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Abstract Many biological systems have aspects of symmetry. Symmetry is formal-
ized using group theory. This theory applies not just to the geometry of symmetric
systems, but to their dynamics. The basic ideas of symmetric dynamics and bifurca-
tion theory are applied to speciation, animal locomotion, the visual cortex, pattern
formation in animal markings and geographical location, and the geometry of virus
protein coats.
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1 Introduction

The formal mathematical theory of symmetry has many uses in the construction and
analysis of models of biological forms and processes. We begin with some simple
models of population dynamics including territorial effects. We then describe applica-
tions to speciation, animal locomotion, the visual cortex, pattern formation in animal
markings, geographical location, and virus structure.

The mathematical setting for symmetry is group theory. A group is a collection of
transformations that preserve specified forms or structures. In this setting, an object or
system does not just possess symmetry: it may possess several different symmetries.
Group theory characterizes the interplay between these. The symmetries of an object
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or system have profound effects on its form, function, and behavior. Merely knowing
that the atomic structure of a crystal is a lattice implies that the crystal’s rotational
symmetries can be of order 2, 3, 4, or 6, but not 5 or any number greater than 6. This
“crystallographic restriction” is a group-theoretic consequence of lattice geometry in
two and three dimensions.

In the physical sciences, symmetries are often exact, or so close to exact that it is
standard to model them that way. In the life sciences, exact symmetry is rare. The
capsids of icosahedral viruses are symmetric with a high degree of precision, because
their form is determined by molecular forces, but even there the interior of the virus
lacks the symmetry of its protein coat. In most biological systems, symmetries are at
best approximate, so their use in models is an idealization. In mathematical models of
a network of neurons, for example, it is common to treat neurons of the same general
kind as identical, so that the parameters in the corresponding equations are the same.
Whenmodeling speciation, the actual close resemblance between creatures of the same
species is idealized to “identical”. Idealizations of this kind are useful because they
simplify themathematical analysis, andbecause systemswith approximate symmetries
usually resemble idealized symmetric models more closely than they resemble typical
asymmetric models.

Symmetry methods, making explicit use of group theory, can be viewed as a toolkit
of systematic techniques for analyzing pattern formation. In biological settings they
are most appropriate in contexts where more or less regular patterns are observed.
Those patterns may be visual, for example animal markings; they may be dynamic, as
in animal locomotion; or they may be on a more abstract structural level, as in speci-
ation. We consider only regular patterns and dynamics, specifically, steady states and
spatially or temporally periodic structures. Symmetry can also force the occurrence of
heteroclinic cycles [47], which are equilibria of saddlepoint type joined by their sepa-
ratrices.When such cycles are present, the systemwill appear to be in equilibrium for a
time, but thenmove relatively quickly to another apparent equilibrium. Such dynamics
can be highly complex, even when the system is not chaotic [28]. Heteroclinic cycles
can occur in particular in population models [49,94]. There is also a well-developed
theory of symmetric chaos, which leads to less regular patterns with their own hidden
symmetries [29,30,39].

2 Motivating examples in population dynamics

We begin with a simple warm-up problem, which introduces some basic features of
symmetric dynamics. More realistic models with the same symmetries would exhibit
similar phenomena.

Example 2.1 A species of birds occupies two neighboring islands, of similar sizes
and with similar habitats. The two bird populations at time t are proportional to P +
x(t), P + y(t), where P is a fixed reference population chosen so that P + x(t) ≥ 0
and P + y(t) ≥ 0 for all relevant t . The constant of proportionality is not specified
here. Birds reproduce on each island and migrate between them. A simple model of
the populations, with nonlinear population growth and linear migration, is:
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Table 1 Equilibria and their
stabilities for Eq. (1)

x y Eigenvalues of J Stability

0 0 7, 3 Unstable√
7

√
7 −14,−18 Stable

−√
7 −√

7 −14,−18 Stable√
3 −√

3 −2,−6 Stable

−√
3

√
3 −2,−6 Stable

1 −2 (−5 + √
97)/2, (−5 − √

97)/2 Unstable

−1 2 (−5 + √
97)/2, (−5 − √

97)/2 Unstable

2 −1 (−5 + √
97)/2, (−5 − √

97)/2 Unstable

−2 1 (−5 + √
97)/2, (−5 − √

97)/2 Unstable

x ′(t) = kx(t) − x(t)3 + a(y(t) − x(t))

y′(t) = ky(t) − y(t)3 + a(x(t) − y(t)) (1)

Here k is the growth rate when the population is small, the terms −x(t)3,−y(t)3 are
nonlinear density-dependent terms that limit the population size, and a is themigration
rate.

To keep the calculations simple, let the parameters be k = 7, a = 2. At an equi-
librium, x(t) and y(t) are independent of t , and we denote their constant values by
x and y. The population equilibria are the solutions of kx − x3 + a(y − x) = 0 =
ky − y3 + a(x − y). Table 1 shows these, together with their stabilities, determined
by the eigenvalues of the Jacobian matrix

J =
(
k − a − 3x2 a

a k − a − 3y2

)
(2)

An equilibrium is stable if the eigenvalues of J at the equilibrium have negative real
parts [56, II.7]. Since (−5 + √

97)/2 > 0, the final four equilibria are unstable.
These results exemplify three typical phenomena in symmetric systems of ODEs:

Multiplicity Nonlinear differential equations often have multiple equilibria. Bézout’s
Theorem [32] states that, subject to technical hypotheses, a system of two independent
polynomial equations of degrees m and n in two variables has at most mn solutions.
Table 1 lists 9 equilibria in total; by Bézout’s Theorem, this is the maximum number
possible with two cubic equations.

Symmetrically related states Multiplicity interacts with symmetry: equilibria occur
in sets, each having the same eigenvalues of J , Table 1. These sets are related by
symmetries. The equations are preserved by four changes of coordinates:

(x, y) �→ (x, y) (x, y) �→ (y, x) (x, y) �→ (−x,−y) (x, y) �→ (−y,−x)

(3)
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The image of any solution under any of these transformations is also a solution, and
Jacobians at symmetrically related equilibria have the same eigenvalues because they
are similar, or conjugate, as matrices.

Spontaneous symmetry-breaking Solutions need not have the same symmetries as the
equations. An equilibriumwith all four symmetriesmust be of the form (0, 0), which is
valid only for the first solution in Table 1. The remaining equilibria are of three kinds:
(x, x) where x �= 0, (x,−x) where x �= 0, and (x, y) where y �= ±x . The first type
has symmetry (x, y) �→ (y, x). The second type has symmetry (x, y) �→ (−y,−x).
The third type has only the trivial symmetry.

This phenomenon—solutions with less symmetry than the equations—is called
spontaneous symmetry-breaking [101]. “Spontaneous” indicates that the symmetry of
the equations is not changed, only that of solutions. The unqualified term “symmetry-
breaking” is also used to refer to small asymmetric perturbations of the equations.
Spontaneous symmetry-breaking is a common phenomenon in symmetric dynamics,
and one of the main sources of pattern formation. It can also occur for periodic and
chaotic states. We discuss the periodic case in Sect. 3.

Example 2.2 The symmetry (x, y) �→ (y, x) is a consequence of our assumption that
conditions on the two islands are identical, and that the rate of migration between them
is the same in both directions.Withmore than two identical islands, similar symmetries
arise. In contrast, the symmetry (x, y) �→ (−x,−y) is artificial, created by the cubic
nonlinearity in the model of isolated population growth. To remove this symmetry we
introduce a small quadratic term. The model for three islands then takes the form:

x ′(t) = kx(t) − x(t)2/8 − x(t)3 + a(y(t) + z(t) − 2x(t))

y′(t) = ky(t) − y(t)2/8 − y(t)3 + a(x(t) + z(t) − 2y(t)) (4)

z′(t) = kz(t) − z(t)2/8 − z(t)3 + a(x(t) + y(t) − 2z(t))

The analogous table, computed numerically for parameter values k = 10, a = 1, is
Table 2.

Equation (4) is symmetric under all permutations of x, y, z. There are six such
permutations, forming the symmetric group S3. There are 27 real equilibria, the max-
imum multiplicity permitted by Bézout’s Theorem. Small asymmetric perturbations
also have 27 real equilibria. The 27 equilibria divide into ten symmetry classes. In the
first three of these, the equilibria are fully symmetric, of the form (x, x, x). In the next
six, the equilibria are of the form (x, y, y), (y, x, y) and (y, y, x), so each equilibrium
is invariant under a transposition, (23), (13) and (12), respectively. In the final class,
all three variables are distinct, and each equilibrium has trivial symmetry.

