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Abstract. I present new links between Symplectic Topology and Quantum Mechanics
which have been discovered in the framework of function theory on symplectic mani-
folds. Recent advances in this emerging theory highlight some rigidity features of the
Poisson bracket, a fundamental operation governing the mathematical model of Classi-
cal Mechanics. Unexpectedly, the intuition behind this rigidity comes from Quantum
Mechanics.
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Suddenly the result turned out completely different from what he had
expected: again it was 1 + 1 = 2. “Wait a minute!” he cried out, “Something’s
wrong here”. And at that very moment, the entire class began whispering the
solution to him in unison: “Planck’s constant! Planck’s constant!”

after M. Pavic, Landscape Painted with Tea, 1988

1. Introduction

In the present lecture we discuss an interaction between symplectic topology
and quantum mechanics. The interaction goes in both directions. On the one
hand, some ideas from quantum mechanics give rise to new notions and struc-
tures on the symplectic side and, furthermore, quantum mechanical insights lead
to useful symplectic predictions when the topological intuition fails. On the other
hand, some phenomena discovered within symplectic topology admit a meaning-
ful translation into the language of quantum mechanics, thus revealing quantum
footprints of symplectic rigidity. This subject brings together three disciplines:
“hard” symplectic topology, quantum mechanics, and quantization which provides
a bridge between classical and quantum worlds.

Let us present this picture in more detail. Symplectic topology originated as a
geometric tool for problems of classical mechanics. It studies symplectic manifolds,
i.e., even dimensional manifolds M2n equipped with a closed differential 2-form ω
which in appropriate local coordinates (p, q) can be written as

∑n
i=1 dpi ∧ dqi .

To have some interesting examples in mind, think of surfaces with an area form

∗Partially supported by the Israel Science Foundation grant 178/13 and the European Research
Council Advanced grant 338809.



2 Leonid Polterovich

and their products, as well as of complex projective spaces equipped with the
Fubini-Study form, and their complex submanifolds.

Symplectic manifolds model the phase spaces of systems of classical mechan-
ics. Observables (i.e., physical quantities such as energy, momentum, etc.) are
represented by functions on M . The states of the system are encoded by Borel
probability measures µ on M . Every observable f : M → R is considered as a
random variable with respect to a state µ. The simplest states are given by the
Dirac measure δz concentrated at a point z ∈M . In such a state every observable
f has unique deterministic value f(z).

The laws of motion are governed by the Poisson bracket, a canonical operation

on smooth functions onM given by {f, g} =
∑
j

(
∂f
∂qj

∂g
∂pj
− ∂f

∂pj

∂g
∂qj

)
. The evolution

of the system is determined by its energy, a time-dependent Hamiltonian function
ft : M → R. Hamilton’s famous equation describing the motion of the system
is given, in the Heisenberg picture, by ġt = {ft, gt}, where gt = g ◦ φ−1

t stands
for the time evolution of an observable function g on M under the Hamiltonian
flow φt. The maps φt are called Hamiltonian diffeomorphisms. They preserve the
symplectic form ω and constitute a group with respect to composition.

The mathematical model of quantum mechanics starts with a complex Hilbert
space H. In what follows we shall focus on finite-dimensional Hilbert spaces only as
they are quantum counterparts of compact symplectic manifolds. Observables are
represented by Hermitian operators whose space is denoted by L(H). The states
are provided by density operators, i.e., positive trace 1 operators ρ ∈ L(H). Given

an observable A, let A =
∑k
i=1 λiPi be its spectral decomposition, where Pi’s are

pair-wise orthogonal projectors with
∑
Pi = 1l. In a state ρ the observable A takes

the values λi with the probability trace(Piρ). The pure states are provided by rank
1 orthogonal projectors, which we usually identify (ignoring the phase factor) with
unit vectors ξ ∈ H. At such a state A takes the value λi with the probability
〈Aξ, ξ〉.

The space L(H) can be equipped with the structure of a Lie algebra whose
bracket is given by −(i/~)[A,B], where [A,B] stands for the commutator AB−BA
and ~ is the Planck constant. While ~ is a fundamental physical constant, it will
play the role of a small parameter of the theory. Exactly as in classical mechanics,
the bracket governs the unitary evolution Ut of the system, giving rise to the
Schrödinger equation Ġt = −(i/~)[Ft, Gt], where Ft is the Hamiltonian (i.e., the
energy) and Gt = UtGU

−1
t describes the evolution of an observable G.

Quantization is a formalism behind the quantum-classical correspondence, a
fundamental principle stating that quantum mechanics contains the classical one
as a limiting case when ~ → 0. Mathematically, the correspondence in question
is a linear map f 7→ T~(f) between smooth functions on a symplectic manifold
and Hermitian linear operators on a complex Hilbert space H~ depending on the
Planck constant ~. The map is assumed to satisfy a number of axioms which are
summarized in Table 1.

Let us emphasize that the quantum-classical correspondence is not precise. It
holds true up to an error which is small with ~. In Section 4 we will review some re-
cent joint results with Charles [20] on the sharp bounds for this error in the context
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Table 1. Quantum-Classical Correspondence

CLASSICAL QUANTUM

Symplectic manifold (M,ω) C-Hilbert space H
OBSERVABLES f ∈ C∞(M) T~(f) ∈ L(H)

NORM Uniform norm ‖f‖ Operator norm ‖T~(f)‖op
BRACKET {f, g} −(i/~)[T~(f), T~(g)]
PRODUCT fg T~(f)T~(g)

STATES Probability measures on M ρ ∈ L(H), ρ ≥ 0, trace(ρ) = 1

of the Berezin-Toeplitz quantization. An extra bonus provided by this quantization
scheme is positivity: T~ sends non-negative functions to positive operators, which
is important for the applications to quantum measurements discussed below.

“Hard” symplectic topology, whose birth goes back to the 1980ies (Conley, Zehn-
der, Gromov, Floer), lead to the discovery of surprising rigidity phenomena involv-
ing symplectic manifolds, their subsets, and their diffeomorphisms. These phe-
nomena have been detected with the help of a variety of novel powerful methods,
including Floer theory, a version of Morse theory on the loop spaces of symplec-
tic manifolds, which in turns brings together complex analysis and elliptic PDEs
(see Section 6.3 below). Achievements of symplectic topology include a wealth of
non-trivial symplectic invariants beyond the symplectic volume, surprising features
of symplectic maps which distinguish them from general volume-preserving maps
(Arnold’s fixed points conjectures, Hofer’s geometry), and topological constraints
on Lagrangian submanifolds, to mention a few of them.

At first glance there is a certain incompatibility between the “output” of hard
symplectic topology (symplectic invariants of diffeomorphisms and subsets) and
the “input” of quantization (functions). The key to reducing this discrepancy is
provided by function theory on symplectic manifolds, a recently emerged area which
studies manifestations of symplectic rigidity taking place in function spaces associ-
ated to a symplectic manifold. On the one hand, these spaces exhibit unexpected
properties and interesting structures, giving rise to an alternative intuition and new
tools in symplectic topology. On the other hand, they fit well with quantization.

