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Abstract. Quantum computing has been attracting increasing atten-
tion in recent years because of the rapid advancements that have been
made in quantum algorithms and quantum system design. Quantum
algorithms are implemented with the help of quantum circuits. These
circuits are inherently reversible in nature and often contain a sizeable
Boolean part that needs to be synthesized. Consequently, a large body of
research has focused on the synthesis of corresponding reversible circuits
and their mapping to the quantum operations supported by the quantum
system. However, reversible circuit synthesis has usually not been per-
formed with any particular target technology in mind, but with respect
to an abstract cost metric. When targeting actual physical implementa-
tions of the circuits, the adequateness of such an approach is unclear.
In this paper, we explicitly target synthesis of quantum circuits at se-
lected quantum technologies described through their Physical Machine
Descriptions (PMDs). We extend the state-of-the-art synthesis flow in
order to realize quantum circuits based on just the primitive quantum
operations supported by the respective PMDs. Using this extended flow,
we evaluate whether the established reversible circuit synthesis methods
and metrics are still applicable and adequate for PMD-specific imple-
mentations.

1 Introduction

Supporting the design of quantum circuits is one of the main applications of re-
versible logic. Quantum circuits [1] promise to significantly speed up solutions for
computing problems of practical interest. This is enabled by quantum mechanical
properties, such as superposition and entanglement. Quantum circuits execute
a sequence of quantum operations. These quantum operations are inherently
reversible. Often, significant parts of a quantum computation (e.g., database
search [2] and modular exponentiation [3]) are Boolean in nature. Thus, lever-
aging existing reversible logic synthesis methods for implementing those parts is
an obvious first step.



Over the past few years, a popular synthesis flow has been to

– realize the desired functionality as a reversible circuit and
– map the resulting reversible circuit to an equivalent cascade of quantum

gates/operations.

A large body of research has been targeted at both these steps (e.g., reversible
circuit synthesis [4–9] and mapping to quantum circuits [10–13]). Most of these
methods target NOT, controlled-NOT, and controlled-V as the set of primitive
quantum operations. This set is popularly referred to as NCV and its use was
originally motivated by one of the first works on reversible-to-quantum circuit
mapping by Barenco et al. [10]. However, several new quantum systems have
emerged in recent years. The ARDA quantum computing roadmap [14] lists
some of them. These systems are described using Physical Machine Descrip-
tions (PMDs) [15]. They describe different technologies for the realization of
quantum circuits based on the respective quantum mechanical properties. More-
over, each PMD supports a specific set of primitive quantum operations. Thus,
mapping a quantum circuit to a PMD is not yet compatible with the established
synthesis flow that targets NCV-based circuit implementations only.

In this work, we investigate and evaluate the applicability of the state-of-the-
art NCV-based synthesis flow, which has emerged over the last 10-20 years, for
mapping quantum circuits to a particular PMD [15]. We first review today’s es-
tablished NCV-based synthesis steps. Then, we propose extensions to this flow,
e.g., mapping schemes from reversible circuits or NCV-based quantum circuits to
PMD-specific quantum circuits, and analyze the circuit cost. Finally, we perform
an experimental evaluation to a) compare synthesis flows with different exten-
sions and b) investigate whether the established synthesis methods and metrics
are still applicable and adequate for the PMD-specific circuit realization. This
can throw light on the drawbacks and provide potential for improvements in
quantum circuit synthesis.

The remainder of this paper is organized as follows. The next section briefly
reviews the basics of quantum and reversible circuits. Then, a review of the
PMDs targeted in this work is provided in Section 3. Section 4 describes the
synthesis flows. First, the state-of-the-art synthesis flow is discussed, followed by
its extension to a PMD-specific synthesis flow. Then, the cost metrics used in
the evaluation are described in Section 5. The evaluation and discussion follow
in Section 6 and the paper is concluded in Section 7.

2 Background

This section reviews the basics of quantum and reversible circuits.

