
 

 

Synthesis and Characterization of Al6061/Al2O3 

Metal Matrix Nanocomposites Fabricated by 

Stir-Casting 

 

Doctoral Thesis  
To be awarded the degree 

Doctor of Engineering (Dr.-Ing) 

 

 

 

 

Submitted by 

 

Othman Ahmed Othman Mohamed 

 

from Bani Souwaif, Egypt 

 

 

 

 

 

 

approved by the 

Faculty of Natural and Material Sciences, 

Clausthal University of Technology 

 

 

Date of oral examination 

 

10.04.2019  



Bibliografische Information der Deutschen Bibliothek 
Die Deutsche Bibliothek verzeichnet diese Publikation in der Nationalbibliografie; 
detaillierte Bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar. 
 
Bibliographic information published by the Deutsche Nationalbibliothek 
The Deutsche Nationalbibliothek lists this publication in the Deutsche National-
bibliografie; detailed bibliographic data are available by Internet at http://dnb.dnb.de. 
 
Zugl.: Clausthal, Technische Uni., Diss., 2019 
 
„Dissertation Technische Universität Clausthal“ 
 
Dekan:                                                               Prof. Dr.-Ing. Karl-Heinz Spitzer 
                                                  
Vorsitzender der Promotionskommission: Prof. Dr.-Ing. Albrecht Wolter 
 
Hauptberichterstatter:  Prof. Dr.-Ing. habil. Lothar Wagner 

 
Mitberichterstatter:  Prof. Dr.-Ing. Volker Wesling 

 
D 104  
 
 
© Oberharzer Druckerei, Fischer & Thielbar GmbH 
Alte Fuhrherrenstraße 5. 38678 Clausthal-Zellerfeld. www.oberharzer-druckerei.de 
 
Dieses Werk ist urheberrechtlich geschützt. 
Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung des 
Buches, oder Teilen daraus, vorbehalten. Kein Teil des Werkes darf ohne schriftliche 
Genehmigung des Verlages in irgendeiner Form reproduziert oder unter Verwendung 
elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden. 
 
This document is protected by copyright law. 
No part of this document may be reproduced in any form by any means without prior 
written authorization of the publisher. 
 
1. Auflage 2019 
 
Printed in Germany. 
 
Bezugsadresse:  Prof. Dr.-Ing. habil. Lothar Wagner 
   Institut für Werkstoffkunde und Werkstofftechnik (IWW) 
                                Technische Universität Clausthal 
                                Agricolastraße.6 
                                D-38678 Clausthal-Zellerfeld 

 

ISBN 978-3-948171-02-5 
 

„Gedruckt mit Unterstützung des Deutschen Akademischen Austauschdienstes“ 



 III 

 

 

Acknowledgments 
In the frame of the DAAD GERLS 2014 scholarship under supervision of Prof Lothar Wagner 

in the Institute of Materials Science and Engineering– Clausthal University of Technology, 

this doctoral work was carried out. 

All praises to Allah the Almighty for giving me the blessing, chance, strength and endurance 

to complete this study. 

My greatest and deepest gratitude is dedicated to my supervisor Prof. Lothar Wagner for 

accepting me in his research group and giving me the opportunity to pursue my Ph.D. degree 

at TU-Clausthal under his supervision, the continuous support of my Ph.D. study and 

research, his patience, motivation, enthusiasm, and immense knowledge. His guidance helped 

me in all the time of research and writing of this thesis. I could not have imagined having a 

better advisor and mentor for my Ph.D. study. Besides, I would like to direct my special thanks 

and appreciation to co-referent Prof. Volker Wesling for his consideration, valuable notes and 

time during reviewing my thesis. 

For the financial support in the framework of the German Egyptian Research Long-term 

Scholarship program (GERLS) I would like to acknowledge the German Academic Exchange 

Service (DAAD) and the Egyptian Ministry of Higher Education (MoHE)  

Special acknowledgement to Dr. rer. Nat. M. Wollmann and Dr.-Ing. M. Mhaede for their 

continuous support during this study, whose office doors were always open whenever I ran 

into a trouble spot or had a question about my research or writing. I would like to direct my 

gratitude to my best friend during the PhD time M. Sc. M. Basha for his considerable 

contributions and discussions throughout this work. Moreover, I would like to thank Dr.-Ing. 

M. Harhash for his valuable review and comments on this work. 

Not to forget thanking all the members in our research group for their friendly and scientific 

assistance especially, M. Sc. S. Levin. Moreover, I would like to thank the technical staffs at 

IWW, especially Mr. J. Schumann, Mr. G. Neuse, Mr. P. König, Mr. T. Gerhardt and Mr. U. 

Körner for their technical support. Furthermore, I owe thanks to my students who supported 

me performing the experimental tasks. 

Finally, I must express my very profound gratitude to my parents, my dear wife, and my 

children for providing me with unfailing support and continuous encouragement throughout 

my years of study and through the process of researching and writing this thesis. This 

accomplishment would not have been possible without them.  

Thank you. 

 

 

  



IV  

 

 

 

T h i s  p age  in t en t io na l l y l e f t  b l an k  

 

 



 V 

 

 

Abstract 
Over the past decade, the metal matrix nanocomposites (MMNCs) have been used in many 

applications, owing to their competing properties such as high strength to weight ratio, high 

corrosion resistance, and fatigue strength. The reduction in vehicle weight or increasing the 

strength to weight ratio of the materials used, provides both fuel efficiency and reducing the 

CO2 emissions. The fabricate of such composites should be carried out through fulfilling two 

main considerations; the constitutes (matrix and reinforcement nanoparticles) and the 

fabrication method. Aluminum alloys, as a matrix, possess remarkable properties of low 

density, good corrosion resistance, and low thermal expansion. Such characteristics make 

them attractive chose to perform as matrices in the world of MMNCs. The conventional 

aluminum alloys are usually used in automotive, aerospace industry, and structural materials 

owing to their higher performance either mechanically, or functionally. The aluminum 

features do not end at this point, but it is also characterized by excellent recyclability which 

makes aluminum a good environment friend by different means of reducing the energy 

consumption for their production, emissions accompanied with production, and the 

consumption of fresh raw materials. In this concern, Al6061 was utilized in this research as a 

matrix, due to its wide range of applications in automotive and ground transportation, thermal 

management, aerospace, industrial, recreational and infrastructure industries, as well as 

advanced military systems. Choosing the reinforcement nanoparticles too is subjected to 

many aspects of durability, cost considerations, ease of introducing into the matrix, and phase 

stability. With high strength elastic modulus, good wettability, and low thermal expansion 

coefficient, was Alumina (Al2O3) a promising candidate in the MMNCs synthesizing in this 

work. The reinforcing role of the nanoparticles raise from the fact of their small size which 

enables them to direct to the lattice defects like dislocations and reveal several strengthening 

mechanisms such as load bearing, Hall-Pitch, difference in elastic modulus and thermal 

expansion coefficient, and Orowan mechanisms. Consequently, the hybrid materials 

(Aluminum Matrix Nanocomposites (AMNCs)) attract attention to design lightweight 

materials with improved mechanical, metallurgical and physical properties. 

Choosing a compatible manufacturing technique is of the same importance degree as choosing 

the matrix and the reinforcement nanoparticles. Proper method for nanoparticles addition 

should guarantee uniform, simplicity, and homogenous destruction of the reinforcements over 

the matrix and ability of use on large scale. Therefore, stir casting is considered is probably 

the simplest and most economical technique used to produce MMNCs by a liquid state route. 

However, the process is restricted by the high agglomeration rates resulted from the poor 

wettability of the nanoparticles and the air entrapment, which occurred during stirring with a 

tendency of the nanoparticles to sink or float due to the density difference between the matrix 

and particles.  

The present study focuses on the fabrication and characterization of the AMNCs. The AMNCs 

synthesizing is carried out through stir casting using Al2O3 nanoparticles and Aluminum 6061 

as a matrix. The proposed research provides robust empirical approaches to overcome the 

main restrictions of AMNCs fabrications such as poor wettability, agglomeration, porosity, 

inhomogeneous distribution, high production costs, and durability. The objective of this 

research is to investigate the process feasibility, the effective reinforcement weight fraction 

(over which the properties deteriorate), and the fabricated hybrid materials properties (at room 

and elevated temperature (300°C)) compared to the monolithic alloy. 

Furthermore, the metallurgical/mechanical/and functional behavior of the produced materials 

were evaluated utilizing different mechanical tests (tensile, hardness, fatigue and creep tests) 

and microstructure investigation techniques (optical and scanning electron microscopy). For 

further enhancement of the fatigue and the functional behavior of the AMNCs, the mechanical 

surface treatments (MSTs), namely shot peening and roller burnishing, were conducted. The 
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impact of the shot peening and roller burnishing on the fatigue and the creep behavior was 

unveiled. The wear and corrosion behavior of the different composites were tested, as well. 

Furthermore, the weldability of the AMNCs was investigated using the rotary friction welding 

technique. The optimization of the welding parameters was carried out based on the design of 

experiment method using Minitab 17. Economically, the recyclability of the AMNCs was 

clarified by re-fabrication of the produced AMNCs through investigating the change of their 

behavior compared to unreinforced alloy. 

The nanocomposites exhibited finer grain size with enhanced mechanical behavior. The yield 

strength and ultimate tensile strength are improved by 50% and 32% respectively compared 

to the unreinforced alloy. Moreover, the nanocomposites represented an enhancement in the 

fatigue life (Electropolished) about 26% and 64% in air and 3.5% NaCl electropolished 

condition with improved creep rate and corrosion resistance, with further improvement after 

conducting mechanical surface treatments such as shot peening and roller burnishing to reach 

37% and 127% after conducting shot peening in air and 3.5% NaCl compared to the 

electropolished unreinforced alloy, while it reaches 48% and 154% after conducting roller 

burnishing. Besides, the AMNCs show higher creep life than the unreinforced alloy not only 

without further mechanical surface treatments, but also after conducting shot peening. The 

tribological properties and corrosion resistance of the AMNCs are also enhanced compared 

to the unreinforced matrix. The AMNCs proved good durability not only by the good 

weldability, but also by the competed properties obtained after recycling. 

In conclusion, an analytic model is proposed to reach a simple equation which could describe 

and detect the expected behavior of the AMNCs based on the weight fraction and both matrix 

and reinforcements properties. The experimental results show good agreement and 

effectiveness of the model to predict the mechanical properties of the AMNCs.  
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Kurzfassung 
 

In den letzten zehn Jahren wurden die Metall-Matrix-Nanocomposites (MMNCs) aufgrund 

ihrer konkurrenzfähigen Eigenschaften, wie zum Beispiel der hohen spezifischen Festigkeit, 

der sehr guten Korrosionsbeständigkeit und Dauerfestigkeit, in vielen Anwendungen 

eingesetzt. Die Reduzierung des Fahrzeuggewichts durch die Erhöhung der spezifischen 

Festigkeit dieser Composite sorgt sowohl für eine höhere Kraftstoffeffizienz als auch für eine 

Reduzierung der CO2-Emissionen. Die Herstellung und Entwicklung solcher 

Verbundwerkstoffe sollte sich an den folgenden zwei Gesichtspunkten orientieren der 

Komponenten (Matrix- und Verstärkungsnanopartikel) und der Herstellungsmethode. 

Aluminiumlegierungen besitzen, als Matrix, bemerkenswerte Eigenschaften wie die gute 

Korrosionsbeständigkeit, die geringe Dichte und die geringe Wärmeausdehnung. Solche 

Eigenschaften machen sie attraktiv, wenn sie als Matrix in der Welt der MMNCs eingesetzt 

werden. Die konventionellen Aluminiumlegierungen werden aufgrund ihrer höheren 

mechanischen und funktionellen Leistungsfähigkeit in der Regel in der Automobil-, Luft- und 

Raumfahrtindustrie zur Herstellung von Strukturwerkstoffen eingesetzt. Weiterhin zeichnet 

sich Aluminium durch seine ausgezeichnete Recyclingfähigkeit aus, welche es zu einen 

umweltfreundlichen Werkstoff macht, da sich der Energieverbrauch bei der Herstellung, die 

mit der Produktion verbundenen Emissionen und der Verbrauch von frischen Rohstoffen 

reduziert. In diesem Zusammenhang wurde die Aluminiumlegierung Al6061 in dieser 

Forschungsarbeit als Matrix verwendet, da sie ein breites Anwendungsspektrum in den 

Bereichen Automobil, Wärmemanagement, Luft- und Raumfahrt, Industrie, Freizeit, 

Infrastruktur sowie fortschrittliche militärische Systeme bietet. 

Die Wahl der Verstärkungs-Nanopartikel unterliegt vielen dabei Aspekten. Diese können 

sein: Haltbarkeit, Kostenbetrachtung, einfache Einführung in die Matrix und die 

Phasenstabilität. Mit hohem Elastizitätsmodul, guter Benetzbarkeit und niedrigem 

Wärmeausdehnungskoeffizienten stellt Aluminiumoxid (Al2O3) eine viel versprechende 

Option dar um MMNCs in dieser Forschungsarbeit künstlich zu erzeugen. Die verstärkende 

Wirkung der Nanopartikel ergibt sich aus ihrer geringen Größe, die es ihnen ermöglicht sich 

auf Gitterdefekte wie Versetzungen zu platzieren und dort verschiedene 

Verstärkungsmechanismen wie zum Beispiel Tragfähigkeit, Hall-Pitch, Differenz von 

Elastizitätsmodul und thermische Ausdehnungskoeffizient und Orowan-Mechanismen zu 

bewirken. Die Hybridmaterialien (Aluminum-Matrix-Nano-Composites (AMNCs)) erlangen 

deshalb zunehmend Bedeutung, wenn es um Leichtbauwerkstoffe mit verbesserten 

mechanischen, metallurgischen und physikalischen Eigenschaften .geht  

Die Wahl eines kompatiblen Herstellungsverfahrens ist ebenso wichtig wie die Wahl der 

Matrix und der Verstärkungs-Nanopartikel. Die Methode für die Zugabe von Nanopartikeln 

muss eine gleichmäßige, einfache und homogene Verteilung der Verstärkungsnanopartikeln 

über die Matrix und die Fähigkeit zur Verwendung in großem Maßstab gewährleisten. Daher 

wird das Rührgießen als die wahrscheinlich einfachste und wirtschaftlichste Technik zur 

Herstellung von MMNCs betrachtet. Der Prozess wird jedoch durch die hohen 

Agglomerationsraten eingeschränkt, die aus der schlechten Benetzbarkeit der Nanopartikel 

und der Lufteinschlüsse resultieren. Aufgrund der Dichtedifferenz zwischen der Matrix und 
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den Partikeln kam es beim Rühren nur teilweise zum Schweben, teilweise aber auch zum 

Herabsinken der Nanopartikel. 

Die vorliegende Studie konzentriert sich auf die Herstellung und Charakterisierung der 

AMNCs. Die Synthese der AMNCs erfolgt durch Rührgießen mit Al2O3-Nanopartikeln und 

Aluminiumlegierung 6061 als Matrix. Die vorliegende Arbeit bietet empirische Ansätze zur 

Überwindung der Hauptrestriktionen der AMNC-Fertigung wie schlechte Benetzbarkeit, 

Agglomeration, Porosität, inhomogene Verteilung, hohe Produktionskosten und geringe 

Haltbarkeit. Ziel dieser Forschung ist es, die Machbarkeit des Verfahrens, den effektiven 

Gewichtsanteil der Verstärkung (über den sich die Eigenschaften verschlechtern) und die 

Eigenschaften der hergestellten Hybridmaterialien bei Raum- und erhöhter Temperatur 

(300°C) im Vergleich zur monolithischen Legierung zu untersuchen . 

Darüber hinaus wurde das metallurgische, mechanische und funktionelle Verhalten der 

hergestellten Werkstoffe mittels verschiedener mechanischer Tests (Zug-, Härte-, 

Ermüdungs- und Kriechversuche) und Mikrostrukturuntersuchungen (Licht und 

Rasterelektronenmikroskopie) bewertet. Zur weiteren Verbesserung des Ermüdungs- und des 

Funktionsverhaltens der AMNCs wurden die mechanischen Oberflächenbehandlungen 

(MSTs) Kugelstrahlen und Festwalzen durchgeführt. Der Einfluss des Kugelstrahlens und des 

Festwalzens auf das Ermüdungs- und das Kriechverhalten wurde ermittelt. Auch das 

Verschleiß- und Korrosionsverhalten der verschiedenen Verbundwerkstoffe wurde getestet. 

Weiterhin wurde die Schweißbarkeit der AMNCs für das Rotations-Reibschweißverfahren 

untersucht. Die Optimierung der Schweißparameter erfolgte auf Basis der Versuchsplanung 

mit Minitab 17. Ökonomisch wurde die Recyclingfähigkeit der AMNCs durch ein erneutes 

Vergießen der produzierten AMNCs hinsichtlich Untersuchung der Veränderung ihres 

Verhaltens im Vergleich zu unverstärkten Legierungen untersucht. 

Die Nanocomposites zeigten eine feinere Korngröße mit verbessertem mechanischem 

Verhalten als die unverstärkte Legierung. Die Streckgrenze und die Zugfestigkeit wurden 

gegenüber der unverstärkten Legierung um 50 % bzw. 32 % verbessert. Darüber hinaus 

erzielten die Nanocomposites eine Erhöhung der Ermüdungslebensdauer in Luft um 26 % 

(elektropoliert) und um 64 % in 3,5 % NaCl (elektropoliert) mit einer zusätzlich verbesserten 

Kriechrate und Korrosionsbeständigkeit. Nach der Durchführung der mechanischen 

Oberflächenbehandlungen wie Kugelstrahlen und Festwalzen konnte eine weitere 

Verbesserung auf 37 % in Luft und 127 % in 3,5% NaCl nach dem Kugelstrahlen und dem 

entsprechend 48 % und 154 % nach dem Festwalzen erreicht werden. Zudem weisen die 

AMNCs nicht nur ohne weitere mechanische Oberflächenbehandlung, sondern auch nach 

dem Kugelstrahlen eine höhere Kriechfestigkeit auf, als die unverstärkte Legierung. Auch die 

tribologischen Eigenschaften und die Korrosionsbeständigkeit der AMNCs werden 

gegenüber der unverstärkten Matrix verbessert. Die gute Einsatzbarkeit der AMNC resultiert 

nicht nur aus der guten Schweißbarkeit, sondern auch aus den interessanten Eigenschaften 

nach dem Recycling . 

Abschließend wird ein analytisches Modell vorgeschlagen, um eine einfache Gleichung 

ableiten zu können, die das erwartete Verhalten der AMNCs auf der Grundlage des 

Gewichtsanteils und der Matrix- und Verstärkungseigenschaften beschreibt. Die 

experimentellen Ergebnisse zeigen eine gute Übereinstimmung und beweisen die 

Zuverlässigkeit des Modells zur Vorhersage der mechanischen Eigenschaften der AMNCs.
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Nomenclature 
Greek symbols 

Symbol Term Unit 

υp Volume fraction [-] 

σ Strength [MPa] 

Δα Difference in the thermal expansion coefficients [K-1] 

ΔT Temperature difference [K] 

γ Gamma phase of aluminium/Surface tension  [-] 

φ Deformation degree [-] 

σa Stress amplitude [MPa] 

Ø Diameter [mm] 

σ True stress [MPa] 

ρ Density  [g/cm3] 

α Alpha aluminum  [-] 

β Beta intermetallic  [-] 

µG Chemical potential of gas [J/mol] 

µL Chemical potential of liquid  [J/mol] 

η Viscosity  [Pa.sec] 

ϵ strain [-] 

ϵ° Strain rate [sec-1] 

 

Latin symbols 

Symbol Term Unit 

O Annealing heat treatment of aluminum alloys [-] 

T4 
Natural precipitation hardening heat treatment of 

aluminum alloys 
[-] 

T6 
Artificial precipitation hardening heat treatment of 

aluminum alloys 
[-] 

Al2O3 Aluminum oxide [-] 

SiC Silicon carbide [-] 

AlN Aluminum nitride  [-] 

MgO Magnesium oxide [-] 

B4N Boron nitride [-] 

TiC Titanium carbide [-] 

TiO2 Titanium oxide [-] 
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CO2 Carbon dioxide [-] 

NaCl Sodium chloride  [-] 

Al2O3.3H2O Gibbsite 
[-] 

Al2O3.H2O Boehmite [-] 

Na3K(AlSiO4)4 Nepheline  [-] 

KAl3(SO4)2(OH)6 Alunite  [-] 

Mg2Si Magnesium silicate  [-] 

ZrO2 Zirconia oxide  [-] 

WC Tungsten carbide [-] 

b Burger’s vector [nm] 

dp Particle diameter [nm] 

G Shear modulus  [GPa] 

σm Yield strength [MPa] 

l Size of particulate parallel to the loading direction [nm] 

t 
Size of the particulate perpendicular to the loading 

direction [nm] 

ky Strengthening coefficient [MPa.nm0.5] 

Vol.% Volume fraction [-] 

Wt.% Weight fraction [-] 

HF Hydrofluoric acid  [-] 

KMnO4 Potassium permanganate  [-] 

NaOH Sodium hydroxide  [-] 

EDX Energy Dispersive X-Ray Spectroscopy [-] 

HV Hardness Vickers  [-] 

R Fatigue strength ratio [-] 

Jcrp Creep compliance  [MPa-1] 

Erel Relaxation modulus  [MPa] 

SCCW14 
Spherically conditioned cut wire shots with diameter 

of 0.36 mm 
[-] 

Ra Average roughness [µm] 

Rz Ten-spot average roughness [µm] 

Rmax/Ry Maximum roughness height [µm] 

Icorr corrosion current density  [A/mm] 

EW Equivalent weight  [g/equivalent] 
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A Area  [mm2] 

G ASTM grain size number [-] 

k Boltzmann’s constant [J/K] 

E Young’s modulus  [GPa] 

 

Abbreviations 

Acronym Term 

MMNC Metal Matrix Nanocomposites 

AMNC Aluminum Matrix Nanocomposites 

MMC Metal Matrix Micro-composites  

MST Mechanical Surface Treatment 

DRA Discontinuously Reinforced Aluminium  

TIG Tungsten Inert Gas  

MIG Metal Inert Gas  

YS Yield Strength 

UTS Ultimate Tensile Strength 

HIP Hot Isostatic Pressure 

MWCNT Multiwall Carbon Nanotubes 

CNT Carbon Nanotubes 

DMD Disintegrated Melt Deposition  

PM Powder Metallurgy 

MA Mechanical Alloying 

HPDC High Pressure Die Casting 

GND Geometrically Necessary Dislocations 

CTE Coefficient of Thermal Expansion 

EM Elastic Modulus  

SP Shot Peening 

USP Ultrasonic Shot Peening 

LSP Laser Shock Peening 

RFW Rotary Friction Welding 

SPD Sever Plastic Deformation  

EP Electropolishing 

ATS Applied Test Systems 

RB Roller Burnishing  

IHD Incremental Hole-Drilling Method 
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SCE Saturated Calomel Electrode 

Ps Forging pressure 

ts Forging time 

Pr Friction pressure 

tr Friction time 

rpm Rotational speed 

SEM Scanning Electron Microscope  

RT Room temperature  

Rec Recycled 1wt.% Al2O3 composites  

SSCS Saturation Curve Solver by Shock form Aeronautique Inc. 

XRD X-ray diffraction 
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1 Introduction 
Aluminum and its alloys come in the third place among the commercially used engineering 

materials due to their wide range applications. The Al 6000 alloys have received a boost in their 

castings production in recent decades starting by strengthening through copper and chromium to 

control the recrystallization. Al 6061 (Aluminum-Silicon-Copper-Magnesium) is one of the most 

common 6000 series due to its desirable characteristics such as high strength to weight ratio, 

good workability, good toughness, good surface finish, desirable workability, excellent 

conductivity and corrosion resistance. The excellent corrosion resistance, even after welding, 

enabled it to be used in some railroad and marine applications [1]. In this work, a heat-treated 

aluminum Al 6061 is used with Silicon and magnesium as major alloying elements. The 

commonly available Al6061 commercial grades are pre-tempered and tempered grades 6061-O 

(annealed), 6061-T6 (solution heat treated and artificially aged), 6061-T651 (Solution heat 

treated, stress-relieved stretched and artificially aged) and 6061-T4(solution heat treated and 

naturally aged) [2].  

High strength lightweight materials are the key feature in most of the modern design. 

Manufacturing materials with high stress to weight ratio to reduce the fuel consumption in the 

structural applications, particularly aerospace, and automotive industries was the researchers' 

concern in the past few years [3]. Considerable attention has been given to composite materials 

as the most appropriate candidates for fulfilling the requirements of high strength to weight ratio 

required by energy saving limitations. One of the composite materials categories is the metal 

matrix nanocomposite (MMNCs), which proved over its attractive combination of properties that 

they are the interesting suitable choice for this field of applications. Of the materials category 

MMNCs are the Aluminum matrix nanocomposites (AMNCs) providing unique properties set of 

high specific strength, stiffness, wear resistance, fatigue strength, corrosion resistance, thermal 

stability, and enhanced properties at elevated temperature [3]. The AMNCs could be produced 

using both cast and wrought aluminum alloys as a matrix with Al2O3, SiC, AlN, MgO, B4N, TiC, 

or TiO2 as commonly used reinforcements.  

There are different manufacturing techniques to produce the AMNCs such as liquid metal 

infiltration, spray decomposition, squeeze casting, compocasting, powder metallurgy and 

mechanical alloying [4]. Of these techniques, stir casting of MMNCs is an attractive processing 

method for these advanced materials since it is a low-cost with large production scale process, 

and offers a wide variety of materials and treatment condition options. The process involves 

melting of the matrix and introduces the nanoparticles to the melt during the melting process with 

the aid of mechanical stirring. Reinforcement of aluminum alloys with Al2O3 has been observed 

to enhance the ultimate tensile and the yield strengths of the metal. Furthermore, the fatigue and 

properties at elevated temperature have been improved [4-5]. 

Further enhancements in the fatigue and creep behavior can be achieved by mechanical surface 

treatments such as shot peening and roller burnishing. Mechanical surface treatments are 

attributed to induce cold working by local plastic yielding on the surface layers. The theory 
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beyond them is to localize pressure on a particular area exceeding its elastic limit, and after 

pressure removal, deposit the surface layers a part of deformation.  The internal layers, which 

have not reached the elastic limit, tend to restore its position. Thus, compressive residual stresses 

arise between the inner layers and the plastically deformed outer layer resulting in restricting 

both crack initiation and propagation with a prolonged fatigue life [6-7].  

1.1 Motivation and objectives: 

The long-lasted challenge in the automotive and aerospace industry is to satisfy the equation of 

high performances with low fuel consumption. The reduction in vehicle weight or increasing the 

strength to weight ratio of the materials used, provides both fuel efficiency and reduces the CO2 

emissions. Such concept of choosing a lightweight material with improved mechanical and 

functional properties (strength, corrosion, and wear resistance) recommended aluminum to be an 

efficient steel-substitution. Furthermore, the aluminum recycling is tremendously less expensive 

than its production, which means with a fraction of the energy aluminum could be produced at 

the same quality without damaging its structure. Nevertheless, the conventional aluminum alloys 

are hard to meet the modern market demands of high dimensional stability, strength, and 

durability. Therefore, Al-based metal matrix nanocomposites are considered as exciting 

candidates owing the ability to design lightweight structures having balanced mechanical and 

metallurgical properties, as well as tribological characteristics improvement and enhanced high-

temperature strength. The strength stability at high temperature is attributed to the 

thermodynamic stability of the reinforcement particles at the elevated temperatures. The 

MMNCs are suitable for high-performance applications in which the traditional cast alloys or 

precipitation strengthened material cannot be utilized because of their limited properties. 

Moreover, nanocomposite materials performances are far superior compared to micro-

composites because of the small reinforcements size which enhances the interaction with the 

lattice defects such as dislocations and activates new strengthening mechanisms. However, these 

enhanced properties are accompanied with some fabrication hindering that have been detected in 

many production techniques. The conventional synthesizing methods could not overcome these 

fabrication restrictions such as agglomeration and porosity. Besides, the traditional production 

processes do not provide a homogeneous distribution of the nanoparticles at low-cost, and they 

are not applicable for the industrial scale leaving behind many challenges for the researchers [3-

5].  

