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Abstract

Unmanned Aerial Vehicles (UAVs) are widely used worldwide for a board range of civil

and military applications. There continues to be a growing demand for reliable and low

cost UAV systems. This is especially true for small-size mini UAV systems where majority

of systems are still deployed as prototypes due to their lack of reliability. Improvement in

the modeling, testing and flight control for the small UAVs would increase their reliability

during autonomous flight.

The traditional approach used in manned aircraft and large UAV system synthesizing,

implementing and validating the flight control system to achieve desired objectives is time

consuming and resource intensive. This thesis aims to provide an integrated framework

with systematic procedures to synthesize and validate flight controllers. This will help in

the certification of UAV system and provide rapid development cycle from simulation to

real system flight testing. The effectiveness of the approach is demonstrated by applying

the developed framework on a small UAV system that was developed at the University of

Minnesota.

The thesis is divided into four main parts. The first part is mathematical modeling of

the UAV nonlinear simulation model using first principle theory. Flight test system iden-

tification technique is used to extract model and model uncertainty parameters to update

the nonlinear simulation model. The nonlinear simulation model developed must be able

to simulate the actual UAV flight dynamics accurately for real-time simulation and robust

control design purposes. Therefore it is important to include model uncertainties into the

nonlinear simulation model developed, especially in small UAV system where its dynamics

is less well understood than the full-size aircraft. The second part of the work provides

the approach and procedures for uncertainty modeling into the nonlinear simulation model

such that realization of linear uncertain model is possible.

The third part of work describes the flight control design and architecture used in the
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UAV autopilot system. Classical and model-based control synthesis approaches are pre-

sented for roll angle tracking controller to demonstrate the controller synthesis approaches

and practical controller implementation issues on the embedded flight computer system.

The last part of work blends in all the previous works into the integrated framework for

testing and validation of the synthesized controllers. This involves software-in-the-loop,

processor-in-the-loop and flight testing of the synthesized controllers using the integrated

framework developed.
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Chapter 1

Introduction

1.1 Overview

Unmanned Aerial Vehicles (UAVs) are widely used worldwide for a board range of civil and

military applications. There continues to be a growing demand for reliable and low cost

UAV systems. This is especially true for small-size, mini UAV systems (less than 2 meters

wing span) where majority of systems are still deployed as prototypes due to their lack

of reliability. Improvement in the modeling, testing and flight control for the small UAVs

would increase their reliability during autonomous flight.

The traditional approach used in manned aircraft and large UAV system synthesizing,

implementing and validating the flight control system to achieve desired objectives is time

consuming and resource intensive. Applying the same techniques to small UAVs is not

productive. To reduce cost and time to market, small UAV systems make use of low cost

commercial-off-the-shelf autopilots [1]. Most of these autopilots use classical Propotional-

integral-derivative (PID) controllers where ad-hoc methods are used to tune the controller

gains in flight. This methodology is time consuming and high risk. The flight test ap-

proach to tuning controller has limitations in performance optimality and robustness. To

increase the speed of the development cycle, simulation through flight test and improve

system reliability and robustness of the flight control system, it is important to develop

an integrated framework to the flight control design process with a set of design tools that

enables control engineer to rapidly synthesize, implement, analyze and validate a candidate
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controller design using iterative development cycles.

Numerous researchers have made the case for an integrated framework in recent years

[2–7]. The central paradigm is a model-based development environment for the UAV where

different design tools and techniques can be formulated, deployed and applied. The different

processes in model-based flight control development (shown in Figure 1.1) are tightly-

coupled and the development process will severely hindered if each process is tackled as a

separate problem. Hence flight control design must be look at in the context of dynamic

modeling, control and model analysis, simulation, control design, real-time implementation,

software and hardware-in-the-loop simulation and flight testing.

Figure 1.1: Integrated framework for flight control development

1.2 Challenges in UAV Flight Control Synthesis and Valida-

tion

The task of flight control synthesis and validation involves multi-disciplinary fields that pose

challenges in research and development. Many of these challenges identified are the focus of
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ongoing research. The ability to gain a comprehensive insight into the underlying principles

and problems will allow us to focus on the algorithmic steps and intricacies involved in the

problem. This allows us to build on past and recent research advancements to accelerate

our research progress.

1.2.1 High Fidelity Simulation Model

Development of accurate high fidelity simulation model to represent actual flight mechanics

requires an in depth understanding of the system dynamics. Three standard approaches

to flight dynamic simulation model development are analytical, wind-tunnel and flight test

technique. Each approach can be used to complement one another during different phase of

model development. A comprehensive model built using all the available complex system

behavior does not necessary provide a good model as this might have many redundant

parameters, making it too complicated for its intended purpose. A good simulation model

should have fidelity required within a specific tolerance with minimum number of param-

eters. The resulting model is simple, easy to construct, validate and use. Development

of these simple, accurate models requires a good understand of flight dynamics and ex-

perience in using adequate number of suitable parameters to model the system through

suitable experiments. This systematic approach is still quite lacking for small UAV system

development.

1.2.2 Uncertainty Modeling

Mathematical models are used to describe the behavior of complex physical system. These

models are only an approximation of the real system. Model uncertainty accounts for actual

system response using the model developed. Hence it is important to include uncertainty

during the model development to provide a confidence level as well as a bound on predicting

the actual system response. Uncertainty modeling is especially crucial in the model devel-

opment for small UAV since their aerodynamics data are less well understood than full-size

aircraft. In addition, small UAVs are generally more sensitive to wind gust disturbance

which are difficult to model. Low cost sensors used onboard result in significant sensor

data errors and measurement noise. These are a few of the practical reasons to incorporate
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uncertainty modeling in the UAV model development.

Incorporating uncertainty modeling leads to the issue of deciding the best approach

for deriving and representing model uncertainty (stochastic or deterministic), its practical

implementation and its integration into the nonlinear and linear model development. There

is no standard approach in the representation for uncertainty modeling due to it being

problem dependent problem.

1.2.3 Model Validation

Model validation is a necessary step to gain confidence or reject a model based on the input

and output experiment data obtained from the system. It is never possible to validate a

model on the basis of a finite number of experiments. However, the model can be invalidated

by experimental data [8]. Hence model development and validation are closely coupled and

integrally related to experimental data.

The fundamental principle used in many model validation techniques is to compare

and evaluate the residue between simulated model data and experiment validation data.

Different model validation methods result in different non-unique validated model sets.

Also, the technique of model validation depends on the uncertainty modeling approach,

model and uncertainty assumptions, this dependency makes the task of model validation

even harder.

1.2.4 Performance Validation

The objective in flight control system development is to formulate control design specifi-

cations from system performance requirements with the end goal of achieving these per-

formance requirements at the end of development cycle. A validated UAV model for flight

control synthesis allows simple and straight forward techniques to validate closed-loop sys-

tem performance. The presence of model uncertainty resulted from actual physical system

approximation affects the robustness of designed controller performance as well as the

validation methodology. Therefore it is important to relate the interplay between model

uncertainty, model validation and control system performance robustness in closed-loop

performance validation, which is a similar problem faced in model validation.
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1.3 Integrated Framework

An integrated framework to flight control synthesis and validation merges different design

and analysis tools with the linear and nonlinear simulation models that allows for an it-

erative controller laws design and validation environment. At the same time, the linear

and nonlinear models used for controller design and validation are being updated as part

of the development cycle. The parallel effort of redesigning and validating of the flight

control laws and the models are used for controller synthesis and validation facilitate rapid

controller design, analysis and implementation process with the latest updated models.

1.4 Research Outline: Objectives and Scope

1.4.1 Objective

The primary objectives of this thesis are to demonstrate and implement an integrated

framework for synthesis and validation of flight controllers using a small UAV testbed. It

combines theoretical design tools and experimental procedures.

1.4.2 Scope

The scope of the thesis is the development process of an integrated framework for syn-

thesis and validation of UAV flight controller using a small commercial off-the-shelf radio-

controlled airplane integrated with flight avionics system.

Nonlinear modeling of the UAV system is done using first principle theory in Mat-

lab/Simulink environment with experiments carried out for obtaining physical model pa-

rameters. In the flight dynamics modeling, flight test system identification process is con-

ducted to update and verify the lateral model developed used for flight control synthesis

and validation. Parametric uncertainties due to the modeling process are modeled into the

nonlinear simulation model developed. The uncertain nonlinear simulation model is further

linearized to uncertain linear model for the purpose of flight control synthesis and analysis.

Flight control synthesis is carried out to design lateral-directional axis roll angle con-

troller with the uncertain linear model to meet the design specifications. Both classical
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and modern control design approach are used for the controller synthesis. The controllers

obtained are implemented on embedded flight computer system for controller testings.

Software and processor-in-the-loop testing environments are developed for the flight

control development testing. The developed framework provides an incremental and sys-

tematic approach of testing the synthesized controllers before putting the controllers on the

UAV for flight tests. With the developed integrated framework, the designed controller,

model and model uncertainty developed are validated.

1.5 Research Contribution

The contributions of this thesis are as follows:

• Systematic procedures for parametric uncertainty modeling in nonlinear simulation

models with realization of uncertain linear model.

• Approach for uncertain model simplification.

• Approach for nonlinear simulation model aerodynamic coefficients update using flight

test parameter identification results.

• Integrated framework and environment for development of flight control synthesis and

validation.

1.6 Organization of Dissertation

The disseration is organized as follows. The introduction, objective and scope of the re-

search is given in Chapter 1. Chapter 2 develops the nonlinear simulation model of the ex-

perimental UAV system. Chapter 3 covers the flight test system identification experiments,

system identification flight test procedures, parameter identification techniques and gives

the results of the identification used to update the nonlinear simulation model. Chapter

4 describes the approach to uncertainty modeling for inclusion into the nonlinear simu-

lation model. Procedures for performing linear uncertain model realization and analysis

are also discussed. In Chapter 5, flight control synthesis and controller implementation on
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the embedded flight computer is presented. Chapter 6 provides model and flight control

performance validation for the UAV system using both simulation tools and flight testing

methods. The conclusion and future recommendations for the research are given in Chapter

7.
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Chapter 2

Small UAV Nonlinear Simulation

Model

Aircraft fight dynamics models are used extensively for simulation analysis, flight control

law algorithms implementation and extraction of low-order model for flight control synthe-

sis. This has the benefits of lowering the cost and risk associated with design and operation

of the aircraft system. Modeling, simulation analysis and flight testing of full-size aircraft

are very well established and documented over the past few decades. However, limited

literature is available regarding the detail modeling, simulation and analysis of small UAV

systems [9]. It is expected that the use of high fidelity simulation model in small UAV sys-

tems development will bring similar benefits in lowering the cost and risk involved during

the system development cycle.

For a simulation model to be useful, it should be able to predict the actual system

response accurately. However, a mathematical model is just an approximation of the actual

physical system. Hence there will be uncertainty in predicting the actual system response

using the model developed. Therefore it is important to include model uncertainty in the

simulation model. Uncertainty modeling is even more crucial in small UAV modeling since

small UAV flight dynamics is less well understood than full-size aircraft.

This chapter describes the development of the nonlinear UAV simulation model from

first principle using forces and moments equations. The major difficulty faced in the model

development is in accurate determination of the model’s physical parameters. Experiments
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conducted to obtain these physical parameters are covered. The nonlinear simulation model

developed in this chapter provides the basic foundation for the integrated framework ap-

proach.

2.1 UAV Platform

2.1.1 Physical Geometry

The aircraft chosen for the research is a commercial off-the-shelf (COTS) Radio-Controlled

(RC) plane UltraStick 25E (shown in Figure 2.1). The plane has a conventional horizontal

and vertical tail with rudder and elevator control surfaces. The aircraft uses a symmetrical

airfoil wing and has both aileron and flap control surfaces. All the control surfaces are

actuated by Hitec servos. The propulsion system is made up of a 600 watts E-Flite electric

outrunner motor driving an APC 12 x 6 propeller. A summary of important physical

parameters is provided in Table 2.1.

Figure 2.1: Research testbed: Ultra Stick 25E RC plane
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Parameter Description Value and Units

A wing reference area 0.32 m2

b wing span 1.2 m

c̄ wing chord 0.3 m

m gross take off weight 1.9 kg

Table 2.1: Summary of important aircraft geometry

2.1.2 Flight Avionics System

The RC plane is instrumented with a suite of flight avionics for the flight control develop-

ment research. Figure 2.2 shows the architecture of the flight avionics system and Table 2.2

gives a listing of the individual component in the avionics system. The IMU/GPS sensor

provides the following measurement data:

• Angular rates: p (deg/s), q (deg/s) and r (deg/s)

• Accelerations: ax (g), ay (g) and az (g)

• Magnetic fields: Hx (gauss), Hy (gauss) and Hz (gauss)

• Airspeed and barometric altitude: Vs (m/s) and h (m)

• GPS velocities (ENU format) and positions: ve (cm/s) , vn (cm/s), vu (cm/s) and

px (10−7deg), py (10−7deg), pz (m).

The flight computer runs the eCos (embedded configurable operating system) [10] real-time

operating system. Sensor data are acquired into the flight computer and attitude determi-

nation is done using a 7 states Kalman Filter [11]. At the same time, the flight computer

also executes flight control algorithms and outputs Pulse-Width Modulated (PWM) signals

to control the servo actuators and sends telemetry data information to the data modem and

datalogger through serial communication port for flight test data collection. Dual channels

datalogger is used to record both raw sensor data (at 50 Hz) and flight control data (at

20 Hz). The flight test data is also sent to ground control station for real-time health
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monitoring during flight testing. A failsafe switch board is used as a safety precaution to

switch flight computer commands back to manual pilot commands if necessary.

Figure 2.2: Flight avionics system architecture layout

Component Module

Flight computer Phytec MPC 555 microcontroller [12]

IMU/GPS sensor Crossbow Micronav sensor [13]

Data Modem Maxstream 900 Mhz modem [14]

RC telemetry Spektrum DX-7 2.4 Ghz RC system [15]

Failsafe switch RxMux board [16]

Datalogger Antilog RS232 serial datalogger [17]

Table 2.2: Components in flight avionics system
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2.2 Nonlinear Simulation Model

This section describes development of the nonlinear UAV flight dynamics model using

Matlab/Simulink environment. Simulink modeling of the UAV model is adapted from

Aerosonde UAV Simulink model provided by AeroSim Blockset from Unmanned Dynamics

[18]. The AeroSim Blockset is a Matlab/Simulink library block that provides standard

aircraft model components for rapid development of nonlinear 6-DOF aircraft dynamic

models. Beside aircraft dynamics model blocks, the blockset also provides environment

and earth models. Figure 2.3 shows a simplified layout of the nonlinear aircraft model

block diagram from AeroSim Blockset [19].

Figure 2.3: Simplified layout of Aerosim nonlinear 6-DOF aircraft model

Modification to the aerodynamics, propulsion and inertia Aerosonde UAV Simulink

blocks had been performed and experiments have to be carried out to get the required phys-

ical aircraft parameters. The equation of motion, earth and atmosphere Simulink blocks are

not modified since they are independent of the aircraft platform used. Actuator dynamics

are also modeled into the simulation model to account for the actuator characteristics.

2.2.1 Aerodynamic Model

The dynamic model of an aircraft is commonly described by a six degrees of freedom

equations which are derived from the X, Y and Z forces and L, M and N moment equations
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[20]. Figure 2.4 shows the forces and moments description in the aircraft body axis.

Figure 2.4: Forces and moments in aircraft body axis

2.2.1.1 Force Equations

The summation of the forces in body x, y and z axis gives linear velocity state equations [20]:

u̇ = rv − qw +
q̄S

m
CX − gsinθ +

T

m

v̇ = pw − ru +
q̄S

m
CY − gcosθsinφ

ẇ = qu− pv +
q̄S

m
CZ − gcosθcosφ

where u (m/s), v (m/s) and w (m/s) are the body axis linear velocities, p (rad/s), q

(rad/s) and r (rad/s) are the body axis angular rates, φ (rad), θ (rad) and ψ (rad) are

the body attitude angles and q̄ (Pa) is the dynamic pressure. CX , CY and CZ are the

aerodynamic force coefficients and are given by the following relationships:

CX = CLsinα− CDcosα

CZ = −CDsinα− CLcosα

CY = CYβ
β + CYδr

δr +
b

2Va
(CYpp + CYrr) (2.1)
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where α (rad) and β (rad) are angle of attack and sideslip angle of the aircraft in the wind

axis. The forces in the body x, y and z axis are given by:

X = q̄SCX

Y = q̄SCY

Z = q̄SCZ

The lift (CL) and drag (CD) coefficients are functions of the non-dimensional coefficients

given by:

CL = CL0 + CLαα + CLδe
δe +

c

2Va
(CLα̇α̇ + CLqq)

CD = CD0 + CDδe
δe + CDδr

δr +
(CL − CLmin)

π.e.AR

In this case, small perturbation assumption is made and only linear terms are retained in

the lift and drag coefficients and higher order terms such as α2, α3 etc are neglected.

2.2.1.2 Moment Equations

Taking a moment about the aerodynamics center of the aircraft, the angular rate equations

are given by:

ṗ− Ixz

Ixx
ṙ =

q̄Sb

Ixx
cl − Izz − Iyy

Ixx
qr +

Ixz

Ixx
qp (2.2)

q̇ =
q̄Sc̄

Iyy
cm − Ixx − Izz

Iyy
pr − Ixz

Iyy
(p2 − r2) +

Ip

Iyy
ωpr (2.3)

ṙ − Ixz

Izz
ṗ =

q̄Sb

Izz
cn − Iyy − Ixx

Izz
pq − Ixz

Izz
qr − Ip

Izz
ωpq (2.4)

where ωp (rad/s) is the propeller rotation speed, Ixx, Iyy, Izz, Ixz and Ip are the moment

of inertia coefficients for the aircraft and propulsion system respectively in kgm2 and cl, cm
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and cn are the non-dimensional moment coefficients. These coefficients are given by:

cl = clββ + clδa
δa + clδr

δr +
b

2Va
(clpp + clrr) (2.5)

cm = cm0 + cmαα + cmδe
δe +

c̄

2Va
(cmα̇α̇ + cmqq) (2.6)

cn = cnβ
β + cnδa

δa + cnδr
δr +

b

2Va
(cnpp + cnrr) (2.7)

The moments about the body x, y and z axis are given by:

L = q̄Sbcl

M = q̄Sbcm

N = q̄Sbcn

2.2.1.3 Kinematic Equations

The kinematics of the aircraft rotation motion relating the body angular rates p, q and r,

Euler angles φ, θ and ψ and aerodynamics angles α, β and γ are given by:

φ̇ = p + tanθ(qsinφ + rcosφ)

θ̇ = qcosφ− rsinφ

ψ̇ =
qsinφ + rcosφ

cosθ

θ = γ + αcosφ + βsinφ

2.2.1.4 Determination of Aerodynamic Coefficients

The list of aerodynamic coefficients required to model the Ultrastick UAV using the mod-

ified AeroSim Aerosonde UAV nonlinear simulation model is summarized in Table 2.3.

These coefficients can be obtained from wind tunnel testing [21], numerical computational

method [22] or flight test parameter identification. The approach used to determine these

aerodynamic coefficients is to first approximate these coefficient values using simulator

parameters tuning approach with some of the initial coefficient values set to values from

relevant work done by [23]. Subsequently, these coefficient values are refined using flight

test parameter identification.
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Lift Force Drag Force Side Force Roll moment Pitch moment Yaw moment

CL0 CD0 CYβ
clβ cm0 cnβ

CLα CDδe
CYδr

clδr
cmα cnδr

CLα̇ CDδr
CYp clp cmδe

cnp

CLq CYr clr cmα̇ cnr

CLmin clδa
cmq

Table 2.3: Aerodynamic coefficients required for Ultrastick UAV modeling

Simulator Parameter Tuning

In simulator parameter tuning, estimate of aerodynamic coefficients are obtained using

simulator flying by RC pilots using an iterative tuning process. Figure 2.5 shows the details

of the tuning process. The joystick control box used in the simulator flying is the same

radio control box used for actual flight test. Control signals are input to the nonlinear

Simulink model that contains the initial guess aerodynamics coefficients from [23]. The

outputs from the simulation model are the state responses of the vehicle which are used to

drive FlightGear [24] simulator. The FlightGear simulator provides a visualization for the

aircraft motions. Figure 2.6 shows the setup of simulator parameter tuning experiment.

Two RC pilots who have been flying the actual UAVs were tasked to fly with the

simulator setup using different flight maneuvers. Based on their flight handling experiences

with the actual UAV, the aerodynamic coefficients in the simulation model were tuned

iteratively until they felt that the simulator model had similar handling qualities as the

actual UAV flight. Appendix Table A.1 contains the aerodynamic coefficients that were

obtained from the simulator tuning. These coefficients will be used as initial estimates for

flight test parameter identification.

2.2.2 Inertia Model

The inertia model contains physical geometric information of the aircraft mass, center of

gravity and moment of inertia coefficients. The aircraft moment of inertia is described by
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Figure 2.5: Simulator parameter tuning process

Figure 2.6: Setup for simulator parameter tuning

the moment of inertia matrix I:

I =




Ixx −Ixy −Ixz

−Iyx Iyy −Iyz

−Izx −Izy Izz



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The Ultrastick UAV is assumed to be symmetrical about the xz plane. This simplifies the

inertia matrix with Ixy = Iyx = Ixz = Izy = 0. Hence the inertia matrix becomes:

I =




Ixx 0 −Ixz

0 Iyy 0

−Izx 0 Izz




Beside the aircraft moment of inertia matrix, propulsion system moment of inertia coef-

ficient is required. These moment of inertia coefficients are determined using pendulum

method described in Appendix A.2. The nominal, lower and upper bound values for the

moment of inertia of the aircraft and the propulsion system obtained from the experiments

are given in Appendix Table A.2.

2.2.3 Propulsion Model

The propulsion system models the interaction between electric motor and propeller dynam-

ics. The rotation speed of propeller, ωp, is used to describe the dynamics of the propulsion

system. Small UAVs (with propeller propulsion system) flight dynamics are sensitive to

the propulsion system dynamics unlike the full-size aircraft. This is due to the large torque

from the propulsion system coupling with the aircraft rigid body dynamics since the small

UAV system is being propelled by a larger propeller relative to its aircraft size. Therefore

the moment generated by the propeller is added to the total moment of the aircraft in

the simulation model. Applying the conservation of angular momentum, the propulsion

dynamics is given by:

(Imotor + Ipropeller)ω̇p = Tmotor − Tpropeller

where:

Imotor = moment of inertia of rotating motor body (kgm2)

Ipropeller = moment of inertia of propeller with spinner hub attachment (kgm2)

Tmotor = Output torque at motor shaft (Nm)

Tpropeller = Torque generated by propeller (Nm)
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The moment of inertia for rotating motor body, Imotor, is included because the motor

used is an outrunner motor in which the major part of the motor mass is rotating. This

has a significant contribution to the total moment of inertia for the propulsion system, Ip

(Ip = Imotor + Ipropeller).