In the present lecture we will discuss two examples of interaction between sym-
plectic topology and quantum mechanics.

Poisson bracket invariants: Even though these symplectic invariants are
defined through elementary looking variational problems involving the functional
(f, g) → ‖{f, g}‖, the proof of their non-triviality involves a variety of “hard”
methods. These invariants have applications to topology and dynamics. Their
quantum footprints lead to quantum measurements theory and the noise operator
(see Sections 2 and 5).

Symplectic quasi-states: These are monotone functionals on the space
C∞(M) which are linear on every Poisson-commutative subalgebra, but not nec-
essarily on the whole space (see Section 6). The origins of this notion go back to
Gleason’s theorem, which plays an important role in the discussion of quantum
indeterminism. In dimension ≥ 4, symplectic quasi-states come from Floer theory,
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the cornerstone of “hard” symplectic topology.
Even though the quantum mechanical ingredients in these two examples are

quite different, the themes are closely related: symplectic quasi-states provide an
efficient tool for studying the Poisson bracket invariants.

In the last two sections, we touch upon other facets of interaction between
symplectic topology and quantum mechanics and outline some future research
directions.

2. Poisson bracket invariants

2.1. Prologue. One of the first discoveries of function theory on symplectic man-
ifolds is the C0-rigidity of the Poisson bracket [29]. In the quantum world, the
bracket (F,G) 7→ −(i/~)[F,G] is continuous with respect to the operator norm.
At first glance, this miserably fails in the classical limit, as the Poisson bracket
{f, g} depends on the derivatives of functions f and g and hence it may blow up
under small perturbations in the uniform norm ‖f‖ = maxM |f(x)|. Surprisingly,
the following feature survives: The functional (f, g) 7→ ‖{f, g}‖ is lower semi-
continuous in the uniform norm. We refer to [67, 18] for earlier results in this
direction, and [10] for a different proof and generalizations. All known approaches
in dimension ≥ 4 involve methods of “hard” symplectic topology.

As a consequence, the functional ‖{f, g}‖ can be canonically extended to all
continuous functions on M . This is a Cheshire Cat effect: for a pair of continuous
functions f and g, the Poisson bracket is in general not defined, albeit its uniform
norm is!

The functional ‖{f, g}‖ gives rise to a number of interesting symplectic invari-

ants. One of them plays a central role in our exposition. Let ~f be a finite collection
f1, ..., fN of smooth functions on M . Denote fx :=

∑
i xifi, x ∈ RN . For a finite

open cover U = {U1, ..., UN} of M introduce the Poisson bracket invariant [57]

pb(U) = inf
~f

max
x,y∈[−1,1]N

‖{fx, fy}‖ , (1)

where the infimum is taken over all partitions of unity subordinated to U . It
measures the minimal possible magnitude of non-commutativity of a partition of
unity subordinated to U . The Poisson bracket invariant increases under refine-
ments of the covers. As we shall see below, pb(U) > 0 provided the sets Ui are
“symplectically small”.

Example 2.1. Assume the sets Ui are metrically small, that is, their diameters
with respect to an auxiliary Riemannian metric on M are ≤ ε. We claim that
pb(U) → +∞ as ε → 0. Indeed, for any K > 0 fix a pair of functions u, v :
M → [−1, 1] with ‖{u, v}‖ ≥ K. Choose L greater than the Lipschitz constants

of u and v. Take any partition of unity ~f = (f1, ..., fN ) subordinated to U . Pick
points zi ∈ Ui, and put x = (u(z1), ..., u(zN )) ∈ [−1, 1]N , y = (v(z1), ..., v(zN )) ∈
[−1, 1]N . Note that fi(z) = 0 if z /∈ Ui and |u(z) − u(zi)| ≤ Lε if z ∈ Ui. Since
u =

∑
i ufi we get that for every z ∈M , |u(z)−fx(z)| = |

∑
i(u(z)−u(zi))fi(z)| ≤
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Lε
∑
fi(z) = Lε, and the same holds for v and fy. It follows that fx → u and

fy → v in the uniform norm as ε → 0, and hence by C0-rigidity of the Poisson
bracket, pb(U) ≥ K/2 for all ε small enough. The claim follows.

2.2. Small scale in symplectic topology. In 1990 Hofer [42] introduced an
intrinsic “small scale” on a symplectic manifold: A subset X ⊂ M is called dis-
placeable if there exists a Hamiltonian diffeomorphism φ such that φ(X) ∩X = ∅.

Example 2.2. Let us illustrate this notion in the case when M = S2 is the two-
dimensional sphere equipped with the standard area form. Any disc lying in the
upper hemisphere is displaceable: one can send it to the lower hemisphere by a
rotation. However the equator (a simple closed curve splitting the sphere into two
discs of equal area) is non-displaceable by any area-preserving transformation. This
example demonstrates the contrast between symplectic “smallness” and measure-
theoretic “smallness”: the equator has measure 0, yet it is large from the viewpoint
of symplectic topology.

Theorem 2.3 (Rigidity of partitions of unity, [31]). pb(U) > 0 for every finite
open cover of a closed symplectic manifold by displaceable sets.

2.3. Topological applications. The next result, which readily follows from the
rigidity of partitions of unity, provides an application of function theory on sym-
plectic manifolds to topology.

Theorem 2.4 (Non-displaceable fiber theorem, [25]). Let ~f = (f1, ..., fN ) : M →
RN be a smooth map of a closed symplectic manifold M whose coordinate functions
fi pair-wise Poisson commute. Then ~f possesses a non-displaceable fiber: for some
w ∈ RN , the set ~f−1(w) is non-empty and non-displaceable.

It is tempting to consider this result as a symplectic counterpart of Gromov’s waist
inequality stating that for any continuous map from the unit n-sphere to Rq, at
least one of the fibers has “large” (n− q)-dimensional volume (here “large” means
at least that of an (n − q)-dimensional equator), see [39]. It would be interesting
to explore this analogy further.

Detecting non-displaceability of subsets of symplectic manifolds is a classical
problem going back to Arnold’s seminal Lagrangian intersections conjecture. The-
orem 2.4 provides a useful tool in the following situation. Assume that we know
a priori that all but possibly one fiber of a map ~f : M → RN with Poisson-
commuting components are displaceable. Then that particular fiber is necessarily
non-displaceable.

Example 2.5 ([4]). Consider the standard complex projective space CPn equipped
with the Fubini-Study symplectic form. Let [z0 : · · · : zn] be the homogeneous coor-

dinates. Consider the map ~f : CPn → Rn with the components fi(z) = |zi|2/g(z),
i = 1, ..., n, where g(z) :=

∑n
j=0 |zj |2. The coordinate functions fi, considered as

Hamiltonians, generate the standard torus action on the projective space and hence
Poisson commute. The image of ~f is the standard n-dimensional simplex ∆ ⊂ Rn.
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Denote its barycenter by b. One readily checks that for every w 6= b the fiber
~f−1(w) is displaceable by a unitary transformation of CPn (use a permutation of

the coordinates). It follows that the Clifford torus ~f−1(b) is non-displaceable in
CPn.