The aim of this work consisted in the development of Al6061-nanocomposites with enhanced 

mechanical properties at room and high temperature (300°C) and good weldability. The proposed 

research provides robust empirical approaches to overcome the main restrictions of MMNCs 

fabrications such as poor wettability, agglomeration, porosity, inhomogeneous distribution, high 

production costs, and durability. In this concern, stir casting is considered as one important 

production method of the Al6061/Al2O3 composites due to its low-cost and durability. The 

optimum weight fraction of the alumina nanoparticles addition was determined. Besides, the 

metallurgical/mechanical/and functional behavior of the produced materials were evaluated 

utilizing different mechanical tests (tensile, hardness, fatigue and creep tests) and microstructure 
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investigation techniques (optical and scanning electron microscopy). For further enhancement of 

the fatigue and the functional behavior of the AMNCs, the mechanical surface treatments 

(MSTs), namely shot peening and roller burnishing, were conducted. The impact of the shot 

peening and roller burnishing on the fatigue and the creep behavior was unveiled. The wear and 

corrosion behavior of the different composites were tested, as well. Furthermore, the weldability 

of the AMNCs was investigated using the rotary friction welding technique. The optimization of 

the welding parameters was carried out based on the design of experiment method using Minitab 

17. Economically, the recyclability of the AMNCs was clarified by re-fabrication of the produced 

AMNCs through investigating the change of their behavior compared to the as-cast state [3-5].   

In a summary, the current thesis aims at:  

• Carrying out the necessary literature review to determine the process parameters of the 

stir casting. 

• Studying the feasibility of stir casting method as a production method of the AMNCs. 

• Investigating the manufacturing problems (such as agglomeration, porosity and 

inhomogeneous dispersion of the nanoparticles) and defining the weight fraction of nano-

phase at which such problems could be minimized.  

• Characterizing the mechanical behavior of the AMNCs at room temperature and elevated 

one (300°C). 

• Finding out the optimum parameters of conducting mechanical surface treatments 

(MSTs), shot peening and roller burnishing, on the AMNCs.  

• Identifying the mechanical behavior of the AMNCs after applying the MSTs. 

• Evaluating the fatigue life of the AMNCs in air and corrosive medium (3.5% NaCl) before 

and after conducting the MSTs. 

• Revealing the creep properties of the AMNCs and the effect of the MSTs on the creep 

behavior.  

• Investigating the corrosion and wear behavior of the AMNCs. 

• Study the weldability of the AMNCs and optimize the welding parameters of the friction 

welding method. 

• Proposing an analytical model describes the strengthening mechanism in the AMNCs. 

Figures 1.1 and 1.2 summarize the study plan and the experimental approaches considered in 

this work. 
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Figure 1-1: Research flow chart [8] 
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Figure 1-2: Research methodology 

1.2 Thesis synopsis  

This thesis consists mainly of four chapters. The thesis starts with this chapter in which a general 

view of the main motivation of the work, small introduction and the research objectives are 

covered. The state of the art is discussed extensively in Chapter 2 focusing on the subject-related 

theoretical background of the main characteristics and production considerations of the Al6061. 

As well as, the Metal Matrix Nanocomposites (MMNCs) properties, fabrication methods, 

strengthening mechanisms, and their recycling aspects. Chapter 3 is concerned with a detailed 
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description of the experimental procedures used in these investigations. Through different 

mechanical and metallurgical techniques, the behaviour of the MMNCs was characterized and 

the optimum nanoparticles weight fraction was determined to achieve the most enhanced 

properties with minimum agglomeration and porosity. The results and discussion are described 

deeply in Chapter 4 followed by the research conclusions and the future proposed work. 
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2 Literature Review 
Aluminum and its alloys are traditionally known as light alloys, which are frequently used to 

reduce the weight of components and structural parts with a relative density of 2.7. In this chapter, 

the state of the art is discussed covering the main characteristics and production considerations 

of the Al6061. Then, the Metal Matrix Nanocomposites (MMNCs) were surveyed to comprise 

their properties, fabrication methods, strengthening mechanisms, and their recycling aspects. 

2.1 Aluminum and Aluminum Alloys 

Possessing the lightness property improves the use of aluminum alloys in many products where 

the high strength to weight ratio is required. This reason made aluminum and its alloys a basic 

part in many industries and applications such as transportation, aerospace and marine industry 

inducing the development of this category of alloy over the past 50 years. Low-density materials 

have a great importance in engineering design regarding other parameters such as stiffness and 

buckling resistance. Beside the fact of weight saving, aluminum alloys have other important 

properties of high corrosion resistance, good machinability, and high thermal conductivity. 

Aluminum possesses the third place with 8% by weight ratio in the crustal abundance. However, 

the extent to which aluminum will be used may depend on the costs of other materials like steel 

and polymers and the cost of electrical energy required for extraction [1,9].  

2.1.1 Aluminum Production Overview 

The annual aluminum production increased from 6000 tons to 1.5 million tons with about 250 

times from 1900 to 1950, and after 25 years it increased eight times because of aluminum 

surpassed copper to be the second most used metal. Over this period, the annual inflation rate in 

aluminum production had an average of 9.2%. In 1970 the demand for basic materials had 

fluttered with a small overall annual production due to the emergence of Russia and China with 

greater attention to recycling. Between 1980 and 2000 the world production of primary aluminum 

increased with average 4% to reach 29.2 million tons in 2004 and the production of recycled 

aluminum boosted from 3.8 to 8.4 million tons in 2004. Aluminum is used in five core areas all 

over the world: construction and building, packing and containers, electrical conductors, 

transportation and machinery, and equipment. In 2002, the aluminum consumption by the major 

aluminum users China and the United States was in transportations 31.6% by the United States 

to 24% in China, wherein the packing field comes China with 5% compared to 21.1% in the 

United States. In building and construction consumed China 33% to 14.6% by the United States. 

The largest demand for raising the aluminum industry is the automotive industry. The increment 

in using aluminum in vehicles increased from 8kg per vehicle in 1971 to 90 kg in 1994 and 130kg 

in 2004 in the United States, where in Europe is about 200kg in 2015[1,9-11]. 

Unlike iron, aluminum combines strongly with oxygen and cannot be reduced by carbon, which 

makes it difficult to be extracted from ores. The name “aluminum” was first used in 1809 after 

Sir Humphry Davy produced it from alum (its bisulphate salt). Aluminum was first commercially 

prepared in France by H. Sainte-Claire Deville through reduction of aluminum chloride in 1855 
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with less than 95% pure, and it was higher in cost than gold. From 1855 to 1859 the price of 

aluminum decreased from $US 500 to $US 40. The discoveries of Hall in 1886 in the US and 

Héroult in France made a revolution in the economic method for extraction of high-purity 

aluminum electrochemically, which are the basis until today. It led to a price cut in 1888 to less 

than $US 4 and in recent times from $US 2 to $US 1 per kg. Aluminum extraction depends on 

bauxite which was discovered by P. Berthier. Bauxite contains several forms of hydrated 

aluminum oxide e.g. gibbsite (Al2O3.3H2O) and boehmite (Al2O3.H2O). According to statistics 

in 2004, Australia produces 38% (55.6 million tons) of the world supply, then comes Guyana 

with 10.6%, Jamaica 9.25%, Brazil 9% and China with 8.6%. The ore bodies contain typically 

30-60% hydrated Al2O3 with some impurities of iron oxide, silica, and titania. Aluminum could 

also be found in clays, shales or other minerals and extracted by acid and alkaline processes.  

Aluminum could be acidcally  extracted and recoverd from kaolinite which is found in clay. 

Besides, it may also be recovered from nepheline(Na3K(AlSiO4)4) or alunite(KAl3(SO4)2(OH)6) 

but with higher cost about 1.5 to 2.5 times more expensive than that produced by Bayer process 

[1,11]. 

2.1.2 Aluminum 6061 alloy   

Al 6061 is an aluminum alloy containing magnesium and silicon as the main alloying elements, 

which makes it a heat treatable (precipitation hardening) alloy. The aluminum-magnesium-

silicon system is illustrated in Figure 2.1. 

 

Figure 2-1: Al-Mg-Si section from Al to Mg2Si [12] 

Properties such as good weldability, corrosion resistance, and stress-corrosion cracking 

resistance made it widely used alloy as medium-strength structural and general-purpose alloys. 

The alloy is available in the forms of sheets, rods, tubes, or plates. The main alloying elements, 

magnesium and silicon, are mainly added to form Mg2Si precipitates. Aluminum 6061 also may 
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contain other alloying elements to add some features and properties. Copper and zinc additions 

improve the strength of the alloy without significantly reducing its corrosion resistance. For grain 

size refining purpose, titanium may be added. Excess of Magnesium or Silicon could be used for 

better corrosion resistance with an adverse effect on strength and formability. However, using 

silicon can increase the strength without retarding the formability or weldability [13]. The typical 

chemical composition of Al6061 is represented in Table 2.1. 

Table 2-1: Al6061 Chemical composition [9] 

Element  % Composition (by weight)  

Al  95.8 -98.6 %  

Mg  0.80 -1.20 %  

Si  0.40 – 0.80 %  

Cu  0.15 – 0.40 %  

Cr  0.040 -0.35 %  

Fe Max 0.7 

Zn Max 0.25 

Ti Max 0.15 

Mn Max 0.15 

 

Al6061 is commercially available in pre-tempered grades such as 6061-0 (annealed), 6061-T4 

(solution heat treated, quenched, and naturally aged) and 6061-T6 (solution heat treated, 

quenched, and artificially aged). The alloy is commonly used in aircraft and aerospace 

components, automotive parts, marine fittings, transport, bicycle frames, drive shafts, tanks, 

electrical fittings and connectors, brakes, coupling, and valves [9-13]. 

 

The properties of Al 6061 alloy vary with the magnitude of alloying elements and processing 

such as cold working, hot working, ageing, and annealing processes [2,12-13]. Table 2.2 

illustrates a comparison between the different mechanical properties of the most commercial 

grades of Al6061 under annealed (O), T4, and T6 conditions. 

Table 2-2: Mechanical properties of Al6061 at O, T4, and T6 temper conditions [14] 

Alloy 6061 O 6061 T4 6061 T6 

Hardness, Vickers 30 75 107 

Yield strength(MPa) 55.2 145 276 

Tensile strength(MPa) 124 241 310 

Elongation% 25-30 22-25 12-17 

Elastic modulus(GPa) 68.9 68.9 68.9 

Fatigue strength(MPa) 62.1 96.5 96.5 

Shear strength(MPa) 82.7 165 207 

Shear modulus(GPa) 26 26 26 
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2.2 Aluminum Matrix Nanocomposites (AMNCs) 

To obtain a high specific strength with high thermal stability at elevated temperature, the MMCs 

were developed by impeding hard reinforcement particles (usually ceramics) into a ductile 

metallic matrix. These hard particles introduction permits significantly the material performance 

improvement with increasing strength, stiffness, and wear resistance, even at high temperature 

[15]. Traditionally, carbides, nitrides, borates, or oxides are used to reinforce the Al-based 

composites by several fabrication methods either through powder metallurgy techniques or 

casting methods [15, 16-18]. In the 1980s and early 1990s, the development of MMC has been 

taken into consideration among all the main aluminum producers and using it in a wide spectrum 

of applications. The applications vary to cover automotive, electronic packaging, diesel engine 

pistons, brake rotors and drums, pick-up truck drive shafts, bicycle components, aeronautic 

engine fan, exit guide vanes, aircraft ventral fins and fuel access covers, and golf clubs [19]. In 

the automotive industry, a numerous attention has been paid to discontinuously reinforced 

aluminum composites (DRA) due to its attractive properties, as well as the weight saving that 

they have presented. Another factor that was considered by the manufacturer is the cost 

effectiveness of producing the DRA. It was remarked that the expense of the raw materials of the 

MMCs is higher than the replaced materials such as steels. But including the weight factor 

improves the cost comparison significantly to the MMCs [20]. Despite the premium properties 

offered by the Al-based metal matrix composites over the unreinforced alloys, they exhibit 

significant restrictions, such as low ductility and fracture toughness with poor machinability and 

weldability [15]. Moreover, some tribological problems were reported when the MMCs were 

used in engine design, especially in pistons, as they could induce relevant cylinder lines damage 

due to wear [15,21].   

Furthermore, some microstructural defects (which lead to decrease their mechanical properties) 

were marked when the Al-based MMCs were welded by the conventional welding techniques 

(TIG, MIG, laser). The reason may be the presence of the ceramic reinforcement that causes 

particle segregation, undesired reactions between particulate matter and matrix, and evolution of 

the occluded gas [22-30].  

These limitations outline the compelling need for an aluminum-based material possesses such 

outstanding properties and overcomes these restrictions of both monolithic aluminum alloys, and 

traditional MMCs reinforced with a relatively high-volume fraction of microparticles. Al-based 

nanocomposites have recently emerged as a candidate suitable for this need reinforced with 

ceramic nanoparticles such as SiC, Al2O3, AlN, or TiC with relatively low volume fractions (<5% 

wt.%) [15]. The homogenous dispersion of nano-sized particles within the aluminum matrix 

induces some relevant characteristics to the material. This group of aluminum alloys is 

characterized by superior specific stiffness and significant improvement in strength with 

enhanced ductility compared to the traditional MMCs [31-33]. As well as, properly wear 

resistance compared to both monolithic Al alloys and MMCs, remarkable improvement of creep 

resistance, and thermal stability than the conventional Al alloys [34-36]. 

Several studies have clearly reported the beneficial usage of nanoparticles instead of micro-sized 

particles. Sajjadi et al. [21] carried out a comparison between two A356 based composites 
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reinforced one with 20 μm and the other with 50 nm Al2O3 particles. The compression tests 

revealed that the alloy which was reinforced with nanoparticles demonstrated an improvement in 

strength having 610MPa with 3 wt.% of nano-alumina to 453 MPa for the alloy with 10 wt.% of 

micro-alumina, even with a smaller reinforcement content [15].  

Ma et al. [38] found that the addition of 1 vol.% nano-Si3N4 to a certain aluminum alloy gave the 

similar ultimate tensile strength when the same alloy was reinforced with 15 vol.% micro-SiC 

(180 and 176 MPa respectively). The same concept was confirmed by Kang and Chan [23] when 

they compared nanocomposites with 1–7 vol.% of nano alumina, to a 10 vol.% micro-SiC 

reinforced composite. It was illustrated that both yield and ultimate tensile strength of the 1 vol.% 

nanocomposite were comparable to the other alloy reinforced with micro-composite.  

Despite their enormous potential, aluminum-based nanocomposites are still not produced on a 

large industrial scale. Among possible production methods, liquid or semisolid based production 

routes are considered to possess higher industrial scalability, although obtaining a homogeneous 

particle distribution is still challenging [15]. 

 

2.2.1 Properties of the AMNCs 

The AMNCs show enhanced mechanical properties at both room temperature and elevated 

temperatures. The hardness, YS, and UTS are improved with increasing the volume fraction of 

the reinforcement particles added at room temperature (Figure 2.2). Significant enhancements in 

Young’s modulus have also been obtained [39-41]. These improvements in the mechanical 

properties may be attributed to the increase in the dislocation density (Orowan strengthening 

mechanism) in nanocomposites in comparison to the aluminum matrix micro composites or that 

without reinforcement. Increasing the particle content up to 4.5-5 vol.% enhances the hardness 

to reach its peak and then declines with higher content [42-45]. It is observed that there is a 

critical weight or volume fraction of the nanoparticles added, beyond which a further addition of 

nanoparticles leads to retardation of the mechanical properties [42-45]. Further increase in the 

nanoparticles causes an increase in the degree of microporosity due to the agglomeration 

occurred to them [44], which lowers the flow stress in the AMNC. Besides, the bond at the 

interface between the nanoparticle and matrix could be released because of excessive dislocation 

density and other defects around hard particles generated by the thermal expansion coefficient 

difference between the particles and the matrix [15]. 
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Figure 2-2: Representative tensile engineering stress-strain curves under tension for A356– Al2O3 [15] 

The negative effect caused by porosity presence in the AMNC may be suppressed by subsequent 

mechanical deformation processes such as hot extrusion [44,46]. Ezatpour [44] observed that 

hardness and the tensile properties of an Al6061 alloy reinforced with Al2O3 nanoparticles in the 

as-cast state increased with increasing reinforcement weight fraction up to 1 % but then 

decreased, due to inhomogeneous distribution of nanoparticles and the presence of high porosity 

content. Mechanical deformation (e.g. hot extrusion) contributes in decreasing the amount of the 

porosity induced from the higher nanoparticles additions and uniform distributing of the 

nanoparticles among the matrix, which increase the mechanical properties of the fabricated 

AMNCs. 

Grain refining is one of the important outcomes of the Nano-reinforcement processes, which 

influences the strengthening process directly or indirectly [39,47,48]. Wang [48] reported a 

remarkable decrease in the grain size of the ultrasonic processed Al–9 Mg when it was reinforced 

with TiC0.7N0.3 nanoparticles (36, 42 and 73 μm for 1.5, 0.5 and 0.2 vol.% reinforced 

nanocomposites respectively) as compared to the unreinforced matrix (165 μm). Nanoparticles 

were reported not only to decrease the grain size (Hall-Petch strengthening mechanism) but also 

to have a direct effect on strengthening the composites. This effect was investigated when the 

same alloy refined through inoculation with Al–5Ti–1B, which resulted in similar grain sizes 

without a significant enhancement in tensile properties and ductility [15].  

Heat treatments such as age hardening can add further improvements to AMNCs mechanical 

properties. However, the introduction of nanoparticles requires an optimized ageing conditions 

due to the change in aging kinetics accompanied with the nanoparticle’s presence. The hardening 

treatment and the mechanical properties could be affected negatively by the formation of some 

segregations such as magnesium at the nano SiCp/Al interfaces and at the grain boundaries. This 

effect was observed when an aluminum alloy Al7005 was prepared by powder metallurgy 

subjected to HIP and temper T6 treatment. Nanoparticles could also increase the effect of the 

equilibrium segregations, which are thermodynamically governed to minimize grain boundary 
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energy, free surface energy, or interface energy of the system [49-50]. El Mahallawi et al. [51] 

cleared that the hardness of the aged A356 unreinforced alloy remained higher than the aged 

A356 based nanocomposite when the alloy was fabricated by compocasting and reinforced by 

Al2O3 nanoparticles. Moreover, the addition of the nanoparticles with T6 heat treatment raised 

both tensile strength and elongation % of the nanocomposites compared to the matrix treated 

only with T6 [15,43,52-55].  

Although the work carried out on the AMNCs to investigate their properties at elevated 

temperature in the literature is very limited, the AMNCs show enhanced stable properties even 

at high temperatures. The addition of 2 vol.% of MWCNT using compocasting method at the 

semisolid state with a solid fraction of 30 % resulted in nanocomposites able to retain 90 % of its 

yield strength at 300 °C compared to room temperature (142 and 158 MPa respectively). The 

unreinforced alloy prepared with the same route showed 79 MPa yield strength at 300 °C with 

60% of that at the room temperature [15]. The reinforcement of the aluminum matrices with 

nanoparticles improves their creep performance by restricting the dislocation climb or gliding 

processes [56] and carrying a larger load than the matrix [57]. Furthermore, hot extruded Al–

Al2O3 nanocomposite powder showed a threshold creep-stress having a magnitude, that 

decreases with increasing the testing temperature (from 8.3 MPa at 375°C to 2.7 MPa at 500°C) 

[58]. This effect was related to the disengagement of dislocations from the Al2O3 nanoparticles 

during the high-temperature extrusion. Since the dislocation’s detachment-stress required for 

micrometric reinforcement particles is minuscule to be accounted in the estimation of the 

threshold stress, it can then be inferred that nanometric particles are more efficient in dislocation 

pinning than micrometric particles [15,59]. 

On the tribological properties, the Al-based metal matrix nanocomposites exhibit better 

tribological properties than that without reinforcement. Consequently, have been used for this 

purpose in the automotive industry [60-61]. Hosseini et al. [62] conducted experiments to 

evaluate the wear behavior of Al6061 alloy reinforced with 3vol.% Al2O3 sized 1µm, 60 µm, and 

30 nm. The wear test results indicated a lower wear rate by the nanocomposite than the micro-

composites. 

Hosseini et al. [63] also investigated the influence of reinforcement of Al6061 over a range of 

Al2O3 nanoparticles varied from 1 to 5 vol.% on the wear and friction characteristics by applying 

sliding carbon steel pin on a disk of the synthesized material. The results emphasized the relation 

between the wear resistance and the hardness, as both increased by increasing the Al2O3 volume 

percent up to 3% and then followed by dramatically decrease due to the agglomeration formed at 

high levels of Al2O3. Akbari et al. [64] studied the wear performance of A356 alloy reinforced 

with Al2O3 nanoparticles with Al and Cu nano-powder additions produced by stir casting method 

and heat treated under temper T6. The better performance of these composites was attributed to 

the higher hardness and compressive strength with lower porosity [15].  

Not only alumina nanoparticles enhance the tribological performance of the AMNCs, but also 

the addition of titanium carbide or silicon carbide could improve the tribological behavior due to 

their thermal stability and high strength resulted from heat treating of the AMNCs after 

fabrication. Nemati et al. [65] investigated the tribological performance of Al-Cu composites 
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with different reinforced by micro and Nano titanium carbide particles with different fractions 

(0–10 wt.%). The tested samples showed enhanced wear resistance for samples reinforced by 

nanoparticles than that with the microparticles having a critical weight fraction of TiC 5wt.%, 

which beyond it, a retardation of the wear performance due to agglomeration was reported. 

Sameezadeh et al. [66] examined AA 2024 Al-matrix reinforced with MoSi2 nanoparticles 

prepared by mechanical alloying and undergone hot and cold pressing processes. Temper T6 was 

conducted to the prepared samples, and then the wear resistance was tested for the hot pressed 

and after T6 conditions. The results showed that temper T6 increased hardness and wear 

resistance of the samples compared to that after hot pressing with a critical volume fraction for 

agglomeration of 4% [15]. There are many factors influence the wear and friction properties of 

Al nanocomposites which could be summarized by the fabrication process and its parameters 

while adjusting the process and parameters leads to improved microstructural and mechanical 

properties. The selection of the reinforcement particles and its amount is also necessary by 

identifying the suitable nanoparticles which give the highest hardness and density without 

exceeding the critical volume fraction of it to prevent agglomeration and properties deceleration. 

Heat treatment also has a role in enhancing the tribological behavior of the aluminum 

nanocomposites by increasing the strength and hardness of the AMNCs, and thus raising their 

wear resistance [15]. 

The importance of the fatigue behavior of the AMNCs raises, especially when the cyclic loading 

is considered, which is dominant in aerospace and some automotive applications. However, the 

work carried out on the fatigue behavior of the AMNCs is very limited. Ghasemi Yazdabadi et 

al. [67] investigated the low and high cyclic fatigue behavior of a pure aluminum alloy reinforced 

by SiC. The fatigue life of the low and high cyclic fatigue regime was improved due to the locking 

effect of non-shearable particles on moving dislocations [15]. Srivatsan et al. [68] conducted high 

cyclic fatigue tests on a magnesium alloy similar to AZ91 with 3% higher aluminum content 

reinforced by Al2O3 nanoparticles. The results indicated a higher endurance limit for the 

unreinforced samples than that with nanoparticles due to the raised crack initiation and 

propagation caused by the nanoparticles. A similar work from the same authors but with 

replacing the Al2O3 nanoparticles by CNT using the same alloy [69] showed enhanced fatigue 

life of the reinforced alloy with a 40 % improvement 106 cycles endurance limit. The CNT 

increases the resistance to crack initiation during cyclic stress-controlled fatigue and restricts its 

growth [69].  

The corrosion resistance of the AMNCs based on the nature of their two-dissimilar materials 

form with different corrosion potential and properties. This combination could be affected by the 

chemical, physical, or galvanic interaction between them. The particle/matrix interface is the 

preferred site for corrosion to start with rapid penetration into the material could resulting in 

higher corrosion rate compared to the alloys without reinforcements [70,71,15].  

Mahmoud et al. [72] studied the corrosion behavior of several aluminum alloys reinforced by 

SiC and Al2O3 nanoparticle produced by a powder metallurgy and tested in NaCl aqueous 

solution under different conditions. Both alloys with reinforcement exhibited better corrosion 

resistance than the unreinforced alloy with lower corrosion rate for that with the Al2O3 
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nanoparticle. Moreover, the corrosion rate of the AMNCs increases with the further addition of 

the reinforcing particles more than 3 vol.% because of agglomeration. El-Mahallawi et al. [73] 

also concluded an improvement in the corrosion resistance of an A356 matrix reinforced by sub-

micron Al2O3 particles (nanoparticle size <500 nm) and produced by rheocasting. The reinforced 

alloy showed a higher corrosion resistance in 3.5% NaCl aqueous solution than the monolithic 

alloy. Nevertheless, further investigations on the corrosion resistance of AMNC should be carried 

out [15]. 

2.2.1.1 Enhancing the fatigue behaviour by mechanical surface treatments 

Many factors affect the fatigue behavior such as the material strength, hardness, cyclic stress 

state, surface roughness, application temperature and environment, and the amount of the internal 

stresses stored in the material. The fatigue life can be improved by conducting some mechanical 

surface treatments such as peening processes and deep rolling. The role of the mechanical surface 

treatments is to apply a specific pressure on a certain area of the material, which exceeds its 

elastic limit induces plastic deformation and increases the dislocation density. The generated 

compressive residual stresses on the surface of the material not only retard the crack initiation 

process, but also restrict its propagation. There are many mechanical surface treatments e.g. 

conventional shot peening (SP), ultrasonic shot peening (USP), laser shock peening (LSP) and 

roller or ball burnishing [6]. Among the different mechanical surface treatments, the conventional 

shot peening (Figure 2.3) is considered as one of the most durable and low-cost techniques. The 

process involves bombarding the sample surface by hard relatively small shots with a certain 

pressure, distance, and peening angle, which attributes to increasing the dislocation density in a 

zone up to 0.4 mm under the surface. Just below the surface, the grains under compressive 

stresses try to restore its original shape resulting in high value of compressive residual stresses 

with a magnitude reaches at least the half of the material tensile strength. The process includes 

some surface changes such as inducing compressive residual stresses on the surface, 

microstructural alterations, increasing the surface roughness and hardness, formation of cracks, 

and crystallographic texture [6-7]. 

 
 

Figure 2-3: Conventional shot peening process [74] 
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The role of the compressive residual stresses is to squeeze the grain boundaries, and thus delay 

the fatigue crack initiation. Forasmuch, the crack initiation or propagation are difficult to occur 

in the layer of compressive stresses; the cracks initiate under the surface with a significant slow 

propagation rate leads to a prolonged fatigue life. These compressive stresses diminish the 

deleterious effect of tensile stresses (caused by externally load application or be residual stresses 

formed during the processing of the material such as welding, grinding or machining) on crack 

initiation or its propagation [6].  

There are several parameters control the peening process such as the peening media, hardness 

and size of the shots, the impingement angel and distance, shots velocity, penning time and 

coverage. The process could be represented by the Almen intensity, which gives an indication of 

the kinetic energy transferred by the shots stream. The Almen intensity is measured by the Almen 

strip (with three classifications: 'N' (0.79 mm thick), 'A' (1.30 mm thick), and 'C' (2.38 mm thick)) 

and refers to the earliest point on the saturation curve, at which doubling the exposure time results 

in an increase in the arc height by 10% or less (Figure 2.4). 

 

Figure 2-4: Arc height vs. exposure time scheme [74] 

Another common mechanical surface treatment for improving the fatigue behavior is the 

burnishing process (Figure 2.5). The process concept is to induce plastic deformation through a 

rolling process using a roller or a ball with a predefined force perpendicular on the material 

surface and sufficient to deliver the material to its plastic zone. The process is commonly 

controlled by force used, the sample rotating speed, and the roller/ball feeding rate. The 

burnishing processes introduce some advantages which are not induced by shot peening such as 

the higher compressive residual stresses, deeper layer affected by the mechanical surface 

treatment, and smoother surfaces. However, the burnishing processes are restricted by the 

specimen geometry, unlike the shot peening which has the privilege of applying the mechanical 

surface treatments even on complex shapes [6-7]. 
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Figure 2-5: Ball-burnishing process [74] 

2.2.1.2 Friction welding as an alternative for the MMNCs welding 

Metal welding is the non-detachable joining of components through the application of heat or 

pressure. One of the welding techniques is the friction welding, in which the heat required for 

the welding process is obtained by the mechanical friction produced by the relative movement 

under a certain applied axial force between the two joining parts. The softening of the material 

occurs during the process is a significant advantage of the friction welding against the other melt 

welding techniques, due to the absence of a molten phase with a reduced new phases formation. 

