
Syndy Retailer API
The Syndy Platform
Built from the ground up, the Syndy platform provides an efficient solution for distributing any kind of

product content. The fact that it can potentially deal with every possible product category places some

unique constraints on the way its product content is structured.

For most raw data, the Syndy platform relies on its dynamic templating technology. This enables

retailers to very precisely articulate their data needs, while remaining flexible: a template can be

updated at any time.

Syndy API Principles
The Syndy API is based on RESTful principles. This means that in general, the assumption should be that

it adheres to HTTP standards. Wherever this is not the case, we will do our best to explicitly mention it.

API Applications
The Syndy API is accessible only by stakeholders with a valid Syndy API Application. The API application is

the entity that governs the access type and level of the caller. Rate limits and access tokens are

attributed to API applications rather than directly to the user account or its governing entity (e.g. the

retailer, or a manufacturer). Ownership of an API application can belong to any valid platform

stakeholder (e.g. a user, brand, or retailer), but will usually belong to the governing entity. In the case of

a retailer, the API application will typically belong to the retailer entity.

Properties of each API application are as follows:

 API credentials

 Rate Limits

 Stakeholder

Authentication
Authentication for the Syndy API is loosely based on OAuth 2.0 principles. With every API application

comes a set of API credentials that can be exchanged for a Syndy API access token. The access token is

transmitted with each API request in the Authorization HTTP request header.

Access tokens have an expiry date and a 401 HTTP status code can be returned to indicate that a new

access token should be obtained.

Rate limiting
Syndy employs rate limiting to prevent service degradation due to too many requests. Rate limits are

variable and will depend on agreements between retailer and Syndy. Rate limit information is provided

through HTTP response headers with every request. The headers made available through the Syndy API

are as follows:

 X-RateLimit-Limit

 X-RateLimit-Remaining

Security
All requests to the Syndy API take place through SSL.

HTTP Headers
As per REST principles, the Syndy API attempts to use HTTP headers sensibly so individual requests are

not bloated with common, generic request data. Below follows an overview of the various request- and

response headers used by the Syndy API.

Request Headers

Mandatory

Authorization The Authorization header is used for both authentication and authorization. For
most requests this will contain an Access Token, but when authenticating, API
credentials must be provided here. For more information view the
Authentication chapter.

Accept-Language Mandatory for all localizable resources, such as “Get Product By Id”. Specifies
the language the content should be returned in.

Optional

X-Requested-With Use this header to tell us which SDK, or custom software is used to execute the
request with. (e.g. Syndy API .NET SDK 2.0.1.1283)

Content-Type Currently only application/json is supported, but this header can be used to
request XML in the future.

Accept-Encoding GZIP, not supported yet.

If-Modified-Since Not yet supported, allows API to return a 304 response code if a resource has
not been updated since the requested timestamp.

Response Headers

Content-Language Returned for localizable resources, indicating the language of the content.

Content-Type application/json

Last-Modified Specified for resources that are eligible for change tracking, e.g. “Get
Product By Id”

X-RateLimit-Limit The maximum rate limit allotment for the requesting application

X-RateLimit-Remaining The amount of requests remaining in the current rate limit time window

OData
The Syndy API attempts, where possible, to adhere to OData querying standards for filtering and

pagination. For a complete reference on the principles of OData refer to http://www.odata.org/.

Listed below are the commonly used OData parameters supported by the Syndy API.

Pagination

$skip In the context of a paginated result set, this parameter indicates where to start
looking in the resource collection.

$top In the context of a paginated result set, this parameter indicates how many
items must be included in the returned result set.

http://www.odata.org/

Signature Generation
A signature must be generated for the Authorization header in the case of the Authentication request.

Signature generation takes place in order to “sign” the request using the application’s private key,

without directly transmitting the private key.

How to generate the signature
Generate a SHA512 hash of the following parameters in the specified order. The parameters should be

concatenated and not delimited using any separating character. When extracting the byte array from

the concatenated string, UTF8 decoding should be used. The SHA512 hash should be Base64 encoded.

Parameters for signature generation

Private Key Unique per application, provided on sign-up.

