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Abstract A series of metal complexes of Cu(II), Ni(II), Co(II), Fe(III) and Mn(II) have been syn-

thesized with newly synthesized biologically active tridentate ligand. The ligand was synthesized by

condensation of dehydroacetic acid (3-acetyl-6-methyl-(2H) pyran-2,4(3H)-dione or DHA),

o-phenylene diamine and fluoro benzaldehyde and characterized by elemental analysis, molar con-

ductivity, magnetic susceptibility, thermal analysis, X-ray diffraction, IR, 1H-NMR, UV–Vis spec-

troscopy and mass spectra. From the analytical data, the stoichiometry of the complexes was found

to be 1:2 (metal:ligand) with octahedral geometry. The molar conductance values suggest the non-

electrolyte nature of metal complexes. The IR spectral data suggest that the ligand behaves as a

dibasic tridentate ligand with ONN donor atoms sequence towards central metal ion. Thermal

behaviour (TG/DTA) and kinetic parameters calculated by the Coats–Redfern and Horowitz–

Metzger method suggest more ordered activated state in complex formation. To investigate the
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relationship between stability constants of metal complexes and antimicrobial activity, the dissoci-

ation constants of Schiff bases and stability constants of their binary metal complexes have been

determined potentiometrically in THF–water (60:40%) solution at 25 ± 1 �C and at 0.1 M NaClO4

ionic strength. The potentiometric study suggests 1:1 and 1:2 complexation. Antibacterial and anti-

fungal activities in vitro were performed against Staphylococcus aureus, Escherichia coli and Asper-

gillus niger, Trichoderma, respectively. The stability constants of the metal complexes were

calculated by the Irving–Rosotti method. A relation between the stability constant and antimicro-

bial activity of complexes has been discussed. It is observed that the activity enhances upon com-

plexation and the order of antifungal activity is in accordance with stability order of metal ions.

ª 2014 King Saud University. Production and hosting by Elsevier B.V.

Open access under CC BY-NC-ND license.
1. Introduction
The Schiff base ligands and their metal complexes find applica-
tions in the fields of food and dyes industry, agriculture, ana-

lytical chemistry, catalysis, polymer sciences, biological science
as antimicrobial agents, medical science as anticancer, antisep-
tic, antidiarrhoeal, antiulcer agents, in liquid crystal devices

(LCD), metal corrosion inhibition and as myocardial perfu-
sion imaging agents (Koubek et al., 1966). These compounds
are regarded as the model system of biochemical interest

(Dey, 1974). Various studies have shown that, the azomethine
group (>C‚N–) in Schiff base metal complexes has consider-
able biological significance and found to be responsible for

biological activity such as fungicidal and insecticidal (Popp,
1961). Schiff bases of amino guanidine and aromatic aldehydes
were studied for their antiviral, tuberculostatic and antipolio-
virus activities (Mane et al., 2001).

The structural and interesting biological properties of
DHA appeal to inorganic chemists working in the field of
coordination chemistry. Schiff bases and their metal com-

plexes exhibit a wide range of biological activities and various
structural features. In view of the enormous importance of
DHA and its metal complexes it is thought worthwhile to

synthesize the Schiff base of DHA and its metal complexes.
One of the oxygen heterocyclic compounds 3-acetyl-
6-methyl-2H-pyran 2,4(3H)-dione (DHA) was reported to

be an excellent chelating agent and possesses promising fun-
gicidal, bactericidal, herbicidal and insecticidal activities
(Suryarao et al., 1978, 1980; Schleiffenbaum et al., 1992;
Stanley et al., 1996). It is also a versatile starting material

for the synthesis of a wide variety of heterocyclic ring systems
(Levai and Jeko, 2006).

The structural and interesting biological properties of DHA

appeal to inorganic chemists working in the field of coordina-
tion chemistry. In view of the enormous importance of DHA
and its metal complexes it is thought worthwhile to synthesise

the Schiff bases of DHA and their metal complexes. Literature
survey reveals that little attention has been given on tridentate
Schiff bases of DHA containing ONN donor systems. In con-
tinuation of our earlier work (Munde et al.,2009, 2010;Halpern

et al., 1971; Shirodkar et al., 2001), we have prepared triden-
tate Schiff base and its metal complexes, whose structure
agrees with the above mentioned structural and coordinative

patterns for biological activity. The solid complexes of Cu(II),
Ni(II), Co(II), Fe(III) and Mn(II) with this ligand have been
prepared and characterized by different physicochemical meth-

ods. Stability constants of these complexes are also determined
potentiometrically. The structure-activity correlation of Schiff
base and its metal complexes is discussed on the basis of their

stability constants.