It would be easy to assume that because all three islands provide the same habitat,
and the same species of birds inhabits each, the populations should be identical on each
island. Some equilibria are of this form. However, the model has stable equilibria that
are not of this form: an example of spontaneous symmetry-breaking. This phenomenon
is common in symmetric systems of equations. What makes it possible is the presence
of nonlinear terms. A symmetric linear system of ODEs x ′(t) = Ax(t) has a unique
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Table 2 Equilibria and their stabilities for Eq. (4)

x y z Eigenvalues of J Stability

0 0 0 10, 7, 7 Unstable

3.10 3.10 3.10 −22.61,−22.61,−19.61 Stable

−3.23 −3.23 −3.23 −23.40,−23.40,−20.40 Stable

2.26 −2.93 −2.93 −18.04,−16.29,−7.71 Stable

−2.93 2.26 −2.93 −18.04,−16.29,−7.71 Stable

−2.93 −2.93 2.26 −18.04,−16.29,−7.71 Stable

−2.46 2.79 2.79 −17.01,−15.35,−9.16 Stable

2.79 −2.46 2.79 −17.01,−15.35,−9.16 Stable

2.79 2.79 −2.46 −17.01,−15.35,−9.16 Stable

−0.77 2.89 2.89 −18.84,−16.92, 6.49 Unstable

2.89 −0.77 2.89 −18.84,−16.92, 6.49 Unstable

2.89 2.89 −0.77 −18.84,−16.92, 6.49 Unstable

−2.85 0.32 0.32 −15.76, 8.69, 6.61 Unstable

0.32 −2.85 0.32 −15.76, 8.69, 6.61 Unstable

0.32 0.32 −2.85 −15.76, 8.69, 6.61 Unstable

2.73 −0.30 −0.30 −15.07, 8.88, 6.80 Unstable

−0.30 2.73 −0.30 −15.07, 8.88, 6.80 Unstable

−0.30 −0.30 2.73 −15.07, 8.88, 6.80 Unstable

0.84 −3.02 −3.02 −19.54,−17.63, 5.76 Unstable

−3.02 0.84 −3.02 −19.54,−17.63, 5.76 Unstable

−3.02 −3.02 0.84 −19.54,−17.63, 5.76 Unstable

2.57 0.02 −2.72 −14.12,−11.99, 8.09 Unstable

2.57 −2.72 0.02 −14.12,−11.99, 8.09 Unstable

0.02 2.57 −2.72 −14.12,−11.99, 8.09 Unstable

0.02 −2.72 2.57 −14.12, −11.99, 8.09 Unstable

−2.72 2.57 0.02 −14.12,−11.99, 8.09 Unstable

−2.72 0.02 2.57 −14.12,−11.99, 8.09 Unstable

equilibrium provided the matrix of coefficients A is non-singular. So uniqueness of
the equilibrium is “generic” or “typical”, in the sense that any system with non-unique
equilibria can be changed to one with unique equilibria by making an arbitrarily small
perturbation of the terms appearing in the equation, that is, of thematrix A. Uniqueness
forces that equilibrium to be fully symmetric. However, equilibria of symmetric PDEs
need not be fully symmetric, even in the linear case.

Traces of the symmetry of the equations remain, however, even when symmetry is
broken. In place of a single fully symmetric solution, there is a set of symmetrically
related solutions. In Example 2.2, the symmetry group of the equations is large enough
for some solutions to have nontrivial symmetry, forming a proper subgroup of the
symmetry group of the equations. We explain why this happens in Sect. 3, which
describes some basic properties of symmetric equations.
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3 Symmetries and group theory

Solutions of systems of ODEs can behave in many different ways. The most basic
classification includes five types: equilibrium, periodic, heteroclinic, quasiperiodic,
and chaotic [47]. At an equilibrium the solution remains constant for all time. For a
periodic state it repeats the same behavior indefinitely at regularly spaced intervals of
time (the period).

A basic question is: given the symmetries of the equation, what are the possible
symmetries of solutions? We answer this question for equilibria and periodic states.
In the periodic case, there is an extra source of symmetry: phase shifts (time trans-
lations) on solutions. Any autonomous ODE has time-translation symmetry: if v(t)
is a solution, so is v(t + θ), for any constant θ . Equilibria are the states that do not
break this time-translation symmetry; periodic solutions break it, but not completely.
Time-reversal symmetry, in which t becomes −t , usually accompanied by a spatial
symmetry, may also occur [7,69].

In order to answer the basic question above, we first recall some standard ideas
concerning groups, equivariant maps (which define symmetric ODEs) and related
topics [39,42].

3.1 Groups

The formal setting for the analysis of symmetric ODEs employs the notion of a group.
The usual definition specifies a short list of axioms [72]. Here we take a more concrete
view and define a group to be a set � of invertible transformations of some set V such
that, if f, g are in the set then so is their composition f g, defined by

f g(v) = f (g(v)) v ∈ V (5)

For most of the groups we discuss, V is a finite-dimensional real vector space and the
transformations are linear. Technically, distinct elements of � may correspond to the
same linear transformation. This occurs in a few examples below.

We introduce some standard groups.
The cyclic group Zn consists of all rotations of the plane about the origin through

angles 2kπ
n , where 0 ≤ k < n is an integer. It is the group of all rotational symmetries

of a regular n-sided polygon.
The dihedral group Dn also acts on the plane. It consists of Zn , together with

reflections in lines through the origin at angles kπ
n , where 0 ≤ k < n is an integer. It

is the group of all symmetries of a regular n-sided polygon.
The special orthogonal group SO(2) in the plane consists of all rotations about the

origin. It is the group of rotational symmetries of the unit circle.
The orthogonal group O(2) in the plane consists of all rotations about the origin

and all reflections in lines through the origin. It is the group of all symmetries of the
unit circle.

The Euclidean group E(2) consists of all rigid motions of the plane: combinations
of translations, rotations, and reflections. This is not a group of linear transforma-
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tions, because rigid motions do not in general fix the origin. It consists of affine
transformations.

The special orthogonal group SO(3) inR
3 consists of all rotations about the origin.

It is the group of all rotational symmetries of the unit sphere.
The orthogonal group O(3) in R

3 consists of all rotations about the origin, all
reflections in planes through the origin, and combinations of these transformations
such asminus the identity: (x, y, z) �→ (−x,−y,−z). It is the group of all symmetries
of the unit sphere.

The symmetric group Sn consists of all permutation matrices inR
n , that is, all linear

transformations

σ(v1, . . . , vn) = (vσ−1(1), . . . , vσ−1(n)) (6)

We use σ−1 so that στ(v) = σ(τ(v)).
The order of a finite group is the number of elements that it contains. Here Zn has

order n; Dn has order 2n; Sn has order n! The other groups are infinite. The groups
SO(2), O(2), SO(3), O(3) are compact Lie groups [85]; informally, the entries in the
matrices are uniformly bounded. The Euclidean group E(2) is not compact because it
contains translations through arbitrarily large distances.

3.2 Equivariant maps

We formalize the concept of a symmetric system of equations.
Let � be a group of linear transformations acting on a vector space V = R

n . A
smooth map f : V → V is �-equivariant if

f (γ v) = γ f (v) (7)

for all γ ∈ �, v ∈ V . The map f determines a �-equivariant ODE:

v′(t) = f (v(t)) (8)

For example, the system in Eq. (4) is S3-equivariant, where the group S3 acts on R
3

by permutations of the variables as above. Throughout the paper we often consider a
system of ODEs to be a single vector ODE, so “ODE” may refer to a system.

The equivariance condition Eq. (7) guarantees that γ maps solutions to solutions.
This condition is required here, rather than group invariance f (γ v) = f (v), because
the equations are not preserved by invariant maps. For example, the transposition (12)
that swaps x and y transforms Eq. (4) so that

f (γ v) =
⎛
⎝ ky − y2/8 − y3 + a(x + z − 2y)
kx − x2/8 − x3 + a(y + z − 2x)
kz − z2/8 − z3 + a(x + y − 2z)

⎞
⎠ (9)

where v = (x, y, z). This leads to the equation

x ′(t) = ky(t) − y(t)2/8 − y(t)3 + a(x(t) + z(t) − 2y(t)) (10)
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for x(t), instead of preserving the first equation in (4). To restore the original sys-
tem of equations we must also permute the components of f according to the same
transposition (12). The same holds for the other permutations in S3. Requiring the
permutation to act on the components of Eq. (4), as well as the variables, preserves
the system of ODEs. This leads to a key feature of equivariant ODEs:

Proposition 3.1 If v(t) is a solution of Eq. (7) then so is γ v(t) for all γ ∈ �.

Proof

(γ v(t))′ = γ v(t)′ = γ f (v(t)) = f (γ v(t)) (11)

Equivariance is necessary for this property to hold, as well as sufficient [39]. Propo-
sition 3.1 explains why the solutions in Tables 1 and 2 occur in symmetrically related
classes. 
�

3.3 Isotropy subgroups and fixed-point subspaces

We explain why some of these classes contain more solutions than others. It turns
out that the more symmetry any given solution has, the smaller the corresponding
symmetry class is. To formalize this statement, we first introduce some terminology.

Definition 3.2 If v ∈ V then the isotropy subgroup of v is

�v = {σ ∈ � : σv = v} (12)

If v(t) is a solution of (8) then the isotropy subgroup of v(t) is

�v(t) = {σ ∈ � : σv(t) = v(t) ∀t ∈ R} (13)

If � ⊆ � is a subgroup of �, then its fixed-point subspace is

Fix(�) = {v ∈ V : σv = v ∀σ ∈ �} (14)

Example 3.3 Suppose that � is the symmetry group of Eq. (1), consisting of the
transformations

I (x, y) = (x, y) (15)

σ(x, y) = (y, x) (16)

−I (x, y) = (−x,−y) (17)

−σ(x, y) = (−y,−x) (18)

The subgroups of � and their fixed-point spaces are shown in Table 3.
In this example, every subgroup is an isotropy subgroup, with the exception of

{I,−I }. This is excluded because the only point it fixes is the origin, but the subgroup
that fixes the origin is the whole of �. It is common for some subgroups not to be
isotropy subgroups, depending on the group concerned.
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Table 3 Subgroups of the
symmetry group and their
fixed-point spaces for Eq. (1)

Subgroup Fixed-point space

{I } R
2

{I, σ } {(x, x)}
{I,−I } {(0, 0)}
{I,−σ } {(x, −x)}
� {(0, 0)}

3.4 Symmetries of equilibria

Weanswer the basic question of symmetry-breaking for equilibria: given the symmetry
group� of theODE,what are the possible symmetries of equilibria? The answer is: the
isotropy subgroups of�. This characterizes the subgroups in a computablemanner, and
it makes the point that some subgroups may not occur in this context. In Example 3.3,
the subgroup {I,−I } is not an isotropy subgroup. Later examples illustrate how this
simple observation can lead to systematic classifications of patterns.