Http verb E.g.: GET, POST, PUT, DELETE

Request Url path The path component of the requested resource, excluding
querystring e.g.: /auth

Querystring Sorted alphabetically with keys and values url (percent)
encoded. Encoding should occur according to RFC3986’s
guidelines on percent-encoding. Also note that hexadecimal
numbers must be in lowercase. E.g. %3a instead of %3A.

Nonce A client generated token, unique per request e.g.: bb09a7e6-
0dca-411b-b32b-351a173547d2.

Timestamp The client timestamp in Unix UTC time.

A sample concatenated string for a search-manufacturer-by-name request might look something like

this:

MFwwDQYJKoZIhvcNAQEBBQADSwAwSAJBAOUspRHGNhIMnZ6say4k3swVMfKER8UYbVOREqq7t71VL89bagEFZ

W4rSjkTcBg7fVZCWX5ijgQVEX4xfV5lapcCAwEAAQ==GET/authefec3dc1-9a99-4825-9e09-

3e7772fc205d1456823909

The generated signature from this string will then be:

RK+xg4V0hfgKs27ORFA2mVkXhYIX14zRH/f5bl6KqZB8zxJNgDpC6yHVIlN0uPuDXsR0cfdU9jAM1GdG7yzUS

g==

Syndy API Resources
The Syndy API distinguishes between various different resources. A resource can be defined as a

“domain of related entities and actions”. Singular and plural notations of resources highlight important

differences between resources. The singular “retailer” resource is the access point for actions available

only for the requesting retailer. In contrast, the plural “retailers” resource is the access point for actions

against the entire set of retailers, for example, to request the details of a specified retailer.

Every request to the API starts by specifying the resource in the path portion of the request URL. Here

follows a list of resources and their properties:

 AUTH

The authentication resource is a special resource in the sense that it does not embody any data

entity, but instead provides only actions related to authentication and authorization. The

following example authenticates and returns an access token:
GET /auth

 PRODUCTS

The products resource deals with requests related to the retrieval of information about

products. The following example gets the product details for the specified product id:
GET /products/42ca3c4e-345c-419e-b4ea-e62d8b825837

 RETAILER

The retailer resource is the entry point for the various retailer-specific components of the Syndy

platform. The following example is the action method for getting the retailer assortment.
GET /retailer/assortment

 MARKETS

The markets resource contains the full set of markets (countries) known to the Syndy platform.

It is possible to filter on whether a market is unlocked or not. The following example gets the

details for the specified market ID:
GET /markets/42ca3c4e-345c-419e-b4ea-e62d8b825837

Syndy API Common Types
The Syndy API common types are designed to be reusable components that can either form a response

on their own, or that can be found within other data types. For example, you will typically never

encounter a Barcode data type on its own, but as a member of the various Product-related entities you

will encounter it frequently.

Common Data Types

Barcode
The barcode is a special data type and is represented as an object. Since barcodes come in many shapes

and sizes, the purpose of representing barcodes as objects is to provide future support for adding

additional barcode type information (e.g. GTIN8, EAN-13, UPC-12, etc.)

{

 Value: "8712038123820"

}

PagedResultSet
The PagedResultSet data type is introduced to provide a consistent way for API requests that support

pagination to return a result set that is broken up into separate pages.

{

 TotalCount: 350,

 Offset: 0,

 ResultCount: 10,

 Results: [

]

}

ProductReference
The ProductReference data type represents a single product without any of its data attached. A product

reference is typically returned in situations where it is unnecessary to have any more information about

a product other than its identifiers. Other product representations typically inherit from

ProductReference and will thus also include ProductReference’s attributes.

{

 Id: "5d3f146d-0ff5-4de5-8100-54c0845b359d",

 DateLastUpdate: "20160118T082216Z",

 Barcode: {

 Value: "8712031283421"

 }

}

RetailerProductReference
The RetailerProductReference inherits from the ProductReference entity, but adds the retailer-specific

article number identifier.