We refer to [28, 22, 7, 34, 66] for further application of quasi-states to non-
displaceability of (possibly, singular) Lagrangian submanifolds, fibers of moment
maps of Hamiltonian torus actions, and invariant tori of integrable systems.

2.4. Symplectic size. Symplectic topology provides various ways to measure the
size of a finite open cover. With an appropriate notion of size at hand, the rigidity
of partitions of unity phenomenon admits the following quantitative version:

pb(U) · Size(U) ≥ C(U) , (2)

where the positive constant C depends, roughly speaking, on combinatorics of the
cover U . Let us mention that inequality (2) was initially guessed on the quantum
side, where it admits a transparent interpretation as an uncertainty relation, see
Section 5.1 below. Let us describe two versions of size for which (2) holds.

We start with some basic combinatorial invariants of an open cover U =
{U1, . . . , UN} of M . Consider the graph with vertices {1, . . . , N}, where two ver-
tices i and j are connected by an edge provided Ui and Uj intersect. By definition,
the cover has degree d if the degree of each vertex is at most d. For a natural

number p, put U
(p)
i =

⋃
j Uj , where j runs over the set of all vertices whose graph

distance to i is ≤ p.
Displacement energy: Let U ⊂ V ⊂M be a pair of open subsets of a symplectic
manifoldM . We say that U is displaceable inside V if there exists a time-dependent
Hamiltonian function ht on M which is supported in V and such that the time-one
map φ of the Hamiltonian flow generated by ht displaces U , i.e., φ(U) ∩ U = ∅.
The infimum of the total energy

∫ 1

0
‖ht‖dt over all such displacements is called the

displacement energy of U inside V and is denoted by e(U, V ) (see [42]).

Assume now that each set Ui of the cover is displaceable in U
(p)
i and define

Size(U) := maxi e(Ui, U
(p)
i ). Note that this definition depends on the constant p.

It was shown in [57] that (2) holds with C = C(p, d).

Example 2.6 (Greedy covers). Fix an auxiliary Riemannian metric on M , and
for r > 0 small enough choose a maximal r-net, i.e., a maximal collection of points
such that the distance between any two of them is > r. Let U (r) be the collection of
metric balls of radius r with the centers at the points of the net. By the maximality
of the net, U (r) is a cover of M . It is not hard to check that for r small enough,
the degree d admits an upper bound independent of r. Furthermore, for some p
independent of r, Size(U (r)) ∼ r2. It follows that pb(U (r)) & r−2 as r → 0. One
can show that this asymptotic behavior is sharp: pb(U (r)) ∼ r−2.

Covers by balls: Consider the open ball B2n(R) := {|p|2 + |q|2 < R2} ⊂
R2n equipped with the symplectic form dp ∧ dq. A symplectic ball of radius R
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in a symplectic manifold (M2n, ω) is the image of B2n(R) under a symplectic
embedding. Consider a finite cover U of M by symplectic balls. Define Size(U)
of such a cover as maxi πR

2
i , where Ri are the radii of the balls. Inequality (2)

with this definition of size holds true for certain symplectic manifolds (e.g., when
π2(M) = 0), sometimes under an extra assumption that Size(U) is sufficiently
small (e.g., for CPn with the Fubini-Study form). This was recently proved in
increasing generality by the author [57], Seyfaddini [61], and Ishikawa [44] with
C = C(d).

It is unclear whether the constant C in (2) can be chosen independent of the
degree d of the cover.

2.5. Dynamical applications [12]. Let X0, X1, Y0, Y1 be a quadruple of com-
pact subsets of a symplectic manifold (M,ω) with X0 ∩ X1 = Y0 ∩ Y1 = ∅. Put
pb4(X0, X1, Y0, Y1) = inf ‖{f, g}‖, where the infimum is taken over all pairs of
compactly supported smooth functions f, g : M → R such that f = 0 near X0,
f = 1 near X1, g = 0 near Y0 and g = 1 near Y1. Observe that the (f, 1− f) and
(g, 1− g) are partitions of unity subordinated to the open covers (M \X0,M \X1)
and (M \ Y0,M \ Y1), respectively. Thus pb4 can be considered as a version of pb
for pairs of open covers. Even though pb4 is defined through an elementary-looking
variational problem involving Poisson brackets, the proof of its non-triviality in-
volves a variety of methods of “hard” symplectic topology. Interestingly enough,
the pb4-invariant enables one to detect Hamiltonian chords, i.e., trajectories of
Hamiltonian systems connecting two given disjoint subsets of the phase space.

Theorem 2.7. Let X0, X1, Y0, Y1 ⊂ M be a quadruple of compact subsets with
X0 ∩ X1 = Y0 ∩ Y1 = ∅ and pb4(X0, X1, Y0, Y1) = p > 0. Let G ∈ C∞(M) be
a Hamiltonian function with G|Y0 ≤ 0 and G|Y1 ≥ 1, which generates a complete
Hamiltonian flow gt. Then gTx ∈ X1 for some point x ∈ X0 and some time
moment T ∈ [−1/p, 1/p].

This result generalizes to time-dependent Hamiltonian flows. Furthermore, by
using a slight modification of pb4, one can control the sign of T , i.e., one can
decide whether the trajectory goes from X0 to X1 or vice versa. We refer to [30]
for applications of pb4-based techniques to instabilities in Hamiltonian dynamics.

3. Quantum measurements and noise

3.1. Positive operator valued measures. Let H be a complex Hilbert space.
Recall that L(H) denotes the space of all bounded Hermitian operators on H.

Consider a set Ω equipped with a σ-algebra C of its subsets. An L(H)-valued
positive operator valued measure (POVM) F on (Ω, C) is a countably additive map
F : C → L(H) which takes each subset X ∈ C to a positive operator F (X) ∈ L(H)
and which is normalized by F (Ω) = 1l.

Example 3.1 (POVMs on finite sets). When Ω = ΩN := {1, . . . , N}, is a finite
set, any POVM F on Ω is fully determined by the N positive Hermitian operators
Fi := F ({i}) which sum up to 1l.
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POVMs appear in quantum measurement theory [13]. For the purposes of this
paper, a POVM F on Ω represents a measuring device coupled with the system,
while Ω is interpreted as the space of device readings. According to the basic
statistical postulate of POVMs, when the system is in a pure state ξ, the probability
of finding the device F in a subset X ∈ C equals 〈F (X)ξ, ξ〉. Given an L(H)-
valued POVM F on (Ω, C) and a bounded measurable function x : Ω → R, one
can define the integral F (x) :=

∫
Ω
x dF ∈ L(H) as follows. Introduce a measure

µF,ξ(X) = 〈F (X)ξ, ξ〉 on Ω and put 〈F (x)ξ, ξ〉 =
∫

Ω
x dµF,ξ, for every state ξ ∈ H.