2.2.3.1 Propulsion Motor

The propulsion motor used is E-flite Power 25 BL Outrunner Motor [25]. The motor

performance data is obtained from a commercial software, MotorCalc [26], since it is not

available from the manufacturer. Figure 2.7 shows the plot for the relationship between

throttle stick input (δT ) and output power at the motor shaft (Po).
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Figure 2.7: Motor power output

The motor shaft torque, Tmotor (Nm), generated from the motor shaft output power Po

is given by:

Tmotor =
Po

ωp
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2.2.3.2 Propeller Characteristics

The thrust to propel the aircraft forward is generated by the rotating propeller using the

torque generated at motor output shaft. The propeller rotation speed depends on both the

input torque available and the speed of air flowing into the propeller disk. The propeller

performance is generally characterized by 3 parameters [27]:

• Advance ratio, J , given by:

J =
πVa

ωpR

• Coefficient of Thrust, CT , given by

CT =
Fpπ

2

4ρR4ωp
2

• Coefficient of Power, CP , given by

CP =
Tpπ

3

4ρR5ωp
2

where R (m) is the diameter of the propeller, Fp (N) is the propeller thrust, Tp (Nm) is

the propeller torque and ρ (kgm−3) is the air density.

The performance data of the propeller used is not available from manufacturer. There-

fore, approximation is made on the propeller performance data based on experimental result

published by [28] on an APC 12 x 8 propeller. In [28], the propulsion system thrust and

torque generated were measured using a force-moment sensor in a wind tunnel with dif-

ferent propeller rotation speed and inflow airspeed. The coefficient of thrust and power

obtained were plotted against advance ratio as shown in Figure 2.8. These data (Appendix

Table A.3) are used as lookup tables in the nonlinear simulation model. This provides

the propeller thrust (Fp) and moment (Tp) at different advance ratios condition during the

simulation.

2.2.3.3 Propulsion System Verification

The propulsion system model developed and implemented in the simulation model is verified

using MotorCalc software [26]. The software program allows the specific motor, speed

controller and propeller used in the Ultrastick UAV to be selected from the database so
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Figure 2.8: Propeller performance for APC 12 x 8 propeller

that static and in-flight aircraft performance can be computed. A static flight condition,

with zero airspeed, is chosen for the verification. In the verification, the throttle input

to the simulation model and MotorCalc software are incrementally increased from 0 to 1

with a 0.1 step size. The propeller thrust and RPM obtained from the two system are

compared. Figure 2.9 shows the comparison plots of propeller thrust and RPM. The plots

show that the implemented propulsion system simulation model output responses have a

close matching with the MotorCalc outputs. This verifies the propulsion system simulation

model developed and the data used in our model implementation are realistic since it is

able to match the results obtained from the commercial software.

2.2.4 Actuator Model

The UAV control surfaces are driven by Hitec S3108 micro servos using Pulse-Width Mod-

ulation (PWM) signal operating at 45 Hz. The servo rotation rate is 500 deg/s at no load

condition. The time delay for the servo actuator dynamics is approximated using a single

period of PWM signal operating at 45 Hz frequency. This gives a time delay of 22 ms for the

actuator delay. The actuators rotation angle saturation limits are limited to the maximum

mechanical deflection angles of the control surfaces. These limits, given in Appendix Table

A.4, are measured from the Ultrastick UAV.
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Figure 2.9: Propulsion system verification at static flight condition
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Chapter 3

Flight Test System Identification

Flight test system identification is an important process used to develop, improve model

fidelity and validate simulation models. The scope involved includes model parameters

determination, validation and design of suitable identification experiments for collecting

relevant inputs and outputs data. Aircraft parameters identification is mainly divided into

two major approaches, time domain and frequency domain identification method. Both

these two parameter identification methods have been widely used in many aircraft platform

development programs [29–32]. The time domain parameter estimation method is used

in this research since it is physically more intuitive and straight forward as the aircraft

dynamics are mostly represented using time domain state-space models.

Flight test parameter identification is used to update aerodynamics coefficients in the

nonlinear simulation model obtained from the simulator parameter tuning in Chapter 2.

This chapter describes the approach and procedures used to update the aerodynamic coef-

ficients in the nonlinear simulation model based on flight test data. This involves stability

and control derivative parameters estimation of state-space model and converting these

derivatives to dimensionless form. Figure 3.1 outlines the procedures involved.

3.1 Model Structure for Parameters Identification

The choice of an appropriate model structure is crucial for successful system identifica-

tion. This must be made based on the understanding of system identification procedures,
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Figure 3.1: Procedures involved to update aerodynamic coefficients

knowledge of physical system to be identified and the intended use of the model [33]. The

approach taken in this thesis is not to search for the “best” model structure (which is sub-

jective) for the system identification, but to use a model structure that is suitable for the

intended application with an understanding of the advantages and disadvantages associated

with the selected model structure.

The model structure selected is a linear state-space model that is parameterized by

physically meaningful stability and control derivatives. The reason for using this model

structure is that the parameters in the state-space model are related to the nonlinear

simulation model aerodynamic coefficients. Model parameter estimation from flight test

data provides an update to the aerodynamic coefficients in the nonlinear simulation model

used in the integrated framework. Hence the selection of the fixed model structure is used

for the system identification. Furthermore, using a linear model structure in the system

identification simplifies the identification problem as compared to using a nonlinear model

structure even though the aerodynamic coefficients can be obtained directly with nonlinear

model identification. Identifiability of the aerodynamic coefficients is closely related to the

observability of each aerodynamic coefficient from the flight test data collected. Therefore,

using a nonlinear model for system identification would require a more unique flight test

input excitations and flight maneuvers which can be difficult for the RC pilots to execute.
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3.1.1 Linear Decoupled Model

It is a common practice to decouple the linearized model into longitudinal and lateral-

directional modes to simplify the problem in most of the flight dynamics and control anal-

ysis. The assumption made for decoupling the linearized model is that the cross-coupling

effect between the two modes is negligible. This assumption is made for the Ultrastick UAV

platform for the following reasons:

• It is designed with conventional aileron, rudder and elevator control surfaces that do

not give significant cross-coupling control effects between the lateral-directional and

longitudinal modes.

• The aircraft is symmetrical about the xz plane in which the inertia cross-coupling (in

xy and xz axes) resulting to cross-coupling effects between the lateral-directional and

longitudinal modes is minimum.

• Flight test data collected from open loop UAV flights with individual control sur-

face excitations shows no significant coupling between these longitudinal and lateral-

directional modes.

To extract a linear decoupled model from the nonlinear simulation model, the nonlinear

model is first linearized about trim operating point. This gives a linear model that contains

the longitudinal, lateral-directional and other coupling modes. Next, the linearized model

is decoupled into longitudinal and lateral-directional modes by extracting the states that

are relevant in each of the modes. Figure 3.2 shows the procedures for deriving linear

decoupled models from the nonlinear simulation model.

3.1.1.1 Linearization of Nonlinear Model

Linear models of the Ultrastick UAV are obtained through numerical linearization of the

nonlinear simulation model at trim operating point. The trim operating point is obtained

from trimming the aircraft at a desired flight operating envelop. Table 3.1 gives the desired

flight operating envelope for the UAV. The flight operating envelope is chosen based on the

open loop flight test data with the Ultrastick UAV flying in a cruise flight condition. The
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Figure 3.2: Procedures for deriving linear decoupled models

trim operating point obtained from trimming at desired flight operating envelope is given

in Appendix Table B.1. The linearized state-space model obtained from the numerical

linearization is given by:

ẋf = Afxf + Bfuf

yf = Cfxf + Dfuf (3.1)

xf is the state vector given by [u v w φ θ ψ p q r h ω]T where (u, v, w) are the body

axis velocities in (m/s), (φ, θ, ψ) are the Euler angles in (rad), (p, q, r) are body axis angular

rates in (rad/s), h is the altitude in (m) and ωp is the propeller rotation speed in (rad/s).

uf is the control input vector consists of aileron, elevator, throttle and rudder control inputs
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in (rad) given by [δe δa δT δr]T . The output vector yf is [Va β α φ θ ψ h]T where Va

is the airspeed in (m/s), β is the sideslip angle in (rad) and α is angle of attack in (rad).

Airspeed (m/s) Altitude (m) Throttle (%)

16 ∼ 18 90 ∼ 110 45 ∼ 60

Table 3.1: Desired flight operating envelope

The details of Af , Bf , Cf and Df matrices obtained are given in Appendix B.2. The

output variables Va, β and α are related to the body axis velocity u, v and w with the

following relationships:

α = tan−1
(w

u

)
(3.2)

β = sin−1

(
v

Va

)
(3.3)

Va =
√

u2 + v2 + w2 (3.4)

Doublet signals are applied to the elevator and rudder control input (Figure 3.3(f))

to the nonlinear simulation model and the linearized model obtained. This is to compare

the matching of the linear model obtained with the nonlinear simulation model. Figure 3.3

shows the time history comparisons of the airspeed, AOA, roll angle, pitch angle and sideslip

angle output responses between the linear model obtained and the nonlinear simulation

model. All the output responses from the linear and nonlinear model have a good match.

This shows that the linear model obtained represents the nonlinear simulation model well

at this given trim operating point.

3.1.1.2 Decoupling of Linearized Model

The longitudinal and lateral model of the UAV are obtained by decoupling the full linear

model in Equation 3.1 through extracting control and stability derivatives from the full

linear model that are relevant to each of the mode. The longitudinal model comprises

of the body axis x and z direction velocities (u, w), pitch angular rate q, pitch angle θ,
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Figure 3.3: Comparison of linear and nonlinear model output responses
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altitude h and propeller angular rotation ωp state. Control inputs for the longitudinal

model are elevator (δe) and throttle (δT ) control. The measurement output variables for

the longitudinal model are airspeed Va, angle of attack α, pitch rate q, pitch angle θ and

altitude h. Equation 3.5 gives the state-space description for the longitudinal model.

ẋlon = Alonxlon + Blonulon

ylon = Clonxlon + Dlonulon (3.5)

where

xlon = [ u w q θ h ω ]T

ulon = [ δe δT ]T

ylon = [ Va α q θ h ]T

The lateral model comprises of the body axis y direction velocity v, roll and yaw angular

rate (p, r) and roll and yaw angle (φ, ψ). Control inputs for the lateral model are aileron

(δa) and rudder (δr) control. The measurement output variables for the lateral model are

sideslip angle β, roll and yaw angular rate (p, r), roll and yaw angle (φ, ψ). The lateral

state-space model is given in Equation 3.6. The details of the matrices in the longitudinal

and lateral model are given in Appendix B.3.

ẋlat = Alatxlat + Blatulat

ylat = Clatxlat + Dlatulat (3.6)

where

xlat = [ v p r φ ψ ]T

ulat = [ δa δr ]T

ylat = [ β p r φ ψ ]T

Elevator control input (δe in Figure 3.4(f)) is applied to the linear decoupled longitudinal

model in Equation 3.5 to obtain airspeed (Va), angle of attack (α) and pitch angle (θ) output

responses while aileron control input (δa in Figure 3.4(f)) is applied to the linear decoupled

lateral model in Equation 3.6 to obtain roll (φ) and yaw angle (ψ) output responses. The

collective linear decoupled model output responses (Va, α, θ, φ, ψ) from the longitudinal
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and lateral models are compared with the full linear model in Equation 3.1 with the same

elevator and aileron control input in Figure 3.4(f). Figure 3.4 shows the comparison plots

between the full linear model and the decoupled models. The plots show that the decoupled

linear models (longitudinal and lateral model) output responses match the full linear model

well. This shows that the full linear model can be decoupled into longitudinal and lateral

model and still provide similar output responses without degradation due to decoupling.

This validates the assumption that the cross-coupling effect between the longitudinal and

lateral-directional modes is negligible and the full linear model can be decoupled into these

two modes.
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Figure 3.4: Comparison of full linear and decoupled linear model output responses
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3.1.2 Parameterized State-space Lateral Model

The results from Section 3.1.1.1 and 3.1.1.2 show that the decoupled models are able to

provide almost similar matching response to that of the nonlinear model. Therefore, it is

valid to use parameters identified from a linear decoupled model to update aerodynamic

coefficients in the nonlinear simulation model. The linear decoupled lateral model from

Equation 3.6 can be reduced to four states model (Equation 3.7) by removing yaw angle

state, ψ, since it does not couple to other states and its dynamics is simply the yaw rate

state r. The lateral model contains three basic lateral modes of the aircraft lateral motion.

They are roll, Dutch-roll and spiral mode. These modes describe the roll, yaw and roll-yaw

coupled angular motions of the aircraft. The stability matrix can be partition into four

different parts where the two diagonal blocks provide pure yaw and roll dynamics while the

remainder two blocks give the coupling effects for the pure roll and yaw angular dynamics.

The Dutch-roll and spiral mode of the aircraft are due to the couplings of roll and yaw

dynamics.




ṙ

v̇

ṗ

φ̇




=




yaw roll to yaw coupling

Nr Nv Np 0

−(u0 − Yr) Yv Yp Yφ

Lr Lv Lp 0

0 0 1 0

yaw to roll coupling roll







r

v

p

φ




+




Nδa Nδr

0 Yδr

Lδa Lδr

0 0





 δa

δr


 (3.7)

Due to the limitations of the IMU/GPS sensor and sensor fusion algorithm used in the

current stage of the project development, the lateral velocity v obtained from the sensor

has poor accuracy with low sampling rate. The lateral velocity measurement data will not

be used for this research due to its poor quality, hence no lateral velocity state data is

available for lateral model parameter identification and it is removed from the state-space

model in Equation 3.7. The yaw dynamics has Nv eliminated and the roll dynamics has Lv

eliminated, resulting in a three-state model (Equation 3.8). The three-state lateral model

is able to capture the immediate roll and yaw rate dynamics but not the Dutch-roll and

spiral modes.



ṗ

ṙ

φ̇


 =




Lp Lr 0

Np Nr 0

1 0 0







p

r

φ


 +




Lδa Lδr

Nδa Nδr

0 0





 δa

δr


 (3.8)
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For flight test parameter identification, the three-state model is further reduced to a

two-state model since the roll angle dynamics φ̇ is simply equal to the roll rate p and is

eliminated from the three-state model. The final form of the parameterized state-space

model used for parameter identification is given by:


 ṗ

ṙ


 =


 Lp Lr

Np Nr





 p

r


 +


 Lδa Lδr

Nδa Nδr





 δa

δr


 (3.9)

Using a two-state lateral model for parameter identification has its drawbacks. The effect

on the two-state lateral model fidelity will be addressed and subsequently, its impact on

aerodynamic coefficients updating will be analyzed.

3.1.2.1 Limitations of Two State Lateral Model Structure

The plots in Figure 3.5 show the open loop experimental flight test responses of the Ultra-

stick UAV with separate doublet signal excitation applied to the aileron and rudder control

inputs at trim flight condition. The aircraft has a primary roll rate motion (roll mode) and

a small yaw rate coupled motion with aileron doublet input (Figure 3.5(a)). The coupled

yaw rate is in the opposite direction of the roll motion, which is commonly known as adverse

yaw rate effect. The aircraft shows primary yaw rate motion first and subsequently, a large

roll and yaw rate oscillations are observed with rudder control input (Figure 3.5(b)), even

though there is no aileron control input applied. This is due to aircraft sideslipping with

the rudder control input. The whole sequence of oscillations is Dutch-roll motion, which

corresponds to coupled motion between the roll and yaw rate. In summary,

• The two-state model is able to capture the dynamics (roll mode and adverse yaw

rate) due to aileron control input. Hence, good parameter estimates, Lp, Lδa and

Nδa , should be obtained with aileron perturbation input.

• The two-state model can only capture the primary yaw rate response and not the

complete Dutch-roll mode response with rudder control input. This will result in

poor parameter estimates of Lδr , Lδr , Lr and Np which are related to the rudder

control input coupling mode. Parameter estimates for Nr and Nδr should be accurate

since they are primary associated with yaw motion.
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• To be able to capture all the three lateral modes, the lateral velocity state v has to be

included in the state-space model. This is the limitation for the proposed two-state

lateral model structure.

3.2 Design of Experiment

The task of collecting “good data” is crucial to parameter identification. The term “good

data” implies that the data collected contains information on the aircraft dynamics within

the operating range of interest. Thus the parameter identification can extract accurate

parameter estimates. Therefore, it is important to design and conduct appropriate flight

test experiments to collect data for parameter identification. The design of experiment

consists of two different aspects which are associated with flight tests, input signal design

and data acquisition.

3.2.1 Flight Tests

The objective of flight tests is to identify parameters in the reduced lateral model in Equa-

tion 3.9 at a trim, straight and leveled flight condition operating under cruise flight condition

given in Table 3.1. The parameters to identify consist of roll and yaw rate stability deriva-

tives and aileron and rudder control derivatives. To identify these parameters, aileron and

rudder control inputs have to be applied to excite the lateral dynamics. Based on knowledge

of aircraft flight dynamics, an aileron control input will result in bank-to-bank roll motion

while rudder control input will result in Dutch-roll motion. An aileron or rudder control

input will cause the aircraft to roll. However, the aileron control input will produce a larger

roll rate response when compared to a rudder control input. The aileron control and rudder

control inputs are applied in a separate time window during the flight maneuvers to capture

the different dynamics produced by these two lateral control inputs.

3.2.2 Input Signal Design

The control input signals for parameter identification have to be designed to excite the

aircraft dynamics in the frequency range of interest. In addition, practical constraints have
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(a) Aileron control input

(b) Rudder control input

Figure 3.5: Open-loop experimental flight test responses
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to be imposed on the feasibility of the excitation signals for flight testing. In the open-

loop identification experiment, control input excitations are executed by RC pilot using the

RC joystick box from the ground within visual range from the aircraft. This imposed a

constraint on the type and frequency of control input signal that can be generated. The

input signal design described is not based on an optimal input design approach such as

in [34] but rather based on practical flight test constraints.

The doublet excitation signal (Figure 3.6(a)) has been widely used in aircraft system

identification due to its simplicity in design and its ease of execution. It is a symmetrical

signal pulse obtained by applying control input stick abruptly in each of the opposite

direction and holding fixed for a period of 4t and returning back to neutral stick position.

The design variable for the doublet input signal design is the period 4t. The period

is selected such that the dominant frequency of the input signal is close to the frequency

range of interest (ωm) for the aircraft dynamics to be excited. This is approximated by [31]:

4t =
2.3
ωm

(3.10)

The amplitude of the doublet input is selected such that the aircraft dynamic response is

large enough to provide good signal-to-noise response data to capture the flight dynamics

but not too large for the aircraft to get out of its operating regime of interest in which the

parameters identified are assumed to be constant.

(a) Doublet control input (b) 3-2-1-1 control input

Figure 3.6: Control input signals for parameter identification

A multistep 3-2-1-1 signal is used (Figure 3.6(b)) to increase the frequency range of
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input signal excitation. The 3-2-1-1 input is similar to doublet signal except that it has two

more pulses of different widths. The 3, 2 and 1 represent the ratio of period 4t used in the

multistep signal where the 3 and 1 signal give the upper and lower frequency bounds for the

range of input frequencies excitation. The advantage of using 3-2-1-1 signal is it provides a

richer frequency excitation signal than the doublet signal. However, this requires a longer

flight maneuver time which can be a constraint during flight test execution.

3.2.3 Data Acquisition System

The data acquisition system measures and records sensor measurement time history data

for parameter identification. Figure 3.7 shows the schematic layout of the data acquisition

system. The IMU/GPS sensor data (refer to Section 2.1.2) is sampled at 50 Hz. The

control input signals acquired from the RC receiver to control the servo actuators are also

sampled at 50 Hz. The data are recorded on first channel of the dual channels datalogger.

The IMU/GPS sensor does not output attitude angles (φ, θ and ψ) data, hence the flight

computer is used to perform real-time attitude determination. The attitude angles com-

puted are datalogged on second channel of the datalogger at 20 Hz. The attitude angles are

recorded at a lower sampling rate due to the limitation of the flight computer in outputting

the data through the second serial port at a high data rate. Important flight condition data

such as airspeed and altitude information are sent in real-time to the ground monitoring

station through wireless data modem during flight test. This provides real-time informa-

tion for monitoring the flight test to ensure that it is conducted at the required operating

condition.

The sampling of measurement data at 50 Hz imposed a limit on the frequency range

for parameter identification without falling into aliasing problem where higher frequencies

signal distort the lower frequencies data. From Nyquist-Shannon sampling theorem, aliasing

can be avoided by limiting the frequency range to be below the Nyquist frequency, which

is half of the sampling frequency. The IMU/GPS sensor limits the maximum data output

rate to 50 Hz. The Nyquist frequency provides a theoretical maximum frequency without

aliasing problem. For good engineering practice, a lower limit on the useful measured data

frequency range is adopted. The limit is set to be 1/4 of the sampling frequency of 12.5
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Hz.

Figure 3.7: Data acquisition system for open-loop parameter identification
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3.3 Flight Test Execution

Open-loop parameter identification flight tests are executed with an RC pilot. First, the

aircraft is flown to the required trim operating condition (in Table 3.1). Before the start

of each maneuver for a given trim flight condition, a 2 to 3 seconds steady flight is main-

tained before executing the required control inputs excitation for the maneuver. After the

completion of control inputs execution, sufficient time is given for the aircraft to response

so that the natural dynamics of aircraft can be captured by the sensor. The procedures for

the open-loop parameter identification flight testing is summarized in Figure 3.8.

Figure 3.8: Flight test procedures for open-loop parameter identification

In bank-to-bank roll maneuver, a doublet/3-2-1-1 control input signal is applied to the

aileron control to give an approximate ± 10 degrees variation in roll angle from the trim

position. During the maneuver, the RC pilot has to maintain the longitudinal trim of

the aircraft using the throttle and elevator control inputs. For the Dutch roll maneuver,

doublet/3-2-1-1 signal is applied to the rudder control stick to give an approximate ± 15

degrees variation in heading angle from the trim position while the longitudinal trim is

maintained using throttle and elevator control inputs. Each flight maneuver is repeated for

at least 4 times to collect sufficient data for parameter identification and validation.

The main difficulty facing the RC pilot executing the control inputs excitation is to

maintain longitudinal trim of the aircraft during the maneuvers. Timing the inputs precisely

while commanding roll and yaw angle to the required perturbation angles from the trim

position at the same time using only visual contact on the small aircraft can be challenging.
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3.4 Parameter Identification Technique

The method used for parameter identification is output error method. This method itera-

tively adjusts the parameter estimates in order to minimize the difference between measured

flight test data and output response of the estimated model in each of the iteration. Since

its introduction in 1960s, output error method is the most widely applied time-domain

flight test parameter estimation method [31]. In recent years, maximum likelihood param-

eter estimation method has been one of the most popular methods used for minimization

of residual error. The reason for its popularity is due to its desirable statistical properties

such as asymptotically unbiased and consistent estimates. This is very useful for flight test

parameter identification since flight test data contains measurement errors [35].

The maximum likelihood parameter estimation method finds the best parameter es-

timate for the model by maximizing a likelihood function. The likelihood function for a

sequence of measurement ZN = [z1 z2 : : : zn]T with unknown parameter vector x̂ is given

by equation:

L(Z|x̂) =
1

[(2π)n|R|]0.5
exp

{
−1

2
[zi − hi(x̂)]T R−1[zi − hi(x̂)]

}
(3.11)

The likelihood function represents the probability density function of the measured variable

ZN and not x̂ parameter. The main objective is to maximize L(Z|x̂) with the selection of

x̂ parameter. Maximization of the likelihood function to obtain the maximum likelihood

estimate leads to a minimization of a weighted least-square function on the residual given

by:

f(x̂) =
1
2

N∑

i=1

[zi − hi(x̂)]T R−1[zi − hi(x̂)] (3.12)

Details of the derivations are not given but can be found in [31, 32, 35]. This leads to

a nonlinear optimization problem due to the nonlinear connection between the parameter

estimates and model outputs. Figure 3.9 shows the schematic of the maximum likelihood

parameter identification.