2.1 Quantum Circuits

First, we discuss the preliminaries of quantum logic. Quantum operations ma-
nipulate qubits rather than classical bits. A qubit can represent 0 or 1 as well as
superpositions of the two. More formally:



Definition 1. A qubit is a two-level quantum system, described by a
two-dimensional complex Hilbert space. Two orthogonal quantum states |0〉 ≡

(
1
0

)
and |1〉 ≡

(
0
1

)
are used to represent Boolean values 0 and 1. The state of a qubit

may be written as |x〉 = α|0〉 + β|1〉, where α and β are complex numbers and
|α|2 + |β|2 = 1.

The quantum state of a single qubit is denoted by the vector
(
α
β

)
. The state

of a quantum system with n > 1 qubits is given by the tensor product of the
respective state spaces and can be represented as a normalized vector of length
2n, called the state vector.

According to the postulates of quantum mechanics, the evolution of a quan-
tum system can be described by a series of transformation operations satisfying
the following:

Definition 2. A quantum operation over n qubits can be represented by a uni-
tary matrix, i.e., a 2n × 2n matrix U = [ui,j ]2n×2n with

– each entry ui,j assuming a complex value and
– the inverse U−1 of U being the conjugate transpose matrix (adjoint ma-

trix) U† of U (i.e., U−1 = U†).

Every quantum operation is reversible since the matrix that defines any quantum
operation is invertible. At the end of the computation, a qubit can be measured,
causing it to collapse to a basis state. Then, depending on the current state of
the qubit, either a 0 (with probability |α|2) or a 1 (with probability |β|2) results.
The state of the qubit is destroyed by the act of measuring it.

Example 1. Consider the quantum operation H defined by the unitary ma-
trix H = 1√

2

(
1 1
1 −1

)
, which is the well-known Hadamard operation [1]. Apply-

ing H to the input state |x〉 =
(
1
0

)
, i.e., computing H×|x〉, yields a new quantum

state |x′〉 = 1√
2

(
1
1

)
. In |x′〉, α = β = 1√

2
. Measuring this qubit would either lead

to a Boolean 0 or Boolean 1, each with probability | 1√
2
|2 = 0.5. This computa-

tion represents one of the simplest quantum computers – a single-qubit random
number generator.

Complex quantum operations are usually realized by a quantum circuit, which
executes a series of elementary quantum operations using quantum gates. Such
a composition of gates can be expressed by a direct matrix multiplication of the
corresponding gate matrices. Alternatively, this process can be viewed as the
implementation of a quantum algorithm in which a series of low-level quantum
operations or quantum computational instructions is represented by a sequence
of individual transformation (i.e., gate) matrices.

Example 2. Consider the 3-qubit quantum circuit shown in Fig. 1. It realizes a
2-controlled NOT operation known as the Toffoli gate. More precisely, the basis
states of the third qubit are swapped if and only if the first and second qubits
are in the |1〉-state. Conventionally, horizontal lines represent qubits. Operations
H (as in Example 1), T with T =

(
1 0
0 eiπ/4

)
, (CNOT ), etc. are applied

successively from left to right.
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Fig. 2. A reversible circuit

Several libraries of quantum operations have been presented in the literature.
From a theoretical point of view, the set of arbitrary one-qubit gates (unitary 2×2
matrices) and a single 2-qubit gate, namely the controlled-NOT (CNOT ) gate,
is sufficient to approximate any quantum operation to an arbitrary precision [1].
However, the technologies that are actually used for the physical realization of
quantum circuits support a small subset of quantum operations only. This is
discussed in more detail in Section 3. Moreover, these technologies are much
more fault-prone than classical technologies since the phenomenon of quantum
decoherence forces the qubit states to decay – resulting in a loss of quantum
information. To address this issue, specific fault-tolerant (FT) quantum gate
libraries have been presented for the synthesis of quantum circuits.

2.2 Reversible Circuits

A special case of unitary matrices are permutation matrices. These matrices
only contain entries 0 and 1 (there is a single 1 in every row/column) and rep-
resent classical reversible functions, i.e., Boolean functions f : Bn → Bn that
map each input pattern to a unique output pattern. In other words, reversible
functions are bijections that perform a permutation of the set of input patterns.
A large body of research has focused on synthesizing initial representations of
reversible functions, e.g., in terms of truth tables, two-level representations, bi-
nary decision diagrams, and permutation matrices, to reversible circuits [4–9].
These circuits commonly consist of a set of lines (corresponding to qubits) and
reversible gates. The most established type of reversible gates is the multiple-
controlled Toffoli (MCT) gate. MCT gates consist of a possibly empty set of
control lines and a single target line that is inverted if and only if all control
lines carry the value 1. Note that the MCT gate library also includes the special
cases of NOT (empty set of controls) and controlled-NOT (CNOT ) gates (sin-
gleton set of controls). For historical reasons and for brevity, we will simply use
Toffoli gate to refer to the 2-controlled Toffoli gate.