In a state ξ, the function x becomes a random variable on Ω with respect to the
measure µF,ξ with the expectation 〈F (x)ξ, ξ〉.

Example 3.2 (Projector valued measures). An important class of POVMs is
formed by the projector valued measures P , for which all the operators P (X), X ∈ C
are orthogonal projectors. For instance, every von Neumann observable A ∈ L(H)
with N pair-wise distinct eigenvalues corresponds to the projector valued measure
{Pi} on the set ΩN = {1, . . . , N} and a random variable λ : ΩN → R such that

A =
∑N
i=1 λiPi is the spectral decomposition of A. In this case the statistical

postulate for POVMs agrees with the one of von Neumann’s quantum mechanics.

A somewhat simplistic description of quantum measurement is as follows: an
experimentalist after setting a quantum measuring device (i.e., a POVM F ) chooses
an arbitrary collection of functions xα on Ω and performs a measurement whose
outcome is the collection of operators F (xα) ∈ L(H). Such a procedure is called a
joint unbiased approximate measurement of the observables Aα := F (xα) ∈ L(H).
The expectation of Aα in every state ξ coincides with the one of the measurement
procedure (hence unbiased), in spite of the fact that actual probability distributions
determined by the observable Aα and the pair (F, xα) could be quite different
(hence approximate). Let us mention that every finite collection of observables
admits a joint unbiased approximate measurement.

3.2. Uncertainty and noise. In quantum mechanics, “all measurements are
uncertain, but some of them are less uncertain than others1.” By uncertainty we
mean appearance of positive variances. For instance, the variance of an observable
A in a state ξ equals V(A, ξ) = 〈A2ξ, ξ〉−〈Aξ, ξ〉2. Heisenberg’s famous uncertainty
principle states that

V(A, ξ) · V(B, ξ) ≥ 1

4
· |〈[A,B]ξ, ξ〉|2 . (3)

This inequality can be interpreted as follows (see [56], p. 93): consider an
ensemble of quantum particles prepared in the state ξ. Let us measure for half
of the particles the observable A and for the other half B. The variances of the
corresponding statistical procedures will necessarily satisfy (3).

In general, the variance increases under an unbiased approximate measurement.
Assume that the latter is provided by a POVM F on Ω together with a random
variable x : Ω→ R with F (x) = A. Then V(F, x, ξ) = V(A, ξ)+〈∆F (x)ξ, ξ〉 , where

1cf. G. Orwell, Animal farm, 1945.
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∆F (x) := F (x2)−F (x)2 is the noise operator, see [14]. The noise operator, which
is known to be positive, measures the increment of the variance. Furthermore,
∆F (x) = 0 provided F is a projector valued measure. From the viewpoint of
quantum mechanics, the projective measurements are as good (or sharp) as it
gets, i.e., they carry the least uncertainty.

The following property of the noise operator is crucial for our purposes ([41],
Theorem 7.5). For any POVM F , any pair of random variables x, y, and any state
ξ ∈ H,

〈∆F (x)ξ, ξ〉 · 〈∆F (y)ξ, ξ〉 ≥ 1

4
· |〈[F (x), F (y)]ξ, ξ〉|2 . (4)

An interesting consequence of this inequality is the following uncertainty jump
phenomenon for joint unbiased approximate measurements [43] which manifests
the increase of uncertainty due to a measurement. Assume that F provides a
joint measurement for a pair of observables A and B: F (x) = A, F (y) = B. Then
V(F, x, ξ) ·V(F, y, ξ) ≥ |〈[A,B]ξ, ξ〉|2 for every quantum state ξ, and this inequality
is sharp. Comparing this with the Heisenberg uncertainty principle, we see that
the coefficients at |〈[A,B]ξ, ξ〉|2 jump from 1/4 to 1.

Observe that if A and B commute, they admit a simultaneous diagonalization.
The corresponding projector valued measure provides a noiseless joint unbiased
measurement of A and B.

Let us conclude this discussion with a remark on joint biased measurements (we
learned this concept from P. Busch). Recently Kachkovskiy and Safarov [45] settled
a long-standing problem in operator theory by proving that “almost-commutativity
yields near commutativity”. More precisely, every pair of observables A,B can be

approximated by a commuting pair with the error ≤ C‖[A,B]‖1/2op , where the
constant C does not depend on A,B and the dimension. Thus, by allowing such
an error (or bias), we reduce the noise to 0. Interestingly enough, on the classical
side, i.e., for functions on symplectic manifolds, almost-commutativity yields near
commutativity in dimension 2 (Zapolsky, [68]), albeit not in higher dimensions.
An ingenious counter-example was constructed by Buhovsky in [11].

3.3. Inherent noise of a POVM. Let F = {F1, . . . , FN} be a POVM on the
finite set ΩN . Considering F as a measuring device, we address the following
question: Can one refine it so that the new device is able to produce the same
unbiased approximate measurements as F which are as noiseless as possible?

Quantum mechanics provides a suitable notion of refinement: Let G be a
POVM on some space Θ, and let ~f = (f1, . . . , fN ) be a partition of unity on Θ (i.e.,
non-negative measurable functions which sum up to 1) such that Fi = G(fi) for
all i. We say that F is a smearing (or coarse-graining) of G, and we refer to G as a
refinement of F . Observe that the POVM G can reproduce all the measurements
performed by F . Indeed, F (x) = G(fx) with fx :=

∑
i xifi for every random vari-

able x = (x1, . . . , xN ) on ΩN . Smearing can be interpreted as a randomization: fix
a quantum state ξ, and imagine that we first perform the G-measurement whose
result is a random point θ ∈ Θ distributed according to µG,ξ, and then θ jumps to
a point i ∈ ΩN with probability fi(θ). The POVM F provides a correct statistical
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description of this two-step procedure.
The noise increases under smearings [51]: ∆G(fx) ≤ ∆F (x). In order to quan-

tify the level of noise produced after smearing, we will restrict to random vari-
ables x from the cube [−1, 1]N . Define the inherent noise of the POVM F as
N (F ) := infG,~f maxx∈[−1,1]N ‖∆G(fx)‖op, where the infimum is taken over all

pairs (G, ~f) providing a refinement of F . By inequality (4), the inherent noise
admits a lower bound in terms of the magnitude of non-commutativity of F . It is
given by the following unsharpness principle:

N (F ) ≥ 1

2
· max
x,y∈[−1,1]N

‖[F (x), F (y)]‖op . (5)

In the opposite direction, if all Fi’s commute, then N (F ) = 0. This follows imme-
diately from the simultaneous diagonalizability of commuting Hermitian operators.
The behavior of the functionN (F ) on the space of all POVMs F is still unexplored.
We refer the reader to [46] for an intriguing link between quantum noise production
and non-commutativity in the context of quantum computing.