The isotropy subgroup of a point v or trajectory v(t) determines the symmetries of
that point or trajectory. The fixed-point space of a subgroup � contains all solutions
with symmetry �, and can be used to find such solutions because fixed-point spaces
are invariant under the dynamics. The proof is a one-line calculation, which shows
that for any �-equivariant f and any subgroup � ⊆ �,

f (Fix(�)) ⊆ Fix(�) (19)

This implies that we can find all solutions of Eq. (8) that have symmetry (at least)
� by restricting f to Fix(�) and considering the ODE on Fix(�) with vector field
f |Fix(�).

Example 3.4 Consider the 3-island model in Eq. (4). The isotropy subgroups include
the subgroup � generated by the transposition (12), with fixed-point subspace
{(x, x, z)}. The three equations, restricted to this subspace, take the form

x ′(t) = kx(t) − x(t)2/8 − x(t)3 + a(x(t) + z(t) − 2x(t))

y′(t) = kx(t) − x(t)2/8 − x(t)3 + a(x(t) + z(t) − 2x(t)) (20)

z′(t) = kz(t) − z(t)2/8 − z(t)3 + a(x(t) + x(t) − 2z(t))

The first two equations are identical, consistent with the invariance of Fix(�). We
can ignore the second equation and compute the eigenvalues of the Jacobian of the
reduced ODE given by the first and third equations, which is

Ĵ =
(
k − x

4 − 3x2 − a a
2a k − z

4 − 3z2 − 2a

)
(21)

The result is Table 4. Comparing with Table 2, we see that the method locates all
equilibria of Eq. (4) of the form {(x, x, z)}. Moreover, the eigenvalues of Ĵ are two
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Table 4 Equilibria and their
stabilities for Eq. (20)

x z Eigenvalues of J Stability

0 0 10, 7 Unstable

3.10 3.10 −22.61,−19.61 Stable

−3.23 −3.23 −23.40,−20.40 Stable

−2.93 2.26 −16.29,−7.71 Stable

2.79 −2.46 −15.35,−9.16 Stable

2.89 −0.77 −16.92, 6.49 Unstable

0.32 −2.85 −15.76, 8.69 Unstable

−0.30 2.73 −15.07, 8.88 Unstable

−3.02 0.84 −17.63, 5.76 Unstable

Fig. 1 Left Ring of Fitzhugh–Nagumo neurons with unidirectional coupling. Right Periodic oscillations
of the 3-cell ring exhibiting a 1

3 period out of phase periodic solution. Time series of v1 (thick solid), v2
(dotted), v3 (dashed)

of the eigenvalues of J . This happens because Fix(�) is invariant under J , a general
result that follows from (19) because J is �-equivariant.

In general, unstable equilibria of a restricted system are also unstable for the full
system, but the converse need not be true since stability in the full space depends on
the “transverse” eigenvalues of J : those that do not correspond to eigenvalues of Ĵ .
In the example of Eq. (20) the transverse eigenvalues do not change the stabilities.

3.5 Symmetries of Periodic States

We discuss analogous ideas for periodic solutions, beginning with a simple example.
Periodic states are particularly common inneuroscience, sowewill use amodel of three
Fitzhugh–Nagumo equations [31,81] coupled unidirectionally in a ring, as in Fig. 1,
left. For a single neuron, the model involves a membrane potential v and a surrogate
w for an ionic current. The dynamic of a single neuron is determined by the ODE

v′(t) = v(t)(a − v(t))(v(t) − 1) − w(t)

w′(t) = bv(t) − γw(t) (22)

where a, b, γ are parameters and 0 < a < 1, b > 0, γ > 0.

123

https://www.researchgate.net/publication/24416871_Impulses_And_Physiological_States_In_Theoretical_Models_Of_Nerve_Membrane?el=1_x_8&enrichId=rgreq-41ab4e7c58750ef584317ab84250f825-XXX&enrichSource=Y292ZXJQYWdlOzI5MTk1MjUyNTtBUzozNjA5OTIxOTk0NjI5MTdAMTQ2MzA3ODY1NTMyNg==
https://www.researchgate.net/publication/3474433_An_Active_Pulse_Transmission_Line_Simulating_A_Nerve_Axon?el=1_x_8&enrichId=rgreq-41ab4e7c58750ef584317ab84250f825-XXX&enrichSource=Y292ZXJQYWdlOzI5MTk1MjUyNTtBUzozNjA5OTIxOTk0NjI5MTdAMTQ2MzA3ODY1NTMyNg==


São Paulo J. Math. Sci. (2015) 9:1–36 11

Example 3.5 In the ring, cells are coupled unidirectionally, and each receives an input
fromone neighboring cell.Wemodel each cell using a copy of Eq. (22) and incorporate
the coupling by adding a voltage term to each equation:

v′
1(t) = v1(t)(a − v1(t))(v1(t) − 1) − w1(t) − cv2(t)

w′
1(t) = bv1(t) − γw1(t)

v′
2(t) = v2(t)(a − v2(t))(v2(t) − 1) − w2(t) − cv3(t) (23)

w′
2(t) = bv2(t) − γw2(t)

v′
3(t) = v3(t)(a − v3(t))(v3(t) − 1) − w3(t) − cv1(t)

w′
3(t) = bv3(t) − γw3(t)

The symmetry group is Z3 generated by the 3-cycle (123) acting on pairs (v j , w j ).
The origin is a stable equilibrium for the full six-dimensional system when, for

example, a = b = γ = 0.5 and c = 0.8. Hence the cells are trivially synchronous.
When, for example, a = b = γ = 0.5 and c = 2, the three-cell system has a stable
periodic solution with successive cells one third of the period out of phase. Figure 1,
right shows the pattern for the v j ; the same pattern occurs for the w j . This is an
instance of what Hoppensteadt [51] calls “rosette phase locking”. Another term is
discrete rotating wave.

This phenomenon is a group-theoretic consequence of the symmetry of the three-
cell network. The specific choice of model realizes a pattern typical of many Z3-
symmetric systems. The new feature, compared to equilibria, is that the periodic state
has spatio-temporal symmetry. If the period is T , the solution satisfies the phase
relationships

v2(t) = v1

(
t − T

3

)
v3(t) = v1

(
t − 2T

3

)
(24)

for all t . The solution is invariant if we permute the labels using the 3-cycle ρ = (123)
acting as in Eq. (6) and shift phase by T

3 . It satisfies

ρv

(
t + T

3

)
= v(t) (25)

and in group-theoretic terms it is fixed by the element (ρ, T
3 ) ∈ � × S

1, where S
1 is

the circle group of phase shifts; that is, time translations modulo T .
In the case of synchrony, the diagonal


 = {(v1, w1, v2, w2, v3, w3) : v1 = v2 = v3, w1 = w2 = w3} (26)

is a flow-invariant subspace. This also follows from Eq. (19) because 
 = Fix(S3).
Two cells are synchronous if their time series are identical, so the invariance of 


implies that synchrony should be expected in Z3-symmetric three-cell systems.
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Fig. 2 Setwise Z3 symmetry of
periodic trajectory of three
coupled Fitzhugh–Nagumo
neurons

Phase-locking is also a natural consequence of symmetry, though it has a subtler
cause, not directly related to a fixed-point space. To see how a phase-locked state
can arise from symmetry, suppose that v(t) is a T -periodic solution to (8) and that
γ is a symmetry. Then either γ v(t) is a different periodic trajectory from v(t), or
it is the same trajectory. In the latter case, the only difference is a time-translation.
That is, γ v(0) = v(θ) for some θ , and uniqueness of solutions of ODEs implies
that γ v(t) = v(t + θ) for all t . In the three-cell system where v = (x1, x2, x3),
applying ρ three times implies that 3θ ≡ 0 (mod T ). Hence θ = 0, T

3 , or
2T
3 . Since

ρ is the permutation (123) it follows that x2(t) = x1(t) when θ = 0 (synchrony) and
x2(t) = x1(t+ T

3 )when θ = T
3 and x2(t) = x1(t+ 2T

3 )when θ = 2T
3 (phase-locking).

Figure 2 shows the trajectory (v1(t), v2(t), v3(t)) in R
3, viewed from a point very

close to the main diagonal (to avoid confusing the perspective). The periodic cycle is
shaped like a curved equilateral triangle, corresponding to the setwise Z3 symmetry.

Discrete rotating waves can occur in rings of other sizes, provided the cells are
identical and coupled in a symmetric fashion. For rings with n cells, the phase shifts
are integer multiples of 2π

n . For example the nephron model of Mosekilde et al. [77]
is Z2-symmetric and can have periodic states that are a half-period out of phase.