Oxides and impurities on the joint surfaces are entrapped in the flash and pressed outwards. 

Furthermore, the friction welding can be performed without the use of additional materials or 

inert gas, which means high productivity with low cost, with the ability of welding both solid and 

hollow profiles. The usage of the friction welding has been recently spread to cover metals and 

thermoplastics in many applications either in aerospace or automotive industry [31-33,75]. 

The most common form of the friction welding is the rotary friction welding (RFW). During the 

rotary friction welding process, a part of the material is rotated, and the other is stationary leading 

to a material transfer from one surface to another. The increase in axial force leads to increase 

the specimen temperature due to friction heat, as well as the size of the individual adhesion 

junctions. After reaching the initial peak torque and the start of the shortening, the material 

temperature increases and tends to recovery with a rate higher than the work hardening rate. Then 

the material plastifyies and behaves like a viscous fluid with constant axial shortening and torque. 

Finally, the rotational speed decreases, while the torque increases until reaching the peak value 

and drops to zero. The main process parameters are the friction pressure, the friction time, the 

forging pressure, forging time, and the rotational speed. In comparison to the other conventional 

fusion welding methods, RFW has a unique set of advantages such as the reduction of the 

solidification defects because of the absence of a molten pool, durability, and its compatibility of 
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welding dissimilar metals. Moreover, the process is performed without the need of shielding gas 

or fillers, self-clean capability due to wearing action of the relative movement of parts, the 

process cycle is very fast with high productivity rate, and high integrity characteristics with the 

bonding area may reach 100%. However, the process has some limitations, for example, it is 

restricted by the material geometry (suitable to join axisymmetric components, like tubes, shafts, 

and discs) and the difficulty of welding thin-wall structures like tubes and plates. Furthermore, 

the process is limited by flash forming where its removal could cause change the geometry of the 

design, and high capital cost of the welding equipment [31,33,75].  

2.3 Synthesis of MMNCs 

The production of the MMNCs could be divided mainly into two categories; in-situ and ex-situ 

routes. The in-situ routes involve the generation of the nanoreinforcement during the composite 

preparation by certain controlled reactions. When the process encountered the formation of the 

nanoparticles separately and added to the matrix, called this manufacturing route ex-situ. The ex-

situ processing techniques are then classified into solid, semisolid and liquid states routes [15]. 

The solid-state processing includes powder metallurgy, immersion plating, chemical vapor 

deposition, diffusion bonding, physical vapor deposition. Of the ex-situ production routes, the 

liquid state method (such as squeeze casting, stir casting, compocasting, rheo-casting, and melt 

infiltration) is reported to be the most attractive owing to its simplicity and the ability to be 

applied on the industrial scale with near net shape parts [76-77]. Nevertheless, this technique 

faces some restrictions of the uniform dispersion of the nanoparticles in the matrix compared to 

this achieved by powder metallurgy. The high surface energy of the nanoparticles due to its tiny 

size increases the tendency to agglomeration, and low wettability within the molten matrix leads 

to the formation of clusters of nanoparticles. The clusters are not effective in hindering the 

movement of dislocations and can hardly generate a physical-chemical bond to the matrix with 

a detrimental effect on mechanical properties [78-79]. The poor wettability prompted the 

researchers to develop unconventional production methods to overcome this issue. The most 

studied methods could be classified into liquid, semisolid and solid processes [80]. 

 

2.3.1 Liquid Processes 

The liquid state processing routes include stir casting, infiltration techniques, ultrasonically 

treated casting, and disintegrated melt deposition. They are the most attractive among the other 

manufacturing methods because of their relatively low cost, durability, and ability to produce 

large-scale parts with accurate near net dimensions. One of the disadvantages of this approach is 

the severe nanoparticles agglomeration, which occurs even with the application of the mechanical 

stirring before casting. The main reasons for agglomeration to occur are the poor wettability of 

the nanoparticles, which resulted from the high surface to volume ratio and high viscosity 

generated in the molten metal [80].  

The ultrasonic assisted casting is one of the most efficient techniques used to eliminate the 

particles clusters formed due to agglomeration and low wettability of nanoparticles profiting the 

cavitation produced during the ultrasonic treatment [81-83]. During the process, the molten metal 
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is treated ultrasonically using waves in the frequency range 18–20 kHz during or after 

nanoparticles addition (Figure 2.6). The method could be used for synthesizing of both aluminum 

and magnesium-based alloys reinforced with SiC, B4C, Al2O3, AlN, and CNTs [81,83-85]. The 

production of the Al/Al2O3 nanocomposite is performed under a non-contact ultrasonic treatment 

using an ultrasonic chamber [86]. 

 

 

 
Figure 2-6: Ultrasonic assisted casting set-up [92] 

 

Usually, the sonotrode is made of titanium alloy (Ti6Al4V), stainless steel or sometimes niobium-

based alloy such as C-103 for the high-temperature applications providing the higher chemical 

inertness and minimum erosion caused by cavitation [85-86]. However, the usage of niobium 

based sonotrodes increases the process cost [85,89], thus the Ti-based sonotrodes are widely used 

owing to the relatively low cost compared to Nb sonotrodes. The cavitation produced during the 

ultrasonic application generates a localized pressure about 1000 atm and temperature could reach 

5000°C with heating and cooling rates more than 1010K/s, which enhances the breaking of the 

nanoparticles clusters formed due to its agglomerations. The ultrasonic assisted casting process 

is restricted by the power of the ultrasonic source which limits the process to be applied on the 

industrial scale. However, some attempts were carried out to overcome this problem by treating 

the melt ultrasonically through its flow in a chamber which enables using a small sonotrode to 

deal with a large metal volume [90]. 

Disintegrated Melt Deposition (DMD) technique is a combination of casting and spray process, 

which was developed to produce near net shape parts, especially in magnesium based MMNCs 

[91]. The process involves merging the nanoparticles through stirring carried out by mechanical 

impeller during the melting process (Figure 2.7). Then the formed slurry is disintegrated at 

elevated temperature reaches 750°C using inert gas jets forcing it to be deposited on a metallic 

substrate. Finally, the ingot can be processed mechanically by extrusion to achieve the final 

shape.  
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Figure 2-7: Schematic of the DMD process [93] 

This synthesizing route is not only for magnesium based MMNCs, but also for the Aluminum 

based nanocomposites. But especially, it is often used for magnesium-based alloys to overcome 

the major obstacles occurred during the conventional manufacturing processes such as oxidation 

or nanoparticles retention in the crucible because of density differences. Furthermore, the 

microstructure of the extruded composites shows a uniform dispersion of the nanoparticles in the 

matrix and limited porosity, which resulted in significant improvement regarding both strength 

and ductility [94-95]. 

In the infiltration process, the molten metal is injected with the aid of an applied pressure into a 

porous preform placed between preheated punch and die. The preform is prepared by mixing the 

liquid carrier and the nanoparticle with a particular binder, and then the slurry is filtered followed 

by drying and heat treatment to ensure dimensions stability during the pressing process [96]. An 

infiltration technique was developed to decrease the process cost and the infiltration time based 

on the spontaneous infiltration of the ceramic preform neither with pressure application, nor 

vacuum [95,97].  

Another technique for production of the MMNCs in the liquid state routes is the high pressure 

die casting (HPDC), which provides more detailed parts in comparison with the low pressure die 

casting and gravity casting. The process implies forcing the molten metal using an induced 

pressure to fill the die cavity with high filling speeds and solidification rates, which makes it a 

relatively fast cyclic route [15]. One of the technique’s limitations is the gas entrapment caused 

by the turbulent flow of the melt which raises the porosity in the produced part and suppresses 

the mechanical properties [99-100]. 

 

2.3.2 Solid Processes 

These production routes are based mainly on the powder metallurgy having the advantage of 

producing near net shapes and incorporating a higher volume fraction of reinforcement without 
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such issues of poor wettability occurred in other routes. The process drawbacks are mainly the 

relatively high cost and porosity compared to other routes. Through the powder metallurgy (PM) 

processes, a blend of the matrix alloy powder and reinforcing particles is prepared and compacted 

using cold pressing. Then the compacted structure is degassed to remove volatiles, gasses, and 

water vapor. Finally, the green compacts can be consolidated by different techniques such as hot 

isostatic pressing (HIP), direct sintering, or hot extrusion. To perform a high-energy mixing and 

eliminate the voids between the matrix and nanoparticles the mechanical alloying (MA) could be 

used, where the matrix and the nanoparticles are fused through cold welding together, fracturing, 

and rewelded again. When a solid-state reaction is accompanied by the mechanical alloying 

process (to produce a fine dispersion of oxides, nitrides, and carbides in the light alloy matrix) 

then the process is defined as reaction milling [15].  

In microwave sintering, the heating process is generated by the conversion of electromagnetic 

energy into rapid, instantaneous, and highly efficient thermal energy, which is created within the 

material and spreads outwards by the microwaves [94].  The material absorbs the microwave 

energy undependable on the heat transfer from the outer surfaces, resulting in higher temperatures 

at the core with lower temperatures at the surface, which causes microstructure variation over the 

material thickness [92]. To overcome such issue, bi-directional hybrid microwave sintering was 

developed, in which the thermal gradient during sintering is reduced by using microwave 

susceptors such as SiC in the form of particles or rods [15]. The process uses two crucibles; one 

as an inner crucible and the other as an outer one. The compacted powders are placed in the inner 

crucible, and the SiC particles are placed between the two crucibles, which provide uniform 

heating through absorbing the microwaves and rapidly heat up the outer surface of the material. 

Bi-directional hybrid microwave sintering enables good nanoparticles bonding with eliminating 

the porosity. Moreover, it produces a dense material with fine microstructure with both time and 

energy saving [70]. 

 

2.3.3 Semi-solid-State Processes 

Semi-solid casting processes are divided mainly into two groups, thixo-processes, and rheo- 

methods. They are characterized by forming a partially solid mixture (a slurry with a solid 

fraction from 20 to 60%) with relatively small near-globular grains, which produces low 

shrinkage and porosity composite with non-turbulent filling and lower processing temperature. 

The thixo-processes involve the reheating and partially melting of a proper solid feedstock (pre-

casted billet with globular structure), and then injection of the slurry into dies made of hardened 

steel to obtain the final component. During the production of the feedstock, mechanical stirring, 

magneto-hydrodynamic stirring or ultrasonic treatment could be applied to obtain fine grain size 

[101-102]. Unlike the thixo-processes, the rheo-processes enable the formation of the semi-solid 

slurry from the liquid state utilizing cooling during the casting process instead of a pre-casted 

feedstock, which makes these processes easier to be performed in foundries with the standard 

equipment. After that, the slurry is transferred to the die casting machine hot sleeves following 

the same procedure to produce the final shape as in the thixo-casting. The slurry making process 

defines the rheo-processing approach. The new rheo-casting method is based on generating the 
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initial slurry by a cooling slope followed by pouring the melt at low superheat onto the holder to 

form minuscule crystals. To allow the crystals to grow and spherodise under neither additional 

shearing nor stirring, the slurry is held for a preset time in the holder, and just before pouring, 

homogenization of the slurry temperature is performed [88]. In the Rheo-Die-Casting process 

(Twin Screw Rheo Molding), twin screws are used for mixing and supplying high shear to reduce 

the size of oxides enabling significant dispersion of them in the matrix. The slurry formation 

occurred by passing the melt through a cooled copper or iron block with the internal twisting 

channel. Another rheo-casting process is the semi-solid rheo-casting depends on the stirring and 

fragmentation to form the slurry. The presences of solid nuclei in the melt (cooled to near its 

liquidus) enhances its growth and rapidly spheroidzing with further cooling. The introduction of 

the nanoparticles in the matrix could be carried out using the compocasting technique which is 

similar in the concept to the stir casting but takes place in the semi-solid state of the material. 

The compocasting process ensures a uniform particle dispersion with enhanced particle 

wettability [103-104]. Moreover, this process is attributed to decrease the amount of porosity, 

which lowers the volume shrinkage in the MMNCs and reduce the nanoparticle tendency to 

agglomeration resulting in higher mechanical properties even than that obtained by stir casting. 

Notwithstanding, some agglomeration issues were reported because of the high surface-to-

volume ratio and Van der Waals interactions [15]. 

2.4 Fabrication of the AMNCs by stir casting 

Stir casting is probably the simplest and most economical technique used to produce MMNCs by 

a liquid state route. The process involves melting the matrix and addition of nanoparticles to the 

melt above its liquidus temperature with applying a proper mechanical stirring (Figure 2.8) to 

ensure a uniform particles dispersion in the matrix. Usually, the stirrer is dipped into the melt to 

create a vortex in it, which facilitates the dispersion of the nanoparticles through their addition in 

the vortex. Multiple stages stirrers could be used to produce a more uniform distribution during 

the nanoparticles addition, although the single stage stirrer is the most common one. Stir casting 

process shows many relevant advantages such as durability, low cost, and the ability to produce 

large quantities. However, the process is restricted by the high agglomeration rates resulted from 

the poor wettability of the nanoparticles and the air entrapment occurred during stirring with a 

tendency of the nanoparticles to sink or float due to the density difference between the matrix 

and particles. These obstacles make the nanoparticles dispersion difficult to be achieved and raise 

the challenges of developing new routes to enhance the particles wettability and facilitate their 

incorporation [15].  
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Figure 2-8: Typical stir casting experimental set-up [44,15] 

The way, by which the nanoparticles are introduced into the melt, has a high impact on the 

reinforcement dispersion and it depends on the stirring temperature, speed, stirring time, and the 

stirrer position in the melt and its shape. The injected reinforcements could be carried by an inert 

gas from the bottom of the crucible, which makes the distribution occurs in the form of bubbles 

movement upwards through the melt. The wettability issue could be improved either by applying 

preheating to the nanoparticles or by alloying elements addition such as magnesium. Particles 

preheat eliminates the gasses content and impurities accompanied with the particles.  Magnesium 

promotes the particles wetting through reducing the matrix surface tension and reacting with 

oxygen presents on the nanoparticles surface, as an oxygen scavenger, making thinner oxygen 

layer around the particle, and consequently improves wetting and reduces agglomeration 

tendency. Furthermore, the nanoparticles may undergo pre-milling with metallic powders to 

enhance their wettability, which involves repeated cold welding and fracture, and pressing of the 

nanoparticles into the soft metal powder during the ball milling process. Then the powders 

mixture (master powders) are introduced into the molten matrix attributed to a continuous 

discharge of nanoparticles within the matrix [15]. 

Stir casting was used to produce AMNCs reinforced by several types of nanoparticles like MgO, 

Al2O3, ZrO2, and SiC. The early attempt of dispersion SiC in an aluminum matrix through the 

vortex method was carried out by Kawabe et al. [105]. Recently, Ansary Yar et al. [22] conducted 

from producing an A356-based composite reinforced with different ratios of MgO nanoparticles 

(50 nm) using stir casting at varies temperatures, that the agglomeration of MgO occurred at 

higher volume fraction with increasing the process temperature causing a decrease in the 

composite density. Abdizadeh et al. [46] compared the production of A356 reinforced with MgO 

nanocomposites by stir casting technique and powder metallurgy routes. Agglomeration was 

reported in cast samples with MgO addition higher than 5% caused mechanical properties 

retardation, while samples produced by powder metallurgy presented higher porosity 

accompanied with lower hardness and compressive strength, lower ability to crack imitation, and 
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better matrix continuity. Schultz et al. [107] studied the effect of magnesium addition to Al–Cu–

Mg composites processed by gravity and squeeze casting and reinforced with varies volume 

fractions of preheated Al2O3 nanoparticles mixed with magnesium chips. Reactive wetting 

proved that it could induce an increase in the hardness of the samples fabricated by gravity 

casting, especially when it is combined with mechanical stirring. Besides, clustering was formed 

with increasing the nanoparticles volume fraction and the stirring time due to higher particle 

inconsistency. Sajjadi et al. [43] used stir casting to produce the A356 matrix reinforced with 

micro and Nano Al2O3 particles. The particles were pre-heated at 1100 °C for 20 min in an inert 

atmosphere and then introduced into the melt through argon gas. Mechanical stirring was carried 

out at different speeds before and after the particles addition to prevent particles settling. The 

best results were marked at 5 wt% of micro-sized and 3 wt% of nano sized alumina reinforcement 

with 300rpm stirring speed. The agglomeration tendency was higher in the nanoparticles 

compared to the micro reinforcement particles because of the higher surface energy and area. 

Mazahery et al. [95] compared the stir casting process to the compocasting in the manufacturing 

of A356 reinforced with SiC nanocomposites. The porosity increased with increasing the 

nanoparticles volume fraction, and the maximum hardness and strength were obtained at 3.5% 

SiC volume fraction. Samples, which were prepared by compocasting, had lower porosity with 

finer grains and enhanced mechanical properties than stir cast composites due to the particles 

movement restriction within the melt during solidification. Mazahery et al. [42,52] used the pre-

milling technique and casting to produce an A356 alloy reinforced with Al2O3 nanocomposites 

and compared the results with pure Al2O3. The powder mixture was prepared by milling the 

alumina nanoparticles with aluminum powders using balls of WC/C, cold pressed with 200 MPa, 

crushed and screened through 60mesh, and then added to the matrix after packing in aluminum 

foils. Mechanical stirring was conducted using a graphite stirrer at 600 rpm for 15 min, generating 

a vortex each 20 second. The results indicated an improvement in tensile properties and more 

uniform distribution of the nanoparticles in the sample produced by using the powder mixture 

than the pure alumina. Su et al. [106] used a wrought aluminum alloy AA2024 to fabricate an 

aluminum base composite reinforced by powder mixture (alumina nanoparticles and aluminum 

powders). The mixture was sintered at 400°C for 2.5 h and introduced into the melt under an 

argon atmosphere with the application of mechanical stirring for 10min. With 0.6 wt.% Al2O3, 

the reinforced alloy with the powder mixture showed enhanced mechanical properties and 

hardness than the conventional produced by stir casting.  

 

The stir casting parameters were discussed by several studies [52, 32]. It was found that the 

stirring speed and temperature have an essential role in controlling the process. The increase in 

the temperature at which stirring takes place, could increase the melt fluidity and induce a more 

turbulent flow which introduces more porosity in the melt, and thus retards the mechanical 

properties. Better nanoparticles dispersion could be achieved by increasing the stirring speed to 

a certain limit due to the high force applied to the melt and powders, although further increase 

beyond this limit may lead to turbulent flow and more gasses entrapment in the melt. Not only 

the stirring temperature and speed affect the stir casting process, but also the stirring time. 
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Increasing the stirring time assures more uniform particles distribution until a certain value, then 

rising the stirring time causes more porosity in the composite. 

 

2.5 Strengthening mechanisms in the AMNCs 

The nanoparticles reinforcement reveals significant improvements in the mechanical properties 

of the aluminum-based composites. However, the strengthening mechanism occurred during this 

reinforcement is not yet clear. The strengthening in the nanocomposites was discussed by several 

approaches and proposed to be attributed to Orowan strengthening, load transfer effect, Hall-

Petch strengthening, the difference in the thermal expansion coefficient of thermal expansion, 

and/or mismatch of the elastic modulus [80]. 

The Orowan strengthening (also known as the Orowan mechanism) is based on the interaction 

between the closely spaced nanoparticles, as obstacles, with the dislocations. The non-shearable 

characteristic of the nanoparticles promotes the crossing dislocations to be pinned, and thus 

dislocations bow forming Orowan loops around the particles when an external load is applied. 

This mechanism is a dominant strengthening mechanism, especially when highly dispersed fine 

particles are present. The following expression can express the Orowan effect: 

 

[80] 

where b is the Burger’s vector, υp is the volume fraction of the particles, dp is the particle 

diameter, and G is the matrix shear modulus. 

Load bearing (load transfer) effect involves the transfer of the shear load from the soft and 

compliant matrix to the nanoparticles under the application of an external load. This 

strengthening mechanism appears when a strong adherence between the particles and the matrix 

is achieved and its contribution in enhancement the MMNCs could be described through a 

modified shear lag model introduced by Nardone and Prewo [80]: 

[80] 

 

Where σm is the yield strength of the unreinforced matrix, l  is the size of particulate parallel to 

the loading direction, and t are the size of the particulate perpendicular to the loading direction. 

When equiaxed particles are presented this equation may be reduced to: 
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Another strengthening mechanism is the Hall-Petch Strengthening, where the nanoparticles act 

as heterogeneous nucleation sites for the grains during the solidification process and enhance the 

formation of a large number of grains. The grain growth takes place at the same time forming 

fine equiaxed grains which can hinder the dislocation movement due to the large grain boundary 

area. Furthermore, the difference in the orientation and the high lattice disorder at the grain 

boundaries restricts the dislocations movement on a continuous slip plane. In wrought alloys, the 

nanoparticles restrict the grain growth during high-temperature plastic formation by hindering 

the thermally excited grain boundaries migration [1]. The Hall-Petch Strengthening is one of the 

dominant mechanisms in MMNCs strengthening and can be expressed by: 

 

[80] 

Where ky is the strengthening coefficient (characteristic constant of each material). 

 

Studies showed that MMNC’s containing multiscale reinforcements and grain sizes provide the 

majority strengthening improvements by Hall–Petch mechanisms while the Orowan 

strengthening mechanism only provides a minor contribution with a large overlooking of the 

nanoparticles effect on the resultant grain size. During particle pushing, the nanoparticles with 

below a particular size are pushed ahead of the solidification front restricting the grain growth. 

The energy required for pushing varies from a point to another and could be less than the energy 

needed to branch a dendrite, which promotes the nucleation of new fine grains attributed to an 

increase in the mechanical properties. When nucleation occurs around nanoparticles, the grain 

size could be severely reduced, but the experimental results did not show that the nucleation 

occurs around the nanoparticles. The grain growth restriction caused by nanoparticles could be 

related to the lower thermal conductivity of the reinforcements which affects the temperature 

gradient at the solidification front preventing heat removal needed for further solidification. 

Moreover, the particles may hinder the solute diffusion at the dendrite tip causing concentration 

gradient change and limiting their growth [107]. 

Another concept relates the strengthening in the MMNCs to the difference in thermal expansion 

coefficient and elastic modulus between particles and matrix. During cooling from processing 

temperature and straining of the material, the thermal stresses arise around nanoparticles. The 

stress level is often sufficient to induce plastic deformation, which promotes the formation of 

geometrically necessary dislocations (GNDs) and increases the dislocation density in the matrix. 

The GND density due to CTE and EM mismatch can be expressed by:  
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[80] 

Where A is a constant related to the material geometry, Δα is the difference in the thermal 

expansion coefficients, and  ΔT represents the temperature difference between test and 

processing or heat treatment temperatures. The combined strengthening based on the CTE and 

EM mismatch can be calculated using the Taylor equation [78]:  

 

[80] 

where β is a constant. 

The final strength of the MMNCs could be a function in all the above contributions composite. 

The final composite strength was proposed by several methods considering the effects 

superposition. One of these methods introduces the final strength calculation as a function in all 

the single strengthening contributions. 

 

[80] 

 

With considering Orowan strengthening mechanism, CTE mismatch effect, and load-bearing 

effect the final strength could be calculated according to: 

 

[80] 

where A refers to CTE mismatch and B is the coefficient related to Orowan effect. 
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[80] 

The final strength of the MMNCs was not covered by enough research, thus the approaches are 

reported without a deep discussion and a fair comparison between each method [1]. 

2.6 Recycling of the MMNCs 

Recycling is one of the most important criteria which determines the economic future of a certain 

material. The importance of recycling raises due to the natural environment preservation, energy 

saving, and wastage reduction especially for the massive production amounts like automotive 

industry. The term recycling differs than reclamation which involves the separation of the 

nanoparticles and the matrix using de-wetting processes. The efficiency of the recycling process 

is determined by the ability of the MMNC to restore its properties and microstructure as that of 

the as-fabricated state. During multiple recycling, the extreme reactivity resulted from the high 

temperature and the contact between the matrix and nanoparticles could have a remarkable effect 

on the interfacial characteristics and the particles distribution. Furthermore, causing metallurgical 

changes which hinder the MMNC properties. A recent contribution of re-melting a magnesium 

AZ31 reinforced with Al2O3 nanoparticles by using disintegrated melt deposition method and 

then hot extruded, showed that the recycled nanocomposite did not show any significant change 

in microstructure and mechanical properties. The research in this concern is very limited and 

more studies should be issued to cover the recycling process parameters with a reliable 

determination of the cost and energy effectiveness [15]. 
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3 Experimental Procedures 
 

This chapter introduces the material processing and fabrication method, as well as the mechanical 

and functional tests carried out to identify the AMNCs characteristics. Firstly, the used materials, 

i.e. matrix and reinforcement particles are specified, and the purpose of their selection is given. 

Afterwards, the AMNCs production scheme is described. Furthermore, the methods used for 

evaluating microhardness, surface roughness, residual stress, wear and corrosion resistance, 

fatigue and creep behavior are described. Therefore, the output of this chapter is an extensive 

description of the Al6061/Al2O3 AMNCs and their mechanical / functional performance.  

3.1 Materials 

The metal material nanocomposites consist of at least two main elements, which are the matrix 

and the reinforcement. Other alloying elements may be added based on the composition and the 

intended application. In this work the matrix used was commercial Aluminum-Magnesium-

Silicon-Copper (Al6061). The chemical compositions of this alloy (in wt. %) was determined 

using Spectrometer (Spectrolab; Spectro Analytical Instruments, GmbH) and it is illustraded by 

Table 3.1. The Aluminum matrix was used reinforced by Al2O3 nanoparticles provided by the 

company Alfa Aesar Germany having the properties indicated in Table 3.2.  

Table 3-1: Chemical of Al6061 alloy (wt.%) 

Element Si Fe Cu Mn Mg Zn Cr Pb Ti V Zr Al 

Wt. % 0.7834 0.5229 0.3218 0.1387 0.932 0.0534 0.2804 0.005 0.0351 0.01 0.0125 96.9037 

Table 3-2: Al2O3 nanoparticles properties 

Material/ Purity Al2O3 nanoparticles/99.5% 

Average particle size 40-50 nm 

Melting point/ Boiling point 2045°C/2980°C 

Molecular weight/ Specific density 101.96/3.89 

Surface area 32-40m2/g 

Phase/ Morphology γ/ Near-spherical 

Refractive index 1.768 

Solubility Slightly soluble in strong acid and alkaline solution. Insoluble in water. 
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The aluminum 6061 alloy was chosen because of its attractive properties of relatively high 

strength to weight ratio, excellent joining characteristics, good workability, and high corrosion 

resistance. Furthermore, the alloy is widely used in many applications such as in aircraft fittings, 

electrical fitting and connectors, couplings, brake pistons, and other applications in the marine 

industry and structural parts. The solidus temperature of the Al6061 is 582 °C while its liquidus 

temperature is 652°C possessing a microstructure of α Aluminum and Mg2Si precipitates at room 

temperature under temper condition [1]. The alumina nanoparticles were a good choice as 

reinforcement particles due to its common usage in the fabrication of AMNCs owing to the 

interesting combination of density, and effect on the enhancement of the AMNC after its addition, 

good dispersion in the matrix and its relatively low cost [3]. The Al6061 was received in the form 

of a plate with the dimensions 50×100×800 mm and was cut into small pieces weighing about 

500gm by using an electrical metal cutting saw to give a more precise reading during weighing 

and speed up the melting process, as well as to fit into the crucible. The small aluminum blocks 

were washed and dried to remove any contaminations from chips, water, or greases after the 

cutting process. The quantity of the aluminum matrix and the nanoparticles were weight using a 

digital balance with an accuracy 0.001 gram.  