4. Berezin-Toeplitz quantization

4.1. Introducing the quantization. POVMs play a crucial role in the context
of the Berezin-Toeplitz quantization, a mathematical model of quantum-classical
correspondence [3, 6, 40, 9, 48, 60, 19]. A closed symplectic manifold (M2n, ω) is
called quantizable if [ω]/(2π) ∈ H2(M,Z). For such a manifold one can construct
its Berezin-Toeplitz quantization which is given by the following data:

• a subset Λ ⊂ R>0 having 0 as a limit point;

• a family H~ of finite-dimensional complex Hilbert spaces, ~ ∈ Λ;

• a family of L(H~)-valued positive operator valued measures G~ on M .

To each function f ∈ C∞(M) corresponds the Toeplitz operator T~(f) :=∫
M
fdG~. We assume that the (R-linear) map T~ : C∞(M)→ L(H~) is surjective

for all ~, and that additionally it satisfies the following properties:

(P1) (norm correspondence) ‖f‖ −O(~) ≤ ‖T~(f)‖op ≤ ‖f‖;

(P2) (the correspondence principle)

‖ − (i/~)[T~(f), T~(g)]− T~({f, g})‖op = O(~) ;

(P3) (quasi-multiplicativity) ‖T~(fg)− T~(f)T~(g)‖op = O(~);

(P4) (trace correspondence)∣∣∣∣trace(T~(f))− (2π~)−n
∫
M

f
ωn

n!

∣∣∣∣ = O(~−(n−1)) ,
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for all f, g ∈ C∞(M).
While the quantization sends classical observables to quantum ones, on the

states it acts in the opposite direction. To every quantum state ξ ∈ H~, |ξ| = 1,
corresponds a probability measure given by

µ~,ξ(X) = 〈G~(X)ξ, ξ〉 (6)

for every Borel subset X ⊂ M . One can interpret this in the spirit of the wave-
particle duality as follows: for a fixed value of ~, every quantum state has a
classical footprint, a particle distributed over the classical phase space according
to the measure µG~,ξ. The geometry of these measures for meaningful sequences
of quantum states in the classical limit ~→ 0 is still far from being understood.

4.2. Sharp remainder bounds. The remainders O(~) in (P1)–(P4) above de-
pend on functions f, g, uniformly on compact sets in C∞-topology. In a recent
paper with L. Charles [20] we proposed the following structure of remainders. De-
note by |f |m the Cm-norm of a function f . Then the remainders O(~) in (P1)–(P3)
have the following form:

(P1) ≤ α|f |2~;

(P2) ≤ β(|f |1 · |g|3 + |f |2 · |g|2 + |f |3 · |g|1)~ .

(P3) ≤ γ(|f |0 · |g|2 + |f |1 · |g|1 + |f |2 · |g|0)~ .

These remainder bounds are essentially sharp. Assuming (P4), one can show that
for any Berezin-Toeplitz quantization scheme α ≥ α0, β ≥ cα−2 and γ ≥ γ0,
where the positive constants α0, c, γ0 depend only on (M,ω) and the auxiliary
Riemannian metric entering the definition of the Cm-norms.

A quantization with such remainder bounds exists for every quantizable mani-
fold (M,ω) [20]. An interesting question that we learned from S. Gelfand is whether
the integrality of the class [ω]/2π is a necessary condition for the existence of a
Berezin-Toeplitz quantization.

Example 4.1. In the case of closed Kähler manifolds the construction of quan-
tization is very transparent and goes as follows (see e.g. [60] for a survey). Pick
a holomorphic Hermitian line bundle L over M whose Chern connection has cur-
vature iω. Define the Planck constant ~ by 1/k, where k ∈ N is large enough.
Write Lk for the k-th tensor power of L. The space H~ lies in the Hilbert space
V~ of all L2-sections of Lk equipped with the canonical Hermitian product. Let
Π~ : V~ → H~ be the orthogonal projection. In this language the Toeplitz operators
T~(f) act by composition of the multiplication by f and projection: s 7→ Π~(fs)
for every s ∈ H~. The Berezin-Toeplitz POVMs G~ come from the Kodaira em-
bedding theorem. Recall that the latter provides a map M → P(H∗~) which sends
each point z ∈ M to the hyperplane {s ∈ H~ : s(z) = 0}. Denote by P~,z the
orthogonal projector of H~ to the line orthogonal to this hyperplane. One can
show that there exists a smooth function R~ (called the Rawnsley function) such
that dG~(z) = R~(z)P~,zdVol(z).



12 Leonid Polterovich

5. Quantum footprints of symplectic rigidity

5.1. The noise-localization uncertainty relation. Let U = {U1, . . . , UN} be
a finite open cover of M . Given a particle z on M , we wish to localize it in the
phase space, i.e., provide an answer to the following question: to which of the sets
Ui does z belong? Of course, the question is ambiguous even if the particle is
completely deterministic (i.e., a point z ∈M) due to overlaps between the sets Ui.
In order to resolve the ambiguity, let us make the required assignment z 7→ Uj at

random: fix a partition of unity ~f = (f1, . . . , fN ) subordinated to U and register z
in Uj with probability fj(z). Since fj is supported in Uj , this procedure provides
“the truth, but not the whole truth”.

In case the particle is distributed over M according to a probability measure
µ, the probability of registration in Uj equals

∫
fjdµ. With this remark at hand,

let us describe the quantum version of our registration procedure. We assume
that the manifold (M,ω) is quantizable and fix a scheme of the Berezin-Toeplitz
quantization. In a state ξ ∈ H, the quantum particle is distributed over M ac-
cording to the measure µ~,ξ and hence the probability of registration in Uj equals∫
fjdµ~,ξ = 〈T~(fj)ξ, ξ〉. In other words, the quantum registration procedure is

governed by the POVM F~ := {T~(fj)}. The next result provides an estimate for
the inherent noise N (F~) of this POVM. Recall that pb(U) stands for the Poisson
bracket invariant defined in (1).

Theorem 5.1 ([57]). Assume that pb(U) > 0. There exist constants C+ > 0 and

~0 > 0 depending on ~f such that C+~ ≥ N (F~) ≥ 1
2 pb(U) · ~ +O(~2) for ~ ≤ ~0.

The upper bound follows from the fact that F~ is a smearing of the Berezin-Toeplitz
POVMG~ onM associated to the partition of unity ~f . Thus, writing fx :=

∑
xifi,

we get that N (A) ≤ supx∈[−1,1]N ‖T~((fx)2)− T~(fx)2‖op = O(~), where the last
equality follows from quasi-multiplicativity property (P3) of the Berezin-Toeplitz
quantization. The lower bound is an immediate consequence of the unsharpness
principle (5) and the correspondence principle. Thus the assumption pb(U) >
0 (which, for instance, holds true if all the sets of the cover are displaceable,
see Theorem 2.3) guarantees that the quantum registration procedure produces
positive noise of the order ∼ ~.

