
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 1, FEBRUARY 2019 117

Synthesis of Constraints for Mathematical
Programming With One-Class Genetic Programming

Tomasz P. Pawlak and Krzysztof Krawiec

Abstract—Mathematical programming (MP) models are
common in optimization of real-world processes. Models are usu-
ally built by optimization experts in an iterative manner: an
imperfect model is continuously improved until it approximates
the reality well-enough and meets all technical requirements (e.g.,
linearity). To facilitate this task, we propose a genetic one-class
constraint synthesis method (GOCCS). Given a set of exem-
plary states of normal operation of a business process, GOCCS
synthesizes constraints in linear programming or nonlinear pro-
gramming form. The synthesized constraints can be then paired
with an arbitrary objective function and supplied to an off-
the-shelf solver to find optimal parameters of the process. We
assess GOCCS on three families of MP benchmarks and con-
clude promising results. We also apply it to a real-world process
of wine production and optimize that process.

Index Terms—Business process, constraint acquisition, linear
programming (LP), model induction, wine quality.

I. INTRODUCTION

EACH nontrivial noncombinatorial optimization problem
involves a model of the process of interest that com-

prises three key elements: 1) process variables; 2) constraints
on their values; and 3) an objective function. Though there
is a multitude ways in which such models can be expressed,
linear programming (LP) and nonlinear programming (NLP)
formalisms are de facto standards of representation, both in
academia and industry.

A typical practice is to build models manually, which may
be, however, error-prone, laborious and time-consuming. Some
characteristics of the process may not be known to the expert,
and hence mistakenly omitted in the model. The characteristics
of the process may require advanced (e.g., nonlinear) modeling
techniques that are typically more difficult to use. Also, few
experts combine practical domain knowledge with compe-
tencies in modeling techniques. Last but not least, expert’s
subjective preferences may lead to models that are biased or
even flawed.

Manuscript received March 29, 2017; revised September 13, 2017 and
January 20, 2018; accepted May 9, 2018. Date of publication May 11, 2018;
date of current version January 28, 2019. This work of T. P. Pawlak
was supported in part by the Poznań University of Technology, Poland,
under Grant 09/91/DSMK/0634, and in part by the Foundation for Polish
Science. The work of K. Krawiec was supported by the National Science
Centre, Poland, under Grant 2014/15/B/ST6/05205. (Corresponding author:
Tomasz P. Pawlak.)

The authors are with the Institute of Computing Science, Poznań University
of Technology, 60-965 Poznań, Poland (e-mail: tpawlak@cs.put.poznan.pl;
krawiec@cs.put.poznan.pl).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEVC.2018.2835565

An alternative to manual modeling is synthesis of a model
from observations, where an observation is a snapshot of the
state of the process (as captured by the variables) accom-
panied with the value of the objective function. Such a
regression problem can be solved with a range of meth-
ods in statistics and/or machine learning (ML). No wonder
automatic or computer-assisted construction of objective func-
tions is routinely used in business in order to, e.g., decrease
manufacturing costs or improve product quality.

In contrast to this, except for a handful of works which we
review in Section III, little has been done to automate or sup-
port the acquisition of constraints from data. This is striking,
because manual modeling of constraints faces similar chal-
lenges as those for objective functions. More than that: one
may argue that modeling of constraints is even more chal-
lenging and laborious, e.g., when there are many of them. It
is not unusual for constraints to be more complex than the
objective function, e.g., when they involve auxiliary variables.
Also, constraints are essential, not least because good solu-
tions often dwell in proximity to constraints in the feasible
region.

To fill this niche, we proposed GenetiCS [1], a method that
employs genetic programming (GP) to synthesize constraints
from examples of feasible and infeasible states of a process.
GP allows controlling the syntax of evolved expressions so
that they are acceptable by mathematical programming (MP)
solvers, while the models used in ML do not fit that pur-
pose. GenetiCS proved capable of synthesizing readable and
accurate constraints for problems featuring low-to-medium
number of variables, requiring just one or multiple constraints,
and for the number of examples ranging from dozens to
hundreds.

In this paper, we address the main limitation of GenetiCS,
namely the requirement for examples representing both feasi-
ble and infeasible states (two decision classes in ML terms).
In many real-world settings, the latter can be observed only
occasionally, e.g., when a production plant fails or a process
is disrupted by some rare event. As a consequence, infeasible
examples may be few and far between, if not entirely absent,
which significantly limits the practicality of GenetiCS.

The main contribution of this paper is thus genetic one-
class constraint synthesis (GOCCS), a GP-based method
that synthesizes constraints for LP and NLP models from
feasible examples only, i.e., handles it as a one-class classi-
fication problem (Section IV). When evaluated on a range of
benchmarks, GOCCS consistently produces high-quality con-
straints (Section V). We also apply it to a real-world problem

1089-778X c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-8353-0562
https://orcid.org/0000-0001-5439-3231

118 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 1, FEBRUARY 2019

of modeling wine composition (Section VI), obtaining con-
straints that confirm domain knowledge and lead to interesting
insights.

II. ONE-CLASS CONSTRAINT SYNTHESIS PROBLEM

Let x1, x2, . . . , xn ∈ R be variables, s = (x1, x2, . . . , xn)

denotes a state of the process of interest, and S be a set of
examples of feasible states. A constraint c(s) is an expression
p(s) ≤ q(s), where p : R

n → R and q : R
n → R are functions

of a certain class H (e.g., linear and polynomial). A constraint
synthesis problem is a tuple (S, H), and solving it requires
finding a set of constraints of class H that hold for all elements
of S. Formally, any set of constraints C such that ∀s∈S∀c∈C c(s)
holds is a solution to (S, H).

Under this formulation, every constraint synthesis problem
has multiple solutions, including trivial ones. For instance, the
set of linear constraints C = {x1 < x1+ 1} is formally a solu-
tion to all constraint synthesis problems. However, this relaxed
formalization is intended and will suffice for the discourse that
follows. Which solutions should be favored to others depends
on application and user’s preferences, which we will come
back to in Section IV-C.

The above formulation is agnostic about the objective func-
tion, which typically forms a part of an MP model. For this
reason, in the following we use the terms “set of constraints”
and “model” interchangeably.

III. RELATED WORK

Most of the related studies pose constraint synthesis
problem in a two-class way, where feasible and infeasible
examples of states of a process are required.

The problem of two-class constraint synthesis for LP and
NLP was defined in [2], formulated as a mixed-integer
LP (MILP) problem, and solved using an off-the-shelf solver.
This method yields promising results on synthetic bench-
marks and a real-world problem of concrete mixture modeling.
However, the MILP problem is NP-hard, and for large sets of
examples the solver often depletes the computational budget,
resulting in a suboptimal model.

As already stated in Section I, the precursor for GOCCS
is GenetiCS [1]. It is faster than the method in [2], however,
it does not guarantee finding the optimal model. The key
difference with respect to GOCCS is that GenetiCS requires
examples of both feasible and infeasible states, which is
critical in practice, as the latter are often few and far between.
Among other differences, GenetiCS uses discrete-valued
fitness function calculated for each example separately and
Lexicase selection [3] to pick parents based on these separate
fitness assessments while, as it becomes clear in Section IV-C,
GOCCS uses two fitness functions and NSGA-II
selection [4].

Regarding two-class constraint synthesis in the form typical
for constraint programming (CP), the Conacq system [5] syn-
thesizes constraints expressed as a conjunctive normal form
of terms, each comparing a single variable to a constant. An
interactive variant of Conacq [6] repetitively queries an expert
to classify artificial examples designed in a way that makes

them highly informative for synthesis. The experiment shows
that, of several proposed strategies of creating examples, the
best one requires less than 100 queries to build a correct
model. A follow-up approach by the same authors, QuAcq [7],
allows for missing values of some variables, and so requires
less knowledge from an expert. For constraints involving
only = or �= comparisons, QuAcq is proven to be asymp-
totically optimal in the number of expert’s queries needed
to converge.