2. Experimental

o-Phenylenediamine and benzaldehyde AR grade were used for
synthesis of ligand. DHA (Purity P 99%) was purchased from

E. Merk and used as supplied. AR grade metal nitrates were
used for complex preparation. AR grade solvents were used
for spectral measurements. The carbon, hydrogen and nitrogen

contents were determined on Perkin–Elmer (2400) CHNS ana-
lyzer. IR spectra in the range of 4000–400 cm�1 were recorded
on Jasco FT-IR-4100 spectrometer using KBr pellets. 1H-
NMR spectra of the ligand was recorded in CDCl3 using

TMS as an internal standard. The TG/DTA and XRD were re-
corded on Perkin–Elmer TA/SDT-2960 and Philips 3701,
respectively. The UV–Vis spectra of the complexes were re-

corded on JascoUV-530 Spectrophotometer. Magnetic suscep-
tibility measurements of the metal complexes were done on a
Guoy balance at room temperature using Hg.[Co(SCN)4] as

calibrant. Molar conductance of complexes was measured on
Elico CM-180 conductometer using 1 mM solution in dimethyl
sulphoxide. Elico digital pH metre (model Li-127) equipped

with a CL-51B combined electrode was used for pH measure-
ments. The pH metre was calibrated against standard buffers
(pH 4.02 and 9.18) before measurements. pH metre readings
were corrected for organic-aqueous media. Titrations were per-

formed in a double walled glass cell in an inert atmosphere
(nitrogen) at ionic strength of 0.1 M (NaClO4). The solutions
were titrated pH metrically against (0.2 N) NaOH.

2.1. General procedure for the synthesis of ligand

2.1.1. Step I
The ligand was prepared by modification of reported method
(Jha and Joshi, 1984; Qayyoom et al., 1982) In a 50 mL

solution of 0.001 mol (0.168 g) of DHA, 0.001 mol (0.108 g)
of o-phenylenediamine was refluxed in super dry ethanol for
about 3 h. Then it was cooled to room temperature. On

cooling, the solid white colored intermediate compound,
mono-Schiff base was obtained with 80% yield.

2.1.2. Step II
0.001 mol of intermediate (0.258 g) was then refluxed with
0.001 mol (0.10 mL) of fluoro benzaldehyde (0.107 mL) in

super dry ethanol for 6 h. The precipitate thus formed was fil-
tered, dried in vacuum over CaCl2 and recrystallised in ethanol
(yield: 73%).
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2.2. General procedure for the synthesis of metal complexes

To a hot methanolic solution (0.02 mol) of ligand in (25 mL)
methanolic solution, (25 mL) of metal nitrate (0.01 mol) was

added with constant stirring. The pH of reaction mixture
was adjusted to 7.5–8.5 by adding 10% alcoholic ammonia
solution and refluxed for about 3 h. The precipitated solid me-

tal complex was filtered off in hot condition and washed with
hot methanol, petroleum ether (40–60 �C) and dried over cal-
cium chloride in a vaccum dessicator (yield 62%).

2.3. Potentiometric study

Since the Schiff base and its metal complexes were found to be

either insoluble or sparingly soluble in water, a reaction mix-
ture consisting (60:40) THF–water solution was used as a sol-
vent for potentiometric studies. THF used in the present

investigation was obtained from E. Merk and was further puri-
fied by known literature method (Vogel, 1989). All metal ion
solutions were prepared from their AR grade metal nitrates

and standardized by known literature methods. A standard
0.2 N NaOH solution (E. Merk) was used for titrations. Stan-
dard solutions of AR grade HClO4, NaClO4 (1.0 M) were pre-
pared and standardized by known methods (Ramarao et al.,

1985). The ligand solution (0.1 M) was prepared in distilled
THF.
3. Results and discussion

The analytical data of ligand and metal complexes is given in

(Table 1). The elemental analysis show 1:2 (metal:ligand) stoi-
chiometry for the complexes. It corresponds well with the gen-
eral formula [ML2] where M = Cu(II), Ni(II), Co(II), Mn(II)

and Fe(III). The magnetic susceptibilities of all complexes at
room temperature are found to be consistent with octahedral
geometry. The metal complex solutions in DMSO show low
conductance which supports their non electrolyte nature.

3.1. 1H-NMR spectra of ligand

The 1H-NMR spectra of the ligand was recorded in CDCl3. It
shows following signals at 2.18d, (s, C6–CH3), 2.55d (s, 3H,
Table 1 Physico-analytical data of ligand and metal compounds.

Compound/complexes M.p. (�C) Colour K (X�1 cm1c

HL 182 Cream –

White

CuL2 265 Green 13.45

NiL2 >300 Yellow 11.02

CoL2 245 Brown 15.03

FeL2 255 Brown 12.02

MnL2 277 Brown 17.24

HL= Schiff base ligand, 10�3 M solution in DMF.
N‚C–CH3), 5.8d (s, 1H, C5–H), 7.3–8.0 (m, 8H, phenyl),

8.8d (s, 1H, N‚C–H) and 15.87d (s, 1H, enolic OH of DHA
moiety).

3.2. Mass spectra of the ligand

Mass spectral data confirmed the structure of the ligand HL as
indicated by the peaks corresponding to their molecular mass.