Applying inequality (2) with an appropriate notion of the size, we conclude
that N (F~) · Size(U) ≥ C ′~ , where the positive constant C ′ depends only on
combinatorics of the cover. This is a noise-localization uncertainty relation which
can be considered as a quantum counterpart of the rigidity of partitions of unity
phenomenon in symplectic topology. It reflects the trade-off between the precision
of the phase space localization of a quantum particle and the magnitude of the
inherent noise of the corresponding measurement.

Let us mention also that the pb4-invariant defined in Section 2.5 appears in the
study of quantum noise for joint measurements [57].

5.2. Zooming into the wave length scale. Let us emphasize that in the noise-
localization uncertainty relation above the cover U is fixed as ~ → ∞, that is, we
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localize our particle to a symplectically small, but fixed scale. What happens on
an ~-dependent scale? Let us focus on the case of greedy covers (see Example 2.6
above), where the sets Ui are metric balls of radii r � 1, while the combinatorial
parameters d and p are fixed. For the sake of concreteness, let us assume that
r = R

√
~, where R is fixed and ~→ 0, i.e., we work on the physically meaningful

wave length scale. One can show [20] that if R is large and the functions entering
the partition of unity have controlled derivatives, the noise is of the order ∼ R−2,
and in particular the noise-localization uncertainty holds. The main difficulty here
is that the functions of the partitions of unity depend on ~, and thus in order to
run the argument used in the proof of Theorem 5.1 above one has to deal with the
Toeplitz operators of the form T~(f~). At this point the sharp remainder bounds
presented in Section 4.2 enter the play.

6. From quantum indeterminism to quasi-states

6.1. Gleason’s theorem. In his foundational book [64] von Neumann defined
quantum states as real valued functionals ρ : L(H)→ R satisfying three simple ax-
ioms: ρ(1l) = 1 (normalization), ρ(A) ≥ 0 if A ≥ 0 (positivity) and linearity. Next,
he showed that each such functional can be written as ρ(A) := trace(ρA), where
ρ is a density operator. Interpreting ρ(A) as the expectation of the observable A
at the state ρ, von Neumann concluded that for any quantum state ρ there exists
an observable A such that the variance ρ(A2)− ρ(A)2 is strictly positive. In other
words, in sharp contrast with Dirac δ-measures in classical mechanics, there are
no quantum states in which the values of all observables are deterministic.

This conclusion, known as the impossibility to introduce hidden variables into
quantum mechanics, caused a passionate discussion among physicists: it was crit-
icized first by Hermann [35] and later on by Bohm and Bell (see e.g. [2]). They
argued that the linearity axiom only makes sense for observables A,B that can be
measured simultaneously, that is commute: [A,B] = 0. This led to the following
definition: A quantum quasi-state is a functional ρ : L(H)→ R which satisfies the
positivity and normalization axioms, while the linearity is relaxed as follows: ρ is
linear on every commutative subspace of L(H) (quasi-linearity).

However, in 1957 Gleason proved the following remarkable theorem: If H has
complex dimension 3 or greater, any quantum quasi-state is linear, that is, it is a
quantum state. This confirms Neumann’s conclusion. Citing Peres [56, p. 196],
“Gleason’s theorem is a powerful argument against the hypothesis that the stochas-
tic behavior of quantum tests can be explained by the existence of a subquantum
world, endowed with hidden variables whose values unambiguously determine the
outcome of each test.”

6.2. Symplectic quasi-states [25]. Let us now mimic the definition of a quan-
tum quasi-state in classical mechanics, using the quantum-classical correspondence
and having in mind that commuting Hermitian operators correspond to Poisson-
commuting functions. Let (M,ω) be a closed symplectic manifold. A symplectic



14 Leonid Polterovich

quasi-state on M is a functional ζ : C(M) → R such that ζ(1) = 1 (normaliza-
tion), ζ(f) ≥ 0 for f ≥ 0 (positivity), and ζ is linear on every Poisson-commutative
subspace (quasi-linearity). Recall that the C0-rigidity of the Poisson bracket pro-
vides a natural notion of Poisson-commuting continuous functions, see Section 2.1
above.

In contrast to quantum mechanics, certain symplectic manifolds admit non-
linear symplectic quasi-states. This “anti-Gleason phenomenon” in classical me-
chanics has been established for various complex manifolds including complex pro-
jective spaces and their products, toric manifolds, blow ups and coadjoint orbits
[25, 55, 62, 34, 17].

In terms of the existence mechanism for symplectic quasi-states there is a mys-
terious dichotomy (vaguely resembling the rank two versus higher rank dichotomy
in Lie theory). In dimension two (i.e., for surfaces), symplectic quasi-states exist in
abundance. Their construction is provided by Aarnes’ theory of topological quasi-
states [1], whose motivation was to explore validity of Gleason theorem for algebras
of functions on topological spaces, where the quasi-linearity is understood as lin-
earity on all singly-generated subalgebras. In fact, in dimension two topological
and symplectic quasi-states coincide. Interestingly enough, all known non-linear
symplectic quasi-states in higher dimensions come from Floer theory. We refer to
Section 6.3 below for a discussion, and to [58, 23, 54] for more details. In general,
Floer-homological quasi-states do not admit a simple description. However, there
is one exception.

Example 6.1 (Median quasi-state). First, we define a quasi-state ζ : C(S2)→ R
on smooth Morse functions f ∈ C∞(S2), where the sphere S2 is equipped with
the area form ω of total area 1. Recall that the Reeb graph Γ of f is obtained
from S2 by collapsing connected components of the level sets of f to points, see
Figure 1. In the case of S2, the Reeb graph is necessarily a tree. Denote by

Γ

π π

Γ

ff

Figure 1. The Reeb graph

π : S2 → Γ the natural projection. The push-forward of the area on the sphere is
a probability measure on Γ. It is not hard to show (and in fact, this is well known
in combinatorial optimization) that there exists a unique point m ∈ Γ, called the
median of Γ, such that each connected component of Γ\{m} has measure ≤ 1

2 , see
[24, Section 5.3]. Define ζ(f) as the value of f on the level π−1(m). It turns out



Symplectic rigidity and quantum mechanics 15

that ζ is Lipshitz in the uniform norm and its extension to C(M) is a non-linear
quasi-state, the one which comes from Floer theory on S2.

One can show that the median quasi-state on S2 is dispersion free: ζ(f2) = ζ(f)2

for every f ∈ C∞(S2). It is unknown whether this holds true for Floer homological
quasi-states in higher dimensions.

Interestingly enough, Floer-homological quasi-states come with a package of
additional features which make them useful for various applications in symplectic
topology. In particular, ζ(f) = 0 for every function f with displaceable support
(vanishing property). This immediately yields that a finite open cover of M by
displaceable subsets does not admit a subordinated Poisson-commuting partition
of unity, which in turn is equivalent to the non-displaceable fiber theorem. Indeed,
assume that f1, . . . , fN are pair-wise commuting functions with displaceable sup-
ports which sum up to 1. By the vanishing property, ζ(fi) = 0. By normalization
and quasi-linearity, 1 = ζ

(∑
fi
)

=
∑
ζ(fi) = 0, and we get a contradiction.