Several studies tackled one-class constraint synthesis prob-
lems. Concerning LP constraints, a method that builds a con-
vex hull and clusters its facets using k-means algorithm
is proposed in [8]. Since the cost of building a convex
hull is exponential with respect to the number of variables,
the method becomes technically infeasible for over a dozen
variables.

Regarding synthesis of constraints in CP form, model
seeker [9] uses a handcrafted library of abstract constraints
with associated metadata to synthesize concrete constraints as
Prolog clauses. The algorithm yielded promising results on
several real-world problems. Another method [10] learns first-
order logic clauses using inductive logic programming and
estimates their weights using preference learning. Performance
of this method is human-competitive when assessed on a few
synthetic benchmarks.

There is also ongoing research on synthesis of models in
forms different than those normally considered in MP. For
instance, learning modulo theories (LMT) [11] is a framework
for building first-order logic theories from examples and back-
ground knowledge constraints, and predictive entropy search
with constraints [12] is a tool to learn Bayesian models of
constraints and objective function from examples.

The constraint synthesis problem as posed in Section II
may be considered as a one-class classification problem. Many
ML models for classification can be transformed into MP
models, however, the resulting MP models may have unde-
sirable properties. For instance, support vector data descrip-
tion (SVDD) [13] is a one-class equivalent of support vector
machine [14] that wraps examples using a multidimensional
sphere which is transformable into an arbitrary shape using
kernel functions. SVDD constructs thus a single nonlinear
constraint and assumes examples to be located in a single
connected region in the decision space, while in real-world
problems they may be arbitrarily distributed. The POSC4.5
algorithm [15] samples unlabeled examples prior to building
a decision tree, and then uses the feasible and unlabeled exam-
ples as separate classes to be learned by C4.5 [16]. A decision
tree is a disjunction of conjunctions of linear constraints that
involve one variable each, and thus a decision tree implements
a disjunction of hypercubes. Disjunction of constraints is not
directly representable by MP models and requires auxiliary
binary variables and extra constraints. The latter makes mod-
els difficult to interpret, while the former causes model solving
to be NP-hard.

GP approaches have been previously proposed for one-class
settings [17], [18], however, in application to conventional
classification problems rather than constraint synthesis. One-
class problems have been also approached with deep learning:

PAWLAK AND KRAWIEC: SYNTHESIS OF CONSTRAINTS FOR MP WITH ONE-CLASS GP 119

Fig. 1. GP individual comprising two trees and the corresponding model
with two constraints.

autoencoders [19] are neural networks trained under the
autoassociative regime, where a learner is required to repro-
duce the input pattern at its output. This must be achieved with
hidden layers that are substantially smaller than input dimen-
sionality, so that the network is forced to learn a compressed
latent representation of the training set. However, the (often
very complex and nonlinear) models implemented by neural
networks are of no use in constraint synthesis problems, where
constraints have to be represented in a compact symbolic form
that is acceptable for solvers [20].

GOCCS fills the gap in the above spectrum of approaches
by synthesizing constraints from feasible examples only (one-
class synthesis), and presenting them in the form compatible
with LP and NLP solvers (unlike Conaq [5] and neural
networks [20]). Also, GOCCS is designed to synthesize
a low number of easy-to-interpret, short, linear, or non-
linear constraints (unlike SVDD [13]), does not rely on
background knowledge (unlike LMT [11]) nor handcrafted
databases (unlike model seeker [9]), and controls the size of
the synthesized constraints (unlike POSC4.5 [15]).

IV. GENETIC PROGRAMMING ALGORITHM

GOCCS uses GP to synthesize constraints in the form
defined in the constraint synthesis problem (Section II). The
following sections detail the components of our GP system.

A. Constraints Representation

A GOCCS individual (candidate solution) C is a variable-
size set of expressions, each represented as a strongly typed
tree [21]. Each tree c ∈ C encodes a single constraint of the
form p(s) ≤ q(s) or p(s) ≥ q(s), where the root node is either
≤ or ≥, and its two children subtrees encode p(s) and q(s)
using one of two sets of instructions.

1) L = {+,−,�, x1, x2, . . . , xn, ERC} for synthesis of
linear constraints, where � is a strongly typed multi-
plication accepting a constant as the left argument and
any other instruction as the right argument, and ERC is
an ephemeral random constant [22] initially drawn from
N (0, 1),

2) P = L ∪ {∗} \ {�} for synthesis of polynomial
constraints, where ∗ is multiplication accepting any
arguments.

Fig. 1 shows an exemplary GP individual comprising two trees
and the corresponding model with two constraints.

Algorithm 1 FULL and GROW Initializations. MinConstr
and MaxConstr Are Minimum and Maximum Numbers of
Constraints, Respectively, MaxDepth Is Maximum Depth of
Trees, U(a, b) Draws Uniformly an Integer From Range [a, b]
1: function FULL()
2: C← ∅
3: while |C| < MaxConstr do
4: C← C ∪ {FULLCONSTR(1)}
5: return C
6: function FULLCONSTR(d)
7: if d < MaxDepth then
8: r←PICKNONTERMINAL()
9: for i = 1..ARITY(r) do

10: ri ← FULLCONSTR(d + 1)
11: else
12: r←PICKTERMINAL()
13: return r
14: function GROW()
15: c← U(MinConstr, MaxConstr)
16: C← ∅
17: while |C| < c do
18: C← C ∪ {GROWCONSTR(1)}
19: return C
20: function GROWCONSTR(d)
21: if d < MaxDepth then
22: r←PICKINSTRUCTION()
23: for i = 1..ARITY(r) do
24: ri ← GROWCONSTR(d + 1)
25: else
26: r←PICKTERMINAL()
27: return r

B. Genetic Programming Operators

We adapt initialization and search operators of strongly
typed GP [21] to evolve sets of constraints. For population
initialization, we use the FULL and GROW initialization oper-
ators from Algorithm 1. FULL creates MaxConstr constraints
in a top-down manner. For each constraint, beginning from the
root node, it draws a nonterminal instruction for the current
node if the current depth is less than MaxDepth, and a terminal
otherwise. Then, it recursively repeats these steps for the chil-
dren. In contrast, GROW draws the number of constraints to be
created from the range [MinConstr, MaxConstr] and picks the
instructions from the entire instruction set until MaxDepth is
reached, when it picks from the terminals only. When creating
children for a given node, FULL and GROW use only instruc-
tions satisfying type requirements, i.e., comparisons {≤,≥}
for the root node, constants for the left argument of �, and
all instructions except comparisons for the remaining nodes.
A population is initialized using the Ramped Half-and-Half
(RHH) scheme [22], by repeatedly calling FULL or GROW

with 50% probability each until the desired size is reached.
After initialization (and after each application of search

operators described below) we eliminate syntactic duplicates
within each individual. We define syntactic equivalence of
trees recursively: two trees are considered equivalent if they
use the same operator in their root nodes and all their cor-
responding children subtrees are equivalent. For commutative
instructions (+, ∗,�) the order of children is ignored.