A periodic trajectory has two symmetry groups: the group H of transformations that
fix the periodic orbit but change its time-parametrization, and the group K of transfor-
mations that fix each point in the periodic orbit, and thus leave its time-parametrization
unchanged. The pairs of subgroups (H, K ) of � that can arise as setwise and point-
wise symmetries of a periodic state of a �-equivariant ODE are characterized by the
H/K Theorem of Buono and Golubitsky [6]. This states that for a given finite group�

there exists a �-equivariant ODEwith a periodic state determining a pair of subgroups
(H, K ) if and only if:

(1) H/K is cyclic;
(2) K is an isotropy subgroup of �;
(3) dim Fix(K ) ≥ 2, and if the dimension equals 2 then either H = K or H is the

normalizer of K ;
(4) H fixes a connected component of Fix(K )\⋃

γ �∈K Fix(γ ) ∩ Fix(K ).
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Item (4) is a technical condition on the geometry of the action of �. The normalizer
of a subgroup H of � is the largest subgroup 
 such that H is a normal subgroup
of 
. The main point of the H/K Theorem is that the pairs (H, K ) that are associated
with a periodic state are constrained in a precise manner and can be classified group-
theoretically, for any given �.

We call K the group of spatial symmetries of the periodic state and H the group of
spatio-temporal symmetries. The cyclic group H/K acts on the state by phase shifts.
If its order is p these are shifts by integer multiples of T/p where T is the period. For
example, the discrete rotating wave in Fig. 2, right has H = Z3, K = 1, so trivially
H/K ∼= Z3.

3.6 Local bifurcations: steady state

Isotropy subgroups and the H/K Theorem classify the symmetry-breaking equilibria
and periodic patterns that can arise in equivariant ODEs, but they do not tell us which
ones do arise for specific equations. They provide a catalogue of possible symmetries;
specific systems choose from this catalogue. A useful method for proving that par-
ticular choices actually occur is bifurcation theory, which studies how solutions of a
parametrized family of ODEs change as the parameter varies. Here we consider only
local bifurcations, in which a stable equilibrium loses stability as a single parameter λ

varies. In steady state bifurcation, new equilibria arise, and generically these form one
or more “branches”—continuous curves in V ×R = {(v, λ)}. In Hopf bifurcation, we
find a branch or branches of periodic states.

Example 3.6 We investigate how the equilibria of Eq. (1) vary with the parameters
a, k. Bearing in mind that a > 0, we can scale the parameters, variables, and time to
set a = 1, by defining

X = x/
√
a Y = y/

√
a T = at K = k/a (27)

Then Eq. (1) becomes

X ′(T ) = K X (T ) − X (T )3 + (Y (T ) − X (T ))

Y ′(T ) = KY (T ) − Y (T )3 + (X (T ) − Y (T )) (28)

Equilibria (X,Y ) are solutions of

K X − X3 + (Y − X) = 0 KY − Y 3 + (X − Y ) = 0 (29)

We use K as the bifurcation parameter, and rewrite the sum and difference of these
equations to yield the equivalent equations

(X + Y )(X2 − XY + Y 2 − K ) = 0 (30)

(X − Y )(X2 + XY + Y 2 − K + 2) = 0 (31)
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Therefore the solutions are of four kinds:

X = 0 and Y = 0 (32)

Y = −X and X2 + XY + Y 2 − K + 2 = 0 (33)

Y = X and X2 − XY + Y 2 − K = 0 (34)

X2 + XY + Y 2 = K − 2 and X2 − XY + Y 2 = K (35)

In Eq. (33), X2 = K − 2 so

X = ±√
K − 2 Y = ∓√

K − 2 (36)

In Eq. (34), X2 = K so

X = ±√
K Y = ±√

K . (37)

Equation (35) is equivalent to X2 + Y 2 = K − 1 and XY = −1, the intersection of a
circle (when K > 1) and a hyperbola. Real solutions exist for K ≥ 3. They occur as
a symmetrically related set of four, except that when K = 3 this set reduces to a pair.
This set of solutions is bounded away from the origin. The solutions are

X = (
1
2 (K − 1 + S)

)1/2
Y = − (

1
2 (K − 1 − S)

)1/2 (38)

X = (
1
2 (K − 1 − S)

)1/2
Y = − (

1
2 (K − 1 + S)

)1/2 (39)

X = − (
1
2 (K − 1 + S)

)1/2
Y = (

1
2 (K − 1 − S)

)1/2 (40)

X = − (
1
2 (K − 1 − S)

)1/2
Y = (

1
2 (K − 1 + S)

)1/2 (41)

where

S = √
(K + 1)(K − 3) (42)

We plot the equilibria against K in Fig. 3. The branch given by Eq. (35) is a secondary
bifurcation from the primary 2 branch determined by Eq. (33); that is, it arises when
the primary branch becomes unstable.

Consider a 1-parameter family of maps f : R
n × R → R

n satisfying the equivari-
ance condition

f (γ x, λ) = γ f (x, λ) (43)

for all x ∈ R
n, λ ∈ R. There is a corresponding family of ODEs:

x ′(t) = f (x(t), λ) (44)

Suppose that (x(λ), λ) is a branch of equilibria parametrized continuously by λ.
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Fig. 3 Bifurcation diagram. Equation (32): dashed. Equations (33)/(36): dotted. Equations (34)/(37): thick
solid. Equations (35)/(38)–(41): thin solid

A necessary condition for the occurrence of local bifurcation from some branch of
equilibria is that the Jacobian J = Dx f |(x0,λ0) should have eigenvalues on the imag-
inary axis (including 0). This is a consequence of the Implicit Function Theorem. A
zero eigenvalue usually corresponds to steady-state bifurcation: typically, the number
of equilibria changes near (x0, λ0), and branches of equilibria may appear, disap-
pear, merge, or split. A nonzero imaginary eigenvalue usually corresponds to Hopf
bifurcation: under suitable genericity conditions this leads to time-periodic solutions
whose amplitude is small near the bifurcation point. In either case, the corresponding
eigenspace E is said to be critical.

The basic existence theorem for bifurcating symmetry-breaking equilibria is the
Equivariant Branching Lemma of Cicogna [13] and Vanderbauwhede [99]. Its state-
ment requires the concept of an axial subgroup of �. This is an isotropy subgroup �

for which

dim Fix(�) = 1 (45)

in the action of � on E . The Equivariant Branching Lemma states that, subject to
technical conditions [39,42] which are usually valid at a local steady-state bifurcation,
for each axial subgroup� ⊆ � there exists a branch of equilibria lying in Fix(�). This
result guarantees the existence of bifurcating branches of solutions with symmetry
at least �. Other branches may also occur: the axial condition is sufficient but not
necessary for a branch to exist.

In Example 3.6, the Equivariant Branching Lemma predicts the existence of
branches, bifurcating from the origin, for the isotropy subgroups {I, σ } and {I,−σ }.
The branches with trivial isotropy do not branch from the origin. See Table 3.

The basic general existence theorem for bifurcating symmetry-breaking periodic
states runs along similar lines. The prototype is Hopf bifurcation. In the absence of
symmetry, a Hopf bifurcation occurs when the critical eigenvalues are nonzero and
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purely imaginary. Some technical conditions are also needed.When there is a non-zero
imaginary critical eigenvalue, the corresponding eigenspace supports an action, not
just of�, but of�×S

1 where S
1 is the circle group. The S

1-action is determined by the
exponential of the Jacobian on the critical eigenspace E . If the imaginary eigenvalues
are ±iω, then θ ∈ S

1 acts on E like the matrix exp( 2πθ
ω

J |E ). The group S
1 can be

interpreted as phase shifts on time-periodic solutions.
The equivariant Hopf Theorem is analogous to the Equivariant Branching Lemma,

but the symmetry group � is replaced by � × S
1. A subgroup � ⊂ � × S

1 is C-axial
if � is an isotropy subgroup of the action of � × S

1 on E and

dim Fix(�) = 2 (46)

The Equivariant Hopf Theorem [39,42] states that, subject to technical hypotheses, if
J has purely imaginary eigenvalues, then for any C-axial subgroup � ⊂ � × S

1 there
exists a branch of periodic solutions with spatio-temporal symmetry group �.

We apply the Equivariant Hopf Theorem to Example 3.5. The Jacobian at the origin
is

J =

⎛
⎜⎜⎜⎜⎜⎜⎝

−a −1 −c 0 0 0
b −γ 0 0 0 0
0 0 −a −1 −c 0
0 0 b −γ 0 0

−c 0 0 0 −a −1
0 0 0 0 b −γ

⎞
⎟⎟⎟⎟⎟⎟⎠

(47)

Its eigenvalues at parameters a = b = γ = 0.5, c = 0.8 are−0.209±1.113i,−0.9±
0.583i,−0.390 ± 0.420i , all with negative real part. Its eigenvalues at parameters
a = b = γ = 0.5 , c = 2 are −2.207,−0.792, 0.401 ± 1.943i,−0.401 ± 0.211i .
Here one pair of complex conjugate eigenvalues has positive real part. The transition
in which the real part becomes zero occurs near c = 1.230, at which the eigenvalues
are ±1.385i,−1.115± 0.348i,−0.384± 0.319i . The critical eigenspace at ±1.385i
is spanned by

p = (0.546, 0.063 − 0.174i,−0.273 − 0.473i,

− 0.182 + 0.032i,−0.273 + 0.473i, 0.119 + 0.141i) (48)

q = (0.546, 0.063 + 0.174i,−0.273 + 0.473i,

− 0.182 − 0.032i,−0.273 − 0.473i, 0.119 − 0.141i) (49)

If ω = e2π i/3 then

ωp = (−0.273 + 0.473i, 0.119 + 0.141i, 0.546,

0.063 − 0.174i,−0.273 − 0.473i,−0.182 + 0.032i) (50)

which is p with all entries shifted two spaces to the right, the effect of the 3-cycle
(123). This shows the pattern of one-third period phase shifts.
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4 Sympatric speciation

In allopatric speciation, phenotypic differences are triggered by environmental
ones, and gene-flow is suppressed by a geographical barrier [73,82]. In sympatric
speciation, the populations are not separated by a geographical barrier. Instead,
the stabilizing effect of gene-flow is countered by some other factor, such as
limited food resources, sexual selection, assortative mating, or environmental influ-
ences [22,48,57,63,83,87,95].