The software toolbox SIDPAC (System IDentification Programs for AirCraft) devel-

oped in [32] is used for the maximum likelihood parameter identification of the lateral UAV

model. In the problem formulation, the assumption of no process noise is made. Since
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process noise is neglected, the state can be computed deterministically by direct numerical

integration. Hence it is important to perform flight tests on days with calm air so that the

process noise is negligible.

Figure 3.9: Schematic for output error parameter identification

3.4.1 Parameter Identification Setup

The maximum likelihood parameter estimation is done using SIDPAC Matlab script file.

Figure 3.10 shows the flow diagram of SIDPAC parameter estimation process for the

parameter identification setup. The details of the estimation process and setup are as

follows:

• The parameterized state-space model in Equation 3.9 provides the model structure

with unknown parameters to be identified.

• The initial guess of the parameter estimates have to be provided. These values can-

not be arbitrary since output error maximum likelihood method is sensitive to initial

guess value. Using initial guess values that are far from the minimum optimization

cost function value will result in a longer iteration cycle time for convergence. The

initial guess values used are from the result obtained from simulator parameter tun-
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ing in Section 2.2.1.4. They provide a good initial guess values for the parameter

identification.

• Convergence criteria have to be provided as pass/fail criteria to determine if the

parameter estimates have converged to give a solution that maximized the likelihood

function. The convergence criteria are:

1. Negligible change of cost of likelihood function

2. Negligible change of parameter estimate value

3. Negligible change of parameter estimate covariance value

4. Absolute value of the cost gradient

Once the convergence criteria have been satisfied (optimization has converged to a

solution), this will give the converged parameter estimates and covariance solution.

• A modified Newton-Raphson method performs the optimization of likelihood function

using both the residual of the difference between flight data and model output response

and the sensitivity of the output response to the change in parameter estimates.

• Numerical integration (Runge-Kutta method) and partial derivative (central finite

difference method) approaches are used to compute the output estimates and sensi-

tivities. The initial condition used for parameter identification is the first value of the

flight data time history.

3.4.2 Procedure

Parameter estimation of the lateral model is performed in three steps based on the under-

standing of the lateral mode dynamics and the two-state lateral model structure limitations

discussed in Section 3.1.2. The 3 steps are:

• Step 1: Identification of primary yaw dynamics based on short data time history (be-

fore the Dutch-roll mode starts) with rudder control input excitation. The parameters

to be identified are Nr and Nδr .
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Figure 3.10: SIDPAC parameter estimation process

• Step 2: Identification of the primary roll and roll to yaw coupling dynamics with

aileron control input excitation. The coefficients Nr and Nδr previously identified are

used in the model. The parameters to be identified are Lp, Np, Lδa and Nδa .

• Step 3: Identification of yaw to roll coupling dynamics using a longer time history

data with rudder control input excitation with the rest of the identified parameters

from Step 1 and 2. The parameters to be identified are Lr and Lδr .
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3.5 Result

Flight test data was collected with RC pilot providing doublet and 3-2-1-1 input excitation

with period 4t of approximately 0.6 seconds. Figure 3.11 shows the first set of flight test

data used for parameter identification. This set of data is used to illustrate the 3 steps used

for the parameter estimation procedure.
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Figure 3.11: Flight test data for model 1 parameter identification

• Step 1:

Step 1 uses the rudder input excitation with short time history data of yaw rate

to identify the primary yaw dynamics. Figure 3.12(a) shows the matching of the

identification result. The parameters obtained are:

Nr = -8.48 s−1, Nδr = -17.5 s−2

• Step 2:

Step 2 uses the aileron input excitation with roll and yaw rate responses to identify the

primary roll and roll to yaw coupling dynamics. Figure 3.12(b) shows the matching

of the identification result. The parameters obtained are:

Lp = -12.0 s−1, Np = 0.294 s−1, Lδa = 58.1 s−2, Nδa = -6.58 s−2
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• Step 3:

Step 3 uses the full time history rudder input excitation with roll and yaw rate

responses to identify the yaw to roll coupling dynamics. Figure 3.12(c) shows the

matching of the identification result. The parameters obtained are:

Lr = 12.7 s−1, Lδr = 13.6 s−2
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Figure 3.12: Model 1 parameter identification

The same parameter estimation procedure is being applied to two other sets of flight

test data and the plots for the parameter estimation can be found in Appendix B.4. Table

3.2 gives a summary of parameters estimation results for the three sets of data.
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Derivatives ID model 1 ID model 2 ID model 3

Lp(s−1) -12.0 -12.8 -11.1

Lr(s−1) 12.7 14.4 8.62

Np(s−1) 0.294 -0.448 0.687

Nr(s−1) -8.48 -6.08 -4.62

Lδa(s
−2) 58.1 61.4 43.3

Lδr(s
−2) 13.6 12.4 8.99

Nδa(s
−2) -6.58 -3.67 -4.76

Nδr(s
−2) -17.5 -15.0 -11.9

Table 3.2: Summary of estimated parameters from flight test data

ID Model 1 ID Model 2 ID model 3

τroll (s) 0.083 0.078 0.090

Table 3.3: Identified models roll mode time constant

3.5.1 Stability Derivatives

3.5.1.1 Primary Roll Dynamics

The aircraft primary roll mode is captured by the Lp derivative. This gives the time

constant for the pure roll mode, τroll (s), of the aircraft [20]:

τroll = − 1
Lp

(3.13)

The time constants of the three identified models are calculated using the identified models

in Table 3.2. This is given in Table 3.3. The three identified models roll mode time constants

are close to each other. Results published on the similar small-scale UAVs in [36] have roll

mode time constants of 0.10, 0.06 and 0.09 seconds. This is very similar to our results

obtained. This shows that the primary roll mode is well captured and identified from the

flight test system identification. It is essential to identify Lp parameter accurately because

it is an important parameter in the lateral model dynamics for the roll angle controller

synthesis.
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3.5.2 Yaw and Coupled Roll-yaw Dynamics

The primary yaw mode dynamics is described by Nr parameter and the identified values

in Table 3.2 show that the three identified values are reasonably close and have the correct

negative sign. The negative sign in Nr means that a positive yaw rate produces a positive

side force on the vertical tail. This produces a negative yawing moment and opposes the

yaw rate motion, which provides yaw damping for the aircraft.

The Lr parameter captures the aircraft roll to yaw coupling dynamics. A close agree-

ment of the identified Lr values is obtained from the three identified models (in Table 3.2)

and this will provide a reasonably good description of the roll to yaw coupling dynamics

from the identified models. On the other hand, the Np parameter which captures the air-

craft yaw to roll coupling dynamics has a large variation. This poor matching of the three

Np values obtained from the flight test identification in Table 3.2 indicates that the yaw

to roll dynamics is not well captured. Part of the reason for this poor matching is the

due to the limitation of the two-state model structure used in the lateral-directional mode

identification described in Section 3.1.2.1.

3.5.3 Control Derivatives

The Lδa, Lδr, Nδa and Nδr control derivatives identified provide a measure of input sen-

sitivities of the aileron and rudder control to the roll (L) and yaw (N) moment of the

aircraft. The ratio of Lδa to Lδr and Nδr to Nδa provide the relative magnitude of each

control derivative to the roll and yaw moment. Table 3.4 contains these ratios derived from

the three identified models in Table 3.2.

The relative magnitude of Lδa to Lδr contribution to the aircraft roll moment (4 : 1 from

Table 3.4) makes sense as the aircraft primary roll moment is obtained from aileron control

input and smaller roll moment is obtained with rudder input. A ratio of approximately

0.2 for Lδr/Lδa from the three identified models in Table 3.4 indicates good consistency

of roll control derivatives identified from aileron and rudder inputs. However, for the yaw

moment, the ratios of Nδa to Nδr have a variation between 0.25 to 0.40 (Table 3.4). This

indicates that the yaw control derivatives identified have poor matching result within the

three identified models.

48



ID Model 1 ID Model 2 ID model 3
Lδr
Lδa

0.234 0.202 0.208
Nδa
Nδr

0.376 0.245 0.400

Table 3.4: Control derivatives ratio

3.6 Model Verification

3.6.1 Time Domain Model Verification

Time domain verification of the three identified models is performed by comparing the

identified models with a longer time history flight test data not used in the parameter

estimation process. The time history plots of the identified models were obtained using the

measured control inputs from the model verification data. Figure 3.13 shows the comparison

plots for the identified models and verification data. With aileron control input (Figure

3.13(a)), the identified models show good matching in the roll rate response and poor

matching in the coupled yaw rate response. The good matching of the roll rate response

with aileron control input is due to good parameter identification results for Lp, Lr and Lδa

parameters. The poor yaw rate response matching in the time domain validation is due to

poor Np and Nδa parameter identification results described in Section 3.5.

With rudder control input (Figure 3.13(b)), again, the roll rate response from the iden-

tified model shows good matching with the flight test data but not the yaw rate response.

However, during the initial short time period when the rudder control input is applied, the

yaw rate response from the identified models are able to match the flight test data well.

However when the Dutch-roll mode kicks in, the identified models responses are not able

to match the flight test data results. Again, this is mainly due to the limitation of the

two-state state-space model used.

3.6.2 Frequency Domain Model Verification

The same set of validation data used in the time domain verification (Figure 3.13) is used

for frequency domain model verification. Discrete Fourier transform is used to transform

the time domain verification data to frequency domain. In the frequency domain model
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Figure 3.13: Time domain verification of identified models

verification analysis, the relevant frequency range of interest is limited by the control input

signals excitation frequency and data sampling rate. Since a data sampling rate of 50 Hz

is used, frequency domain data above 79 rad/s is not useful for the verification analysis

(cutoff frequency is selected to be 1/4 of the data sampling rate). In addition, the frequency

response of the validation data is representative of the aircraft dynamics within the range

of control input excitation frequencies.

Figure 3.14 shows the FFT plots for the input and output data sets used in the the

model validation. In Figure 3.14(a), the FFT of roll rate output response is plotted together

with aileron control input signal applied. In Figure 3.14(b), the FFT of yaw rate output

response is plotted together with rudder control input signal applied. The two plots in

Figure 3.14 show a good matching magnitude across the frequencies for the control input

signals to excite the aircraft angular rate dynamics within the same frequencies range. The

aileron and rudder control input excitation frequency range, ωR, are approximately between

1 to 8 rad/s in both of the plots in Figures 3.14(a) and 3.14(b). The frequency domain

model verification is only valid within the ωR frequency range.

Figure 3.15 shows frequency response plots of the identified models with the verification
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Figure 3.14: FFT of input and output flight test data used in model validation
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Figure 3.15: Frequency domain model verification

data for both aileron and rudder control input excitations. The frequency range of interest

is limited to be within the input excitation frequency range (ωR) specified in the plots. The

plots show consistent result with the time domain verification where the identified models

have a good matching with the roll rate response with aileron control input but not with

the rudder control input.
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3.7 Updating of Aerodynamic coefficients in Nonlinear Model

The lateral state-space model identified is used to update the lateral aerodynamic coeffi-

cients in the nonlinear simulation model. This section will show the approach and proce-

dure used to update the dimensionless aerodynamic coefficients in the nonlinear simulation

model.

3.7.1 Nominal Identified Model

From Section 3.5, the three different flight test data sets produce three different identified

models. However, only one of the identified models can be used to update the nonlinear

simulation model. The approach taken is to compute a nominal model and an overbound

from the three identified models to update the nonlinear simulation model. The overbound

uses a combination of the computed nominal model and real parameter variation from the

nominal model which will be covered in uncertainty modeling in Chapter 4.2.

The nominal model is obtained by using the mid-point value between the minimum

and maximum value for each of the identified derivatives in the three identified models.

Appendix B.5 Table B.2 presents the nominal model parameters with upper and lower

bound values. Figure 3.16 shows the Bode magnitude plot for the nominal model with the

three identified models. The plot shows that the nominal model frequency response lies

between the three identified models frequency response. This has the benefit of reducing

the size of the uncertainty bounds from the nominal model.

3.7.2 Aerodynamic Coefficients Computation

The nonlinear aerodynamic equations for side force, roll and yaw moment from Section

2.2.1 are given by Equations 2.1, 2.5 and 2.7:

CY = CYβ
β + CYδr

δr +
b

2Va
(CYpp + CYrr) (3.14)

cl = clββ + clδa
δa + clδr

δr +
b

2Va
(clpp + clrr) (3.15)

cn = cnβ
β + cnδa

δa + cnδr
δr +

b

2Va
(cnpp + cnrr) (3.16)
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where CYp , CYr , clp , clr , cnp and cnr are dynamic aerodynamic coefficients and CYβ
, CYδr

, clβ ,

clδr
, clδa

, cnβ
, cnδr

and cnδa
are static aerodynamic coefficients. The dynamic aerodynamic

coefficients, unlike the static aerodynamic coefficients, cannot be obtained from static wind

tunnel testing. They account for dampings in the aircraft dynamics and are commonly

known as damping coefficients. Flight test system identification is usually used to obtain

these dynamic coefficients through excitation of the aircraft dynamic modes.

The aerodynamic coefficients are the dimensionless forms of the stability and control

derivatives in the state-space model in Equation 3.7. Hence the aerodynamic coefficients

can be computed by removing the dimensional dependent of the identified parameters. The

relationships for dimensionless computation of the aerodynamic coefficients from the identi-

fied stability and control derivatives are given in Table 3.5. In this thesis, the aerodynamic

coefficients related to β and CY derivatives will not be updated using flight test identifica-

tion results due to the limitation of the two-state state-space model used. Hence only the

identified stability and control derivatives are used to update the aerodynamic coefficients

(clp , clr , cnp , cnr , clδr
, clδa

, cnδr
and cnδa

) while the rest of the aerodynamic coefficients (CYp ,
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CYr , CYβ
, CYδr

, cnβ
and clβ ) are kept at the values obtained from the simulator parameter

tuning (Appendix Table A.1).

Roll moment clβ clδa clδr clp clr

IxxLβ

q̄Sb
IxxLδa

q̄Sb
IxxLδr

q̄Sb
2Ixxu0Lp

q̄Sb2
2Ixxu0Lr

q̄Sb2

Yaw moment cnβ
cnδa

cnδr
cnp cnr

IzzNβ

q̄Sb
IzzNδa

q̄Sb
IzzNδr

q̄Sb
2Izzu0Np

q̄Sb2
2Izzu0Nr

q̄Sb2

Side force CYβ
CYδr

CYp CYr

Yβm
q̄S

Yδrm
q̄S

2mu0Yp

q̄Sb
2mu0Yr

q̄Sb

Table 3.5: Relationships between dimensionless aerodynamic coefficients and dimensional

derivatives

The four-state lateral model in Equation 3.7 uses lateral velocity state v instead of β

state. However, under small angle approximation about the trim point, approximation can

be made between v and β from relationship given in Equation 3.3:

β = sin−1

(
v

Va

)

= tan−1

(
v

u0

)

For small β angle, β ≈ v/u0. Since u0 is constant, β̇ = v̇/u0. Replacing v and v̇ in Equation

3.7 with β and β̇, the 4 states lateral model with β state is given by:



ṙ

β̇

ṗ

φ̇




=




Nr Nβ Np 0

−
(
1− Yr

u0

)
Yβ

u0

Yp

u0

g cos θ0

u0

Lr Lβ Lp 0

0 0 1 0







r

β

p

φ




+




Nδa Nδr

0 Yδr
u0

Lδa Lδr

0 0





 δa

δr


 (3.17)
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where Yβ = Yvu0, Lβ = Lvu0 and Nβ = Nvu0. Equation 3.7 and 3.17 are equivalent to

each other under small β angle approximation. Equation 3.7 is preferred over Equation

3.17 in controller design, parameter estimation and implementation since v measurement

is available from the IMU/GPS sensor but not the β angle. Equation 3.17 is derived

because its parameters are directly related to the dimensionless aerodynamic coefficients in

Equations 3.14, 3.15 and 3.16 which are being updated.

Dimensionless aerodynamic coefficients (coefficients in bold, Table 3.5) are computed

using derivatives from the computed nominal identified model. Control and stability deriva-

tives (derivatives in bold) in Equation 3.17 are computed from aerodynamic coefficients

obtained from simulator parameter tuning. Table 3.6 gives the results of the computation.

The aerodynamic coefficients are updated using identified state-space model parameters

to provide the nonlinear simulation model with the same dynamic response similar to the

identified state-space model that captures the real aircraft dynamics from system identi-

fication flight testing. Comparison of the output responses from the updated nonlinear

model against the identified state-space model used for updating the nonlinear simulation

model will provide verification on accuracy of this approach. Figure 3.17 shows the roll and

yaw rate output response comparisons of the updated nonlinear model with the four-state

parameterized state-space model (augmented ID model) from Equation 3.17. The aileron

and rudder control inputs used are from the validation data in Figure 3.13. The plots show

that the updated nonlinear model responses have very good matching with the parameter-

ized state-space model that was being used to update the aerodynamic coefficients. This

verifies the proposed approach used to update the aerodynamic coefficients to the nonlin-

ear model works well. Figure 3.18 shows the comparison of the updated nonlinear model

with the flight test validation data from Figure 3.13. The updated nonlinear model and

the validation flight test data responses are very similar to the time verification plots in

Figure 3.13. This is expected since the updated nonlinear model has its aerodynamic coef-

ficients computed from the identified state-space models. Hence for the nonlinear model to

predict the actual UAV flight dynamics, it is important to get good flight test parameter

identification result.
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Derivatives from identification Aerodynamic coefficients computed

Lp −1.28× 101 clp −4.43× 10−1

Lr 1.44× 101 clr 4.99× 10−1

Np −4.48× 10−1 cnp −2.81× 10−2

Nr −6.08 cnr −3.82× 10−1

Lδa 6.14× 101 clδa
7.94× 10−2

Lδr 1.24× 101 clδr
1.60× 10−2

Nδa −3.67 cnδa
−8.60× 10−3

Nδr −1.50× 101 cnδr
−3.52× 10−2

Derivatives computed Aerodynamic coefficients from simulator tuning

Yβ −2.38× 101 Cyβ
−8.30× 10−1

Lβ −3.09× 101 Clβ −4.00× 10−2

Nβ 1.47× 101 Cnβ
3.44× 10−2

Yp 0.00 CYp 0.00

Yr 0.00 CYr 0.00

Yδr 1.26× 101 CYδr
1.91× 10−1

Table 3.6: Dimensional and dimensionless aerodynamic coefficients

56



0 1 2 3 4 5 6 7
−200

−100

0

100

200

roll rate
p 

(d
eg

/s
)

0 1 2 3 4 5 6 7

−40

−20

0

20

40

60

yaw rate

r 
(d

eg
/s

)

time (s)

 

 

Updated nonlinear model
Augmented ID model

(a) Aileron input excitation

0 1 2 3 4 5 6 7

−50

0

50

100
roll rate

p 
(d

eg
/s

)

0 1 2 3 4 5 6 7

−50

0

50

yaw rate

r 
(d

eg
/s

)

time (s)

 

 

Updated nonlinear model
Augmented ID model

(b) Rudder input excitation

Figure 3.17: Comparison of updated nonlinear model with augmented identified model
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Figure 3.18: Comparison of updated nonlinear model with flight test data
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Chapter 4

Uncertainty Models Modeling,

Synthesis and Analysis

The nonlinear UAV simulation model developed in Chapter 2 is only useful if it is able to

predict the actual vehicle flight dynamics response accurately. However, modeling is an

approximation of the actual physical system and this results in uncertainty predicting the

actual system response using the model developed. Hence it is important to include model

uncertainty in the nonlinear simulation model so that it gives a confidence level as well as

a bound in predicting the actual system response.

The model uncertainty description formulation for robust control problems are generally

classified in two categories, structured and unstructured uncertainty [37]. The parametric

uncertainty is a structured uncertainty model where the model and its order are known.

The only unknown is in the value of the parameter, which is uncertain. The parametric

uncertainty model structure is important as it provides parameter variations associated

with the physical parameters of the system model. Therefore a systematic procedure is

needed for accurate uncertainty modeling of real parameter variation. However, parametric

uncertainty structure can be extremely complicated for practical interest. This is because

uncertainties associated with the system physical parameters can enter into the model as

nonlinear multivariate functions that are difficult to separate into nominal and uncertain

components [38]. On the other hand, the unstructured uncertainty are used to model

dynamics of uncertainty which are not known or neglected and is usually quantified using
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frequency bounding functions to characterize the level of uncertainty to be considered over

various frequency ranges of interest.

The uncertain linear model order and structure used in controller synthesis are im-

portant because using a conservative uncertain model can result in poor closed-loop per-

formance. Similarly using a uncertain model with complicated uncertainty structure may

result in high order controller obtained from the controller synthesis process. Analysis of

the model uncertainty can help to reduce uncertainty model order and complexity with

minimum effect in the controller synthesis.

This chapter provides a systematic approach to modeling and inclusion of modeling

errors into the nonlinear simulation model. To use the uncertain nonlinear model for ro-

bust control design and analysis with existing linear design and analysis tools, uncertain

linear model need to be extracted from the uncertain nonlinear simulation model. A new

approach for uncertain linear model realization from uncertain nonlinear simulation model

is presented. This approach provides a physically meaningful Linear Fractional Transfor-

mation (LFT) model. The LFT model realization approach is applied to the nonlinear

UAV simulation model. An approach to simplification of the LFT is also presented using

the realized UAV LFT model.

4.1 Parametric Uncertainty Modeling

The physical parameters determined from various experiments (Chapter 2 and 3) for the

nonlinear UAV modeling contain uncertainties due to imprecise nature of experimentation

and limitation of physical system modeling. Estimated physical parameters are modeled

as real parameter uncertainties with each parameter described by a nominal value and a

lower and upper bound. A systematic approach is used to include these parameters into

the nonlinear simulation model. The resulting uncertain nonlinear simulation model is used

subsequently in linearization process for deriving uncertain linear model.
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4.1.1 Parametric Uncertainty Representation

A parametric uncertainty set P4 for an uncertain parameter P bounded within a region

bounded by [Pmin, Pmax] can be expressed in the form:

P4 = P̄ (1 + WP δ) (4.1)

where P̄ is the nominal parameter value, δ is any real scalar satisfying |δ| ≤ 1 and WP is

the relative uncertainty (weight) used to scale δ to norm size of 1 given by:

WP =
Pmax − Pmin

Pmax + Pmin

4.1.1.1 Parametric Uncertainty Implementation Procedure

Parametric uncertainty is included into the Simulink model via a multiplicative or inverse

multiplicative uncertainty structure using the USS System (Uncertain State-Space) block

from Robust Control Toolbox [39]. The details of the implementation is illustrated using

a simple example. This procedure is used to include parametric uncertainties in the UAV

nonlinear simulation model.