Note that initialization, as well as all operators
described below, cares only about the syntactic validity

120 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 1, FEBRUARY 2019

Algorithm 2 CTX and CTM. POP(X) Draws Uniformly and
Removes an Item From X, TREESWAPPINGXOVER Is the
Strongly Typed Tree Swapping Crossover [21]
1: function CTX(C1, C2)
2: C′1, C′2 ← ∅
3: while C1 �= ∅ ∧ C2 �= ∅ do
4: c1 ← POP(C1)
5: c2 ← POP(C2)
6: {c′1, c′2} ← TREESWAPPINGXOVER(c1, c2)
7: C′1 ← C′1 ∪ {c′1}
8: C′2 ← C′2 ∪ {c′2}
9: C′1 ← C′1 ∪ C1

10: C′2 ← C′2 ∪ C2
11: return {C′1, C′2}
12: function CTM(C)
13: Cr ← RHH()
14: {C′, C′r} ← CTX(C, Cr)
15: return C′

Algorithm 3 CSX and CSM. U(a, b) Draws Uniformly an
Integer From the Range [a, b]
1: function CSX(C1, C2)
2: C′1, C′2 ← ∅
3: for c ∈ C1 ∪ C2 do � Iterate over all constraints in C1 and C2
4: i← U(1, 2)

5: C′i ← C′i ∪ {c}
6: return {C′1, C′2}
7: function CSM(C)
8: Cr ← RHH()
9: {C′, C′r} ← CSX(C, Cr)

10: return C′

of constraints: the models may contain redundant or inconsis-
tent constraints (having no solution satisfying all of them). We
allow such models in the population as they may give rise to
more useful ones when processed by search operators (below).

New models are created with several search operators.
Constraint tree crossover (CTX) and constraint tree mutation
(CTM) shown in Algorithm 2 modify individual constraints.
Given parents C1 and C2, CTX draws without repetition con-
straints c1 and c2, respectively, from C1 and C2, crosses them
over using the strongly typed tree swapping crossover [21], and
adds the resulting constraints c′1 and c′2 to the respective off-
spring constraint sets C′1 and C′2 (initially empty). These steps
are repeated until all constraints from one parent have been
used; the remaining constraints in the other parent are copied
to the respective offspring. CTM applied to a parent C initial-
izes a random model Cr using RHH, then calls CTX(C, Cr) and
returns the first of the obtained offspring. Note that CTX and
CTM preserve the number of constraints in the manipulated
models.

We also introduce constraint swapping crossover (CSX) and
constraint swapping mutation (CSM) (Algorithm 3) that move
constraints between models but, in contrast to CTX and CTM,
do not modify them. Given two parents C1 and C2, CSX ran-
domly distributes their constraints to two offspring C′1 and
C′2. CSM applied to a parent C initializes a random model Cr

using RHH, then calls CSX(C, Cr) and returns the first of
the obtained offspring. The expected number of constraints
in the offspring produced by CSX equals to the mean num-
ber of constraints in the parents, i.e., E(|C′1|) = E(|C′2|) =

Algorithm 4 GCM. N (μ, σ) Draws a Value From Normal
Distribution With μ Mean and σ 2 Variance, REPLACE(c, a, a′)
Replaces a With a′ in c
1: function GCM(C)
2: C′ ← ∅
3: for c ∈ C do
4: a←PICKCONSTANT(c)
5: a′ ← N (a, 1)

6: c′ ←REPLACE(c, a, a′)
7: C′ ← C′ ∪ {c′}
8: return C′

(|C1| + |C2|)/2; however, in an extreme case C′1 = ∅ and
C′2 = C1 ∪ C2 (or reversely). We allow for models that host
no constraints as they can reduce the number of constraints in
models they crossover with.

To tune numerical constants in constraints, we apply
Gaussian constant mutation (GCM, Algorithm 4). Given a
parent C, GCM draws a constant a from each constraint
c ∈ C and replaces it with a constant a′ drawn from the
normal distribution N (a, 1). Constraints without constants
remain unaffected.

The models produced by the above operators may con-
tain trivially incorrect constraints. To overcome this, in every
generation after breeding, we remove from the offspring the
constraints p(s) � q(s), where p(s) = const and q(s) = const,
as they are either met or violated for all s. In addition to sim-
plifying the offspring (and thus serving as a means of bloat
control), this “reactivates” the constraint sets that would be
otherwise violated for all s ∈ S.

C. Fitness Evaluation

As signaled in Section II, the constraint synthesis problem
is underconstrained: typically there is an infinite number
of constraint sets C that perfectly delineate a given set of
examples of feasible states. Therefore, a fitness function
needs to express user’s preference concerning the desirable
characteristics of C. We take into account two characteris-
tics that seem to be universally desirable: the “tightness”
of the constraints with respect to the region of feasi-
ble examples sampled by S, and (implicitly) the simplicity
of constraints.

We draw a sample of unlabeled artificial examples in R
n

that are intended to simulate the infeasible states, assuming
that the states in close proximity of the feasible examples are
likely to be feasible too. We estimate the extent of that prox-
imity for each s ∈ S individually, by calculating the distance
threshold t(s) = mins′∈S,s�=s′ d(s, s′), where d is the Canberra
distance between s and s′

d(s, s′) =
n∑

i=1

∣∣xi − x′i
∣∣

|xi| +
∣∣x′i

∣∣ , xi ∈ s, x′i ∈ s′.

We define the set S◦ of all states that are not further away
from any s ∈ S than the corresponding threshold t(s), i.e., S◦ =
{s′ : ∃s∈Sd(s, s′) ≤ t(s)}. Then, for each variable xi we estimate
its domain Di by extending the range observed in S with the

PAWLAK AND KRAWIEC: SYNTHESIS OF CONSTRAINTS FOR MP WITH ONE-CLASS GP 121

Fig. 2. Pareto front of g1 and g2 and exemplary MP models from different
front parts; green and red colors refer to feasible and infeasible regions, resp.;
pluses and minuses refer to feasible and unlabeled examples, resp.

thresholds of extreme examples

Di =
[

min
xi∈s∈S

(xi)− ti(smin), max
xi∈s∈S

(xi)+ ti(smax)

]

smin = argmin
s∈S

xi, xi ∈ s, smax = argmax
s∈S

xi, xi ∈ s

where ti is equivalent to t restricted to dimension i

ti(s) = min
s′∈S,s′ �=s

∣∣xi − x′i
∣∣

∣∣xi| + |x′i
∣∣ , xi ∈ s, x′i ∈ s′.

Next, we calculate S◦ = �n
i=1Di \ S◦, the complement of S◦

with respect to the Cartesian product of variables’ domains.
Finally, we sample S◦ for a set of unlabeled artificial examples
U, such that |U| = |S|.1

We adjust the thresholds t(s) locally because the examples
of feasible states may be distributed nonuniformly. In this way,
we surround each feasible example in S with a “t-margin.”
When merged for all examples, those margins form connected
regions in S◦. This is important, as only connected regions
can be expressed by conjunctions of constraints in C. We use
Canberra distance to bring the variables of different magnitude
to the same range and avoid the low-magnitude variables to
become negligible.

The resulting sample U is a nonparametric approximation
of the unknown distribution of infeasible states. It is prepared
once, before the run of GOCCS, and together with S forms
the basis for fitness evaluation. To evaluate a set of constraints
C, we calculate the numbers of true positive and true negative
decisions made by the constraints in C

g1(C) = |{s ∈ S : ∀c∈C c(s)}|
g2(C) = |{s ∈ U : ∃c∈C ¬c(s)}|.