Until recently, the prevailing wisdom was that sympatric speciation is counterin-
tuitive and rare, whereas allopatric speciation is straightforward and common. The
main technical obstacle to sympatric speciation is gene-flow. If the two subpopula-
tions representing nascent species coexist in the same habitat, they can interbreed;
genetic differences between the two subpopulations will then be reduced as the two
gene-pools are mixed together, restoring a single species. Sympatric speciation is also
counterintuitive for evolutionary reasons: since both subpopulations are competing for
the same resources, it is difficult to understand how their different survival strategies
can make each of them “fitter” than the other. Equal fitness is biologically implausible
and would be destroyed by small changes in the model.

These objections can be reinterpreted as informal symmetry arguments. Con-
sider a population of nominally identical organisms, labelled 1, 2, . . . , n. Then
our description of the population dynamics should not depend on which label we
assign to each organism, so any plausible model should be equivariant under the
action of the permutation group Sn . Both arguments against sympatric speciation
assume, tacitly, that this symmetry cannot break. The gene-flow argument pro-
vides the beginnings of a rationale for this assumption: the stabilizing effect of
gene-flow should prevent symmetry-breaking. The evolutionary argument provides
no such rationale. A number of recent studies, both theoretical and in the field,
have examined these assumptions, not always explicitly, and observed that there
are logical loopholes [22,48,57,63,83,95]. These studies challenge the intuition
that sympatric speciation is rare or unusual. General properties of symmetry-
breaking establish a number of phenomena likely to occur in any symmetry-
breaking model [15,91,100]. Exact symmetry lacks biological realism; this can be
restored by making the models stochastic, permitting phenotypic variability within a
species. The same universal phenomena occur in stochastic symmetry-breaking mod-
els.

A population of organisms may be described by a probability density function

(x, t) where x is a vector of characters drawn from a phenotypic space X and t
is time. If U is some region in X , then the probability of finding an organism with
phenotype u ∈ U is the integral

∫
x∈U


(x, t) dx (51)

A species corresponds to a relatively dense cluster in X . The dynamics of
 determines
how andwhen such clusters split. Discretize X into a finite number N of disjoint “bins”
Xi [26,90], and model the dynamics by the system of ODEs
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Fig. 4 Bifurcation diagram for
sympatric speciation model. All
yi are plotted on the same
vertical scale, with one curve for
each i = 1, . . . , N . Scales
omitted because only the
qualitative form is relevant here

x ′
i (t) = fi (x1(t), . . . , xN (t)) 1 ≤ i ≤ N (52)

Here xi represents the mean phenotype in bin Xi . The xi are tokens for the pheno-
typic distribution [25], sometimes referred to as placeholders for organism dynamics
(PODs). They provide a coarse-grained description of the distribution of phenotypes
in the population, which is represented as an “ensemble” of tokens. The effect of
environment, including other organisms, is incorporated by making 
, hence the fi ,
depend on one or more parameters λ. Similar models occur in adaptive dynamics [60],
but usually in relation to genotype in heterogeneous environments, not phenotype in
homogeneous ones.

As λ varies continuously, solutions of Eq. (52) may bifurcate [39]. Bifurcations
introduce significant changes, in particular, a form of speciation, in which some tokens
evolve different phenotypes fromothers. Broadly speaking, themain characteristic of a
species is that the token phenotypes xi are tightly clumped; in the simplest idealization
they are identical. As all tokens then respond to each other in the same way, f = ( fi )
must be SN -equivariant.

The simplest symmetry-breaking bifurcation that can lead to stable steady states
takes the form [15,25]

y′
i (t) = λyi (t) + (Nyi (t)

2 − π2(t)) + C(Nyi (t)
3 − π3(t))

+ Dyi (t)π2(t) (i = 1, 2, . . . , N ) (53)

where π2 = y21 + · · · + y2N and π3 = y31 + · · · + y3N . Here λ,C, D are environmental
parameters and λ drives the instability, hence the bifurcation. The yi are the devia-
tions of the original xi from their mean, so the constraint y1 + · · · + yN = 0 holds.
Equation (53) has a gradient structure [21], so all dynamical trajectories converge to
steady states.

A typical bifurcation diagram for equilibria is shown in Fig. 4, which depicts equi-
libria of Eq. (53) for fixedC, D as λ increases through 0. All yi , 1 ≤ i ≤ N are plotted
on the same vertical axis, and λ runs horizontally. Here a population with one pheno-
type bifurcates to a population with two distinct phenotypes. Within the assumptions
of the model, the initial single species splits into two. Equivariant bifurcation theory
for the group SN implies that all such bifurcations share universal features [15,30]:
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they are jumps, the mean phenotype remains approximately constant throughout the
bifurcation, and the final state has two species. Exceptionally, three-species states may
occur for short ranges of λ, but not stably [21]. Such states are produced by secondary
bifurcations, such as the large jump visible towards the right of the figure.

The assumption that there is a symmetry-breaking bifurcation has a biological
interpretation: it happens provided the unifying effect of gene-flow is outweighed by
a sufficiently strong tendency towards diversity such as disruptive selection or assor-
tative mating [82]. Associated genetic changes probably arise from recombination,
not mutation. Because means are preserved, the bifurcation does not create significant
changes in allele frequencies. Instead, the allele combinations in adults who survive
to reproductive age change, with hybrids being eliminated or substantially reduced in
frequency [15].

This kind of model has been placed on a more rigorous footing by using the POD
variables xi or yi to define the phenotypic distribution as a weighted sum of transla-
tions of a fixed localized function, for example a Gaussian [26]. The weights are also
permitted to vary dynamically.

5 Hallucination patterns

Geometric hallucination patterns can be induced in many ways, including flickering
lights, pressure on the eyeballs, anesthetics, and hallucinogenic drugs; Fig. 5 shows
some examples. Klüver [61] classified these patterns into four classes, which he named
form constants: (I) gratings, lattices, fretworks, filigrees, honeycombs and checker-
boards, (II) cobwebs, (III) tunnels, funnels, alleys, cones and vessels, and (IV) spirals.

The patterns arise in layer V1 of the visual cortex, but are interpreted by the visual
system as if they had arisen in the eye. Their appearance to a subject therefore depends
on the retino-cortical map, which transforms an image on the eye into an excitation
pattern in the cortex. What is seen is the image of the cortical pattern under the inverse
of this map. Ermentrout and Cowan [27] show that the map takes the form

x = α

ε
log

[
1 + ε

ω0
rR

]
y = βrRθR

ω0 + εrR
(54)

where (x, y) are cartesian coordinates on the cortex, (rR, θR) are polar coordinates on
the retina andω0, ε, α, β are constants. The geometry of this logarithmicmap is shown

Fig. 5 Sample hallucination patterns. From left to right honeycomb, tunnel, spiral, lattice spiral. Courtesy
of Bressloff et al.
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Fig. 6 Retino-cortical map. Courtesy of Bressloff et al.

in Fig. 6. Schwartz [86] suggested a mathematical explanation for the appearance of
the complex logarithm in the transition from outside world patterns to V1 patterns. The
density of neurons in the eye declines as 1/r2 from the fovea to the outer boundary,
whereas V1 is a rectangle with constant neuron density. There is a unique density-
preserving conformal map between these domains: the complex logarithm.

Ermentrout and Cowan [27] observed that circles and spirals on the retina cor-
respond to parallel waves on the cortex, and modelled these in terms of interacting
populations of excitatory and inhibitory neurons in a 2-dimensional layer. They mod-
eled the evolution of the waves in terms of Wilson–Cowan equations [102,103],
showing that spatially periodic patterns such as stripes can bifurcate from a homoge-
neous low-activity state via a Turing instability [96]. Their model also explains other
patterns observed, by way of more complex Turing patterns. Cowan [18] interpreted
the results in terms of symmetry-breaking, where the symmetry group is the Euclidean
group E(2) of rigid motions of the plane.

Bressloff et al. [4] developed this model by taking into account experimental evi-
dence about the neural connections in V1. This layer of the visual cortex comprises
clusters of cells known as hypercolumns,which sense the direction inwhich images are
oriented using local inhibitory connections and transmit this information to neighbor-
ing hypercolumns along the relevant direction via excitatory connections. Bressloff
et al. [4] used a continuum model of V1 in which each point in the visual cortex
has an associated circle of orientations, modeling a hypercolumn. The key point is
that while the symmetry group of this model is also E(2), its action is different.
Rotations in E(2) transform the plane, but they also induce rotations of the circular
fiber above each point. This “shift-twist” action reflects the directional nature of the
excitatory connections between nearby hypercolumns. They then used techniques of
symmetric bifurcation theory to classify wave patterns in V1 (planforms) arising via
steady-state bifurcations, triggered by the presumed action of hallucinogens or flick-
ering lights. These patterns were then transformed via the inverse retino-cortical map
to predict the resulting hallucination patterns. A special class of periodic states was
also discussed, arising from a steady-state bifurcation with full circle group symmetry
[38].
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With the stated interpretation, the set of planforms generates representatives of
all of Klüwer’s form constants. The planforms naturally divide V1 into patches, in
which the pattern has a near constant orientation. This is similar to the iso-orientation
patches constructed via optical imaging of V1 activity. The boundaries of such regions
correspond to the well-known ‘pinwheels’ [4]. They computed the stabilities of the
patterns, verifying that stable patterns can account for the known form constants. The
results are sensitive to the specification of the lateral connectivity, and suggest that
the cortical mechanisms generating geometric visual hallucinations may be closely
related to those involved in the processing of edges and contours.

