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1 Lecture 1: introduction to symmetry in CMP

1.1 The idea of symmetry

When we speak of symmetry informally we refer to transformations that leave
the state of affairs unchanged. Crystals are often beautifully symmetric ob-
jects (the similarity between certain crystals and platonic solids has been
recognised early on), and since the eighteen century, symmetry has been
used to classify the morphology of crystals. Later, with the development of
X-ray diffraction, crystallography became a powerful tool not only to classify
crystal structure in a much more systematic way using the 230 space groups,
but also to determine precisely the positions of atoms and molecules in the
crystals. Since crystals can be considered as rigid bodies with periodic prop-
erties in space, lattice translations, certain rotations and translation-rotation
combinations in ordinary space turn out to be the most relevant transforma-
tions1 for crystals and consequently for the branch of CMP that deals with
crystalline materials.

Although knowing where atoms are is clearly necessary, the most important
applications of symmetry in condensed matter physics are concerned with the
determination of the symmetry of fields (functions of x, y, z, and t, although
we will mostly consider static fields), which can be defined either on discrete
points (e.g., the magnetic moments of atoms) or on the whole of space (e.g.,
electron density). These functions are usually solutions of a classical or quan-
tum problems. For example:

• In Schroedinger’s description of quantum mechanics, the wave function is a
complex scalar field defined over all the continuous domain of ordinary
3D space. Electron density is a real field derived from the many-body
wave function. All description based on discrete domains (see here
below) are useful approximations of continuous descriptions.

• A crystal lattice (an infinite but discrete set of points) can support, for ex-
ample, a set of classical spins (magnetic structure) or a set of displace-
ments (the displacements of phonon modes). These can be understood
as real vector fields defined over the lattice domain.

• A finite set of points, for example, the atoms in a molecule, which again
may support spins (if the atoms are magnetic), displacements etc. In
this case, the domain of these vector functions is a discrete set of points.

The theory of symmetry groups (including point groups and crystal-
lographic space groups) can be employed to classify the symmetry
not only of sets of atoms (described as points) of these more physics-
related functions. For example, the electron density in a crystal has the
same symmetry of the crystal structure, which is described by one of the 230
crystallographic space groups.

1Not the only ones — time reversal symmetry is also important for magnetism.
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There is generally a hierarchy of symmetries: the highest symmetry we need
to consider is the symmetry of the set of points over which the fields are de-
fined (i.e., the domain). The Hamiltonian usually has lower symmetry than the
domain, and the solution can have an even lower symmetry. As an example,
we can consider the problem of single-particle electronic wave functions in a
crystal (usually considered as infinite). Here, the domain is the continuous
space within the crystal. The Hamiltonian is associated with the electrostatic
potential generated by the atoms at the crystal lattice, and has lower transla-
tional/rotational symmetry than the free space. Finally, electronic eigenstates
(especially excited states) usually have lower symmetry than the Hamiltonian.

1.2 Symmetry of the problem and symmetry of the solutions

One might argue that ‘classification by symmetry’ sounds too much like ‘stamp
collecting’ for a serious physics student to be concerned with it. Nothing
could be further from the truth, as there is an intimate connection between
the symmetry of the Hamiltonian (classical or quantum) and its spectral
properties (i.e., its energy levels and how degenerate they are).

To introduce this connection, let us consider the very familiar example of a
planet orbiting a massive star. The energy of the system (Hamiltonian) is
rotationally invariant, so the energy of the planet located at position r and with
momentum p would be the same as at positionRr and momentumRp, where
R is any matrix describing a rotation or a reflection. in fact, when expressed
in appropriate form, the Hamiltonian is rotationally invariant by inspection:

H =
|p|2

2m
−GmM

|r|
(1)

The Hamiltonian is also invariant by inversion (parity) and by any mirror re-
flection. By contrast, the solutions of the Hamilton equation (elliptical orbits)
are clearly not rotationally invariant, although some of the original symme-
try is nonetheless preserved (an elliptical orbit is still invariant by a reflection
in the plane of the ellipse). Therefore, we find that a generic rotation does
change the state of affairs, but does not change the energy. We conclude
that, at least in this case, the symmetry of the solutions is lower than the
symmetry of the Hamiltonian. We can, however, be assured that, if we trans-
form one orbit by any rotation, reflection etc., we will find a new solution (orbit)
that has the same energy (and in fact the same absolute value of the angular
momentum) as the original one.

1.3 Linear problems and linear (vector) spaces.

The example illustrated above shows that symmetry can be used to generate
‘by symmetry’ many equivalent solutions starting from one solution, which is
convenient enough. We can however go a step further for problems where the
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equations of motion are linear in the dynamical variables2. Here we briefly
illustrate the two most famous linear problems in physics — the harmonic
oscillator problem and the Schroedinger equation. The equations of motion
of the 1D harmonic oscillator are clearly linear in the dynamical variable, in
that the equation:

mẍ(t) = −kx(t) (2)

is linear in x(t). If x1(t) and x2(t) are two solutions, then ax1(t) + bx2(t),
with a and b arbitrary constants, will also be a solution — this is known as
the superposition principle . In fact, one may take x1(t), x2(t), a and b to be
complex — e.g., x1(t) = |x1|eiωt, etc. — and recover the physical meaning
of the solutions by taking the real part at the end of the process. This can
be clearly generalised to any set of ‘balls and springs’ in 2D and 3D, giving
rise to normal mode theory. In this case, the dynamical variables are the
displacements of individual atoms, which form a field on a discrete domain.

Similarly, the Schroedinger equation

i~
∂ψ(t)

∂t
= Ĥψ(t) (3)

is clearly linear in the wave function ψ(t) (a complex continuous field), so that
if two time-dependent solutions exist, say ψ1(t) and ψ2(t), then aψ1(t)+bψ2(t),
with a and b arbitrary complex constants, will also be a solution, in complete
analogy with the classical case.

It is instructive to note that, mathematically, linear problems of this kind can be
reduced to the task of diagonalising a symmetric/hermitian matrix3, yielding
the normal modes/normal frequencies and the eigenfunctions/eigenvalues in
the two cases.

What is it special about symmetry when the superposition principle applies?
Consider a specific normal mode or eigenvector, with its time dependent
phase factor, so that it define a particular solution of the dynamical equa-
tion, say ψ1(t). As we have seen, if we transform this solution by one of the
symmetries of the Hamiltonian, we will obtain another solution with the same
energy (eigenvalue), say ψ2(t). But, as we have just seen, aψ1(t) + bψ2(t)

will also be an eigenfunction with the same eigenvalue. So, here, by applying
one of the symmetries of the Hamiltonian, we have not only created a distinct
solution (albeit with the same energy, as in the case of the planet orbits4), but

2This is not to say that symmetry does not have its uses for non-linear problems — it most
certainly does, e.g., for the symmetry classification of phase transitions in the context of the
Landau theory. However, even in this cases, there is usually an underlying linear theory; for ex-
ample, linear normal modes theory underlies the classification of displacive phase transitions,
where the free energy is non-linear in the order parameters.

3There are subtleties in the quantum case when dealing with the continuous spectrum,
which we will ignore here.

4It is worth remarking that a linear combination of two elliptical orbits is not an elliptical
orbit.
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we have generated an entire space of degenerate eigenfunctions.

We can now recall from our studies of quantum mechanics that the natu-
ral arena to discuss solutions of the Schroedinger equation is the so-called
Hilbert space, which generalised the notion of Euclidean space, including the
dot product, and extends it to infinite dimensions and to the complex field.
An even more general definition is that of a linear space (also called a vec-
tor space), which may or may not have the definition of a dot product. We
should also recall that any Hermitian operator defined on the Hilbert space
(including, most importantly, the Hamiltonian) possess a a complete set of
orthogonal eigenvectors, which can be taken as a basis for the entire Hilbert
space. The notion is completely analogous to the classical case, provided we
replace ‘eigenvector(s)’ with ‘normal mode(s)’. What we have shown here is
that, in the presence of symmetry, eigenvectors or normal modes in gen-
eral do not have distinct eigenvalues/frequencies, but form subspaces
(of the original Hilbert space) of modes/eigenvectors with the same fre-
quency/eigenvalues (multiplets). One important corollary is that, if symme-
try is reduced, some of the multiplets split.

1.4 Physical consequences

The most obvious and historically important connection between between
what we have been discussing and experimental observation is in the field
of optical spectroscopy (and later X-ray spectroscopy). Even before the ad-
vent of quantum mechanics, it was well known than many prominent features
in atomic spectra were in fact multiplets, i.e., sets of lines with very similar
wavelengths. In addition to multiplets, some individual lines can be split into
a number of components in the presence of electric and magnetic field (the
Stark and Zeeman effects, respectively — note that externally-applied E and
B fields generally break some symmetry), whereas others cannot. Other ex-
perimental effects and problems where symmetry plays a major roles are:

• Determining the multiplet structure given the symmetry of the Hamil-
tonian. For example the fact the the hydrogen levels have degener-
acy 2l + 1 can be determined entirely from symmetry, regardless of the
specific form of the central potential. Other applications are in the ro-
tational/vibrational spectroscopy of molecules (IR, Raman and neutron
spectroscopies).

• Determining the symmetry and degeneracy of excitations (particularly
low-energy ones). For example, one can determine the degeneracy
of phonon/magnon branches and of electronic excitations entirely from
symmetry.

• Determining the effect of symmetry breaking in the small-perturbation
limit. For example, lifting of degeneracy due to external magnetic or
electric field, spin-orbit interaction, crystal-field effects, where the dif-
ference between the spectra of atoms in vacuum and in molecules or
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crystals can be explained by the reduced symmetry of their environ-
ment.

• Determining the phase diagrams and the nature of the ordered phases
for structural and magnetic phase transitions.

One important point is that linear algebra group theory alone are not suf-
ficient to understand these effects fully: one needs different tools which
will be introduced in this course.

1.5 The tools of the trade

The most comprehensive understanding of the relation between the physical
effects described above, which bewildered early spectroscopy, and symme-
try is due to Hermann Weyl and Eugene Paul Wigner. In the 1930s, Hans
Bethe and John Hasbrouck van Vleck developed crystal field theory using
these principles5 This required the application a number of mathematical
tools, which were well developed at the time of Wigner (see Fig. 1):

Symmetry	  operators	  
(ac.ng	  in	  `ordinary’	  space)	  

	  

Linear/Unitary	  
operators	  

(ac.ng	  in	  `mode’	  space)	  
	  

Group	  theory	  

Linear	  algebra	  

Representa.on	  
theory	  

`Modes’	  
(Displacements,	  Spins,	  

wavefunc.ons…)	  
	  

Operators	  Mathema.cal	  theories	  

Ordinary	  space	  
(Euclidean/affine)	  

	  

Sets/spaces	  

Figure 1: Spaces (right), operators (middle) and mathematical theories (left) relevant for
the theory of symmetry.

• Linear algebra deals with linear (vector) spaces (including ordinary Eu-
clidean space and Hilbert spaces) and with linear operators acting on
these spaces. Most physics courses introduce linear algebra in the first
year. A good summary can be found in the lecture notes of the Ox-
ford first-year ‘Vectors and matrices’ physics course. We will assume
that the students are familiar, for example, with the concepts of basis

5On the web one can find excellent interview with Hans Bethe, episode 15 of the series
“Hans Bethe—Scientist”, about the early days of the application of group theory to crystal
spectroscopy.
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vectors for a generalised linear space, dot products, etc., and can con-
fidently manipulate simple matrices and arrays (i.e., elements of Rn).
The useful concept of projector operator will be briefly introduced later
in this lecture.

• Group theory is the best way to describe (among many other things) the
transformations of ordinary space that form the basis of crystallographic
symmetry. We will see very shortly why linear algebra is not sufficient
for this task. Group theory is essential for modern physics, and it is a
real pity that this important subject is not generally studied as part of the
mathematical foundations of university physics. Here, we will introduce
the main concepts of group theory very briefly and largely by examples.

• Representation theory. As we shall see shortly, every transformation (crys-
tallographic or otherwise) of ordinary Euclidean space maps onto a lin-
ear operator acting on the space of modes defined onto the ordinary
space.6 The branch of mathematics that describes the mapping be-
tween a group (here, a particular group of symmetry operators) and a
set of linear operators is called representation theory, and is the main
focus of the present course.

1.6 Isometric transformations of ordinary space and their link
with linear operators

Here we are interested in transformations of an object, a pattern or a field that
‘take each point and move it elsewhere’ without changing the shape of the
object (distances and angles). In mathematics, these transformations are a
particular case of active or alibi transformations (from the Latin alibi, meaning
elsewhere). We write this transformation generically as T (p). Writing T (p1) =

p2 means that a point p1 is moved to a point p2, in the sense that all the
properties originally associated with p1 (e.g., the value of a function-field) will
be found at p2 after the transformation. For an alibi transformation of this kind,
the inverse transformation T−1(p) is defined so that T−1(p2) = p1 for each
point in the domain. In order for distances and angles in ordinary space to be
preserved, the transformation must be a rotation, a reflection, a translation or
a combination of these. If the ‘state of affairs’ is left unchanged after the alibi
transformation, we say that the transformation is a symmetry operator of the
object, pattern, function etc. Alibi transformations are distinct from coordinate
transformations, also known as passive or alias transformations, which leave
each point (and indeed everything else) where it is but create an alias, i.e.,
a different name for it. In this course, a ‘transformation’ is implicitly an alibi
transformations — we will not refer to alias transformations at all.

An often unappreciated fact is that alias transformations leave all the ‘physics’ in-
variant, because they simply change the name of things. In particular, they leave all

6It is rather unfortunate that the word ‘operator’ is used for two rather different objects, but
the word ‘symmetry operator’ is all too common to be replaced systematically with ‘symmetry
transformation’.
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vectors invariant — this is accomplished by changing both the components and the
basis vectors. All laws of physics remain valid after an alias transformation (remem-
ber, we are only changing the names of things!), but may not have the same form as
with the original names...

1.6.1 Alibi transformations of points

If one employs Cartesian coordinates, a generic alibi transformation T [p] sat-
isfying these properties is written as

x2 = t +Rx1 (4)

where x1 and x2 are the coordinates of p1 and p2 (written as column arrays),
t is the translational part of the transformation and R is an orthogonal matrix,
so that detR = ±1, where the +/− sign is for proper/improper rotations,
respectively. The inverse transformation will be obtained by replacing R with
R−1 and t with −R−1t. In fact, it is easy to verify that

x1 = −R−1t +R−1x2 (5)

It can be shown that the expressions for non-Cartesian crystallographic coor-
dinates is identical, except that R is replaced by a non-orthogonal matrix D
with detD = ±1, but we will generally continue to use R in the remainder.

Even when ordinary Euclidean space is treated as a linear space7, crystal-
lographic transformations (symmetry operators) involving translations are not
linear operators. In fact, if T represents a pure translation (i.e., R = 1 ), one
can easily see that T (ar1 + br2) 6= aTr1 + bTr2. Consequently, linear algebra
cannot be used in general to describe crystallographic transformations, and
we have to employ the more general formalism of group theory8.

1.6.2 Alibi transformations of patterns and fields

As we mentioned at the beginning of the lecture, we are primarily interested in
the symmetry properties of scalar and vector fields (complex- or real-valued).
A useful and intuitive analogy here is provided by alibi transformations of
patterns (think, for example, about the famous Escher symmetry drawings).
For example, the colour originally found at point p1 will be found at point p2

after the transformation and so on. We can extend this concept to any scalar
field (real or complex) defined on our ordinary space of points, say f(p), in
a straightforward way. The idea of a vector pattern, i.e., when points are

7In fact it is not! Points are not vectors, unless one introduces an arbitrary origin, but we
can safely ignore this subtlety here.

8The exception to this are point groups (see below), for which there is a one-to-one corre-
spondence between group elements and (proper and improper) rotation matrices.
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‘decorated’ with arrows, requires a bit more care, but is also quite intuitive if
everything is done in Cartesian coordinates: if before the alibi transformation
the vector v1 is associated with point p1, having coordinates x1, then after the
transformation a vector v2 = Rv1

9 will be associated with point p2 having
coordinates x2 = t + Rx1. Again, this can be easily extended to any vector
function, say f(p).

Regardless of the specific domain, the alibi transformation of a function f(p)

under the alibi transformation T (p) has a simple general form:

f ′(p) = T [f(p)] = f(T−1[p]) (6)

which , expressed in Cartesian or crystallographic coordinates, gives:

f ′ = T [f(x)] = f(R−1x−R−1t) (7)

Let us analyse the rationale for this simple form. As we know, T (p1) = p2

and also T−1(p2) = p1. Therefore f ′(p2) = f(T−1[p2]) = f(p1), exactly as we
wanted. For vector functions, following the general procedure to transform
vectors, we will have f ′(p) = T [f(p)] = Rf(T−1[p]) or, in Cartesian coordi-
nates,

f ′ = T [f(x)] = Rf(R−1x−R−1t) (8)

which gives f ′(p2) = Rf(T−1[p2]) = Rf(p1) as expected.

Here is a more detailed recipe to transform a field:

• We want to transform a function f(x, y, z) with a given transformation, which
is expressed as x2 = t + Rx1 in the crystallographic or Cartesian co-
ordinate system in which the function f is defined. We will call the
transformed function f ′(x, y, z), defined over the same space and using
the same coordinates. We start by writing:

f ′(x, y, z) = f(X(x, y, z), Y (x, y, z), Z(x, y, z)) (9)

• In other words, we have replaced the arguments of f with formal arguments
X, Y and Z, which are themselves functions of the variables x, y, x.