In this example, consider a system with two inputs u1,2, single output y and three real

parametric uncertainties a∆, b∆ and c∆ given by the equation:

y =
[(

a∆

b∆

)
u1 + c∆

]
u2

where

amin ≤ a∆ ≤ amax

bmin ≤ b∆ ≤ bmax

cmin ≤ c∆ ≤ cmax

The nominal system implemented using Simulink blocks is shown in Figure 4.1.

With parametric uncertainties, parameters a∆ and c∆ are expressed as multiplicative
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Figure 4.1: Simulink diagram for nominal system

uncertainty while 1/b∆ is expressed as inverse multiplicative uncertainty given by:

a∆ = a(1 + raδ)

1
b∆

=
(

1
b

)(
1

1 + rbδ

)
(4.2)

c∆ = c(1 + rcδ)

where

• a, b and c are the nominal values of the uncertain parameters.

• ra, rb and rc are weights used to scale δ to norm size of 1.

• δ is defined as real scalar satisfying −1 ≤ δ ≤ 1.

Each raδ, rbδ and rcδ is modeled as a USS System Simulink block with a ureal (Uncertain

real parameter object in Robust Control Toolbox) object that has a zero nominal value and

a weighted range of real value variation from (k − kmin)/k to (kmax − k)/k where k = a, b

and c. The c∆ parameter is relocated before output y so that the uncertain parameter has

multiplication with the input signal u2. The reason for this modification will be explained

in section 4.2.3. Figure 4.2 shows the Simulink diagram with the parametric uncertainties

implemented.

4.1.2 Example

This section will illustrate an example of implementing parametric uncertainty into the

nonlinear UAV simulation model using the aerodynamic coefficients obtained from flight test
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Figure 4.2: Simulink model with real parametric uncertainties

parameter identification in Section 3.5. Using the relationships for aerodynamic coefficients

computation in Section 3.7, the aerodynamic coefficients computed from the nominal model

with lower and upper bound values are given in Appendix Table C.1.These aerodynamic

coefficients with parametric uncertainties are modeled in the nonlinear simulation model

using the described technique in Section 4.1. An example of the actual Ultrastick UAV

nonlinear Simulink model block diagram implemented with parametric uncertainties, the

dimensionless roll moment coefficient (cl) equation, is given in Appendix C.1.

With the parametric uncertainties implemented into the nonlinear simulation model, a

verification is done to check the updated uncertain nonlinear simulation model produces

output responses that overbound the set of responses from the flight test identified models

that are used for updating the nonlinear simulation model. In the setup, 100 simulation

runs are performed with random sampling of the parametric uncertainties in each of the

run. A single doublet input signal is applied to both aileron and rudder control inputs to

excite the uncertain nonlinear simulation model from the trim condition used in Section

3.7. Figure 4.3 shows the roll and yaw rate responses obtained from 100 simulation runs (in

grey - -) from the uncertain nonlinear simulation model. In addition, three additional sim-

ulations are performed with the parametric uncertainty set to the aerodynamic coefficients

obtained from identified models 1 to 3. The plot in Figure 4.3 shows that the range of

roll and yaw rate time response variations with parametric uncertainty perturbations from

the uncertain nonlinear simulation model covers the set of output responses from the three

identified models. The implemented parametric uncertainties in the nonlinear simulation

model provides an accurate description of the system output responses that contain the

three flight test identified models responses.
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Figure 4.3: Uncertain nonlinear simulation model Monte-Carlo runs

4.2 Linear Fractional Transformation

The uncertain nonlinear simulation model describes a wide variation of dynamic behavior

with multiple sources of parametric uncertainty perturbation. To use this model for robust

control design and analysis with existing design and analysis tools from robust control the-

ory, the uncertain nonlinear model needs to be linearized with the parametric uncertainties

included in a Linear Fractional Transformation (LFT) model representation (Figure 4.4).

This is the most general form for H∞ controller synthesis and robustness analysis using

structured singular value. This section introduces new software tools to linearize the un-

certain nonlinear simulation model developed for obtaining a physically meaningful LFT

model.

The LFT is a matrix function that is a very powerful approach to realization of an

uncertain model which separates what is known from what is unknown in a feedback-like

connection. This is comparable to the realization of a state-space system where it provides
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Figure 4.4: General LFT representation for robust control synthesis and analysis

an easier manipulation and computation of a linear system, except that the LFT model

is capable of handling an uncertain system. For example, consider the uncertain system

shown in Figure 4.5, where M represents the known part of the uncertain system and ∆

represents the uncertainty in the uncertain system, it can be written as an upper LFT:

y = Fu(M, ∆)

= (M22 + M21∆(I −M11∆)−1M12)u

where M matrix is compatibly partitioned with the ∆ matrix for a given input and output

signals of the system. The matrix M can be partitioned into smaller sub-matrices (as shown

Figure 4.5: M-∆ interconnection

in Figure 4.6) according to the following input and output state equations:

ẋ = Ax + B1w + B2u

z = C1x + D11w + D12u

y = C2x + D21w + D22u
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The M matrix above is partitioned to:

M11 =


 A B1

C1 D11




M12 =


 B2

D12




M21 =
[

C2 D21

]

M22 = D22

Figure 4.6: M -∆ structure with M partitioned

4.2.1 Method of LFT Model Realization

A realization of the LFT model involves the extraction or derivation of the M and ∆

matrices from the uncertain nonlinear simulation model. Various papers [38, 40–45] have

been published to address the topic for the LFT model realization. However, this area

of research still remain as an open and unsolved problem as the key issue of the LFT

modeling still remain in getting a minimum size ∆ description for the system. None of

the methods presented is able to guarantee a model with an unique minimum-order LFT

model and this problem is not part of this research work. The main focus is to provide

a systematic approach for LFT model realization that exploits on the advantage of the

integrated framework in Matlab/Simulink environment.
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An LFRT toolbox in [46,47] is a toolbox that works with Matlab/Simulink environment

and requires uncertain Simulink blocks to be modeled using a special Simulink block object

representations. This requires additional effort to convert the existing uncertain nonlinear

simulation models into the Linear Fractional Representation (LFR) object representation.

The approach taken here is similar, though uses the existing uncertain nonlinear simula-

tion model and the tools from the Matlab Robust Control Toolbox for the LFT model

realization. The principle of this method is based on linearization of the uncertain nonlin-

ear Simulink model which is very similar to the approach taken by [48–50] and the block

linearize commands in Simulink. This method of LFT model realization from the uncertain

nonlinear model is called ulinearize.

4.2.2 ulinearize Principles and Procedure

The ulinearize procedure performs linearization of an uncertain nonlinear Simulink model

at a specific operating point. The inputs to ulinearize are the name of the uncertain

nonlinear Simulink model that is to be linearized and an operating point object in which

the linearization is to be performed. This procedure relies on the Matlab linearize function

used for linearizing nonlinear Simulink model.

The ulinearize function performs the following:

• Finds all the USS System blocks in the Simulink model and creates an input and

output for the linearization by breaking the loop associated with the USS blocks.

The output of the USS System block will be an input for the linearization and the

input to the USS System block will be the linearization output (shown in Figure 4.7).

• Finds and creates input and output linearization Input-Output (IO) objects which

associates an input signal with each of the inport block and output signal with each

of the outport block.

• Creates a block diagonal ∆ matrix with each uncertainty object on the diagonal of

∆ matrix and associates each of the input and output linearization IO that has been
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Figure 4.7: Creating linearization input and output at the USS System block (Equation

4.1)

created.

• Linearizes of all the IO blocks that have been created previously for the linearization

using the specified operation point object. This will generate a state-space model

that contains all the inputs and outputs of the IO.

• Connects the ∆ matrix and state-space model obtained from linearization via a linear

fractional transformation to generate an uncertain linear system.

A flow chart for the ulinearize function procedure is given in Figure 4.8.

4.2.3 Limitations of ulinearize

Linearization of the uncertain nonlinear model is a simple and intuitive approach for LFT

realization to generate physically meaningful LFT representations of the uncertain system.

A drawback of this approach is that it tends to produce ∆ matrix with many repeated

parametric uncertain parameters. This is due to each of the uncertainty is “pulled-out”

and modeled individually even if they are the same parametric uncertainty that appear

in multiple locations in the nonlinear simulation model. Although this can be avoided by

smart manipulation of the modeling block diagrams, it becomes difficult with very complex

system. Unnecessary repeated uncertain parameters are undesirable as they increase the

computation effort required for robust analysis and may lead to a more conservative analysis

results.
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Figure 4.8: Flow chart of ulinearize function procedure

The parametric uncertainties in the nonlinear simulation model have to be implemented

using either a multiplicative or an inverse multiplicative uncertainty that has a multiplica-

tion with an input signal. Any constant uncertainty has to be manipulated so that it has

a multiplication with an input signal. Linearization of the uncertain nonlinear simulation

model requires breaking of the loop associated with the USS block to form an input/output

pair for linearization. During the linearization, an exogenous signal is required from the

input to output point of the linearization so that the transfer function seen by the uncertain

parameter can be computed. Hence, for a constant uncertainty block that is not multiplied

with an input signal, the numerical linearization will not work and no input to output trans-

fer function relationship can be obtained. This will result in the constant block uncertain

parameter not showing up in the LFT model realization. The LFRT toolbox from [46] has

the same limitation since it makes use of Matlab linmod function for linearization in the

LFT model realization.

68



In addition, even if an input multiplication signal is available at the USS System block,

the input signal must be non-zero. This may seem trivial but it can happen when the input

signal to the USS System block is from a state variable signal that has been trimmed to

zero with zero initial condition. However this problem can be easily overcome by setting a

very small initial condition on the state (10−5 times of an unit value of the state variable)

so that the linearization will be performed correctly. The trimmed state variable will not

significantly differ from a perfect zero initial condition.

4.2.4 Effect of Trim Point

In the realization of LFT model using ulinearize, numerical linearization of uncertain non-

linear model is performed using specific operating point (as shown in Figure 4.9). To find

the operating point, a trim operating condition is first obtained through trimming of the

nominal nonlinear model at the desired trim operating condition. Subsequently, the struc-

ture of the operating point for the nonlinear simulation model is created. With the trim

operating condition and the structure of the operating point, the operating point object for

the trim condition is created for the LFT realization. Hence, any perturbation of uncer-

tainties in the nonlinear model will affect the trim point and operating point and this can

be important as it affects the validity of the LFT model obtained using this approach.
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Figure 4.9: Procedure in obtaining operating point for ulinearize

4.3 UAV LFT Model Realization

A comprehensive list of parametric uncertainties are modeled into the LFT model realiza-

tion. The list of parametric uncertainties (in Appendix Table C.2) included in the nonlinear

UAV simulation model are based on the following experimental data:

• Moment of inertia data (Appendix Table A.2)

• Flight test identified aerodynamics coefficients (Appendix Table C.1)

• Simulator tuned aerodynamics coefficients (Appendix Table A.1) with ±5 % uncer-

tainty variation from these values.

• Propulsion system coefficients (Appendix Table A.3) with ±5 % uncertainty variation

from these values.
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The ulinearize algorithm is applied to the nonlinear simulation model with parametric

uncertainties using trim operating point condition in Appendix Table B.1. In the uncertain

linearization setup, the angular rate velocity integrator initial condition (refer to Appendix

Figure C.2) is set to a very small numerical value (10−9) so that angular rates p, q and

r are not zero. This is important since these angular rates are fed back to the input of

moment of inertia uncertainty blocks. As previously discussed, a zero input to a USS block

will result in a zero input and give a zero input to output linearization relationship. This

will result in the parametric uncertainties not showing up in the realized LFT model.

Another modification was made to Simulink derivative block linearization time constant

to a large number (1030) instead of using the default value of ∞. This change was made

to the α̇ derivative block from which the derivative of α signal is obtained. The α̇ signal

is used as the input to the CLα̇ and cmα̇ parametric uncertainty blocks. The reason for

this modification is that if the linearization time constant is infinity, this will cause the α̇

signal to be zero and no CLα̇ and cmα̇ parametric uncertainty will be extracted from the

uncertain linearization. Using a large non-infinity time constant is able to get around this

problem. The drawback of using a non-infinity linearization time constant is that the LFT

model has an additional state contributed by the derivative block. However, this does not

affect the overall linearized system dynamics and can be simply eliminated from the LFT

model.

A LFT model with a M matrix of size 66 x 63 (Figure 4.10) and a diagonal ∆ matrix of

size 46 x 46 (Appendix Table C.3) were obtained. The reason why the diagonal ∆ matrix

has such a large dimension (46) much higher than the total number of different parametric

uncertainties (34) is because CLminD
, Ixx, Iyy, Izz and Ixz parameters were used in multiple

locations in the nonlinear simulation model. The ulinearize realization treats each of them

as a separate individual uncertainty leading to repetition of same uncertain parameter. The

state equations for the realized LFT model are given by:

ẋf = Afxf + B1f
wf + B2f

uf

zf = C1f
xf + D11f

wf + D12f
uf

yf = C2f
xf + D21f

wf + D22f
uf
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Figure 4.10: M matrix dimension obtained for UAV LFT model

4.3.1 Uncertain System Worst-case Gain

The LFT model obtained represents an uncertain system with the known part grouped

into M matrix and uncertain part in a ∆ matrix with a feedback interconnection structure

as shown in Figure 4.5. The gain of the uncertain system depends on the values of the

uncertainty in the ∆ matrix. An important question to asked about the system gain

resulted from uncertainties variation is “What is the maximum gain of the system over all

allowable values of the uncertainties in the ∆ matrix?” The maximum gain and associated

uncertainty perturbations can be used as the worst-case gain condition for a closed-loop

uncertain system stability analysis. The determination of the maximum gain of uncertain

system over all allowable uncertainty perturbations is known as worst-case gain analysis.

The objective of the worst-case gain analysis is to find the values of the uncertain parameters

that give the worst-case (maximum) gain of the system. The measure of the size for the

maximum gain is the maximum singular value of the system over the frequency response,

which is the H∞ norm.

A worst-case gain analysis was performed on the open-loop LFT model to find the

worst-case gain condition over the frequency range of interest, which is between 1 to 30

rad/s using wcgain function from Robust Control Toolbox. A pointwise worst-case gain

computation was performed. Figure 4.11 shows the result of the worst-case gain bounds
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across the frequency. The exact worst-case gain condition can be assumed to be given by

either the lower or upper bound value since these two bounds are almost the same. The

maximum singular value at each frequency point for the nominal system is also plotted to

show the deviation of worst-case gain condition from the nominal system due to uncertain

parameters variation in the LFT model. The worst-case gain result obtained here are used

to evaluate the LFT model realization accuracy in next section.
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Figure 4.11: Worst-case gain analysis of full UAV LFT model

4.3.2 Accuracy of LFT Model Realization

The accuracy of the LFT model obtained is evaluated by comparing its output responses

with the uncertain nonlinear simulation model responses. A same set of parametric un-

certainty perturbations (δi) is applied to both the LFT model and the uncertain nonlinear

simulation model and the output responses of the two systems are compared. Since this

comparison involves a linear model (LFT model) and a nonlinear model, there will be dif-

ferences in the output responses due to the trim solution. To eliminate the effect of the

linearization in the comparison, a different approach shown in Figure 4.12 is taken.

In this approach, a nonlinear model is first obtained from the uncertain nonlinear simu-
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Figure 4.12: Setup for comparing accuracy of LFT model with uncertain nonlinear simula-

tion model

lation model with the parametric uncertainties fixed to the set of uncertainty perturbation

δi. Next, a different trim operating condition is obtained from the perturbed nonlinear

model using the same desired trim operating condition before linearizing the model since

uncertainty perturbation changes the trim condition which has been discussed in Section

4.2.4. The perturbed linear model obtained is used for comparison with the linear model

(LFT) obtained by fixing the ∆ matrix to the same set of parametric uncertainties δi.

The approach of using the linearized model instead of the nonlinear model for compar-

ison is only valid if the linearized model is able to represent the nonlinear model well and

this has been verified in Section 3.1.1.1. An advantage of using the ulinearize for the LFT

realization is shown here as it is easy to relate the physical parametric uncertainties in the

LFT model and the uncertain nonlinear simulation model. This allows easy comparison

between the models.

The set of uncertain perturbation δi chosen is based on the the worst-case gain analysis in

Section 4.3.1. This is to ensure a worst-case uncertainty perturbation condition is applied to

drive the uncertain system to the worst-case condition for testing the validity and accuracy

of the LFT model realization approach. The set of worst-case uncertainties (Appendix

Table C.4) at 5 rad/s is chosen for this analysis so that it is consistent with the flight test

identification data collect at this frequency range that was used to update the uncertain
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nonlinear model.

Figures 4.13 and 4.14 show the frequency and time response comparisons for angle of

attack, sideslip, roll and pitch angle outputs from linear (LFT) model and linear (Perturbed)

model using the same set of worst-case gain uncertainty variation δi condition. For the time

response simulation, doublet signals are applied to elevator, aileron and rudder control

inputs. In each of the plots, the nominal system response is include as a baseline reference.

Figures 4.13 and 4.14 shows that the linear (Perturbed) model and linear (LFT) model

responses are well matched. Hence the uncertain LFT model is able to predict the response

of the uncertain nonlinear simulation under the worst-case gain condition and this shows

that ulinearize is able to provide an accurate LFT model realization from the uncertain

nonlinear simulation model.

10
0

10
1

−30

−28

−26

−24

−22

−20

−18

M
ag

ni
tu

de
 (

dB
)

α from δ
e

10
0

10
1

−30

−20

−10

0

θ from δ
e

10
0

10
1

−20

−10

0

10

Frequency (rad/s)

M
ag

ni
tu

de
 (

dB
)

φ from δ
a

10
0

10
1

−40

−30

−20

−10

0

Frequency (rad/s)

β from δ
r

 

 

Nominal
Linear model (LFT)
Linear model (Perturbed) 

Figure 4.13: Frequency domain comparison for LFT model realization accuracy
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Figure 4.14: Time domain comparison for LFT model realization accuracy

4.3.3 Decoupled LFT model

In Section 3.1.1.1, negligible cross-coupling assumption has been made and verified for de-

coupling linearized aircraft dynamics into longitudinal and lateral-directional modes. How-

ever, with the presence of parametric uncertainties, the validity of this assumption may not

hold.

The LFT model obtained from ulinearize in the previous section contains both longi-

tudinal and lateral-directional modes. To decouple the LFT model into longitudinal and

lateral-directional modes, the same approach to decoupling used in Section 3.1.1.2 is used.

This is done by extracting the relevant columns and rows required by each mode from Af ,

B1f
, B2f

, C1f
, D12f

, C2f
, D21f

and D22f
matrices (Figure 4.10) of the LFT model. For

76



the input w and output z to the diagonal ∆ matrix, full size D11f
matrix is used since it is

not known how each of these uncertainties is relevant to each of the mode and there might

be cross-coupling contribution by these uncertainties.

To reduce any redundant uncertain parameters in the decoupled longitudinal and lateral

models ∆ matrices, each uncertain parameter of the decoupled uncertain longitudinal and

lateral models is evaluated to check if it could be eliminated. This is similar to model

reduction process where states that have insignificant effect to the overall system can be

eliminated and simplified to a lower order system. Uncertain parameters with strong cross-

couplings will not be eliminated in this process. The simplification of the uncertain model

is done using the simplify function from the Robust Control Toolbox.

The longitudinal model obtained is:

ẋlon = Alonxlon + B1lon
wlon + B2lon

ulon

zlon = C1lon
xlon + D11lon

wlon + D12lon
ulon

ylon = C2lon
xlon + D21lon

wlon + D22lon
ulon

and the lateral model obtained is:

ẋlat = Alatxlat + B1lat
wlat + B2lat

ulat

zlat = C1lat
xlat + D11lat

wlat + D12lat
ulat (4.3)

ylat = C2lat
xlat + D21lat

wlat + D22lat
ulat

Table 4.1 shows the details of the uncertain parameters that have been removed or

retained in each of the decoupled models. The dimension of the diagonal uncertain matrix

obtained from the decoupled models after simplification is much smaller than the initial full

∆ matrix that was used. In the longitudinal model, 21 of the uncertainties, which are mainly

related to the roll and yaw moment, have been eliminated. A similar result is obtained for

the lateral model where 22 of the uncertainties eliminated are mainly from pitch moment

and lift force. Intuitively, this is understandable since most of the uncertainties eliminated

from longitudinal model are related to the lateral mode and vice versa for uncertainties

that are eliminated from the lateral model.

Using the worst-case gain analysis result from Section 4.3.1, uncertainties variations
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for worst-case gain condition in Appendix Table C.4 are applied to the full and decou-

pled models. A comparison between the full and decoupled model responses at worst-case

gain condition using angle of attack, sideslip, roll and pitch angle output responses was

performed. Figure 4.15 shows that the two systems output responses are nearly identical.

This shows that uncertainty perturbations do not induce a significant cross-coupling effects

to the coupled and decoupled models output responses at this operating point with the

given size of worst-case gain parametric uncertainties used.
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Figure 4.15: Full model vs decoupled model comparison

4.4 Uncertain Model Simplification

The LFT model realization from the previous section consists of detailed and accurate model

description of the uncertain nonlinear model at specific operating point. To apply this
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uncertain model for controller synthesis, a simple representation of the model uncertainty

is desirable so that the synthesized controller obtained will not be too conservative [21].

Two model uncertainty simplification approaches are presented and applied to the lateral

LFT model. The simplified LFT model obtained is used for controller synthesis in the next

chapter.

4.4.1 Uncertain Parameters Sensitivity Analysis

A sensitivity analysis of the parameter uncertainties in the LFT model can help to identify

which of the uncertain parameters will result in a significant different output response from

the nominal system response. This analysis can help to reduce the number of parametric

uncertainties in the LFT model since less sensitive uncertain parameters can be eliminated

with minimum effect on the system response. The sensitivity of the uncertain parameters

is determined using worst-case analysis described previously in Section 4.3.1.