Example 3. Consider the reversible circuit shown in Fig. 2 that realizes a modulo
10 counter. More precisely, if the input – taken as a binary number dcba2 – is
less than or equal to (the decimal number) 10, then the output is incremented
and taken modulo 10, i.e., the output is ((dcba + 1)%10)2. For binary numbers
larger than 10, the circuit does not behave according to this formula. However,
it is clear that – due to reversibility – the output also has to be larger than 10.

It is a common phenomenon that, as in the previous example, reversible circuits
have a meaningful output only for a subset of the input patterns. This is because
many reversible functions are obtained by embedding an irreversible function
into a reversible one [16], by adding extra input/output lines in order to ensure
a bijective mapping.



3 Physical Machine Descriptions

The physical realization of quantum circuits is a difficult task – especially for
circuits with a large number of qubits [1]. It needs well-formed qubit states and
their transformation through the time-dependent Hamiltonian of the physical
system [1]. In general, a quantum circuit implements the unitary operator corre-
sponding to the Hamiltonian evolution of the qubit states. A quantum technology
describes a physical system for qubit realization and a set of primitive quantum
operations for realizing the Hamiltonian. A broad survey of quantum systems has
been conducted in the ARDA quantum computing roadmap [14]. This motivates
the consideration of Physical Machine Descriptions (PMDs) [15]. Each PMD is
different in terms of its quantum mechanical properties. This leads to different
Hamiltonians and, hence, a different set of supported (primitive) operations.

In this work, we target PMDs of six quantum systems, namely Quantum
Dots (QD), Superconducting Qubits (SC), Ion Traps (IT), Neutral Atoms (NA),
Linear Photonics (LP), and Non-linear Photonics (NP). In this section, we pro-
vide a brief review of these quantum systems1. Then, we summarize the primitive
quantum operations supported by the respective PMDs. This provides the basis
for a detailed consideration of synthesis issues in the remainder of this paper.
The targeted PMDs are described next.

– Quantum Dots (QD)
In this system, a qubit is defined by the spin state of a single-electron quan-
tum dot, which is confined by electrostatic potential. The desired quantum
operations are implemented by gating of the tunneling barrier between neigh-
boring dots [17].

– Superconducting Qubits (SC)
In a superconducting system, a qubit is simply represented by the two ro-
tation directions of the persistent super-current of Cooper pairs in a super-
conducting ring containing Josephson tunnel junctions [18]. The state of a
qubit is defined by a distribution of voltages or currents, each characterized
by an amplitude and phase, which are functions of time.

– Ion Traps (IT)
Ion-trap quantum computation can be implemented by confining a string of
ions in a single trap, exploiting their electronic states as qubit logic levels,
and using mutual Coulomb interaction for transferring quantum information
between ions [19].

– Neutral Atoms (NA)
A system of trapped neutral atoms is a good candidate for implementing
scalable quantum computing [20] [21]. That the atoms are neutral means that
they are feebly coupled to the environment. Hence, decoherence is minimized.
Trapped atoms can be cooled to the motional ground state of the quantized
potential wells, and the initialization of the internal atomic states can be
performed using standard techniques of laser spectroscopy. The different
qubit levels can be described by various motional and internal states of the
neutral atoms.

1 We keep the respective descriptions brief, but provide references for further reading.



Table 1. Primitive quantum operations supported by different PMDs

PMD One-qubit operations Two-qubit operations

QD Rx, Rz, σx, σz, S, T CZ
SC Rx, Ry, Rz iSWAP , CZ
IT Rxy, Rz G
NA Rxy CZ
LP Rx, Ry, Rz, σx, σy, σz, S, T , H CNOT , CZ, SWAP , ZENO
NP Asqu, Rx, Ry, Rz, H CNOT

– Linear Photonics (LP)
In linear photonics, the qubits are represented by the quantum state of single
photons. Quantum logic gates can be constructed using only linear optical
elements, such as mirrors and beamsplitters, additional resource photons,
and triggering signals from a single-photon detector [22].