• The functions X, Y and Z are defined by back-transforming x,y,z, exactly
as in eq. 5, as follows:

 X(x, y, z)
Y (x, y, z)
Z(x, y, z)

 = −R−1

 tx
ty
tz

+R−1

 x
y
z

 (10)

9Strictly speaking, this form is correct only for a polar vector — see discussion in the
remainder of this course.
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1.6.3 Example of transformation on a function

Let us consider the following function, which is a representation of the so-
called 3dx2−y2 orbital:

f(x, y, z) = R(x, y, z)Y (x, y, z)

R =

(
r

a0

)2

e
− r

3a0

Y =
1

r2

(
x2 − y2

)
= sin2 θ cos 2φ (11)

we want to apply to this function an operator that rotates it 20◦ counter-
clockwise around the z axis. The procedure is to re-write f as a function of
new formal arguments X(x, y, z), Y (x, y, z) and Z(x, y, z), and relate X,Y, Z
to x, y, z through the inverse operator, i.e., a rotation by 20◦ clockwise:

 X
Y
Z

 =

 cosφ0 − sinφ0 0
sinφ0 cosφ0 0

0 0 1

 x
y
z

 (12)

where φ0 = −20◦. This yields:

T [f(x, y, z)] = f(X,Y, Z) = R′(x, y, z)Y ′(x, y, z)

R′ = R =

(
r

a0

)2

e
− r

3a0

Y ′ =
1

r2

(
X2 − Y 2

)
= sin2 θ cos 2(φ+ φ0) (13)

Fig. 2 shows the original function and the function rotated with this procedure.

1.6.4 Alibi transformations of fields are linear in field (mode) space!

It is a very easy matter to see that, by our definition, alibi transformation of
scalar/vector functions are linear. In fact, in the more general case of a vector
function:

T [af1(x) + bf2(x)] = R(af1(x′) + bf21(x′)) = aRf1(x′) + bRf2(x′)) (14)

with x′ = R−1x−R−1t as before. This may seem rather astonishing, because
the original alibi transformation in ordinary space is generally not describable
by a linear operator, but it is the basis for all subsequent developments.
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p'	  

p	  

Figure 2: Left: the 3dx2−y2 orbital: function. We want to rotate it by 20◦ counter-clockwise
around the z axis, so that the “attributes” of point p′ (here simply the value of the function) are
transferred to point p. Right: the rotated function, constructed using the procedure in eq. 13.

1.6.5 Alibi transformations and linear spaces

The previous observation has clearly important implications for sets of func-
tions that can be considered as elements of a linear space (e.g., the Hilbert
space). Here the condition is clearly that if f1(p) and f2(p) must be mem-
bers of the space, then af1(p) + bf2(p) must also be a member for a and b

arbitrary real or complex numbers (depending on whether the linear space
is defined over the real or complex field). To realise that this is not a trivial
condition, let’s immediately consider the counterexample of electron density.
Since the density of electrons is a positively defined quantity, the set of all
possible electron densities in a crystal cannot form a linear space. However,
small deviations form an average density could be considered as forming a
linear space. Other important examples of such linear spaces are:

• The displacements of atoms in a vibrating molecule.

• The spins on a lattice of magnetic atoms in a crystal.

• The set of wave-functions defined on ordinary space.

The implication is that each alibi transformation that is a symmetry of the
domain induces a linear operator on the linear space of functions. As we have
already mentioned, a map between group elements and linear operators is
called a representation, and the one we just described will turn out to be a
particular kind of representation (see the next lectures).

In most cases of interest, linear operators associated with isometric transformations
are unitary operators, i.e., operators that preserve the dot product. This is straight-
forward to see for the Hilbert space. Remembering that the scalar dot product of two

14



wave-functions f and g, written as 〈f |g〉 in bra-ket notation, is

〈f |g〉 =

∫
f∗(x)g(x)dx (15)

then we will have

T (〈f |g〉) =

∫
T (f∗(x))g(x))dx =

∫
g∗(R−1x−R−1t)f(R−1x−R−1t)dx (16)

defining x′ = R−1x − R−1t, changing variables and observing that the Jacobian of
the transformation is simply R, we obtain:

T (〈f |g〉) =

∫
T (f∗(x))g(x))dx =

∫
g∗(x′)f(x′)|det(R)|dx′ = 〈f |g〉 (17)

1.6.6 Example: a simple alibi transformation

I provide here what is possibly the simplest example of an alibi transformation in the
space of functions — a simple translation in 2D (no rotation). The general formulation
of the ’recipe’ for an alibi transformation is given in eq. 10:

 X(x, y, z)
Y (x, y, z)
Z(x, y, z)

 = −R−1
 tx
ty
tz

+R−1

 x
y
z

 (18)

We want to limit ourselves to 2D. Given that R is the identity, the rule gives then:

X = x− tx
Y = y − ty (19)

Let us apply this transformation to a second-order polynomial in x and y, with generic
expression:

f(x, y) = c1 + c2x+ c3y + c4x
2 + c5y

2 + c6xy (20)

By replacing x with X and y with Y in this expression, we obtain the polynomial
translated by (tx, ty):
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T [f(x, y)] = f ′(x, y) = (c1 − c2tx − c3ty + c4t
2
x + c5t+ y2 + c6txty)

+(c2 − 2txc4 − tyc6)x

+(c3 − 2tyc5 − txc6)y

+c4x
2

+c5y
2

+c6xy (21)

It should be immediately clear that this is a linear transformation — this is in fact the
case for any alibi transformation; in other words:

T [af1(x, y) + bf2(x, y)] = aT [(f1(x, y)] + bT [(f2(x, y)] (22)

If so, one should be able to write it as a matrix, provided that a suitable basis is cho-
sen. Conveniently, the polynomials are already expressed in the basis [1, x, y, x2, y2, xy].

The transformation matrix can therefore be read out immediately from Equation 21:

M =


1 −tx −ty t2x t2y txty
0 1 0 −2tx 0 −ty
0 0 1 0 −2ty −tx
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (23)

This result illustrates a very important and completely general point: alibi transfor-
mations of functions are associated with linear operators.

One can verify by direct multiplication that the two matrices M1 and M2, correspond-
ing to translations (t1x, t1y) and (t2x, t2y) commute, and that their product is the
matrix corresponding to the translation (t1x + t2x, t1y + t2y), exactly as one should
expect.
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2 Lecture 2: Crystallographic point groups and group
theory

2.1 A good place to start: crystallographic point groups in 2D

Before introducing the more formal aspects of group theory, it is useful to de-
scribe in some detail a set of examples. Crystallographic point groups in 2D
are sufficiently simple to be grasped intuitively, yet sufficiently complex to illus-
trate most of the issues we will be concerned with. Moreover, crystallographic
point groups describe the exact symmetry around all atoms and molecules in
crystals, and of many free-standing molecules. The description can be easily
extended to include molecules with non-crystallographic symmetry groups.

But what do we mean by ‘crystallographic symmetry’? Essentially, a crystal-
lographic symmetry operator is a transformation that leaves unaltered one of
the 5 2D Bravais lattices or one of the 14 3D Bravais lattices. In addition to
lattice translations, there is only a small number of such transformations:

In 2D

• Rotations of order 2, 3, 4 and 6 about an axis normal to the pattern (sym-
bols 2, 3, 4 and 6 in the so-called Hermann-Mauguin notation).

• Reflection through a line in the plane of the pattern (symbol m).

In 3D

• Rotations of order 2, 3, 4 and 6 about an axis as in the 2D case. These
are called proper rotations, and are associated with matrices M having
detM = +1

• Reflection through a point, i.e., inversion (symbol 1̄). This is associated
with minus the identity matrix (−1, with det−1 = −1)

• Combinations of proper rotations and the inversion (symbols m, 3̄, 4̄ and 6̄).
These are called improper rotations, and are associated with matrices
M having detM = −1

If one keeps at least one single point fixed, excluding therefore the possibility
of translations, these symmetry operators can be combined to yield the 10
2-dimensional or the 32 3-dimensional point groups10, which are described
in more details in Section 2.5.

In Cartesian coordinates, proper and improper rotations around the fixed point (ori-
gin) are associated with orthogonal matrices, which are clearly linear operators. This

10Proving that there are only this number of point groups is a considerable task, which we
will defer to more specialised textbooks.

17



seems to contradict what we just said about symmetry transformations not being lin-
ear operators. However, as soon as one introduces translations, this identification
breaks down — this is why it is important to work in the more general framework of
group theory.

2.1.1 Some important properties of operators

Operators can be applied one after the other, generating new operators,
which are also part of the symmetry set. Taken all together, they form a
finite (for pure rotations/reflections) or infinite (if one includes translations)
consistent set. As we shall see here below, the set of symmetry operators
on a particular pattern has the mathematical structure of a group. In this first
part of the course, we will be mainly concerned with finite groups, but the
concepts are of much wider applicability.

In general, operators do not commute. This is illustrated in fig. 3.

m10 
45º 

m11 

4+ 

������

����

m10 
4+ 

������

����

45º 

m11 

m10◦4+ 4+◦m10 

Figure 3: Left: A graphical illustration of the composition of the operators 4+ and m10 to
give 4+ ◦ m10 = m11. The fragment to be transformed (here a dot) is indicated with ”start”,
and the two operators are applied in order one after the other (the rightmost first), until one
reaches the ”end” position. Right: 4+ and m10 do not commute: m10 ◦ 4+ = m1̄1 6= m11.

As we see in fig. 3, some parts of the space are left invariant (transformed
into themselves) by the application of a certain operator. For example, m10

leaves a horizontal plane invariant, whereas m11 leaves invariant a plane in-
clined by 45◦. Parts of the space left invariant by a certain operator are called
symmetry elements corresponding to that operator.
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2.2 Introduction to group theory

The set of operators describing the symmetry of an object or pattern conforms
to the mathematical structure of a group11. This is true in the case of the point
groups but also in the more general case of space groups, which include
translations. A group is a set of elements with a defined binary operation
known as composition or multiplication, which obeys certain rules.

� A binary operation (usually called composition or multiplication) must be
defined. We indicated this with the symbol “◦”. When group elements
are operators, the operator to the right is applied first.

� Composition must be associative: for every three elements f , g and h of
the set

f ◦ (g ◦ h) = (f ◦ g) ◦ h (24)

� The “neutral element” (i.e., the identity, usually indicated with E) must exist,
so that for every element g:

g ◦ E = E ◦ g = g (25)

� Each element g has an inverse element g−1 so that

g ◦ g−1 = g−1 ◦ g = E (26)

� A subgroup is a subset of a group that is also a group.

� A set of generators is a subset of the group (not usually a subgroup) that
can generate the whole group by composition. Infinite groups (e.g., the
set of all lattice translations) can have a finite set of generators (the
primitive translations).

� Composition is in general not commutative: g ◦ f 6= f ◦ g

� A group for which all compositions are commutative is called an Abelian
group.

� If the group is finite and has h elements, one can illustrate its action in
a tabular form, by constructing a multiplication table (see below for
an example). The table has h × h entries. By convention, the group
elements running along the top of the table are to the right of the com-
position sign, while the elements running along the side of the table go
to the left of the composition sign.

11Leonard Euler (1707–1783) was responsible for developing the number-theory strand of
group theory. In the 1830s, Evariste Galois was the first to employ groups to determine the
solvability of polynomial equations. Arthur Cayley and Augustin Louis Cauchy pushed these
investigations further by creating the theory of permutation groups. Felix Klein (1849–1925)
used group theory to classify geometries
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Symmetry operators as elements of a group. The important connection
between symmetry operators and group elements is that composing sym-
metry operator is equivalent to applying them one after another. In line
with the usual conventions in physics, when referring to symmetry operators
the notation g ◦ f means that f is applied first, followed by g. Groups of crys-
tallographic symmetry operators can be constructed from a small number of
generators, as explained above.

2.3 The point group 32 (D3): a classic example

• Fig. 4 illustrates a classic example of a crystallographic group: the point
group 32 (Hermann-Mauguin notation) or D3 (Schoenflies notation).

K 

A, B (3+,3-) 

L M 

E=the identity	  

!3 C3i
HEXAGONAL AXES

6 b 1 Rhombohedron !hkil" !ihkl" !kihl"
Trigonal antiprism (g) !!h!k!i!l" !!i!h!k!l" !!k!i!h!l"

Hexagonal prism !hki0" !ihk0" !kih0"
Hexagon through origin !!h!k!i0" !!i!h!k0" !!k!i!h0"

2 a 3.. Pinacoid or parallelohedron !0001" !000!1"
Line segment through origin (c)

Symmetry of special projections
Along #001$ Along #100$ Along #210$

6 2 2

!3 C3i
RHOMBOHEDRAL AXES

6 b 1 Rhombohedron !hkl" !lhk" !klh"
Trigonal antiprism ( f ) !!h!k!l" !!l!h!k" !!k!l!h"

Hexagonal prism !hk!h%k"" !!h%k"hk" !k!h%k"h"
Hexagon through origin !!h!k!h%k"" !!h%k"!h!k" !!k!h%k"!h"

2 a 3. Pinacoid or parallelohedron !111" !!1!1!1"
Line segment through origin (c)

Symmetry of special projections
Along #111$ Along #1!10$ Along #2!1!1$

6 2 2

321 D3
HEXAGONAL AXES

6 c 1 Trigonal trapezohedron !hkil" !ihkl" !kihl"
Twisted trigonal antiprism (g) !khi!l" !hik!l" !ikh!l"
Ditrigonal prism !hki0" !ihk0" !kih0"
Truncated trigon through origin !khi0" !hik0" !ikh0"
Trigonal dipyramid !hh2hl" !2hhhl" !h2hhl"
Trigonal prism !hh2h!l" !h2hh!l" !2hhh!l"
Rhombohedron !h0!hl" !!hh0l" !0!hhl"
Trigonal antiprism !0h!h!l" !h!h0!l" !!h0h!l"
Hexagonal prism !10!10" !!1100" !0!110"
Hexagon through origin !01!10" !1!100" !!1010"

3 b .2. Trigonal prism !11!20" !!2110" !1!210"
Trigon through origin (e) or !!1!120" !2!1!10" !!12!10"

2 a 3.. Pinacoid or parallelohedron !0001" !000!1"
Line segment through origin (c)

Symmetry of special projections
Along #001$ Along #100$ Along #210$

3m 2 1

Table 10.1.2.2. The 32 three-dimensional crystallographic point groups (cont.)

TRIGONAL SYSTEM (cont.)
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10.1. CRYSTALLOGRAPHIC AND NONCRYSTALLOGRAPHIC POINT GROUPS

Figure 4: Schematic diagram for the the point group 32 (Hermann-Mauguin notation) or D3

(Schoenflies notation). This group has 6 elements (symmetry operators): E (identity), A and
B (rotation by +120◦ and −120◦, respectively), M , K, and L (rotation by 180◦ around the
dotted lines, as indicated). The graphical notation used in the International Tables is shown in
the top left corner.

• One should take note of the following rules, since they apply generally to
the composition or rotations:

� The composition of an axis and a 2-fold axis perpendicular to it in the
order M ◦ A is a 2-fold axis rotated counter-clockwise by half the
angle of rotation of A.

� Conversely, the composition of two 2-fold axes in the order K ◦M is
a rotation axis of twice the angle between the two two 2-fold axes
and in the direction defined by M ×K.

• Fig. 6 shows the multiplication table for the group of permutations of 3
objects (1,2,3). It is easy to see that the multiplication table is identi-
cal to that for the 32 group (with an appropriate correspondence of the
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D3#(32)#

E# A# B# K# L# M#

E# E# A# B# K# L# M#

A# A# B# E# L# M# K#

B# B# E# A# M# K# L#

K# K# M# L# E# B# A#

L# L# K# M# A# E# B#

M# M# L# K# B# A# E#

Applied first 

A
pp

lie
d 

se
co

nd
 

Figure 5: Multiplication table for the point group 32 (D3).

elements of each group). When this happens, we say that 32 and the
group of 3-element permutations are the same abstract group.

Permuta(on	  group	  

123	   312	   231	   321	   132	   213	  

123	   123	   312	   231	   321	   132	   213	  

312	   312	   231	   123	   132	   213	   321	  

231	   231	   123	   312	   213	   321	   132	  

321	   321	   213	   132	   123	   231	   312	  

132	   132	   321	   213	   312	   123	   231	  

213	   213	   132	   321	   231	   312	   123	  

Applied first 

A
pp

lie
d 

se
co

nd
 

Figure 6: Multiplication table for the 3-element permutation group.

2.4 Conjugation

• Two elements g and f of a group are said to be conjugated through a
third element h if:

f = h ◦ g ◦ h−1 (27)
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We use the notation g ∼ f to indicate that g is conjugated with f .

• Conjugation has the following properties:

� It is reflexive: g ∼ g

g = E ◦ g ◦ E−1 (28)

� It is symmetric: g ∼ f ⇔ f ∼ g. In fact:

f = h ◦ g ◦ h−1 ⇔ h−1 ◦ f ◦ h = g ⇔ g = h−1 ◦ f ◦ (h−1)−1 (29)

� It is transitive: g ∼ f, f ∼ k ⇒ g ∼ k. (proof left as an exercise).

• A relation between elements of a set that is reflexive, symmetric and tran-
sitive is called an equivalence relation. An equivalence relation parti-
tions a set into several disjoint subsets, called equivalence classes. All
the elements in a given equivalence class are equivalent among them-
selves, and no element is equivalent with any element from a different
class.

• Consequently, conjugation partitions a group into disjoint subsets (usually
not subgroups), called conjugation classes.