6 Hyperbolic tilings and neuroscience

With the above work as a starting-point, Chossat and Faugeras [10] have analyzed a
model for the visual perception of textures, which leads to a formulation in terms of
symmetry groups of tilings in the hyperbolic plane. The hyperbolic plane arises in
non-Euclidean geometry, and can be thought of as geometry on a surface of constant
negative curvature. Chossat and Faugeras work in the Poincaré disk model of the
hyperbolic plane. As a subset of the standard Euclidean plane, this model represents
the hyperbolic plane as the interior of the unit disk, with a metric in which geodesics
are arcs of circles that meet the boundary circle at right angles. Only the parts of these
circles that lie in the interior of the unit disk are considered. Hyperbolic geometry has
a long classical history, see for example Greenberg [44].

The idea is further developed by Chossat et al. [11] and by Faye and Chossat [28].
The Poincaré disk arises from the proposal that populations of neurons in each hyper-
column of V1 detect information about the structure tensor of the image. This is a
2× 2 positive definite symmetric matrix whose eigenvalues and eigenvectors charac-
terize various geometric features of the image, such as the presence and orientation
of edges and the amount of contrast. The average membrane potential V of the pop-
ulation of neurons in a hypercolumn can be expressed as a function of the structure
tensor and time. It is then possible to write down an integro-differential equation for
the time evolution of the structure tensor. On the assumption that this equation is
symmetric—invariant under the isometries of the appropriate space—the bifurcations
of the structure tensor are determined by an equivariant bifurcation problem on the
hyperbolic plane, which naturally arises here as the Poincaré disk.

The symmetry group of the hyperbolic plane, the group of rigid hyperbolic motions,
analogous to the Euclidean group E(2), is non-compact, and this causes technical
difficulties, for examplewith regard to irreducible representations. To obtain a compact
Lie group action, the paper restricts attention to patterns that repeat on the hyperbolic
analogue of a periodic lattice. Such patterns can be thought of as repetitive tilings,
using images of a fixed tile under hyperbolic rigid motions. Typically the tiles are
regular polygons, and in a Euclidean view of the unit disk they have curved sides.

This assumption is similar to the assumption of a periodic lattice in the Euclidean
plane in the previous section. It reduces the problem to bifurcation on a compact
Riemann surface. The bifurcating patterns are calledH-planforms, by analogywith the
Euclidean case. The Equivariant Branching Lemma is then used to prove the existence
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Fig. 7 Pattern in the hyperbolic
plane, realized in the Poincaré
disk model, based on a tiling by
octagons. Courtesy of Chossat

of certain bifurcating branches of patterns for the simplest hyperbolic lattice, consisting
of tilings by a regular octagon. The symmetry group of the bifurcation problem on the
Riemann surface has order 96. Figure 7 shows one of the resulting patterns.

The suggested biological interpretation of these results leads to two lines of investi-
gation. Because of the connectionwith structure tensors, H-planformsmay be involved
in the process of defining texture tuning curves, in a manner that is analogous to the
role in planforms in orientation selectivity in Bressloff et al. [4]. The second is that
H-planforms may be related to neural illusions caused by the coexistence of several
stable equilibria of the evolution equation.

7 Animal Locomotion

There are regular patterns in the movements of animals [1,43]. These patterns are
called gaits, and many gaits are symmetric. Methods from equivariant dynamics have
been used [5,6,16,17,40,41] to classify these symmetries and to deduce the simplest
architecture for a central pattern generator (CPG), a relatively simple network of
neurons that is thought to generate the gait rhythms [64,65].

The patterns in legged locomotion are spatio-temporal symmetries. The spatial
symmetries are permutations of the legs, so the gaits are invariant under certain per-
mutations of the legs, combined with a temporal phase shift. Figure 8 illustrates some
common gait patterns; the four lines represent legs and the numbers are the corre-
sponding phase shifts. Informally, the legs move periodically in specific sequences
with specific time delays, expressed as a fraction of the overall period. For example,
in the trot of a horse, diagonally opposite legs move together, the two diagonals being
half a period out of phase. In the walk, successive legs hit the ground at intervals of
one quarter period, in the order: left rear, left front, right rear, right front. The left/right
mirror image of this pattern can also occur. In the pace, common in the camel and
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Fig. 8 Seven common quadrupedal gaits. Numbers indicate the percentage of the time through the gait
when the associated leg first strikes the ground. By convention, gaits begin when the left hind leg strikes
the ground. Animal viewed from above

giraffe paces, both left legs move together, then both right legs, half a period out of
phase. In the bound, common in dogs and rabbits, the back legs move together, then
the front legs, again half a period out of phase. In the most symmetric gait of all, the
pronk, all four legs hit the ground simultaneously. This gait is found in deer, gazelles,
and many young animals. Highly symmetric gaits such as these are called primary
gaits.

There are also more complex gaits, such as the transverse gallop of the horse and
the rotary gallop of the cheetah, with phase shifts that are not such simple fractions
of the period. Such gaits are called secondary gaits.

The existence of a CPG is supported by a substantial amount of indirect evidence
[46], but significant information on the detailed structure of the CPG is known only for
a few animals, notably the lamprey [45]. Formost animals, even the existence of a CPG
has not been confirmed directly, though it is well established that the basic rhythms of
locomotion are generated somewhere in the spinal cord, not in the brain. The symmetry
approach provides a rationale for gait patterns and illuminates the distinction between
primary and secondary gaits. It suggests a schematic form of the animal’s CPG.

The starting point for this inference is the phase shifts. It can be proved, in a fairly
general context, that whenever specific phase shifts occur in a robust manner in some
network, with the oscillations concerned being otherwise identical, then the network
has a cyclic group symmetry [35,36,92,93]. Any generator of this group corresponds
to a phase shift of kT

n , where T is the overall period, n is the order of the cyclic group,
and 0 ≤ k ≤ n − 1. In quadruped locomotion, the phase shifts occurring in the most
symmetric gaits are all integer multiples of T

4 , suggesting that the symmetry group
should include Z4. Since the most realistic symmetry of the animal is left/right mirror
symmetry, it is also reasonable to assume that the CPG has this symmetry. Moreover,
there are reasons to expect that the mirror symmetry should not be included in the
Z4 symmetry group. Informally, the most plausible symmetry group for the CPG of
a quadruped should be Z2 × Z4. Schematically, the associated architecture should
resemble Fig. 9, with 8 nodes. Each leg is controlled by signals from two nodes,
which affect different muscle groups: once causes the leg to flex, the other causes it
to extend.

This diagram is schematic. Each node might represent a subnetwork of neurons,
with the same subnetwork in eachnode.The connections indicate the overall symmetry,
and do not imply that only the links shown occur. Any node might be connected to

123

https://www.researchgate.net/publication/254498940_Network_periodic_solutions_Patterns_of_phase-shift_synchrony?el=1_x_8&enrichId=rgreq-41ab4e7c58750ef584317ab84250f825-XXX&enrichSource=Y292ZXJQYWdlOzI5MTk1MjUyNTtBUzozNjA5OTIxOTk0NjI5MTdAMTQ2MzA3ODY1NTMyNg==
https://www.researchgate.net/publication/245326368_Periodic_dynamics_of_coupled_cell_networks_I_Rigid_patterns_of_synchrony_and_phase_relations?el=1_x_8&enrichId=rgreq-41ab4e7c58750ef584317ab84250f825-XXX&enrichSource=Y292ZXJQYWdlOzI5MTk1MjUyNTtBUzozNjA5OTIxOTk0NjI5MTdAMTQ2MzA3ODY1NTMyNg==
https://www.researchgate.net/publication/238181953_Periodic_dynamics_of_coupled_cell_networks_II_Cyclic_symmetry?el=1_x_8&enrichId=rgreq-41ab4e7c58750ef584317ab84250f825-XXX&enrichSource=Y292ZXJQYWdlOzI5MTk1MjUyNTtBUzozNjA5OTIxOTk0NjI5MTdAMTQ2MzA3ODY1NTMyNg==
https://www.researchgate.net/publication/230977592_Network_periodic_solutions_Full_oscillation_and_rigid_synchrony?el=1_x_8&enrichId=rgreq-41ab4e7c58750ef584317ab84250f825-XXX&enrichSource=Y292ZXJQYWdlOzI5MTk1MjUyNTtBUzozNjA5OTIxOTk0NjI5MTdAMTQ2MzA3ODY1NTMyNg==
https://www.researchgate.net/publication/20171256_Central_Pattern_Generators_for_Locomotion_with_Special_Reference_to_Vertebrates?el=1_x_8&enrichId=rgreq-41ab4e7c58750ef584317ab84250f825-XXX&enrichSource=Y292ZXJQYWdlOzI5MTk1MjUyNTtBUzozNjA5OTIxOTk0NjI5MTdAMTQ2MzA3ODY1NTMyNg==
https://www.researchgate.net/publication/13361526_Vertebrate_Locomotion-A_Lamprey_Perspectivea?el=1_x_8&enrichId=rgreq-41ab4e7c58750ef584317ab84250f825-XXX&enrichSource=Y292ZXJQYWdlOzI5MTk1MjUyNTtBUzozNjA5OTIxOTk0NjI5MTdAMTQ2MzA3ODY1NTMyNg==


24 São Paulo J. Math. Sci. (2015) 9:1–36

Fig. 9 Eight-cell network for
quadrupeds. Dashed lines
indicate contralateral coupling;
single lines indicate ipsilateral
coupling

Table 5 Phase shifts for primary gaits in the eight-cell network

Legs Walk Jump Trot Pace Bound Pronk

L front R front 3
4

1
4

1
2

1
2

1
2 0 0 1

2
1
2

1
2 0 0

L rear R rear 1
2 0 3

4
3
4 0 1

2 0 1
2 0 0 0 0

L front R front 1
4

3
4 0 0 1

2 0 0 1
2

1
2

1
2 0 0

L rear R rear 0 1
2

1
4

1
4 0 1

2 0 1
2 0 0 0 0

Subgroup K Z2(κω2) Z2(κ) Z4(κω) Z4(ω) D2(κ, ω2) Z2 × Z4

any other; however, such connections should occur in symmetrically related sets of 8
or 4 links. In Golubitsky et al. [40,41] and Buono and Golubitsky [6], this architecture
is deduced from an explicit list of assumptions, and is proved to be unique. A 4-
node network is not suitable, because in a 4-node network trot and pace are forced
to coexist and have the same stabilities for any animal that can walk. This conflicts
with observations: most horses walk and trot but do not pace; camels and giraffes
walk and pace but do not trot. For dogs, the stabilities of pace and trot are different
[2].