The quantitative versions given by inequality (2) are more subtle. Roughly
speaking, they involve the following inequality relating Floer-homological sym-
plectic quasi-states and the Poisson brackets [31]. There exists a constant C,
depending on ζ, such that

|ζ(f + g)− ζ(f)− ζ(g)| ≤ C
√
‖{f, g}‖ ∀f, g ∈ C∞(M) . (7)

The simplest manifold for which existence of a non-linear symplectic quasi-
state is still unknown is the standard symplectic torus T4. Fortunately, every
closed symplectic manifold admits a weaker structure given by so-called partial
symplectic quasi-states [25], which are powerful enough for proving the rigidity of
partitions of unity. These are normalized, positive, R+-homogeneous functionals ζ
on C(M) which satisfy ζ(f + g) = ζ(g) provided {f, g} = 0 and g has displaceable
support.

6.3. Floer theory and persistence modules. Let us briefly sketch a construc-
tion of partial symplectic quasi-states. For simplicity, we shall deal with closed
symplectic manifolds with π2(M) = 0. The symplectic structure ω induces a func-
tional A : LM → R on the space LM of all contractible loops z : S1 → M in M .
Given such a loop z, take any disc D ⊂ M spanning z and put A(z) = −

∫
D
ω.

Since ω is a closed form and π2(M) = 0, this functional is well defined. Its critical
points are degenerate: they form the submanifold of all constant loops. In order
to resolve this degeneracy, fix a time-dependent Hamiltonian ft : M → R, t ∈ S1,

and define a perturbation Af : LM → R of A by Af (z) = A(z) +
∫ 1

0
ft(z(t))dt.

This is the classical action functional. Roughly speaking, Floer theory is the Morse
theory for Af . Ironically, the perturbations become the main object of interest.

According to the least action principle, the critical points ofAf are precisely the
contractible 1-periodic orbits of the Hamiltonian flow φt generated by ft. Denote
by P the set of such orbits (generically, there is a finite number of them). For
a ∈ R put Pa := {z ∈ P : Af (z) < a}.

The space LM carries a special class of Riemannian metrics associated to loops
of ω-compatible almost complex structures on M . Pick such a metric and look



16 Leonid Polterovich

at the space T (x, y) of the gradient trajectories of Af connecting two critical
points x, y ∈ P . Note that in M such a trajectory is a path of loops, i.e., a
cylinder. A great insight of Floer was that these cylinders satisfy a version of the
Cauchy-Riemann equation with asymptotic boundary conditions. Even though
the gradient flow of Af is ill defined, this boundary problem is well posed and
Fredholm. Generically, T (x, y) is a manifold. If its dimension vanishes, it consists
of a finite number of points. Put n(x, y) ∈ Z2 to be the parity of T (x, y) if
dimT (x, y) = 0, and declare n(x, y) = 0 otherwise.

For a ∈ R, consider the linear map d of the vector space SpanZ2
(Pa) given by

dx =
∑
y n(x, y)y. It turns out that d is a differential, i.e., d2 = 0. Define the

Floer homology HFa(f) := Ker(d)/Im(d).

The inclusion Pa ⊂ Pb for a < b induces a canonical morphism on homologies
πab : HFa(f) → HFb(f). These morphisms satisfy some natural axioms which
enables one to consider the collection V (f) := (HFa(f), πab)a<b as a persistence
module, an algebraic object which incidentally plays a crucial role in modern topo-
logical data analysis. According to the structure theorem, for each such module
there exists a unique barcode, i.e., a finite collection B of (possibly infinite) intervals
I = (α, β], α < β ≤ +∞ with multiplicities such that V (f) =

⊕
I∈B Z2(I). The

building block Z2(I) is a persistence module (Wa, πab)a<b such that Wa = Z2 for
a ∈ I and 0 otherwise, and πab = 1l for a, b ∈ I and 0 otherwise.

Order the vertices of infinite rays in B and denote by c(f) the maximal one.
It is called a spectral invariant of f . It turns out that the functional f 7→ c(f)
is continuous in the C0-topology and hence it can be extended to all continuous
Hamiltonians, including time-independent functions f ∈ C(M). One can show
that the limit ζ(f) := lims→+∞ c(sf)/s is a partial symplectic quasi-state.

Interestingly enough, the persistence module V (f), which is called filtered Floer
homology, in fact depends only on the time-one map φ = φ1 of the Hamiltonian
flow generated by f . Accordingly we will denote it by V (φ). This is a fundamen-
tal algebraic invariant of a Hamiltonian diffeomorphism. Its barcode B = B(φ)
provides various interesting invariants of Hamiltonian diffeomorphisms which are
robust with respect to C0-perturbations of Hamiltonians. Furthermore, the cor-
respondence which sends a Hamiltonian diffeomorphism φ to its barcode B(φ) is
Lipschitz with respects to the Hofer metric on diffeomorphisms and the so-called
bottleneck distance on barcodes.

The construction sketched above generalizes to manifolds with non-trivial π2.
In this case the action functional Af on LM becomes multivalued and one has to
develop a version of Morse-Novikov theory on covering spaces of LM . In certain
situations, one can show that partial symplectic quasi-states obtained in this way
are actually genuine symplectic quasi-states. At this point a new character enters
the play, namely the multiplicative structure of Floer homology with respect to
the pair-of-pants product, or, equivalently, the structure of the quantum homology
algebra QH of (M,ω). The latter is a deformation of the intersection product on
the homology of M which takes into account pseudo-holomorphic spheres in M .
If QH is semi-simple [24] or, more generally contains a field as a direct summand
(McDuff), then (M,ω) carries a genuine symplectic quasi-state.
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Let us conclude this section with some historical remarks and references. Floer
homology was invented by Floer and spectral invariants by Viterbo, Schwartz, and
Oh [53, 58, 54]. The theory of persistence modules was pioneered by Edelsbrunner,
Harer, and Carlsson, among others [16, 65]. Applications of persistence modules
to symplectic topology appeared in recent works by Shelukhin and the author [59],
as well as by Usher and Zhang [63].

6.4. Algebraic aspects of quasi-states. The quasi-linearity axiom of quasi-
states makes perfect sense in the context of finite dimensional Lie algebras g over
R. A function ζ : g → R is called a Lie quasi-state [27] if it is linear on every
abelian subalgebra. Under mild regularity assumptions, Lie quasi-states exhibit
rigid behavior. For instance, Gleason’s theorem readily yields that every Lie quasi-
state on the unitary algebra u(n) with n ≥ 3 which is bounded in a neighborhood
of 0 is necessarily linear.