• If an operator in a group commutes with all other operators, it will form a
class of its own. It follows that in every group the identity is always in a
class on its own.

• For Abelian groups, every elements is in a class of its own.

2.4.1 Example: the classes of the point group 422 (D4)

• The crystallographic point group 422 and its multiplication table are illus-
trated in fig. 7 and fig. 8.

• One can verify from the multiplication table that 422 has the following 5
classes:

� The identity E.
� The two-fold rotation 2z. This is also in a class of its own in this case,

since it commutes with all other operators.

� The two four-fold rotations 4+ and 4−, which are conjugated with each
other through any of the in-plane 2-fold axes.

� 2x and 2y, conjugated with each other through either of the 4-fold
rotations.

� 2xy and 2xȳ, also conjugated with each other through either of the
4-fold rotations.

• Once can observe the following important relation: graphs of conjugated
operators are related to each other by symmetry.
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2+4++4- 
m10 

m01 m11 m11 
422 D4

8 d 1 Tetragonal trapezohedron !hkl" !!h!kl" !!khl" !k!hl"
Twisted tetragonal antiprism (p) !!hk!l" !h!k!l" !kh!l" !!k!h!l"

Ditetragonal prism !hk0" !!h!k0" !!kh0" !k!h0"
Truncated square through origin !!hk0" !h!k0" !kh0" !!k!h0"

Tetragonal dipyramid !h0l" !!h0l" !0hl" !0!hl"
Tetragonal prism !!h0!l" !h0!l" !0h!l" !0!h!l"

Tetragonal dipyramid !hhl" !!h!hl" !!hhl" !h!hl"
Tetragonal prism !!hh!l" !h!h!l" !hh!l" !!h!h!l"

4 c .2. Tetragonal prism !100" !!100" !010" !0!10"
Square through origin (l)

4 b ..2 Tetragonal prism !110" !!1!10" !!110" !1!10"
Square through origin ( j )

2 a 4.. Pinacoid or parallelohedron !001" !00!1"
Line segment through origin (g)

Symmetry of special projections
Along #001$ Along #100$ Along #110$

4mm 2mm 2mm

4mm C4v

8 d 1 Ditetragonal pyramid !hkl" !!h!kl" !!khl" !k!hl"
Truncated square (g) !h!kl" !!hkl" !!k!hl" !khl"

Ditetragonal prism !hk0" !!h!k0" !!kh0" !k!h0"
Truncated square through origin !h!k0" !!hk0" !!k!h0" !kh0"

4 c .m. Tetragonal pyramid !h0l" !!h0l" !0hl" !0!hl"
Square (e)

Tetragonal prism !100" !!100" !010" !0!10"
Square through origin

4 b ..m Tetragonal pyramid !hhl" !!h!hl" !!hhl" !h!hl"
Square (d)

Tetragonal prism !110" !!1!10" !!110" !1!10"
Square through origin

1 a 4mm Pedion or monohedron !001" or !00!1"
Single point (a)

Symmetry of special projections
Along #001$ Along #100$ Along #110$

4mm m m

Table 10.1.2.2. The 32 three-dimensional crystallographic point groups (cont.)

TETRAGONAL SYSTEM (cont.)
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Figure 7: Schematic diagram for the the point group 422 (Hermann-Mauguin notation) or D4

(Schoenflies notation). This group has 8 elements (symmetry operators): E (identity), 4+ and
4− (rotation by +90◦ and −90◦, respectively), 2z (rotation by 180◦ around the z axis and the
four in-plane rotations 2x, 2y, 2xy, 2xȳ. The graphical notation used in the International Tables
is shown in the top left corner.

E 2z 4+ 4- !10 !01 !11 !$%$

E E 2z 4+ 4- !$& !&$ !$$ !$%$

2z 2z E 4- 4+ !&$ !$& !$%$ !$$

4+ 4+ 4- 2z E !$$ !$%$ !&$ !$&

4- 4- 4+ E 2z !$%$ !$$ !$& !&$

!$& !$& !&$ !$%$ !$$ E 2z 4- 4+

!&$ !&$ !$& !$$ !$%$ 2z E 4+ 4-

!$$ !$$ !$%$ !$& !&$ 4+ 4- E 2z

!$%$ !$%$ !$$ !&$ !$& 4- 4+ 2z E

Applied first

Ap
pl

ie
d 

se
co

nd

Figure 8: Multiplication table for the point group 422 (D4).

2.5 Appendix: 2D point group tables in the ITC

The 10 2D point groups are listed in ITC-Volume A on pages 768–769 (Table 10.1.2.1
therein, see Fig. 9). We have not introduced all the notation at this point, but it is
worth examining the entries in some details, as the principles of the notation will be
largely the same throughout the ITC.

• Reference frame: All point groups are represented on a circle with thin lines
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Table 10.1.2.1. The ten two-dimensional crystallographic point groups

General, special and limiting edge forms and point forms (italics), oriented edge and site symmetries, and Miller indices (hk) of equivalent edges [for hexagonal
groups Bravais–Miller indices (hki) are used if referred to hexagonal axes]; for point coordinates see text.

OBLIQUE SYSTEM

1

1 a 1 Single edge (hk)
Single point (a)

2

2 a 1 Pair of parallel edges !hk" !!h!k"
Line segment through origin (e)

RECTANGULAR SYSTEM

m

2 b 1 Pair of edges !hk" !!hk"
Line segment (c)

Pair of parallel edges !10" !!10"
Line segment through origin

1 a .m. Single edge (01) or !0!1"
Single point (a)

2mm

4 c 1 Rhomb !hk" !!h!k" !!hk" !h!k"
Rectangle (i)

2 b .m. Pair of parallel edges !01" !0!1"
Line segment through origin (g)

2 a ..m Pair of parallel edges !10" !!10"
Line segment through origin (e)

SQUARE SYSTEM

4

4 a 1 Square !hk" !!h!k" !!kh" !k!h"
Square (d)

4mm

8 c 1 Ditetragon !hk" !!h!k" !!kh" !k!h"
Truncated square (g) !!hk" !h!k" !kh" !!k!h"

4 b ..m Square !11" !!1!1" !!11" !1!1"Square ( f )

4 a .m. Square !10" !!10" !01" !0!1"
Square (d)

768

10. POINT GROUPS AND CRYSTAL CLASSES
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HEXAGONAL SYSTEM

3

3 a 1 Trigon !hki" !ihk" !kih"
Trigon (d)

3m1

6 b 1 Ditrigon !hki" !ihk" !kih"
Truncated trigon (e) !!k!h!i" !!i!k!h" !!h!i!k"

Hexagon !11!2" !!211" !1!21"
Hexagon !!1!12" !2!1!1" !!12!1"

3 a .m. Trigon !10!1" !!110" !0!11"
Trigon (d) or !!101" !1!10" !01!1"

31m

6 b 1 Ditrigon !hki" !ihk" !kih"
Truncated trigon (d) !khi" !ikh" !hik"
Hexagon !10!1" !!110" !0!11"
Hexagon !01!1" !!101" !1!10"

3 a ..m Trigon !11!2" !!211" !1!21"
Trigon (c) or !!1!12" !2!1!1" !!12!1"

6

6 a 1 Hexagon !hki" !ihk" !kih"
Hexagon (d) !!h!k!i" !!i!h!k" !!k!i!h"

6mm

12 c 1 Dihexagon !hki" !ihk" !kih"
Truncated hexagon ( f ) !!h!k!i" !!i!h!k" !!k!i!h"

!!k!h!i" !!i!k!h" !!h!i!k"
!khi" !ikh" !hik"

6 b .m. Hexagon !10!1" !!110" !0!11"
Hexagon (e) !!101" !1!10" !01!1"

6 a ..m Hexagon !11!2" !!211" !1!21"
Hexagon (d) !!1!12" !2!1!1" !!12!1"

Table 10.1.2.1. The ten two-dimensional crystallographic point groups (cont.)

769

10.1. CRYSTALLOGRAPHIC AND NONCRYSTALLOGRAPHIC POINT GROUPS

Figure 9: 2-Dimensional point groups: a reproduction of Pages 768–769 of the ITC
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through it. The fixed point is at the center of the circle. All symmetry-related
points are at the same distance from the center (remember that symmetry
operators are isometries), so the circle around the center locates symmetry-
related points. The thin lines represent possible systems of coordinate axes
(crystal axes) to locate the points. We have not introduced axes at this point,
but we will note that the lines have the same symmetry of the pattern.

• System: Once again, this refers to the type of axes and choice of the unit length.
The classification is straightforward.

• Point group symbol: It is listed in the top left corner, and it generally consists of
3 characters: a number followed by two letters (such as 6mm). When there is
no symmetry along a particular direction (see below), the symbol is omitted,
but it could also be replaced by a ”1”. For example, the point group m can be
also written as 1m1. The first symbol stands for one of the allowed rotation
axes perpendicular to the sheet (the “primary symmetry direction”). Each of
the other two symbols represent elements defined by inequivalent symmetry
directions, known as ”secondary” and ”tertiary”, respectively. In this case, they
are sets of mirror lines that are equivalent by rotational symmetry or, in short,
different conjugation classes. The lines associated with each symbol are not
symmetry-equivalent (so they belong o different conjugation classes). For ex-
ample, in the point group 4mm, the first m stands for two orthogonal mirror
lines. The second m stands for two other (symmetry-inequivalent) orthogo-
nal mirror lines rotated by 45◦ with respect to the first set. Note that the all
the symmetry directions are equivalent for the three-fold axis 3, so either the
primary or the secondary direction must carry a ”1” (see below).

• General and special positions: Below the point group symbol, we find a list of
general and special positions (points), the latter lying on a symmetry element,
and therefore having fewer ”equivalent points”. Note that the unique point at
the center is always omitted. From left to right, we find:

Column 1 The multiplicity, i.e., the number of equivalent points.

Column 2 The Wickoff letter, starting with a from the bottom up. Symmetry-
inequivalent points with the same symmetry (i.e., lying on symmetry ele-
ments of the same type) are assigned different letters.

Column 3 The site symmetry, i.e., the symmetry element (always a mirror
line for 2D) on which the point lies. The site symmetry of a given point can
also be thought as the point group leaving that point invariant. Dots
are used to indicate which symmetry element in the point group symbol
one refers to. For example, site b of point group 4mm has symmetry ..m,
i.e., lies on the second set of mirror lines, at 45◦ from the first set.

Column 4 Name of crystal and point forms (the latter in italic) and their ”lim-
iting” (or degenerate) forms. Point forms are easily understood as the
polygon (or later polyhedron) defined by sets of equivalent points with a
given site symmetry. Crystal forms are historically more important, be-
cause they are related to crystal shapes. They represent the polygon (or
polyhedron) with sides (or faces) passing through a given point of sym-
metry and orthogonal to the radius of the circle (sphere). We shall not be
further concerned with forms.
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Column 5 Miller indices. For point groups, Miller indices are best understood
as related to crystal forms, and represent the inverse intercepts along
the crystal axes. By the well-known ”law of rational indices”, real crystal
faces are represented by integral Miller indices. We also note that for
the hexagonal system 3 Miller indices (and 3 crystal axes) are shown,
although naturally only two are needed to define coordinates.

• Projections: For each point group, two diagrams are shown. It is worth noting that
for 3D point groups, these diagrams are stereographic projections of systems
of equivalent points. The diagram on the left shows the projection circle, the
crystal axes as thin lines, and a set of equivalent general positions, shown as
dots. The diagram on the right shows the symmetry elements, using the same
notation we have already introduced.

• Settings We note that one of the 10 2D point groups is shown twice with a different
notation, 3m1 and 31m. By inspecting the diagram, it is clear that the two only
differ for the position of the crystal axes with respect of the symmetry elements.
In other words, the difference is entirely conventional, and refers to the choice
of axes. We refer this situation, which reoccurs throughout the ITC, as two
different settings of the same point group.

• Unlike the case of other groups, the group-subgroup relations are not listed in
the group entries but in a separate table.
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3 Lecture 3: Introduction to the theory of representa-
tions

Having learned a bit about the general theory of groups, he can now hopefully
make the connection with linear operators and the theory of representations:

• Each symmetry operator is an element of a group.

• When applied to functions (scalar or vector), the symmetry operator is lin-
ear, in the sense explained in Section 1.6.4.

• If the functions in question form a linear space, then symmetry operator
induces a linear operator onto that space.

3.1 Formal definition of a representation

• A representation of a group is a map of the group onto a set of linear
operators onto a linear space. We write:

g → Ô(g)∀g ∈ G. (30)

The representation is said to be faithful if each element of the group
maps onto a distinct operator.

• Physically, the linear space will represent the set of all possible solutions
of our problem, i.e., generally, a set of scalar or vector functions defined
on a certain domain (Lecture 1).

• More abstractly, a linear space is a set formed by a collection of elements,
(sometimes called ‘vectors’), which may be added together and multi-
plied by numbers. To avoid confusion with ordinary vectors, we will call
the elements of such a set modes in the remained.

• To be a representation, the map must obey the rules:

Ô(g ◦ f) = Ô(g)Ô(f)

Ô(E) = Ê

Ô(g−1) = Ô−1(g) (31)

where the operators on the right side are multiplied using the ordinary
operator multiplication (which usually means applying the operators one
after the other, rightmost first).

• The set of operators {Ô(g)} ∀g ∈ G is called the image of the representa-
tion, and is itself a group.
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• Example 1 (trivial): mapping of the point group 32 onto a set of 2 × 2
matrices:

E →
[

1 0
0 1

]
A→

[
−1

2 −
√

3
2

+
√

3
2 −1

2

]

B →

[
−1

2 +
√

3
2

−
√

3
2 −1

2

]
K →

[
−1 0
0 1

]

L →

[
+1

2 −
√

3
2

−
√

3
2 −1

2

]
M →

[
+1

2 +
√

3
2

+
√

3
2 −1

2

]
(32)

This is a simple case of matrix representation. Here, the matrices are
linear operators onto the linear space of the 2-element column arrays.

• Example 2 (more complex): mapping of the group of translations onto the
Hilbert space of wavefunctions defined over a finite volume with periodic
boundary conditions. Remembering that plane waves form a complete
set, we can write any function ψ(r) as:

ψ(r) =
∑
k

ck
1√
V
eik·r (33)

where the summation is over kx = 2nxπ/L etc. Let us define a repre-

sentation of the group of translations as t→ Ô(t), so that:

Ô(t)

[
1√
V
eik·r

]
= e−ik·t

[
1√
V
eik·r

]
(34)

and

Ô(t)ψ(r) =
∑
k

cke
−ik·t

[
1√
V
eik·r

]
= ψ(r− t) (35)

3.2 Basis sets for the linear space and matrix representations

• If the linear space in question has finite dimension, we can always introduce
a finite basis set for it, which we shall call [aµ]. 12 Each element v can
be written as:

12The notation here can seem rather cumbersome, due to the proliferation of subscripts and
superscripts. We will use greek lowercase letters such as µ and ν to indicate elements in an
array. Roman subscripts will be used to label representations (see below).
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v =
∑
µ

vµaµ

Ô(g)v =
∑
µ

vµÔ(g)aµ (36)

Writing

Ô(g)aµ =
∑
ν

Dµν(g)aν (37)

we obtain

Ô(g)v =
∑
µ,ν

Dµν(g)vµaν

[
Ô(g)v

]
ν

=
∑
µ

Dµν(g)vµ (38)

• Dµν(g) is clearly a matrix. The map g → Dµν(g) is called the matrix repre-

sentation of the original representation g → Ô(g) onto the basis set
[aµ].

• For a given representation, the matrix representation will depend on the
choice of the basis. If [b] = [a]M thenDb(g) = M−1Da(g)M . Therefore
different matrix representations of the same representation are re-
lated by a similarity transformation.

3.2.1 Abstract representations and matrix representations

• As we have just seen, all the matrix representations of the same represen-
tation onto a given linear space are related by a similarity transforma-
tion. Since all linear spaces with the same dimension are isomorphic,
we can extend this definition to different linear spaces, and say that
two representations are the same abstract representation of a given
group if their representative matrices are related by a similarity trans-
formation, regardless of the linear space they operate on.

Notation: we indicate such abstract representations with the greek letter Γ .
Γ1, Γ2, etc., with be different abstract representations in a given set (typ-
ically the set of irreducible representations — see below). A particular
matrix representation of an abstract representation will be denoted, for
example, by DΓ1

µν(g).
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3.2.2 Example: Representation of the group 422 (D4) onto the space of
3-dimensional vectors

• We have seen in Lecture 1 that 422 has 8 elements and 5 conjugation
classes.

• We now consider the representation of this group on the (vector) space of
3D ordinary vectors. The representation is unique, in the sense that if
we define (draw) a vector, we know precisely how it will be transformed
by the action of the group operators.

• However, the matrix representation will depend on the choice of the basis
set for the linear space. Tables 1 and 2 show the two matrix represen-
tations for Cartesian basis [̂i, ĵ, k̂] and [̂i + ĵ,−î + ĵ, k̂] , respectively.

• It can be shown (left as an exercise) that the two sets of matrices are related
by a similarity transformation.

Table 1: Matrix representation of the representation of point group 422 onto
the space of 3-dimensional vectors, using the usual Cartesian basis set
[̂i, ĵ, k̂].