From the decoupled lateral LFT model in Equation 4.3, a two-state lateral LFT model

is extracted. This LFT model is of the same form as the parameterized state-space model

used for parameter identification in Equation 3.8, except that it has addition w input and

z output to a block diagonal uncertainty matrix. The two-state lateral LFT model is given

by:

ẋlat2s = Alat2sxlat2s + B1lat2s
wlat2s + B2lat2s

ulat2s

zlat2s = C1lat2s
xlat2s + D11lat2s

wlat2s + D12lat2s
ulat2s (4.4)

ylat2s = C2lat2s
xlat2s + D21lat2s

wlat2s + D22lat2s
ulat2s

wlat2s = diag{δlat
i }zlat2s ∀ i = 1 to 18 and − 1 ≤ δlat

i ≤ 1

where

xlat2s =


 p

r


 ulat2s =


 δa

δr


 ylat2s =


 p

r




δlat
1 = clδa∆

δlat
2 = clδr∆

δlat
3 = clp∆ δlat

4 = clr∆

δlat
5 = cnδa∆

δlat
6 = cnδr∆

δlat
7 = cnp∆ δlat

8 = cnr∆

δlat
9,10 = Ixx∆ δlat

11,12,13,14 = Ixz∆ δlat
15,16 = Iyy∆ δlat

17,18 = Izz∆
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This can be written in a compact LFT form of:

Glat2s∆
= Fu(Mlat2s,∆lat2s) (4.5)

with

Mlat2s =




Alat2s B1lat2s
B2lat2s

C1lat2s
D11lat2s

D12lat2s

C2lat2s
D21lat2s

D22lat2s


 and ∆lat2s = diag

{
δlat
i

}
∀ i = 1 to 18

The lateral LFT model has a total of 18 uncertain parameters, of which 6 of them are

repeated. Applying the worst-case gain analysis, the sensitivity for each of the uncertain

parameters contribution to the worst-case gain is computed at each frequency point across

the frequency range. Figure 4.16 shows the sensitivity values obtained from the worst-

case gain analysis of the lateral LFT model for each of the uncertain parameter across

the frequency range. The plot in Figure 4.16 shows that three of the different parametric

uncertainties, Ixz∆ (δlat
11,12,13,14), Iyy∆ (δlat

15,16) and clδr∆
(δlat

2 ), have very small sensitivity

values. This means that these uncertain parameters have very little contribution to the

worst-case gain and removing them (setting them to be zero) will not affect the worst-

case gain of the lateral LFT model significantly. Hence δlat
2,11,12,13,14,15,16 are set to zero

and Figure 4.17 shows the result of the worst-case gain for the lateral LFT model with

δlat
2,11,12,13,14,15,16 set to zero. The worst case gain obtained is very close to the full uncertain

lateral LFT model with little reduction in the worst-case gain due to simplification of the

uncertain model. The tradeoff of simplifying and removing the parametric uncertainties

from the uncertain lateral model can be clearly seen from Figure 4.17 where the worst-

case gain decreases from upper bound of full uncertain model (no parametric uncertainty

removed) to a minimum bound given by the maximum singular value of the nominal model

(all parametric uncertainties are removed). However, over simplification of the uncertain

model by removing too many of sensitive uncertainties is not desirable as this will decrease

the fidelity of the simplified uncertain model in predicting and representing the actual effect

of uncertainty in the LFT model.
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Figure 4.16: Parametric uncertainties sensitivity across frequency

4.4.2 Frequency Domain Uncertainty Representation

Beside using elimination method to simplify the LFT model based on uncertain parameters

sensitivity analysis, another approach for simplifying the LFT model is to approximate the

parametric uncertainties with an unmodeled Linear Time-Invariant (LTI) dynamic uncer-

tainty. This is done by overbounding the real uncertainty perturbation of -1 ≤ ∆ ≤ 1 with

a single complex perturbation of |∆(jω)| ≤ 1. The disadvantage of this approach is that the

uncertainty model may be more conservative as the complex uncertainty perturbation in-

cludes possible plants that might not be in the original set of plants from the real parametric

uncertainty model. However, if there are several real parametric uncertainties in the model,

the conservatism is often reduced by lumping these real parametric uncertainty perturba-

tions into a single complex perturbation as several real uncertainty perturbations region is

often quite “disc-shaped” which is described by a single complex uncertainty region [37].

A commonly used approach of lumping the real parametric uncertainty perturbations to-
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Figure 4.17: Worst-case gain analysis for different number of parametric uncertainty reduc-

tion

gether is to overbound the real parametric uncertainty perturbation region using a single

complex uncertainty perturbation.

4.4.2.1 Overbounding using Unmodeled Liner Time Invariant Dynamic Un-

certainty Model

The tradeoff between uncertainty conservatism and closed-loop system performance mo-

tivates the desire of deriving the tightest overbound in replacing the real parametric un-

certainties using single complex uncertainty model. This has been described by problem

statement of computing optimal uncertainty model using convex optimization in [51–53]

where frequency domain data from different measurements or plants are used for computa-

tion of tight uncertainty model bounds for robust control design purpose. The computation

of tight overbound from frequency domain data has been shown to reduce to a Linear Ma-

trix Inequalities (LMI) feasibility problem in [51] where the objective is to simultaneously
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search for both a nominal model and uncertainty weighting bound that give optimal un-

certain model with the tightest bound on the data set.

To apply the optimal overbounding technique on the lateral model given in Equation 4.5,

a family of models is generated from the uncertain lateral model by random sampling of the

parametric uncertainties (∆lat2s) so that the family of models covers a wide range of model

responses region described by the real parametric uncertain model. Figure 4.18(a) shows a

frequency domain representation using Nyquist plot for a family of models obtained from

random sampling of the parametric uncertainties. At each of the frequency point in Figure

4.18(a), the family of models covers a complex number region due to different parametric

uncertainties variations in ∆lat2s. Figure 4.18(b) shows an example for the concept of

overbounding at ω = 1.0 rad/s frequency point (corresponds to ω = 1.0 rad/s in Figure

4.18(a)) in the complex plane. The unshaded region bounded by dashed line described the

region with all possible real parametric uncertainties variations from the nominal model

(red ‘x’) at a specific frequency point. Each of the blue ‘x’ in the unshaded region is a

random sampled model from the parametric uncertain model, and the collection of these

sampled models is a family of models. The number of random sampled models should

be large enough so that it provides a good coverage of the entire unshaded region to be

overbounded.

The red circle represents the tightest disc shape overbound that can be computed with

a given nominal model to enclose the entire unshaded region with the objective of achieving

the smallest shaded region. The shaded region represents the models that are not in the

original set of models from the real parametric uncertainty model but has been included in

the overbonding process. The addition of models in the shaded region adds conservatism to

the complex uncertainty model obtained from overbounding. The disc radius Wk gives the

optimal frequency weighting function required to tightly overbound the family of models.

The nominal model used in the lateral LFT model is obtained from the ulinearize process

and this has to be fixed as a constraint in the determination of the tightest overbound

weighting function. This is to ensure that the nominal model used is a feasible trim model

within the desired operating point. In addition, fixing the nominal model used simplifies the

optimization for getting the tightest overbound and provides physically practical uncertain
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model in this application. Computation of the optimal overbound weighting function Wk

is solved using LMI feasibility problem at each of the frequency point [53].

(a) Nyquist plot of uncertainty regions at different frequencies

(b) Disc overbounding at ω = 1.0 rad/s frequency point

Figure 4.18: Complex plane uncertainty region and disc overbound

Consider an input multiplicative unmodeled Linear Time Invariant (LTI) dynamic un-

certain model used to cover the original set of parametric uncertain model, G∆, given

by:

G∆ = G0(I + W∆) : ‖∆‖∞ ≤ 1

where

• G0 ∈ Rn×m is the known nominal model.
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• G∆ ∈ Rn×m has no poles on the imaginary axis.

• W ∈ Rn×n is a stable and minimum phase weighting function.

• ∆ is any stable transfer function with magnitude of less than or equal to 1 at each

frequency point.

The family of N sampled models to represent the original parametric uncertain model is

given by:

{G1, G2, . . . , GN}︸ ︷︷ ︸
family of N sampled models

⊆ G∆ (4.6)

Hence the problem becomes finding an optimal overbound on the sampled family of models:

{G1, G2, . . . , GN} ⊆ G0(I + W∆), ‖∆‖∞ ≤ 1

With M frequency grid points, at each frequency grid point,

{G1(jωk), G2(jωk), . . . , GN (jωk)} ⊆ G0(jωk)(I + Wk(jωk)∆), ‖∆‖∞ ≤ 1,∀k = 1 : M (4.7)

For each of the model in the family of GN , there exist a solution for Equation 4.7 with

‖∆‖∞ ≤ 1 if and only if

G0(jωk)Wi,k(jωk)W ∗
i,k(jωk)G∗

0(jωk)− [Gi(jωk)−G0(jωk)][(Gi(jωk)−G0(jωk)]∗ ≥ 0(4.8)

Applying Schur’s complement formulae to Equation 4.8, the quadratic matrix inequalities

become LMI given by:

 G0(jωk)Wi,k(jωk)W ∗

i,k(jωk)G∗
0(jωk) G0(jωk)][(Gi(jωk)−G0(jωk)]

G0(jωk)[(Gi(jωk)−G0(jωk)]∗ I


 ≥ 0 (4.9)

The weighting Wi,k is chosen to be block diagonal given by:

Wi,k(jωk)W ∗
i,k(jωk) =




W 2
1 0 0 0

0 W 2
2 0 0

0 0
. . . 0

0 0 0 W 2
n



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The optimization to get the optimal weightings is to solve Semi-Definite Programming

(SDP) problem with objective function:

min Tr(Wi,k(jωk)W ∗
i,k(jωk)) (4.10)

subject to LMI constraint in Equation 4.9 for model i = 1:N and frequency point k = 1:M.

More details on the theorem and proofs can be found in [51,53].

To get a stable and minimum phase weighting function W from the computed optimal

weighting function result from Equation 4.10, fitting is done using the optimal weights Wk

obtained across the frequency grids. This is done using fitmagfrd function from Robust

Control Toolbox where different weighting function orders can be used for the fitting. The

entire process of computing optimal frequency domain bounds and fitting them to a stable,

minimum phase weighting function is available in the Robust Control Toolbox’s ucover

function.

The overbounding approach to uncertainty model simplification using input multiplica-

tive uncertainty structure can also be applied to output multiplicative and additive uncer-

tainty structures as well. The focused in this thesis is on the multiplicative uncertainty

structure as it is found to give a less conservative overbound than for the additive uncer-

tainty structure for parametric uncertain model [21].

4.4.2.2 Verification of Uncertain Lateral Dynamics Model using Optimal Un-

certainty Overbound

The optimal overbound computation can be used to compare the size of uncertainty bounds

in different model sets. This can aid in determination if one model set overbounds the other

set or if one uncertain model has a more conservative uncertainty bound than the other.

This will be used here to determine if the lateral dynamic model identified from flight test

data in Section 3.5 is overbounded by the lateral LFT model obtained from the uncertain

nonlinear simulation model. This verification is important and useful because the lateral

LFT model should overbound all the identified models to ensure it contains the actual

flight data derived models. Validation of the flight test data is important for the robustness

analysis using the uncertain nonlinear simulation model and LFT model to be meaningful

in the integrated framework approach. Also, if the lateral LFT model has a big uncertainty
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bound as compare to the original identified models, this indicates that the LFT model is too

conservative and more flight test data are required to update the parametric uncertainty

bounds in the nonlinear simulation model in order to tighten the uncertainty bounds.

Figure 4.19: Relationship between lateral LFT model and flight test identified models

Figure 4.19 shows the flow chart on the relationship between the lateral LFT model

and the flight test identified lateral models used to update the nonlinear simulation model.

The objective is to find out if the lateral LFT model obtained from the uncertain nonlinear

model overbounds the original set of flight test identified models. To make this comparison,

the nominal model used is the same nominal model that was obtained using averaging in

Section 3.7.1. Also, from the lateral LFT model in Equation 4.4, the uncertainties δlat
9 to

δlat
18 are fixed at zero so that the lateral LFT model used for comparison contains the exact

same number of states and physical parameters as the identified models. A family of 50

models are randomly sampled to represent the lateral LFT model.

The size of uncertainty region at each frequency point away from the nominal model

across the frequencies (shown in Figure 4.18(a)) is computed using the ucover function

for an input multiplicative uncertainty model structure to obtain the optimal uncertainty

weighting bounds for both the identified lateral models and the family of 50 models sampled

from the lateral LFT model. In both of the cases, the same nominal model is used for

the optimal uncertainty weighting bounds computation. Figure 4.20 shows the plot of the

optimal uncertainty bounds obtained to overbound the aileron and rudder input channels for

the identified lateral models and the family of 50 models to represent the lateral LFT model.
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From the plot in Figure 4.20, the optimal aileron and rudder input uncertainty bounds

computed across the frequency range for the lateral LFT model is larger than the bounds

computed for the identified models. This indicates that the lateral LFT model has a larger

uncertainty region at each of the frequency point as compared to the identified models. This

means that the lateral LFT model overbounds the flight test identified models and contains

the set of models from the flight test identification. The gap between the uncertainty bounds

for the lateral LFT model and identified models indicates the conservatism of the lateral

LFT model in representing the flight test identified model sets. To reduce this gap, more

flight test data should be collected to update the nonlinear simulation model parametric

uncertainty bounds to help to tighten the gap between the LFT model and the flight test

identified models.

10
0

10
1

−15

−10

−5

0

M
ag

ni
tu

de
 (

dB
)

Aileron input

Frequency  (rad/sec)

10
0

10
1

−10

−8

−6

−4

M
ag

ni
tu

de
 (

dB
)

 

 

Rudder input

Frequency  (rad/sec)

LFT model
Flight test ID model

Figure 4.20: Input multiplicative uncertainty bounds for lateral LFT model and flight test

identified models

88



Full model uncertainty Physical parameter Lon model uncertainty Lat model uncertainty

δ1 CDδa
- δlat

1

δ2 CDδe
δlon
1 -

δ3 CDδr
- δlat

2

δ4 CDmin δlon
2 δlat

3

δ5 CL0 δlon
3 δlat

4

δ6 CLα δlon
4 -

δ7 CDα̇ δlon
5 -

δ8 CLδe
δlon
6 -

δ9,10 CLminD δlon
7,8 δlat

5,6

δ11 CLq δlon
9 -

δ12 CP - -

δ13 CT δlon
10 -

δ14 CYβ δlon
11 δlat

7

δ15 CYδr
- δlat

8

δ16 clβ δlon
12 δlat

9

δ17 clδa
- δlat

10

δ18 clδr
- δlat

11

δ19 clp - δlat
12

δ20 clr - δlat
13

δ21 cm0 δlon
13 -

δ22 cmα δlon
14 -

δ23 cmα̇ δlon
15 -

δ24 cmδe
δlon
16 -

δ25 cmq δlon
17 -

δ26 cnβ δlon
18 δlat

14

δ27 cnδa
- δlat

15

δ28 cnδr
- δlat

16

δ29 cnp - δlat
17

δ30 cnr - δlat
18

δ31 Jmp - -

δ32,33,34 Ixx δlon
19,20 δlat

19,20

δ35,36,37,38,39,40 Ixz δlon
21,22,23,24 δlat

21,22,23,24

δ41,42,43 Iyy δlon
25,26,27 δlat

25,26

δ44,45,46 Izz δlon
28,29 δlat

27,28

Table 4.1: Uncertain parameters in full and decoupled models (“-” denotes parameter that

has been eliminated)

89



Chapter 5

Flight Controller Synthesis and

Implementation

The success of autonomous UAV operations depends on the autopilot system for its control,

guidance and navigation tasks. Flight control design without an aircraft mathematical

model is a difficult task. Flight control engineers have to perform manual tuning of the

controller gains during flight testings when no model is available. This is a dangerous

and time-consuming process and is limited to classical single-input, single-output (SISO)

controller design method. The classical controller design approach is attractive because it is

simple to apply and implement. The controller is usually designed by successive closure of

feedback loops from inner angular rate feedback loops to outer tracking loops. However, this

becomes increasingly difficult when more loops are added and requires a significant amount

of time in trial and error tuning process that may not guarantee to obtain a controller with

desired performance.

The availability of plant model permits the use of sophisticated model-based control

design methods for which the designed controller can be easily synthesized and verified in

simulation before any flight test is conducted. Robust multivariable control design tech-

niques are able to handle model uncertainties and allow multivariable controller design in

the presence of signal uncertainties. One particular robust multivariable control design

method, µ synthesis, is popular due to its ability to account for model uncertainty and

performance in the same framework. With increasing computation power of current com-
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puters and embedded systems, this offers a viable alternative to classical controller design

method.

In this chapter, the H∞ and µ controller synthesis methods are used to design a linear,

multivariable lateral controller using the model and model uncertainty developed in previous

chapters. The focus of the controller synthesis process is the application of model-based

control design software tools as part of the integrated framework environment to provide

a systematic approach for controller synthesis. This helps to bridge the theory-engineering

gap of controller design software tools in producing controllers that are suitable for direct

implementation on the actual system.

5.1 Flight Control Architecture Overview

Autonomous operation of an UAV can be divided into different flight profiles. In any mission

scenario, the UAV will be in autonomous cruise flight phase for majority of its flight time.

In a typical cruise flight phase, the UAV will be flying at a desired cruise flight condition

and performs waypoint navigation with roll angle tracking, airspeed hold, altitude hold and

pitch hold mode engaged. The focus of the controller synthesis work in this section is to

design a roll angle tracking controller operating in a cruise flight condition with airspeed,

altitude and pitch hold modes engaged.

Flight Mode Controller used Function

Airspeed Hold Airspeed controller Tracking of desired airspeed

Altitude Hold Altitude controller Tracking of desired altitude

Pitch Hold Pitch angle controller Tracking of reference pitch angle

and provides pitch rate damping

Roll Tracking Roll angle controller Tracking of reference roll angle

and provides roll and yaw rates damping

Table 5.1: UAV flight modes

The function for each of the flight mode is summarized in Table 5.1. Figure 5.1 shows

the flight control system architecture with various controllers used in the cruise flight phase.
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Figure 5.1: UAV flight control architecture for autonomous cruise flight

The airspeed controller works in concurrent with the altitude controller to provide tracking

of desired airspeed and altitude. To increase the desired airspeed at a fixed altitude, the

airspeed controller will command a negative pitch angle (θref ) input to the pitch angle

controller. The pitch angle controller will command the elevator control input to pitch the

aircraft nose down. However, with the aircraft nose pitching down, it will decrease the

altitude of the aircraft. In order to maintain at the same altitude, the altitude controller

has to increase the throttle control input so that the aircraft can climb back to the desired

altitude. Therefore, the increase to the throttle input will increase the airspeed of the

aircraft to the new desired airspeed required.

The altitude controller will increase the throttle control input to increase the desired

altitude at constant airspeed. However, increasing the throttle control input increases the

airspeed above the desired airspeed. Therefore, the airspeed controller will increase the

pitch angle demand of the aircraft to slow the aircraft down to the desired airspeed. With

an increase in pitch angle, the aircraft will climb to the new desired altitude required.

The advantages of controlling airspeed and altitude with pitch angle and throttle control

respectively rather than controlling airspeed by throttle control and altitude control by pitch

angle are as follows:
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• In the event of engine failure, the aircraft will have a gentle descent in altitude without

airspeed and pitch angle controllers destabilizing the aircraft pitch axis. If the altitude

is being controlled by pitch angle command, it will pitch the aircraft nose up when the

aircraft loses altitude and the airspeed is decreasing due to the loss of engine thrust.

This will cause the aircraft to stall, leading to an uncontrollable recovery situation.

• During the cruise flight condition, it is desirable to have a higher control bandwidth

for the aircraft airspeed than the altitude. This is because the small UAV is more

sensitive to wind gust disturbance. Regulation of airspeed using elevator control

surface is faster than using the propulsion system to control the airspeed since there

is time delay in the propulsion system dynamics.

• The use of throttle control for altitude control needs a lower control bandwidth than

using throttle control for controlling the airspeed. This will result in less variation

in throttle control input used. For increase efficiency of the propulsion system and

longer flight duration, it is desirable to keep the throttle at a fixed input with minimum

variation.

5.2 Problem Formulation for Flight Control Synthesis

The flight control synthesis and validation for autonomous cruise flight in this research will

only focus on the synthesis of roll angle controller to limit the thesis work scope. However,

this will not compromise the ability to demonstrate the key concepts, approaches and

methodologies to fulfill the objectives of the research. The control synthesis problem is to

synthesize a lateral axis controller with a specific roll angle tracking and yaw rate damping

requirements. This problem formulation is chosen with the following considerations:

• In a cruise flight condition, the aircraft dynamics can be linearized and decoupled

into longitudinal and lateral-directional modes since the cross-coupling effect between

the two modes is negligible (Section 3.1.1). Based on the flight dynamics model,

large amplitude variation in the longitudinal motion can occur without perturbing

the lateral model states but large lateral motion will affect the longitudinal modes

through nonlinear coupling effects. Hence for lateral axis control synthesis problem,
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flight test result validation will not be significantly affected by the longitudinal motion

for the flight operating region. Note that the longitudinal axis is controlled by a PID

controller.

• Synthesis of a flight control for lateral axis model poses a more challenging problem

than the longitudinal axis controller. The short-period and phugoid mode for the

longitudinal model are usually well separated with different time-scales. However, for

lateral axis dynamics, the roll and Dutch-roll mode can have almost the same time-

scale. This results in significant coupling effects that makes the lateral axis controller

synthesis problem more challenging.

The objective of the flight control design is to follow the reference roll angle commands

generated by the waypoint guidance controller during the UAV autonomous cruise flight

phase. The synthesis of waypoint guidance controller is not within the scope of the research

and it is assumed that the waypoint guidance is done primary using roll angle commands.

Initially a classical PID controller for roll and pitch angles tracking is implemented

and tuned using flight tests conducted. The pitch angle PID controller is used to provide

stabilization for the longitudinal axis during the flight testing of the synthesized robust roll

angle controller. Subsequently, the roll angle controller will be designed and implemented

using µ controller synthesis.

5.3 Classical Control Design

The standard flight control system is synthesized by successive feedback loops closure to

stabilize and control the aircraft. Usually, inner loop angular rate feedback are used to

stabilize the aircraft and proportional/integral control is used to improve performance.

This design process becomes increasingly difficult when more loops are added to the control

system. This is especially true for multivariable systems. Applying classical control design

technique with successive closure of individual loop requires a significant amount of time

in the trial and error process. Despite the amount of time spent on the design, it may not

guarantee a successful controller design or the designed controller may give poor closed-

loop performance. This motivates the use of model-based control design methods for flight
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control system design.

This section provides a brief description for roll and pitch angle controllers designs and

implementation using PID controller. Flight tests were conducted to manual tune the PID

controllers based on Zigler-Nichols method to obtain suboptimal controllers for the cruise

flight condition.

5.3.1 Controller Architecture

The flight control architecture is presented in Figure 5.1. The PID roll and pitch angle

controllers synthesized to track reference command angles (φref , θref ) and provide damping

in the closed-loop system are shown in Figure 5.2. An anti-windup reset is used for each

integrator to keep the integrator effort small during saturation to improve the transient

flight characteristics of the design. The anti-windup reset works by setting the integrator

to zero when the output from the controller has reached its saturation limit.

5.3.2 Controller Tuning

The roll and pitch angle PID controllers are tuned during flight testing based on Zigler-

Nichols tuning approach. The tuning objective is to synthesize a stable suboptimal con-

troller with minimum emphasis on the controller optimality for good closed-loop perfor-

mance. The roll angle controller is tuned first since large amplitude variations in the lateral

axis can affect the longitudinal mode. Tuning of the pitch angle controller is easier after

the lateral axis is stabilized with the roll angle controller. The procedures for tuning and

testing the roll angle controller are:

1. Set the reference roll angle command to zero. Tune the controller to achieve a wing-

leveled flight. The aircraft is manually piloted to a wing-leveled flight before the roll

angle controller is engaged. During the controller tuning, if the wings start to oscillate

rapidly (more than 1.5 Hz), the KPφ
and KDφ

feedback gains are reduced. If the wings

oscillate slowly (less than 1 Hz), the KIφ
feedback gain is reduced. Over a longer time

period of wing-leveled flight, if the aircraft wings do not hold its wing-leveled flight

well, the KIφ
feedback gain is increased. During the tuning process of the roll angle
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(a) Roll angle PID controller

(b) Pitch angle PID controller

Figure 5.2: Roll and pitch angle PID controllers

controller, the RC pilot needs to provide elevator, rudder and throttle control inputs

to stabilize and control the aircraft to remain at cruise flight operating condition.