3.2 Fabrication 

An electrical resistance furnace was utilized for both melting the charge and holding the 

temperature during the stirring process. Each cast consisted of 1 kg of Al 6061 held in a graphite 

crucible. The Aluminum oxide nanoparticles were packed into aluminum foil packets with 

diameter 3 cm and length of 4cm; each pack was set to contain 5 grams of Al2O3. The packets 

were preheated to 300°C for 30 minutes for drying and preventing any agglomeration due to 

humidity; then they were introduced into the molten metal at a rate of 5 g\min. The charge was 

heated to 750°C, and a thermocouple of type K was used to control the temperature during 

melting, before and after mechanical stirring and just before pouring. The mechanical stirrer 

(Figure 3.1) was dipped into the melt at 750°C with a speed of 450 rpm for 15 min. The 

nanoparticles were added during the stirring process and just after the vortex in the melt was 

created. After finishing the stirring process, the melt was poured at a temperature of 675°C into 

a cylindrical-shaped steel mold with a diameter 50 mm and 150 mm length.  The pouring 

temperature was higher than the liquidus temperature of about 25°C to ensure proper pouring 

without an undesirable solidification caused by heat loss while transferring the molten metal from 

the melting furnace to the mold. The cast cylinders were then homogenized by soaking them in 

an electrical resistance furnace at a temperature of 427°C for two hours followed by furnace 

cooling with a cooling rate of 28°C per hour to 260°C and then air cooling to the room 

temperature. The homogenized cylinders were cut by an electrical saw and subjected to age-

hardening temper T4 heat treatment after cooling down to the room temperature. The heat 

treatment was taken place in an electrical resistance air furnace by increasing the temperature of 

the fabricated cylinders to 530ºC reaching the solution temperature of the Al6061, and the 

temperature was held for 90 minutes to complete the solution treatment through delivering the 

material to the single-phase zone. The samples were then quenched in water to the room 
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temperature to reach the supersaturated solid solution with a quenching delay time did not exceed 

11 seconds. Finally, the samples were naturally aged at room temperature for four days to enable 

the formation of the final Mg2Si precipitates which are attributed to increasing the hardness and 

tensile properties of the aluminum alloy. To accentuate the effect of different amounts of 

nanoparticles addition on the enrichment of the composite performance, several weight fractions 

of Al2O3 were used having the weight fractions of 1, 2, 3, and 5%. 

 

 

Figure 3-1: A Schematic drawing of the melting furnace and mechanical stirrer, b. Photograph of the furnace and 

the stirrer, c. The steel mold, and c. The casted sample 

The casts were labeled according to the amount of the nanoparticles (weight fraction) added 

during reinforcement and indicated in Table 3.3. 

Table 3-3:Samples designation 

Sample 

name 

As-Cast 1% 2% 3% 5% Recy 1%SPD 

Condition Without 

Al2O3 

addition  

1 wt.% 

Al2O3 

2 wt.% 

Al2O3 

3 wt.% 

Al2O3 

5 wt.% 

Al2O3 

Recycled 

of the 1 

wt.% 

Al2O3  

1 wt.% 

Al2O3 and 

sever 

plastic 

deformation 

 



32 3. Experimental Procedures 

 

 

Two other categories of samples were fabricated; the recycled samples to investigate the 

recyclability of AMNCs and the SPD (sever plastic deformed) samples to study the effect of 

sever plastic deformation on the performance of the MMNCs.  

The recycled samples were manufactured by re-melting of the 1wt.% samples after finishing the 

conducted experiments on it and with the same manner of AMNCs fabrication. The samples were 

melted in the electrical resistance furnace and then its temperature was raised to 750°C with the 

application of the mechanical stirring for the same time of 15 minutes but without any further 

addition of Al2O3 nanoparticles. 

The sever plastic deformation was conducted to the 1wt.% samples by rotary swaging (Figure 

3.2). The process involves the closing and opening of the spindle dies several times during 

rotation cycle depending upon the number of rollers in the roller cage (B) and the number of dies 

used (D) with a closing time of 12 in one cycle. The spindle typically rotates at 300-500 rpm, 

with striking the rollers (B) by the hammer blocks during each cycle. The feeding occurs either 

automatically or manually with a little effort from the operator because of the frequent opening 

and closing process of the dies during swaging. The rotary swaging process was conducted after 

the manufacturing of the AMNCs and performing both homogenization and age-hardening heat 

treatments with a degree of deformation(φ=lnA0/Af) 1.86 by reducing the diameter from 28mm 

to 11mm. 

 

Figure 3-2:Schematic picture of a typical swaging unit [108] 

3.3 Microstructure evaluation 

Small samples were cut from the cast cylinder for the metallographical purpose. The 

microstructure samples were hot mounted using a Struers Labopress-1 hot mounting machine 

using Polyfast (bakelite and carbon filler), pressing force of 25 N and 10 minutes pressing time 

at temperature of 150°C. Small molds with a cylindrical shape having a diameter of 30 mm and 

length of 15 mm containing the samples were ground on four stages using emery papers of mesh 

number 320, 800, 1200, 2000 respectively the grinding direction 90ºin each stage. Then the 

samples were polished on two steps by using an (Struers RotoPol-35) automatic polishing 

machine through using a soft polishing cloth impregnated with water and diamond suspension 
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(Dia-Duo 2) of 6, 3, and 1µm respectively as a polishing media. The process parameters were 20 

N pressing force, 250 rpm rotating speed in the opposite direction of the samples holding arm, 

and for 15 minutes for each stage. Etching of the samples was carried out with two different 

etchants. A general porpuse reagent consisted of 0.5% HF with the balance distillated water was 

used for the grain size identification and microstructure examination by immersing the sample 

with a slight motion in the etchant for 20 seconds. Then washing it with water for three minutes 

followed by washing in an ultrasonic bath for another three minutes, and finally dried by hot air 

blowing. Weck’s etchant with a composition of (100 mL water- 4 g KMnO4 -1 g NaOH) and 20 

second immersion time was utilized for the polarized light examination. The Weck’s tent etchant 

using polarized light was used to make the large-scale agglomerations better to be identified 

under the optical microscope. An (Zeiss Axioplan 2) optical microscope with an integrated 

camera connected to the computer was employed for the microstructure investigations of both 

etchants at different magnifications. The EDX measurements and the microstructure 

characteristics were examined by an energy dispersive X-ray spectroscopy (EDX) using Ultra Dry 

Compact (EDS) Detector from (Thermo-Scientific) and (Hitachi X650) scanning electron 

microscope with an accelerating voltage of 20 kV.  Both ImageJ program and the Planimertic 

(Jeffries’) procedure were employed to calculate the α-Aluminum grain size, the amount of 

porosity and agglomeration size. As a reference condition for fatigue test, electropolishing (EP) 

was implemented by using an electrolyte containing 60% Perchloric acid and water, a cell voltage 

of 24V, and temperature about -20ºC for 30 minutes, to achieve a layer thickness removal from 

50 to 100µm.  

3.4 Mechanical characterization: 

3.4.1 Tensile test and Hardness measurements: 

Tensile test samples were machined in accordance with DIN 50125 having the dimensions shown 

in Figure 3.3. 

 

Figure 3-3: Tensile test sample dimensions 

The tensile test was conducted at 50KN force Instron 5582 universal testing machine with 

1mm/min strain rate at both room temperature and 300°C using. The tensile test at 300°C was 

conducted using a furnace supplied by ATS company (Applied Test Systems). The furnace was 
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utilized to heat the test sample before testing and to maintain its temperature during the test. For 

the tensile test at elevated temperature, the furnace was set to 300°C without installing the test 

sample to the tester grips. After reaching the test temperature, the sample was griped, and the test 

started.  The constant speed v=1mm/min corresponds to an initial strain rates of 6.7x10-4 s-1. The 

tensile properties, yield strength, tensile strength, tensile ductility, uniform strain and tensile 

elongation were measured.  

A (Wolpert Wilson) hardness tester, through implementing Vickers’s indenter, was used with 5 

Kg load for the hardness measurements. The indenter was a highly polished, pointed, square-

based pyramidal diamond with face angles of 136° ±30 min. The hardness measurements were 

conducted on the polished surface of the samples by taking the average of three points with 

enough spacing between each measurement, to prevent interaction between readings due to the 

plastic deformation caused by the indenter. The microhardness was performed by a Struers 

Duramin tester conforming DIN EN ISO 6507 and having a square base pyramid shaped indenter 

for testing (Vickers tester) using 50gF and a loading time of 15 s with taking the average of three 

measurements at each depth. The test was conducted to a 0.9 mm depth from the surface in a line 

with 0.05 mm spacing between each measuring point. The main objective of the microhardness 

measurements was identifying the effect of the shot peening and the roller burnishing as 

mechanical surface treatments on the surface hardness of the samples, as well as determining the 

hardness of some phases appeared in the microstructure. The microhardness measurements were 

taken place on a polished surface. The measurements followed the sequence of pressing the 

indenter on the mechanically polished surface sample by the loading force and maintained for a 

dwell time of 10 to 15 second. After the dwell time is completed, the indenter is removed leaving 

an indent in the sample that appears square shaped on the surface. The size of the indentation is 

determined optically by measuring the two diagonals of the square indentation. The hardness test 

was taken on transverse surface section of shot peened, roller burnished, and electropolished 

specimens.         

3.4.2 Fatigue test 

The fatigue tests were carried out by a (Sinco-Tech) rotating beam fatigue machine with a 

frequency of 50 hertz using cantilever rotating beam mechanism and loading (R = –1) both in air 

and 3.5 wt.% NaCl solution at room temperature. The fatigue strength was set at a fixed number 

of cycles for 107 cycles. The test was conducted on the electropolished reference samples as well 

as the mechanically surface treated samples. The fatigue samples were machined to an hour-glass 

shape conforming the ASTM-E466 with minimum gauge diameter of 6 mm as shown 

schematically in Fig. 3.4.  
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Figure 3-4: (A) The fatigue test specimen and (B) Corrosion fatigue cell 

3.4.3 Creep-rupture test: 

The test involved the measurements of the progressive specimen deformation and the time for 

rupture. The Creep (rupture test) was conducted by using an ATS series 2330 Stress Relaxation 

single-station direct load creep tester at constant stress amplitude of 40 MPa and 300°C 

conforming ASTM E139-00 designation (Figure 3.5). The creep tester had a capacity of 13.34 

kN and 10:1 ratio using an ATS furnace series 3210 with 2640 Watts, 230 Volts, and maximum 

temperature of 1200 °C. The condition of 1wt.% Al2O3 was subjected to different creep-rupture 

tests at different stress amplitudes and constant temperature of 300°C to investigate the effect of 

the shot peening with different shots medium and Almen intensities on the creep behavior of the 

AMNC. Before the test start, the extensometers were calibrated and checked as well as the 

thermocouples. The test aperture used two extensometers for measuring the total plastic strain 

during the test and the temperature was controlled by using three thermocouples of type K during 

the soaking and test period. After the sample installation, the test machine furnace raised the 

sample temperature to the test temperature during a soaking time of two hours with a heating rate 

555 °C/Hr. Just after the soaking process, the tester proceeded to the load application and the test 

continued until the specimen rupture.  

 

A B 
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Figure 3-5: Creep-rupture test machine and specimen. 

The creep data acquired from the test were the percentage of the total plastic deformation and the 

time to rapture under constant stress. These data were processed to identify the minimum creep 

rate by plotting the percentage of total plastic deformation divided by the run time in sec against 

the run time in sec.  Another output of the creep test is the creep compliance “Ccrp”, which is 

simply presented by the ratio of the strain to stress. The creep compliance roughly proportions 

inversely with the stiffness, which means a compliant material is a non-stiff material [35-36].  

3.4.4 Wear resistance test: 

Samples of each condition were taken and machined to have a rod profile with a diameter of 7.9 

mm and length of 12 mm. The test machine uses a pen on disk testing mechanism with 265 rpm 

speed, 0.7 Bar load and 15 min test time. In this mechanism (Figure 3.6), a pin of the sample is 

loaded against a flat rotating steel disc. The machine is used to evaluate wear and friction 

properties of materials under pure sliding conditions. The wear rate was determined by weighing 

the sample before and after the test carefully with a precision balance, and the wear rate was 

Heating 

furnace 

Control 

Panel 

Sample grip 

Sample 

Thermocouples 

Extensometer  
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represented by the weight loss (the difference in the weight) of the sample and indicated by 

(µg/m) 

        

b) arrangement on samples                 b) geometry of pin 

Figure 3-6: Schematic of a pin-on-disc wear test and the arrangement of samples [109] 

3.5 Mechanical surface treatments 

The mechanical surface treatments have a significant influence in enhancing the fatigue life of a 

certain material by inducing compressive residual stresses on the surface generated from the 

increased dislocation density after plastic deformation of a particular area. The samples were 

mechanically surface treated by shot peening and roller burnishing. 

3.5.1  Shot peening 

Shot peening was carried out using an automatic controlled shot peening machine manufactured 

by OSK-Kiefer GmbH (Figure 3.7). A pressure-suction system controlled the machine. The shot 

media was a spherically conditioned cut wire (SCCW 14), with an average diameter of 0.36mm 

and a hardness of 700 HV1. During the peening process, the rounded shots were accelerated by 

a stream of highly pressurized air and projected through a nozzle onto the specimen surface. The 

shots bombard the sample at a specific area with an adequate force acts as a peen hammer and 

ensures the creation of a small dimple, accompanies with a plastic deformation and high 

compressive residual stress on the surface. Shot peening is not only used for inducing 

compressive stresses, but also relieving tensile. The peening process is controlled by both the 

material strength and the shot peening parameters like peening media, peening intensity, peening 

angle, exposure time, and the degree of coverage. During shot peening, the distance between the 

nozzle and samples was kept at about 90 mm, and the samples were slowly rotated to obtain a 

roughly 100% coverage after 20 seconds. The Almen strip used to determine the Almen intensity 

was of type A having a thickness of 1.3 mm and made of SAE 1070 steel.  
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Figure 3-7: The shot peening machine and a schematic drawing of the bombarding of the shots with the sample. 

3.5.2 Roller Burnishing: 

The samples were roller-burnished (RB) using a conventional lathe (Weiller, Matador), equipped 

with a hydrostatically burnishing tool from ECOROLL Company (Figure 3.8).  

 

 
 

Figure 3-8: Hydraulic roller-burnishing machine. 

The cylindrical roller was made of steel EG45 (ɸ = 5 mm) mounted in a holder, behind which a 

hydrostatic pressure was applied to generate a normal force on the surface. The sample was fixed 

in a holder and clamped to the conventional lathe. A hydraulic piston supported the holder to 

produce a constant regular rolling force at all contact points on the surface. The workpiece was 

spinning, and the roller was moved at a constant rate across the surface to deform the surface 

layer plastically with the introduction of a hydraulic fluid of water mixed with 3.5% oil as a 
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lubricant around the roller. The purpose of the hydraulic lubricant was to avoid the thermal 

friction and sticky contact with ensuring a free rotation of the roller in any direction. 

3.5.3 Optimization of the shot peening and roller burnishing parameters: 

The optimization of the shot peening and roller burnishing parameters were taken place on a 

wrought Al6061-T4. The shot peening optimization was carried out at a wide range of different 

pressures adjacent to variable Almen intensities (Table 3.4) and constant parameters of 

impingement angle of 90º, a separating distance between the workpiece and the nozzle of 90mm 

using shots of type SCCW 14 with average size 0.36 mm. The Almen intensities (Figure 3.9) 

were measured by identifying the arc height of the Almen strip type A after different peening 

time by using the Almen gauge. The SSCS program (Saturation Curve Solver by Shockform 

Aeronautique Inc.) was utilized to process the data of the arc height and the time to determine 

the Almen intensity values. 

Table 3-4: The corresponding Almen intensity at different pressures 

Peening pressure(bar) Almen intensity(mmA) 

1 0.1 

2 0.14 

3 0.16 

3.5 0.17 

4 0.2 

5 0.22 

6 0.23 

 

 

Figure 3-9: Example for calculation of the Almen intensity at 4 bars using SSCS program. 

The roller burnishing optimization was undergone at constant feeding rate of 0.122 mm/rev, 

rotating speed 150 rpm and different pressures (0.3, 0.5, 0.7, 0.8, 1 and 1.2 bar). The optimization 

of the shot peening was conducted based on the fatigue performance, the microhardness of the 
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samples in the layer adjacent to the surface and the surface roughness of the samples after the 

mechanical surface treatments. Figure 3.10 a and b indicate the number of cycles to failure at 

constant stress amplitude of 225 MPa and at 250 MPa for shot peened roller burnished conditions 

respectively. 

 

 
 

 

Figure 3-10: Number of cycles to failure of different Almen intensities and burnishing pressures conditions 

 

The highest fatigue strength was obtained at 0.2 mmA Almen intensity and at burnishing pressure 

of 0.8 bar. The concept of mechanical surface treatment is to generate localized plastic 

deformation on the workpiece surface. High dislocation density identifies this layer with a 

thickness can reach to 0.2mm in shot peened and might be extended to 0.5mm in roller burnished. 

In this region, increasing the Almen intensity or burnishing pressure raising both the hardness 

and the amount of residual stresses stored in this area to a definite value. At a certain Almen 

intensity or burnishing pressure, further increase may lead to a saturation of the dislocation 
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density, and the hardness stops to have a constant value and reach the “over-peening” or “over-

burnishing”. The term “over” describes the state of the material under heavy plastic deformation 

and thermodynamic instability, which may cause internal stress relief and decrease the amount 

of compressive residual stresses. When the process reaches this stage, localized high-stress 

concentrations or crack initiation sites are found in the material resulting in a reduction in the 

fatigue life [6-7,110-112]. 

 

 

Figure 3-11: Surface roughness of selected samples under different surface treatments. 

The fatigue behavior is affected by the crack initiation (which depends on the surface roughness) 

in the low cyclic fatigue. On the other side, the fatigue strength is more influenced by the crack 

propagation in the high cyclic fatigue, which is controlled by the amount of the induced 

compressive residual stresses. The surface roughness has a functional role in affecting the fatigue 

life by retarding or stimulating the crack initiation [6-7]. From Figure 3.11, it is evident that shot 

peening increases the surface roughness compared to roller burnishing and electropolishing. 

However, the final fatigue life is a function of the amount of compressive residual stresses (Figure 

3.12), the surface layer hardness (Figure 3.13), and the surface roughness. The smoother surface, 

the lower probability of the crack initiation. However, the compressive residual stresses squeeze 

the grain boundaries and thus delay the fatigue crack initiation. Forasmuch, the crack initiation 

or propagation are difficult to occur in the layer of compressive stresses. Therefore, the cracks 

initiate under the surface with a significant slow propagation rate leading to a prolonged fatigue 

life [6-7,113-115]. 
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Figure 3-12: Residual stresses profile for shot peened and roller burnished conditions 

  

 

Figure 3-13: Microhardness of shot peened and roller burnished samples 

3.6 Surface roughness 

The surface roughness of the various surface treatments was measured using an electronic contact 

(stylus) profilometer instrument (Perpethometer). The Perthometer profilometer S8P supplied by 

the company Perthen Mathr using tester of RFHTB-250 of radius 5μm, force 1.3mN, 

measurement angle 90º and 250μm measurement distance. The roughness parameter such as the 

arithmetic average roughness Ra, the maximum roughness height Ry and ten-spot average 

roughness Rz were determined and evaluated. Ra is the arithmetic mean of the absolute values 

of the roughness profile ordinates. The area within the roughness profile and its mean line, or the 

aggregate of the absolute height value of the roughness profile over the evaluation length refer 

to the average roughness. Ry or (Rmax) – Maximum height of the roughness profile is the sum 
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of the highest profile peak height and the depth of the lowest profile valley within a sampling 

length. Rz is the parameter that averages the five highest peaks height plus the depth of the five 

deepest valleys over the evaluation length. The calculations were performed by taking the 

average of three values in accordance with (DIN 4768).  The parameter (Rz) was used rather than 

the average roughness (Ra) comparing all the peaks and valleys to the mean line, since entirely 

different surfaces could have the same Ra and consequently perform differently [74]. 

The surface roughness is used to measure the surface texture and quantified by the vertical 

deviations of a real surface from its ideal form. Large deviations are indications for a rough 

surface with higher friction coefficients. Contrary, when these deviations are small refer to a 

smooth surface with lower friction coefficients. Roughness contributes significantly to determine 

how a real object will interact with its environment. The mechanical performance of an individual 

mechanical component could be predicted from the surface roughness value, where the 

irregularities in the surface may act as nucleation sites for cracks or corrosion causing a lower 

fatigue life and corrosion resistance [74]. 

3.7 Residual stresses measurements by Incremental Hole Drilling Method (IHD) 

The incremental hole-drilling method (IHD) according to the ASTM E 837–01 was used to 

calculate the residual stresses from the values of the residual strain. The IHD method involves 

attaching strain gauge rosettes of 0.8 mm diameter (EA-06-03RE-120 supplied by VISHAY 

Company) to the sample surface and introducing a hole in the vicinity of the gauges by drilling. 

Then, measuring the relieved strain using an oscillating drill with 1.9 mm diameter driven by an 

air-turbine with a rotational speed of 200000 rpm. The induced strain in the surface layers were 

measured at each drilled depth of about 20 μm. The relieved principal stresses were calculated 

from the measured strains through a series of equations using the macroscopic Young’s modulus 

and Poisson’s ratio. A strain gauge rosette with three elements of the general type schematically 

illustrated in Fig.3.14 is placed on the area, to be measured. The numbering scheme for the strain 

gauges follows a clockwise convention. A hole is drilled at the geometric center of the strain 

gauge rosette to a depth of about 0.4 of the mean diameter of the strain gauge circle and then the 

residual stresses in the area surrounding the drilled hole relax. The entire measurement process 

is PC-controlled, which ensures a high degree of measurement reliability and good 

reproducibility [74]. 
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Figure 3-14:Hole-drilling machine and rosette [74] 

3.8 Corrosion resistance: 

Corrosion rate was estimated by using a computer controlled VersaSTAT3 potentiostat from 

Princeton Applied Research company with round bottom cell. The composition of the electrolyte 

used was (in g/L) 35 NaCl dissolved in distillated water.  The electrochemical test was used to 

directly amplify the impact of corrosion processes to accelerate the corrosion process. This was 

possible since electrochemical tests use a fundamental model of the electrode kinetics associated 

with corrosion processes to quantify corrosion rates. The experiments were performed according 

to ASTM G5-94 in a conventional three-electrode cell with a counter electrode of a platinum 

sheet including placing the Haber Luggin capillary close to the working electrode at room 

temperature. The potential values were reported relevant to saturated calomel electrode (SCE). 

The potentiodynamic polarization experiments were conducted after stabilization of the free 

corrosion potential among a scan rate of 1 mV/s. The samples were prepared by connecting a 

copper wire to one face of the specimen. The specimen with the attached wire were then cold 

mounted in resin and dried in air for 24 h at room temperature. The samples were consecutively 

wet ground with 800, 1200, 2000 and 4000 SiC paper and then polished sequentially using 1 and 

0.3 µm alumina suspension. The samples were cleaned ultrasonically in an acetone bath and dried 

in a cold air stream before the electrochemical measurements. The Tafel extrapolation method 

was used to determine the corrosion rate [108]. The Corrosion rate (in mpy), which was extracted 

from the extrapolation of the Tafel lines of each polarization curve, is calculated by the following 

equation: C.R. = (Icorr × K × EW)/ (ρ × A)  

Where Icorr = corrosion current density in Ampere (A), K = constant that defines the units of 

corrosion rate (1.288 × 105 mils/A cm year), EW = equivalent weight in (g/equivalent), ρ = 

density and A = sample area in cm2. The equation indicates that corrosion rate is directly 

proportional to corrosion current density [108]. 
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Figure 3-15: Schematic diagram of polarization of the three-electrode cell [108] 

3.9 Weldability of the AMNCs 

The weldability of the similar AMNCs was investigated by the rotary friction welding technique. 

Figure 3.16 illustrates the rotary friction welding machine used in the experiments supplied from 

IWS Service GmbH and of type RSM 200. The device is pneumatically driven having 1.85 kW 

power with an axial load capacity of 18 kN and can run at speed up to 23000 rpm. The friction 

welding process is controlled by the friction time or by the burn-off distance. Thus, the machine 

is a direct drive system. The welding samples were machined to have a diameter of 8 mm and 40 

mm length with smooth oxide-free surfaces to ensure perpendicularity which is significant for 

achieving sound weld joints. 

 

Figure 3-16:The used rotary friction welding machine RSM 200 [116] 
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The program Minitab 17.0 was used based on two different design of experiments (DoE) to 

identify the main friction welding parameters affecting the weld quality. Process variables were 

friction pressure, friction time, forging pressure, forging time and rotational speed. While the 

output variable (response) were the material loss and as-weld joint tensile strength. In this work, 

both Taguchi and factorial design approaches were used. Both approaches consist of a series of 

runs in which purposeful changes are made to the input variables and data were collected at each 

run. For the factorial design approach, two-level full factorial design matrix with three replicates 

has been used to create the design of the experiments. The Taguchi approach is based on 

executing one large comprehensive experiment and evaluating the data by analyzing the variance 

in terms of measured Taguchi function (known as a signal to noise ratio).  

The welded joints quality depends on the amount of plastic deformation occurred after the 

welding process, the tensile strength of the welded joint and the fracture position (rejected when 

it is found on the weld line) [116]. A set of experiments has been conducted according to the data 

obtained by the two different approaches based on the input variables. The objective of the 

optimization was to obtain a maximum weld joint strength with a minimum final length 

reduction. The welded joints investigation based initially on visual examination and a 

macrostructural evaluation. Then, the welded samples were examined by metallographic means 

of microstructural evaluation to evaluate the metallurgical transformations, that took place within 

the joints. As a last characterization step, the mechanical properties of welded specimens were 

tested by the tensile test and microhardness measurements. The specimens were machined with 

flash removing to fit the test geometry. Tensile tests were carried out at room temperature (RT) 

under the (DIN 50125) standard with testing minimum three specimens at each attempt to obtain 

the mean value. Tests were carried out by an Instron 5582 universal testing machine using load 

of 50 kN, with straining rate of 1 mm/min. The microhardness was measured using a Struers 

Duramin tester of a square base pyramid shaped indenter for testing by a Vickers tester having a 

nominal force of 50 gf (HV0.05) and a loading time of 15 s in accordance with the DIN EN ISO 

6507 standard. The average of three measurements was taken at each depth to construct the 

hardness-depth profiles. 
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4 Results and Discussion  
Based on the systematic research methodology and the experimental procedures described 

earlier, the metallurgical, mechanical, and functional tests will be presented and discussed in 

detail in this chapter to accentuate the role of nanoparticles addition on the Al6061 performance. 

4.1 Microstructure evaluation 

Microstructural analyses of each condition were carried out using Optical Microscopy (OM) and 

Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray spectroscopy (EDX) 

analysis. OM is used to characterize the casting structure and quantitatively assess the porosity 

and the grain size as well. While SEM and EDX were used to evaluate the agglomeration of the 

nanoparticles, elements distribution, and precipitations on grain boundaries. The objective of this 

section is to elucidate the dependence of the microstructure on the processing variables including 

mainly the Al2O3 weight fraction and the mechanical stirring regime. 

 

4.1.1 Fundamental characterization of the Al6061 matrix 

The microstructures of the as-cast Al 6061-T4 matrix are illustrated in Figures 4.1 A and B. The 

Figures indicate the microstructure obtained by general purpose reagent (0.5 % HF and the 

balance distillated water) using monochromatic light and Weck’s tent etchant using polarized 

light at magnifications 200X and 500X. 

 

  

 

 

 

 

 

 

 

Figure 4-1: Microstructure of As-Cast Al6061; A. using general purpose etchant at magnification of 200 and 

500X, B. using color etchant at magnification of 200 and 500X 

The main constitutes of the microstructure are α-Aluminum phase and Mg2Si precipitates. The 

microstructure is characterized by coarse grain size (about 90µm) caused by the relatively slow 

cooling rate (air cooling) during solidification after the casting process. The SEM micrographs 

are indicated by Figure 4.2 side by side with the EDX analysis of different regions in the matrix. 