E 2z 4+ 4− 1 0 0
0 1 0
0 0 1

  −1 0 0
0 −1 0
0 0 1

  0 −1 0
1 0 0
0 0 1

  0 1 0
−1 0 0

0 0 1


2x 2y 2xy 2xȳ 1 0 0

0 −1 0
0 0 −1

  −1 0 0
0 1 0
0 0 −1

  0 1 0
1 0 0
0 0 −1

  0 −1 0
−1 0 0

0 0 −1



Table 2: Matrix representation of the representation of point group 422 onto
the space of 3-dimensional vectors, using the basis set [̂i + ĵ,−î + ĵ, k̂].

E 2z 4+ 4− 1 0 0
0 1 0
0 0 1

  −1 0 0
0 −1 0
0 0 1

  0 −1 0
1 0 0
0 0 1

  0 1 0
−1 0 0

0 0 1


2x 2y 2xy 2xȳ 0 −1 0

−1 0 0
0 0 −1

  0 1 0
1 0 0
0 0 −1

  1 0 0
0 −1 0
0 0 −1

  −1 0 0
0 1 0
0 0 −1


• If all representative matrices of a matrix representation have non-zero de-

terminant, it is always possible to choose the basis vector in such a
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way that all the representative matrices are brought into unitary form

(i.e. ,
[
Ô(g)

] [
Ô(g)

]†
= 1). The proof, which is not difficult but is rather

tedious, can be found in Dresselhaus, 2.4, p19.

• Operators onto space of functions defined on a Hilbert space according to
the procedure explained in section 1.6.2 are unitary. This is a con-
sequence of the fact that such operator are norm-conserving for all
elements of the Hilbert space; this is intuitive and can also be shown
explicitly by writing the norm of a function f and its transformf ′ =

f(X,Y, Z), changing the integration variables to X, Y and Z and ob-
serving that symmetry operators do not change the volume element:
dxdydz = dXdY dZ. We can therefore conclude that Ô†Ô is the identity,
so Ô is unitary if it is linear.

∀ψ, 〈ψ|Ô†Ô|ψ〉 = 〈ψ|ψ〉 ⇒ Ô†Ô = Ê (39)

Note that this relation can also be satisfied by anti-unitary, anti linear
operators, such as the time reversal operator.

3.2.3 Traces and determinants: characters of a representation

• We remind the following properties of the trace and determinant of a square
matrix:

� tr(A + B) = tr(A) + tr(B); tr(cA) = c tr(A); tr(AB) = tr(BA);
tr(AT ) = tr(A); tr(PAP−1) = tr(A).

� det(AT ) = det(A); det(A−1) = 1/ det(A); det(AB) = det(A) det(B);
det(PAP−1) = det(A).

• It follows that the matrices of two matrix representations of the same
representation have the same trace and determinant.

• It also follows that images of group elements in the same conjugation
class have the same trace and determinant.

• Trace and determinant of images are properties of each conjugation
class for a given representation, not of the particular matrix repre-
sentation or the group element within that class.

• Traces of representative matrices are called characters of the represen-
tation. Each representation is characterised by a set of characters,
each associated with a conjugation class of the group.
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3.3 Reducible and irreducible representations

• A representation is said to be reducible if there exists a choice of basis
in which all matrices are simultaneously of the same block-diagonal
form, such as, for example:

[
Ô(g)

]
=



c1 . . . . .
.
.
.

 . c2 .
c3 . .
. . c4

 . .

. . c5 .

. . .

[
. c6
c7 .

]


(40)

(dots represent zeros)

• The important thing is that the blocks must be the same shape ∀g ∈ G.

• One can readily see that if all matrices are of this form, the linear space
is subdivided into a series of subspaces, with each block defining a
representation of the original group onto the subspace.

• A representation is said to be fully reduced if the blocks are as small as
possible — the extreme example being that all representative matrices
are diagonal.

• A representation is said to be irreducible if no block decomposition of this
kind is possible.

3.4 Example: representation of the group 32 onto the space of
distortions of a triangle

The linear space: the space of all possible configurations of polar vectors
at the corners of a triangle. One such generic configuration (mode)
is shown in fig. 10. This can represent, for example, a combination of
translation, rotation and distortion of the triangle (dashed line). One can
see that the set of these configurations forms a linear space, since we
can add two configurations (just by summing the vectors at each vertex)
and multiply them by a scalar constant. This space has 6 dimensions,
and will require a 6-element basis set.

The basis set: we can start by choosing a very simple basis set, as shown
in fig. 11. On this basis, modes13 are written as column arrays — for
example:

13here and elsewhere we write modes as |m〉, although we stress that these particular
modes are classical
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Figure 10: . A generic mode in the space of all possible configurations of polar vectors at
the corners of a triangle. Modes such as this in general lose all the symmetry of the original
pattern.

a |1〉+ b |2〉+ c |5〉 =



a
b
.
.
c
.

 (41)

Representation and matrix representations: one directly constructs the rep-
resentation and observes how modes are transformed into each other
by the 6 operators of 32. For example, operator A transforms |1〉 into |2〉
etc. The matrix representation on this basis is (dots represent zeros):
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[A] =



. . 1 . . .
1 . . . . .
. 1 . . . .
. . . . . 1
. . . 1 . .
. . . . 1 .

 [K] =



. . 1 . . .

. 1 . . . .
1 . . . . .
. . . . . −1
. . . . −1 .
. . . −1 . .



[B] =



. 1 . . . .

. . 1 . . .
1 . . . . .
. . . . 1 .
. . . . . 1
. . . 1 . .

 [L] =



1 . . . . .
. . 1 . . .
. 1 . . . .
. . . −1 . .
. . . . . −1
. . . . −1 .



[E] =



1 . . . . .
. 1 . . . .
. . 1 . . .
. . . 1 . .
. . . . 1 .
. . . . . 1

 [M ] =



. 1 . . . .
1 . . . . .
. . 1 . . .
. . . . −1 .
. . . −1 . .
. . . . . −1


(42)

1	   2	   3	  

4	   5	   6	  

Figure 11: . A simple basis set for the space of all possible configurations of polar vectors
at the corners of a triangle.

• These arrays are already in block-diagonal form (two 3 × 3 blocks). The
representation is therefore reducible. This means that modes |1〉, |2〉
and |3〉 are never transformed into modes |4〉, |5〉 and |6〉 by any of the
symmetry operators.

• Fig. 12 shows two modes with a higher degree of symmetry. These modes
transform into either themselves or minus themselves by any of the
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symmetry operators. If they were chosen as basis vectors, the corre-
sponding element of the matrix representation would lie on the diagonal
and would be +1 or −1. This demonstrates that the representation is
reducible even further by an appropriate choice of basis (see below).

1’	   2’	  

Figure 12: . Two 32 modes retaining a higher degree of symmetry. Mode m′1 is totally
symmetric with respect to all symmetry operators. Mode m′2 is symmetric by the two 3-fold
rotations (and the identity) and antisymmetric by the 2-fold rotations.

3.5 Example: representation of the cyclic group 3 onto the space
of quadratic polynomials

The group: the cyclic group 3 is a sub-group of 32, and has only 3 elements:
E, A, B. Unlike 32, 3 is an Abelian group.

The linear space: the space of all quadratic polynomials in x, y and z with
real (or complex) coefficients. This space has 6 dimension.

The basis set: we choose the basis set formed by the following 6 functions:

f1 = x2; f2 = y2; f3 = z2; f4 = xy; f5 = xz; f6 = yz (43)

The transformations: to transform the functions, we follow the recipe given
in Lecture 1: we replace the arguments x, y and z of the original func-
tions with new formal arguments X(x, y, z), Y (x, y, z) and Z(x, y, z),
which are the back-transformations of the original arguments. For ex-
ample, for the 3+ operator:

 X
Y
Z

 =

 −1
2

√
3

2 0

−
√

3
2 −1

2 0
0 0 1


 x
y
z

 =

 1
2(−x+

√
3y)

1
2(−
√

3x− y)
z

 (44)
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this produced the following set of rotated basis functions:

f ′1 =
1

4

(
x2 + 3y2 − 2

√
3xy

)
f ′2 =

1

4

(
3x2 + y2 + 2

√
3xy

)
f ′3 = z2

f ′4 =
1

4

(√
3x2 −

√
3y2 − 2xy

)
f ′5 =

1

2

(
−xz +

√
3yz
)

f ′6 =
1

2

(
−
√

3xz − yz
)

(45)

The matrix representation for the 3+ operator can therefore be written as



1
4

3
4 0

√
3

4 0 0
3
4

1
4 0 −

√
3

4 0 0
0 0 1 0 0 0

−
√

3
2 +

√
3

2 0 −1
2 0 0

0 0 0 0 −1
2 −

√
3

2

0 0 0 0
√

3
2 −1

2


(46)

By exchanging columns 3 & 4 and rows 3 & 4 (which is equivalent to
exchanging f3 with f4 and f ′3 with f ′4), the matrix can be rewritten as



1
4

3
4

√
3

4 0 0 0
3
4

1
4 −

√
3

4 0 0 0

−
√

3
2

√
3

2 −1
2 0 0 0

0 0 0 1 0 0

0 0 0 0 −1
2 −

√
3

2

0 0 0 0
√

3
2 −1

2


(47)

which is in block-diagonal form. Note that on this particular basis set
the matrix is not unitary, and [3−] = [3+]−1 6= [3+]T , although [3−] is in
the same block-diagonal form (for a basis set with unitary matrix repre-
sentation, see Problem 4 of Problem Sheet 1, since C3 is a subgroup
of D3). The latter demonstrates that the representation is reducible.
One can prove that all representations of Abelian groups can be fully
reduced to diagonal form.

3.6 * Example: scalar functions on a square.

The group is 422 — the group of the square in 2D, which we have already
encountered. Note that this group is the same abstract group as the
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group of permutations of 4 objects (it has the same multiplication table).

The linear space: the space of all possible combinations of 4 numbers at
the corners of the square. It is a 4-dimensional space.

The basis set: we employ the basis set shown in fig. 13, where + and −
indicates +1 and −1.

+

++

+

-‐	  

++

-‐	  

-‐	  

-‐	  +

+

-‐	  

+-‐	  

+

2	  1	  

3	   4	  

Figure 13: . A basis set for the space of scalar functions on a square.

The matrix representation on this basis set is block-diagonal. Modes |1〉
and |2〉 transform either into themselves or minus themselves by all
symmetry operators, and their matrix elements lie on the diagonal of
the 4 × 4 matrix representation. Modes |3〉 and |4〉 are transformed ei-
ther into themselves or into each other. This is illustrated in tab. 3.

• Let us now consider a closely related problem where, instead of scalar
functions, we have vectors in the z direction. An appropriate basis set
is shown in fig. 14. One can see that the transformations on individual
vectors will be the same as for the scalars, except for the fact the in-
plane 2-fold axes have an additional sign reversal. The transformation
for modes |3〉 and |4〉 are the same as for the scalar case. Modes |1〉
and |2〉 transform as shown in tab. 4.
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Table 3: Matrix representation of the representation of point group 422 onto
the space of the scalar functions on a square.

E 2z 4+ 4−

|1〉 1 1 1 1
|2〉 1 1 −1 −1[
|3〉
|4〉

] [
1 0
0 1

] [
−1 0
0 −1

] [
0 −1
1 0

] [
0 1
−1 0

]

2x 2y 2xy 2xȳ

|1〉 1 1 1 1
|2〉 1 1 −1 −1[
|3〉
|4〉

] [
0 −1
−1 0

] [
0 1
1 0

] [
1 0
0 −1

] [
−1 0
0 1

]

.	  

.	  .	  

.	  

.	  

xx

.	  

x

.	  x

.	  

x

x.	  

.	  

2	  1	  

3	   4	  

Figure 14: . A basis set for the space of z-vector functions on a square.

Table 4: Matrix representation of the representation of point group 422 onto
the space of the z-vector functions on a square.

E 2z 4+ 4−

|1〉 1 1 1 1
|2〉 1 1 −1 −1

2x 2y 2xy 2xȳ

|1〉 −1 −1 −1 −1
|2〉 −1 −1 1 1
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4 Lecture 4: Key theorems about irreducible repre-
sentations

• In the previous section, we have introduced the concepts of reducible and
irreducible representations and seen some example of both. Abstract
irreducible representations, or irreps for short, are extremely important
in both group theory and its applications in physics, and are governed by
a series of powerful, one would be tempted to say “magical” theorems.
Before we introduce them, we will start by asking ourselves a series of
questions about irreps:

1. Are irreps a property of the group?

2. How many are they for a given group?

3. How can we characterise them, since for each there is clearly an
infinite number of matrix representations, all related by similarity
transformations?

4. How can we construct all of them?

5. How can we decompose a reducible representation in its irreducible
(block-diagonal) “components”?

6. Once we have an irrep and one of its matrix representations, how
can we construct the corresponding basis vectors in a given space?

E	   A	   B	   K	   L	   M	  

Γ1	   1	   1	   1	   1	   1	   1	  

Γ2	  
	  

1	   1	   1	   -‐1	   -‐1	   -‐1	  

Γ3	  
	  

31
2 2

3 1
2 2

⎛ ⎞− −
⎜ ⎟
⎜ ⎟+ −⎝ ⎠

1 0
0 1
⎛ ⎞
⎜ ⎟
⎝ ⎠

1 0
0 1
−⎛ ⎞
⎜ ⎟
⎝ ⎠

31
2 2

3 1
2 2

⎛ ⎞− +
⎜ ⎟
⎜ ⎟− −⎝ ⎠

31
2 2

3 1
2 2

⎛ ⎞+ −
⎜ ⎟
⎜ ⎟− −⎝ ⎠

31
2 2

3 1
2 2

⎛ ⎞+ +
⎜ ⎟
⎜ ⎟+ −⎝ ⎠

Point	  group	  32	  –	  variant	  1	  

1 

2 

Figure 15: . A matrix representation for 3 irreps of for the point group 32 . The modes in
fig. 12 are basis vectors for Γ1 and Γ2. The appropriate basis vectors for Γ3 in the space of
ordinary 2D vectors are indicated.
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E	   A	   B	   K	   L	   M	  

Γ1	   1	   1	   1	   1	   1	   1	  

Γ2	  
	  

1	   1	   1	   -‐1	   -‐1	   -‐1	  

Γ3	  
	  

31
2 2

3 1
2 2

⎛ ⎞− −
⎜ ⎟
⎜ ⎟+ −⎝ ⎠

1 0
0 1
⎛ ⎞
⎜ ⎟
⎝ ⎠

0 1
1 0

−⎛ ⎞
⎜ ⎟−⎝ ⎠

31
2 2

3 1
2 2

⎛ ⎞− +
⎜ ⎟
⎜ ⎟− −⎝ ⎠

3 1
2 2

31
2 2

⎛ ⎞+ +
⎜ ⎟
⎜ ⎟+ −⎝ ⎠

Point	  group	  32	  –	  variant	  2	  

3 1
2 2

31
2 2

⎛ ⎞− +
⎜ ⎟
⎜ ⎟+ +⎝ ⎠

1 11
1 12

U
−⎛ ⎞

= ⎜ ⎟
⎝ ⎠

1UMU −

1 

2 

Figure 16: . Same as fig. 15, but with a different set of basis vector and matrix representa-
tion for Γ3. The transformation matrix from the basis in fig. 15 is indicated.

E	   A	   B	   K	   L	   M	  

Γ1	   1	   1	   1	   1	   1	   1	  

Γ2	  
	  

1	   1	   1	   -‐1	   -‐1	   -‐1	  

Γ3	  
	  

31
2 2

31
2 2

0

0

i

i

⎛ ⎞− +
⎜ ⎟
⎜ ⎟− −⎝ ⎠

1 0
0 1
⎛ ⎞
⎜ ⎟
⎝ ⎠

0 1
1 0
⎛ ⎞
⎜ ⎟
⎝ ⎠

Point	  group	  32	  –	  variant	  3	   ( ) ( )
( ) ( )

3 1
2 2

3 1
2 2

1 12
3 1 1

i i i

i i i

e e e
U

e e e

ω ω ω

ω ω ω

− − +

+ + −

⎛ ⎞− − + +
⎜ ⎟=
⎜ ⎟− − + +⎝ ⎠

31
2 2

31
2 2

0

0

i

i

⎛ ⎞− −
⎜ ⎟
⎜ ⎟− +⎝ ⎠

31
2 2

31
2 2

0

0

i

i

⎛ ⎞− −
⎜ ⎟
⎜ ⎟− +⎝ ⎠

31
2 2

31
2 2

0

0

i

i

⎛ ⎞− +
⎜ ⎟
⎜ ⎟− −⎝ ⎠

1UMU −

1 

2 

e-iω 

e+iω 1 

e+iω 

e-iω 
1 

Figure 17: . Same as fig. 15 and 16 , but with a different set of (complex) basis vector and
matrix representation for Γ3. The transformation matrix from the basis in fig. 15 is indicated.

• To start answering these questions, let us look at 3 irreps of the point group
32 we have already encountered (see figs 15, 16 and 17). The modes

41



in fig. 12 are basis vectors for Γ1 and Γ2, which are obviously irreducible
since they are 1-dimensional. Γ3 is the “trivial” mapping onto the space
of ordinary vector. We have not proven that this is an irrep, but let us
assume it for the moment. Figs 15, 16 and 17 show 3 different matrix
representations (and basis vectors) for Γ3.

• We shall remember that 32 has 3 classes: {E}, {A,B} and {K,L,M}.

• We can verify explicitly the properties of the trace of the representative
matrices, as explained above: the trace is a characteristic of the class
and of the irrep, not of the group element in the class or of the matrix
representation. For example, the trace of all representative elements
for {K,L,M} is 1 for Γ1, −1 for Γ2 and 0 for Γ3. As already mentioned,
we call this trace the character of the irrep for a given class14. The set
of characters will be used to characterise the irreps — see below for
theorems that put this on solid foundation.