Both g1 and g2 are to be maximized, however, they favor
models of different characteristics. Fig. 2 illustrates the trade-
off between them for linear constraints. Any model with
constraints delineating a region that is a superset of S

1If real infeasible states are available, they may be included in U; however,
we do not assume their availability for the reasons discussed in Section I.

maximizes g1. This includes the trivial empty model C = ∅
(because it does not constrain solution space at all) and an
infinite number of “excessively relaxed” models. In turn, g2
is maximized by any model having at least one constraint
and an empty intersection of the delineated region with U.
This includes all inherently incoherent models (i.e., such that
{s : ∀c∈Cc(s)} = ∅), and an infinite number of overly restrictive
models. In general, the more constraints in a model, the more
likely it scores low on g1 and high on g2. A model achieving
high scores on both g1 and g2 is likely to correctly separate S
from U.

We use g1 and g2 as a two-objective characterization
of models and perform selection using the NSGA-II [4]
algorithm. By promoting mutually nondominated models,
NSGA-II maintains a Pareto front of approximately evenly
distributed models in the g1 × g2 criteria space. This lowers
the risk of focusing on the criterion that happens simpler to
optimize at the expense of the other, which would be likely
if criteria g1 and g2 were aggregated into a scalar fitness
function (by e.g., linear combination). Nevertheless, we resort
to aggregation when picking the best-of-run model: from all
models generated in a run, we select the one that maximizes
f (C) = g1(C) + g2(C). We choose this approach because, in
absence of any other user’s preference, the numbers of true-
positives and true-negatives are equally important. Also, g1
and g2 are estimated from same-sized samples and thus can
be justifiably added. In particular, any set of constraints per-
fectly separating S from U is guaranteed to achieve the optimal
value of f (C) = 2|S|.

D. Post-Processing

When GP terminates, we simplify the best-of-run model
C. To this aim, we remove from C the constraints c ∈ C
for which there does not exist a state s ∈ �n

i=1Di such
that: 1) ¬c(s) and 2) no other constraint is violated for s,
i.e., ¬∃c′ ∈ C \ {c} : ¬c′(s). For such a c, all infeasible
states it separates from the feasible ones are also sepa-
rated by another constraint(s) in C, so removing c does not
change the feasible region of the model. We verify the prop-
erties 1) and 2), on a validation set of 100 000 uniformly
drawn states from the Cartesian product of variables’ domains
V = {s : s ∼ U(�n

i=1Di)}. The relatively large cardinality of
V is intended to provide for sufficient confidence when testing
for the properties, particularly when the number of variables is
high (as per the curse of dimensionality, building a meaningful
hypervolume requires an infeasible sample size [23]). Using
even larger V for greater confidence is technically feasible, as
this step involves only the best-of-run individual.

Finally, the constraints in the best-of-run model are sym-
bolically simplified and transformed to expanded polynomial
form2 for better readability.

V. EXPERIMENT

A. Setup

We conduct three experiments. First, we tune the probabili-
ties of engaging the operators from Section IV-B to maximize

2Using the MathNet.Symbolics library [24].

122 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 1, FEBRUARY 2019

TABLE I
PARAMETERS OF GP ALGORITHM IN GOCCS

the final fitness. Then, we use that distribution in GOCCS
and analyze the syntactic and semantic properties of the syn-
thesized MP models. Finally, we compare GOCCS to its
precursor, GenetiCS [1].

In all experiments, we employ the following benchmarks
parameterized with the number of variables n.

Balln: d2 ≥
n∑

i=1

(xi − i)2

∀n
i=1 : xi ∈ [i− 2d, i+ 2d].

Simplexn: ∀n
i=1∀n

j=i+1 : xi cot
π

12
− xj tan

π

12
≥ 0

∀n
i=1∀n

j=i+1 : xj cot
π

12
− xi tan

π

12
≥ 0

n∑

i=1

xi ≤ d

∀n
i=1 : xi ∈ [− 1, 2+ d].

Cuben: ∀n
i=1 : xi ≥ i

∀n
i=1 : xi ≤ i+ id

∀n
i=1 : xi ∈ [i− id, i+ 2id]

where d = 2.7 to enforce use of noninteger values and
so make the benchmarks closer to real-world problems. The
benchmarks demand different capabilities from a constraint
synthesis algorithm. Solving Balln requires one quadratic con-
straint involving all n variables, Cuben requires 2n linear
constraints involving one variable each, and Simplexn requires
n(n − 1) linear constraints of two variables each and one
linear constraint of n variables. We construct a training set
of feasible examples S (see Section II) by uniformly sam-
pling m examples from the feasible region of each benchmark.
We consider problem instances with n ∈ [3, 7] variables and
m ∈ {100, 200, 300, 400, 500} examples for each n.

Table I shows the parameters of the GP algorithm com-
mon for all setups. Depending on the instruction set (L
or P, Section IV-A), GOCCS synthesizes a linear or poly-
nomial model, respectively. The experimental software is
open-source.3

B. Parameter Tuning

To determine a well-performing mixture of search operators
from Section IV-B, we run five GP setups, each engaging one
of the search operators with probability 0.6 and the remaining

3http://www.cs.put.poznan.pl/tpawlak/link/?GOCCS

TABLE II
(a) RANKS OF MEANS OF BEST-OF-RUN FITNESS ON TRAINING SET

WITH m = 300, BEST IN BOLD. (b) p-VALUES FOR FRIEDMAN’S TEST

AND FOR INCORRECTLY JUDGING A SETUP IN A ROW AS BETTER THAN

A SETUP IN A COLUMN, OBTAINED USING SYMMETRY TEST

(a)

(b)

four with probability 0.1 each. We name these setups after the
dominating operator:

and compare them on all three benchmarks for n ∈ [3, 7] and
m = 300, which results in 15 problem instances of 300 feasible
examples each (the results for other m lead to similar conclu-
sions). Table II(a) shows the ranks of means of the best-of-run
fitness. CSX setup achieves the best overall rank for both types
of models, GCM and CTM setups are the runner-ups for linear
and polynomial models, respectively. CTX and CSM setups are
the worst for the linear and polynomial models, respectively.
We hypothesize that CSX and GCM focus on exploitation, as
the former is capable only of mixing the existing constraints
and the latter fine-tunes the constants in constraints. In con-
trast, CTX and CSM may introduce new constraints and thus
are more exploratory. Apparently, exploitation is essential to
perform well here, probably because finding good constraints
is easier with a series of small improvements than by replacing
existing constraints with new ones.

Table II(b) shows the outcomes of Friedman’s test [25]
and post-hoc analysis using symmetry test [26] (conclusive p-
values in bold). Superiority of CSX and GCM setups to CTX

and CSM setups is significant for both linear and polynomial
models, so we use CSX setup till the end of this paper.

C. Analysis of the Synthesized MP Models

Next, we assess the syntactic and semantic fidelity of
the best-of-run models to the benchmark models from
Section V-A.

Table III(a) shows the mean and 0.95-confidence interval
of the difference between the numbers of constraints in the
synthesized and benchmark models. The results are consistent
across linear and polynomial models. For Balln the synthesized

PAWLAK AND KRAWIEC: SYNTHESIS OF CONSTRAINTS FOR MP WITH ONE-CLASS GP 123

models have significantly more constraints than the benchmark
(two-tailed t-test at α = 0.05) and those differences increase
with the dimensionality n. For the linear models this is due
to GOCCS attempting to approximate the actual quadratic
constraint using multiple linear constraints. For polynomial
models it may be hard to evolve a single constraint that
involves the squares of all variables. For Simplexn and Cuben
the differences in the numbers of constraints are not greater
than 1 and decrease with n. We attribute this to the curse of
dimensionality [27]: given the same number of feasible exam-
ples in S, a high-dimensional space offers more possibilities
for placing the constraints so that they enclose S. Note that for
Simplex3, Cube3, and Cube4, and for many values of m and/or
model types, the two-tailed t-test concludes equality (under-
lined values) of the number of constraints in the synthesized
models and the benchmarks.