Some intermetallic compounds were captured in the matrix and listed in Table 4.1. The SEM 

micrographs demonstrate the presences of typical porosity in the as-cast samples during casting 

and the existence of the Mg2Si precipitates on two scales; large clustered precipitates (represented 
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α-Al 
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by bright filed on the micrograph (Figure 4.2 A)) and the other was fine precipitates appeared as 

a dark colored field on the SEM micrograph (Figure 4.2 B). The precipitates are distributed both 

along the grain boundaries and inside the grains. Figure 4.3 and Table 4.1 utilize the presence of 

some iron-rich phases (such as Fe3SiAl12, Fe2Si2Al9, or a mixture of them depending on the 

distribution of magnesium, silicon, and iron among the matrix) on a small scale [1,9,14]. The 

small amounts of manganese and chromium (0.13 and 0.2 %) in the alloy could not fully 

overcome the negative effect of iron-rich intermetallic compound on the mechanical performance 

through the transformation of these Fe-rich intermetallic into less harmful morphologies. These 

thin plates or needle-like iron-rich phases are undesirable because they are difficult to be 

fragmentized and/or spheroidized during the annealing process because of the thin, smooth planar 

nature of their surfaces [117-120]. Moreover, they are thermodynamically stable under this 

condition which makes the formation of consolidated particles in aluminum matrix more 

difficult. These restrictions on the modification by heat treatment make the chemical 

modification the most convenient modification method of such phase [1,9,14]. 

 

     

    

Figure 4-2: SEM and EDX spectrum of the as-cast samples; A. SEM micrograph of the matrix, B. SEM 

micrograph of the Mg2Si precipitates in dark color, C. is the EDX of the as-cast matrix and D. is 

the EDX of the Mg2Si precipitates 
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Figure 4-3: EDX of some Fe3SiAl12 and Fe2Si2Al9 precipitates presented in as-cast micrographs 

Table 4-1: Chemical composition of the matrix and the Mg2Si precipitates for the as-cast condition 

Element Wt. % 

In the matrix 

Wt. % 

In Mg2Si 

Wt. % 

 A and B 

Al 97.72 97.45 76.49-79.65 

Mg 1.57 1.09 0.81-0.86 

Si 0.05 0.65 3.37-4.87 

Fe 0.11 0.21 13.87-15.68 

Cu 0.24 0.33 0.99-1.32 

Cr 0.20 0.18 0.63-0.72 

Mn 0.10 0.09 0.34-0.39 

Total 100.00 100.00 100.00 

 

A 

B 
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4.1.2 Characterization/Analysis of the Al6061/Al2O3 composites  

The microstructure of the 1wt.% Al2O3 composites consists mainly of α-aluminum and Mg2Si 

precipitates (Figure 4.4 A). Introducing the alumina nanoparticles to the Al6061 matrix with 

weight fraction of 1% leads to a decrease in the grain size of the α-aluminum. The grain 

refinement, occurred after nanoparticles addition, can be explained by increasing the nucleation 

sites during the solidification process or through pinning the grain boundaries causing a decrease 

in the dynamic recrystallization. [18-19]. 

 

Figure 4-4: Microstructure of Al6061 reinforced by 1wt.% Al2O3: A. using general purpose etchant at 200 and 

500X, B. using color etchant at 200 and 500X 

The grain size of Al 6061 matrix and composites containing different weight percentages of 

Al2O3 nanoparticles was measured using the planimetric (Jeffries’) procedure according to 

ASTM E112-96. The composites contain 1wt.% Al2O3 nanoparticles showed finer grain size with 

ASTM grain size number(G) of about 8.66 and average grain size of 17.88 μm. Furthermore, the 

distribution and morphology of nanoparticles in the Al 6061 matrix were difficult to be identified 

by the OM using the monochromatic light and general-purpose etchant. Thus, the microstructure 
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was examined by Weck’s etchant using Polarized light and is indicated by Figures 4.4 B and 4.4 

C. It is clear that, agglomeration of the nanoparticles was occurred, and the presence of porosity 

was observed. The agglomeration size of the nanoparticles and the amount of porosity were 

calculated based on the area fraction represented on the micrographs (Figure 4.5) and with the 

help of ImageJ program. The size of the agglomerated Al2O3 was about 2.15 μm and the micro-

porosity percentage was approximately 0.7% with an average size of 46µm.   

 

     

 

Figure 4-5: SEM and EDX of 1% condition showing some porosity and agglomeration of Al2O3 nanoparticles 

Further addition of  Al2O3 nanoparticles with different weight percentage leads to more 

agglomeration and porosity. Figure 4.6 indicates the optical micrographs of the nanoparticles 

additions with 2 and 3 wt.% to the Al6061 matrix. It is clear that the addition of alumina 

nanoparticles reduces the grain size of the α-aluminum but with a smaller impact compared to 

that resulted from the introduction of 1wt.% Al2O3. The retardation in the grain refinement can 

be explained by the lag in influence caused by the nanoparticle on pinning the grain boundary 

and restricting the grain boundary growth [45-47]. This influnce which resulted from the 

tendency of the alumina particles to agglomerate forming large clusters because of the low 

wettability and incorporation of particles within the melt. These clusters hinder the uniform 

dispersion of the particles in the matrix decreasing the ability of the nanoparticles to act as 

Element Line Wt. % 

Al Ka 95.52 

Mg Ka 0.79 

Si Ka 0.57 

Mn Ka 2.51 

Fe Ka 0.00 

Cu Ka 0.31 

Zn Ka 0.30 

Total  100.00 3O2Aggl. Al 

Porosity 
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nucleation sites of the newly formed grains and reduce the grain boundary pinning effect [46-

48]. The grain sizes of 2 and 3 wt.% were 45.83 and 52.41 µm respectively. 

 

   
  

Figure 4-6: Microstructure of composites; A. 2wt.% using general purpose etchant at 200 and 500X, B. 2wt.% 

using color etchant at 200 and 500X, C. 3wt.% using general purpose etchant at 200 and 500X, 

D. 3wt.% using color etchant at 200 and 500X 

The 5 wt.% Al2O3 composites differ in than the microstructure to the other addition of 

nanoparticles with the presence of β-Al5FeSi intermetallic phase (Figure 4.7). These intermetallic 

are responsible for the degradation in the mechanical properties of aluminum alloys such as 

tensile properties, fatigue strength, fracture toughness, and especially the ductility while it 

appears as a thin plate acting like needles in the microstructure [117-120]. The mechanism of β-

Fe intermetallic can be understood by the behavior of the liquid solubility of iron in aluminum 

alloys, which is 1.87 wt.% at 655 °C while its solid solubility at 570°C is only 0.052 wt.% and it 

decreases to less than 0.01 wt.% at 427°C. Therefore, the solidification and cooling processes 

provide an adequate driving force for forming Fe-rich intermetallic compounds with Al and other 

C D 
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alloying elements. The formation of β-Al5FeSi needles intermetallic compound can be taken 

place on the γ alumina at an angle of 70° to the tangent of intersection with alumina. Parent β-

needles involve in branching of smaller ones spanning across the matrix. The morphology of this 

phase is characterized by needle like shape with a probable range of existence of 30-35% Fe and 

6-12% Si and could be transformed into Chinese script in the presence of manganese forming α-

Al15(FeMn)3Si, which may reduce the harmful effect of that brittle hard phase in the soft matrix 

[117-120]. 

 

 
 

Figure 4-7: Microstructure of 5wt.% Al2O3 condition: A. using general purpose etchant at 200 and 500X, B. color 

etchant at 200 and 500X 

The β-Fe intermetallic has a monoclinic crystal structure, or tetragonal for the Chinese script 

(Figure 4.8 a) which makes its growth is limited mainly to two dimensions with the formation of 

large plates (Figure 4.8 b). Contrary, the α-Fe has a body-centered cubic structure with more 

uniform surface energy allowing the formation of a variety of morphologies by growing in three 

dimensions. However, the change in crystallization from β to α-Fe is limited by the 

transformation of γ-alumina to α-alumina at high temperature, which favors the formation of α-

Fe rather than β-Fe. The harmful effect of the presence of β-Al5FeSi in the 5wt.% Al2O3 condition 

is attributed to its stress raising potential based on its plate-like morphology, and its apparently 

brittle nature with a hardness of 196.3 HV0.05 compared to 45.7 HV0.05 of the matrix (Figure 

4.8 c). Furthermore, this brittle intermetallic compound increases shrinkage cavities and cracking 

during solidification by blocking the inter-dendritic channels resulting in hindering the melt flow 

to feed solidification shrinkage at the end of the solidification process [1,9-13,117].  
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Figure 4-8: A. Chinese script and B. thin plates of β-Fe intermetallic, C. microhardness of the β-Fe intermetallic 

and the matrix 

Element Wt.% 

point 1 

Wt.% point 

2 

Al 71.09 56.16 

Fe 21.41 34.17 

Mg 0.28 0.00 

Mn 1.59 2.35 

Cu 0.80 0.99 

Zn 0.16 0.12 

Si 4.67 6.22 

Total 100.00 100.00 

Element Wt.% 

Al 56.15 

Fe 34.11 

Mg 0.05 

Mn 1.53 

Cu 2.04 

Zn 0.09 

Si 6.03 

Total 100.00 

Matrix hardness HV0.05 β-A1FeSi hardness HV0.05 

45.7 196.3 

1 

 

2 

 

A 
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The presence of the β-Fe is also associated with porosity formation, which can be explained by 

the formation of these intermetallic on one side of the oxide film giving a chance to the remaining 

part to be pulled away from its unbonded side and sucked into the dendrite mesh leaving either 

shrinkage or gas pore depending on the poor feeding or the gas content [117-119].  

The modification of such intermetallic can be carried out chemically by the transformation of the 

β to α-Fe through adding some α-Fe stabilizers such as manganese, chromium, magnesium, 

strontium, lithium or beryllium which fix the oxide films in their convoluted state. Another 

approach to the removal of suspended oxide crack defects proposes using the precipitation and 

sedimentation of primary intermetallic compounds from the liquid metal. This method can be 

achieved by cooling the melt below the effective primary intermetallic precipitation liquidus and 

above the α-aluminum dendrites liquidus temperature which permits these primary intermetallic 

to precipitate on the oxide films and deposit in the bottom of the crucible because of its weight. 

[118-120] 

 

The microstructure of the recycled 1wt.% composites fabricated by re-melting of the 1wt.% 

Al2O3 samples is shown in Figures 4.9 A and B. 

   

 
 

Figure 4-9: Microstructure of recycled 1wt.% Al2O3: A. using general purpose etchant at 200 and 500X, B. using 

color etchant at 200 and 500X 

The microstructure demonstrates the presence of both agglomeration and porosity in the recycled 

AMNCs. However, the grain refinement effect of the nanoparticles on the α-aluminum is still 

dominant. The grain size of the recycled condition is about 36.86 µm. Comparing the 

microstructure of the recycled condition with the 1wt.% condition, it may be noticed that both 

the grain size and the agglomeration were raised in the recycled condition. The improvement in 

the microstructure of the recycled AMNCs compared to the monolithic alloy can be attributed to 

the proper mechanical stirring during of the melt which provided a uniform distribution of the 

nanoparticles in the matrix and permitted it to act as grain growth restrictions by pinning the 
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grain boundaries during the recrystallization process. This refinement effect is lower than that 

achieved by the 1wt.% because of the agglomeration of the nanoparticles as the remelting process 

does not involve introducing freshly added particles to the melt. In this case, the agglomeration 

does not happen between the nanosized particles but between the already agglomerated particles 

from the fabricated AMNCs with a larger size (Figure 4.10). 

The SEM micrograph (Figure 4.10) illustrates the presence of two constitutes in this particles 

cluster of gray and white components. The microstructure shows also clustered particles (dark 

spots) which were found to disperse along the grain boundaries or the dendritic arm boundaries 

within the matrix. The chemical composition of the white and gray constitutes was examined by 

the EDX and shown in the table in Figure 4.10. These clustered particles were found to be a 

cluster of Mg2Si, iron-rich intermetallic and Al2O3 [117]. 

 

                                                     

 

 

 
 

 

 

 

Figure 4-10: SEM and EDX of the recycled 1wt.% Al2O3 

The gray constitute of the clustered particles could be (according to the chemical composition 

from EDX) α-Al15(FeMn)3Si, where the white spots consisted of Al2O3 and Mg2Si. The formation 

of these clusters might occur during the growth of crystals or the solidification process with a 

size of approximately 10µm. The thermodynamic stability, temperature and time contribute to 

the consistency, growth, and clustering of these particles on the parent oxides which are Al2O3 in 

this case. Particles pushing, or entrapment occurs during the solidification based on their size or 

critical velocity of solidification front. Large particles (up to 100 microns) are entrapped within 

the grain boundaries causing blunting of the solidification front due to the thermal conductivity 

Element Wt.% of 

the gray 

phase 

Wt.% of 

the white 

phase 

Al 89.98 96.67 

Mg 0.96 1.49 

Si 2.05 0.16 

Fe 4.69 0.93 

Mn 0.71 0.23 

Cu 1.60 0.51 

 100.00 100.00 

Porosity 
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means. The solidification front is likely to push or entrap smaller particles (up to few microns) 

between secondary dendrite arms, and it was possible that particles or their clusters were pushed 

by the growing dendrites at the beginning of solidification and entrapped within inter-dendritic 

regions during solidification. The pushed particle towards grain boundaries acts as barriers to 

grain growth resulting in grain refinement on the final microstructure. The grain refinement and 

change in the grain morphology propose that the clustered particles may also act as heterogeneous 

nuclei. Such clusters contribute to improvements in the stress and ductility of the recycled 

composites. These enhancements can be governed by different strengthening mechanisms such 

as load bearing, grain boundary, and coefficient of thermal expansion mismatch [121]. 
 

The microstructure of the sever plastically deformed (SPD) 1wt.% Al2O3 is shown in Figure 4.11. 

It is clear that the sever plastic deformation which carried out using rotary swaging leads to an 

additional grain refinement in the condition of 1wt.% Al2O3.  

 

    

 

    

 

 

 

 

 

 

 

 

 

Figure 4-11: Microstructure of Al6061 reinforced 1wt.% Al2O3 under sever plastic deformation: A. using general 

purpose etchant at magnification of 200 and 500X, B. using color etchant at magnification of 200 

and 500X 

The grain size of the 1%SPD condition was found to be about 9.87µm having a grain size number 

(G) of 3.3. Moreover, the 1%SPD shows a reduction in the porosity volume fraction compared 

to the other conditions. Apparently, the mechanical deformation results in improving the 

microstructure densification, grain refining through the dynamic recrystallization by forming 

new grains and lowering the porosity. Furthermore, the particles are shown to be uniformly 

dispersed with low agglomeration because of the clustered particles breakup caused by the high 

strain rate effect. During mechanical deformation, the agglomerated particles act as harder zones 

than particles free zones which enhances the strain partitioning during flow. Therefore, the 

applied deformation is accommodated by the flow of the particles free zones at low strain rates.  

Deformation takes place in the particle agglomerated zones and results in shearing of the 

agglomerated particles when the strain rate sensitivity of the matrix exceeds that of the 

Clustered 

Al2O3 

A B 



58 4. Results and Discussion  

 

 

agglomerated particles due to the high applied strain rate which raises the matrix flow stress 

[122]. 

4.1.3 Summary of the grain refinement, Porosity and agglomeration results 

The grain size and the ASTM grain size number of different conditions of the As-Cast and 

reinforced Al6061 are shown in Figure 4.11. 

 

 
 

Figure 4-12: The mean grain diameter in µm and the grain size number of different conditions of Al2O3 addition 

During particle pushing, nanoparticles below a certain size are pushed ahead of the solidification 

front acting as restrictions to the grain growth. Within some regions, the energy required to push 

the particles will be less than the energy needed for dendrite branching out from some gap in the 

surrounding particles resulting in new grains nucleation. The resultant grain morphology will be 

fine grain which impacts positively on the material strength [107].  

The presence of the nanoparticles restricts the dendrite arm spacing as well as the dendrite tip 

radius. Theoretically, when nucleation occurs on the surface of the nanoparticles, a very small 

grain size could be acquired which is experimentally was not proved that individual grains are 

nucleating around nanoparticles [107]. The particle pushing process is characterized mainly by 

two restrictions. First, the effect of the lower thermal conductivity of the particle on the 

temperature gradient ahead of the solidification front, which acts as a barrier to the removal of 

the heat necessary for further solidification. The second factor can be the behavior of the solid 

particle in acting as a barrier preventing the solute diffusion away from the tip of the growing 

dendrite, thereby changing the concentration gradient and restricting growth. The critical velocity 

for the solidification front engulfed particle commensurate inversely with the particle size. 

Smaller particles have a greater tendency to be pushed rather than engulfed enabling restriction 

of the grain growth rather than larger particles resulting grain refinement in the final 

microstructure. The barrier effect of the nanoparticles impedes the solute diffusion during 

growth, and therefore the delayed growth from the melt allows additional time for the formation 

of nuclei, which can yield a refined structure [101-107]. 
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One important factor which control the heterogeneous nucleation is the interfacial free energy at 

the nucleating interface. The classical nucleation theory has been cleared the importance of the 

low interfacial energy for a potent substrate. Nevertheless, the issues related to perfect wetting 

of exogenous inoculants with molten Aluminum often fail to decrease the interfacial energy to a 

lower value. Consequently, the mechanical stirring process was used during casting to break the 

dendritic structures with keeping the microstructure in the equiaxed form, enhance the wettability 

of the nanoparticles and ensure uniform dispersion of them over the matrix. Besides, the heat 

treatment process for the nanoparticles before dispersion into the melt was essential to remove 

the adsorbed gases and impurities from the particle surface and improves the wettability and 

distribution of Al2O3 particles in the Al6061 matrix alloy [103-105]. 

During solidification of Al6061/ Al2O3 composites, Al2O3 particles are cooled down more slowly 

than the melt. Thus, the temperature of the particles is somewhat higher than the liquid alloy 

because of lower heat diffusivity and thermal conductivity of Al2O3 particles in comparison with 

the metal matrix. This difference in the cooling rates may cause an additional heating source for 

the surrounding melt and delays its solidification making the nucleation of α-phase starts in the 

liquid lower temperature zones away from the nanoparticles [64-68,107]. 

The grain refinement occurred by the introduction of the alumina nanoparticles into the Al6061 

matrix could be summarized by the action of the nanoparticles as heterogeneous nucleation sites 

during solidification, which contributes to more refined and possibly equiaxed microstructure, as 

shown in the microstructure of Al 6061 reinforced by 1wt.% Al2O3. The role of nanoparticles 

could be extended to hinder the grain growth by restricting the migration of thermally excited 

grain boundaries during the recrystallization process which is known as the pinning effect. The 

influence of the nanoparticles addition on the grain refinement is also affected by the 

agglomeration of the particles. The more agglomeration size takes place in the matrix, the coarser 

grain size obtained. As a result, the reinforcing particles lose the privilege of grain boundary 

pinning and the ability to be dispersed widely and act as heterogeneous nucleation sites during 

solidification, which could explain the variation of the grain size over the different additions of 

the Al2O3 [107]. 

The presence of micro-porosities was apparent in the inter-grains region (Figure 4.13). Both the 

percent porosity and the average porosity size were calculated for each condition and illustrated 

by Figure 4.14.  
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Figure 4-13: SEM micrographs show the porosity in the monolithic alloy and the reinforced AMNCs with 

different additions of nanoparticles 

It is clear that the porosity percent of the composites is more that of the non-reinforced alloy 

because of the low wettability and more agglomeration caused by nanoparticles clustering. The 

increase in the porosity content is attributed to various sources. It is mainly associated with the 

increase in contact surface area between two species resulted from introducing of the 

reinforcement powders in molten aluminum. The nanoparticles are attributed to increasing the 

percent porosity by pore nucleation at the Al2O3 particulate sites (porosity associated with 

individual particle) and hindering liquid metal flow due to agglomeration (porosity associated 

with the particle clusters) [32]. The micro porosities could also be attributed to gas entrapment 

during the mechanical stirring process. Increasing the stirring time results in more porosity, 

formation of oxide inclusions, reaction between reinforcement and metal favored by long contact 

times, particle migration and clustering during and after mixing. However, the mechanical 

stirring process is essential for ensuring homogeneous distribution of the powders in the matrix. 

It was also noted that the porosity volume percent increases with increasing the weight fraction 

of the alumina nanoparticles additions. It may be explained by decreasing the dynamic 
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recrystallization due to hindering the grain boundary migration effect by the nanoparticles and 

raising the viscosity associated with clustering of the nanoparticles [44]. Contrarily, the addition 

of 5wt.% Al2O3 shows lower percent porosity than that marked by 2 and 3% conditions. This 

decrease in the percent porosity can be understood by the tendency of the nanoparticles to act as 

nucleation sites for the formation of the β-Fe rich intermetallic rather than clustering in large 

agglomerates leaving porosity behind [117]. 

Porosity as a defect has a significant effect on retarding the mechanical properties of the 

composites due to the stress localization accompanied with the porosity presences. Secondary 

processes such as hot extrusion or swaging suppress or mitigate the negative effect of porosity, 

such as in the 1%SPD after application of rotary swaging. After application of second 

deformation process, the transport of matter via pressure-assisted diffusion becomes the 

dominant mechanism after eliminating interconnected porosity and only triple points and grain 

corners contain the remaining porosity. Moreover, the secondary processing of the 

discontinuously reinforced composites leads to break up of particle agglomerates and improved 

particle-to-particle bonding, all of which tend to improve the mechanical properties of these 

materials [121].  

 

 
 

Figure 4-14: The percent porosity, average porosity and agglomeration size marked at the fabricated composites 

It was clear that further addition of more nanoparticles than 1% results in increasing the grain 

size than that obtained from the addition of 1wt.% Al2O3. Increasing the weight fraction of 

alumina particles causes more agglomeration and clustering of the nanoparticles, which limits 

the grain refinement by restricting the new nuclei formation and retarding the grain growth 

restriction. The agglomeration was calculated and illustrated in Figure 4.14. Particles 

agglomeration occurs when a solid particle encounters a non-wetting medium such as alumina in 

this case because of increasing the surface area and surface energy. Even though the nanoparticles 

were added into the melt with pre-dispersion treatment, it is extremely difficult for mechanical 
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stirring to break the clustering in the melt. Consequently, it is complicated to eliminate 

agglomeration and clustering in the fabrication of nanocomposite by stir casting process [44-45]. 

The undesirable effect of agglomeration can result in a reduction of the failure strain of the 

composite, and its degradation is responsible for more crack nucleation in the clustered zones as 

well as the final fracture proposed by crack propagation through the matrix to other clusters. The 

combined effect of agglomeration, particles pushing and sedimentation attributes in clustering 

formation according to the Gibbs free energy of the system. The system always seeks to 

equilibrium through physical configurations to lower the Gibbs energy, which enhances 

agglomeration or stability configuration caused by several alumina particles to cluster and reduce 

its surface area [49,80,107]. 

4.2 Mechanical characterization 

4.2.1 Tensile properties and hardness 

Figures 4.15 A and B demonstrate the tensile properties (at room temperature and 300°C based 

on the alloy applications at high temperature) and the hardness (HV5) of the monolithic matrix 

and the composites with different weight fractions of Al2O3. 

 

As Cast 1% 2% 3% 5% Recy 1%SPD

Yield Strength(Mpa) 116 174 146 119 80 157 369

Ultimate Tensile

Strength(Mpa)
242 319 266 239 153 267 372

E(Gpa) 67 73 65 64 61 68 78

% Elongation 25 36 34 21 8 33 6

Hardness HV5 72 81 76 61 46 79 85

0

50

100

150

200

250

300

350A 



 

4. Results and Discussion  63 

 

 

             
 

Figure 4-15: Tensile properties and hardness of the monolithic matrix and reinforced Al6061 with nanoparticles; 

A. at room temperature. B. at 300°C  

It can be observed clearly that the addition of the nanoparticles results in improvement not only 

the tensile properties at room temperature and high temperature but also the hardness at the room 

temperature. However, there was no possibility to measure it at such elevated temperature but 

based on the behavior of the UTS at 300C, the hardness is expected to increase as well. The 

increase in the tensile properties and hardness is affected by the weight fraction of the alumina 

nanoparticles added to the matrix. Comparing the different Al2O3 additions to the monolithic 

alloy, the addition of 1wt.% alumina nanoparticles to the Al6061 resulted in a notable 

enhancement in the tensile properties and hardness. The yield strength increased by 50% from 

116 MPa in the matrix to 174 MPa in the 1% composites at room temperature and by 38% at 

300°C. Moreover, the ultimate tensile strength increased by about 32% from 242 MPa without 

reinforcement to 319 MPa in the 1% composites at room temperature and by 12% at 300°C. 

Furthermore, the % elongation was improved by 40% from 24.5 to 34.4 % at room temperature 

and 16% at 300°C while the hardness increased by about 14% from 71.6 to 81.4 HV5. However, 

the tensile properties and hardness of the 2, 3 and 5wt.% Al2O3 retarded compared to that 

obtained at 1wt.% Al2O3. It is likely attributed to the agglomeration of the nanoparticles, and the 

increase in the porosity occurred in these processing conditions. It could be expected that at 

customized and optimized casting process and parameters to restrain the particles clustering and 

hence reducing the percent porosity, the mechanical properties may further be enhanced [44-53].  

 

The sever plastic deformation condition of the 1wt.% Al2O3 shows a significant increase in the 

tensile strength and hardness compared to that obtained by the normal 1wt.% Al2O3 composites 

As Cast 1% 2% 3% 5% Recy 1%SPD
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with a retardation in the ductility at both room temperature and 300°C. This improvement in the 

tensile strength could be resulted from the increase in the dislocation density in the alloy by 

inducing plastic deformation through rotary swaging, where the amount of dislocations produced 

is much higher than that recovered during the dynamic recovery. During work hardening, the 

dislocations are tangled, cells and sub-grain walls are formed causing a change in the grain shapes 

and the internal structure. Furthermore, this process leads to decrease the mean free slip distance, 

which proposed the alloy strength increase [121]. 

 

The recycled 1wt.% Al2O3 shows promising tensile properties compared to both the monolithic 

alloy and 1wt.% composites. The yield strength of the recycled condition increased by 35% 

compared to the monolithic alloy and retarded by 10% than the 1wt.% composites at room 

temperature and by 33% and 3% at 300°C respectively. This increase in the yield strength at both 

room and elevated temperatures was accompanied with an increase in the ultimate tensile 

strength, hardness and % elongation compared to the alloy without nanoparticles additions. The 

enhancement of the tensile properties and hardness of the recycled condition may be explained 

by the presence of the nanoparticles and their strengthening effect. On the other side, the 

retardation of the recycled condition tensile properties compared to the 1wt.% Al2O3 can be 

related to the agglomeration and porosity found in the composite with higher size and amount 

than that obtained by the 1% composite [44-51]. 

 

The improvement in the tensile properties of the composites could be accredited to the high 

stiffness induced by the nanoparticles. Their stiffness is much higher than that of the matrix which 

enhances microplasticity to take place in AMNCs at a low stress resulting in a slight deviation 

from linearity in the stress-strain curve (proportional limit stress). This microplasticity can 

negatively affect the properties by generating stress concentrations in the matrix at the poles and 

sharp edges of the reinforcement. Increasing the reinforcement weight fraction increases the 

existence of the stress concentration points which causes decreasing the micro-yielding stress. 

The introduction of the nanoparticles in the matrix contributes to decidedly rising the work 

hardening of the material due to the geometric constraints imposed by the presence of the 

reinforcement. Thus, the strain relaxation is very constrained to occur and causes commencement 

of void nucleation and propagation to exist in a lower far field applied strain than that observed 

in the unreinforced material. The higher weight fraction, the higher elastic modulus, and tensile 

strength are observed because of the more load transferred to the nanoparticles [123]. 

The strengthening in the AMNCs can be attributed to four mainly mechanisms; load bearing, 

grain refinement, Orowan’s strengthening, and mismatch in the coefficient of thermal expansion 

and Young's modulus [51]. The load-bearing effect of the reinforcement in strengthening the 

matrix is characterized by the strong cohesion between the nanoparticles and the matrix due to 

the Nano-size of the reinforcement particles and the sound synthesizing methods. It also explains 

the direct strengthening contribution from the presence of reinforcement particles. The 

strengthening takes place because of the increase in the stress required to operate dislocation 

sources and to overcome the obstacles which restrict the dislocation movement in the matrix. 
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Generally, the contribution of the load bearing strengthening in the final strengthening of the 

AMNCs is small compared to the other mechanisms and could be ignored [51-80]. 