• By examining each of the tables separately, we can determine the following:

� Let us construct 6 arrays, of 6 elements by taking the representative
number of each operator for the 1D irreps Γ1 and Γ2 and one of
the 4 elements of the representative matrices for the 2D irrep Γ3.
For example, for the table in fig. 15 we get the following 6 arrays:

1 1 1 1 1 1
1 1 1 −1 −1 −1
1 −1

2 −1
2 −1 +1

2 +1
2

0 −
√

3
2 +

√
3

2 0 −
√

3
2 +

√
3

2

0 +
√

3
2 −

√
3

2 0 −
√

3
2 +

√
3

2
1 −1

2 −1
2 1 −1

2 −1
2

(48)

� The 6 arrays are orthogonal with each other (in the ordinary sense
of orthogonality of arrays).

� The norm of each array is
√

6 for Γ1 and Γ2 and
√

3 for Γ3, which can
all be written as

√
h/lj , where h is the number of elements in the

group and lj is the dimension of the irrep.

• We can verify that the same properties apply to the table in figs 16, although
the arrays for Γ3 are clearly different.

• We can also verify that the same properties apply to the table in fig 18,
which contains 5 irreps of the point group 422.

14Note that all the characters for all the irreps of this group and group 422 below are real.
We can prove that if g ∼ g−1, then the character of any unitary representation of g is real.
In fact, g ∼ g−1 → U(g) = MU−1(g)M−1 = MU†(g)M−1. Taking the trace, tr(U(g)) =
tr(U∗(g)) = tr∗(U(g)), so the character is real. g ∼ g−1 for all operators in 32 and 422.
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• The table in figs 17, is slightly different, because the matrix elements are
complex15. The 6 arrays are:

1 1 1 1 1 1
1 1 1 −1 −1 −1

1 −1
2 + i

√
3

2 −1
2 − i

√
3

2 0 0 0

0 0 0 −1
2 − i

√
3

2 1 −1
2 + i

√
3

2

0 0 0 −1
2 + i

√
3

2 1 −1
2 − i

√
3

2

1 −1
2 − i

√
3

2 −1
2 + i

√
3

2 0 0 0

(49)

• One can verify that line 3 is actually orthogonal to the complex conjugate
of line 6 etc.

• Remembering that each array element is actually an element of the repre-
sentative matrix of an irrep, we can summarise all these results as an
orthogonality relation:

∑
g

D(g)ΓiµνD
∗(g)

Γj
µ′ν′ =

h

li
δijδµµ′δνν′ (50)

E	   2z	   4+	   4-‐	   2x	   2y	   2xy	   2xy	  

Γ1	   1	   1	   1	   1	   1	   1	   1	   1	  

Γ2	  
	  

1	   1	   1	   1	   -‐1	   -‐1	   -‐1	   -‐1	  

Γ3	  
	  

1	   1	   -‐1	   -‐1	   1	   1	   -‐1	   -‐1	  

Γ4	  
	  

1	   1	   -‐1	   -‐1	   -‐1	   -‐1	   1	   1	  

Γ5	  
	  

Point	  group	  422	  (one	  of	  the	  variants)	  

1 0
0 1
⎛ ⎞
⎜ ⎟
⎝ ⎠

1 0
0 1
−⎛ ⎞
⎜ ⎟−⎝ ⎠

0 1
1 0

−⎛ ⎞
⎜ ⎟
⎝ ⎠

0 1
1 0

⎛ ⎞
⎜ ⎟−⎝ ⎠

1 0
0 1
⎛ ⎞
⎜ ⎟−⎝ ⎠

1 0
0 1
−⎛ ⎞
⎜ ⎟
⎝ ⎠

0 1
1 0
⎛ ⎞
⎜ ⎟
⎝ ⎠

0 1
1 0

−⎛ ⎞
⎜ ⎟−⎝ ⎠

Figure 18: . A matrix representation for 5 irreps of for the point group 422 .

15Somewhat surprisingly, this is the standard setting for these matrices, as shown, for
example, in http://www.cryst.ehu.es/rep/point.html. The reason is that the cyclic subgroup of
D3, C3, is Abelian, and all the representations of an Abelian group can be fully reduced into
1D irreps, which usually have complex characters. The one shown here is the basis that fully
reduces C3. For Abelian groups, each element is in a class of its own, so it obviously cannot
be g ∼ g−1 unless g = g−1.
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• The orthogonality relation in eq. 50 can be easily converted into an or-
thonormality relation by normalising all the arrays with the coefficient√
lj/h.

4.1 The Wonderful Orthogonality Theorem and its implications

• Amazingly, eq. 50 represents a general theorem applicable to all uni-
tary matrix representations of all irreps of all finite groups. This is
the so-called Wonderful Orthogonality Theorem (WOT), due to physi-
cist and Nobel prize winner John Van Vleck (this tells a story of its own
about the importance of group theory in the early days of quantum the-
ory). The theorem can be easily extended to non-unitary matrix rep-
resentations (see Dresselhaus, p 25, eq. 2.52), but we will be content
here with its version for unitary representations. The proof of the WOT
is not conceptually difficult, but it is rather convoluted. One proves the
so-called Schur’s Lemma (in 2 parts) to begin with, then moves to the
actual proof. This is done in detail in Dresselhaus, pp 21-27.

• It is important to stress that the WOT is only valid for irreducible represen-
tations. Indeed, if a representation is reducible, the matrix elements of
any of its matrix representations will not be orthogonal to those of the
irreps it can be decomposed into.

• The importance of the WOT cannot be overestimated, since it goes a long
way to answer the questions stated at the beginning of this section.

• One can immediately see that the number of irreps of a given group and
their dimensionality is limited by the fact that only h mutually orthogonal
vectors can be constructed in the space of arrays of dimensionality h.
Since the number of such arrays arising from a given irrep of dimension
lj is l2j , it must be:

∑
j

l2j ≤ h (51)

As we will see later it is the strict = sign that holds in eq. 51.

4.2 The Wonderful Orthogonality Theorems for Characters

• We can go even further by constructing the so-called character tables,
which can be done for the full group or for the classes (remember that
group elements in the same conjugation class have the same char-
acters, since their representative matrices are similar). For example,
group 32 has the character tables shown in fig. 19.

• Turning our attention first to the full-group table, we can see that each ele-
ment is simply:
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E	   A	   B	   K	   L	   M	  

Γ1	   1	   1	   1	   1	   1	   1	  

Γ2	  
	  

1	   1	   1	   -‐1	   -‐1	   -‐1	  

Γ3	  
	  

2	   -‐1	   -‐1	   0	   0	   0	  

Point	  group	  32	  –	  Character	  Table	  (full	  group)	  

E	   2A	   3K	  

Γ1	   1	   1	   1	  

Γ2	  
	  

1	   1	   -‐1	  

Γ3	  
	  

2	   -‐1	   0	  

Point	  group	  32	  –	  Character	  Table(classes)	  

Figure 19: Character tables for the point group 32 . In the class table, the number preceding
the representative element (e.g., 2A, 3K), indicates the number of elements in the class.

tr(D(g)Γi) =
∑
µ

D(g)Γiµµ (52)

• The three arrays in the table must remain orthogonal to each other because
of the way they are constructed. For example, the array corresponding
to Γ3 is:

[
2 −1 −1 0 0 0

]
=

[
1 −1

2 −1
2 −1 +1

2 +1
2

]
+

[
1 −1

2 −1
2 +1 −1

2 −1
2

]
(53)

the arrays to the right of the = sign being arrays 3 and 6 in eq. 48.
Since these are orthogonal to all the other arrays in eq. 48, their sum
must also be orthogonal. However, the normalisation has now changed,
since the squared norm of these arrays will be multiplied by lj . If we
indicate with χ(g)Γi the character of group element g in irrep Γi, we
obtain the following WOT for characters - full group version.

∑
g

χ(g)Γiχ∗(g)Γj = hδij (54)
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• This can be easily modified for application to the class version of the char-
acter table, e.g., fig. 19 (bottom panel). All the element in each class
have the same character, so if we call Nk the number of group ele-
ments in class Ck (for clarity, this is usually indicated in class character
tables such as fig. 19 — bottom panel), eq. 54 becomes the WOT for
characters - classes version:

∑
k

Nkχ(Ck)
Γiχ∗(Ck)

Γj = hδij (55)

• Once again, one can easily construct orthonormal arrays of dimensionality
equal to the number of classes by normalising each array. The arrays

[√
N1

h
χ(C1)Γi ,

√
N2

h
χ(C2)Γi , · · ·

√
Nn

h
χ(Cn)Γi

]
(56)

are orthonormal for different i’s.

• Eq. 55 further restricts the number of irreps for a group. If the number of
classes is n, the number of independent mutually orthogonal vectors of
dimension n is at most n, so it must be

Nirreps ≤ Nclasses (57)

where, once again, the strictly = sign holds (see below).

4.3 Reducible representations and their decomposition

• The trace of a block-diagonal matrix is the sum of the traces of its
diagonal blocks. This is quite obvious from the definition of the trace.
If a representation is reducible, the representative matrices of all the
group elements can be written in the same identical diagonal form. It
follows that the array of characters of a reducible representation is
a linear combination of the character arrays of the irreps of the
group. Calling the reducible representation Γred:

[
χ(g1)Γred , χ(g2)Γred , · · ·χ(gh)Γred

]
=
∑
i

ai
[
χ(g1)Γi , χ(g2)Γi , · · ·χ(gh)Γi

]
(58)

or

[
χ(C1)Γred , χ(C2)Γred , · · ·χ(Cn)Γred

]
=
∑
i

ai
[
χ(C1)Γi , χ(C2)Γi , · · ·χ(Cn)Γi

]
(59)
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• The coefficients ai are integers indicating the number of times irrep Γi
appears in the decomposition of reducible representation Γ — in
other words, the number of identical (or better similar) diagonal blocks
corresponding to irrep Γi along the diagonal, once Γ is fully decom-
posed.

• Eq. 58 can be inverted exploiting the orthonormality relation, to find the
coefficients:

aj =
1

h

∑
g

[
χ(g)Γj

]∗
χ(g)Γred (60)

or, for classes

aj =
∑
k

Nk

h

[
χ(Ck)

Γj
]∗
χ(Ck)

Γred (61)

Example: let us look again at the example given on page 34 — the rep-
resentation of 32 on the space of triangular distortions. This is a 6-
dimensional reducible representation of 32. We have already found 3
irreps for 32 (see fig. 19), and we know that we cannot have more than
3, since 32 has 3 classes (eq. 57), so we can be confident we have
found all the 32 irreps. We can also see that

∑
j

l2j = 12 + 12 + 22 = 6 = h (62)

The character array for Γred is (just take the trace of all matrices):

E A B K L M
6 0 0 0 0 0

by applying eq. 60 we obtain

a1 = 1; a2 = 1; a3 = 2 (63)

We write:
Γred = Γ1 + Γ2 + 2Γ3 (64)

which means that Γ1 and Γ2 appear once in the decomposition of Γred, while
Γ3 appears twice.
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4.4 Second WOT for characters and number of irreps

• We have seen that rows of the matrix:

[√
N1
h χ(C1)Γ1 ,

√
N2
h χ(C2)Γ1 , · · ·

√
Nn
h χ(Cn)Γ1

]
[√

N1
h χ(C1)Γ2 ,

√
N2
h χ(C2)Γ2 , · · ·

√
Nn
h χ(Cn)Γ2

]
· · ·[√

N1
h χ(C1)Γn ,

√
N2
h χ(C2)Γn , · · ·

√
Nn
h χ(Cn)Γn

]
(65)

are orthonormal arrays.

• It can also be easily proven (Dresselhaus, pp 36–37) that the colums of
this matrix are orthonormal. This is the second WOT for characters,
which can also be written as

∑
i

χ(Ck)
Γi
[
χ(Ck′)

Γi
]∗

=
h

Nk
δkk′ (66)

This time, the summation is over irreps, not over group elements as
before.

• By using the second WOT for characters, we can prove that Nirreps =

Nclasses. In fact, we have constructed Nclasses independent and or-
thonormal arrays of dimension Nirreps, and in order to do this it must
be Nirreps ≥ Nclasses. However, we have already seen that Nirreps ≤
Nclasses, which implies Nirreps = Nclasses.

4.5 * Construction of all the irreps for a finite group

• We illustrate one method to construct all irreps of a given group. This
method is not the one employed in actual fact, but it is useful because
is simple and enables us to prove that

∑
j l

2
j = h.

• Let’s consider the multiplication table of the group, as exemplified by fig.
6 for our usual group 32, and let’s rearrange the order or rows and
columns so that all the identity elements E fall on the diagonal, as in
fig. 20. It is easy to see that this is always possible for any finite group.

• We then construct the so-called regular representation, as follows: the
matrix representative of group element g is obtained by replacing the g
entries of the multiplications table with 1’s and all the other entries with
0’s. For example, in fig. 20, the representative matrix of element K is
obtained by replacing all K’s in the table with 1’s and all the other letters
with 0’s.
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D3	  (32)	  

E	   B	   A	   K	   L	   M	  

E	   E	   B	   A	   K	   L	   M	  

A	   A	   E	   B	   L	   M	   K	  

B	   B	   A	   E	   M	   K	   L	  

K	   K	   L	   M	   E	   B	   A	  

L	   L	   M	   K	   A	   E	   B	  

M	   M	   K	   L	   B	   A	   E	  

Applied first 

A
pp

lie
d 

se
co

nd
 

Figure 20: Multiplication table for the point group 32 (D3), rearranged to contract the regular
representation.

• One can verify that the regular representation is in fact a representation —
in particular it respects the composition – matrix multiplication relation.

• The regular representation has dimension h and is reducible. Its characters
are h for the identity and 0 for all the other elements.

• By applying the decomposition formula we obtain:

aj =
1

h

∑
g

[
χ(g)Γj

]∗
χ(g)Γreg = lj (67)

since the character of the identity for a reducible or irreducible repre-
sentation is equal to its dimension. In other words each irrep is rep-
resented a number of times equal to its dimension in the regular
representation.

• It is therefore possible in principle to obtain all the irreps of a given group by
block-diagonalising all the matrices of the regular representation (this is
not what is done in practice).

• More usefully, since the dimension of Γreg is h, and the dimension of a
reducible representation is the sum of the dimension of its irreps times
the number of times they appear, it must be:

∑
j

l2j = h (68)

as we set out to prove.
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• All the irreps of the 32 crystallographic point groups have been determined
many years ago, and can be found (including one standard setting for
the matrices) at the following address: http://www.cryst.ehu.es/rep/point.html.
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5 Lecture 5: Applications of representations to physics
problems

5.1 Quantum mechanical problems: the symmetry of the Hamil-
tonian

• Let us first recall our definition of symmetry transformations for functions
and their gradients from Section 1.6.2:

g[f(x)] = f(R−1(g)x)

g[∇f(x)] = (R(g)∇) f(R−1(g)x) (69)

we have not proven explicitly the second line of eq. 69 , but its derivation
is simple and completely analogous to the general transformation for
vector functions.

• Since all transformations we are interested in here are isometric (i.e., pre-
serve the norm) it also follows that

g[∇2f(x)] = ∇2f(R−1(g)x) (70)

• As introduced in eq. 30, the mapping g → Ô(g) ∀g ∈ G defines a repre-

sentation of the group G onto the Hilbert space. The operators Ô(g) are
unitary : therefore, they possess orthonormal eigenvectors with eigen-
values on the unit circle in complex space.

• Now we want to show explicitly that if the Hamiltonian is invariant by a
transformation g as defined in eq. 69, then the operator Ô(g) commutes
with the Hamiltonian:

Ô(g)Ĥψ(x) =

(
−∇

2

2m
+ U(R−1(g)x)

)
ψ(R−1(g)x)

ĤÔ(g)ψ(x) =

(
−∇

2

2m
+ U(x)

)
ψ(R−1(g)x) (71)

so it is in fact necessary and sufficient for the potential to be invariant
by the symmetry g to ensure that the Hamiltonian commutes with Ô(g).
This relation between symmetry invariance and commutation is in gen-
eral true for any quantum-mechanical Hermitian operator, not only for
the Hamiltonian.

• Let us now assume that the Hamiltonian is invariant for all elements of the
group G, i.e., that it commutes with all the operators Ô(g)∀g ∈ G. The
following statements can be readily proven (they can in fact be extended
to any Hermitian operator that has the symmetry of the group G):
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1. If φ(x) is an eigenstate of Ĥ with eigenvalue λ, then all Ô(g)φ(x)

are also eigenstates of Ĥ with the same eigenvalue λ, and this
∀g ∈ G. In fact,

ĤÔ(g)φ(x) = Ô(g)Ĥφ(x) = λÔ(g)φ(x) (72)

2. If φ(x) is a non-degenerate eigenstate of Ĥ, then the map g →
Ô(g) onto the one-dimensional subspace defined by φ(x) is a one-
dimensional irreducible representation ofG. In fact, since the eigen-
vector is non-degenerate, it must necessarily be Ô(g)φ(x) = cφ(x)∀g,
c being a unitary constant, and this is precisely the definition of a
one-dimensional irreducible representation.