Table III(b) shows the mean and 0.95-confidence interval
of the difference between the total number of terms in all
constraints of the synthesized model and the corresponding
number in the benchmark, after the models have been trans-
formed to the expanded polynomial form.2 For all benchmarks,
the synthesized linear models contain roughly the same num-
ber of terms as the benchmark (statistical equality confirmed
by two-tailed t-test for all considered combinations of n and
m). In contrast, the polynomial models contain significantly
more terms than the respective benchmark models.

We also assess the similarity of expressions in the syn-
thesized and actual constraints. To do so, we transform each
constraint to the expanded polynomial form. Then, for each
pair of weight vectors ws

i and wb
j of terms in the synthesized

and actual constraints, respectively, we calculate the angle
between them, i.e., αij = arccos |ws

i · wb
j /(‖ws

i‖‖wb
j ‖)|. Next,

we formulate an assignment problem, in which the objective
is to pair ws

i s and wb
j s so that the mean angle is minimal and

each vector is paired at least once

min
1

N

∑

ij

αijbij the mean of angles (1)

subject to ∀i :
∑

j

bij ≥ 1 ws
i assigned to at least one wb

j

∀j :
∑

i

bij ≥ 1 wb
j assigned to at least one ws

i

∀bij ∈ {0, 1} indicator of assigning ws
i to wb

j

where N is the greater of the numbers of the synthesized
and actual constraints. The optimized function varies from
0 (weight vectors pairwise parallel) to π/2 (weight vectors
pairwise orthogonal). Notice that for linear models, αij in the
weight space is the same as the angle between the constraints’
hyperplanes in the solution space; for nonlinear models this
relationship does not hold.

Table III(c) shows the mean and 0.95-confidence interval of
the mean angles, i.e., the optimal value of the function mini-
mized in (2). The angles for Balln benchmark are higher than
for other benchmarks. For Simplexn and Cuben, the angles
start from about 0.3 rad for linear models and 0.7 rad for
polynomial models. All mean angles are significantly differ-
ent from zero with respect to one-tailed t-test at α = 0.05.

Fig. 3. Feasible regions of models: actual in green and best-found linear in
red; from left: Ball3, Simplex3, and Cube3 benchmarks.

For all benchmarks the angle increases with n, which may be
a sign of the curse of dimensionality: for high n, it is likely for
a model to be correct while being expressed differently than
the actual benchmark model. This is supported by the fact that
larger sets of examples lead to decrease of angles.

Next, we focus on how well the feasible regions of the
benchmarks are reconstructed in the synthesized models.
Table III(d) shows the mean and 0.95-confidence interval of
the sensitivity of the synthesized models on a test set of
100 000 examples uniformly sampled from the Cartesian prod-
uct of domains of variables. An example is considered feasible
if it falls into the feasible region of a benchmark model, and
infeasible otherwise. Sensitivity is equivalent to g1(C) nor-
malized to [0, 1] range by dividing by |S| (see Section IV-C).
The values vary across the benchmarks, in [0.69, 0.83] for
Balln and in [0.47, 0.58] for Cuben, while remaining largely
independent from m and n. In contrast, for Simplexn sensitiv-
ity varies strongly in the entire range [0, 1] and noticeably
decreases with n. Recall that the number of constraints in
Simplexn grows quadratically with n, and that causes rapid
decrease of the ratio of the hypervolume of the feasible region
to the hypervolume of the Cartesian product of variables’
domains. This makes true positives very rare, even in our
relatively large test set.

Table III(e) shows test-set specificity, i.e., g2(C) normalized
to [0, 1] range by dividing by |U|. Overall, specificity is high
and in most cases well above 0.9. Moreover, for Simplexn
and a few pairs of m and n, where n ≥ 6, the one-tailed
t-test concludes equality to 1. Specificity clearly increases
with n, likely due to the number of true negatives increasing
with n.

We also qualitatively assess the synthesized models by com-
paring them visually to the benchmark models. Fig. 3 shows
the visualizations of the feasible regions of the actual and
the best models found in all runs for n = 3, m = 500 and
linear instruction set (L). We omit the polynomial models
because of being worse than the corresponding linear ones.
Clearly, the feasible region of Simplex3 is reconstructed most
faithfully. We attribute this to higher density of distribution
of feasible examples than for the remaining benchmarks, as
Simplex3 has the smallest volume of the feasible region of all
benchmarks for n = 3. The synthesized model for Ball3 does
not resemble a ball, however, its center of mass is close to
the actual ball center and its extreme points are at a distance
close to the radius of the actual ball. Reconstruction of Cube3

124 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 1, FEBRUARY 2019

TABLE III
(a) MEAN DIFFERENCE IN NUMBERS OF CONSTRAINTS AND (b) TERMS IN CONSTRAINTS, BETWEEN THE SYNTHESIZED AND THE ACTUAL MODELS.

(c) MEAN ANGLE BETWEEN THE CORRESPONDING CONSTRAINTS IN THE SYNTHESIZED AND THE ACTUAL MODELS. (d) MEAN SENSITIVITY

AND (e) SPECIFICITY OF THE SYNTHESIZED MODELS ON TEST SET. HEATMAPS REFLECT VALUES FROM BEST (GREEN) TO WORST (RED).
BARS REFLECT 0.95-CONFIDENCE INTERVALS (CELL HEIGHT REFLECTS 1, LARGER VALUES TRUNCATED). UNDERLINED VALUES

DIFFER INSIGNIFICANTLY (a) AND (b) FROM 0 WITH RESPECT TO TWO-TAILED t-TEST AT α = 0.05, (d) AND (e) FROM 1
WITH RESPECT TO ONE-TAILED t-TEST AT α = 0.05

(a)

(b)

(c)

(d)

(e)

is least accurate: the synthesized constraints are not orthogo-
nal to axes and the feasible region extends beyond the actual
feasible region. We attribute this to the distribution of models

searched by GOCCS: as a working set of constraints (an indi-
vidual) orthogonal to axes is unlikely to perform well until it
bounds the feasible region in all directions, i.e., until it has

PAWLAK AND KRAWIEC: SYNTHESIS OF CONSTRAINTS FOR MP WITH ONE-CLASS GP 125

n pairs of opposite constraints, it is unlikely to survive in the
population long enough for its constants to become well-tuned.

To sum up, when it comes to complexity of synthesized
models, the main phenomenon that shapes the outcomes of
GOCCS is clearly the curse of dimensionality. Its detrimental
effects can be addressed with larger training sets, but only to
a certain degree. The number of synthesized constraints does
not seem to vary significantly between linear and polynomial
models, however, the total number of terms in constraints is
significantly smaller for the former. Linear models with few
terms are easy to interpret and solvable in polynomial time,
so they should be preferred in general. However, polynomial
models, though NP-hard to solve and often more complex, can
be occasionally more desirable, especially when the domain
knowledge suggests their adequacy. Last but not least, the
varying complexity of synthesized models does not seem to
impact their correctness: GOCCS systematically maintains
moderate-to-high sensitivity and high specificity.

D. Importance of Infeasible Examples

In this experiment, we compare GOCCS to a state of
the art approach for two-class constraint synthesis problem,
GenetiCS [1], and look for a minimum number of infeasible
examples required by the latter to synthesize constraints of
similar accuracy as GOCCS. To this aim, we apply GOCCS
to a training set of mf = 500 feasible examples, and GenetiCS
to the same training set of mf = 500 feasible examples and
a varying number mi ∈ {100, 200, 300, 400, 500} of infea-
sible examples. GenetiCS uses the same representation of
constraints and GP operators as GOCCS, but relies on a dif-
ferent fitness function and selection operator (see Section III).
GenetiCS is thus the most similar state-of-the-art competitor
for GOCCS.