{

 Id: "5d3f146d-0ff5-4de5-8100-54c0845b359d",

 DateLastUpdate: "20160118T082216Z",

 Barcode: {

 Value: "8712031283421"

 },

 ArticleNumber: “207212”

}

Product
The product data type represents a single product, with its data attached through the Template

attribute. A product is always uniquely identified by its ID, which is a GUID. Other identifiers such as the

EAN code are also provided (through the Barcode property), but cannot be relied on to uniquely identify

a product.

{

 Id: "5d3f146d-0ff5-4de5-8100-54c0845b359d",

 Barcode: {

 Value: “8712038123820”

 },

 DateLastUpdate: "20160118T082216Z",

 Summary: {}, // ProductSummary entity

 Template: {} // ProductTemplate entity

}

ProductSummary
The ProductSummary entity provides a summary of basic metadata for a product. The summary can be

seen as an extension of the product identification data and contains extra information such as brand,

manufacturer, and product name.

{

 Name: “Coca Cola 50cL”,

 Description: “Coca Cola 50cL is a delicious soda that will make you smile!”,

 Image: {}, // Image entity

 Brand: {} // BrandReference entity

}

Image
The Image entity is a convenience object that provides parameters to both uniquely identify the image

as a resource (through the Id), as well as provide metadata through the Properties object.

{

 Id: "5d3f146d-0ff5-4de5-8100-54c0845b359d ",

 OwnershipType: 0,

 Url: “http://domain.com/someimage.url”,

 Type: 10,

 Properties: {

http://domain.com/someimage.url

 Width: 720,

 Height: 720

 }

}

BrandReference
The BrandReference entity provides basic identifying information about the brand of a product. It is

comprised of an Id and Name only, but also includes a Manufacturer reference. This is to highlight the

hierarchical nature of the relationship.

{

 Id: "5d3f146d-0ff5-4de5-8100-54c0845b359d",

 Name: "Coca-Cola",

 Manufacturer: {} // ManufacturerReference

}

ManufacturerReference

The ManufacturerReference entity provides basic identifying information about the Manufacturer of a

brand (and thus about the product belonging to that brand).

{

 Id: "5d3f146d-0ff5-4de5-8100-54c0845b359d",

 Name: "Coca Cola Nederland B.V."

}

ProductTemplate
The ProductTemplate data type can be seen to act as a container for a set of fields with values. Although

templates can be flattened into just a collection of fields, we’ve chosen to represent the

ProductTemplate object separately in order to provide future opportunities for filtering responses based

on template IDs.

The ProductTemplate object, next to its identifying metadata (id, name), contains a list of “child

templates”, each of which are ProductTemplate objects in themselves, and a list of Field objects, which

contain the actual data for the requested product.

{

 Id: "5892cc11-c0db-47f9-8c38-cc72d9ff5c6d",

 Name: "COOP_Food_Basic",

 Children: [

 // Array of ProductTemplate entities

],

 Fields: [

 // Array of ProductTemplateField entities

]

}

ProductTemplateField
The ProductTemplateField data type is the most fluid data type in the sense that the various different

types of fields have different object representations. For example, it is possible for a product field to be

represented by an array of values (for example, a list of “USPs/Claims”). At the same time, it is possible

for an array to itself consist of complex types rather than flat values (as is the case with the Nutrients

field, which is an array of objects.)

{

 Id: "21676e57-40fd-4d42-993c-a2c5977daac2",

 Type: "string",

 Key: "human-readable-field-key",

 Data: {

 Value: "The value of the field, in this case, a string"

 }

}

The Data property deserves some special attention because its value is fluid. Depending on the value of

the Type property, the Data can either contain a flat value, an array, or an object. This is why we refer to

the value of the Data property as a ValueContainer. The ValueContainer always contains a Value

property, the format of which is fluid (whose format changes based on the ProductTemplateField’s Type

property).

Listed below follow all the possible types of value containers.

EnumValueContainer

The Enumeration Value Container is used for values that can be specified from a set of possible values.

List of possible values can be requested separately.