 

The grain refinement or Hall-Petch strengthening mechanism is also a vital strengthening 

mechanism in the AMNCs especially when the nanoparticles lead to a significant grain 

refinement in the matrix. Decreasing the grain size increases the grain boundaries and influences 

the matrix strength positively by hindering the dislocation movement. The dislocation movement 

restriction occurs at the grain boundaries is resulted from the different crystal orientation and the 

high lattice disorder, which makes the dislocation movement on a continuous slip plane very 

difficult. The grain boundaries retard the extensive plasticity beginning, and thus enhance the 

yield strength. Under an external shear stress, dislocations move until reaching the grain 

boundaries and then they pile up. Pile up is usually accompanied with generating extensive 

repulsive stress fields, that act as a driving force to reduce the energetic barrier for their diffusion 

through the boundary. The amount of the extensive pile-ups is directly proportional to the grain 

size. So that, the decrease in the grain size leads to a reduction in the amount of the pileups, and 

hence increases the strength required to enable the dislocation movement and improves the final 

yield of the composite. The refinement caused by the nanoparticles could be explained by the 

interaction of the nanoparticles with the grain boundaries and acting as pinning points to retard 

or stop the grain growth at higher temperature processes. Increasing the nanoparticles volume 

fraction should lead to a decrease in the grain size until a certain limit. When the grain size 

reaches the threshold value, at which the grain size approaches the dislocations size, dislocation 

could not pile up and exhibit instead grain boundary sliding or rotation. Therefore, the final yield 

strength of the composite decreases and the ductility raises causing softening of the material [51-

80].   

 

One of the important strengthening mechanisms in the AMNCs is the Orowan’s strengthening 

mechanism (sometimes second-phase particle strengthening). This strengthening mechanism is 

caused by the dislocation movement restriction due to the closely spaced hard particles. The 

Orowan’s strengthening is more significant when the reinforcement particles size is about a few 

nanometers (100 nm or less) to ensure a small interparticle spacing and hinder the dislocation 

movement. During the dislocation movement, the dislocations bypass the nanoparticles by 

bowing and then reconnecting resulting in formation of dislocation loop around the particles. 

These loops increase the work hardening in the matrix and thus lead to improve the strength. 

When the nanoparticles are spherical shaped the maximum tensile and shear stresses occur at the 

surface of the particles and they decrease with distance from the surface of particles [15]. 

 

Strengthening could also occur due to the mismatch in the coefficient of thermal expansion (CTE) 

and the elastic modulus (EM). The dislocation density in the composite increases because of the 

residual thermal stresses even after perfectly dispersion processes. This increase in the 

dislocation density results from the difference in the CTE between the matrix and the 

nanoparticles during the thermal processing such as cooling through the relaxation of the high-
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stress field around the particles by generating more dislocations (geometrically necessary 

dislocations (GNDs)) at the matrix/Al2O3 interface to reduce the stored energy. Moreover, the 

significant difference between the elastic modulus of the matrix and nanoparticles could also 

contribute to creating of additional GNDs during the elastic straining. The GNDs density is 

determined by the magnitude of the thermal and elastic strains within the composite, and the 

increase in the GNDs density leads to improve the final yield strength of the composite [124-

125]. There are other several strengthening mechanisms which are superimposed and connected 

to each other and could affect the final strength of the composite such as work hardening due to 

plastic deformation and the increase in the dislocation density through multiplication or 

development of dislocation structures. Thus, the final strength of the composite is difficult to be 

predicted and to be attributed to a single individual contribution [15,80,124-125]. 

 

4.2.2 Fatigue behavior:  

4.2.2.1 Electropolishing 

Figures 4.16 A and B illustrate the fatigue behavior of the monolithic alloy in the different 

conditions of the nanoparticles concentrations in air and corrosive medium (3.5% NaCl solution) 

in the electropolished state. The tensile properties had a direct impact on the fatigue life of the 

different conditions, as proven in [6-7]. The enhancement in the tensile properties of the 1wt.% 

composites contributes in improving the fatigue behavior of this conditions. The fatigue strength 

of the 1wt.% composites increased by about 26% (from 135 MPa to 170 MPa) compared to the 

monolithic alloy in air and by about 64% (from 55 MPa to 90 MPa) in 3.5% NaCl solution. The 

high cyclic fatigue was dramatically affected by the corrosive environment (3.5% NaCl solution) 

due to the formation of pitting, which acts as crack nucleation sites and decreases the fatigue 

strength [111]. Furthermore, the agglomeration and porosity found with higher particle 

concentrations in the other conditions affected the fatigue life negatively compared to the 1wt.% 

Al2O3. Nevertheless, the composite reinforced with 2wt.% Al2O3 showed a slight improvement 

in the fatigue strength compared to unreinforced with about 11% in air and 9% in the 3.5% NaCl 

solution. This enhancement in the fatigue life could be explained by the relatively lower 

agglomeration and porosity achieved by the 2wt.% Al2O3 composites compared to both 3 and 

5wt.% Al2O3 composites. 
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Figure 4-16: S-N curves of electropolished samples; A.in air and B. in 3.5% NaCl, and C. contour plot of the 

weight fraction vs yield strength and the fatigue strength in air of the electropolished samples 
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The higher fatigue life obtained by the composites reinforced with nanoparticles could be 

explained by considering the load carrying capabilities offered by the high strength and elastic 

modulus nanoparticles. Thus, the composites exhibit a lower average strain compared to the 

monolithic alloy with an extended fatigue life. Furthermore, the presences of the nanoparticles 

attributes to enhance the rate of cyclic hardening (number of cycles to reach the steady state strain 

amplitude) resulted from the locking effect of moving dislocations. The nanoparticles act as 

barriers for the reversible slip motion that takes place during fatigue due to the small interparticle 

spacing, which is comparable to the self-trapping distance of dislocations. Consequently, the 

reinforcement particles cause a decrease in strain localization by cyclic slip refinement and favors 

crack growth impedance either by crack deflection or crack trapping. The enhancement in the 

fatigue life in the AMNCs is remarkable at high cyclic fatigue (low-stress amplitude) than the 

low cyclic fatigue due to the ductility retardation in the high cyclic regime. Increasing the weight 

fraction of the reinforcement particles (such as 3 and 5 %) favors the formation of clusters with 

large size. Therefore, the fatigue life is retarded due to growing the particles cracking, and hence 

the reinforcement fracture predominates [67,123].  

The previous fatigue results can be also clarified by the microstructure of the different reinforced 

conditions. The grain size of the matrix, the morphology of the phases, and the presence of some 

Fe-rich intermetallic are affecting the fatigue behavior of the composites. Decreasing the grain 

size of the matrix contributes to prolonging the fatigue life by restricting the dislocations 

movement and favoring pileup at precipitates and reinforcement particles enabling cracking 

along slip bands. Contrary, the extensive presence of Fe-rich intermetallic (in the case of 5wt.% 

Al2O3) causes the declination of the fatigue limit due to acting as nucleation sites for cracks. 

Throughout cyclic loading, cracks are initiated at some process-related defects such as particle 

clusters (the case in 2 and 3wt.% Al2O3) and intermetallic inclusions due to the high local stress 

intensity.  

The crack initiation probability at the surface-inclusions are higher than within the matrix 

because of the higher stress concentrations at the surface. When nanoparticles surround the 

inclusions, the load is shared by these high stiffness particles and the inclusion is subjected to a 

lower stress than that could be found in the monolithic alloy. The formation of pores and its 

heterogeneous distribution among the matrix reduces also the fatigue life significantly because 

of the high-stress concentrations at the pores tip. Other factors such as nanoparticles coherency, 

distribution, and size control the fatigue life of a given composite by enhancing dislocations 

cutting or looping around particles/precipitates during cycling loading [67,123]. 

 

The surface roughness has an important effect on the crack initiation during the cyclic load 

application. The rougher surfaces, the more probability of initiating cracks during the fatigue 

loading. However, the surface roughness of the As Cast condition and the other composites with 

Al2O3 additions does not have a significant impact on the fatigue life due to the unnoteworthy 

variation between them [6-7,113,115]. Figure 4.17 indicates the surface roughness of the 

different conditions of nanoparticles addition compared to the unreinforced alloy in the 

electropolishing (EP) state.  
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Figure 4-17: Surface roughness of the electropolished sample 

The microhardness results are illustrated by Figure 4.18 and demonstrates the behavior of the 

composites reinforced with nanoparticles in respect to the unreinforced alloy. The 1 and 2 wt.% 

Al2O3 composites reveal a higher microhardness compared to the unreinforced alloy. On the other 

side, the 3 and 5wt.% Al2O3 show lower microhardness than the monolithic alloy. The decrease 

in the microhardness occurred at high levels of nanoparticles addition can be cleared by the 

higher agglomerations and porosity formed after the introduction of the nanoparticles. 

 

 
 

Figure 4-18: The microhardness of the electropolished samples 

The observed 22% increase in the microhardness of the 1wt.% composites is attributed to the 

presence and the uniform distribution of the nanoparticles among the matrix, increase in the 
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resistance to localized matrix deformation and a visible indication of the grain refining obtained 

by the addition of the Al2O3. This increase in the microhardness can be probably the responsible 

of the increase in the endurance limit, where the crack closure stress in the low stress ratio region 

is strongly affected by material hardness. The crack opening stress increases with increasing the 

hardness of the material [68]. 

 

The fatigue behavior in air and 3.5% NaCl of the 1wt.% Al2O3, recycled as well as the sever 

plastically deformed (SPD) in respect to the unreinforced alloy is indicated by Figure 4.19. The 

composites contain 1wt.% alumina under sever plastic deformation show an increase in the 

fatigue strength, which was improved against the other composites including the different post-

processing conditions in air as well as the corrosive medium. The SPD composites show an 

increase in the fatigue strength with about 18% than the composite reinforced with 1wt.% without 

SPD and with about 48% than the monolithic alloy in the air. Moreover, the fatigue life was also 

improved in the corrosive medium with about 33% and 118% than the composite reinforced with 

1wt.% alumina without SPD and the monolithic alloy respectively. The relation between the 

fatigue strength and the tensile properties was firstly found by Wohler in 1860s as the first 

quantitative relation between fatigue strength and other mechanical properties. The increase in 

the HCF of the 1%SPD could be explained by the significant increase in the yield strength from 

116 MPa in the As Cast and 174 MPa in the 1% to 369 MPa for the SPD. Furthermore, the fine 

grain size induced by the application of the rotary swaging and the presence of the nanoparticles 

limits the cyclic softening that could occur in the HCF through restricting the dislocations 

movement among the matrix. In addition, the induced mechanical deformation is associated with 

a decrease in the overall size of inclusions and consequently improves the fatigue life [123,127-

128]. 

 

Figures 4.20 and 4.21 indicate the surface roughness and the microhardness profiles of the 1% 

SPD and recycled composites compared to the monolithic alloy and normal 1wt.% composites. 

On one hand, it can be clearly observed that the surface roughness was not remarkably affected 

by the different post-processing methods as they are mainly bulk-processing techniques. 

Therefore, the effect of the surface roughness on changing the fatigue limit can be ignored. On 

the other hand, the microhardness profile of the composites containing the same content of the 

Al2O3 was significantly changed after the post-processing methods. On that, the effect of the 

surface roughness has not a significant influence on the fatigue behavior. Mainly, the 

strengthening occurred through the mechanical deformation, which is evident in the 

microhardness profile (Figure 4.21), has the dominant effect on enriching the fatigue life of the 

1% SPD. Since the cyclic response of the AMNCs is controlled by the matrix microstructure, the 

finer grain size induced by the mechanical deformation in the 1%SPD condition influenced by 

increasing the fatigue life compared to the other composites [67].  
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Figure 4-19: S-N curves of the electropolished monolithic alloy against 1wt.%, 1%SPD and Recycled composite; 

A. in air and B. in 3.5% NaCl 

 

Figure 4-20: Microhardness of the electropolished monolithic alloy against 1wt.%, 1%SPD and Recycled 

composite 
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Figure 4-21:The surface roughness of the electropolished monolithic alloy against 1wt.%, 1%SPD and Recycled 

composites 

The declination in the fatigue life of the recycled 1% samples can be referred to the large size of 

particles clustering (8.32 µm) compared to that occurred in the 1% (2.15µm) or 1% SPD 

(1.98µm). Particles clustering accelerates the matrix cracks either by particle de-bonding or 

particle fracture in the electropolishing state. Both damage types are located in the clustering 

zones and initiated from sharp edges that could be produced by particles agglomeration. The 

crack propagates initially along a slip band in a free particle area until the crack front faces the 

clusters. Consequently, the crack changes its path causing the damage to be developed in the 

agglomerates assisted by particle de-bonding or particle fracture, which is a predominant 

phenomenon in the high cyclic fatigue regime. The fatigue failure is associated with rapid crack 

propagation at the clustering regions due to the high local stresses and the defects found in 

clusters such as contacted particles, larger particles, and fractured particles [44-45,123-126]. 

4.2.2.2 Shot penning 

Figures 4.22 A and B show the S-N curves of composites containing different additions of 

alumina nanoparticles and the monolithic Al 6061 matrix after conducting shot peening as a 

mechanical surface treatment in the air and 3.5 wt.% NaCl solution. 
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Figure 4-22: S-N curves of shot peened samples; A:in air, B: in 3.5% NaCl, and C. contour plot of the weight 

fraction vs yield strength and the fatigue strength in air of the shot peened samples 
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From Figure 4.22, it can be clearly observed that the fatigue life of the 1wt.% Al2O3 composites 

was enhanced compared to the Al6061 matrix with 16% and 39% in air and 3.5% NaCl solution 

respectively. The improvement in fatigue life of the nanocomposites is related to the 

enhancement of the mechanical properties occurred after the Al2O3 nanoparticles additions [67-

68]. The further improvements in the fatigue life of the both materials, compared to the 

electropolished state, could be attributed to the increase in surface hardness and the amount of 

the compressive residual stresses remained in the material after shot peening (Figures 4.23 and 

4.24). 

The main aim of the mechanical surface treatments is to apply a localized pressure on a particular 

area of the working sample that should exceed its elastic limit. This pressure is assumed to deliver 

the material to its plastic zone, increase the dislocation density in the matrix, and generate internal 

stresses between the outer layer and the inner layer which did not reach the elastic limit and 

tended to restore its position. Thus, compressive residual stresses arise between the inner layers 

and the plastically deformed outer layer [6-7]. The resulted compressive residual stresses force 

the crack initiation to occur under the surface and thus prolong the material fatigue life. 

Therefore, the harder and the more compressive residual stresses under the surface, the higher 

fatigue life [128]. 

 

 

 

Figure 4-23: The microhardness of the shot peened samples  
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Figure 4-24: The residual stresses of the shot peened samples 

From Figures 4.23 and 4.24, it appears that the highest microhardness and the value of the 

compressive residual stresses in the near-surface region was achieved at the 1wt.% composites. 

This increase in the near-surface properties could explain the remarkably improved fatigue life 

of the 1wt.% condition. The fatigue behavior is also affected by the crack initiation probability 

(which depends on the surface roughness) in the low cyclic fatigue, where it is more influenced 

by the crack propagation in the high cyclic fatigue controlled by the amount of the induced 

compressive residual stresses. The surface roughness has a functional role in affecting the fatigue 

life by retarding and stimulating or increasing the crack initiation [110-115].  

 

 

Figure 4-25: The surface roughness of the shot peened samples 

It is evident from Figure 4.25 that shot peening leads to a marked increase in the surface 
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specimens is dependent on the combined effects of strain hardening, surface roughness, and 

residual compressive stresses produced by shot peening. Basically, the increase in the surface 

roughness leads to raising the probability of the crack nucleation and its early propagation. 

Unlike, the strain hardening retards the propagation of cracks by increasing the resistance to 

plastic deformation, as well as the compressive residual stresses provide a corresponding crack 

closure stress which contributes to hinder the crack propagation. The enhancement in the fatigue 

behavior of the shot peened samples is attributed to restricting the microcracks growth. This 

restriction is caused by the induced compressive residual stresses and compensating the decrease 

in the fatigue life resulted from crack initiation caused by higher surface roughness after shot 

peening [111-115]. 

The effect of the shot peening on the fatigue life in air and 3.5% NaCl solution of the recycled 

composites and 1% SPD compared to the monolithic and 1wt.% Al2O3 is indicated by Figures 

4.26 A and B. 

  

 

Figure 4-26: S-N curves of the shot peened monolithic alloy against 1wt.%, 1%SPD and Recycled composite; A. 

in air and B. in 3.5% NaCl 
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The recycled composites show a slight improvement in the fatigue behavior compared to the 

monolithic alloy with an increase of about 6% in air and 22% in 3.5% NaCl. Nevertheless, the 

fatigue life of the recycled composites was retarded compared to the 1wt.% Al2O3 with about 

13% in both air and 3.5% NaCl solution. The enhancement in the endurance limit of the recycled 

composites could be accredited to lower surface roughness among the other conditions (Figure 

4.27) and the amount of the compressive residual stresses induced by shot peening (Figure 4.28) 

with about 238 MPa behind the 1wt.% composites (259 MPa). The decrease in the surface 

roughness and the increase in the compressive residual stresses attribute to prolong the fatigue 

life by diminishing the crack nucleation and standing against plastic deformation enabling crack 

blunting and retarding the crack propagation. 

Despite the enhancement in the fatigue behavior of the 1% SPD specimens at the electropolished 

state (Figure 4.19), the shot peened 1% SPD samples show a reduction in the endurance limit 

(Figure 4.26) with 32% and 22% than the 1wt.% Al2O3 and the monolithic alloy respectively in 

air and with 48% and 27% in 3.5% NaCl. 

 

Figure 4-27: The surface roughness of the shot peened monolithic alloy against 1wt.%, 1%SPD and Recycled 

composite 

This reduction in the fatigue life after SPD can be explained by the concept of the mechanical 

surface treatments. Accordingly, the role of any mechanical surface treatment is to induce plastic 

deformation to a given area of the sample with an effect reaches a fraction of millimeter under 

the surface depending on the severity and the art of the mechanical surface treatment. In this 

layer, the material is cold worked with an increase in the dislocation density, which by the role 

raises the compressive residual stresses in the effective region. These compressive stresses, as 

discussed earlier, aim to restrict the crack propagation or growth and extend the fatigue strength 

of the material [6-7,128]. 
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Figure 4-28: The residual stresses of the shot peened monolithic alloy against 1wt.%, 1%SPD and Recycled 

composite 

In the case of the 1% SPD, the material is already plastically deformed by the rotary swaging 

process which also resulted in stored compressive residual stresses in the specimens and caused 

the increase of the fatigue life of the electropolished samples (Figure 4.19). Moreover, the 

introduction of such plastic deformation causes the diminution of the work hardening capability 

which decreases the ability of the material to store further deformation. Applying the mechanical 

treatments such as shot peening, in this case, attributes to increase the surface roughness of the 

specimens (Figure 4.27) without a significant increase in either the compressive residuals stresses 

(Figure 4.28) or the microhardness under the surface (Figure 4.29). 

 

Figure 4-29: The microhardness the shot peened monolithic alloy against 1wt.%, 1%SPD and Rec composite 
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As mentioned before, the fatigue strength of a given material after performing mechanical surface 

treatments is a function in the surface roughness, compressive residual stresses and strain 

hardening. Therefore, the fatigue strength is affected by the surface roughness more than the two 

other influences resulting in increasing the crack initiation at the surface and decreasing the 

fatigue limit of the 1% SPD [128]. 

 

 

 

 4.2.2.3 Roller burnishing 

The S-N curves in air and in 3.5% NaCl of the as-cast alloy and the Al6061 composites with 

different additions of alumina nanoparticles are indicated in Figure 4.30. The composite contains 

1% Al2O3 exhibits the most enhanced fatigue life among the other composites and the monolithic 

alloy in air and in corrosive medium. The fatigue strength increases with about 18% and 27% in 

air and corrosive environment respectively compared to the as-cast condition. The other 

composites with 3wt.% and 5wt.% Al2O3 show a lag in the fatigue performance behind the as-

cast, 2wt.% and 1wt.% conditions due to the retardation in the tensile properties caused by the 

agglomeration and high porosity formed after casting. Besides, the work hardening capability of 

these conditions was low to permit more plastic deformations to be stored in the material, which 

are responsible for increasing the magnitude of the compressive residual stresses and prolong the 

fatigue life by restricting the crack propagation [6-7,111].  
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Figure 4-30: S-N curves of the roller burnished samples; A: in air and B: in 3.5% NaCl, and C. contour plot of the 

weight fraction vs yield strength and the fatigue strength in air of the roller burnished samples 
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Roller burnishing, as a mechanical surface treatment, improves the surface characteristics and 

the fatigue life. Based on the elastic/plastic cold-working in the near-surface region, the induced 

plastic deformation through the cold working of the surface layers provides higher resistance to 

crack invitation or propagation. The impact of the roller burnishing treatment on fatigue life 

depends on the fatigue failure nature (crack initiation for unnotched samples/propagation for 

notched samples), as well as the material yield strength. In the experiments’ case, unnotched 

specimens, the fatigue life is dominated by the crack initiation where a large number of cycles 

are consumed in initiating cracks. The fatigue behavior after roller burnishing also depends on 

the ultimate tensile strength to yield strength ratio. The increase in this ratio attributes to improve 

the endurance limit due to the induced compressive residual stresses caused by roller burnishing, 

which prevents small cracks propagation. Contrarily, when the ratio reaches about one, the 

enhancement in the fatigue life is caused by the work hardening caused in the few fractions of 

millimeters adjacent to the surface without significant influence of the compressive residual 

stresses because of their partial relaxation [111-115]. 

Unlike the shot peening treatment, roller burnishing is considered as one of the surface finish 

processes, where the smoother surfaces after roller burnishing can markedly improve the 

resistance of fatigue crack initiation and hence enhance the fatigue life. The surface roughness 

of the specimens under roller burnishing (Figure 4.31) is much lower than that obtained after 

conducting shot peening due to the low burnishing speeds and high depths of penetration. 

Therefore, the roller burnishing treatment is much dependent on the work hardening, where the 

fatigue life is controlled by the crack initiation [6-7].   

 

 

Figure 4-31: The surface roughness of the roller burnished samples 

During the early stages of crack initiation, the work hardening induced by roller burnishing in 

the near-surface layer controls the cyclic deformation behavior. The high dislocation density in 

this region reduces the plastic strain amplitude and prolongs the endurance limit of the material. 

The further increase in the rolling pressure causes deeper layer with smaller plastic strain 
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amplitude and higher fatigue strength. Just after crack initiation stage, the crack propagation is 

controlled by the amount of the compressive residual stresses (Figure 4.32) stimulating the 

propagation deacceleration or crack arrest. Moreover, the compressive residual stresses reduce 

the effective cyclic stress intensity factor against the crack length extension and force the crack 

movement below the surface through a maximum of compressive stresses. Because of their direct 

influence on performance in service, residual stresses are probably the most critical aspect in 

assessing the surface integrity of a burnished workpiece. The position of the maximum residual 

stress depends on the rolling force and the exact contact geometry of the involved specimen and 

roller. Increasing the burnishing pressure increases the amount of the compressive residual 

stresses until a saturated level is achieved (marked at 0.8 bar in experiments) [111-115]. 

 

Figure 4-32: Residual stresses of the roller burnished samples 

Further increase in the burnishing pressure leads to shift the area of compression into greater 

depth. Not only the compressive residual stresses are affected by roller burnishing, but also the 

near surface hardness is increased by work hardening effects (Figure 4.33). The thickness of the 

deformation layer can be estimated to be about 0.4-0.5 mm by the change in microhardness, 

which is much deeper than that in the shot-peened specimens. Finally, it can be summarized that 

the fatigue life increases after roller burnishing due to the reduction in the surface roughness 

caused by the burnishing action, the elimination of surface flaws by the burnishing effect. 

Furthermore, the burnishing process produces metal plastic flow and provides filling existing 

voids or defects and setting compressive residual stresses in the outer circumferential area of the 

workpiece [112-114]. 
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Figure 4-33: Microhardness of the roller burnished samples 

 

 

 

Figures 4.34A and B illustrate the S-N curves of the recycled, 1wt.% and 1%SPD composites 

compared to the monolithic alloy in air and 3.5% NaCl solution. It can be observed that the 

fatigue life of the 1wt.% Al2O3 composite still leading over the other conditions under roller 

burnishing. However, the recycled composite shows an enhancement in the fatigue strength than 

the monolithic alloy with 9% and 18% in air and 3.5% NaCl respectively. Furthermore, the 

1%SPD condition shows a reduction in the endurance limit under roller burnishing compared to 

the monolithic alloy with about 24% in both air and 3.5% NaCl solution. While the fatigue life 

of the 1%SPD after roller burnishing is slightly improved than that obtained after shot peening. 

This enhancement could be attributed to the decrease in the surface roughness after roller 

burnishing (Figure 4.35) in contrast with surface roughness after shot peening (Figure 4.27). 
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Figure 4-34: S-N curves of the roller burnished monolithic alloy against 1wt.%, 1%SPD and Recycled composite; 

A. in air and B. in 3.5% NaCl 

 

  

Decreasing the surface roughness leads to retarding the crack initiation stage in the fatigue 

failure, and thus prolong the fatigue life of the material. However, the surface roughness is not 

only the factor which controls the fatigue behavior of the material, but also the amount of the 

compressive residual stresses induced after conducting a certain mechanical treatment. The 

retardation of the 1%SPD fatigue strength compared to the other conditions could be related to 

main two factors. Firstly, the higher surface roughness than the other conditions which is 

indicated in Figure 4.35. This increase in the surface roughness accelerates the crack initiation, 

and consequently lowers the endurance limit [6-7,128].  
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Figure 4-35: The surface roughness of the roller burnished monolithic alloy against 1wt.%, 1%SPD and Recycled 

composites 

The other constituent is the compressive residual stresses magnitude in the 1%SPD samples after 

roller burnishing.  From Figure 4.36, it could be clearly reported that roller burnishing has a slight 

impact on the residual stresses of the 1%SPD in contrast with the other conditions. This 

phenomenon may be explained by the lower work hardening capability due to severe plastic 

deformation, which is exhibited by the material before applying the mechanical surface 

treatment. Under these residual stresses, the material resistance to the crack propagation was low 

and no enough to ensure crack arrest, and therefore, the fatigue strength is reduced. The change 

in the residual stresses after roller burnishing compared to electropolished 1%SPD could also be 

predicted from the microhardness profile under the surface. Comparing the microhardness of 

electropolished (Figure 4.20) with roller burnished (Figure 4.37) condition, the microhardness 

profile varies around 110±5 HV0.05 for the electropolished while it varies around 115±5 HV0.05 

for the roller burnished specimens. This small difference in the microhardness value under the 

surface emphasis that the roller burnishing process had a slight impact on the subsurface 

characteristics, especially the residual compressive stresses [115-128]. 

For the recycled composites, the improved fatigue life could be a direct result of the increase in 

the compressive residual stresses (Figure 4.36) and the reduced surface roughness (Figure 4.35). 

The surface roughness has a functional role in affecting the fatigue life by retarding or stimulating 

the crack initiation, as the smoother surface means lower probability of the crack initiation. 

Besides, the compressive residual stresses squeeze the grain boundaries, and thus delay the 

fatigue crack initiation. Forasmuch the crack initiation or propagation are difficult to occur in the 

layer of compressive stresses, and hence the cracks initiate under the surface with a significant 

slow propagation rate leading to a prolonged fatigue life [6-7].  
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Figure 4-36: The residual stresses of the roller burnished monolithic alloy against 1wt.%, 1%SPD and Recycled 

composites 

 

Figure 4-37: The microhardness of the roller burnished monolithic alloy against 1wt.%, 1%SPD and Recycled 

composites 

 

 

4.2.3 Creep behavior 

The creep rupture test was carried out for the monolithic alloy and composites with different 

fabrication conditions and additions of Al2O3 specimens at 300°C and constant stress of 40 MPa. 