Buono and Golubitsky [6] apply the H/K theorem to predict that for suitable
dynamics of nodes and connections, the network in Fig. 9 typically generates a range
of symmetric patterns of oscillation; see Table 5. Primary states are characterized by all
eight cells having the same waveform modulo phase shift, that is, H = �. Secondary
gaits involve more than one waveform: H � �. The six subgroups K ⊂ H for which
H/K is cyclic determine the primary patterns for the 8-cell network, shown in Table 5.
There is an analogous but more complicated classification of secondary gaits [5].

The patterns in Table 5 correspond to standard primary quadruped gaits, except
for “jump”. The jump gait was observed at the Houston Livestock Show and Rodeo.
Figure 10 shows four video frames of a bucking bronco, taken at equal intervals of
time. The interval between the footfalls is very close to 1

4 of the period. The primitive
ricocheting jump of the Norway rat and Asia Minor gerbil also has this pattern of
phases [33].
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Fig. 10 Quarter cycles of bareback bronco jump at Houston Livestock Show and Rodeo. Top left fore legs
hit ground. Top right hind legs hit ground. Bottom left and right all legs in air

The equivariant Hopf theorem has been used to classify natural oscillations in the
sensory system in the ears that controls balance—the vestibular system. McCollum
and Boyle [74] observed that in the cat the network of neurons concerned possesses
octahedral symmetry, a structure that they deduce from the known innervation patterns
(connections) from canals to muscles. Golubitsky et al. [37] derive octahedral sym-
metry from network architecture, and model the movement of the head in response to
activation patterns of the muscles.

8 Pattern formation in animal markings and form

Organisms often exhibit patterns of form or markings, and many of these patterns
have symmetry. Turing [96] modeled these patterns in terms of a system of reaction–
diffusion equations:

∂q/∂t = D∇2(q(x, t)) + F(q(x, t)) (55)

defined on a domain �. Here q(x, t) is a time-varying pattern of concentrations of a
system ofmolecules, called amorphogen, for x ∈ �, t ∈ R. The function F represents
reaction kinetics. The pattern of concentrations q is interpreted as a genetic prepattern
in the organism. This pattern is created by the dynamics of F in conjunction with
diffusion, defined by the term D∇2(q(x, t)), with D a matrix of diffusion coefficients.
As the organism develops, the prepattern is expressed either as a corresponding change
in form, or as a pattern of visible markings produced by pigment proteins.
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Common domains � include a line, a circle, a plane, a torus, a sphere, or the
whole of R

3. These domains have nontrivial symmetries, which induce symmetries
in bifurcation equations. Spontaneous symmetry-breaking leads to patterns whose
symmetries correspond to some subgroup of this symmetry group. In some cases,
in particular when the problem is posed with Neumann boundary conditions, the
equations may have more symmetry than the domain. These extra symmetries are
translations of the domain that leave it invariant after a cut-and-paste construction et
al. [20].

Similar remarks apply to generalizations of Eq. (55), which model a wide range of
biological pattern formation [79]. If q is 1-dimensional and � is a circle, D ∈ R is
a scalar and the symmetries of the domain are rotations and reflections of the circle,
the group O(2). Use an angle θ ∈ [0, 2π) as a coordinate on the domain, replacing
x above. Suppose there exists an equilibrium state q(θ, t) ≡ q0, so that F(q0) = 0.
Change coordinates from q to q − q0, so that F(0) = 0. We can use equivariant
bifurcation theory to investigate symmetry-breaking equilibrium patterns. A similar
analysis using Hopf bifurcation yields time-periodic patterns. In the equilibrium case,
the linearization of Eq. (55) at the origin is

0 = Dq ′′(θ) + F0q(θ) (56)

where F0 = F ′(0). We rewrite this as

q ′′(θ) + k2q(θ) = 0 (57)

where k2 = F0/D. The general solution of Eq. (57) is

q(θ) = a cos kθ + b sin kθ (58)

leading to patterns with k-fold rotational symmetry. To find out when these patterns
survive the addition of the nonlinear terms, we use the symmetry explicitly. The group
O(2) acts on the space of all real-valued functions on the circle. This space splits into
“irreducible” components: subspaces invariant under the group action that contain
no subspaces with that property except themselves and zero. Here the irreducible
components Vk are precisely the spaces of functions given by Eq. (58) for integer
k ≥ 0. Each Vk is 2-dimensional, except for V0 which is 1-dimensional because
sin 0 = 0.

For k > 0 the action of O(2) on Vk is induced from the action on θ given by:

Rφ(θ) = θ + kφ κ(θ) = −θ (59)

The subgroupZk〈 2πk 〉 acts trivially. The only nontrivial isotropy subgroup is generated
byZk〈 2πk 〉 togetherwithZ2〈κ〉. This is a dihedral groupDk . TheEquivariantBranching
Lemma implies that generically therewill be a symmetry-breaking branch of equilibria
withDk symmetry. The profile of q will be close to that of the linearized eigenfunction
a cos kθ .
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Fig. 11 Left Stripes. Arrow shows v0. Right Spots. Arrows show v0, w0

Dihedral group symmetries are common in the animal and plant kingdom. Tur-
ing [96] proposed that the tentacles of Hydra might be generated by symmetric
equilibria of this kind. Many chinoderms have symmetry D5; some have symmetries
Dk with k > 5. The eleven-armed sea star Coscinasterias calamaria found around
southern Australia and New Zealand has symmetry D11. Solasteridae typically have
10–15 arms, and the Antarctic Labidiaster annulatus can have up to 50.

Markings on animals, such as spots and stripes, can be modeled using a planar
domain � = R

2 or a cylindrical domain. The patterns that arise can be classified
using the symmetries of the domain. In many cases their existence in the nonlinear
model is a consequence of the Equivariant Branching Lemma. For a planar domain
the symmetry group is the Euclidean group E(2). The simplest isotropy subgroups are
the group Z〈v0〉 of translations by integer multiples of a constant vector v0 �= 0, and
the group Z〈v0, w0〉 of translations by integer linear combinations av0 + bw0 of two
linearly independent vectors v0, w0. The corresponding patterns are parallel stripes
at right angles to v0 and distance ||v0|| apart, and a lattice of spots repeating when
translated by v0 or w0; see Fig. 11.

When the domain is a disk in the plane, the linearized eigenfunctions are Bessel
functions of the radius multiplied by trigonometric functions of the angle. Among
the time-periodic patterns predicted by symmetry are rotating spirals and expanding
target patterns [34]. These patterns are found in the Belousov–Zhabotinskii reaction:
Fig. 12 shows numerically computed patterns for a model of Fitzhugh–Nagumo type
[3]. The equations are

∂u/∂t = d2u
u(t) + λu(t) − u(t)3 − σv(t) + κ,

τ∂v/∂t = d2v
v(t) + u(t) − v(t) (60)

For the spiral pattern, parameter values are λ = 4.67, τ = 4.0, d2u = 0.0015, d2v =
0.01, κ = −1.126, σ = −3.33. For the target pattern, they areλ = 0.9, τ = 4.0, d2u =
0.000964, d2v = 0.0001, κ = 0, σ = 1.

Similar patterns in slime molds have been modeled using a generalization of
reaction–diffusion equations which relates the motion of slime-mold amoebas to
cAMP signaling [50]. In the normal human heartbeat, electrical pacemaker waves
propagate through the heart muscles like target patterns, and spiral waves, often occur-
ring as many spirals forming “spiral chaos”, can be fatal [66,67,104].
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Fig. 12 Belousov–Zhabotinskii reaction. Left Spirals. Right Target patterns. Courtesy of Bödeker [3]

If the domain is a sphere or hemisphere, the linearized eigenfunctions are spherical
harmonics. Nagata et al. [80] use symmetric bifurcation theory to study reaction–
diffusion equations on a hemisphere,modeling pattern formation at the tip of a growing
plant. McNally and Cox [75] use spherical harmonics to predict patterns for the slime
mold Polysphondylium pallidium, which forms spherical masses. In normal morpho-
genesis this mass develops tips at equidistant points on the equator, but nowhere else.
The paper studies new abnormal patterns distributed over the surface of the sphere.