2. The aircraft is manually piloted to different initial roll angle positions from wing-

leveled flight before the roll angle controller is engaged. The PID gains are tuned

again so that the roll angle controller is able to bring the aircraft back to stable wing-

leveled flight position with acceptable transient response of small roll angle overshoot

of 2 to 5 degrees and setting time of between 2 to 3 seconds.

3. The reference roll angle command is varied in real-time by the RC pilot using the

RC control box and the controller gains are tuned for dynamic reference roll angle

tracking. Figure 5.3(a) shows the roll angle tracking performance of the tuned roll

angle controller obtained.
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Once the roll angle controller has been tuned, the pitch angle controller is tuned with

the roll angle controller loop closed and the roll angle reference command set to zero. The

tuning procedures for the pitch angle controller is similar to the roll angle controller tuning,

which are as follows:

1. Set the pitch angle reference command to zero to tune the controller during straight

and wing-leveled flight with zero pitch angle. With the roll angle controller engaged,

the aircraft is manually piloted to a straight and wing-leveled flight before the pitch

angle controller is turned on. During the controller tuning, if the aircraft starts to

have rapid pitch oscillations (more than 1.5 Hz), the KPθ
and KDθ

feedback gains

are reduced. If the pitch oscillations are slow (less than 1 Hz), the KIθ
feedback

gain is reduced. Over a longer time period of straight and wing-leveled flight, if the

aircraft starts to pitch up or down, the KIθ
feedback gain is increased. During the

tuning process with the roll and pitch angle controllers engaged, the RC pilot needs

to provide throttle control input to regulate the aircraft airspeed.

2. The aircraft is manually piloted to different initial nose up or nose down pitch angles

flight conditions before the pitch angle controller is engaged. The PID gains for the

pitch angle controller are tuned during this process so that the pitch angle controller

is able to control the aircraft back to stable leveled flight position with setting time

of between 2 to 3 seconds.

3. The reference pitch angle command is varied in real-time by the RC pilot and the

pitch angle controller gains are tuned for dynamic pitch reference command tracking.

Figure 5.3(b) shows the pitch angle tracking performance result of the tuned pitch

angle controller.

5.4 Model-based Controller Synthesis

The roll angle controller is redesigned in this section using a model-based controller synthe-

sis technique. Model-based controller synthesis approaches take advantage of the models of

the aircraft in the integrated framework for synthesis and validation of the designed con-

troller. This provides a standard procedure for controller synthesis and validation during
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(b) Pitch angle controller tracking

Figure 5.3: Tracking performance of roll and pitch angle PID controllers

the flight control development. Two model-based methods for controller synthesis, H∞ and

µ synthesis methods, from the robust control are used. The H∞ and µ synthesis techniques

are mixed-sensitivity controller design technique that allows conflicting design objectives to

optimally satisfy various design objectives through usage of different weighting functions in

the controller synthesis formulation. Hence, the selection of appropriate weighting functions

is very important for successful H∞ and µ controller designs.

5.4.1 Control Design Specifications

The selection of weighting functions for H∞ and µ controllers synthesis is based on the

desired control design specifications. The performance objectives of the roll angle controller

is to provide accurate tracking of reference roll angle commands generated by the waypoint

guidance controller and roll and yaw rate dampings in the lateral axis. These objectives

are challenging because tracking of roll angle commands will cause a yaw in the opposite

direction (adverse yaw) due to the aerodynamic coupling between the roll and yaw axes of

the aircraft, which opposes the performance objective of providing yaw rate damping during

the roll angle commands tracking. The performance criteria for the roll angle control design

are as follows:

• Track roll angle reference commands (φref ) with less than 6 degrees tracking error
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for up to 1 rad/s bandwidth. The rise time for the roll angle tracking should be less

than 2.5 seconds.

• The yaw rate coupling should be less than 25 deg/s across all frequencies.

• The control effort should stay within the control surfaces saturation limits at all times.

• The controller should be robust and achieve desired performance objectives for all

values of the model uncertainties described in the aircraft uncertainty modeling in

Chapter 4.2.

5.4.2 Problem Formulation and Weighting Functions Selection

The roll angle control design problem is formulated as a standard signal-based H∞ controller

design problem where different design specifications are achieved simultaneously. This

reduces the control design problem to optimization problem where the norm size of the

error signals is to be kept small subjected to different external signals that affect the UAV

system.

Weighting functions are used to shape the frequency content information for the input

exogenous signals and output error signals to achieve the desired design specifications. It

helps to normalize and weight each of the requirements so that the controller synthesis

problem is well-posed. Weighting functions are also used to incorporate model uncertainty

into the controller design process. Figure 5.4 shows the control design interconnection

with the weighting functions and reference model used for the signal-based H∞ roll angle

controller synthesis. The selection of the weighting functions and reference model in the

system interconnection are described in the following sections.

5.4.2.1 UAV lateral model

The UAV lateral model used is a three states state-space model obtained from flight test

system identification as described in Section 3.1.2.



ṗ

ṙ

φ̇


 =




Lp Lr 0

Np Nr 0

1 0 0







p

r

φ


 +




Lδa Lδr

Nδa Nδr

0 0





 δa

δr


 (5.1)
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Figure 5.4: System interconnection for H∞ controller synthesis

The control and stability parameters used in Equation 5.1 are given in Appendix Table

B.2. For H∞ controller synthesis, only the nominal value of the parameters are used.

However in the µ synthesis design technique, the parameter uncertainty values between

lower and upper bounds are used to describe uncertainty variations in the model.

5.4.2.2 Actuator model

The actuator models, ACT 1 (rudder servo actuator) and ACT 2 (aileron servo actuator),

describe the dynamics for the servo actuators used in the Ultrastick aircraft. The outputs

from the actuator model are the angular rate and angle deflections. The aileron and rudder

servo actuators are the same and are modeled by first order dynamics which mainly accounts

for actuator time lag. The actuator time lag is approximated to be 20 ms (from Section

2.2.4). Hence, the angular rate and angle deflection outputs from the actuators are described

by the transfer functions:

δ̇a,r =
50s

s + 50
, δa,r =

50
s + 50
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5.4.2.3 Actuator Output Weighting Function

The actuator output weighting function Wact is used to limit the maximum angular rate

and angle deflections for both the aileron and rudder control surfaces in the H∞ problem

formulation. A diagonal constant weight, corresponding to aileron angular rate and angle

deflections and rudder angular rate and angle deflections, is used. A constant weight of

1.0 is used for the aileron and rudder angle deflection and this limits the outputs from the

aileron and rudder deflection angle to be within ± 25 degrees while the deflection rates

are limited to be within ± 5 rad/s using a constant weighting function of 0.2. Hence the

actuator weighting function Wact is given by:

Wact =




0.2 0 0 0

0 1.0 0 0

0 0 0.2 0

0 0 0 1.0




5.4.2.4 Time Delay

The flight avionics system is made up of different hardware components integrated together.

With different hardware devices and signals flow between them occurring at the same time,

there will be time delay within the flight control system since it takes finite amount of time

to process, pack, send or receive data from one device to the other. A time delay model

is used to account for the time delay (Td) in the closed-loop system measured in the PIL

simulator. This is described in more detail in the next chapter. It is important to include

the time delay in the controller synthesis process as time delay in the closed-loop system

reduces the closed-loop stability margin and bandwidth. A first order Padé approximation

is used to approximate the time delay:

e−Tds ' 1− Tds/2
1 + Tds/2

where the time delay Td measured from the PIL simulator is about 0.08 seconds.
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5.4.2.5 Washout Filter

The roll angle controller commands the rudder to provide yaw damping at high frequency

during the roll angle tracking maneuver. A washout filter is added to the yaw rate sensor

feedback path to aid the controller. A washout filter is simply a high pass filter that only

allows high frequencies signal to go through while attenuating low frequencies signal. The

transfer function of the washout filter is given by:

s

s + ωw

where ωw (rad/s) is the cutoff frequency that the yaw rate signal will be attenuated such

that the roll angle controller will not provide any yaw rate feedback during steady turn.

The cutoff frequency is selected as 15 rad/s.

5.4.2.6 Sensor Noise

A constant weight is used in the controller synthesis process to model the gyros noise for roll

and yaw angular rate sensor measurements fed back to the controller. The weight is selected

based on three standard deviation bound (99.7 % confidence interval) of the gyros noise.

The sensor roll and yaw gyros noise standard deviation, published in [54], is 8.73 × 10−2

rad/s. Therefore the three standard deviation noise bound is 0.03 rad/s. Hence the sensor

weight used is:

Wn =


 0.03 0

0 0.03




5.4.2.7 Model Reference

A reference model is used to define the ideal response of the closed-loop roll angle tracking

response. The ideal response is prescribed by the specifications required by the waypoint

guidance controller which provides the reference roll angle commands. A second order

reference model is used to provide a smooth reference roll angle command for the roll angle

tracking controller. A rise time of 2.2 seconds is chosen to provide a reasonable bandwidth in

the reference roll angle command. A damping ratio of 0.75 is selected to have an overshoot

of less than 3 % in the reference roll angle command from the reference roll angle command
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generated by the waypoint guidance controller. The second order model reference is given

by:

Mref =
0.669

s2 + 1.227s + 0.669

5.4.2.8 Performance Weighting Functions

Performance weighting functions, Wp1 and Wp2, are used to shape the roll angle and

yaw angular rate tracking error responses to achieve the desired closed-loop performance

specifications. Wp1 is used to keep the mismatch between the reference roll angle command

and the actual aircraft roll angle small at low frequencies with small steady-state error. The

controller should roll-off at high frequencies since tracking of reference roll angle command

is not required at high frequencies due to the low frequency reference command signals from

the waypoint navigation controller. Large model uncertainty at high frequencies is another

reason why the performance should decrease below 1 around the loop-bandwidth. Since

the rise time of the roll angle reference command is set to 2.2 seconds using the reference

model, good tracking of the roll angle reference command signals is required from 0 to 1

rad/s. The accuracy of the AHRS roll angle attitude solution obtained is approximately ±
5 degrees. Hence a steady-state reference roll angle tracking error of less than 6 degrees is

desired. The weighting function used is:

Wp1 =
2.5(s + 40)

s + 10

This has a low frequency gain of 10 for up to 1 rad/s which gives a roll angle tracking error

of less than 5.7 degrees.

Wp2 is used to penalize the amplitude of the yaw angular rate with the yaw rate

reference, rref , set to zero. The weighting function used is:

Wp2 =
1

0.15

The Wp2 weight is used to limit the yaw angular rate to be less than ± 25 deg/s across all

frequencies range.
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5.4.3 H∞ and µ Controller Synthesis

This section describes H∞ and µ synthesis techniques with the system interconnection

defined in Figure 5.4 to compute H∞ and µ synthesis controllers.

5.4.3.1 H∞ Controller Synthesis

Figure 5.5: Configuration for H∞ controller synthesis

The system interconnection defined in Figure 5.4 can be put into a general feedback

design problem configuration shown in Figure 5.5. M represents the system interconnection

structure in Figure 5.4, K is the feedback controller, u is a vector of control inputs from

the controller, v is a vector of measurement signals, w is a vector of exogenous input signals

and z is a vector of errors to be kept small to meet the control design objectives.

The closed-loop transfer function from w to z is given by the linear fractional transfor-

mation:

z = Fl(M,K)w

The H∞ controller synthesis for the general configuration in Figure 5.5 is to find all stabi-

lizing controllers K which minimize

‖ Fl(M,K) ‖∞= max
ω

σ̂(Fl(M, K)(jω))

This problem has been solved efficiently by using algorithms in [55] for a sub-optimal H∞

controller with:

‖ Fl(M,K) ‖∞< γ

by reducing the value of the γ iteratively. The optimality of the designed controller is

dependent on the minimum γ obtained in the synthesis. Therefore the suboptimal H∞
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controller synthesis problem is to find all stabilizing controllers K with γ less than γmin

where γmin is the minimum value of ‖ Fl(P, K) ‖∞ over all stabilizing controllers K [37].

The Matlab function hinfsyn is used to compute a sub-optimal H∞ controller for the

H∞ synthesis problem describes above using γ-iteration [39]. The H∞ synthesis procedure

uses only the nominal plant model in Figure 5.4 without model uncertainty. The controller

design objective is to find a sub-optimal controller that balances the tradeoff in achiev-

ing required closed-loop performance and small state order controller that is feasible to

implement in the flight computer system.

5.4.3.2 µ Synthesis

Figure 5.6: Configuration for µ controller synthesis

The µ synthesis process differs from the H∞ controller synthesis process as it is able

to synthesize robust controllers with model uncertainty included into the synthesis process.

Figure 5.6 shows the general framework for µ synthesis. The system interconnection in

Figure 5.4 can be rearranged to match the inputs, outputs, uncertainty perturbations and

controller in this framework. M represents the system interconnection structure in Figure

5.4, K is the feedback controller, u is a vector of control inputs from the controller, v is a

vector of measurement signals, z and w are inputs and outputs to and from the uncertainty

block, d is a vector of exogenous input signals and e is a vector of errors to be kept small

to meet the control design objectives.

The µ synthesis makes use of the results from the structure singular value µ to find the

controller that minimizes a given µ condition. The details of the structure singular value
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can be found in [56]. The µ synthesis problem is to find a controller K that minimizes [57]

inf
K

sup
ω

µ(Fl(M(jω),K(jω))) (5.2)

However, calculation of the µ value is NP-hard and the minimization problem is reformu-

lated as a minimization of the upper bounds of the structured singular value that includes a

real, rational, stable, minimum phase transfer function D(jω) [58]. The synthesis problem

is rewritten to find a stabilizing controller K and a scaling matrix D that minimizes:

‖ D(jω)Fl(M(jω),K(jω))D−1(jω) ‖∞ (5.3)

The minimization problem in Equation 5.3 can be solved using alternative minimization

with K and D parameter that combines H∞ and µ synthesis. This iteration approach is

called “D-K iteration”. The details of the D-K iteration can be found in [56].

The Matlab function dksyn in the Robust Control Toolbox is used for the µ synthesis

problem for the system interconnection in Figure 5.4. The dksyn command generates a ro-

bust controller through minimizing the µ value using D-K iterations and solving a sequence

of scaled H∞ controller problems to achieve the robust performance of the closed-loop sys-

tem associated with uncertain plant model [39]. A sub-optimal µ controller, rather than an

optimal µ controller, is desired . This is because the order of the controller grows rapidly

with D-K optimization and results to a high order controller that makes the controller

implementation in the flight computer system difficult.

5.5 Controller Implementation

The controllers obtained from H∞ and µ controller synthesis procedures are continuous time

state-space controllers that are useful for testing and analysis within the Matlab/Simulink

environment. To successfully implement these controllers on the embedded flight computer

system, some important implementation issues have to be addressed. These involve simpli-

fying the high order controller to a low order controller, converting the continuous controller

to discrete-time form that is suitable for digital implementation, coding the discrete-time

controller for real-time implementation and addressing controller saturation problems. Fig-

ure 5.7 shows the flow chart for the controller implementation process.
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Figure 5.7: Controller implementation process

5.5.1 Controller Order Reduction

The H∞ and µ controller synthesis tools tend to produce relative high order state-space

controller. The order of the controller obtained will be at least equal to the order of the

plant used for the synthesis. With the inclusion of weighting functions, this further increases

the controller order. A complex and high order controller hinders its implementation on a

low computation power flight computer system. It is necessary to perform controller order

reduction to have a simple and low order controller to reduce the computation requirement

on the embedded flight computer.

The objective of controller order reduction is to generate a lower order controller such

that the reduced order controller preserves the behavior of the original design with little

degradation of the closed-loop system stability and performance in the frequency range of

interest.

To achieve these objectives, the controller model reduction process must not signifi-

cantly change the input-output response of the controller. This is done by removing states

that are both less controllable and observable. The Hankel singular values of the system

provide a measure of both controllability and observability for each of the state at the same

time. A large Hankel singular value means that the state is both highly controllable and

observable. Therefore, the states with small Hankel singular values can be removed from

the controller state. The Hankel singular values of the controller can be computed using a
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balance realization of the controller state-space model in which the controllability and ob-

servability Gramians are equal [37]. The balreal command from Matlab’s Control System

Toolbox is used for the balance realization computation.

Two main approaches to model reduction used are truncation and residualization. In

truncation, the states that are to be removed are simply discard. In residualization, the

states that are to be removed will have their derivatives set to zero. Subsequently, these

states are solved in terms of states that are to be retained with the control input state.

The residualization process helps to preserve steady-state gain of the controller. Hence,

controller model reduction via truncation often provides a closer match at higher frequency

range while residualization will match better at lower frequency range and steady-state [48].

For the roll angle controller, the frequency range of interest is tracking performance in

the low frequency range. Therefore the residualization method is used for controller order

reduction. The residualization can be done using modred command from Matlab’s Control

System Toolbox with the state elimination method chosen to match DC gain.

The procedure for controller order reduction is to perform a balance realization of the

controller state-space model and determine which are the states that can be reduced based

on the Hankel singular values. Next, residualization is carried out to reduce the controller

model order by removing the states with small Hankel singular values. This process is

commonly known as balanced residualization.

5.5.2 Controller Discretization

In implementation of the controller using digital flight computer system, the continuous-

time controller obtained from the reduced order controller requires discretization for digital

implementation. The discrete-time controller behaves differently from the continuous-time

controller as it samples measurement inputs and updates control outputs at equal sam-

ple time step. The control output signals are held constant until the next update. With

smaller sampling step, the discrete-time controller approximates the continuous-time con-

troller more closely. However, as the sampling time get smaller, more computation power

is required to perform more frequent controller updates. On the other hand, too large

sampling time degrades the performance of the controller because the discrete-time con-
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troller deviates from the continuous-time controller. This can cause the closed-loop system

response to be oscillatory and unstable. Therefore the sampling time for discretization is

very important for good performance behavior of the implemented digital controller on the

flight computer system.

The update rate for the digital controller implementation is chosen to be 25 Hz and

this gives a sampling time of 0.04 seconds. The sampling rate is chosen such that it is

faster than the roll mode of the aircraft (time constant of approximately 0.08 seconds

from Section 3.5.1.1) but still keep the flight computer within a reasonable computational

load. Therefore the continuous-time controller is discretized with sampling time of 0.04

seconds using Matlab c2d command with a first-order hold method. The first-order hold

discretization method is preferred because it provides a linear interpolation between the

input sampled data and does not introduce additional time delay to the discretized system

unlike zero-order hold method which has a half-sample time delay [59].

5.5.3 Controller C Code Implementation

The synthesis and discretization of the controller in Matlab environment are performed

using double precision floating-point math. The implementation of digital controller in the

flight computer system is done easily with floating point unit since the MPC 555 flight

computer uses a 32-bits floating point processor. This is one of the main advantages of

using the MPC 555 flight computer over other fixed-point processors as it minimizes the

quantization effects and allows for easy and fast floating point math computation.

The implementation of the state-space controller with C code programming is simple

and straight forward. With the continuous-time reduced model controller obtained from

Section 5.5.1 of the form given by:

ẋc = Acxc + Bcuc

yc = Ccxc + Dcuc (5.4)

109



where xc contains the states of the reduced order controller and

uc =




p

rref − r

φref − φ


 , yc =


 δa

δr




Applying a first-order hold discretization to Equation 5.4, the discrete-time state-space

representation of the controller is given by:

ẋc(k + 1) = Ak
cxc(k) + Bk

c uc(k)

yc(k) = Ck
c xc(k) + Dk

c uc(k) (5.5)

where xc(k) contains the states of the controller at k time step, Ak
c , Bk

c , Ck
c , Dk

c are the

discrete-time state-space matrices obtained from the c2d command, and

uc(k) =




p(k)

rref (k)− r(k)

φref (k)− φ(k)


 , yc =


 δa(k)

δr(k)




The discrete-time state-space controller in Equation 5.5 is implemented on the flight com-

puter system using C programming language. The C code is implemented through simple

matrix multiplication and addition of the state dynamics and output equations in each of

the time step with sensor feedback inputs obtained from the sensor data packet.

5.5.4 Anti-windup Scheme

The actuator control surfaces used on the UAV have displacement limits given in Appendix

Table A.4. Control surfaces saturation occur when the control signal outputs exceed these

saturation limits. Once this happens, the flight control system command does not actuate

the control surfaces anymore and this effectively becomes an open feedback path. If the

control signal continues to applied to the state integrator in Equation 5.5, the integrator

action will keep winding up until an opposite sign error signal starts to unwind the integrator

[60]. This results in poor performance and poses stability problem for the closed-loop

system.

A simple anti-windup scheme is used for the aileron and rudder control surfaces to pre-

vent severe stability and performance degradation problems in event when control surfaces
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saturation happen. Figure 5.8 shows the implementation of anti-windup scheme. Kδa and

Kδr are the anti-windup gains used for feeding back windup from the roll angle controller

when control outputs δa and δr exceed the actuator limits. These gains are chosen to be

large enough such that the feedback loops keep the windup small when the actuators are

saturated. The gains selected are Kδa = 0.01 and Kδr = 0.01.

Figure 5.8: Anti-windup implementation

5.6 µ Controller Synthesis and Implementation

In this section, details for the µ roll angle controller synthesis and implementation on

the flight computer are presented. The controller synthesis uses the uncertainty modeling

results in Chapter 4.2. The µ controller is tested and validated in the next chapter using

the integrated framework environment. Input multiplicative uncertainty model obtained

from overbounding the uncertain lateral model is used for the µ synthesis. Since H∞

controller synthesis follows the same controller synthesis procedures except that the model

used contains no model uncertainty, it will not be presented here.
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5.6.1 Input Multiplicative Uncertainty Model

The lateral UAV model with input multiplicative uncertainty (Figure 5.9) used for µ con-

troller synthesis is obtained using unmodeled LTI dynamic uncertainty model overbounding

approach described in Section 4.4.2. The family of N sampled models in Equation 4.6 repre-

senting the lateral parametric uncertainty model in Equation 4.5 is obtained by 50 random

samplings of the original parametric model. Figure 5.10 shows the plot of the 50 random

sampled models. A second order weighting function is synthesized to overbound these 50

sampled models with an input multiplicative uncertainty model. Figure 5.11 shows the

Bode magnitude plot of the second order weighting function obtained from the ucover

command overbounding. The weighting functions obtained are:

Wail =
0.312s2 + 10.7s + 33.3

s2 + 28.7s + 77.5
, Wrud =

0.295s2 + 5.08s + 40.1
s2 + 14.4s + 42.1

(5.6)

Figure 5.9: Lateral UAV model with input multiplicative uncertainty

5.6.2 µ Controller Synthesis

The µ controller is synthesized using the system interconnection defined in Figure 5.4 with

input multiplicative uncertainty models obtained in Equation 5.6. The D-K controller

synthesis gives a controller of 31 states with γ value of 0.857 and peak µ value of 0.817.

The 31 states µ controller obtained from µ synthesis has too high state order for imple-

mentation on the flight computer system and has to be reduced to a lower order controller.

Figure 5.12 shows the plot of the Hankel singular values for the 31 states µ controller. The
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Figure 5.10: 50 random sampled lateral models

plot shows that all the 31 poles are stable and a large number of states have very little

contribution to the input/output behavior of the controller. Therefore the states with state

energy less than 0.01 are eliminated.