The test was conducted on peened and un-peened samples. The percent of total plastic 

deformation against the run time are plotted and indicated by Figures 4.38 A and B for un-peened 

and peened specimens.  
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Figure 4-38: %Total plastic strain vs run time of monolithic alloy against composites; A. un-peened and B. peened 

samples 

It could be observed that the monolithic alloy, 3%, 5% peened and un-peened samples and the 

peened 1%SPD conditions demonstrate short primary and steady-state regimes with a more 

extended tertiary regime. Furthermore, one or two stages of the curve may be absent because of 

the creep behavior is characterized by an extensive tertiary stage. Besides, the secondary creep 

is extremely short and very difficult to be identified. Therefore, the “minimum creep-rate” value 

is considered rather than a steady-state value [129]. Contrarily, the samples group (1%, 2%, Rec 

peened and un-peened and the un-peened 1%SPD) show an enhanced length of the primary 

regime as compared to the other conditions. The creep curves consist mainly of three regions: 

primary stage, which is distinguished by decreasing the strain rate with the run-time and the 

material experiences strain hardening due to the high deformation resistance with increasing the 

strain. The primary stage ends with the start of the secondary stage (or steady state), which is 

characterized by a constant strain rate, which could be explained by the balance occurred between 

recovery (due to the high temperature) and strain hardening. Finally, the strain rate increases with 
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time during the tertiary stage causing rupture of the component. In this stage, failure occurs due 

to the reduction in cross-sectional area under constant load with a continuous increase in applied 

stress [129]. The decrease in the cross-sectional area is resulted by different mechanisms such as 

cavities nucleation and growth, cracks formation, and extensive macroscopic necking. Generally, 

at higher temperatures and stresses, the primary creep made a transition into steady-state creep 

faster and had a higher steady-state creep rate than tests conducted at lower temperatures and 

stresses. Furthermore, the Figure gives a clear indication of the time to rupture for all conditions 

under shot peening and without shot peening. The time to rupture could be perhaps the most 

useful from an engineering point of view, as it is an indication of how much time could the sample 

withstand under given strength and temperature [56-57,129]. For the un-peened specimens, the 

1% SPD composites show a superb time to rupture with about 46 hours compared to 27 hours 

and 17 hours obtained by the 1% composites and the monolithic alloy respectively. This 

improvement in the time to rupture in the 1% SPD condition could be related to the improvements 

in the tensile properties introduced after subjecting to severe plastic deformation. However, the 

1% SPD under shot peening exhibits lower time to rupture with about 10 hours compared to 47 

hours and 19 hours obtained by the 1% composites and the monolithic alloy. Basically, this 

decrease in the time to rupture could be caused by the increase in the surface roughness of the 

1% SPD after shot peening without a significant increase in the compressive residual stresses, 

unlike the other conditions.  Therefore, the crack formation and propagation capability raise for 

the 1% SPD with accelerating the failure and reasons the retardation of the time to rupture [111]. 

The steady-state or minimum creep rate is considered as the second important parameter, mainly 

when the creep behavior is tested under creep-rupture. When the operating stress is low, rupture 

may not occur during the life of the part. Thus, for design considerations, the magnitude of the 

secondary creep rate can be used to evaluate the steady accumulation of strain with time in service 

[129]. Furthermore, instead of using the slope of the linear steady-state regime, the minimum 

creep rate can be used, and the secondary creep regime is considered to cover the range of data 

where the creep rate falls within 10% of the minimum creep rate. The minimum creep rate 

magnitude is directly affected by the temperature and applied stress. Increasing both the applied 

stress and temperature will correspond to raise the steady-state creep rate [129]. The minimum 

creep rate of the up-peened and peened specimens from monolithic alloy and composites with 

different Al2O3 addition is illustrated in Figures 4.39 A, B, and C. The lowest minimum creep 

rate was obtained by the 1%SPD in the un-peened condition with about 0.0011 1/hr. for the shot 

peened samples, the minimum creep rate of the 1% condition was at lowest with about 0.0011 

1/hr. The improvement in the minimum creep rate occurred by the 1%SPD condition could be 

attributed to the increase in the tensile properties introduced by the plastic deformation after cold 

working. This plastic deformation contributes to increasing the dislocation density, and therefore 

hinder the recovery and recrystallization processes resulting in a prolonged creep life [128]. 
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Figure 4-39: The minimum creep rate vs the run time; A. un-peened samples, B. shot peened samples and C. 

comparison of the minimum creep rate magnitude between peened and un-peened specimens 
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The enhancements in the creep behavior of the 1% Al2O3 composites could be cleared in 

accordance with the dislocation creep, through reducing the dislocation mobility after the 

addition of the nanoparticles to the Al6061 matrix. Moreover, the introduction of the 

nanoparticles might slightly increase the melting point of the produced composite and attribute 

to raise the material resistance to the creep deformation by hindering the diffusional flow. Even 

the Mg2Si precipitates produced after conducting T4 heat treatment contribute as obstacles to the 

grain boundary sliding during the creep test. However, the precipitates chains could reduce the 

creep life as it may secure paths for the cracks [123,129-130]. Considering the creep curves, the 

creep curve for unreinforced 6061 is shifted towards significantly shorter times, and smaller 

strains as compared to the composites contain 1, 2% Al2O3 and the recycled 1%. The primary 

regime for the composites tends to last for significantly longer times and higher strains than that 

of the unreinforced alloy. This behavior can be explained by considering the introduction of high 

stiffness reinforcements (due to load transfer from matrix to the reinforcements), such as nano-

alumina particles. These reinforcements attribute to increase the creep resistance compared to the 

monolithic alloy [123].  

Further, both the activation energy (Q) and stress exponent (n) increase in the case of the AMNCs 

as the presence of the nanoparticles. According to the threshold stress theory of creep 

deformation, at high values of Q and n in the presence of the incoherent nanoparticles in the 

matrix, raise the threshold stress of creep and the creep stress exponent by acting as effective 

barriers for the dislocations movement. However, the influence of the nanoparticles was not 

remarkable in the 3% and 5% conditions due to either particles agglomeration in the 3% and 5% 

conditions or by acting as nucleation sites for brittle sharp-edged Fe-intermetallic in the 5% 

condition [55-59]. 

Further creep data which can be obtained from the creep curves are the relaxation modulus and 

the creep compliance. Figures 4.40 (A and B) and 4.41 (A and B) show the relaxation modulus 

(E) and the creep compliance of the monolithic alloy and the different nanoparticles reinforced 

composites. Creep compliance and relaxation are both manifestations of the same molecular 

mechanisms, and it could be expected that Erel and Ccrp are related. But the relaxation response 

moves toward its equilibrium value more quickly than does the creep compliance. The 

importance of the relaxation modulus and the compliance arises especially in design during a 

material selection for structural applications. In some biomedical applications, the higher 

compliance materials are desired to reduce the mechanical shocks transmission to the joints and 

bones [128]. 

From Figures, it could be reported that the creep compliance and the relaxation modulus depend 

on the material creep behavior, i.e. the total plastic deformation against the run time. For the un-

peened samples, the 1%SPD composites possesse the highest creep compliance and the most 

extended relaxation modulus adjacent to the higher strain obtained against the run time. 

Nevertheless, both compliance and relaxation modulus of the same condition were retarded after 

conducting shot peening.  

This decrease in Erel and Ccrp occurred to 1%SPD composites after introducing shot peening may 

be resulted from the surface roughness increase without a significant improvement in the 
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compressive residual stresses und the surface. Therefore, the ability of crack formation raises 

without a sufficient opposite reaction (compressive residual stresses), which could resist the 

crack propagation and the creep failure by hindering the dislocation movement and prevent the 

dislocation relaxation [123,128]. 

 

  

 

 

 

Figure 4-40: The relaxation modulus vs the run time; A. un-peened samples and B. peened samples 
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Figure 4-41: The creep compliance vs the run time; A. un-peened samples and B. peened samples 

The Ashby-type deformation mechanism map (Figure 4.42) can be considered to understand the 

dominant creep mechanism, as a simple indication with considering the σ/G and the homologous 

temperature (T/Tm). For aluminum Al 6061, the shear modulus equals to 26 GPa, and the test 

stress was 40 MPa, where the test temperature was 300°C, and the melting point of Al6061 is 

652°C. Validating these values on the map, it was found that the dominant creep mechanism in 

the conditions of the experiments was the dislocation creep. According to dislocation creep 

mechanism, creep occurs through dislocation movement among a specific slip plane by slipping 

(dislocation glide). The bonds between the atoms should be broken during the creep deformation 

to enable the dislocation motion. At low-stresses, the creep rate decreases, and the deformation 

is controlled by the dislocation climb rate over obstacles through vacancy diffusion. During the 

dislocation climb, dislocations may be pinned by various obstacles such as intermetallic 
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inclusions or oxide particles (nano-alumina particles) and the material consumes more time until 

rupture [131].  

 

Figure 4-42: Deformation mechanisms at different stresses and temperatures [131] 

Considering the dislocation creep mechanism, the creep life is controlled by either higher 

dislocation density produced by the excessive plastic deformation (which is the case in the un-

peened 1%SPD) or by the presence of the nano-reinforcement (which resist the dislocation 

movement and retard the dislocation climb). The improvement in the creep behavior of the 

peened 1% could also be explained by the higher dislocation density formed under the surface 

after performing shot peening. Contrarily, the creep behavior was negatively affected by the 

higher surface roughness in the peened 1%SPD in the absence of a further increase in the 

dislocation density after shot peening. For the other composites, the agglomeration accompanied 

with the nanoparticles additions is attributed to the declination of the creep life due to the 

nonhomogeneous distribution of the particles, which act as barriers to the dislocation movement 

and favor the creep failure [123,130-131]. 

The significant effect of the shot peening on extending the creep life not only of the composites 

reinforced with alumina nanoparticles but also of the monolithic alloy was a suitable reason to 

study the creep behavior of the 1% composite after subjecting to different shot medium and 

Almen intensities. Figure 4.43 illustrates the % total plastic deformation of the 1% after 

conducting shot peening using two types of shots (SCCW and ASR) and two different Almen 

intensities of 0.2 and 0.23 mmA compared to the un-peened specimen. It is clear that shot peening 

has a remarkable effect on determining the creep life of the material, as using shot peening with 

inappropriate parameters leads to a dramatic decrease in the creep life. The highest creep life is 

obtained when the samples were peened by SCCW shot medium and with Almen Intensity of 0.2 

Experiments 

condition 
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mmA (the same Almen intensity which gives the higher fatigue life), where the other shot 

peening conditions cause creep life declination compared to the un-peened sample. The 

enhancement occurred after SCCW 0.2 mmA than that of the other peening media may refer to 

the amount of the compressive residual stresses formed under the surface and the surface 

roughness change after conducting shot peening [116]. 

 

Figure 4-43: % Total plastic deformation of 1% Al2O3 subjected to different peening medium and Almen 

intensities vs the run time under constant stress of 40MPa 

 

Figure 4-44: Surface roughness of 1% Al2O3 subjected to different peening medium and Almen intensities 

The surface roughness of the different peening conditions is shown in Figure 4.44, and it is clear 

that the surface roughness does not severely change between each peening case. This result 

emphasizes that the creep life is mainly dependent on the amount of the residual stresses formed 

after shot peening. It was studied before that peening samples with SCCW shot medium gives 
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higher compressive residual stresses than that created by using the ASR shots, which explains 

the higher creep life obtained after peening using these shots than the ASR [116]. Comparing the 

SCCW 0.2 and 0.23 mmA, the Almen intensity of 0.23 mmA increases the surface roughness 

and does not add significant residual stresses compared to the 0.2 mmA. Therefore, the creep life 

under SCCW 0.23 mmA decreased compared to the 0.2 mmA and even the un-peened samples.   

 

It is also of a great interest to determine the threshold stress of the composites reinforced by 1 

wt.% Al2O3, which is defined as a stress level below which no creep occurs at a given 

temperature. To calculate the threshold stress the creep exponent (n) and creep activation energy 

should be calculated by considering the general equation relating steady-state creep to 

temperature and stress proposed by Dieter [132]: 

[132] 

where ϵss is the steady-state creep rate, cj is the concentration of dislocation jogs, Dv is the bulk or 

lattice self-diffusion coefficient, G is the shear modulus, b is the burgers vector of the dislocation, 

k is Boltzmann's constant, T is the absolute temperature, is the applied stress, and n is the creep 

stress exponent. This equation could be simplified to: 

[132] 

where ϵ˙ss is the steady-state creep rate, A1 is a constant for all stresses and temperatures, is the 

applied stress, n is the creep stress exponent, Qapp is the apparent activation energy for creep, R 

is the universal gas constant, and T is the absolute creep test temperature. The stress exponent 

can be calculated directly, although a graphical representation is easier to understand. By plotting 

the logarithm of the minimum creep strain rate on the ordinate, against the logarithm of the 

applied stress (Figure 4.45), where the slope of these lines is the creep exponent, n [132]. 

 

Equation 1 

Equation 2 
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Figure 4-45: Minimum creep rate vs applied stress of un-peened and peened Al6061 reinforced with 1wt.% Al2O3 

The values of n were calculated to be 4.25 for the un-peened samples and 4.2 for the peened 

specimens. Using equation 2 and the creep data from Figure 4.45, the Qapp could be estimated as 

156 and 169 KJ/K.mol for the un-peened and peened 1% Al2O3 composites respectively. the 

values of n and Q (n is about 5 and Q varies from 156 and 169 KJ/K.mol based on the surface 

treatment) are higher than that reported for unreinforced materials. The Q value when n=5 is 

generally of the order of the value for lattice self-diffusion (which is 143.4 kJ/K.mol in pure Al). 

[13]. Therefore, it is appropriate to analyze the data by considering the threshold stress, where 

the creep equation could be modified to: 

[132] 

where n° is the true stress exponent and σth is the threshold stress. The values of σth could be 

estimated by plotting ϵ°1/n vs σ and extrapolating linearly to zero strain rate by considering 

specific values for n° of order 3, 5 and 8 based on the deformation mechanisms; such as viscous 

glide high temperature climb. As the apparent values of n are lower than 8, the creep data in this 

work could not be analyzed using n° = 8. Thus, the data were plotted using values for n, of 3 and 

5. the best analysis was achieved at n° =3, where the extrapolating at n° =5 gives negative values 

of σth. Figure 4.46 shows a plot of ϵ°1/3 vs. σ for peened and un-peened samples of 1% Al2O3 at 

250°C and 300°C. By extrapolating each line to ϵ°1/3 = 0, the values of σth where estimated to be: 

5, 12.5, 18.5 and 26 for un-peened 1% at 300°C, peened 1% at 300°C, un-peened 1% at 250°C 

and peened 1% at 250°C. It could be reported from these values that shot peening could increase 

the threshold stress compared to the samples without shot peening. This enhancement in the 

threshold stress may be attributed to the compressive residual stresses induced by shot peening 

which could delay the creep deformation and prolong the creep life [6,67].  
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Figure 4-46: Variation of ϵ°1/3 with σ on linear axes. showing evidence for the presence of a threshold stress, σth. 

The true activation energy for creep can be then recalculated by using the value of true n°=3 and 

(σ-σth). The true activation energy for creep was 149 and 161 KJ/K.mol for un-peened and peened 

1% Al2O3 respectively. It is clear from the analyzed data that the creep of the 1% Al2O3 

composites takes place under the presence of true stress component, threshold stress and true 

creep activation energy (149 and 161 KJ/K.mol for un-peened and peened), which may be 

originated from the addition of the nanoparticles because of the presence of fine incoherent arrays 

of nanoparticles. Based on these values, the creep mechanism in the 1% Al2O3 composites may 

be viscous glide in the matrix [129-132]. 

4.3 Wear resistance 

Figure 4.47 illustrates the wear resistance based on the weight loss after conducting the pin to 

disk wear test for 15 minutes under 0.7 bar and a rotating speed of 265 rpm. It could be noticed 

that some AMNCs exhibit a lower weight loss compared to the unreinforced matrix. The highest 

wear resistance was obtained by the 1%SPD condition with about 45% improvement than that 

obtained by the matrix without nanoparticles addition. Furthermore, the 1% condition performs 

an enhancement about 32% compared to the monolithic alloy. Adversely, composites contain 3 

and 5 wt.% Al2O3 possess the highest weight loss when compared to the other conditions. 
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Figure 4-47: Wear rates of the monolithic and different composites based on the weight loss, and B. contour plot 

of the weight fraction vs yield strength and the wear resistance 

It is well known that Al-based metal matrix composites are used as tribological parts in some 

vehicles because of the better mechanical and tribological properties than conventional aluminum 

alloys [61-6 2]. Since the AMNCs exhibit higher mechanical properties than the AMCs, the 

tribological properties of the AMNCs should be better than that of the AMCs. The wear 

performance of the AMNCs depends on many variables such as particles dispersion and 

distribution, the composite hardness and its relative density. Studies reported that lower volume 

fractions of nano-sized reinforcement are sufficient to achieve better mechanical properties when 

compared to higher volume fractions needed for micron-sized reinforcements [63-64]. Several 

investigations were carried out to evaluate the wear resistance of the AMNCs [63-66], and it was 

observed that hardness and strength of the composites mainly control the wear until a critical 

velocity and load, below which nanocomposites exhibit excellent wear resistance [15]. The 

higher hardness and strength the lower wear rate. Increasing the nanoparticles weight fraction 

also led to an increase in the hardness, and hence improves the wear resistance. However, at 
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higher weight fractions agglomeration of nanoparticles led to the lowering of relative density 

(increase in porosity) that reduced the hardness, and thereby increase the wear. These conclusions 

could explain the higher weight loss obtained by the 3 and 5% conditions and the improvement 

in the wear rate of the other specimens [15]. 

4.4 Corrosion behavior 

The corrosion rate measured by the potential dynamic method are illustrated in Figure 4.48 and 

the corrosion rates are summarized in Table 4.2. The figure demonstrates the current density 

versus the potential of monolithic matrix and different nanocomposites conditions, which can be 

used to identify the corrosion current density (Icorr), corrosion potential (Ecorr) and the corrosion 

rate (CR). The maximum CR of 0.44 mpy obtained at 5% samples while the minimum CR 0.2134 

mpy is marked at 1%SPD with an improvement approximately 52%. 

 

 

 

Figure 4-48: Potentiodynamic polarization curves of the as-cast Al6061 matrix and composites 
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Table 4-2: Icorr, Ecorr and corrosion rate of the as-cast Al6061 matrix and composites 

Sample Current density, Icorr(μA.cm-2) 

 

Potential, Ecorr(mV) 

 

Corrosion rate, mpy 

As Cast 0.911 -684 0.394 

1% 0.524 -832 0.223 

2% 0.687 -778 0.3022 

3% 0.947 -766 0.4167 

5% 1 -752 0.44 

1%SPD 0.485 -854 0.2134 

Recy 0.657 -783 0.289 

 

It could be recognized that all composites, other than the 3 and 5%, show an improved corrosion 

resistance compared to the monolithic alloy. Generally, the tendency of the composite to galvanic 

corrosion between alumina nanoparticles and aluminum matrix is very low, because of the high 

resistivity of the alumina particles. Thus, the AMNCs possess excellent corrosion resistance due 

to a lack of galvanic reaction with the alumina particles. The enhancement in the corrosion 

resistance can be credited to the grain refinement occurred after nanoparticle addition. The grain 

boundaries possess high reactivity due to the increased dislocation density found at the grain 

boundary. Therefore, it may be possible that near Ecorr, fine grain material could rapidly form 

an oxide, which is characterized as protective, controlling the anodic reactions, and capable of 

decreasing Icorr [70-73]. Consequently, when the potential is raised, the oxide growth rate also 

increases forming higher passive current densities and lower corrosion rates. Grain size reduction 

could also affect the corrosion rate regarding the surface roughness. Decreasing the grain size 

attributes to lowering the surface roughness of the specimen under the same machining processes. 

The corrosion rate is dependent on the surface roughness, as corrosion resistance decreases when 

a rougher surface is considered because of increasing the actual surface area subjected to the 

reaction with the environment [108]. 

 

                         
 

Figure 4-49: Optical micrographs of the surface topography after electrochemical corrosion in 3.5% NaCl solution; 

A.  for the 1% condition and B. for the 5% condition 

A B 
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Increasing the reinforcement weight fraction leads to increase the cathodic areas to localized 

regions such as impurities, porosities and agglomeration as well, which reduces the corrosion 

resistance of the composite. Furthermore, the residual stresses in the matrix resulted from the 

difference in thermal and mechanical properties between the matrix and reinforcement are 

considered preferred sites for dissolution and pitting [70]. These pits act as initiation site for the 

galvanic corrosion on the interface between the hard-ceramic particles and soft matrix alloy [71]. 

Figure 4.49 illustrates the surface topography of the conditions 1% and 5%. It can be observed 

that the composite reinforced by 1wt.% Al2O3 has shallow pits and the pits density is lower and 

smaller pits than the 5% composites because of the lower CR and cathodic area which is 

attributed to decrease the pits size and its propagation [133]. 

4.5 Weldability of the 1wt.% Al2O3 Aluminum Matrix Nanocomposites  

The optimization of the friction welding parameters of the similar Al 6061 reinforced with 1% 

Al2O3 nanoparticles was conducted with the aid of the design of experiment (DoE) method using 

Minitab 17. The initial welding parameters impact at the primary characterization are indicated 

by Table 4.3 based on the variation of: friction pressure (Pr, bar), forging pressure (Ps, bar), 

friction time (tr, sec), forging time (ts, sec) and rotational speed (rpm).  

                         Table 4-3: Initial weld samples optimization based on the tensile properties 

Sample Pr tr Ps ts rpm σy σuts elon% L Lf 

1 1 1 0.5 0.5 10000 80 80 7.6 80 76.26 

2 1 0.5 0.5 0.5 10000 100 100 2.8 80 77.86 

3 1 0.5 0.5 0.5 14000 99 99 3 80 77.84 

4 1 1 0.5 0.5 14000 104 108 2.5 80 77.42 

5 0.5 1 2 4 10000 127 131 1.5 80 70.7 

6 0.5 1 1 4 10000 139 211 4.6 80 76.97 

7 1 1 1 4 10000 125 133 3.5 80 75.35 

8 0.5 1 1 4 10000 134 153 4.2 80 76.85 

9 1 1 1 4 10000 132 166 3.3 80 74.92 

10 1 2 1 4 10000 119 119 1.6 80 73.52 

11 1.5 1 1 4 10000 130 134 2.1 80 71.82 

12 0.5 2 0.5 2 14000 69 69 1.1 80 78.2 

13 1 2 0.5 2 14000 65 80 1 80 77.4 
14 

(broken during machining) 1.5 2 0.5 2 14000 0 0 0 80 71.65 

15 0.5 0.5 0.5 4 14000 80 80 1.6 80 78.8 

16 1 0.5 0.5 2 14000 71 72 1.3 80 78.53 

17 1 1 0.5 2 14000 73 76 1 80 78.57 

18 1 3 0.5 2 14000 65 74 1.1 80 77.36 

19 0.5 1 0.5 4 10000 108 128 1 80 78.29 

20 1 1 0.5 1 14000 60 60 1.7 80 78.55 

21 1 1 0.5 2 14000 74 77 1.5 80 78.19 

22 1 1 0.5 3 14000 58 68 1.1 80 78.38 

23 1 1 0.5 4 14000 57 76 0.7 80 78.41 
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As previously described in the experimental section, two approaches were used by the Minitab 

17 program; the factorial and Taguchi design. At the beginning of the experiments, trial runs 

were performed (samples of numbers 1 to 23 on the factorial design method) by changing one of 

the process variables and keeping the others constant. Therefore, all friction welding parameters 

have been varied to identify the effective variation range of the parameters on the material 

response. 

The objective of the optimization is to achieve a maximum tensile strength through the statistical 

analysis by introducing an optimal combination of the processing parameters. The estimated 

effects, analysis of variance (ANOVA), normal probability plots, and main effects plots were 

used to analyze and interpret the results. Through these runs, the significant factors were 

determined with proposed values of the variables. 

For the factorial design approach, factorial design five parameters variables (rotational speed, 

friction pressure, forging pressure, forging time and friction time) and the response was set to 

maximize the ultimate tensile strength. The initial data from the pre-optimization experiments 

were used to define the factorial design with considering the minimum and maximum values of 

the parameters to be automatically detected. Then, the model analyzed the significant effect of 

each parameter using a normal probability plot of standardized effect at 5% significance level for 

the ultimate tensile strength of the weld joints (UTS) with a random order to minimize the 

unexpected variability of the response. The program underwent several runs at which the 

response optimizer (which is introduced by the software through searching for a combination of 

parameters that simultaneously satisfy the ultimate goals and limits placed on the response and 

each of the parameters) parameters in each run. The variables given by the response optimizer 

were welded, and their tensile properties were identified. Furthermore, the new samples obtained 

from the response optimizer were re-entered in the design as a new sample, the analysis was 

repeated until a high ultimate tensile strength value was reached with a fracture found outside the 

welding line.  The data obtained from the design analysis illustrates that the forging pressure (Ps) 

and the interaction between the (Pr and ts) were the most significant parameter which affect the 

ultimate tensile strength of the friction welded AMNCs containing 1% Al2O3 (Figure 4.50). 

Table 4-4: The DoE matrix and corresponding results of the full factorial design 

Sample Ps ts Pr tr rpm σuts StdOrder RunOrder Blocks CenterPt 

1 0.5 0.5 1.0 1.0 10000 80 1 1 1 1 

2 0.5 0.5 1.0 0.5 10000 100 2 2 1 1 

3 0.5 0.5 1.0 0.5 14000 99 3 3 1 1 

4 0.5 0.5 1.0 1.0 14000 108 4 4 1 1 

5 2.0 4.0 0.5 1.0 10000 131 5 5 1 1 

6 1.0 4.0 0.5 1.0 10000 211 6 6 1 1 

7 1.0 4.0 1.0 1.0 10000 133 7 7 1 1 
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8 1.0 4.0 0.5 1.0 10000 153 8 8 1 1 

9 1.0 4.0 1.0 1.0 10000 166 9 9 1 1 

10 1.0 4.0 1.0 2.0 10000 119 10 10 1 1 

11 1.0 4.0 1.5 1.0 10000 134 11 11 1 1 

12 0.5 2.0 0.5 2.0 14000 69 12 12 1 1 

13 0.5 2.0 1.0 2.0 14000 80 13 13 1 1 

14 0.5 2.0 1.5 2.0 14000 0 14 14 1 1 

15 0.5 4.0 0.5 0.5 14000 80 15 15 1 1 

16 0.5 2.0 1.0 0.5 14000 72 16 16 1 1 

17 0.5 2.0 1.0 1.0 14000 76 17 17 1 1 

18 0.5 2.0 1.0 3.0 14000 74 18 18 1 1 

19 0.5 4.0 0.5 1.0 10000 128 19 19 1 1 

20 0.5 1.0 1.0 1.0 14000 60 20 20 1 1 

21 0.5 2.0 1.0 1.0 14000 77 21 21 1 1 

22 0.5 3.0 1.0 1.0 14000 68 22 22 1 1 

23 0.5 4.0 1.0 1.0 14000 76 23 23 1 1 

24 2.0 0.5 1.5 3.0 14000 168 24 24 1 1 

25 1.0 2.0 1.0 1.0 14000 139 25 25 1 1 

26 2.0 2.0 1.0 1.0 14000 195 26 26 1 1 

27 1.0 2.0 1.0 1.0 12000 106 27 27 1 1 

28 1.0 2.0 1.0 1.0 10000 149 28 28 1 1 

29 1.0 2.0 1.0 1.0 8000 126 29 29 1 1 

30 2.0 0.5 1.5 0.5 10000 179 30 30 1 1 

31 2.0 2.0 1.0 1.0 12000 214 31 31 1 1 

32 2.0 2.0 1.0 1.0 10000 225 32 32 1 1 

33 2.0 2.0 1.0 1.0 8000 223 33 33 1 1 

34 2.0 4.0 1.5 3.0 14000 186 34 34 1 1 
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Figure 4-50: Normal probability plot of standardized effects for the ultimate tensile strength 

  

Table 4.5 illustrates the analysis of variance (ANOVA) of the regression model for the ultimate 

tensile strength of the welded AMNCs.  