– Non-Linear Photonics (NP)
In nonlinear photonics, quantum logic gates are implemented using inter-
actions of photons with nonlinear photonic crystals. The photonic crystals
include layers of a Kerr medium [23] and, thus, perform a nonlinear shift of
the photonic wave function.

Each of the PMDs described above relies on a different quantum mechanical
property and, hence, a different set of supported (primitive) quantum operations.
Table 1 provides a list of supported one-qubit and two-qubit operations [15].
More precisely:

– Rx, Ry, and Rz realize rotations around the x, y, and z axis of the Hamil-
tonian, respectively. They are parametrized by a rotation angle θ. The cor-
responding matrices are

Rx(θ) =
( cos( θ2 ) −i sin(

θ
2 )

−i sin( θ2 ) cos( θ2 )

)
, Ry(θ) =

( cos( θ2 ) − sin( θ2 )

sin( θ2 ) cos( θ2 )

)
, and Rz(θ) =

(
e−i

θ
2 0

0 ei
θ
2

)
.

For FT implementations, the angle θ must be a multiple of π
4 [24].

– The Pauli operations σx (=NOT), σy, and σz (sometimes also denoted by
X, Y , and Z) are special cases of these rotations for θ = π (up to global
phase, i.e., a physically indistinguishable multiplicative factor).

– S =
(
1 0
0 i

)
and T =

(
1 0
0 eiπ/4

)
are special cases of the Rz gate with rotation

angle θS = π
2 and θT = π

4 , respectively (also up to global phase).
– Rxy and Asqu are multi-rotation gates with two parameters. For our purpose,

it is sufficient to know that Rx and Ry are special cases of Rxy and that Rz
rotations can be implemented by two Rxy rotations.

– In the case of two-qubit operations, it is sufficient to know about opera-
tions CZ and G, which perform phase shifts. CZ denotes the controlled-Z
operation (defined analogously to the controlled-NOT operation). It is rep-
resented by the 4 × 4 diagonal matrix CZ = diag(1, 1, 1,−1), whereas the
parametrized G operation is represented by G(θ) = diag(1, eiθ, eiθ, 1).

These different PMD-specific sets of supported operations pose a significant
challenge for synthesis: mapping of the circuit has to be performed to each PMD
separately. Most existing synthesis methods do not target the gate libraries given



in Table 1. Hence, in the remainder of this paper, we address the question of how
we can utilize existing synthesis flows for the synthesis of PMD-specific quantum
circuits.

4 Synthesis Flow

Since synthesis of quantum circuits is a complex task, many (automatic) meth-
ods employ a synthesis flow that does not directly realize the given quantum
functionality, but employs a multiple-step approach. For this purpose, two main
characteristics are exploited, namely

– many important quantum algorithms, like Grover’s database search algo-
rithm [2] and Shor’s factorization algorithm [3], contain a considerable re-
versible (Boolean) component that needs to be synthesized, and

– all quantum operations are inherently reversible.

Consequently, the quantum functionality of Boolean components are first re-
alized as a reversible circuit, rather than a quantum circuit. This significantly
reduces synthesis complexity. Besides, a huge variety of synthesis approaches is
already available (e.g., [4–9]). Then, the resulting reversible circuit is mapped to
an equivalent quantum circuit representation.

In this section, we first review this established synthesis flow and its cur-
rent assumptions. Then, we discuss how this flow can be extended to obtain
PMD-specific realizations that can be executed in the respective technologies.
A comparison of these different extensions at a theoretical level (with respect
to the resulting cost metrics) as well as through an experimental evaluation will
follow in Sections 5 and 6, respectively.

4.1 State-of-the-art Synthesis

The established synthesis flow for quantum circuits is sketched by solid lines
and boxes in Fig. 3. Starting with the desired functionality (e.g., provided in
the form of truth tables, two-level representations, binary decision diagrams, or
permutation matrices), the first step is to generate a reversible circuit realizing
the corresponding function (Step (a) in Fig. 3). A large body of research has
focused on this step [4–9].