After the states elimination, the reduced order controller has only 8 states. Figure

5.13 shows the Bode magnitude diagram of the original 31 states and the reduced 8 states

controller. In the low frequency region below 2 rad/s, the Bode magnitude plot matches

very well for the original and reduced order controller. For frequency range up to 10 rad/s,

the original and reduced order controller are almost the same, except for the yaw rate input

to rudder output channel.

5.6.3 Robust Analysis

Robust analysis is performed with the system interconnection shown in Figure 5.4 with

the original and reduced order µ controller. The UAV lateral model used in this analysis

is the real parametric uncertainty model given in Equation 4.5. Figure 5.14 shows the
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Figure 5.11: Input multiplicative uncertainty model overbound weights

plots for robust stability and performance analysis. Robust stability analysis result of the

full and reduced order controller in Figure 5.14 shows no significant difference between

the original 31 states controller and the reduced 8 states controller. Hence, reduction in

the controller state orders using the residualization model reduction technique for a low

order controller does not affect the closed-loop system stability with model uncertainty

perturbations. The µ values for both the original and reduced order controller are less than

0.6 in the frequency range of interest. This indicates that robust stability is achieved and

the controllers stabilizes the complete set of uncertain model.

Robust performance analysis for the full and reduced order controller shown in Figure

5.14 indicates that the reduction of controller orders does not affect the closed-loop system

performance robustness with model uncertainty perturbations. Within the frequency range

of interest, the peak µ values for the full and reduced order controller are less than 1,

indicating that the controllers achieved their desired performance with complete set of

model uncertainty perturbations. In summary, the robust analysis results show that the
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Figure 5.12: Hankel singular value plot of the 31 states µ controller

reduced order controller has similar closed-loop robustness performance as that of the full

order controller with model uncertainty perturbations. Hence the reduced order controller

preserves the same behaviors as that of the original full order controller and the reduced

order controller is used in the controller implementation.

5.6.4 Controller Implementation

For discrete-time digital controller implementation, the reduced order continuous-time µ

controller is being discretized with a sampling time of 0.04 seconds using the first order hold

method. This gives a discrete-time state-space controller with 9 by 9 Ak
c matrix, 9 by 3 Bk

c

matrix, 2 by 9 Ck
c matrix and 2 by 3 Dk

c matrix in Equation 5.5 for C code programming

implementation. The implemented C controller will be tested in the integrated framework

developed in the next chapter.

115



−80

−60

−40

−20

0

From: p

T
o:

 δ a

10
−1

10
0

10
1

−70

−60

−50

−40

−30

−20

−10

0

T
o:

 δ r

From: r

10
−1

10
0

10
1

From: φ

10
−1

10
0

10
1

 

 

Bode diagram of original and reduced controller

Frequency  (rad/sec)

M
ag

ni
tu

de
 (

dB
)

Original

Reduced

Figure 5.13: Bode diagram of original and reduced order controller

10
0

10
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

µ 
va

lu
e

µ upper bound for robust  analysis

Frequency (rad/s)

 

 
Robust stability: Full order controller
Robust stability: Reduced order controller
Robust performance: Full order controller
Robust performance: Reduced order controller

Figure 5.14: Robust stability and performance analysis

116



Chapter 6

Flight Control System Testing and

Performance Validation in

Integrated Framework

The proof of success in any flight control system design is achieving design specifications

with the controller implemented in flight test. Flight test validation represents the actual

assessment of whether the flight control system design meets the design requirements in

the true environment and verifies if the design requirements used are practical and achieve

the desired system objectives.

However, flight trials are resource intensive and expensive. With modern flight control

system getting more complex, there is a need to use other validation approaches to support

and augment the flight control validation process. The ability to update and improve the

accuracy of the aerodynamics and system model in a high fidelity simulation model provides

an attractive approach to augment the current flight control validation process. The use of

simulation-based testing is critical to reducing the cost and time spent in the development

of UAV systems.

Simulation-based testing helps to save time and effort prior to actual flight trials as

it helps to validate the proper operation of flight control law, software and hardware im-

plementation within the bench test environment. This helps to ensure that the flight
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control system has high integrity and is bug free prior to flight tests. However, the suc-

cess of simulation-based validation depends on the accuracy of simulation model used in

representing the actual physical system. This clearly requires the simulation model to be

validated against the actual system for the simulation-based testing to be valid. Hence, the

main emphasis of the flight test is in the validation of the models used for simulation and

controller performance and robustness testings.

In this chapter, the flight controller developed in Chapter 5 undergoes a series of sys-

tematic performance validation testing before the synthesized controller is implemented in

the UAV system for actual flight testings. Details of the setup used for the integrated

flight control development tests, software and hardware-in-the-loop testings, are covered.

Performance validation flight tests are conducted to test the synthesized controller. Flight

test results are used to compare with the simulation-based test results.

6.1 Integrated Framework for Flight Control Development

Testing

The integrated framework for flight control development provides a systematic and pro-

gressive test environment for testing the synthesized controllers. Figure 6.1 shows the four

progressive steps involved in testing of flight controllers. In each setup steps, different as-

pects and issues of controller synthesis and implementations are tested and verified. This

provides an easy way of debugging and identifying any design or implementation issues

within the development cycle. Hence it is important to know the differences between each

of the test setups to better identify the source of the problem. For example, if good per-

formance is achieved in software-in-the-loop (SIL) testing but the same controller results

in poor performance in processor-in-the-loop (PIL) testing, the reason for the poor perfor-

mance in PIL test environment might not be due to poor controller rather a characteristics

of the PIL was not modeled correctly. For example, it might be due to a time delay issue

in the PIL testing which is absent in the SIL test setup.

During the controller testing process, the model and control design are updated iter-

atively to achieve the desired closed-loop performance objectives. This tight integration
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between the controller synthesis and testing using the model developed provides validation

for both the synthesized controller and the model developed at the same time.

Figure 6.1: Integrated framework for flight control development testing

6.1.1 Initial Design Testing

Initial design testing is the first step used to test the synthesized controller. The discrete-

time controller (obtained from Section 5.5.2) is implemented in Simulink to validate the

closed-loop performance with the nonlinear simulation model. This testing verifies the

designed controller is able to meet the design requirements.

6.1.2 Software-in-the-loop Testing

The second step is implementation of the controller in C code as an embedded S-function

block. The controller can now be tested via SIL testing in the Matlab/Simulink environ-

ment. The purpose of the SIL testing is to validate the correctness and implementation of

the controller C code implementation.

6.1.3 Processor-in-the-loop Testing

The PIL testing is used to test the successful C code controller from SIL testing to the actual

flight computer in the third step. This provides an actual test of the implemented flight

control codes in the actual flight computer processor. In addition to the flight control code

running on the embedded processor, other software sub-modules of the autopilot system
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Figure 6.2: Flight control development testing architecture: Initial design, software-in-the-

loop and processor-in-the-loop testing

such as attitude determination algorithm, data acquisition and telemetry communication

modules are running at the same time to form a complete functional, standalone autopilot

system. The differences between SIL and PIL testing are:

• SIL testing uses perfect attitude data (φ, θ and ψ) but the PIL testing uses attitude

data from real-time AHRS attitude determination algorithm.

• SIL testing uses exact control commands output from the flight control algorithm

to provide closed-loop control with the simulation model. In the PIL testing, the

flight computer system outputs actual PWM control signals to the servo actuators.

A counter/timer data acquisition board is used to acquire the controller commands

for closed-loop control of the simulation model.
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• PIL testing is carried out with flight computer system and simulation model operating

in real-time with serial communication and data acquisition board interfaces. The

hardware components in the system may result in time delays associated with each

of the hardware devices or processes. However in SIL testing, no external hardware

components are involved and all the processes run on a single simulation environment

with a single clock time.

6.1.4 Flight Testing

Flight testing provides actual test of the complete flight control system and the nonlinear

simulation model in real flight environment. The exact flight control code that was used

in the PIL testing is implemented in the UAV flight computer system for flight testing.

The flight test provides dynamic response of the UAV with environmental disturbance

factors such as wind gust effect. This data is used to validate the simulation model and the

performance of the flight control system implemented.

6.2 Processor-in-the-loop Simulator

The PIL simulator provides an intermediate step to test the synthesized controller on actual

hardware target processor before the controller is put on actual flight test. This approach

offers the following advantages:

• Ability to test and identify controller implementation issues before flight testing. This

helps to determine controller implementation limitations on actual hardware system

and provides important information for controller redesign.

• Provides a real-time environment for testing synthesized controllers.

• Provides a good testbed for hardware and software system integration so that the

functionality of components can be tested at a system level. This helps ensure the

integrated system has high integrity and free of fault.

• Provides simulation environment for RC pilots and flight test engineers to prepare,

train and understand the scope of flight trial and gains confidence with the UAV
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system.

Beside testing, debugging and validating flight control design and implementation, the

PIL simulator can be used for post-flight analysis such as validating simulation model used

with updated flight test data. Once the simulation model has been sufficiently validated,

it can be used to augment and substitute many of the flight test trials and helps to reduce

the risk and development cost for the UAV systems.

6.2.1 PIL Simulator System Setup

The PIL simulator setup is an extension of SIL setup that includes actual embedded tar-

get processor (flight computer) and flight simulator display. During the simulation, the

simulation environment outputs sensor data through a communication link to the target

processor that executes the embedded software code in real-time. The flight computer uses

the fed back sensor data to generate control signals which are sent back to the simulation

model using another communication link to control the aircraft simulation model. Hence

the software simulation and flight computer formed a closed-loop control system (as shown

in Figure 6.3).

Figure 6.3: Overview of PIL simulation concept

6.2.1.1 PIL Software System Architecture

The PIL simulation model uses the same nonlinear simulation model as in the SIL testing.

For the simulation model to execute in real-time on desktop computer, Real-Time Win-

dows Target (RTWT) toolbox is used. The RTWT software provides real-time execution

of the generated C code to run on Windows operating system. The generated C code

is able to interact with external hardware systems using the input/output (I/O) devices
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within the desktop computer. The entire C code generation and binary executable file are

automatically generated with RTWT toolbox [61].

The I/O blocks from RTWT toolbox are added to the nonlinear aircraft simulation

model developed in Chapter 2. These I/O blocks, stream data output, stream data input

and PWM DAQ (shown in Figure 6.4), allow the simulation model to interface with the

data inputs and outputs to the flight computer and simulator. The stream data input

uses the User Datagram Protocol (UDP) to send data to the flight simulator while the

stream data output block uses serial communication protocol to send sensor data to the

flight computer. The PWM DAQ block acquires control signals from the flight computer

using a timer/counter board in the desktop computer. Figure 6.4 shows the Simulink block

diagram layout used for the auto-code generation in the PIL simulation. For auto-code

generation, a discrete sampling time has to be defined and it is set to 0.02 seconds. This is

the maximum time step size that can be used so that the PIL simulator can output sensor

data at 50 Hz, which is the same data output rate used in the actual IMU/GPS sensor.

Figure 6.4: PIL simulator Simulink block architecture

6.2.1.2 PIL Hardware System Architecture

The PIL hardware system setup is duplicate of the actual flight computer system on the

UAV except for the IMU/GPS sensor and data modem. Figure 6.5 shows the architecture

of the hardware system setup. The desktop computer runs both the RTWT simulation
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and FlightGear flight simulator programs in real-time. The FlightGear flight simulator

receives simulation data using UDP communication at 5 Hz from the RTWT simulation.

Serial communication port 1 provides serial sensor data output at 50 Hz with 38.4 Kbps

baud rate to the MPC 555 flight computer while the timer/counter board provides servo

commands inputs to the simulator via desktop PCI bus.

The failsafe board is a multiplexer board used to switch the PWM control output signals

to the servo actuators between manual pilot and autopilot mode using the RC transmitter.

This functionality allows the PIL simulator to simulate the same scenario as in the actual

flight test where the RC pilot performs manual flight before switching to autopilot mode

during the flight to test the autopilot system. The ground control station allows monitoring

of real-time flight data from the flight computer. The flight data can be recorded for analysis

purpose. Figure 6.6 shows the PIL simulator system.

Figure 6.5: PIL simulator hardware system setup
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(a) PIL station (b) PIL hardware system

Figure 6.6: PIL simulator setup

6.2.2 PIL System Operation Verification

The objective of the PIL simulator is to provide a realistic representation of the actual

UAV system operation. To determine how well the simulator performs and its limitations,

verification of the system operation has to be done. This verification focuses on three

important areas of the PIL system setup that are critical for its successful operation in

representing the actual system.

• Sensor output data from simulator to flight computer

• Control input data from flight computer to simulator

• Time delay of simulator closed-loop system

6.2.2.1 Verification of Sensor and Attitude Solution Data

The UAV Simulink nonlinear simulation outputs sensor data with the same packet structure

as that of actual IMU/GPS sensor unit. These data are packed and sent through serial

communication port to the flight computer which acquires the data and performs real-

time attitude determination. Figure 6.7 shows part of inertia sensor data output from the

nonlinear simulation model that are sent through serial communication port to the flight

computer system. The φ, θ and ψ euler angles from the nonlinear simulation are not sent

to the flight computer. This is because in the actual UAV system operation, these data are

not measured from the sensor but are obtained using the attitude determination algorithm.
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In SIL testing, the inertia and Euler angles data obtained from the nonlinear simulation

model are used directly. However in PIL testing, the Euler angles are estimated using

the AHRS attitude determination algorithm and the angular rates and linear accelerations

have their biases removed. These bias estimates are obtained from the AHRS algorithm.

If the AHRS algorithm performs poorly and calculates very different Euler angles and bias

estimates, the result will be the SIL and PIL controller testing outputs being different. The

cause of this mismatch would not due to controller synthesis and implementation problem

but rather the AHRS algorithm problem.

Figure 6.7: Sensor and attitude solution outputs in PIL simulator

Figure 6.8 shows a comparison of sensor data (currently used by the flight control

algorithm) between the nonlinear simulation model output (p, q, r, φ and θ) and the flight

computer system output (p̂, q̂, r̂, φ̂ and θ̂). The angular rates data match perfectly since no

sensor noise is used in the simulation. However, for the roll and pitch angle, there are some

differences in the estimated Euler angles given by the AHRS algorithm as compared to the

“truth” Euler angles output from the nonlinear simulation model. This slight differences in

the Euler angles will result to some slight differences to the Euler angle tracking responses
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between the SIL and PIL results. The difference between the two has nothing to do with

the controller design or implementation. The addition of attitude determination algorithm

in the PIL testing results in additional dynamics in the PIL simulator closed-loop system

as compared to the SIL testing setup.
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Figure 6.8: Comparison of nonlinear simulation model and AHRS algorithm angular rates

and Euler angles

6.2.2.2 Verification of Control Input Data

The control input signals generated by the flight computer system are used to drive the

servo actuators that actuate the aerodynamic control surfaces. These control signals are

in the form of PWM signals. For control actions to control the UAV simulation model

in closed-loop, the PWM control signals have to be acquired by the timer/counter data

acquisition card (shown in Figure 6.5). It is important to ensure that the control signals

generated by the flight computer system are accurately acquired into the simulation model

for closed-loop control. Figure 6.9 shows details of the control signal flow diagram and

signal conversion in the PIL simulator. To verify that the control signals output from the

flight computer system are the same as that acquired into the simulation model, control

signals at C1 and C2 (Figure 6.9) are recorded during closed-loop PIL testing.

Figure 6.10 shows plot of two control signals, aileron and elevator control, at C1 and

C2. Note that this plot does not account for time delay between the measurement point
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Figure 6.9: Control signal flow diagram

at C1 and C2. The time delay effect will be addressed in the next section. From the plot,

the aileron and elevator control signals at C1 and C2 matches perfectly. This verifies that

the control signals output from the flight computer system are accurately acquired into the

simulation model for closed-loop PIL testing.

6.2.2.3 PIL Simulator Closed-loop System Time Delay

The PIL simulator is made up of different hardware components integrated together. With

different hardware devices and signals flow between them occurring at the same time, there

will be time delay within the simulator since it takes finite amount of time to process,

pack, send or receive data from one device to the other. For closed-loop control in the PIL

simulator, this aggravates the time delay problem since the feedback action goes through a

daisy chain with all the devices in a loop. For example, the simulation model has to send

out sensor data to the flight computer before the flight computer can generate the required

control signals to the failsafe board and subsequently the failsafe board has to send the

control signals to the timer/counter board before the control signals are acquired back into

the simulation model for closed-loop control.

The time delay effect for a closed-loop control system is important as it reduces the

stability margin and bandwidth of the closed-loop system. In the PIL simulator setup, the

time delay effect will impose a limitation on testing of the controllers since a large time
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Figure 6.10: Verification of control signals in PIL simulator

delay in the simulator will limit the ability to test high bandwidth controllers. Also, for

the H∞ and µ controllers that are to be tested using the PIL simulator, the time delay in

the simulator has to be included during the controller synthesis.

The time delay to be determined is the time required for a signal generated from the

simulation model to be sent to the flight computer system, process the data and sent back

to the simulation model. During the time delay measurement, the simulation model and

flight computer system are configured to execute the same simulation and flight control

routines to ensure that the simulator is using the same computation load as in normal PIL

testing. The approach used to measure the time delay is to add an addition toggle logic

in the flight control algorithm such that once it receives the toggle signal, it will send a

control signal back to the simulation model. The toggle signal used to toggle this logic in

the flight computer system is sent from the simulation model. This allows the time history

of outgoing toggling signal and incoming control signal to be measured and recorded using

a common time stamp within the simulation environment. The time delay between the

outgoing toggle signal and the incoming control signal is the closed-loop time delay for the
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PIL simulator.

Figure 6.11 shows time history plot of the toggle signal and control signal that are

measured in the simulation environment. The time gap between the start of the toggle

signal and time where the incoming control signal changes is the time delay for the closed-

loop process. The time delay measured is approximately 0.08 seconds. The measured time

delay is associated with the total time delay of the closed-loop system. This approach

is unable to identify a time delay in each of the process. Therefore it is impossible to

know if majority of the time delay is contributed from the flight computer system hardware

components used or from the additional components, such as timer/counter board, used in

the PIL simulator.
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Figure 6.11: Time delay measurement in PIL simulator

It is assumed that the time delay measured from the PIL simulator is the same in the

actual UAV system. This assumption is made because it is not possible to measure the

time delay in the same way with the actual UAV system using the current instrumentation

onboard of the UAV. However, since the PIL simulator setup duplicates almost all the

hardware components used on the UAV system, it is reasonable to expect that the time

delay for the flight control system of the UAV should not be very different from the PIL
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simulator system.

6.3 Integrated Framework Flight Control Synthesis and Val-

idation

In this section, the modeling, simulation and analysis framework developed will be inte-

grated together for validation of designed controllers. The task of controller synthesis and

validation are closely related since it is an iterative process to design and validate the de-

signed controller to achieve the required performance specifications. Different incremental

levels of controller testing and validation are performed using the integrated framework.

This will be illustrated with the µ roll angle controller from Chapter 5.

6.3.1 Flight Test Validation Setup

A well-designed validation experiment is necessary to provide a realistic and consistent set

of test conditions across different levels of controller testing within the integrated frame-

work. This helps to provide a direct and meaningful comparison for closed-loop system

performance results and gives useful information for controller redesign if necessary.

6.3.1.1 Design of Reference Command Signal

The performance objective for the roll angle controller design is to provide reference roll

angle (φref ) tracking. In this case, a filtered doublet reference roll angle is used to provide a

smooth and piecewise continuous reference roll angle tracking signal as oppose to a normal

doublet signal (φdbt). This approach is taken for practical controller testing in the actual

flight test and also for practical application of tracking a smooth reference roll angle. A

second order low pass filter, with rise time of 0.7 second and damping of 0.85, smoothes

the doublet command. The transfer function of the filter is given by:

TFφdbt→φref
=

6.612
s2 + 4.371s + 6.612

The amplitude of the roll angle demand is chosen to be± 20 degrees so that it remains within

the controller designed operating envelope. The period of the doublet signal is selected to
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be 2.5 seconds so that this will provide a signal with excitation frequency content (Equation

3.10) less than the maximum frequency limit of the identified model used in the controller

design. Figure 6.12 shows the difference between normal and filtered doublet reference roll

angle commands.
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Figure 6.12: Normal and filtered φ doublet commands

To ensure a consistence and repeatable reference command signal is being input during

all the tests, the φref signal profile is pre-programmed and generated by the flight computer

system. Figure 6.13 shows time history of φref signal designed for the validation experiment.

This form of φref signal profile is commonly used during UAV waypoint navigation flight.

The φref signal is divided into 3 parts:

• 0 ≤ t < 2 seconds: The φref is zero. This is to provide zero roll angle reference

tracking for the roll angle controller as well as achieving a wing-leveled flight before

the filtered doublet roll angle command is executed.

• 2 ≤ t < 9 seconds: The filtered doublet roll angle command is executed. This provides

a dynamic reference roll angle tracking for the designed controller.

• 9 ≤ t < 11 seconds: The φref is zero. This is to command the UAV back to wing-
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leveled flight again to complete the validation experiment which the RC pilot can

easily assume manual control of the UAV at a trim position.
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Figure 6.13: Time history of φref used for validation experiment

6.3.1.2 Validation Test Setup

Beside using an exact sequence of φref command for all the validation experiments, the

flight conditions and setup of the experiments have to be the same so that the controller

tracking performance can be compared between different sets of validation experiment. In

the SIL and PIL testing, this can be easily configured in the simulation setup. However, for

actual flight testing, it is not easy to have the same flight conditions. This is because there

are ambient environment factors such as wind gust disturbance that cannot be controlled

during the flight test. These environmental disturbances are difficult to include in the

SIL and PIL testing since it is not easy to measure these variables during the flight tests.

Hence, precautions are taken to conduct the flight tests with minimal deviation from the

flight conditions used in the SIL and PIL testing.

The flight conditions used in the validation experiment is given by the desired operating

condition in Table 3.1. The sequence of φref command starts when the autopilot system is
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engaged by the RC pilot. In the autopilot mode, the PID pitch angle controller described

in Section 5.3.1 is engaged so that this helps to provide a zero pitch angle flight condition

while the roll angle controller is tracking the φref command. The only control that the RC

pilot has while the autopilot is engaged is the throttle control. This is used to regulate the

UAV airspeed so that it is able to maintain at the desired airspeed condition throughout

the flight test.

6.3.2 Initial Design Testing

The first level of controller testing is done using the discrete-time reduced order µ controller

from Section 5.6.4 implemented into the flight control Simulink block. Closed-loop Monte-

Carlo simulation runs with model uncertainty perturbations are performed. Figure 6.14

shows the φ angle tracking result obtained from 50 simulation runs. The result shows that

the designed controller is able to track the φref command well with about 0.5 seconds time

delay.
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Figure 6.14: φ angle tracking for initial design testing
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6.3.3 Software-in-the-loop Testing

The same reduced order µ controller is implemented in C and embedded into the Matlab’s

S-function block for SIL testing. 50 Monte-Carlo simulation runs are performed with the

uncertain nonlinear simulation model. Figure 6.15 shows the result of the φ angle tracking.