Table IV shows the mean and 0.95-confidence interval of
classification accuracy calculated on the same test set as in
the previous section. GOCCS achieves the highest accuracy
in four and five out of 15 problems for linear and polynomial
models, respectively. Accuracy of GenetiCS increases with mi

as expected, and for mi = mf = 500 it achieves the high-
est accuracy in 10 out of 15 problems for both linear and
polynomial of models. GOCCS and GenetiCS rank similarly
when the latter is provided with mi = 300 infeasible examples
(the bottom of Table IV). The p-values of one-tailed Wilcoxon
signed rank test [25] for significance of difference of pairs of
GOCCS and particular GenetiCS setups (see Table IV) are
inconclusive for mi ≤ 300 except mi = 100 and polynomial
models for which GOCCS is better. For mi = 500 GenetiCS
is better for both types of models.

In the conclusion, even though GOCCS does not make
use of infeasible examples altogether, it is not worse than
GenetiCS supplied with roughly one infeasible example for
every two of feasible examples, and tends to be better when
GenetiCS uses smaller fractions of infeasible examples. This
outcome strongly favors GOCCS for many real-world prob-
lems, where, as argued in Section I, infeasible examples are
few and far between (note that artificially increasing the above

TABLE IV
MEAN ACCURACY ON TEST SET, BEST IN BOLD. BARS REFLECT

0.95-CONFIDENCE INTERVALS (CELL HEIGHT REFLECTS 0.1). THE

p-VALUES OF ONE-TAILED WILCOXON SIGNED RANK TEST OF

DIFFERENCES BETWEEN GOCCS AND PARTICULAR GENETICS SETUPS

ratio by reducing the number of feasible examples will be
detrimental due to curse of dimensionality).

VI. CASE STUDY: WINE QUALITY

To illustrate GOCCS in practical settings, we use it to syn-
thesize constraints for a real-world problem of modeling wine
quality, combine them with an objective function, optimize the
resulting model to determine the optimal proportions of wine
ingredients, and compare the results to a baseline method. We
use the wine quality database [28] composed of 1599 red and
4898 white wine examples, each described using eleven vari-
ables relevant to taste. Each example is supplemented with
quality grade Q, calculated as the median of grades assigned
by at least three sensory assessors, varying in range 0 (bad)
to 10 (excellent). After removing duplicates from the origi-
nal database, we obtain a dataset of 1359 examples of red
wine and a dataset of 3961 examples of white wine, summa-
rized in Table V. As the original database specification does
not cite domains of variables, we calculate them as described
in Section IV-C and then crop them to [0,∞), as negative
variables have no physical interpretation.

We build separate models for red wine and white
wine, using the above sets of examples as feasible states.
(Section IV). We use GOCCS with the linear instruction set

126 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 1, FEBRUARY 2019

TABLE V
VARIABLES IN WINE QUALITY DATASET [28]; DOMAINS CALCULATED AS IN SECTION IV-C (EXCEPT FOR Q), NEGATIVE VALUES REMOVED

(L) and parameters from Table I. 30 runs of the method with
different seeds result with the best found set of constraints
having fitness f = 2668 for red wine (the optimum, for a hypo-
thetical model classifying all examples correctly, is 2718) and
f = 7880 for white wine (the optimum is 7922).

To supplement the synthesized models with objective func-
tions, we conduct least-squares quadratic regression of the
dependent variable Q with respect to independent variables
from Table V. From the resulting regression function we
remove all terms whose coefficients are insignificant with
respect to t-test and start over. The regression functions
obtained in this way turn out to be not concave for both
red and white wine. As most quadratic programming (QP)
solvers assume concavity, we remove the minimal subset of
terms that prevents a function from being concave and start
over. The resulting functions have coefficients of determination
r2 = 0.39 and 0.33, respectively.

The synthesized red wine QP model is

max −0.01015FA2 − 0.7481VA2 − 1.681S2 + 0.1639FA+
− 1.836C− 0.00197TSD− 0.6832pH+ 3.819S+ 0.3003A

+ 2.873

subject to − VA+ C ≤ 0

1.669C− S ≤ 0

VA+ pH+ S ≤ 5.449

RS− 3.455D− pH ≤ 2.712

3.192VA− RS− FSD ≤ 0

2.384CA− RS− C ≤ 0

VA+ 2.384RS+ 2.544C+ TSD− 5.717D− 16.3A ≤ 11.95

0.2764FA+ 1.492VA+ 0.3844RS+ C+ D− pH+
4.712S ≤ 9.153

2FA+ CA+ 1.686RS+ 0.5031C+ 1.384FSD− TSD−
4.384pH+ 2.384S− 2A ≤ 3.415

FA− 10.17VA+ 4.384CA− 2.384RS− C+ 2.384FSD+
TSD+ 2.384pH− 2.384S ≥ 2.384

2.384FA+ 0.4379VA+ CA− 0.3844RS+ 6.123C+
4.136FSD− 0.3844TSD− D− 2S− 0.6764A ≥ 0.1357.

The objective function is easy to interpret: high amount of
alcohol positively contributes to wine quality, amounts of tar-
taric acid of 8.07 g/dm3 and sulfates of 1.14 g/dm3 are
optimal, and other ingredients have negative impact on qual-
ity. The first constraint states that concentration of sodium
dioxide (salt, C) must be not greater than the concentration
of acetic acid. The second constraint captures an analogous
relationship between (scaled) C and the concentration of sul-
fates S. The third constraint imposes an upper bound on the
sum of concentrations of acetic acid and sulfates in relation to
pH: for acidic wines with low pH, higher amounts of acetic
acid and sulfates are allowed than for the wines with high
pH. Given that D ≈ 1 for all wines, the forth constraint can
be rewritten as RS − pH ≤ 6.167, implying that increasing
concentration of sugar must be accompanied with increas-
ing value of pH (decreasing acidity) for a wine to remain
within the feasible region (and thus essentially pass as a wine).
The next two constraints relate the concentrations of sugar,
acetic acid, free sulfur dioxide (FSD), citric acid, and sodium
chloride. Interpretation of the remaining constraints is more
complex.

The best QP model synthesized for white wine is

max −0.02784FA2 − 1.234CA2 − 0.00007981FSD2

− 0.00002581TSD2 + 0.4588FA− 1.332VA+ 1.259CA

+ 0.06963RS+ 0.01358FSD+ 0.006554TSD− 144.9D

+ 0.8708pH+ 0.6428S+ 0.1996A+ 141.8

subject to D ≤ 1.0052

VA− C ≥ 0

CA+ C− D ≤ 0

−VA+ 0.5283CA− RS− 0.2167D+ 2pH+ 2A ≥ 0.6499

−4.786FA+ 4.893C+ 0.107TSD− 2.893pH+ S+ A ≤ 2

−FA− VA− 0.9435CA+ 2RS+ 2C+ FSD− TSD+
0.5283D ≤ 0.7209

−2.8VA− 1.951CA+ 0.051RS+ C− 0.0565TSD+
1.528D+ 2.264pH+ 0.04894S+ A ≥ 1.127

0.2791FA− 0.1927VA− 3CA+ 0.2791RS+ C

+1.528FSD− TSD− 1.528D+ 0.5283S− A ≤ 0.1316.