In the following step, the resulting reversible circuit is mapped to an equiv-
alent quantum circuit representation (Step (b) in Fig. 3). The key to this task
can be found in the seminal work by Barenco et al. [10] for realizing the Toffoli
gate at the quantum level. This is done using the NCV library that is composed
of

– NOT gates,
– controlled-NOT (CNOT ) gates, as defined in Section 2,
– controlled-V gates that are defined analogously, but, when activated, per-

form the operation V = 1+i
2

(
1 −i
−i 1

)
, and

– controlled-V† gates2 that realize the inverse operation V† = 1−i
2

(
1 i
i 1

)
.

2 Since two V gates or two V† gates in a sequence realize a CNOT operation, their
corresponding operation is usually called “the square root of NOT”.
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Intermediate Circuit (NCT)
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PMD level optimization

(MCT2PMD)

(NCV2PMD)

Fig. 3. Synthesis flow for reversible circuits

Fig. 4 shows the mapping of the Toffoli gate (with two control lines) to the
NCV library. This mapping can be extended to MCT gates. A naive way to do
this would be to decompose the MCT gate into a cascade of Toffoli gates that
can, in turn, be mapped to the NCV library (Fig. 4). However, researchers have
come up with highly optimized, direct mapping of MCT gates to the NCV library
(e.g., [10–13]). These mapping methods have had a significant impact on how
reversible circuits are optimized. In fact, the number of NCV gates required to
realize an MCT gate has become a major optimization criterion for the synthesis
of reversible circuits in Step (a). This has led to NCV library based quantum cost
to become a widely accepted cost metric for evaluating reversible circuits.

4.2 PMD-specific Synthesis

Quantum circuits can be mapped to PMDs in a manner similar to how they are
mapped to the NCV library, i.e., actual synthesis is conducted at the reversible
circuit level whereas the desired PMD-specific circuit is obtained through a map-
ping scheme. Since PMD-specific mappings tend to create the potential for fur-
ther circuit minimization at the PMD level, another optimization step is usually
carried out at this level [15, 24, 25].

=
V V V †

Fig. 4. Quantum level decomposition of the Toffoli gate [10]



The above considerations lead to the synthesis flow for PMD-specific quan-
tum circuits sketched by dashed lines and boxes in Fig. 3. More precisely, the
mapping to PMD-specific circuits can be accomplished in two ways, namely by

– a mapping from a reversible circuit based on MCT gates (MCT2PMD) or

– a mapping from the NCV library based quantum circuit (NCV2PMD).

As neither the MCT nor the NCV library is directly supported by any of the
PMDs (see Table 1), both approaches eventually require a mapping scheme of
the respective gates from these libraries to the PMD level. However, since it is
already a challenging task to find corresponding mappings for gates operating
on a small number of qubits, we do not aim to obtain direct mappings for large
MCT gates with more than two control lines. Instead, we propose to employ
the decomposition of large MCT gates into cascades of Toffoli gates [10]. In
this way, an arbitrary MCT gate can be implemented using the reduced NCT
library composed of only N OT, C ontrolled-NOT, and Toffoli gates. With this
intermediate representation, a mapping to the PMD level is finally required for
only three gates (NCT). Moreover, these mappings can be reused to also generate
PMD-specific circuits from NCV representations – only one additional mapping,
namely for controlled-V gates, is required for this purpose3.

Mappings for the controlled-NOT, controlled-V, and Toffoli gates are shown
in Fig. 5, Fig. 6, and Fig. 7, respectively4. Note that the presented mappings
employ an FT quantum gate library [24]. Cheaper mappings are available when
dropping the FT implementation requirement [15]. However, as faults are a major
concern in quantum circuits, the use of FT quantum gates is important. To this
end, the FT gate library which we employ here is ideal to use with quantum
error-correcting (QEC) codes as it is closely related to the Clifford+T library
(as also discussed in [24]). In fact, some post-processing is necessary to use a
specific QEC code, but this is beyond the scope of this paper.