3. If φ1(x) . . . φn(x) are degenerate eigenstates of Ĥ defining a sub-

space of the Hilbert space of dimension n, then the map g → Ô(g)

onto that subspace defines an n-dimensional representation of {g}
If the degeneracy is not accidental and there is no additional sym-
metry, then the representation is irreducible. In fact, since for every
φi(x) of the degenerate subspace and for every g, Ô(g)φi(x) is an
eigenstate with the same eigenvalue, so

Ô(g)φi(x) =
∑
j

cjφj(x) (73)

Therefore the application of Ô(g) is closed within the φi(x) sub-
space, and is therefore a representation of the group G.

4. With regards to the question of whether this representation is re-
ducible or irreducible, we will just give here some qualitative ar-
guments. If the representation was reducible, then we could split
the subspace defined by the φi(x) into two or more subspaces,

each closed upon application of the operators Ô(g), but both with
the same eigenvalues. If there is no additional symmetry, one can
imagine changing the Hamiltonian adiabatically (and without alter-
ing its symmetry) in such a way that the eigenvalues of the two
or more subspace become different — in other words, the degen-
eracy of the two subspaces would be accidental. On the other
hand, if the Hamiltonian has additional symmetries, the reducible
subspace by the first symmetry group may be irreducible by the
second symmetry group, so that two or more irreducible represen-
tations of the first group may be “joined” together into multiplets (a
classic case is that of the exchange multiplets in magnetism).

• We conclude that, in general, the complete orthogonal basis set of
eigenstates of the Hamiltonian fully reduces the representation
g → Ô(g) of the symmetry group of the Hamiltonian.

• It is important to note that the reverse is not true — in other words, a ba-
sis set that fully reduces the representation g → Ô(g) is not necessarily
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a set of eigenstates for the Hamiltonian. The problem arises when a
particular irreducible representation Γ of the group {g} appears more
than once in the decomposition of the representation g → Ô(g).

• Note that if ξ1(x) . . . ξn(x) are a basis set for a certain n-dimensional irrep,

then Ĥξ1(x) . . . Ĥξn(x) are a basis set of the same irrep with the same

matrices. This follows straightforwardly from commutativity between Ĥ
and Ô and linearity of the two operators. If the irrep is contained only
once in the total representation, then the two spaces generated by the
two sets of basis vectors must necessarily coincide.

Example; let’s consider two sets of eigenstates, φ1(x) . . . φn(x) with eigen-
value λ1 and ψ1(x) . . . ψn(x), with eigenvalue λ2. Let us also assume
that both sets transform with the same irreducible matrix representation
Γi, which would therefore appear more than once in the decomposition
of g → Ô(g). It is easy to see that the set aφ1(x) + bψ1(x) . . . aφn(x) +

bψn(x) (a and b being complex constants) also transforms with the same
irreducible representation — in fact with the same matrices as the origi-
nal two sets. However, it is also clear that the new basis set is not a set
of eigenstates of Ĥ.

• Therefore, in the presence of irreducible representations that appear more
than once, more work is required to extract eigenstates from basis func-
tions of irreducible representations (which can be obtained by the appli-
cation of the projection operator — see below).

• Nevertheless, structuring the Hilbert space in terms of invariant subspaces
by the irreps of the symmetry group of the Hamiltonian provides an
enormous simplification to the solution of the Schroedinger equation,
and defined a natural connection between problems having different
potentials but the same symmetry group.

5.2 * Classical eigenvalue problems: coupled harmonic oscilla-
tors

• The same techniques can be applied with hardly any modifications to clas-
sical eigenvalue problems, since the mathematical formalism is identi-
cal to that of the quantum case. Classical eigenvalue problems are rele-
vant to many CMP systems, for example, molecular vibrations, phonons
in crystals, but also classical spin waves.

• As an example, we present the case of molecular vibrations. We start with
the expression for the kinetic and potential energies in the limit of “small”
displacements from the equilibrium position.
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EK =
1

2

∑
i

miẋ
2

EP =
1

2

∑
i,j

∂2U

∂xi∂xj
xixj (74)

Here, the xi’s are the displacement coordinates of ion i and mi are their
mass. The sum runs over both ions and components. The analysis
proceeds in the following steps:

1. We perform a transformation to the reduced coordinates:

ξi = xi
√
mi (75)

This has the effect of eliminating the masses from the kinetic en-
ergy expression:

EK =
1

2

∑
i

ξ̇2

EP =
1

2

∑
i,j

(
1

√
mimj

∂2U

∂xi∂xj

)
ξiξj (76)

2. We write the equation of motion as:

ξ̈i +
∑
j

(
1

√
mimj

∂2U

∂xi∂xj

)
ξj = 0 (77)

3. We seek solution of the form

ξi = qi e
iωt (78)

from which we derive the secular equation

ω2qi =
∑
j

(
1

√
mimj

∂2U

∂xi∂xj

)
qj =

∑
j

Vijqj (79)

Eq. 79 is usually solved by diagonalising the matrix Vij on the
right-hand side.

• We want to show that symmetry analysis simplifies the solution of this prob-
lem very significantly.

• First of all, we define our linear space as the space of all modes, defined
as [q1x, q1y, q1z, q2x · · · ]. The dimension of the space is mD, where m

is the number of atoms in the molecule and D is the dimension of the
(ordinary) space.
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• We can define a (reducible) representation Γ of the symmetry group of the
potential energy U onto this linear space as the symmetry transforma-
tion of the modes, involving both a change of the atom labelling and of
the components. This is completely analogous to the example in sec-
tion 3.4 (representation of the group 32 onto the space of distortions of
a triangle).

• One can show explicitly that the invariance of U by the symmetry group G
implies that Vij commutes with all the representative matrices.

• From here onward, we can follow the quantum derivation step by step. In
particular, we conclude that the eigenvectors of Vij provide an irre-
ducible decomposition of Γ in terms of the irreps of G. In particular, the
multiplet structure of the solution is deduced entirely by symme-
try. If an irrep Γi appears more than once in the decomposition of Γ ,
the eigenvectors of Vij will not be determined entirely by symmetry, but
one will have to diagonalise a much smaller matrix to find them.

5.3 Extended example: normal modes of the square molecule

• We illustrate these concepts with the concrete example of a square har-
monic molecule, illustrate in fig.21 . Note that, in general, the exact
solution of this problem require terms higher than the quadratic term,
even if all the springs are perfectly harmonic. He will only address the
problem in the limit of small displacements.

Figure 21: A snapshot of a vibrating square molecule, with the arrows represent a generic
mode. This can be obtained as a linear combination of basis modes.

• The space of modes (i.e., of possible solution of the dynamical equations)
is 10-dimensional (D=2, m=5). The 10 basis modes used in the orig-
inal secular equation (eq. 79) are illustrated in fig. 22. The order of
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the modes and in some case their sign has been altered, to show that
the representation is reducible. In fact, one can see that all symmetry
operators convert block-A modes into block-A modes, Block-B modes
into block-B modes and block-C modes into block-C modes. Therefore,
with this basis, the matrix representation is made up of 3 blocks (of
dimensions 4, 4 and 2).

1 

2 

4 

3 

[1x] 
1 

2 

4 

3 

[2y] 

1 

2 

4 

3 

[-3x] 

1 

2 

4 

3 

[-4y] 

1 

2 

4 

3 

[1y] 
1 

2 

4 

3 

[-2x] 

1 

2 

4 

3 

[-3y] 
1 

2 

4 

3 

[4x] 

A	  

B	  

C	  

Figure 22: The 10 modes in the square molecule dynamical matrix, slightly rearranged to
show that the representation can be reduced.

• It is also possible to determine the characters of the reducible representa-
tion Γ without constructing all the matrices.

� The character of the identity is always equal to the dimension of Γ —
in this case 10.

� There is no mode in fig. 22 that is transformed into itself (or minus
itself) by a 4-fold rotation or a diagonal -fold rotation. Therefore,
the characters of the 4+/4− and 2xy/2xȳ class are zero.

� Some modes are transformed into themselves or minus themselves
by the in-plane 2-fold axes. For example the two right-hands modes
in block A are invariant by 2y, while those on the left side are invari-
ant by 2x. Likewise, modes in block B are multiplied by −1 by the
same transformation. However, since +1 and −1 always appear in
pairs along the diagonal of the representative matrices, their trace
is zero.

� Modes in blocks A and B are never transformed into themselves (or
minus themselves) by 2z. However, modes in block C are always
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transformed into minus themselves. Therefore the trace of the ma-
trix representation of 2z is −2.

� The character table of Γ is therefore:

E 2z 2(4+) 2(2x) 2(2xy)

10 -2 0 0 0

• Point group 422 has 5 classes and 5 irreps. Their dimensions are 1, 1, 1, 1

and 2, since12 + 12 + 12 + 12 + 12 + 22 = 8 = h.

• The character table can be constructed, for example, from fig. 18:

E 2z 2(4+) 2(2x) 2(2xy)

Γ1 1 1 1 1 1
Γ2 1 1 1 -1 -1
Γ3 1 1 -1 1 -1
Γ4 1 1 -1 -1 1
Γ5 2 -2 0 0 0

• By applying eq. 61 or simply by inspection, one can decompose Γ into its
irreducible components:

Γ = Γ1 + Γ2 + Γ3 + Γ4 + 3Γ5 (80)

• As one can see, 1-dimensional irreps Γ1, Γ2, Γ3 and Γ4 only appear once in
the decomposition. Modes that transform according to these irreps
will therefore be automatically normal modes, regardless to the
exact form of the potential matrix.

• These modes are easy to construct by hand, without using the projectors.
They are shown in fig. 23 .

• Mode Γ4 has clear zero frequency (is a pure rotation in the limit of small
displacements). The frequency of the other modes can be obtained by
equating the potential energy at maximum stretch with the kinetic
energy at zero stretch, both proportional to the square of the amplitude
of the mode in the small-displacement limit.

• The remaining 6 normal modes all transform in pairs according to Γ5. One
of the pairs is made up of pure translation of the molecule, and has zero
frequency. The other two modes have non-zero frequencies, and have
the form shown in fig. 26.

• One can see that these are generic linear combinations of the modes
shown in fig. 24 and 25, with the further constraint that the centre-
of-mass motion can be set to zero. The problem has been therefore
reduced to 2 coupled equations, as opposed to the original 10.
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Γ1	   Γ2	  

Γ3	   Γ4	  

1 

2 

4 

3 

Figure 23: The four “1 dimensional modes” of the square molecule. These modes transform
into either themselves (symmetric) or minus themselves (antisymmetric) upon all symmetries
of the molecule.

Figure 24: The four “2 dimensional modes” of the square molecule for the corner atoms.
These modes transform into either± themselves (symmetric/antisymmetric) or into each other
in pairs upon all symmetries of the molecule. Note that all these modes are antisymmetric
upon 2-fold rotation.
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Figure 25: The two central-atom modes of the square molecule. One can verify that they
transform as the ”2-D” corner modes, i.e., with the representation Γ5

Γ5	  

Γ5	  

Figure 26: Examples of non-zero-frequency normal modes of Γ5 symmetry involving two-
atom displacements. The exact mixing coefficient depend on the mass and spring constant
parameters.
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6 Lecture 6: Projectors, subduction and group prod-
uct

In this section, we will finally answer question 6 on page 40, by constructing
the projection operators (projectors), which will enable us to generate the
basis vectors for a given matrix representation of an irrep. We will also learn
a number of techniques (subduction, direct product of groups), which will
help to construct representations and decompose them into irreps for several
physically relevant problems.

6.1 Projectors

• As the name suggests, projectors project an arbitrary element of the linear
space onto the basis vectors of a given matrix representation of an irrep.

• Because of this, projectors depend on the particular choice of matrix rep-
resentation, and one therefore needs the full matrix (not just the char-
acters) to construct them.

• Projectors are operators (not matrices). In fact they are linear combinations
of the operators Ô(g) for all the elements of the group.

• The coefficient of the linear combination are related to the matrix elements
DΓi
µν(g), in other words, the matrix elements of a specific matrix repre-

sentation of the irrep Γi. More precisely:

P̂Γiµν =
li
h

∑
g

[
DΓi
µν(g)

]∗
Ô(g) (81)

• Note that there will be l2j projectors for an irrep of dimension lj , so there is
a lot of redundancy in the way projectors can be constructed.

• By employing the WOT, one can find out how projectors work. Let

v =
∑

i = 1, · · ·n
κ = 1, · · · li

aiκviκ (82)

be a generic vector in the linear space. The sum over j runs over the
irreps, while the sum over κ runs over the different basis vector of a
given irrep and matrix representation. If each irrep is represented no
more than once in the decomposition, one can show that

P̂Γiµνv = aiνviµ (83)

In the case of multiple instances of the same irrep, the formula is
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P̂Γiµνv =
∑
p

apiνv
p
iµ (84)

where the sum over p is over the multiple instances of Γi.

• Let us verify this latest result explicitly. Let

v =
∑
j,p,κ

apjκv
p
jκ (85)

Where
∑

j is over the irreps,
∑

p is over the instances of the same irrep

and
∑

κ is over the basis vectors of that irrep. Since

Ô(g)vpjκ =
∑
λ

D
Γj
λκ(g)vpjλ (86)

the application of the projector to v yields:

P̂Γiµνv =
li
h

∑
g

[
DΓi
µν(g)

]∗∑
j,p,κ

apjκ
∑
λ

D
Γj
λκ(g)vpjλ

=
∑
j,p,κ,λ

{
li
h

∑
g

[
DΓi
µν(g)

]∗
D
Γj
λκ(g)

}
apjκv

p
jλ

=
∑
j,p,κ,λ

{δµλδνκδij} apjκv
p
jλ

=
∑
p

apiνv
p
iµ (87)

where the last line of 87 is identical to 84. The delta functions in the
curly brackets are from the WOT.

• In all cases, P̂Γiµνv is an element of the invariant subspace of Γi. It can,
however, be zero, if the vector v has no component on the subspace
spanned by Γi.

• If they are non-zero, these P̂Γiµνv for fixed ν and different µ (i.e., for matrix
elements of the same columns) represent unnormalised basis functions
for Γi. We can verify this explicitly:

Ô(g)

[∑
p

apiνv
p
iµ

]
=

∑
p

apiν
∑
λ

D
Γj
λµ(g)vpjλ

=
∑
λ

D
Γj
λµ(g)

[∑
p

apiνv
p
jλ

]
(88)
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so the term in square brackets transforms like the original basis vector
vpjµ in eq. 86.

6.2 Example of use of the projectors: distortions on a triangles
(the “ozone” molecule)

• We can put these concepts into practice by examining a problem we have
already encountered multiple times — that of the distortions (vibrations)
of a triangle. This is often dubbed the “ozone molecule” problem, al-
though the actual ozone (O3) molecule is an isosceles triangle with the
obtuse angle equal to 116.8◦. The formalism is, however, suitable to
study actual molecules such as SO3 and BF3. We will only consider the
displacements of the external atoms, which form a perfect equilateral
triangle in the ground state.

• We have essentially all the elements already in place to discuss this prob-
lem. The basis vectors of the reducible representation, shown in fig. 11
page 35, span a 6-dimensional space. Hereafter, we will indicate these
modes with |1〉 · · · |6〉. The full matrices on these basis vectors are dis-
played in eq. 42 page 35. We have already decomposed the reducible
representation into irreps as Γred = Γ1 + Γ2 + 2Γ3 (eq. 64 page 47).
The two basis vectors for the 1-dimensional irreps were found by trial
and error, and are shown in fig. 12 page 36. We will indicate these two
modes as |Γ1〉 and |Γ2〉. Finally, we have several variants of the matrix
representations (figs 15, 16, 17 ) but we will only employ Variant 1 for
the projectors (fig. 15 page 40). The character table is on fig. 19 page
45.

• We will start by applying P̂Γ1 to modes |1〉 · · · |6〉. There is only one projec-
tor for Γ1, since the irrep is 1-dimensional, and all the coefficients in eq.
81 are 1, since this is the totally symmetric representation. It is easy to
show that

P̂Γ1 |1〉 = P̂Γ1 |2〉 = P̂Γ1 |3〉 =
1

3
|Γ1〉

P̂Γ1 |4〉 = P̂Γ1 |5〉 = P̂Γ1 |6〉 = 0 (89)

Likewise

P̂Γ2 |1〉 = P̂Γ2 |2〉 = P̂Γ2 |3〉 = 0

P̂Γ2 |4〉 = P̂Γ2 |5〉 = P̂Γ2 |6〉 =
1

3
|Γ2〉 (90)

So we have easily obtained the basis vectors of the to 1-dimensional
irreps by projection. As in the previous cases, these are automatically
normal modes. Γ2 represents a pure rotation and has zero frequency.
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• The situation is somewhat more complicated for Γ3: this irrep is 2-dimensional
(so we have 4 projectors), it appears twice in the decomposition and we
do not know the answers in advance. To simplify the problem slightly,
we can look the full matrix irrep in fig. 15 and note that the matrix for
operator K is diagonal, with the first mode being antisymmetric and
the second symmetric. Since mode |2〉 and |5〉 are also symmetric and
antisymmetric by K , respectively, projecting these two modes will re-
sult in a simpler combination of modes. In fact, P̂Γ3

µν v projects onto
mode µ with the coefficient of mode ν in the decomposition of v.
Since |2〉 is symmetric, there will be no antisymmetric component in its
decomposition, so

P̂Γ3
11 |2〉 = P̂Γ3

21 |2〉 = 0

P̂Γ3
12 |5〉 = P̂Γ3

22 |5〉 = 0 (91)

• The modes generated by application of the projectors to modes |2〉 and |5〉
are shown in fig. 27. In particular, one can verify directly the relations
in eq. 91 and

P̂Γ3
11 |5〉 =

1

3
|m1〉

P̂Γ3
12 |2〉 =

1

3
|m′1〉

P̂Γ3
21 |5〉 =

1

3
|m2〉

P̂Γ3
22 |2〉 =

1

3
|m′2〉 (92)

• Modes |m1〉 and |m2〉 form a basis set for the chosen matrix representation
of Γ3, and so do modes |m′1〉 and |m′2〉. This is consistent with the gen-

eral rule that P̂Γiµνv for fixed ν and different µ represent unnormalised
basis functions for Γi.