PAWLAK AND KRAWIEC: SYNTHESIS OF CONSTRAINTS FOR MP WITH ONE-CLASS GP 127

TABLE VI
OPTIMAL SOLUTIONS FOR THE WINE MODELS AND THE MOST SIMILAR

WINES WITH RESPECT TO CANBERRA DISTANCE.4 UNDERLINING

SIGNALS CHANGES RESULTING FROM ADDING EXTRA CONSTRAINTS

Given complete wine quality models, it is tempting to ask:
what is the characteristics of an ideal wine? To answer this
question, we optimize the models with Gurobi solver [29] and
obtain the solutions shown in Table VI. For the red wine, the
optimal concentration of FSD turns out to be greater than the
total concentration of sulfur dioxide (TSD). Because it should
hold by definition that FSD ≤ TSD, we determined that in the
dataset min TSD − FSD = 3 and max FSD/TSD = 0.8571, and
added the following constraints to the QP model:

−FSD+ TSD ≥ 3

FSD− 0.8571TSD ≤ 0

and reran the QP solver. The resulting optimal solution (the
third column in Table VI) has the same quality, while featur-
ing noticeably lower FSD and slightly different density and
concentrations of citric acid and residual sugar.

In the white wine model, the relation of FSD and TSD is
modeled by the fifth and the last of the synthesized constraints.
As a result, the QP solver produces an optimal solution that
does not violate the domain knowledge.

Table VI juxtaposes the obtained optimal solutions with the
examples from the respective datasets that are most similar
with respect to Canberra distance.4 For red wine, the quality
of the most similar example is 7—smaller than the estimated
quality of 8.318, however, not worse than the quality of 99%
of examples in the dataset. For white wine, the most similar
example has quality of 6, again smaller than the estimated
quality of 11.194, however, not worse than 79% of examples.
We attribute the not so accurate prediction of quality to imper-
fect fitting of regression functions, signaled by relatively low
r2 coefficients. Better prediction performance requires higher-
order or nonconcave objective functions, which, however, may
prevent use of QP solvers.

Although these optimal solutions are plausible, their prac-
tical applicability cannot be guaranteed based on the above
evidence. Thus, assuming for the sake of argument that feasi-
ble wine compositions are expressible using linear constraints,

4For the red wine, distance to solution to the model with extra constraints.

we ask: is it possible to synthesize a set of linear con-
straints that is guaranteed to embrace only feasible solutions?
Obviously, the facets of a convex hull, the smallest convex
superset of the dataset, define such constraints.

Calculating a convex hull is, however, exponential in time
and space with respect to dimensionality, due to the exponential
number of resulting constraints. We calculated the convex hull
of the red wine dataset using the qhull tool [30] which took
about 41 h on a Core i7-5960X CPU, consumed over 40GB
of RAM and resulted in 102 911 486 constraints. We were
unable to calculate the convex hull for white wine dataset due
to insufficient computational resources. Optimizing the convex
hull-based model for the red wine with respect to the same
objective function as above took Gurobi solver [29] 67 h and
consumed 118GB of RAM. Comparing these numbers to the
average of 27 min per each of 30 runs of GOCCS, 11 constraints
of the best model and negligible time needed to optimize this
model, clearly points to the advantages of our method in
terms of required computational resources, interpretability of
the resulting model and ease of its optimization.

The fifth column in Table VI shows the optimal solution
to the convex hull-based QP red wine model. The quality of
this solution is 7.193, 1.125 short of the optimal solution to
the GOCCS red wine model. This is expected, as the convex
hull-based QP model, in contrast to GOCCS QP model, by
definition encloses the dataset in the tightest way possible, and
leaves no margin around the examples. For the same reason, it
is much closer to the examples in the dataset than the solution
to the GOCCS QP model (see the last row of Table VI). In
effect, this solution is “credible” by having quality similar to
the best already known solutions from the dataset and requir-
ing only small changes in the existing business process to be
applied. However, further improvements in this process can-
not be done solely by means of the convex hull, as it remains
unchanged after including this solution in the dataset. GOCCS
is free from this limitation, as it produces models with mar-
gins surrounding examples and thus allowing for improved
solutions.

VII. DISCUSSIONS AND CONCLUSION

The experimental evaluation in Section V and the case
study in Section VI demonstrate that GOCCS proves
effective for synthesis of constraints in a wide range of
operating conditions, for problems with various numbers of
variables, different distributions of variables, and requiring
constraints that vary in number and complexity. The abil-
ity of synthesizing constraints from feasible examples only is
advantageous, as infeasible states may occur rarely in practice
and acquiring a large enough number of them can be costly.
GOCCS fares well without them, as evidenced by the com-
parison with GenetiCS that requires also a sample of infeasible
states (Section V-D).

Accurate placement of the boundary between the feasi-
ble and infeasible states is particularly important for model
optimization, as this is, where the optimal solutions are often
located. Loose constraints that overestimate the feasible region
may lead to optimal solutions that are practically unrealizable.
Too tight constraints, on the other hand, underestimate that

128 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 1, FEBRUARY 2019

region and may result in suboptimal solutions. In absence of
information on the margins between feasible examples and the
constraints, in GOCCS we infer them from the distribution of
feasible examples (see Section IV-C). This leads to tight con-
straints, where feasible examples are densely distributed and
more relaxed ones, where they are sparse, which is consistent
with the principles of statistical sampling stating that estimates
are more precise when the available sample is dense.

The two-objective characterization of desirable properties
of constraints seems to not only yield constraints that quite
accurately delineate the feasible region, but, in combination
with additional checks, naturally keeps complexity at bay.
This advantage becomes particularly evident when confronting
GOCCS with the naive construction of constraints from the
convex hull of feasible examples, which produces exorbi-
tant number of constraints and requires impractical amount
of computing resources (Section VI).

The LP/NLP representation of models synthesized by
GOCCS is easy to interpret and inspect by humans and
directly usable in off-the-shelf solvers. This in turn makes
it easy to adjust or correct models, as demonstrated by aug-
menting the QP model of red wine with extra constraints in
Section VI. Thanks to convex objective functions, large LP
and QP models can be solved efficiently in polynomial time.
This is a qualitative advantage over, e.g., CP models that are
NP-hard to solve. Also LP/NLP solvers support both real and
integer variables, while CP solvers operate in principle on dis-
crete variables and handle real variables by discretizing them
or branching their domains, in either way returning intervals
that only approximately locate an optimal solution.

The main challenge for the method remains to be, unsur-
prisingly, the curse of dimensionality: increasing the number
of variables has systematic detrimental effect on GOCCS
outcomes. Follow-up work on this issue is our priority, as
practical LP/NLP models often feature large numbers of vari-
ables. Extending GOCCS with some form of dimensionality
reduction seems to be most natural. Other future work includes
improvement of GP search performance by employing seman-
tic GP methods [31]–[33] or use of other types of evolutionary
algorithms, e.g., as in [34].

REFERENCES

[1] T. P. Pawlak and K. Krawiec, “Synthesis of mathematical programming
constraints with genetic programming,” in Proc. 20th Eur. Conf. Genet.
Program. (EuroGP), vol. 10196, Apr. 2017, pp. 178–193.

[2] T. P. Pawlak and K. Krawiec, Automatic synthesis of constraints from
examples using mixed integer linear programming,” Eur. J. Oper. Res.,
vol. 261, no. 3, pp. 1141–1157, 2017.

[3] T. Helmuth, L. Spector, and J. Matheson, “Solving uncompromising
problems with lexicase selection,” IEEE Trans. Evol. Comput., vol. 19,
no. 5, pp. 630–643, Oct. 2015.

[4] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002, doi: 10.1109/4235.996017.

[5] C. Bessiere, R. Coletta, F. Koriche, and B. O’Sullivan, A
SAT-Based Version Space Algorithm for Acquiring Constraint
Satisfaction Problems. Heidelberg, Germany: Springer, 2005, pp. 23–34,
doi: 10.1007/11564096_8.