The above mappings enable the application of the two proposed schemes,
MCT2PMD and NCV2PMD, for the synthesis of quantum circuits for direct
execution on the corresponding PMD. We have summarized the respective costs
of single NCT/NCV gates for each PMD in Table 25. As can be seen, the costs
are significantly different across PMDs. Even more importantly, the actual costs
of implementing a CNOT , controlled-V, and Toffoli gate are up to a factor of
8 higher than in the case of the NCV library based quantum cost. The conse-
quences of these cost differences will be further analyzed in the following section.
Then, the efficiency of both schemes will be compared through an experimental
evaluation in Section 6.

3 Note that mappings for the controlled-V† gate are not needed explicitly as they
can be derived by applying the corresponding mapping of the controlled-V gate in
reverse order and with inverted gates.

4 Mappings for the CNOT gate were presented earlier in [15], however, are shown
here for the sake of completeness.

5 Recall that an Rz rotation is implemented by two Rxy rotations in NA. Consequently,
an Rz operation has a gate count of 2.



(a) LP&NP

Ry(−π2 ) Z Ry(
π
2 )

(b) SC&NA

Rz(
3π
2 ) Rx(

3π
2 )

Rz(
3π
2 )

G(π2 ) Ry(π)

(c) IT

Rz(
π
2 ) Rx(

π
2 ) Z Rx(

3π
2 ) Rz(

3π
2 )

(d) QD

Fig. 5. Mapping a CNOT to PMDs

Rz(
5π
4 )

Ry(
3π
2 ) Rz(

5π
4 ) Rz(

3π
4 ) Ry(

π
2 )

(a) LP&NP

Rz(
5π
4 )

Ry(π) Rx(
3π
4 ) Z Rx(

5π
4 ) Z Ry(π)

(b) SC&NA

Rz(
π
4 )

Rx(
π
4 ) G(π2 ) Ry(

3π
4 ) G(π2 ) Ry(π)

(c) IT

Rz(
5π
4 )

Rx(
π
4 ) Z Rx(

3π
4 ) Z Rx(π)

(d) QD

Fig. 6. Mapping of controlled-V gate to PMDs

Z

Rz(
π
4 )

Rz(
π
4 )

Rx(
7π
4 ) Z Rx(

π
4 ) Z Rx(

7π
4 ) Z

Rz(−π4 )

Rx(
π
4 )

(a) LP

Rz(
−π
4 )

Rz(π) Ry(
π
2 )

Rz(
−π
4 )

Rz(
π
4 )

Rz(
π
4 )

Rz(
−π
4 )

Rz(
3π
4 )

Rz(
π
4 )

Ry(
π
2 )

(b) NP

Rz(
π
4 )

Rz(
π
4 )

Z Rx(
7π
4 ) Z Rx(

π
4 ) Z

Ry(
3π
2 ) Z

Rx(
7π
4 ) Z

Rx(
π
4 ) Z Ry(

π
2 )

Rx(
π
4 )

(c) SC&NA

Rz(
5π
4 )

Rz(
5π
4 )

Rx(
π
4 ) G(π2 ) Ry(

7π
4 ) G(π2 ) Rx(

7π
4 ) G(π2 ) Ry(

π
4 ) G(π2 )

Ry(
π
2 ) G(π2 ) Ry(

3π
4 ) G(π2 ) Ry(

π
2 )

(d) IT

Rz(
π
4 )

Rz(
3π
4 )

Z Rx(
7π
4 ) Z Rx(

π
4 ) Z

Rx(
π
2 ) Rz(

π
2 ) Z

Rx(
7π
4 ) Z

Rx(
7π
4 ) Rz(

π
2 ) Z Rx(

π
2 )

Rx(
π
4 )

Rz(
π
2 )

(e) QD

Fig. 7. Mapping of Toffoli gate to PMDs



Table 2. Gate counts of the mappings from Figs. 5-7

PMD NOT controlled-NOT controlled-V Toffoli

QD 1 5 6 18
SC 1 3 7 15
IT 1 5 6 15
NA 1 3 8 17
LP 1 1 7 13
NP 1 1 7 16

NCV 1 1 1 5

5 Resulting Cost Metrics for MCT Circuit Synthesis

In the previous section, we proposed two different extensions to the state-of-the-
art synthesis flow to obtain quantum circuits that can be executed on particular
PMDs. More precisely, in the MCT2PMD scheme, MCT circuits are, first, trans-
formed to an intermediate representation in terms of NCT gates which are, then,
mapped step-by-step to their respective PMD implementations. In contrast, in
the NCV2PMD scheme, highly optimized NCV circuits are mapped directly to
the particular PMD.