In developmental biology, Turing’s model proved controversial, in part because it
did not identify specific morphogens and ignored the role of genetics. It was sup-
planted by the theory of positional information [105], in which chemical gradients
correlated with the position of a cell cause particular genes to be expressed. Tissue
transplant experiments, especially on the development of digits in chick and mouse
embryos, appeared to favor this theory. However, the Turing model is currently expe-
riencing a revival, as more biochemical details become available. Kondo and Asai [62]
observe that patterns of stripes on the marine angelfish Pomacanthus change as the
fish develops, and show that simulations using a Turing model correctly predict future
patterns. They state that “the striking similarity between the actual and simulated
pattern rearrangement strongly suggests that a reaction–diffusion wave is a viable
mechanism”. Sheth et al. [88] report transplant experiments in mice involving a larger
number of digits than those studied previously, and show that as the effect of a particu-
lar set of genes decreases, themouse growsmore digits. These results are incompatible
with the theory of positional information, but are predicted by a Turing model: the
number of digits is determined by the number of waves occurring in the domain. Sick
et al. [89] show that the spacing of hair follicles in mice is controlled by a reaction–
diffusion mechanism in which the morphogens are the biochemical signalling system
WNT and proteins in the DKK family which inhibit WNT. Economou et al. [24] show
that ridge patterns inside a mouse’s mouth are controlled by a Turing process.

9 Central place theory in geography

Ikeda et al. [53–55] apply pattern formation on a lattice tomodel how economic factors
affect the geographical distribution of humans into cities.
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Fig. 13 Two of Christaller’s patterns. Dots are population clusters, and the size of the dot indicates the
population size. Courtesy of Ikeda

Lösch [71] proposed ten distinct hexagonal configurations as fundamental sizes for
market areas. Christaller [12] developed a model of market areas based on economic,
logistical, and administrative principles. This led to a hexagonal lattice with primary
markets (“cities”) at the centre of each hexagon, and to more elaborate arrangements,
also on a hexagonal lattice, a proposal known as central place theory; see Fig. 13.
Hexagons arise because “close-packed” configurations tend to be optimal. More gen-
erally,market areas of different scales can forma hierarchical arrangement of hexagons
of different sizes.

The models of Lösch [71] and Christaller [12] are phenomenological: not derived
from standard economic principles of market equilibrium. Clarke and Wilson [14]
and Munz andWeidlich [78] addressed this deficiency. Krugman [68] showed that the
hexagonal distributions of central place theory can be self-organized in core-periphery
models,which describe populationmigration among cities, driven bymicroeconomics.

Ikeda et al. [55] derive Lösch’s ten hexagonal lattice patterns by applying the
Equivariant Branching Lemma to a core-periphery model in the plane. The symmetry-
based techniques go back to Sattinger [84] and the singularity-theoretic approach of
Buzano and Golubitsky [8], who analyzed a physical system that also forms hexag-
onal patterns: Bénard convection, in which a flat layer of fluid is heated from below.
The homogeneous state loses stability, triggering a symmetry-breaking bifurcation to
a doubly periodic tiling by hexagons. Ikeda et al. [55] discretize the spatial structure,
employing a hexagonal lattice with periodic boundaries, formed from n×n uniformly
distributed places connected by roads of the same length, forming amesh of equilateral
triangles. They formulate microeconomic interactions and worker migration using a
core-periphery model. The symmetry group is a semidirect product D6+̇(Zn × Zn).
This is analogous to the symmetry group analyzed in Buzano and Golubitsky [8],
except that this paper uses a continuous symmetry group, the torus S

1 × S
1, instead

of Zn × Zn .
Ikeda et al. [55] classify the axial subgroups of this symmetry group and apply

the Equivariant Branching Lemma to characterize the isotropy subgroups of possible
equilibria. They use numerical methods to determine which of these solutions occur
in their model. Figure 14 shows two sample patterns that are demonstrated to occur.
On the left is one of Christaller’s patterns; on the right is a complicated pattern corre-
sponding to “super-hexagon” states in Bénard convection found by Kirchgässner [59]
and Dionne et al. [23].
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Fig. 14 Left One of Christaller’s patterns, derived from a core-periphery model. Right A superhexagon
pattern

All ten of Lösch’s hexagonal distributions are proved to exist, as a consequence
of the Equivariant Branching Lemma and numerical analysis. The paper provides a
“missing link” between central place theory and economic geography. Similar models
might be applied to pattern-formation in ecosystems, exploiting analogies between
ecology and economics.

10 Virus structure

Symmetry methods can be used in a direct geometric manner, rather than through
the intermediary of nonlinear dynamics and bifurcation theory. The main technique
is representation theory, which classifies how a given abstract group can act as lin-
ear transformations of a vector space. The same group can act on spaces of several
different dimensions. Such actions are of practical importance even if the dimension
of the space is greater than three; for example, it might be a space of Fourier modes,
representing spatial or temporal patterns, and the space of possible patterns may have
high dimension even if the patterns themselves are viewed in R

2 or R
3.

The majority of viruses are either icosahedral (Fig. 15) or helical. Virus capsids—
their external coats—are typically constructed frommany copies of a roughly spherical
protein molecule called a capsomer. A collection of molecules has the least energy
when it is as close as possible to a sphere. Among the regular solids, the icosahedron
is closest to a sphere; the truncated icosahedron, which is not regular but has the same
symmetry group, is even closer to a sphere, and it provides an overall mathematical
“skeleton” for many icosahedral viruses. Regular solids are highly symmetric; the
dodecahedron and icosahedron have 120 symmetries, and so do their truncations.

Capsomers are either hexamers, surrounded by six others, or pentamers, surrounded
by five others. In such cases there is a topological constraint on the number of pen-
tamers. Euler’s formula [19] states that for any polyhedron topologically equivalent
to a sphere,

F − E + V = 2 (61)
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Fig. 15 Icosahedral structure of two viruses. Left Foot-and-mouth disease virus differs from its mirror
image and has 60 symmetries. Right Herpes simplex virus is very close to mirror-symmetric and has 120
symmetries

where F is the number of faces, E the number of edges and V the number of vertices.
Equation (61) implies that there must be exactly 12 pentamers in any virus coating
composed solely of hexamers and pentamers.

Caspar and Klug [9] considered both helical and icosahedral viruses. In the icosa-
hedral case they analyzed configurations in which each capsomer is surrounded by
exactly the same configuration of adjacent units. This condition implies a high degree
of symmetry, and immediately suggests the regular solids. The icosahedron is espe-
cially plausible because it is the best approximation to a sphere, and is therefore
either an energy minimum or close to one. (Caspar and Klug also emphasized that
the observed form of the capsid need not imply that the symmetry is icosahedral at
a molecular level.) This symmetry condition implies that the number of capsomers
is 12, 20 or 60. However, no known viruses employed these numbers, and most had
more than 60 capsomers. None had a multiple of 60 units, which might be realized
by relaxing the symmetry requirement slightly. Caspar and Klug therefore relaxed
the symmetry requirement even further, which led them to shapes like the geodesic
domes of the architect Buckminster Fuller, formed from triangles that are approxi-
mately equilateral [76]. Such arrangements do not have perfect symmetry; instead,
triangles have two different kinds of neighborhood. Equation (61) implies that some
must be arranged five to a vertex, while the rest fit six to a vertex. Caspar and Klug
suggested using pseudo-icosahedra, solids that can be constructed from a tiling of the
plane by equilateral triangles; see Fig. 16. First, choose two integers a and b. Starting
from a vertex, move a units to the right and b units at 120◦ to get a second vertex. Place
the third vertex to form a large equilateral triangle containing many vertices of the
original tiling. Twenty large triangles fit together to form an icosahedral polyhedron
with 10(a2 + ab+ b2)+ 2 vertices, of which 12 are pentamers and the rest hexamers.
The pentamers always lie on the axes of icosahedral symmetry.

The Caspar–Klug theory applies to many icosahedral viruses, but there are excep-
tions.Wrigley [106,107] observed icosahedral viruses that are not pseudo-icosahedral.
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Fig. 16 Constructing one of the
20 faces of a
pseudo-icosahedron

Instead, they can be described by Goldberg polyhedra, hexagonal packings on the sur-
face of an icosahedron. Liddington et al. [70] discovered that polyoma virus has many
more pentamers than the 12 found in pseudo-icosahedra and Goldberg polyhedra.

To explain these structures, Twarock [97,98] developed a more general theory of
virus geometry, based on symmetry principles closely analogous to the group theory of
the icosahedron. Their analysis, known as viral tiling theory, leads to geometry in six
dimensions, not three. In viral tiling theory, pentamers need not lie on the symmetry
axes of the underlying icosahedron. Higher-dimensional representations of the icosa-
hedral group provide regular patterns, suitable sections of which can be projected into
three dimensions to produce complex arrangements related to the icosahedron and its
symmetries. Representation theory of the icosahedral group shows that the smallest
dimension of a lattice with icosahedral symmetry is 6.

The icosahedral group belongs to an important class of symmetry groups known as
Coxeter groups [52]. Keef and Twarock [58] apply this class of groups to the structure
of icosahedral viruses in terms of a lattice D6 in R

6 with icosahedral symmetry. They
construct a class of possible virus structures defined as projections from this lattice
intoR

3. This technique yields all pseudo-icosahedra, together with structures that have
more than 12 pentamers. Viral tiling theory accounts in particular for the structures of
polyoma virus, Simian virus 40, and bacteriophage HK97.

The resulting structures have biological and potential medical interest because one
way to attack a virus is to interfere with its assembly process. The geometry of the
virus provides clues about potential weak points. Viral tiling theory also opens up new
ways of thinking about tubular malformations, where the virus assembles into a tube
rather than an approximate sphere. Understanding these errors might make it possible
to interfere with virus replication.
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