{

 EnumId: "8bb207c2-7658-426c-8480-dade13b5a15a",

 Value: {

 Id: "37b3f9ac-857b-46ac-8a5e-bcb3bdf7f198",

 Value: "Energie"

 }

}

ArrayValueContainer

The Array Value Container is used as a container for collections of field values:

{

 Length: 5,

 Value: [

 // ProductTemplateField objects go here

]

}

ObjectValueContainer

The Object Value Container indicates that the field that contains the value container is actually a

complex field, consisting of a fixed number of child fields. The format of the value container is the same

as the array value container, but where the array value container contains an arbitrary number of

values, the object value container contains a fixed number of fields that together represent the object.

{

 Value: [

]

}

FlatValueContainer

There are a number of “Flat” value containers, where the Value is neither an object nor an array. These

flat values can be of various types, which will be indicated in the field definition. The following sample

shows a string flat value container:

{

 Value: “The value of the field”

}

The field types that map onto a flat value container are as follows:

 string

 double

 float

 decimal

 datetime

 timespan

 date

 int

 boolean

AuthenticationResponse
The AuthenticationResponse entity is returned in response to the authenticate API request and is the

container for the access token, and related attributes, such as expiry date.

{

 Token: “yRQYnWzskCZUxPwaQupWkiUzKELZ49eM7oWxAQK_ZXw”,

 ApplicationId: “2b581bb2-0f16-4f0d-bab4-47ee9d19f6e7”,

 DateExpires: “20160127T122134Z”

}

Syndy API Requests Documentation

Authenticate
The Authenticate API request is usually where a session with the Syndy API necessarily starts (because a

previous access token expired, or because it is simply the first time you use the API).

The Authenticate request must be executed by the consumer of the Syndy API in order to obtain an

access token, which is required for authentication with all other API requests. Access tokens produced

by the Authenticate request are short-lived, and the consumer of the API is encouraged to take this into

account from the very beginning. Code should be designed to always re-authenticate the moment the

API responds with a 401 – Not Authorized response.

Resource
GET (https://api.syndy.com)/auth

Request Format
The request format in the case of an Authenticate request is a little different than other API requests.

The Authorization header is used to authenticate the application, but because the assumption at this

point must be that the application is not yet in the possession of a valid access token, the Authorization

header is formatted differently, and instead of an access token & related data, now contains the

application’s public key.

The Authorization header must contain the following fields:

Key The application’s public key.

Timestamp The UTC timestamp at which the request was created.

Nonce A unique token that is used only once, that together with timestamp, prevents
replay attacks.

Signature The signature is generated using the application’s private key. For information on
how to generate the signature, refer to the chapter on signature creation.

Response Format
The response for the Authenticate call comes in the form of an AuthenticationResponse entity.

{

 Token: “yRQYnWzskCZUxPwaQupWkiUzKELZ49eM7oWxAQK_ZXw”,

 ApplicationId: “2b581bb2-0f16-4f0d-bab4-47ee9d19f6e7”,

 DateExpires: “20160127T122134Z”

}

Get Retailer Assortment
The retailer resource provides a “Get Assortment” method in order to access the full range of products

in a retailer’s assortment. Through the use of filtering this request can be adjusted to return only the

range of products that have been changed since a specified “datefrom” time stamp.

Resource
GET (https://api.syndy.com)/retailer/assortment

Request Format
The retailer assortment request supports the following request parameters, specified through the

resource URL’s query string.

Parameters for pagination

$skip Offset controls the starting point within the assortment to start returning results

$top Limit controls the amount of items to return from the assortment

Request-specific parameters

$filter Use to filter result set. Example usage could be to request only those products that
have seen updates since specified ISO-8601 compliant datetime string (e.g. “2016-
01-19T08:31:23.00Z”)

Example: GET /retailer/assortment?$filter=DateLastUpdate gt DateTime’2016-01-
19T08:31:23.00Z’&$skip=0&$top=50

Fetches the first 50 results from the retailer assortment that have been modified since Jan 19th, 2016,

08:31:23 UTC.

Response Format
NOTE: The response entity is still subject to change

The response format is a paged result set, where the results array consists of RetailerProductReference

objects. Example:

{

TotalCount: 350,

Offset: 303,

ResultCount: 47,

Results: [

 {

 Id: "92jf0jf0j2-f920jf-2f0j23fj-f032f9j23fj",

 Barcode: {

 Value: "8712038123820"

 },

 ArticleNumber: "2813802",

 DateLastUpdate: "20160119T083123Z"

 },

 etc...