We observed that the PMD-specific costs of NCV and NCT gates are sub-
stantially higher compared with the usually applied NCV library based quantum
costs. As a consequence, MCT gates – which are the actual input of both syn-
thesis schemes – are significantly more expensive when realized on PMDs and
the PMD-specific costs differ significantly for the various technologies. Hence,
the NCV library based cost metric is no longer valid for PMD-specific synthesis.
This poses a problem since NCV library based costs are commonly used in al-
most all synthesis approaches aimed at generating MCT circuits. Consequently,
it could have a significant impact on the synthesis process if PMD-specific cost
metrics were used when synthesizing MCT circuits.

In fact, the two mapping schemes give rise to their own dedicated cost metrics,
as shown in Table 3. Here, the first column denotes the number of control lines
of the MCT gate. In the following columns, the costs for the MCT2PMD scheme
are given. In the first three columns, the required numbers of NOT, CNOT , and
Toffoli gates for realizing the corresponding MCT gate in the NCT library are
provided (based on the decomposition in [10]). Based on these numbers, PMD-
specific costs are computed using Table 2 and presented in the following six
columns. In the remainder of the table, this procedure is likewise performed for
the NCV2PMD scheme: first, the numbers of NOT, CNOT , and controlled-V
gates are obtained (based on the state-of-the-art mapping [12]) and, then, the
PMD-specific costs are computed and shown in the remaining columns.

Overall, the numbers indicate a significant difference between the two map-
ping schemes with a clear advantage for NCV2PMD. However, the actual dif-
ference between the two approaches and comparison with NCV library based
quantum costs need to be evaluated in practice, especially with respect to op-
timization performed at the PMD level after technology mapping. This experi-
mental evaluation is conducted in the following section.



Table 3. PMD-specific cost metrics for MCT gates

MCT2PMD NCV2PMD
#Contr. N C T QD SC IT NA LP NP N C V QD SC IT NA LP NP

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 5 3 5 3 1 1 1 5 3 5 3 1 1
2 1 18 15 15 17 13 16 2 3 28 27 28 30 23 23
3 4 72 60 60 68 52 64 4 10 80 82 80 92 74 74
4 8 144 120 120 136 104 128 4 16 116 124 116 140 116 116
5 12 216 180 180 204 156 192 8 24 184 192 184 216 176 176
6 26 468 390 390 442 338 416 8 36 256 276 256 312 260 260
7 32 576 480 480 544 416 512 12 44 324 344 324 388 320 320
8 40 720 600 600 680 520 640 14 62 442 476 442 538 448 448
9 48 864 720 720 816 624 768 18 70 510 544 510 614 508 508

10 56 1008 840 840 952 728 896 20 88 628 676 628 764 636 636

6 Experimental Evaluation

In this section, we summarize the experimental evaluations conducted using the
newly proposed synthesis flows: MCT2PMD and NCV2PMD. More precisely,
we investigate which of the two flows actually performs better. In addition, we
also evaluate the difference between the commonly used NCV library based cost
metric and the PMD-specific cost metrics presented in the previous section.

We synthesized various MCT circuits from the RevLib benchmark suite [26]
as PMD-specific quantum circuits using both flows. More precisely, we synthe-
sized medium-sized circuits with an NCV library based quantum cost in the 100
to 15,000 range, such that, on the one hand, the circuits are large enough to
enable a meaningful evaluation and, on the other hand, are still amenable to the
application of highly elaborate NCV optimization.

We used the state-of-the-art NCV library based mapping scheme presented
in [12] to generate the NCV circuits for the NCV2PMD scheme. This scheme
uses optimized mappings for MCT gates and then performs several heuristic
optimizations on the resulting NCV circuit. In both approaches, we used the
FTQLS tool [24] – enriched by the FT mappings presented in Section 4.2 –
to generate the FT PMD-specific implementations from the NCV and NCT
circuits. After this mapping, additional optimization steps, as described in [24],
are performed.