• This is as much as one can say by employing symmetry considerations. It
is not possible to make more progress towards determining the normal
modes without employing some physical considerations. Since modes
|m1〉, |m2〉, |m′1〉 and |m′2〉, intended as vibration modes, do not con-
serve the centre of mass, one can try the following linear combinations:
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m1	   m2	  

m'1	   m’2	  

2	  

1	  

1	  

1	   1	  

2	  

√3	  √3	  

√3	  √3	  

Γ3	  

Γ3	  

Figure 27: Modes generated by |2〉 and |5〉 through the application of the projectors. The
length of the arrows is indicated.

|n1〉 =
|m1〉 − |m′1〉

2

|n2〉 =
|m2〉 − |m′2〉

2

|n′1〉 =
|m1〉+ |m′1〉

2

|n′2〉 =
|m2〉+ |m′2〉

2
(93)

These modes are shown in fig. 28, and are in fact the remaining normal
modes of the triangular molecule. Modes |n1〉 and |n2〉 the are pure
translations, and have zero frequency.

6.3 Subduction

• One of the most useful application of the theory of representations is in the
study of spectroscopic splittings. Let ’s imagine a Hamiltonian of the
form:

Ĥ = Ĥ0 + λĤ1 (94)
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n1	   n2	  

n'1	   n’2	  

1	  

Γ3	  

Γ3	  

Figure 28: The Γ3 normal modes of the triangulate molecule. The relation between these
modes and those in fig. 27 is shown in eq. 93.

where λ is a small parameter, Ĥ0 has symmetry group G0, while Ĥ1

(and therefore Ĥ) have symmetry group G1 ⊂ G0, i.e., G1 is a proper
subgroup of G0. Since λ is small, the energy levels of Ĥ0 will not be
changed by much by the presence of Ĥ1. However, each Ĥ1 multiplet
will in general be split due to the reduction in symmetry. Except for
the actually energy splitting, which requires knowledge of Ĥ1, we can
characterise the sub-multiplet structure of Ĥ by employing the so-called
subduction method.

• The starting point is to recognise that each element of G1 is also in G0,
so we can construct the full character table of G1 from that of G0 by
eliminating the columns corresponding to group elements that are in G0

but not in G1.

• The character table expressed in term of classes requires a bit more care.
Entire classes inG0 may be eliminated inG1, but some new classes can
appear by splitting classes in G0. Example: 422 has 5 classes: E, 2z,
4+/4−, 2x/2y and 2xy/2xȳ. Its proper subgroup 222 has four classes:
E, 2z, 2x and 2y, all of one element each since 222 is Abelian. 4+/4−

and 2xy/2xȳ are suppressed, while 2x/2y is split into 2 classes.

• The irreps of G0 will create, or subduce, new representations in G1. This
is easiest to understand in terms of matrix representations — the sub-
duced representation in G1 has exactly the same matrices as the origi-
nal irrep, but only for the group elements in G1.
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• The subduced representations, however, are not necessarily irreps of
G1. It is clear that they cannot always be so, since the number of classes
inG1 is usually smaller than inG0. One can apply the usual formula (eq.
61) to establish whether the subduced representation is reducible and,
if so, its decomposition in terms of irreps of G1.

• If a certain energy level of Ĥ0 corresponded to a certain irrep Γi of G0, the
decomposition of the subduced representation sub(Γi) will determine
how the Γi multiplet will split.

Example 1 Fig. 29 shows the character table of point group 622 (D6). This
group has 12 elements in 6 classes (shows also in the diagram). Note
that the in-plane 2-fold axes form two distinct classes (this is a general
property of even-n dihedral groups — see below). In the subgroup 32,
the 2z axis (one element, one class), the 6-fold axes (two elements, one
class) and one of the sets of in-plane 2-fold axes (three elements, one
class) are suppressed, as indicated by the darker columns.

E	   2z	   [2]	  3z	   [2]	  6z	   [3]	  2y	   [3]	  2x	  

Γ1	   1	   1	   1	   1	   1	   1	  

Γ2	  
	  

1	   1	   1	   1	   -‐1	   -‐1	  

Γ3	  
	  

1	   -‐1	   1	   -‐1	   1	   -‐1	  

Γ4	  
	  

1	   -‐1	   1	   -‐1	   -‐1	   1	  

Γ5	  
	  

2	   -‐2	   -‐1	   1	   0	   0	  

Γ6	  
	  

2	   -‐2	   -‐1	   -‐1	   0	   0	  

Point	  group	  622	  Character	  Table	  

Figure 29: . The character table of point group 622 and the subduction of its irreps into its
subgroup 32.

the subduction is as follows:

66



Γ 622
1 → Γ 32

1

Γ 622
2 → Γ 32

2

Γ 622
3 → Γ 32

1

Γ 622
4 → Γ 32

2

Γ 622
5 → Γ 32

3

Γ 622
6 → Γ 32

3 (95)

(note that Γ1 always subduces to Γ1.)

Conclusion: each irrep of 622 subduces to an irrep of 32, so there is
no spectroscopic splitting upon lowering the symmetry from 622 to 32.

Example 2 Fig. 30 shows the character table of cubic point group 432 (O).
432 has 24 elements in 5 classes. In its proper subgroup 32, two of the
8 3-fold axes survive (clockwise and counterclockwise rotations around
a single cubic diagonal). The 2-fold and 4-fold axes through the cube
faces disappear, and only 3 of the 6 diagonal 2-fold axes survive, form-
ing the in-plane 2-fold rotations K, L and M of 32.

E	   [8]3	   [3]	  2z	   [6]	  2d	   [6]	  4z	  

Γ1	   1	   1	   1	   1	   1	  

Γ2	  
	  

1	   1	   1	   -‐1	   -‐1	  

Γ3	  
	  

2	   -‐1	   2	   0	   0	  

Γ4	  
	  

3	   0	   -‐1	   -‐1	   1	  

Γ5	  
	  

3	   0	   -‐1	   1	   -‐1	  

Point	  group	  432	  (O)	  Character	  Table	  

Figure 30: . The character table of point group 432 (cubic) and the subduction of its irreps
into its subgroup 32.

the subduction is as follows:
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Γ 432
1 → Γ 32

1

Γ 432
2 → Γ 32

2

Γ 432
3 → Γ 32

3

Γ 432
4 → Γ 32

3 + Γ 32
2

Γ 432
5 → Γ 32

3 + Γ 32
1 (96)

Conclusion:

� Γ 432
1 and Γ 432

2 are singlets. They subduce into irreps of 32 and are
not split

� Γ 432
3 is a doublet. It subduces into an irreps of 32 (Γ 32

3 , also a dou-
blet) and is not split.

� Γ 432
4 and Γ 432

5 are triplets. They subduce into a doublet Γ 32
3 and a

singlet (Γ 32
2 or Γ 32

1 ). There will be a corresponding splitting of the
energy levels upon lowering of the symmetry.
This is shown schematically in fig. 31. Note that the relative po-
sition of the levels in 432 and the energy splitting in 32 are not
determined by symmetry, but rather by the exact form of H0 and
H1.

432	   32	  

Γ1	  

Γ2	  

Γ3	  

Γ4	  

Γ5	  

Γ1	  

Γ2	  

Γ3	  

Γ3	  

Γ2	  

Γ3	  

Γ1	  

Figure 31: Schematic representation of the energy level splitting by lowering the symmetry
from 432 to 32.
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6.4 Direct product of groups

Definition: a group G is said to be the direct product of two (sub)groups,
say F and H, if each element g ∈ G can be written as g = f ◦ h =
h ◦ f, f ∈ F, h ∈ H. Importantly, elements of F must commute with all
elements of H .

• The classic case of direct product, and basically the only important one, is
when H = {E, I}, the 2-element group composed of the identity and
the inversion (which both commute with all other operators).

• Any point or space group containing the inversion is a direct product
group, since the conditions of our definition are clearly fulfilled. The
group G can be written as G = F × {E, I}, where F contains only
proper rotations, roto-translatons and pure translations.

N.B. Some groups contain both proper and improper elements, but cannot
be written as direct products, since they do not contain the inversion
I.

Another counter-example 422 contains a subgroup that commutes with all
the other operators — the group {E, 2z}, but is not a direct product
group, because the remaining operators do not form a group, since
2x ◦ 2y = 2z.

• The group {E, I} is Abelian and has 2 classes and two irreps. Its character
table is:

E I
Γ1 1 1
Γ2 1 -1

• G has twice as many classes as F .16

• It also follows that G has twice as many irreps as F . One can see how
this can be generalised to direct products of groups with more than two
elements, and the importance of the commutation of all elements of F
with all elements of H. In the general case, the number of classes in G
is the product of the classes in F times the classes in H.

• All the irreps of G = F × {E, I} can be obtained as follows:

� Start from the character table of F .

� Double the number of columns (classes). For each class Ck of F
containing the element f , there will be a new class I◦Ck containing
the element I ◦ f .

16Here is the somewhat technical proof: if g̃ = h◦(I ◦f)◦h−1, h ∈ G, then it is either h ∈ F ,
in which case g̃ = I◦(h◦f◦h−1) or h = I◦h′, h′ ∈ F in which case g̃ = I◦(I◦h′◦f◦h′−1◦I) =
I ◦ (h′ ◦ f ◦h′−1), so all the classes in G are either the same classes Ck in F or entire classes
in F multiplied by the inversion, as I ◦ Ck.
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� For each Γi of F we get two irreps of G: Γig and Γiu.

� For the g- or gerade (even) irreps, we get:

χΓig(fCk = +χΓi(Ck)

χΓig(I ◦ Ck) = +χΓi(Ck) (97)

� For the g- or ungerade (odd) irreps, we get:

χΓiu(Ck) = +χΓi(Ck)

χΓiu(I ◦ Ck) = −χΓi(Ck) (98)

• This procedure is illustrated in the two tables here below. From the charac-
ter table of F

E C1 C2 · · · Cn
Γ1 χ1(E) χ1(C1) χ1(C2) · · · χ1(Cn)
Γ2 χ2(E) χ2(C1) χ2(C2) · · · χ2(Cn)
... · · · · · · · · · · · · · · ·
Γn χn(E) χn(C1) χn(C2) · · · χn(Cn)

we obtain the character table of G:

E C1 C2 · · · Cn I I ◦ C1 I ◦ C2 · · · I ◦ Cn
Γ1g χ1(E) χ1(C1) χ1(C2) · · · χ1(Cn) +χ1(E) +χ1(C1) +χ1(C2) · · · +χ1(Cn)
Γ2g χ2(E) χ2(C1) χ2(C2) · · · χ2(Cn) +χ2(E) +χ2(C1) +χ2(C2) · · · +χ2(Cn)

... · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Γng χn(E) χn(C1) χn(C2) · · · χn(Cn) +χn(E) +χn(C1) +χn(C2) · · · +χn(Cn)

Γ1u χ1(E) χ1(C1) χ1(C2) · · · χ1(Cn) −χ1(E) −χ1(C1) −χ1(C2) · · · −χ1(Cn)
Γ2u χ2(E) χ2(C1) χ2(C2) · · · χ2(Cn) −χ2(E) −χ2(C1) −χ2(C2) · · · −χ2(Cn)

... · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Γnu χn(E) χn(C1) χn(C2) · · · χn(Cn) −χn(E) −χn(C1) −χn(C2) · · · −χn(Cn)
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7 Lecture 7: Tensors and tensor products of repre-
sentations

7.1 Tensor product of linear spaces

• Given two linear spaces V and W , one can define their tensor product
V ⊗W , a new linear space, as the set of linear combination of ordered
pairs of basis vectors of V and W . Essentially, one defines the basis
vectors of V ⊗W as (ai|bj), ai ∈ V, bj ∈ W . The elements of V ⊗W
are linear combinations of (ai|bj). Clearly, the dimension of V ⊗W is
dimV × dimW .

• The basis vectors of V ⊗W can be ordered in a single array as

[(a1|b1)(,a1|b2), · · · , (a1|bm), (a2|b1), · · · (an|bm)] (99)

• If the elements of V transform according to matrix A and those of W ac-
cording to matrixB, then the elements of V ⊗W will transform according
to the Kronecker product (or tensor product) A⊗B of the two matrices,
where:

A⊗B =


a11B a12B · · · a1nB

a21B a22B · · · a2mB
...

...
...

...
an1B an2B · · · annB

 (100)

The new matrix A⊗B has dimensions nm× nm.

• We can immediately see that the trace of A ⊗ B is the product of the two
traces: tr(A⊗B) = tr(A) tr(B).

7.2 Tensor product of representations

• Let’s assume that the elements of V transform according to a represen-
tation Γ (reducible or irreducible) and the elements of W according to
a representation ∆. Elements of the tensor product space V ⊗W will
transform according to representation Γ ⊗∆ — the tensor product of
the two representations.

• The matrix representatives of Γ ⊗∆ are the Kronecker product or matrix
representatives for Γ and ∆, as

DΓ⊗∆(g) = DΓ (g)⊗D∆(g) (101)

• A very important result on the characters of Γ ⊗∆ follows immediately:

χΓ⊗∆(g) = χΓ (g)χ∆(g) (102)
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Therefore, to determine the characters of a representation in the
tensor product space, one simply multiplies the characters of the
representations in the constituent spaces.

• This is an extremely important and powerful result: if we know the represen-
tations of the constituent spaces, we can immediately find the charac-
ters of the tensor product representation and decompose it into irreps.
This can be repeated many times, giving rise to representations and
decomposition of extremely complex tensor spaces with very little work.

7.3 * Extended example: vibrational spectra of planar molecules
with symmetry Dn

• We have already seen examples for D3 (32, section 6.2, page 62) and for
D4(422, section 5.3, page 55). Armed with the knowledge of tensor
product, we can now solve the problem for any n.

• We can consider the space of the modes as the tensor product of two
spaces: V is the space of scalar functions on the regular polygon with n
sides, and W is the space of ordinary vectors in 2D. The basis functions
of V can be taken as arrays of n numbers, all of them 0 except for a 1
corresponding to one of the vertices. The space of ordinary vectors has
its usual basis functions (e.g.,̂i, ĵ). For example, the top-left mode in
block A of fig. 22 can be written in tensor notation as ([1, 0, 0, 0]|̂i).

• Let us consider independently the representations ofDn onto the two spaces
V and W — call them Γ and ∆ as before.

• Γ is the so-called permutational representation, although Dn is not in
general the full permutation group of the n-polygon. We can deduce its
characters as follows:

� The character of the identity E is n

� Cn ( the group of pure rotations around z) is a subgroup of Dn. The
elements of Cn will generate several classes in Dn — for exam-
ple, we know that in D4 there are two classes of this kind, 2z and
4+/4−. However, no basis function of V is ever conserved by these
transformation, so the characters of Γ on all these classes are 0.

� The in-plane two-fold axes form two classes for n even and one
class for n odd. For n even, the 2-fold axes can cut either through
two sides or two vertices of the n-polygon, while for n odd they al-
ways cut through one vertex and one side (fig. 32). Consequently,
the characters of Γ will be 2 (for the vertex axes) or 0 (for the side
axes) for n even and 1 for n odd.

• ∆ is the transformation of ordinary vectors by Dn. It is a 2-dimensional
representation, and its characters can be found as follows:

� The character of the identity E is 2
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Figure 32: Two examples of dihedral groups of odd order (D5) and even order (D6). For n
odd, there is a single class of in-plane 2-fold axes, while for n even there are two classes.

� The character of the 2z (only present for n even) is −2, since both
basis vectors are reversed by 2z.

� The characters of the z axis rotations are 2 cos θ, θ being the rotation
axis (they are just the sum of the diagonal elements of the rotation
matrix).

� The character of 2x is 0. In fact î is unchanged, while ĵ is reversed.

� The character of 2y (a representative element of the other class of
in-plane two-fold axes) is also zero. Although 2y is not necessarily
perpendicular to 2x (e.g., in the case of n = 8), its matrix repre-
sentative is still related by a similarity transformation to the matrix
representative of 2x, the the characters remain the same.

• We can also easily add a central atom. Its modes represent an additional
subspace and transform like ∆, so its characters are simply added to
the tensor product characters. This can be summarised as follows: for
n even

E 2z 2C1
z 2C2

z · · · (n/2)2x (n/2)2y
χΓ n 0 0 0 · · · 2 0
χ∆ 2 −2 2 cos θ 2 cos 2θ · · · 0 0

χΓ⊗∆ 2n 0 0 0 · · · 0 0
χΓ⊗∆+∆ 2n+ 2 −2 2 cos θ 2 cos 2θ · · · 0 0

for n odd
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E 2C1
z 2C2

z · · · n2x
χΓ n 0 0 · · · 1
χ∆ 2 2 cos θ 2 cos 2θ · · · 0

χΓ⊗∆ 2n 0 0 · · · 0
χΓ⊗∆+∆ 2n+ 2 2 cos θ 2 cos 2θ · · · 0

• We can see that our result is in agreement with our previous findings for D3

(eq. 64 page 47) and D4 (page 57).