]

}

Get Product Details
The products resource provides a “Get Product By Id” method in order to access the full product data

template for a product identified by the specified id.

Resource
GET (https://api.syndy.com)/product/{productId}

Request Format
This method currently supports no additional request parameters.

Response Format
NOTE: The response entity is still subject to change

The response format is a Product entity. Sample format is shown below:

{

 Id: "5d3f146d-0ff5-4de5-8100-54c0845b359d",

 DateLastUpdate: "20160118T082216Z",

 Summary: {

 Name: “Coca Cola 50cL”,

 Description: “Coca Cola 50cL is a delicious soda that will make you

smile!”,

 Image: {

 Id: “5d3f146d-0ff5-4de5-8100-54c0845b359d”,

 Width: 512,

 Height: 512,

 Url: “http://cdn.syndy.com/media/products/{id}/oajofijwaofj.jpg”

 },

 Brand: {

 Id: "5d3f146d-0ff5-4de5-8100-54c0845b359d",

 Name: "Coca-Cola",

 Manufacturer: {

 Id: "5d3f146d-0ff5-4de5-8100-54c0845b359d",

 Name: "Coca-Cola Nederland B.V."

 }

 }

 },

 Template: {

 Id: "5d3f146d-0ff5-4de5-8100-54c0845b359d",

 Name: "Food_Template",

 Children: [

],

 Fields: [

 {

 Id: "5d3f146d-0ff5-4de5-8100-54c0845b359d",

 Type: "string",

 Key: "product_name",

 Data: {

 Value: "Coca Cola 50cL"

 }

 },

 {

 Id: "5d3f146d-0ff5-4de5-8100-54c0845b359d",

 Type: "array",

 Key: "usps_claims",

 Data: {

 Length: 1,

 Value: [

 {

 Id: "5d3f146d-0ff5-4de5-8100-54c0845b359d",

 Type: "string",

 Key: "usp_claim",

 Data: {

 Value: "Super sparkly"

 }

 }

]

 }

 }

]

 }

}

Get Product Media
The media resource provides a “Get Media For Products” method in order to access the media for the

specified product id.

Resource
GET (https://api.syndy.com)/product/ {productId}/media

Request Format
OData parameters for paging.

Response Format
NOTE: The response entity is still subject to change

{

TotalCount: 11,

Offset: 0,

ResultCount: 10,

Results: [

 {

 Id: "92jf0jf0j2-f920jf-2f0j23fj-f032f9j23fj",

 OwnershipType: 0,

 Url: “http://domain.com/someimage.url”,

 Type: 10,

 Properties: {

 Width: 720,

 Height: 720

 }

 },

 etc...

]

}

http://domain.com/someimage.url

Product Media – Image Resize
If the standard dimensions of a product image are not close enough to certain specifications, it is

possible to instruct the Syndy API to resize product images to more closely meet said specifications.

Note: it is currently only possible to resize images if the new dimensions maintain the aspect ratio of the

original image. Also note that the resizing happens asynchronously. URLs will be allocated, but it may

take a little bit of time before the image is actually present at the specified location.

Resource
POST (https://api.syndy.com)/products/media/{mediaId}/resize

Request Format
The request is, at its core, a list of resolutions to which the original image should be resized. The to-be-

resized image is identified by the mediaId specified in the resource URL.

{

 “MimeType”: “image/png”,

 “Sizes”: [

 {

 “Width”: 270, // Width in pixels

 “Height”: 270 // Height in pixels

 },

 etc…

]

}

Response Format
In case of a successful operation, the response format is very similar to the request:

{

 “Resources”: [

 {

 “Id”: “adfj0f-0asf00-asdf0sf-70dsf0sf70asfu”,

 “Url”: https://cdn.syndy.com/resizedURL,

 “Properties”: {

 “Width”: 270,

 “Height”: 270

 }

 },

 etc…

]

}

https://cdn.syndy.com/resizedURL