6.1 Comparison of the Synthesis Flows

In the first evaluation, we compared the efficacy of the two proposed synthesis
flows with respect to circuit cost. The results are summarized in Fig. 8. In each
graph, the y axis represents the quantum cost when using the MCT2PMD map-
ping, whereas the x axis represents the quantum cost when using the NCV2PMD
mapping. The diagonal line represents the cost equilibrium, i.e., circuits that
have the same cost for both mapping schemes appear on this line. Circuits that
can be realized cheaper with the MCT2PMD scheme than with the NCV2PMD
scheme appear below this line, whereas circuits that can be realized cheaper
with the NCV2PMD scheme than with the MCT2PMD scheme (modulo better
future mappings of MCT gates in the latter scheme) appear above this line.



(a) QD (b) SC

(c) IT (d) NA

(e) LP (f) NP

Fig. 8. MCT2PMD vs. NCV2PMD



(a) MCT2PMD

(b) NCV2PMD

Fig. 9. NCV library based quantum cost vs. PMD-specific cost

In summary, a small advantage of the NCV2PMD scheme can be observed
for all PMDs as indicated by the cost metric presented in Section 5.

6.2 Comparison of PMD and NCV Costs

In the second evaluation, we were interested in the difference between the NCV
library based quantum costs and the two PMD-specific quantum costs (as pro-
posed in Section 5). This is of particular interest because, thus far, reversible
circuits are still being optimized with respect to an NCV library based cost met-
ric. Hence, it is important to understand whether and, if so, what differences
exist between these cost metrics.

For this purpose, we compared the obtained NCV library based quantum
costs of the initial MCT benchmark circuits to their PMD-specific costs. The re-
lationship between these costs is summarized in Fig. 9 for both mapping schemes.
The x axis depicts benchmarks circuits, whereas the y axis provides the ratio of
the PMD costs to the NCV costs. Average values and standard deviations for
all PMDs are shown in Table 4.

First of all, we observe that for many circuits the cost ratio is close to the
average value, i.e., the real cost of the circuit differs from the estimated NCV
library based cost only by a constant, PMD-specific, multiplicative factor. This
holds for both the MCT2PMD and NCV2PMD mapping schemes. In these cases,
NCV library based quantum cost can be used as a useful proxy for actual cost
estimation. However, there are several circuits that significantly deviate from
the average, both towards the top and the bottom. In these cases, using NCV
library based quantum cost is not an adequate proxy.



Table 4. Statistics for the ratio between PMD-specific and NCV library based cost

MCT2PMD QD SC IT NA LP NP

Average value 4.54 3.90 3.78 4.27 3.35 3.63
Standard deviation 0.95 0.85 0.70 0.97 0.78 0.79

NCV2PMD QD SC IT NA LP NP
Average value 2.89 2.61 2.28 2.70 2.40 2.40

Standard deviation 0.68 0.61 0.55 0.63 0.56 0.56

Overall, the use of PMD-specific cost metrics as optimization criterion is
likely to lead to MCT circuits that are better suited for a later mapping to
PMDs. Nevertheless, the currently popular NCV library based cost metric may
still serve as a useful approximation.

7 Conclusions

In this paper, we considered the design of PMD-specific quantum circuits. PMDs
correspond to quantum systems whose quantum mechanical properties are used
to implement quantum circuits. As part of its specification, each PMD sup-
ports only a restricted set of primitive quantum operations. Consequently, when
synthesizing quantum circuits for these PMDs, the specific gate library has to
be taken into account. The commonly used synthesis flow for quantum circuits
employs a multiple-step scheme in which a reversible circuit (based on MCT
gates) is realized first and then mapped to an equivalent cascade of quantum
gates. However, this mapping leads to NCV library based quantum circuits that
are not directly supported by any of the PMDs. To overcome this problem, we
proposed extensions to the existing synthesis flow aimed at synthesis of PMD-
specific quantum circuits. To this end, we proposed FT mappings to the PMD
level for various quantum gates (from the NCV and the NCT library). An anal-
ysis showed that these mappings lead to much higher costs for the realization of
MCT gates compared to the commonly used NCV library based quantum costs.
An experimental evaluation indeed indicated that there is no simple relation
between PMD-specific and NCV library based cost. This motivates the need for
a more detailed consideration of PMD-specific synthesis at the reversible circuit
level based on the metrics proposed in this work.
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