• Let us try with D6 (622). The irrep character table is in fig. 29. The charac-
ters are:

E 2z 2 6z 2 3z 3 2x 3 2y
χΓ⊗∆ 12 0 0 0 0 0
χΓ⊗∆+∆ 14 −2 1 −1 0 0

By applying eq. 61 we obtain:

Γ ⊗∆ = Γ1 + Γ2 + Γ3 + Γ4 + 2Γ5 + 2Γ6

Γ ⊗∆+∆ = Γ1 + Γ2 + Γ3 + Γ4 + 3Γ5 + 2Γ6 (103)

• The central atom modes clearly transform as Γ5 (≡ ∆, characters 2| −
2|1| − 1), and so will the pure translations of the whole molecule (which
are also ordinary vectors). One of the 1-dim modes must correspond to
a pure rotation of the molecule. It is easy to see that this must be Γ2,
since this mode must be invariant by all z-axis rotations. Therefore the
set of non-zero-frequency normal modes is:

Γ ⊗∆− Γ2 − Γ5 = Γ1 + Γ3 + Γ4 + Γ5 + 2Γ6

Γ ⊗∆+∆− Γ2 − Γ5 = Γ1 + Γ3 + Γ4 + 2Γ5 + 2Γ6 (104)

three singlets and three doublets or three singlets and four doublets
without or with the central atom, respectively.

• Γ1 is the only Raman-active mode (in 2D, the 2-fold axis corresponds to the
inversion in 3D). All other modes are IR-active. in a molecular crystal,
Γ2 will give rise to Raman-active phonon modes.

8 Lecture 8: “Physical” tensors

8.1 Introduction to tensors in physics

• What we have just introduced is a rather abstract definition of tensors, and
we have applied it to linear spaces that do not look anything like the
more familiar tensors in physics.
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• “Ordinary” tensors are actually closely related to the ones we just intro-
duced. They are tensor products of spaces or ordinary (polar) vec-
tors or axial vectors.

• In free space, ordinary polar vectors and axial vectors transform in the
same way under proper rotations, i.e., according to a 3-dimensional ir-
reducible representation of the continuous group of proper rotations. If
one includes improper rotations, polar vectors, forming a space that we
will call V , transform as an ungerade irreducible representation of the
continuous group of proper and improper rotations, which we shall call
Γu. Axial vectors, forming a space A, transform under the correspond-
ing gerade irrep Γg.

• We define polar tensors and axial tensors of different ranks as follows:

Rank 0 1 2 3 4 · · ·
Polar tensors — space scalars V V ⊗ V = V 2 V 3 V 4 · · ·

Polar tensors — representation Γ1g Γu Γu ⊗ Γu =
[
Γ 2
u

]
g

[
Γ 3
u

]
u

[
Γ 4
u

]
g

· · ·
Axial tensors — space pseudo-scalars A A⊗ V A3 A3 ⊗ V · · ·

Axial tensors — representation Γ1u Γg [Γg ⊗ Γu]u
[
Γ 3
g

]
g

[
Γ 3
g ⊗ Γv

]
u
· · ·

� The tensor product representation is gerade if it contains an even
number of Γu, ungerade otherwise. We have indicated this as []g

or []u

� There are many different combinations of spaces that give the same
transformation rules, and are therefore isomorphic (symbol∼=). For
example, A⊗A ∼= V ⊗ V and A3 ∼= V 2 ⊗A.

� We have also introduced the rank-zero tensors, known as scalars
and pseudo-scalars. They transform like the totally symmetrical
representation of the proper rotation group SO(3), but are gerade
and ungerade, respectively.

• Polar tensors of odd rank are parity-odd. Polar tensors of even rank
are parity even.

• Axial tensors of odd rank are parity-even. Axial tensors of even rank
are parity odd.

Example of polar tensor: The permittivity tensor is a rank-2 polar tensor,
defined by the formula:

Di = εijEj (105)

Example of axial tensor: The linear magneto electric tensor is a rank-2
axial tensor, defined by the formula:

Pi = µijBj (106)

in fact, the electrical polarisation Pi an ordinary vector, whereas the
magnetic field Bj is an axial vector.
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8.2 “Materials” tensors vs. “Field” tensors

• A distinction can be made between tensors that describe intrinsic proper-
ties or spontaneous effects of the crystals — so-called materials ten-
sors, and tensors that describe external forces or the reaction of the
materials to those forces — so-called field tensors.

Materials tensors representing macroscopic properties must have the full
point-group symmetry of the crystal. This is another way to state
the famous Neumann’s principle: “The symmetry elements of any phys-
ical property of a crystal must include the symmetry elements of the
point group of the crystal”. It is applicable to any physical observable
measured with a probe that is insensitive to lattice periodicity. In the
language of irreps, materials tensors must transform like the totally
symmetric irrep of the crystal class: Γ1 or Γ1g for acentric and cen-
tric classes, respectively. Examples of materials tensors are: per-
mittivity tensor, permeability tensor, conductivity tensor, piezoelectric-
ity tensor, magneto-electricity tensor, spontaneous strain tensor, elastic
tensor.

Field tensors can have any symmetry — in fact they usually define they own
symmetry. For example, the applied electric field (an ordinary polar vec-
tor) will have a continuous rotational symmetry around its own direction
and it is clearly parity-odd (ungerade). However, there can be other
restrictions on the elements of a field tensor (see here below). Exam-
ples of field tensors, in addition to the usual fields, are: stress tensor,
induced strain tensor.

Example: Hooke’s law in materials In tensor form, Hooke’s law of elasticity
is expressed as:

σij = cijklεkl (107)

or its converse

εij = sijklσkl (108)

� σij is the applied stress tensor — a field tensor

� εkl is the induced strain tensor — a field tensor
� cijkl and sijkl are the stiffness tensor and the elastic tensor, re-

spectively —both materials tensors. They are doubly symmetric
tensors in ij and kl separately, so they have 36 elements (see
here below for an explanation).

8.3 Internal symmetry of tensor elements

• In addition to the crystal symmetry properties of materials tensors, which
we just described, many tensors are symmetric by exchange of some
of their indices (as hinted here above).
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• Some tensors reflect equilibrium properties of the crystal, for example
under an applied external field, and can be obtained by differentiation
of the free energy. If the differentiation occurs twice with respect to the
same quantity, the tensor is symmetric.

Example: Permittivity tensor:

Pi = − ∂F
∂Ei

εij = − ∂2F

∂Ei∂Ej
(109)

so the permittivity tensor is clearly symmetric by exchange of its indices.

Counter-example: Magnetoelectric tensor:

Pi = µijBj

µij = − ∂2F

∂Ei∂Bj
(110)

so the magneto electric tensor is not a symmetric tensor.

• Some field tensors are symmetric by construction – for example, the stress
tensor σij is symmetric because it excludes any torque component. As
a consequence, the piezoelectric tensor diαβ, defined as

Pi = diαβσαβ (111)

is symmetric in αβ (but the symmetry does not involve the first index i).

• Some materials tensor describing non-equilibrium steady-state properties,
such as the conductivity tensor, are also symmetric. The symmetry
properties of such tensors are expressed by the so-called Onsager reci-
procity principle (see book by J.F. Nye).

8.4 Symmetrised and anti-symmetrised tensor spaces

• As we had just seen, certain tensors are symmetric by exchange of one
or more pairs of indices. It is also useful in some cases to consider
antisymmetric tensors by exchange of indices. When one considers
the tensor product of a linear space by itself, V ⊗ V , one can see how
the definition of symmetric and antisymmetric tensors naturally arises.
If the basis vectors of V ⊗ V (with dimension n2) are:

[(a1|a1)(,a1|a2), · · · , (a1|an), (a2|a1), · · · (an|an)] (112)
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then one can consider two subspaces of V ⊗ V : the symmetric sub-
space [V ⊗ V ], with dimension 1

2n(n+ 1) and basis vectors:

[
(a1|a1),

1

2
(a1|a2) +

1

2
(a2|a1), · · · , 1

2
(a1|an) +

1

2
(an|a1), · · · , (an|an)

]
(113)

and the the anti-symmetric subspace {V ⊗ V }, with with dimension
1
2n(n− 1) and basis vectors:

[
(
1

2
(a1|a2)− 1

2
(a2|a1), · · · , 1

2
(a1|an)− 1

2
(an|a1), · · · , 1

2
(an−1|an)− 1

2
(an|an−1)

]
(114)

• There is a very useful formula for the characters of the symmetric and
antisymmetric subspaces, which we present without proof 17:

χ[Γ⊗Γ ](g) =
1

2

[
χ2
Γ (g) + χΓ (g2)

]
χ{Γ⊗Γ}(g) =

1

2

[
χ2
Γ (g)− χΓ (g2)

]
(115)

where g2 = g ◦ g.

• This rule enables us to construct the transformation properties of very com-
plex tensors. For example, the doubly symmetric elastic tensor sijkl
transforms like the doubly symmetric tensor representation [Γ ⊗ Γ ] ⊗
[Γ ⊗ Γ ], and its characters are easily determined from eq. 115, if one
knows the characters of Γ .

• Note that many relevant decompositions of tensor representations can be
found on the Bilbao Crystallographic Server http://www.cryst.ehu.es/rep/point.html.

Example: transformation properties of the piezoelectric tensor in the point group 32.
The definition of the piezoelectric tensor diαβ is in eq. 111. It is a 3rd-
rank polar tensor that is symmetric in the last two indices, so it trans-
forms according to representation Γ⊗ [Γ ⊗ Γ ]. Γ is the ordinary vectors
transformation by 32. As we already know, Γ = Γ2 + Γ3. The character
table for Γ is therefore:

Let’s employ eq. 115 to determine the characters of [Γ ⊗ Γ ]. For the
identity and the 2-fold axes, g2 = E, whereas for the 3-fold rotations
A2 = B. Therefore:

17Eq. 115 is only valid if the two representations in the tensor product we are symmetrising
are not only the same, but have the same matrices. Otherwise, the term χΓ (g

2) should be
replaced by Tr

[
MΓ

1 (g)MΓ
2 (g)

]
, where the two (distinct) matrix representatives MΓ

1 (g) and
MΓ

2 (g) are multiplied with the usual matrix product.
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E 2A 3K
3 0 -1

χ[Γ⊗Γ ](E) =
1

2

[
χ2
Γ (E) + χΓ (E2)

]
= 6

χ[Γ⊗Γ ](A) =
1

2

[
χ2
Γ (A) + χΓ (A2)

]
= 0

χ[Γ⊗Γ ](K) =
1

2

[
χ2
Γ (K) + χΓ (K2)

]
= 2 (116)

Therefore [Γ ⊗ Γ ] = 2Γ1 + 2Γ3. Multiplying by Γ again we obtain the
character table for Γ ⊗ [Γ ⊗ Γ ]:

E 2A 3K
18 0 -2

This decomposes into Γ ⊗ [Γ ⊗ Γ ] = 2Γ1 + 4Γ2 + 6Γ3. However, the
piezoelectric tensor is a materials property tensor, and it has therefore
to transform according to the totally symmetric irrep Γ1. All the other
components must correspond to zero elements of the tensor matrix. Γ1

appears twice in the decomposition. Therefore, the matrix elements of
diαβ are described by only two independent parameters.

8.5 Matrix transformations of tensors

• Up to this point, we have employed the powerful machinery of representa-
tion theory to describe the transformation properties of tensors. How-
ever, in order to perform calculations, we need the actual matrix form
of the tensors, which of course depends on the choice of coordinates,
Cartesian, spherical and crystallographic being possible choices. Also,
we need another explicit form of transformation rules, since the Kro-
necker form is not of practical application.

• The matrix form of the tensor arises from writing the elements of a tensor
space as

T =
∑
i,j,k,···

Ti,j,k,··· (ai|bj |ck| · · · ) (117)

where ai,bj , c etc. are basis sets for ordinary vectors. With this nota-
tion:
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Ô(g)T =
∑

l,m,n,···
Tl,m,n,···

∑
i,j,k,···

Rli(g)aiRmj(g)bjRnk(g)ck · · ·

=
∑
i,j,k,···

 ∑
l,m,n,···

Tl,m,n,···Rli(g)Rmj(g)Rnk(g)

 (ai|bj |ck| · · · )

(118)

where the Rli(g) are the ordinary proper rotation matrices, i.e., the ma-
trix representative of the group elements on the space of ordinary vec-
tors. In the case of improper rotations, one has to take into account
whether the tensor is polar or axial. This can be summarised in the
following formula, where p(g) is the parity of g:

Ô(g)Tijk··· =
∑

l,m,n,···
Tl,m,n,···Rli(g)Rmj(g)Rnk(g) · · · (polar tensors)

Ô(g)Tijk··· = (−1)p(g)
∑

l,m,n,···
Tl,m,n,···Rli(g)Rmj(g)Rnk(g) · · · (axial tensors)

(119)

8.6 Allowed physical properties and materials tensors elements

• Two central questions about physical properties described by materials ten-
sors are:

1. which physical properties are allowed in certain crystal sym-
metries, and how many independent parameters are needed
to describe them?

2. what is the explicit form of the tensors in a given coordinate
system?

these questions can be answered exclusively by use of symmetry argu-
ments.

• The first question can be fully addressed by employing character decompo-
sition, as we have seen in the piezoelectricity tensor example on page
78. One determines the characters of the tensor representation (in that
case Γ ⊗ [Γ ⊗ Γ ]), decomposes the resulting character table into ir-
reps and considers the number of times Γ1 or (Γ1g for centrosymmetric
groups) appears in the decomposition.

� If Γ1 appears 0 times, then the physical properties described by this
tensor is forbidden in that particular symmetry group.
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� If Γ1 appears n > 0 times, then the physical properties described by
this tensor are spanned by n independent parameters in that par-
ticular symmetry group, meaning that the variability of that proper-
ties in all molecules or crystals with that symmetry is described by
n parameters.

• From the parity classification of polar and axial tensors (page 75), it follows
immediately that physical properties described by polar tensors of
odd rank and axial tensors of even rank cannot exist in systems
having centrosymmetric symmetry groups. In fact, Γ1g can never
appear in the decomposition of an ungerade representation.

• Therefore, for example, piezoelectricity and ferroelectricity are only restricted
to non-centrosymmetric groups.

• Further restrictions can be found by actually applying the decomposition
formula. For example, ferroelectricity and pyroelectricity are restricted to
only 10 point groups (out of the 21 non-centrosymmetric point groups):
1, 2, m, 2mm, 4, 4mm, 3, 3m, 6 and 6mm. Every non-centrosymmetric
point group is piezoelectric, except 432.

• To find the explicit form of the tensors in a given coordinate system, one
can employ the projector operators. One simply takes non-symmetry-
specific form of the tensor, with appropriately symmetrised indices if
necessary, and projects it onto the totally symmetric representation Γ1:

T̃ijk =
1

h

∑
g

∑
lmn

TlmnRli(g)Rmj(g)Rnk(g) (120)

where, again, one can see that the symmetrised tensor will be zero for
parity-odd tensors in centro-symmetric groups.

8.7 *Example: explicit form of the piezoelectric tensor in 32.

• Following on from the previous example, we will now determine the ex-
plicit form of this tensor in Cartesian coordinates. The non-symmetry-
specific tensor has 18 independent components, and the transforma-
tion matrices are in eq. 32. The form in 3D is obtained by setting
R31 = R32 = R13 = R23 = 0. R33 = 1 for E, A, and B and −1 for K, L
and M . We will use the projection formula:

d̃iµν =
1

h

∑
g

∑
lκλ

dlκλRli(g)Rκµ(g)Rλν(g) (121)

where we use the Greek letter to label the symmetric indices.

� We start by calculating 1/h
∑

g over the 6 elements of the group for all
the different combinations of matrices, which we will indicate with
the notation:
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(11)(12)(33) =
1

6

∑
g

R11(g)R12(g)R33(g) (122)

the order of the matrices clearly does not matter. This calculation
is further simplified by the fact that all matrix elements containing
a “3” (13, 23, 31, 32) are zero except for 33. We can find all the
non-zero elements with the help of a spreadsheet:

(11)(22)(33) = (11)(33)(22) = (22)(11)(33) =
1

2

(22)(33)(11) = (33)(11)(22) = (33)(22)(11) =
1

2

(12)(21)(33) = (12)(33)(21) = (21)(12)(33) = −1

2

(21)(33)(12) = (33)(12)(21) = (33)(21)(12) = −1

2

(11)(11)(22) = (11)(22)(11) = (22)(11)(11) =
1

4

(11)(12)(21) = (11)(21)(12) = (12)(11)(21)
1

4

(21)(11)(12) = (12)(21)(11) = (21)(12)(11) =
1

4

(22)(22)(22) =
1

4

(12)(12)(22) = (12)(22)(12) = (22)(12)(12) = −1

4

(21)(21)(22) = (21)(22)(21) = (22)(21)(21) = −1

4
(123)

� We now consider the summation
∑

lκλ in (eq. 121). One can no-
tice that the second index in each rotation matrix (the one we
underlined) determines which symmetrised tensor element that
matrix will contribute to, so, for example in our notation, the term
(21)(12)(33) will provide a contribution −1

2d213 to d̃123. With a bit of
bookkeeping, one gets the following:

d̃123 = d̃132 = A

d̃213 = d̃213 = −A

d̃112 = d̃121 = d̃211 = B

d̃222 = −B (124)

where
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A =
1

2
[d123 − d213]

B =
1

4
[2d112 + d211 − d222] (125)

All the other elements of the tensor are zero.

As we had predicted using irrep analysis, the piezoelectric tensor has 2
free parameters in 32 (A and B), corresponding to the number of times
Γ1 is contained in Γ ⊗ [Γ ⊗ Γ ].
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