[6] C. Bessiere, R. Coletta, B. O’Sullivan, and M. Paulin, “Query-driven
constraint acquisition,” in Proc. IJCAI, Jan. 2007, pp. 50–55.

[7] C. Bessiere et al., “Constraint acquisition via partial queries,” in Proc.
IJCAI, 2013, pp. 475–481.

[8] A. Aswal and G. N. S. Prasanna, “Estimating correlated con-
straint boundaries from timeseries data: The multi-dimensional German
tank problem,” in Proc. EURO, 2010, pp. 1–17. [Online]. Available:
http://slideplayer.com/slide/7976536/

[9] N. Beldiceanu and H. Simonis, “A model seeker: Extracting global
constraint models from positive examples,” in Principles and Practice
of Constraint Programming (LNCS 7514). Quebec City, QC, Canada:
Springer, Oct. 2012, pp. 141–157.

[10] S. Kolb, “Learning constraints and optimization criteria,” in Proc. AAAI
Workshops, 2016, pp. 403–409.

[11] S. Teso, R. Sebastiani, and A. Passerini, “Structured learning modulo
theories,” Artif. Intell., vol. 244, pp. 166–187, Mar. 2017.

[12] J. M. Hernández-Lobato et al., “A general framework for constrained
Bayesian optimization using information-based search,” J. Mach. Learn.
Res., vol. 17, no. 1, pp. 5549–5601, Jan. 2016. [Online]. Available:
http://jmlr.org/papers/v17/15-616.html

[13] D. M. J. Tax, “One-class classification: Concept-learning in the absence
of counter-examples,” Ph.D. dissertation, Faculty Elect. Eng., Math.
Comput. Sci. Intell. Syst., Delft Univ. Technol., Delft, The Netherlands,
2001.

[14] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn.,
vol. 20, no. 3, pp. 273–297, 1995, doi: 10.1007/BF00994018.

[15] F. Denis, R. Gilleron, and F. Letouzey, “Learning from positive and
unlabeled examples,” Theor. Comput. Sci., vol. 348, no. 1, pp. 70–83,
2005, doi: 10.1016/j.tcs.2005.09.007.

[16] J. R. Quinlan, C4.5: Programs for Machine Learning. San Francisco,
CA, USA: Morgan Kaufmann, 1993.

[17] R. Curry and M. Heywood, “One-class genetic programming,” in
Proc. 12th Eur. Conf. Genet. Program. (EuroGP), vol. 5481, Apr. 2009,
pp. 1–12.

[18] V. L. Cao, M. Nicolau, and J. McDermott, “One-class classification for
anomaly detection with kernel density estimation and genetic program-
ming,” in Proc. 19th Eur. Conf. Genet. Program. (EuroGP), vol. 9594,
Mar./Apr. 2016, pp. 3–18.

[19] Y. Bengio, “Learning deep architectures for AI,” Foundations and
Trends� in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009,
doi: 10.1561/2200000006.

[20] L. Manevitz and M. Yousef, “One-class document classification via
neural networks,” Neurocomputing, vol. 70, nos. 7–9, pp. 1466–1481,
Mar. 2007, doi: 10.1016/j.neucom.2006.05.013.

[21] D. J. Montana, “Strongly typed genetic programming,” Evol. Comput.,
vol. 3, no. 2, pp. 199–230, 1995, doi: 10.1162/evco.1995.3.2.199.

[22] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA, USA: MIT Press, 1992.
[Online]. Available: http://mitpress.mit.edu/books/genetic-programming

[23] D. M. J. Tax and R. P. W. Duin, “Uniform object generation for opti-
mizing one-class classifiers,” J. Mach. Learn. Res., vol. 2, pp. 155–173,
Mar. 2002. [Online]. Available: http://jmlr.org/papers/v2/tax01a.html

[24] C. Rüegg. Math.NET Symbolics. Accessed: Jan. 20, 2018. [Online].
Available: http://symbolics.mathdotnet.com/

[25] G. Kanji, 100 Statistical Tests. London, U.K.: SAGE, 1999.
[26] T. Hothorn, K. Hornik, M. A. van de Wiel, and A. Zeileis. (2015).

Package ’Coin’: Conditional Inference Procedures in a Permutation Test
Framework. [Online]. Available: http://cran.r-project.org/web/packages/
coin/coin.pdf

[27] R. Bellman, Dynamic Programming (Dover Books on Computer
Science). Mineola, NY, USA: Dover, 2013.

[28] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis, “Modeling
wine preferences by data mining from physicochemical properties,”
Decis. Support Syst., vol. 47, no. 4, pp. 547–553, 2009.

[29] Gurobi Optimizer Reference Manual, Gurobi Optim. Inc., Houston, TX,
USA, 2015. [Online]. Available: http://www.gurobi.com

[30] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algorithm
for convex hulls,” ACM Trans. Math. Softw., vol. 22, no. 4, pp. 469–483,
Dec. 1996, doi: 10.1145/235815.235821.

[31] T. P. Pawlak, B. Wieloch, and K. Krawiec, “Semantic backprop-
agation for designing search operators in genetic programming,”
IEEE Trans. Evol. Comput., vol. 19, no. 3, pp. 326–340, Jun. 2015,
doi: 10.1109/TEVC.2014.2321259.

[32] T. P. Pawlak, B. Wieloch, and K. Krawiec, Review and comparative
analysis of geometric semantic crossovers,” Genet. Program. Evolvable
Mach., vol. 16, no. 3, pp. 351–386, Sep. 2015.

[33] T. P. Pawlak and K. Krawiec, Competent geometric semantic genetic
programming for symbolic regression and boolean function synthesis,”
Evol. Comput., Feb. 2017, pp. 1–36.

[34] T. P. Pawlak, “Synthesis of mathematical programming models with
one-class evolutionary strategies,” Swarm Evol. Comput., May 2018.

http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1007/11564096_8
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1016/j.tcs.2005.09.007
http://dx.doi.org/10.1561/2200000006
http://dx.doi.org/10.1016/j.neucom.2006.05.013
http://dx.doi.org/10.1162/evco.1995.3.2.199
http://dx.doi.org/10.1145/235815.235821
http://dx.doi.org/10.1109/TEVC.2014.2321259

PAWLAK AND KRAWIEC: SYNTHESIS OF CONSTRAINTS FOR MP WITH ONE-CLASS GP 129

Tomasz P. Pawlak received Ph.D. degree from the
Poznań University of Technology, Poland, in 2015.

He is currently an Assistant Professor with
the Poznań University of Technology. His cur-
rent research interests include constraint synthesis,
one-class classification, evolutionary computation,
and genetic programming, semantics and program
behavior.

Dr. Pawlak was a recipient of the START
Scholarship from Foundation for Polish Science,
which is one of the most notable scholarships for

young researchers in Poland, and several other awards. More details at
www.cs.put.poznan.pl/tpawlak.

Krzysztof Krawiec received the Ph.D. and
Habilitation degrees from the Poznań University of
Technology, Poland, in 2000 and 2004, respectively.

He is currently an Associate Professor with the
Poznań University of Technology. He has authored
over 100 publications, including Evolutionary
Synthesis of Pattern Recognition Systems in 2005
and Behavioral Program Synthesis With Genetic
Programming in 2016. His current research interests
include semantics and program behavior in genetic
programming, coevolutionary algorithms and test-

based problems, and evolutionary computation for learning game strategies
and for synthesis of pattern recognition systems.

Dr. Krawiec is an Associate Editor of Genetic Programming and Evolvable
Machines. More details at www.cs.put.poznan.pl/kkrawiec.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

