite

temperatures [?]. However, the self-consistent system of equations (69), (72) for determining

the quasiparticle spectra with damping is not as obvious generalisation as equations (77). This
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is intrinsically the many-body manifestation of the correlation effects of itinerant fermions on a
lattice and show clearly the advantage of the present approach.
To confirm this, the explicit calculations of the damping should be performed. The natural
way to tackle this program would then to look at the calculations of the collective GFs or
generalized spin (and charge) susceptibilities in (72) but it deserve of separate consideration.
Again this problem bears close similarity to paramagnetic Hubbard model and antiferromagnetic
Heisenberg model and it can be argued that this effect of interference of single-particle and
collective modes of excitations should be considered carefully.

9 Discussion

We have been concerned in this paper with establishing what is the essence of single-particle ex-
citations of correlated lattice fermions, rather with their detailed properties. We have considered
the single- and multiband Hubbard model but the calculational details were mainly presented
for single band Hubbard model where the appropriate concepts are easier to demonstrate. We
have considered a general family of symmetry breaking solutions for itinerant lattice fermions,
identified the type of ordered states and then derived explicitly the functional of generalized
mean fields and self-consistent set of equations which describe the quasiparticle spectra and
their damping in the most general way. While such generality is not so obvious in all applica-
tions, it is highly desirable in treatments of such complicated problems as the competition and
interplay of antiferromagnetism and superconductivity, heavy fermions and antiferromagnetism
etc., because of the non-trivial character of coupled equations which occur there. Both of these
problems are subjects of current but independent research.

Another development of the present approach is the consideration of the itinerant antiferromag-
netism of highly correlated lattice fermions when U is very big but finite. Like the weak-coupled
case described in this paper, the broken symmetry approach will work, but matters are compli-
cated by the necessity of constructing of the more extended algebra of relevant operators [?]. This
idea has been carried out for the paramagnetic solution of the single-band Hubbard model [?].
It would be interesting to understand on a deeper level the relationship between Mott metal-
insulator transition and various ordered magnetic states within the Hubbard model.
In conclusion, we have demonstrated that Irreducible Green's Functions approach is a workable
and efficient scheme for the consistent description of the correlated fermions on a lattice at finite
temperatures and can be generalised naturally to include the symmetry breaking concept.
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