Table 4-5:ANOVA of the regression model 

Source                DF   Adj SS   Adj MS   F-Value  P-Value 

Model                 15   88130.3   5875.36    10.21    0.000 

  Linear               5   32964.4    6592.89    11.46    0.000 

    Ps                   1   6916.8      6916.75    12.02    0.003 

    ts                    1     33.6      33.58     0.06    0.812 

    Pr                   1    859.9     859.92     1.49    0.237 

    tr                    1   2054.1    2054.09     3.57    0.075 

    rpm                1     24.5    24.54     0.04    0.839 

  2-Way 

 Interactions     10  12390.2  1239.02     2.15    0.075 

    Ps*ts             1    564.4   564.40     0.98    0.335 

    Ps*Pr            1    355.3   355.33     0.62    0.442 

    Ps*tr             1    320.1   320.11     0.56    0.465 

    Ps*rpm         1     57.4    57.41     0.10    0.756 

    ts*Pr             1   5816.3   5816.35    10.11    0.005 

    ts*tr              1    122.1   122.05     0.21    0.651 

    ts*rpm          1   1809.9   1809.90     3.15    0.093 

    Pr*tr             1    722.1   722.11     1.26    0.277 

    Pr*rpm         1    267.6   267.61     0.47    0.504 

    tr*rpm          1    149.5   149.50     0.26    0.616 

Error                18  10355.4   575.30 

  Lack-of-Fit         15   8128.4   541.89     0.73    0.710 

    Pure Error         3   2227.0   742.33 

Total                 33  98485.8 

 

The linear variable term of the forging pressure and the interaction between the friction pressure 

and the forging time in the model show P values less than 0.05, thus are statistically significant. 

The high P value (P > 0.05) of lack-of-fit indicates that the model is adequate for predicting the 

ultimate tensile strength of the welded AMNCs. Figure 4.51 shows the adequacy of model 

indicated by the normal probability plot of standardized residuals for the tensile strength of the 

welded AMNCs. 
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Figure 4-51: Normal probability plot of standardized residuals for weld strength 

 

It could be observed that all points cluster along the straight line, which clarifies that the implied 

regression assumptions are satisfied [134-135]. The estimated coefficients (Coef) of each 

variable term in a regression model for the tensile strength of the welded AMNCs are indicated 

by Table 4.6. The values are estimated with the corresponding standard deviation (SEcoef), t-

statistics (t-Stat) and probability (P) values determined at 5% significance level. Variable terms 

with P < 0.05 (Ps, tr, ts*rpm and Pr*ts) are considered statistically significant. The regression 

equation could be expressed as: 

σuts = 617 + 57 Ps + 10.9 ts - 574 Pr - 159 tr - 0.0150 rpm - 24.1 Ps*ts + 77.9 Ps*Pr - 20.5 Ps*tr 

+ 0.00137 Ps*rpm + 65.6 ts*Pr + 7.6 ts*tr - 0.00557 ts*rpm + 65.6 Pr*tr + 0.0145 Pr*rpm 

+ 0.0055 tr*rpm, and it is given in the terms of the linear and interactions between the variables 

on the tensile of the welded AMNCs, where the positive coefficients of variable indicate their 

synergistic effect, whereas negative sign indicates antagonistic effect. The contour plots and the 

main effects of welding variables on the ultimate tensile strength of the AMNCs are indicated by 

Figure 4.52a and b.  

Table 4-6:The estimated coefficients of the regression model 

Term      Effect             Coef     SE Coef       T-Value      P-Value    VIF 

Constant                      119.7        17.8                 6.71    0.000 

Ps          89.6                44.8         12.9                 3.47    0.003            6.19 

ts          -5.7                -2.9           11.8                 -0.24    0.812          4.32 

Pr         -54.6              -27.3         22.3                -1.22    0.237           9.53 

tr        -103.2              -51.6         27.3                -1.89    0.075          12.93 

rpm         -9.8             -4.9           23.6               -0.21    0.839         16.39 

Ps*ts      -63.2            -31.6         31.9               -0.99    0.335           22.30 

Ps*Pr      58.4             29.2         37.2                 0.79    0.442           18.70 

Ps*tr      -38.4           -19.2         25.7                -0.75    0.465           13.50 

Ps*rpm      6.18          3.09         9.78                 0.32    0.756           2.52 

ts*Pr      114.9            57.4         18.1                 3.18    0.005           4.71 

ts*tr       33.1             16.5          35.9                 0.46    0.651           22.43 

ts*rpm     -58.5         -29.3         16.5                -1.77    0.093           3.73 

Pr*tr       82.0            41.0         36.6                  1.12    0.277           12.69 

Pr*rpm      43.5         21.7         31.9                0.68    0.504           9.86 

tr*rpm      41.4          20.7         40.6                0.51    0.616          29.79 
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Figure 4-52: A. The main effect of the linear and interactions between the welding parameters on the ultimate 

tensile strength, B. Contour plots of the ultimate tensile strength 
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Following the Taguchi approach, the same variables were selected in the optimization using the 

friction pressure, friction time, forging pressure, forging time and the rotational corresponding a 

L8 Taguchi model design. The Taguchi method was conducted to the process variables with two 

levels of variation (Table 4.7). The signal to noise ratio (S/N) for each level of process parameters 

were identified based on the S/N analysis considering the higher S/N ration is corresponds to a 

better weld joint ultimate tensile strength. To assess the significance of the variables, a detailed 

ANOVA framework was also conducted. 

  

Table 4-7:Taguchi parameters and design levels 

Parameter Unit Symbol Level 1 Level 2 

Friction 

pressure 

bar Pr 1 2 

Friction time sec tr 0.5 2 

Forging 

pressure 

bar Ps 1 2 

Forging time sec ts 0.5 2 

Rotational 

speed 

rpm rpm 9000 11000 

 

The first run of the Taguchi design analysis gives, based on the variables and their levels, eight 

samples. The suggested samples by the software were welded and the tensile data were entered. 

At each run, the software suggested a new set of parameters based on the S/N ratio (the higher is 

better). The sample with the given parameters was then welded, tested and data reentered to the 

software. This step was repeated until the fracture was moved away from the weld zone and the 

welded joint tensile strength reached a propriate value, which could be compared with the base 

material tensile strength [136-137]. The Taguchi experimental results are summarized in Table 

4.8 and indicated by Figure 4.53. 

 

Table 4-8:Taguchi experimental suggestions based on the process variables and levels 

Pr tr Ps ts rpm σuts 

1 0.5 1 0.5 9000 113 

1 0.5 1 2.0 11000 128 

1 2.0 2 0.5 9000 230 

1 2.0 2 2.0 11000 219 

2 0.5 2 0.5 11000 217 

2 0.5 2 2.0 9000 211 

2 2.0 1 0.5 11000 132 
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2 2.0 1 2.0 9000 145 

2 2.0 2 2.0 11000 155 

2 2.0 2 2.0 9000 186 

2 2.0 2 0.5 11000 207 

 

 

 
 

 
 

Figure 4-53: The effect of parameters Ps,ts, Pr, tr and rpm on the tensile strength of the welded joint  and S/N ratio 

of the responses 

From Figure 4.53 and based on the S/N ration the higher is better, the highest tensile strength 

was achieved when Pr, tr, Ps, ts and rpm were chosen according to level 1,2,2,2 and 

1respectively.i. e the values corresponding 1,2,2,2 and 9000. This sample was given the number 

12. To identify the most effective process parameters which influence the tensile strength of the 

welded joint, the Analysis of variance (ANOVA) test was conducted (Table 4.9), where the 
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precision of a parameter estimation is based on the degree of freedom (DOF). The degree of 

freedom is the number of experiments minus the number of additional parameters estimated for 

that calculation [136-137]. 

The results of ANOVA illustrate that Ps, tr, rpm, ts and Pr are the process parameters order that 

have significant contribution on the tensile strength of the welded joint. 

Table 4-9: Analysis of Variance for SN ratios and Response table for signal to noise ratios 

Analysis of Variance for SN ratios 

 

Source          DF                   Seq SS     Adj SS   Adj MS      F      P 

Pr              1                        0.0003     0.5564   0.5564      0.32  0.592 

tr               1                        3.9885     0.2033   0.2033      0.12  0.744 

Ps              1                        40.6714   40.7748  40.7748  23.42  0.003 

ts               1                        0.1565     0.2500   0.2500     0.14  0.718 

rpm           1                        0.4454     0.4454   0.4454     0.26  0.631 

Residual Error   6               10.4473  10.4473   1.7412 

Total           11                     55.7093 

Response Table for Signal to Noise Ratios (Larger is better) 

 

Level     Pr     tr     Ps     ts    rpm 

1      44.92  44.11  42.21  44.75  45.12 

2      44.91  45.32  46.27  45.03  44.70 

Delta   0.01   1.21   4.05   0.28   0.42 

Rank       5      2      1      4      3 

Flowing the two design of experiment approaches, one sample from each approach was selected. 

The sample introduced by the factorial design had the number 34 and from Taguchi was 

numbered 12 with tensile properties indicated in Table 4.10. 

Table 4-10: Tensile properties of the samples from factorial design and Taguchi 

Sample  σuts σy  ∆L % elongation 

12                          

 

 

 

 

 

 

 

233 130 7.7 12.8 

32 

 

 

 

 

 

225 185 6.1 2.1 

 

Weld line 

Weld line 
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To compare the weld zone proprieties of the different samples introduced by the two approaches, 

the microstructure was examined by optical and scanning electron microscope and the 

microhardness of each sample weld zone was measured. Furthermore, the elements along the 

weld zone were analyzed using the EDX to accentuate the role of the nanoparticles on the 

interface between the two welding parts. 

The microstructure of the samples recommended by using Taguchi and factorial design 

approaches are indicated by Figure 4.54. The typical gradual microstructure change could be 

observed from the weld interface towards the parent materials. The weld zone is characterized 

by a fine grain induced by the dynamic recrystallisation because of the high temperature, rapid 

cooling and strain produced at the weld interface. The weld joint thickness varies from 0.34 mm 

to 0.77 mm for sample 12 and 32 respectively.  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-54: Optical micrographs of the weld zone at magnification 50X of samples 12 and 32 (sub-micrographs 

are the flash shape of each sample) 
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This weld interface contains a fine- recrystallized microstructure of highly deformed grains due 

to the high temperature induced during the welding process. Increasing the thickness of the weld 

interface favors the inhomogeneity between the welded parts with expanding the region of higher 

residual stresses and hardness. Consequently, the flash width and the material loss increase. It 

was also observed that samples show small unbonded regions (Figure 4.55) at the corners of the 

weld interface. These regions had a length of 0.24 and 1.27 mm for sample 12 and 32 

respectively. The unbonded interface is attributed to poor mechanical properties and low burn-

off length. Moreover, the conducted heat from the flash and interface to the corners is responsible 

for the softening and plastic deformation occurred at these zones by merging the corner material 

with the rest of the interface, forming a bond and retarding the weld joint mechanical properties 

[138]. 

 

   

Figure 4-55: Unbonded regions at corner of the weld interface of samples 12 and 32 

 

The variation of the elements along the weld joint interface over a length of 60µm was determined 

by using the EDX linear scanning function and illustrated in Figure 4.56. It could be detected 

that there is not a significant change in the concentration of the element over the weld interface 

between both samples. The microhardness measurement is also useful criteria to identify the 

strengthening and softening processes by the microstructure development in the weld zone. The 

microhardness profiles obtained from samples 12 and 32 are presented in Figure 4.57. The 

average of three measurements was taken at each point across the weld line. The average hardness 

of the base metal was about 85 HV0.05 for both samples and increase to reach 105 HV0.05 at 

the weld interface for sample 12 and 102 HV0.05 for sample 32. This increase in the weld joint 

interface hardness may be attributed to the grain refinement caused by dynamic recrystallization 

in the central weld zone. Generally, both samples microhardness profile behavior could be the 

same with a slight difference between each condition. Finally, the friction welding of the Al6061 

composites contains 1 wt.% Al2O3 was relatively successful using the optimum variables given 

by the software according to factorial design and Taguchi approaches. However, the number of 

experiments to reach these optimum parameters was significantly reduced following the Taguchi 

method, which means more trials, costs, and efforts can be avoided by considering this method 

[29,134-138].  

12 32 
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Figure 4-56: The EDX linear scanning of samples 12 and 32 over 60µm of the weld interface 

12 32 
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Figure 4-57: The microhardness distributions across the weld line of samples 12 and 32 

4.6 Analytical model of the strength contributors in the AMNCs 

The addition of nanoparticles during this work was also associated with the modification of the 

cast structures, which originated the question is the nanoparticles a reinforcement or a refining 

role? The nature of the AMNCs is fine structured composites, and thus, it is essential at this stage 

to understand the active strengthening mechanisms in these materials, as this will be the key to 

develop new structures. 

The following discussion presents an approach for predicting the final yield strength of an 

aluminum alloy reinforced with alumina nanoparticles based on the strengthening contributions, 

particle size and volume fraction. The yield strength of a crystalline material based on dislocation 

mechanisms may be taken as the additive effects of five factors: 1) o = inherent resistance of 

the lattice to dislocation motion, 2) ss for solid solution, gs for grain size, sh for strain 

hardening (dislocations) and p is for dispersed phases and/or particles. Thus,  

pshgsssys  ++++= o  
 

Mainly four dominating strengthening mechanisms are known to apply [14]; Load transfer, Hall-

Petch Strengthening, Orowan Strengthening and thermal mismatch. The developed formula is 

based on the following concepts and assumptions. 

1. Load bearing strengthening =
1

2
𝑉𝑝𝜎𝑚; Where 𝑉𝑝 is the volume fraction and 𝜎𝑚 is the 

matrix yield strength. 

2. Hall-Petch (grain refining strengthening) = 𝑘𝑦/√(
4𝛼𝑑𝑝

3𝑣𝑝
);  

Where 𝑘𝑦 is the strain hardening coefficient, 𝛼 is a constant and 𝑑𝑝 is the particle diameter in 

nm. Assume an average 𝑘𝑦 = 1.3 value for aluminum alloys, 𝛼 = 3.  
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Then the equation can be simplified to = 𝟓𝟎𝟎√(
𝒗𝒑

𝒅𝒑
) 

3. Orowan’s strengthening=
0.13𝑏𝐺

𝑑𝑝((∛(
1

2𝑣𝑝
))−1)

∗ ln(
𝑑𝑝

2𝑏
), where b is the Burger’s vector and G 

is the shear modulus in GPa. Assume average values of G = 26900 MPa and b = 0.286 

nm. When the volume fraction value is between 0 and 0.01(10%), the term 

((∛(
𝟏

𝟐𝒗𝒑
)) − 𝟏) could have an average of 1.85. Then the equation could be simplified to:  

𝟓𝟎𝟎

𝒅𝒑
∗ 𝒍𝒏(𝟏. 𝟓𝒅𝒑) 

4. Coefficient of thermal expansion (CTE) and elastic modulus (EM) mismatch=  

√3 ∗ 𝛽𝐺𝑏(√
12𝑣𝑝∆𝛼∆𝑇

(1−𝑣𝑝)𝑏𝑑𝑝
) + (√3 ∗ 𝛼𝐺𝑏 ∗ √

6𝑣𝑝𝜀

𝑏𝑑𝑝
), where 𝛽 is the dislocation strengthening 

coefficient, ∆𝛼 is the difference in CTE between matrix and particles, ∆𝑇 is the temperature 

change, 𝛼 is the material specific coefficient and 𝜀 is the bulk strain of the composite. Assume 

𝒂𝒗𝒆𝒓𝒂𝒈𝒆𝜶(𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡)=10 and for the aluminium matrix 21 with ∆𝛼 = 11, average 

𝜀 = 0.025, 𝛽 = 25 ∗ 10^ − 5, 𝛼 = 35 ∗ 10^ − 3. Then the equation can be simplified to: 

 

= (70 ∗ √
𝑣𝑝∆𝑇

(1 − 𝑣𝑝)𝑑𝑝
) + (350 ∗ √(

𝑣𝑝

𝑑𝑝
)) 

When the volume fraction value is between 0 and 0.01(10%), the term (1-vp) could be neglected 

and the equation (1) is reduced to (70 ∗ √
𝑣𝑝∆𝑇

𝑑𝑝
). The final yield strength of a certain composite 

based on an aluminium matrix and Al2O3 nanoparticles reinforcements is shown in equation (2). 

𝜎𝑓 = 𝜎𝑚 +
1

2
𝑉𝑝𝜎𝑚 + 500√

𝑣𝑝

𝑑𝑝
+ (

500

𝑑𝑝
∗ ln(1.5𝑑𝑝)) + (70 ∗ (√

𝑣𝑝∆𝑇

𝑑𝑝
)) + (350 ∗ √(

𝑣𝑝

𝑑𝑝
))     (1)                                                                                                                           

𝝈𝒇 = (𝟏 +
𝟏

𝟐
𝑽𝒑)𝝈𝒎+ (𝟖𝟓𝟎 + 𝟕𝟎 ∗ √∆𝑻)√

𝒗𝒑

𝒅𝒑
+ (

𝟓𝟎𝟎

𝒅𝒑
∗ 𝐥𝐧(𝟏. 𝟓𝒅𝒑))            (2)  

The equation given above could be considered for nanocomposites produced by ECAP or powder 

metallurgy having a factor of 1 multiplied by the summation of the different strengthening 

contributors. Different nanoparticles introduction technique could affect the magnitude of the 

strengthening contribution. Such factor should be 1/3 for MMNCs produced by stir-casting and 

could reach 1/2 for those produced by compo or rheo- casting. The equation for stir-casting could 

be rewritten as: 

𝝈𝒇 = (1 +
𝟏

𝟔
𝑽𝒑)𝝈𝒎+ (𝟐𝟖𝟎 + 𝟐𝟎 ∗ √∆𝑻)√

𝒗𝒑

𝒅𝒑
+ (

𝟏𝟔𝟎

𝒅𝒑
∗ 𝐥𝐧(𝟏. 𝟓𝒅𝒑)) (3) 

, where for compo or rheo- casting could be: 

 𝝈𝒇 = (𝟏 +
𝟏

𝟒
𝑽𝒑)𝝈𝒎+ (𝟒𝟐𝟓 + 𝟑𝟓 ∗ √∆𝑻)√

𝒗𝒑

𝒅𝒑
+ (

𝟐𝟓𝟎

𝒅𝒑
∗ 𝐥𝐧(𝟏. 𝟓𝒅𝒑)) (4) 



 

4. Results and Discussion  115 

 

 

Figures 4. (58: 60) (modified from [80,43]) present the five strengthening components and the 

final effect resulting from all five components, according to this work. The figures depict the 

effect of each strengthening contribution and the total strengthening increment calculated 

according to Equation (2) for a reinforced Al matrix reinforced by 0-10% nanoparticles. It is 

interesting to regard that the main strength contributors are the Orowan strengthening and CTE 

mismatch, mainly at small reinforcement particle diameter (dp< 50 nm). Considering the 

MMNCs, introducing small fractions of reinforcement particles is used to enhance the matrix 

strength without diminishing toughness, and other properties (e.g., electrical and thermal 

conductivity), and thus the strengthening caused by load transfer is expected to be very small 

compared to the other contributors. The same graph shows that for the system Al/2wt.%Al2O3 

the proposed model is consistent with experimental data, reported by [80]. 

 

 

Figure 4-58:Validation of the proposed equation based on the work carried out in [80] 

 

Figure 4-59: Validation of the proposed equation based on the experimental work carried out at 2wt.% Alumina 
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Figure 4-60: Validation of the proposed equation based on the work carried out in [43] 

The second approach adopted in this work for predicting the final yield strength of an aluminum 

alloy reinforced with nanoparticles is presented based on statistical analysis of a series of data 

obtained from experimental work of presented in [27,73] and others [42-43]. A validation of the 

equation is made by data carried out at 2wt.% Alumina. The developed formula is based on the 

following concepts. 

➢ Vf is the weight fraction and is given as 1, 2, 3…. 

➢ dp is the particle diameter in nm. 

➢ ∆T is the difference between the processing and the test temperature. 

➢ σm and σf are the yield strength of the matrix and the final strength obtained after 

reinforcement respectively. 

➢ These data are processed using the parameters boundary conditions listed in Table 4.11 

and Figure 4.61 below: 

Table 4-11: The boundary conditions used for the Minitab variables 

vf dp ∆T σm 

0 40 100 75 

10 1000 700 350 

 

0

20

40

60

80

100

120

140

160

180

0 100 200 300 400 500 600

S
tr

en
g
th

 c
o

n
tr

ib
u

ti
o

n
 i
n

 M
P

a

Particle diameter in nm

Load bearing

Hall-Petch

Orowan

EM

CTE

Sum of

contributions
REF 43

Experimental Point



 

4. Results and Discussion  117 

 

 

 

 

Figure 4-61: Minitab run outputs; a. residual plots for final strength, b. normal plot of the standardized effects at 

α=0.5 

The data analysis gives the equation below and indicates that the significant parameter in 

determining the final strength of an alloy reinforced with nanoparticles is the yield strength of 

the matrix: 

σf = -1353 + 310 vf + 26.4 dp + 2.34 ∆T + 1.042 σm - 6.3 vf*dp - 0.56 vf*∆T + 0.065 vf*σm 

- 0.0455 dp*∆T + 0.0113 vf*dp*∆T 

A 

B 
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Validation of the equation using dp=40nm, ∆T=573, and Vf =2, the resultant σf = 135.6 MPa, and 

the experimental value was 146MPa. 

 

From the two approaches it could be expected that the main strengthening mechanisms acting for 

MMNCs (contributing to the strengthening of the matrix) results from the contributions by 

Orowan strengthening and CTE and EM mismatch and depends basically on the matrix strength 

without any reinforcements.
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5 Conclusions and prospective recommendations  
Aluminum matrix/Al2O3 nanoparticles composites were successfully fabricated by the stir 

casting process. Different weight fractions of the nanoparticles were introduced to the aluminum 

matrix and the manufactured composites were investigated to identify the optimum weight 

fraction at which the best performance is obtained. Considering the systematic methodology 

proposed for characterizing the Al matrix/Al2O3 nanocomposites mechanical behaviour and 

functional performance, it could be possible to derive the following conclusions: 

 

1. The distribution of the nanoparticles over the matrix was homogenous at low weight 

fractions (1wt.% Al2O3) with a good adhesion bond between the particles and the 

aluminum matrix due to good particles wetting by molten matrix and effective mechanical 

stirring, which attributed to break the agglomerated nanoparticles caused by attraction 

forces such as Van der Waal forces. 

2. The introduction of the nanoparticles to the Al6061 matrix has a significant effect on 

reducing the α-aluminum grain size and reducing the dendrite arm spacing, as well as the 

dendrite tip radius by acting as grain growth restrictions during the particle pushing and 

impeding the solute diffusion during growth. 

3. The finest grain size without additional treatment was achieved after the addition of 

1wt.% Al2O3 (about 17µm) with lowest % porosity and agglomeration size (0.7% and 

2.15 µm respectively), where the grain size was further refined with lower % porosity 

and agglomeration size after conducting sever plastic deformation on the 1wt.% Al2O3 

(10 µm, 0.23% and 1.9 µm respectively).    

4. Increasing the weight fraction of the nanoparticles more than 2 wt.% Al2O3 leads to higher 

agglomeration size because of increasing the surface area and surface energy of the  non-

wetting medium, such as alumina in this case, which makes it extremely difficult for 

mechanical stirring to break the clustering in the melt, and higher % porosity due to higher 

gas entrapment during mechanical stirring. 

5. Higher weight fraction of the nanoparticles (5wt.% Al2O3) leads to formation of 

undesirable intermetallic phases such as β-Fe intermetallic, which hinders the mechanical 

properties of the AMNCs. 

6. The tensile properties of the Al6061 matrix is enhanced after introducing the 

nanoparticles and reached a maximum at 1wt.% Al2O3 compared to the monolithic alloy 

at room temperature and 300°C with an increase of 50% and 38% in the yield strength. 

Moreover, the ultimate tensile strength increased by about 32% and 12%. Furthermore, 

the % elongation was improved by 40% and 16%, while the hardness increased by about 

14% from 71.6 to 81.4 HV5 at room temperature. 

7. The fatigue strength of the Al 6061 increase after 1wt.% Al2O3 addition in the 

electropolishing state by about 26% and 64% compared to the unreinforced alloy in air 

and in 3.5% NaCl solution, which could be attributed to the load carrying capabilities 

offered by the high strength and modulus nanoparticles. 
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8. Further improvement in the fatigue strength of the AMNCs could be achieved after 

conducting mechanical surface treatments, such as shot peening and roller burnishing, to 

reach 37% and 127% after conducting shot peening in air and 3.5% NaCl compared to 

the electropolished unreinforced alloy, while it reaches 48% and 154% after conducting 

roller burnishing. 

9. The enhancement role of the mechanical surface treatments on the fatigue life is 

accredited to the induced compressive residual stresses, which restrict the crack 

propagation caused by the increase in the dislocation density added by the plastic 

deformation of a specific area. This role flourishes with applying roller burnishing than 

shot peening because of the lower surface roughness accompanied with roller burnishing 

compared to shot peening, which hinders the crack initiation stage.   

10. The AMNCs (1wt.% Al2O3) exhibit higher creep life at 300°C and strength of 40 MPa 

than the unreinforced alloy. The increase is not only without further mechanical surface 

treatments, but also after conducting shot peening owing to reducing the dislocation 

mobility after the addition of the nanoparticles to the Al6061 matrix. Furthermore, the 

introduction of the nanoparticles might slightly increase the melting point of the produced 

composite and attribute to raise the material resistance to the creep deformation by 

hindering the diffusional flow. 

11. The dominant creep mechanism in the 1wt.% Al2O3 composites is the dislocation creep 

with true activation energy of 149 and 161 KJ/K.mol for un-peened and peened samples 

and threshold stress (σth) of 5, 12.5, 18.5 and 26 for un-peened 1% at 300°C, peened 1% 

at 300°C, un-peened 1% at 250°C and peened 1% at 250°C.  

12. Shot peening could increase the threshold stress compared to the samples without shot 

peening, owing to the compressive residual stresses induced by shot peening, which could 

delay the creep deformation and prolong the creep life. 

13. AMNCs with low agglomeration and porosity exhibit lower wear rates (based on the 

weight loss) compared to the unreinforced matrix, where the 1wt.% Al2O3 performs an 

enhancement about 32% compared to the monolithic alloy. Adversely, composites 

contain 3 and 5 wt.% Al2O3 possess the highest weight loss when compared to the other 

conditions, which can be directly proportional to the tensile properties and hardness of 

the AMNCs. 

14. All composites, except the 3 and 5%, show an improved corrosion resistance compared 

to the matrix due to the lower tendency of the galvanic corrosion between alumina 

nanoparticles (high resistivity particles) and aluminum matrix. Moreover, the grain 

refinement occurred after nanoparticle addition enhances the oxide formation, which is 

characterized as protective, controlling the anodic reactions, and capable of decreasing 

corrosion rate. 

15. The 1wt.% Al2O3 composites were successfully welded by rotary friction welding with 

two different sets of parameters proposed by Minitab 17.0 using the DoE utilized through 



 

5. Conclusions and Prospective Recommendation 121 

 

 

factorial design (friction pressure: 1bar, friction time 1 second, forging pressure 2bar, 

forging time: 2seconds and rotating speed of 10000 rpm) and Taguchi (friction pressure: 

1bar, friction time 2seconds, forging pressure 2 bar, forging time: 2seconds and rotating 

speed of 9000 rpm) methods. 

16. First degree recycling of the AMNCs (using 1wt.% Al2O3 samples) gives promising 

properties could be compared to the fresh fabricated composites. 

17. Conducting sever plastic deformation to the AMNCs improves some of their mechanical 

behavior (such as σy, σuts, and fatigue strength of the electropolished state), but 

deteriorates their ductility and fatigue strength after conducting mechanical surface 

treatments such as shot peening and roller burnishing. This effect could be explained by 

increasing the surface roughness without a signification increase in the compressive 

residual stresses, which catalyze the crack initiation. 

18. The experimental results show good agreement with the proposed model for predicting 

the mechanical properties of the AMNCs. However, the model needs to be improved by 

considering the negative effect of porosity and agglomeration on the mechanical 

properties of the AMNCs.  

5.1 Prospective recommendation 

1. Studying the recyclability of AMNCs with higher weight fraction of Al2O3 nanoparticles 

than 1wt.% and the second-degree recycling of the AMNCs for the economic purpose. 

2. Exploring the creep age-forming of the AMNCs for its importance in the aerospace 

applications. 

3. Understanding the weldability of the AMNCs using another welding techniques, such as 

friction stir welding, to provide a welding data sheet suitable for any application and 

geometry. 

4. Investigating the behavior of the AMNCs reinforced with different reinforcement 

according to the experimental procedure used in this work. 
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