In the case of the symplectic algebra g = sp (2n,R) (see [27]) the space of
Lie quasi-states which are bounded near 0 is infinite-dimensional. Nevertheless,
continuous Lie quasi-states exhibit rigidity. Denote by Q(g) the quotient of the
space of all continuous Lie quasi-states on g by the Lie coalgebra g∗. It turns out
that for n ≥ 3, dimQ(sp (2n,R)) = 1. This statement is false for n = 1 and the
classification is still open for n = 2. We refer to [5] for recent study of Lie quasi-
states on other Lie algebras, including examples of non-linear Lie quasi-states in
the solvable case. A general theory of Lie quasi-states is still missing.

Lie quasi-states have a group theoretic counterpart, quasi-morphisms, which
play an important role in various areas of group theory and dynamics (see e.g.,
[36, 15, 58] for a survey). Recall that a homogeneous quasi-morphism on a group
G is a function µ : G→ R which satisfies µ(xn) = nµ(x) for all x ∈ G and n ∈ Z,
and which is “a homomorphism up to a bounded error”, i.e., there exists the defect
C ≥ 0 such that |µ(xy)− µ(x)− µ(y)| ≤ C for all x, y ∈ G. One can readily show
that homogeneous quasi-morphisms restrict to morphisms on abelian subgroups.
Thus, given a homogeneous quasi-morphism on a Lie group, its pull-back under the
exponential map is a Lie quasi-state. For instance, the generator of Q(sp (2n,R))
is obtained in this way from the Maslov quasi-morphism on the universal cover of
the symplectic group Sp(2n,R).

Interestingly enough, the link between quasi-morphisms and quasi-states per-
sists in the symplectic category. In fact, all Floer homological symplectic quasi-
states, as well as some symplectic quasi-states on surfaces, are associated to quasi-
morphisms on the universal cover of the group of Hamiltonian diffeomorphisms
[24]. Furthemore, the constant C in the Poisson bracket inequality (7) is governed
by the defect of the corresponding quasi-morphism [31].

7. Symplectic displacement and quantum speed limit

Fix a Berezin-Toeplitz quantization T~ on a quantizable closed symplectic man-
ifold (M,ω). A fundamental result in symplectic topology states that the symplec-
tic displacement energy of a symplectic ball of radius r in M is ∼ r2 provided r
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is small enough [42, 47]. Interestingly enough, quantum mechanics provides an
intuitive, albeit mathematically flawed, explanation of this result in terms of the
quantum speed limit, a universal bound on the energy required for moving a quan-
tum state into an orthogonal one. Such a bound was discovered by Mandelstam
and Tamm [49] as early as in 1945 and refined by Margolus and Levitin [50] in
1998. The argument, due to Charles and the author, goes as follows. Let ft be a
classical Hamiltonian displacing a ball B of radius ∼

√
~. Choose a state ξ ∈ H~

such that the corresponding measure (6) is concentrated in B. According to the
Egorov theorem, the quantum-classical correspondence takes the Hamiltonian flow
φt : M → M of ft to the Schrödinger evolution Ut : H~ → H~ generated by
the quantum Hamiltonian T~(ft). The measure corresponding to the state U1ξ
is concentrated in φ1(B). The quantum-classical correspondence translates the
condition φ1(B) ∩ B = ∅ into 〈U1ξ, ξ〉 ≈ 0. The quantum speed limit yields∫ 1

0
‖T~(ft)‖opdt ≥ (π/2)~, which by the norm correspondence (P1) of the Berezin-

Toeplitz quantization means that
∫ 1

0
‖ft‖dt & ~ ∼ r2, and we are done. Of course,

the devil is in the remainders, which at the scale r ∼
√
~ become non-negligible

and cannot be ignored. Nevertheless, the above argument can be rigorously ap-
plied another way around to the speed limit of semiclassical orthogonalization of
semiclassical states. As it is proved in [21], the speed limit becomes more restric-
tive at the scales exceeding the wave-length. Roughly speaking, one can show that
the energy required for the orthogonalization of a semiclassical state occupying a
ball of radius ∼ ~ε, ε ∈ [0, 1/2) is at least ∼ ~2ε.

8. Epilogue

In spite of a number of advances outlined in the present lecture, quantum
footprints of symplectic rigidity remain largely unexplored. We conclude with a
brief discussion of open problems and future directions.

Covers vs. packings: Covers by symplectic balls (cf. Section 2.4 above)
have a prominent cousin, symplectic packings, i.e., collections of pair-wise disjoint
standard symplectic balls in a symplectic manifold. They are subject to vari-
ous constraints which have been intensively studied since the birth of symplectic
topology. For instance, at most 1/2 (resp., 288/289) of the volume of the complex
projective plane CP 2 can be filled by a symplectic packing with two (resp., eight)
balls of equal radii [38, 52]. What are the quantum counterparts of symplectic
packing obstructions? Interestingly enough, symplectic packings with derivative
bounds were used by Fefferman and Phong [32] in their study of the eigenvalue
counting function for pseudo-differential operators with positive symbol. It would
be interesting to explore this link in the context of the Berezin-Toeplitz quantiza-
tion.

A particular class of two-ball packings consists of a ball B and its image
φ(B) under a Hamiltonian diffeomorphism displacing B. In this case, the above-
mentioned packing obstruction states that a ball B ⊂ CP 2 is non-displaceable
whenever its volume exceeds Vol(CP 2)/4. This statement can be quantized along
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the lines sketched in Section 7 above.
Quasi-states revisited: Let (M,ω) be a quantizable closed symplectic man-

ifold admitting a non-linear symplectic quasi-state ζ (e.g., the 2-sphere of area
2π equipped with the median quasi-state). Fix a Berezin-Toeplitz quantization
T~ : C∞(M) → L(H~). Does there exist a family of continuous functionals
ζ~ : L(H~) → R such that lim~→0 ζ~(T~(f)) = ζ(f) for every f ∈ C∞(M)? A
“natural” quantum analogue of a symplectic quasi-state would be a continuous Lie
quasi-state on L(H). However, this naive guess does not work: such a quasi-state
is necessarily linear by Gleason’s theorem.

Closed orbits on the quantum side: Another potential connection be-
tween symplectic rigidity and quantum mechanics is provided by the Gutzwiller-
type trace formula [8] which establishes a relation between the periodic orbits of
an autonomous flow generated by a classical Hamiltonian f and the spectrum of
the corresponding quantum Hamiltonian T~(f). Consider the density of states
ρ~(E) :=

∑
λ δ((E − λ)~−1), where λ runs over the spectrum of T~(f). Roughly

speaking, non-constant periodic orbits are responsible for rapid oscillations of ρ~
as ~ → 0. Uribe proposed that these oscillations capture a “hard” symplectic
invariant called the Hofer-Zehnder capacity. Furthermore, it seems likely that for
a meaningful class of Hamiltonians f , the trace formula contains an information
about the spectral invariant c(f) (a project in progress with Charles, Le Floch,
and Uribe). What about the full barcode of the persistence module associated to
f? Note that the Floer homology described in Section 6.3 is built on contractible
closed orbits of Hamiltonian flows. Is it possible to distinguish between contractible
and non-contractible orbits on the quantum side? So far, these questions are out
of reach.
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