The SIL φ angle tracking performance obtained is almost the same as the result obtained

from the initial design testing. The result indicates that the controller implemented in C

is correct and the implemented C code can be port to the flight computer system for PIL

testing.
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Figure 6.15: φ angle tracking for SIL testing

6.3.4 Processor-in-the-loop Testing

The C implementation of the controller successfully tested in the SIL testing was complied

with the full autopilot program code and uploaded into the MPC 555 flight computer system

for PIL testing. The PIL testing is done in the exact same manner as in actual flight test

where the RC pilot needs to fly the aircraft in the manual mode, trim the aircraft and

switch over to autopilot mode to test the controller. The setup of the PIL simulator flight

environment is exactly the same as that in the simulator parameter tuning described in
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Section 2.2.1.4.

Automated Monte-Carlo simulation runs used in the initial design and SIL testing can-

not be used in PIL testing as the flight computer system is running the actual standalone

autopilot routine that cannot be reset instantaneously for each different Monte-Carlo sim-

ulation run. Therefore manual variation of model uncertainty conditions was performed in

each of the PIL testing run.

Selective model uncertainty conditions are chosen for the PIL testing to limit the number

of PIL testing runs. The worst-case gain analysis tools described in Section 4.3.1 is used

to determine the closed-loop system worst-case gain condition due to model uncertainty

perturbations. This helps to provide the worst-case model uncertainty conditions for the

PIL testings.

Figure 6.16 shows result of the worst-case gain analysis of the closed-loop system using

the system interconnection in Figure 5.4 with parametric uncertainties in the UAV lateral

model. For frequency range between 0.5 to 10 rad/s, 10 different combinations of parameter

values result to the worst-case gain condition at each of the frequency point within this

frequency range. Hence, these combinations are chosen and used for the PIL testings.

Figure 6.17 shows the result obtained from PIL testings using each of the combination

of uncertainty parameters at the worst-case gain. The roll angle tracking performance

obtained is similar to the result obtained from the SIL testing.

6.3.5 Flight Testing

Flight test of the UAV was conducted with the exact same autopilot program code tested

in the PIL testing. The conduct of the flight test is carried out in the same way as the PIL

testing, where the RC pilot needs to fly and trims the aircraft before engaging the autopilot

at desired operating condition. Multiple test runs with the controller are carried out during

the flight test. In each of the run, the RC pilot trimmed the aircraft in the direction of

head wind so that the controller is tested in a minimal cross-wind condition.

Figure 6.18 shows the roll angle tracking performance obtained from the flight test runs

where t = 0 s (origin) is the time the autopilot is engaged. The initial roll angles from

all the runs are different since this is dependent on how well the RC pilot managed to
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Figure 6.17: φ angle tracking for PIL testing

trim the aircraft to wing-leveled flight before engaging the autopilot. However, regardless

of the initial roll angle positions, the roll angle controller is able to track the reference

command signal, similar to the responses obtained from the initial design, SIL and PIL
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testing. Repeatable and consistent tracking responses are achieved for the five different

flight test runs shown in Figure 6.18. The only difference between the flight test results and

the initial design, SIL and PIL testing results is that some high frequency oscillations are

observed in the flight test roll angle tracking responses. This might be due to other external

disturbances or high frequency model dynamics not accounted for during the controller

synthesis or captured by the model used. Nevertheless, the flight testing result still have

good matching with the initial design, SIL and PIL testing. This result helps to validate:

1. Performance of the synthesized controller using the model developed achieves the

control design tracking performance objective.

2. Model and model uncertainty developed have adequate fidelity for the controller syn-

thesis and analysis purposes .

3. Framework used for control synthesis and validation is feasible and achieves its in-

tended objectives.
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Figure 6.18: φ angle tracking for flight testing
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6.4 Applications of Integrated Framework for Performance

Analysis

The integrated framework used provides a generic framework and tools for generic flight

controller synthesis, validation and analysis applications. This section will illustrate an ex-

ample application of the integrated framework for validating performance of a H∞ controller

design.

In this setup, two different H∞ roll angle tracking controllers are designed and imple-

mented using the same setup (weighting functions and performance objectives) described

in Section 5.4 with nominal UAV lateral model. One of the H∞ controllers is designed

to have a better performance with γ of 1.0 while the other H∞ controller has a worse off

performance with γ of 1.6. The γ values are chosen such that the better controller will be

able to achieve the design performance objectives while the poor controller will not be able

to achieve the design performance objectives. The controllers are implemented using the

same procedures described in Section 5.5. For each of the implemented discrete-time con-

troller, the controller is reduced to a forth order controller so that both of the implemented

controllers have the same order for making a fair comparison.

Prior to the integrated framework testings, robust analysis is performed on the two

controllers to analyze the robustness of the controllers subjected to real parametric model

uncertainty perturbations in Appendix Table B.5. Figure 6.19 shows the result for the

robust analysis. From the robust stability analysis plot in Figure 6.19, both the controllers

are robustly stable to the real parametric uncertainty perturbations across the frequen-

cies. However, the robust performance analysis plot in Figure 6.19 shows that the poor

performance controller has µ value of more than 1 in the low frequencies region. The in-

terpretation of µ greater than 1 in robust performance analysis means that with the real

parametric uncertainty variations, the closed-loop system is not able to achieve its perfor-

mance objectives. This means that the closed-loop system has poor low frequency tracking

performance. This is expected because even with the nominal model, the poor performance

controller is not able to achieve its performance objectives since it is designed with γ value

of more than 1.
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Figure 6.19: Robust analysis of H∞ controllers with γ of 1.0 and 1.6

Next, the two H∞ controllers are tested using the integrated framework developed to

validate their closed-loop performance in SIL and flight tests. The same validation setup

described in Section 6.3.1 is used for the tests.

In the SIL tests, 50 Monte-Carlo simulation runs are performed with the uncertain

nonlinear simulation model for each of the controller in the closed-loop. Figure 6.20(a) and

6.20(b) show the SIL roll angle tracking performance with the good (γ = 1.0) and poor

(γ = 1.6) performance controller respectively. The poor performance controller shows poor

roll angle tracking performance (Figure 6.20(b)) with large steady-state error as compared

to the better performance controller (Figure 6.20(a)). This is consistent with the designed

γ value since controller with γ value of 1.6 has a poor performance as compared to the

controller with γ value of 1. Both the controllers shows stable closed-loop roll angle tracking

responses in Figure 6.20(a) and 6.20(b) and this is consistent with the robust stability

analysis results where the µ values are less than 1 across the frequencies of interest, which

means that the closed-loop systems are stable with model uncertainty variations.

The two controllers are loaded onto the UAV flight computer and flight tested using the
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(a) SIL test (γ = 1.0)
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(b) SIL test (γ = 1.6)
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(c) Flight test (γ = 1.0)
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(d) Flight test (γ = 1.6)

Figure 6.20: SIL and flight test result of H∞ controllers

same procedure described in Section 6.3.5. Figure 6.20(c) and 6.20(d) show the flight test

results of the roll angle tracking performance with the good (γ = 1.0) and poor (γ = 1.6)

performance controllers respectively. The flight test results show good matching with the

SIL testing results. Comparing the SIL testing (Figure 6.20(a)) and flight test results (Fig-

ure 6.20(c)) for the good performance controller, both the plots show the same responses.

The same result is observed with the worse off performance controller tests in Figure 6.20(b)

(SIL testing) and 6.20(d) (flight test). For both of the controllers, the SIL testing results are

able to predict and match the actual flight test results well. Again, this shows and proves

the success in the integrated framework developed for control synthesis and validation.
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Chapter 7

Conclusion and Recommendations

7.1 Summary

This thesis presented the development of an integrated framework for flight control synthesis

and validation with practical application to a small UAV testbed. The main aim of the

research is to develop a systematic approach in integrating different processes in model-

based flight control development using advance techniques and design tools from initial

design to flight testing of the UAV.

The field of disciplines involved in this research is very wide. This includes mathematical

modeling of the air vehicle, software and hardware system integration of the UAV system,

simulator analysis tools development, flight test system identification and flight control

system design. Extensive efforts have been spent in the past 4 years in the development

of the integrated framework and procedures to support the UAV flight control system

development.

In the aircraft modeling, a 6-DOF nonlinear simulation model was developed based on

first principle theory. Moment of inertia measurement experiments and flight simulator

parameters tuning were conducted to determine the physical parameters of the vehicle

required in the nonlinear simulation model.

To improve the fidelity of the simulation model used, flight test system identification

was conducted to update the aerodynamic coefficients in the simulation model. A linear

parameterized state-space model was used for time-domain maximum likelihood parameter
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estimation. Model validation in time and frequency domain of the identified models us-

ing flight test validation data showed good matching within the frequency range of input

excitation signal used which was derived from the design of experiment. The identified

parameters were used to update the aerodynamic coefficients in the nonlinear simulation

model by removing the dimensions from these identified parameters.

Parametric uncertainty modeling was used to model the experimental derived paramet-

ric uncertainties into the nonlinear simulation model. A systematic approach was provided

to model these parametric uncertainties into the nonlinear simulation model so that an

LFT model can be extracted using ulinearize procedure. This approach provides a physi-

cally meaningful parametric uncertainties in the LFT model. The details of the principles,

procedures, accuracy and limitations in using ulinearize for the LFT realization have been

presented. Since the LFT model obtained from the ulinearize realization contains a large

number of parametric uncertainties, two methods of LFT model simplification, sensitivity

analysis and frequency domain overbounding approach, have been proposed to reduce the

complexity of the LFT model.

For the flight control synthesis, a flight control architecture was proposed for the UAV

autopilot system. In the controller synthesis problem, an autonomous cruise flight condition

was chosen. Classical PID controllers were first implemented and manually tuned using

flight tests. The roll angle controller was subsequently redesigned using both H∞ and µ

synthesis with specific performance specifications using the model and model uncertainty

developed. The synthesized controller was implemented on the embedded flight computer

system. Various practical and important controller implementation issues have also been

discussed.

To validate the performance of synthesized controllers, the integrated framework de-

veloped was used for testing and validation of the controllers. The framework provides

a systematic and progressive approach to test the controllers before the controllers were

tested in actual flight tests. The SIL and PIL testings provide good prediction for the

closed-loop tracking performance obtained from flight tests. This helps to validate the

model and model uncertainty used in the integrated framework as well as validating the

performance of the controllers that were designed
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The proposed integrated framework for synthesis and validation of flight control system

has been successfully applied and demonstrated on the small UAV system and this achieves

the objectives of the thesis work.

7.2 Recommendations

The current process of controller C code implementation to the embedded flight computer

system was done using manual coding. It is desirable to use autocode generation for this

process so that it will expedite the controller C code implementation process as well as

minimize error in the controller C code implementation.

The validation approach used in this work is based on time domain comparisons of the

closed-loop tracking responses. This approach does not provide any quantitative result for

the validation process. A better performance validation metric for model, model uncer-

tainty and closed-loop performance needs to be developed to address this problem. This

performance validation metric can be extended to real-time flight test validation so that

the controller performance can be validated online during flight test.

The flight test system identification performed in this work is limited to two-state lateral

model due to the limitation of the current sensor package used on the UAV. A better sensor

package with better attitude determination algorithm will help to improve the parameter

estimation with a four-state lateral model. This will help to update and improve the fidelity

of the nonlinear simulation model.
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Appendix A

Physical Parameters Data

A.1 Simulator Parameter Tuning

CL0 2.30× 10−1 clδa
8.55× 10−2

CLα 4.58 clδr
−2.40× 10−3

CLα̇ 1.97 clp −5.05× 10−1

CLq 7.95 clr 2.52× 10−1

CLmin 2.30× 10−1 cm0 1.35× 10−1

CD0 4.34× 10−2 cmα -1.50

CDδe
1.35× 10−2 cmδe

−9.92× 10−1

CDδr
3.03× 10−2 cmα̇ −1.04× 101

CYβ
−8.30× 10−1 cmq −3.82× 101

CYδr
1.91× 10−1 cnβ

7.26× 10−2

CYp 0.00 cnδr
−6.93× 10−2

CYr 0.00 cnp −6.90× 10−2

clβ −1.30× 10−1 cnr −9.46× 10−2

Table A.1: Aerodynamic coefficients obtained from simulator parameter tuning
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A.2 Moment of Inertia Measurement

A.2.1 Aircraft Moment of Inertia Measurement

The Ultrastick aircraft moment of inertia is determined using compound pendulum method

[9]. For a compound pendulum shown in Figure A.1, the moment of inertia of the mass

Imass (kgm2) is related to its natural frequency ωn (rad/s) with small angular amplitude

oscillations:

ωn =
√

mgL

Imass + mL2
(A.1)

Figure A.1: Description of compound pendulum method setup

The relationship between damped frequency ωd (rad/s), natural frequency ωn (rad/s)

and undamped frequency ωud is:

ωn =
√

ω2
d + ω2

ud (A.2)

The natural frequency of the oscillations is determined using Equation A.2 with the damped

and undamped frequency measured using the compound pendulum experiment. The damped

frequency is given by a single period of oscillation Tp (s) for the pendulum motion:

ωd =
2π

Tp
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The undamped frequency is approximated using the exponent equation for the pendulum

motion oscillation, eωT . This can be written as e−t/τ , where τ (s) is the time constant. For

oscillation motion to die out (exponent equation becomes zero and t = Tf ), this time can

be approximated with t = 5τ . Therefore, the undamped natural frequency computed by:

ωud =
5
Tf

(A.3)

Figure A.2 shows the setup of the moment of inertia measurement for the Ultrastick aircraft.

In the pendulum swing, the time taken for 10 oscillations (to compute Tp) and for the

oscillations to die out (Tf ) are taken. 3 sets of data are taken for each axis to determine

the natural frequency for small angular oscillations and the moment of inertia is calculated

with Equation A.1.

The largest and the smallest moment of inertia values are used as the upper and lower

bound value while the mean value between these two bounds is the nominal value for the

aircraft moment of inertia. These values are given in Appendix Table A.2.

(a) Pendulum swing setup for Izz determination (b) Pendulum swing setup for Ixx and Iyy determi-

nation

Figure A.2: Setup for aircraft moment of inertia measurement

A.2.2 Propulsion Moment of Inertia Measurement

The propulsion system moment of inertia measurement determines the moment of iner-

tia contributed by rotating components from the propulsion system. These components
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include:

• Propeller

• Electric motor

• Propeller adaptor

These components are rotating about a common axis and are semi-semi-symmetrical about

the aircraft body x-axis. The moment of inertia of the propulsion system is measured as a

composite assembled system using bifilar pendulum method. This approach uses the period

of the composite system undamped oscillations to calculate the moment of inertia of the

propulsion system.

Jp =
(

Tn

2π

)
mgR2

L
(A.4)

where

• J = moment of inertia of the composite system (kgm2)

• Tn = undamped oscillation period (s)

• m = mass of the composite system (kg)

• g = gravitational constant (9.81m/s2)

• R = radius of the gyration (m)

• L = length of the pendulum (m)

Figure A.3(a) shows the description of the bifilar pendulum system setup.

A 20 degrees anglular displacement is applied to the bifiar pendulum setup shown in

Figure A.3(b) so that the pendulum system oscillates about the propeller axis of rotation.

The time taken for 5 oscillation cycles is measured and the period taken for a single os-

cillation is used in Equation A.4 to compute the propulsion system moment of inertia.

Two more data sets are taken and the moment of inertia are computed. The largest and

the smallest moment of inertia values are used as the upper and lower bound values while

the mean value between these two bounds is the nominal value for the propulsion system

moment of inertia. These values are given in Appendix Table A.2.
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(a) Description of bifilar pendulum

setup

(b) Propulsion system moment of inertia measure-

ment

Figure A.3: Bifilar pendulum system setup

A.2.3 Summary of Moment of Inertia Data

Moment of inertia Lower bound Nominal Upper bound

Ixx (kgm2) 7.74× 10−2 8.94× 10−2 1.03× 10−1

Iyy (kgm2) 1.24× 10−1 1.44× 10−1 1.59× 10−1

Izz (kgm2) 1.34× 10−1 1.62× 10−1 1.99× 10−1

Ixz (kgm2) 1.12× 10−2 1.40× 10−2 1.68× 10−2

Ip (kgm2) 1.29× 10−4 1.30× 10−4 1.31× 10−4

Table A.2: Moment of inertia data
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A.3 Propeller Characteristics

Advance ratio (J) Coefficient of thrust (CT ) Coefficient of power (CP )

4.00× 10−2 1.00× 10−2 4.50× 10−2

1.30× 10−1 9.60× 10−2 4.50× 10−2

2.60× 10−1 8.60× 10−2 4.80× 10−2

3.30× 10−1 8.25× 10−2 4.80× 10−2

3.80× 10−1 8.00× 10−2 4.80× 10−2

4.40× 10−1 6.75× 10−2 4.60× 10−2

5.10× 10−1 5.40× 10−2 4.30× 10−2

5.90× 10−1 4.10× 10−2 3.75× 10−2

6.40× 10−1 3.00× 10−2 3.25× 10−2

7.00× 10−1 2.00× 10−2 2.88× 10−2

Table A.3: Propeller performance data for APC 12 x 8E propeller

A.4 Control Surfaces Limits

Control Surface Lower limit (deg) Upper limit (deg)

Aileron -23 23

Elevator -20 20

Rudder -25 25

Table A.4: Control surfaces saturation limits
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Appendix B

Linearization Result

B.1 Operating Point Condition

States Trim value Output Trim value Control input Trim value

u (m/s) 1.70× 101 Va (m/s) 1.70× 101 δe (rad) 9.10× 10−2

v (m/s) 3.00× 10−2 β (deg) 1.00× 10−1 δa (rad) 1.01× 10−2

w (m/s) 3.70× 10−1 α (deg) 1.24 δr (rad) -6.70× 10−2

p (deg/s) 0.00 φ (deg) 1.00× 10−1 δT (%) 4.25× 101

q (deg/s) 0.00 θ (deg) 2.50× 10−1

r (deg/s) 0.00 ψ (deg) 3.16× 102

φ (deg) 1.00× 10−1 h (m) 1.00× 102

θ (deg) 2.50× 10−1

ψ (deg) −4.36× 101

h (m) 1.00× 102

ωp (rad/s) 5.09× 102

Table B.1: Trim operating point condition
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B.2 Full Linearized Model

Af =




−0.444 −0.000 0.594 0.000 −9.794 0.000 0.000 0.000 −0.362 −0.019 0.0134

−0.003 −1.476 0.000 9.794 0.002 0.000 0.000 0.368 0.000 −16.997 0.000

−0.983 0.001 −7.804 −0.012 0.482 0.000 0.001 0.019 15.322 0.000 0.000

0.000 0.000 0.000 0.000 −0.000 0.000 0.000 1.000 −0.000 −0.049 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 −0.001 0.000

0.000 0.000 0.000 −0.000 0.0000 0.000 0.000 0.000 0.001 1.001 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.090 −5.703 0.002 0.000 0.000 0.000 −0.000 −21.709 0.000 −6.809 0.002

0.180 −0.000 −8.310 0.000 0.000 0.000 −0.000 −0.000 −35.203 −0.000 0.000

0.010 1.329 0.000 0.000 0.000 0.000 −0.000 −0.100 0.000 −2.698 0.000

136.660 −0.152 2.962 0.000 0.000 0.000 0.054 0.000 0.000 0.000 −8.501




Bf =




−0.000 0.001 0.001 0.000

0.000 0.002 0.006 0.000

−0.004 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.000 −0.105 −0.003 −0.006

−0.106 0.000 0.000 0.000

0.000 −0.006 −0.012 −0.001

0.000 0.000 0.000 3.894




× 103

Cf =




1.000 −0.001 0.022 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.059 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

−0.001 0.000 0.059 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000




Df =




0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000



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B.3 Decoupled Linear Model

Alon =




−0.444 0.594 −0.362 −9.794 0.000 0.014

−0.983 −7.804 15.322 0.481 0.001 0.000

0.180 −8.310 −35.203 0.000 −0.000 0.000

0.000 0.000 1.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000

136.660 2.962 0.000 0.000 0.054 −8.501




Blon =




−0.000 0.000

−0.004 0.000

−0.106 0.000

0.000 0.000

0.000 0.000

0.000 3.894




× 103

Clon =




1.000 0.022 0.000 0.000 0.000 0.000

−0.001 0.059 0.000 0.000 0.000 0.000

0.000 0.000 1.000 0.000 0.000 0.000

0.000 0.000 0.000 1.000 0.000 0.000

0.000 0.000 0.000 0.000 1.000 0.000




Dlon =




0.000 0.000

0.000 0.000

0.000 0.000

0.000 0.000

0.000 0.000




Alat =




−1.476 0.368 −16.997 9.794 0.000

−5.703 −21.709 −6.809 0.000 0.000

1.329 −0.100 −2.698 0.000 0.000

0.000 1.000 −0.049 0.000 0.000

0.000 0.000 1.001 0.000 0.000




Blat =




2.147 5.480

−105.001 −2.792

−6.131 −12.398

0.000 0.000

0.000 0.000



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Clat =




0.059 0.000 0.000 0.000 0.000

0.000 1.000 0.000 0.000 0.000

0.000 0.000 1.000 0.000 0.000

0.000 0.000 0.000 1.000 0.000

0.000 0.000 0.000 0.000 1.000




Dlat =




0.000 0.000

0.000 0.000

0.000 0.000

0.000 0.000



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B.4 Open Loop ID Results

B.4.1 Model 2 Parameter Identification
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Figure B.1: Flight test data for model 2 parameter identification
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Figure B.2: Model 2 parameter identification
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B.4.2 Model 3 Parameter Identification
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Figure B.3: Flight test data for model 3 parameter identification
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Figure B.4: Model 3 parameter identification

162



B.5 Nominal Model Computed

Derivatives Lower bound Nominal value Upper bound

Lp(s−1) −1.28× 101 −1.20× 101 −1.11× 101

Lr(s−1) 8.62× 100 1.15× 101 1.44× 101

Np(s−1) −4.48× 10−1 1.20× 10−1 6.87× 10−1

Nr(s−1) −8.48× 100 −6.55× 100 −4.62× 101

Lδa(s
−2) 4.33× 101 5.24× 101 6.14× 101

Lδr(s
−2) 8.99× 100 1.13× 101 1.36× 101

Nδa(s
−2) −6.58× 100 −5.13× 100 −3.67× 100

Nδr(s
−2) −1.75× 101 −1.47× 101 −11.9× 101

Table B.2: Nominal model with upper and lower bounds
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Appendix C

Uncertainty Modeling

C.1 Aerodynamic Coefficients Parametric Uncertainty

Aerodynamic coefficient Lower bound Nominal Upper bound

clp −4.43× 10−1 −4.14× 10−1 −3.84× 10−1

clr 2.99× 10−1 3.99× 10−1 4.99× 10−1

cnp −2.81× 10−2 −7.50× 10−3 4.31× 10−2

cnr −5.32× 10−1 −4.11× 10−1 −2.90× 10−1

clδa
5.60× 10−2 6.77× 10−2 7.94× 10−2

clδr
1.60× 10−2 1.68× 10−2 1.76× 10−2

cnδa
−1.54× 10−2 −1.20× 10−2 −8.60× 10−3

cnδr
−4.10× 10−2 −3.45× 10−2 −2.79× 10−2

Table C.1: Aerodynamic coefficients nominal, lower and upper bound values
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Table C.2: List of parameters with its nominal, lower and upper bound values
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Figure C.2: Simulink model for angular acceleration kinematics
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Table C.3: ∆ matrix of LFT realization using ulinearize
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Table C.4: ∆ matrix of worst-case gain condition at 5 rad/s
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