3.3. FTIR spectra

The FTIR spectrum of free ligand shows characteristic bands
at 3435, 3070, 1698, 1602, 1361 and 1220 cm�1 assignable to
intramolecular hydrogen bonded t(OH), carbon–hydrogen

stretching frequency t(C–H), lactone carbonyl t(C‚O),
methyl azomethine t(C‚N), arylazomethine t(C–N) and phe-
nolic t(C–O) stretching modes, respectively (Tan et al., 1988;
Venketeswar and Venkata, 2003). In the IR spectra of metal

complexes, the absence of broad band in the range of 3300–
3500 cm�1 region indicates deprotonation of the intramolecu-
lar hydrogen bonded OH group on complexation. This is

supported by upward shift in phenolic t(C–O) (Sari et al.,
2006). The t(C‚N) band is shifted to lower wave number with
respect to free ligand denoting that the nitrogen of azomethine

group is coordinated to the metal ion. This is supported by up-
ward shift in t(C–N) values. The IR spectra of metal com-
plexes showed new bands in 457–740 cm�1 region which can
be assigned to t(M–O) and (M–N) stretching vibrations,

respectively (Eichhorn and Bailar, 1953). From the above facts
it is evident that the coordination takes place via azomethine
nitrogen and phenolic OH of the ligand molecule.

3.4. Magnetic measurements and electronic absorption spectra

The electronic spectra of Cu(II) complex in DMSO show
bands at 13,812, 15,576 and 27,777 cm�1 assignable to a
2B1g ! 2A1g;

2B1g ! 2Eg and charge transfer transitions,

respectively. The electronic spectral data coupled with
observed magnetic moment 1.81 lB suggest octahedral geom-
etry for Cu(II) complex (Gudasi et al., 2007). Ni(II) complex
displays three bands at 9433, 14,970 and 27,173 cm�1 assign-

able to 3A2g ! 3T2gðFÞ; 3A2g ! 3T1gðFÞ and 3A2g ! 3T1gðPÞ
transitions, respectively. These electronic transitions along
Found (calcd.) (%)

m2) C H N F M

69.40 4.90 7.80 5.50 –

(69.22) (4.70) (7.68) (5.21)

63.50 4.10 7.00 4.50 8.20

(63.67) (4.07) (7.07) (4.79) (8.02)

64.50 4.20 7.30 4.90 7.60

(64.06) (4.09) (7.11) (4.82) (7.45)

64.10 4.00 7.25 4.85 7.36

(64.04) (4.05) (7.11) (4.82) (7.18)

64.35 4.10 7.15 4.90 7.20

(64.29) (4.11) (7.14) (4.84) (7.11)

64.40 4.20 7.20 4.90 7.50

(64.33) (4.08) (7.13) (4.75) (7.35)



Table 2 Ligand field parameters of Cu(II), Ni(II), Co(II), Fe(III) and Mn(II) complexes.

Compound Ligand field splitting

energy (Dq cm�1)

Racah interelectronic

repulsion parameter (B cm�1)

Covalent

factor (b)
b% m2/m1 Ligand field stabilization

energy LFSE (kcal mol�1)

CuL2 1381 30 – – 1.127 39.364

CoL2 1086 847 0.872 14.55 1.735 30.978

NiL2 943 922 0.886 12.80 1.586 26.886

FeL2 1347 681 0.671 32.83 1.410 38.409

MnL2 1351 633 0.658 34.10 1.745 38.513
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with magnetic moment 3.15 lB suggest octahedral geometry

for Ni(II) complex (Lever, 1968; Hosney, 2007). The Co(II)
complex shows three transitions at 10,869, 18,867 and
26,455 cm�1 assignable to 4T1gðFÞ ! 4T1gðPÞ; 4T1gðFÞ !
4A2g and

4T1gðFÞ ! 4T1gðPÞ transitions, respectively. These

transitions and observed magnetic moment 4.6 lB indicate
high spin octahedral geometry of the complex (Syamal and
Maurya, 1986; Satpathy et al., 1991; Mane et al., 2002; Jadhav

et al., 2010). Fe(III) complex exhibit bands at 13,477, 19,011
and 31,645 cm�1assignable to 6A1g ! 4T1ð4DÞ; 6A1g !
4T1g and

6A1g ! 4T2g, respectively. The observed magnetic

moment 5.80 lB along with electronic transitions corresponds
to octahedral geometry (Patel and Patel, 1989; Yaul et al.,
2009). In case of Mn(II) complex the observed magnetic mo-

ment 5.85 lB and the spectral bands at 13,513, 23,584 and
26,455 cm�1 assignable to 6A1g ! 4T1ðGÞ; 6A1g ! 4T2gðGÞ
and 6A1g ! 4Eg transitions, respectively, indicate octahedral
geometry for the complex (Makode et al., 2009; Badwaik

et al., 2009; Carvajal et al., 2004). The calculated values of
ligand field splitting energy (10Dq), Racah interelectronic
repulsion parameter (B), covalent factor (b), ratio t2/t1 and

ligand field stabilization energy (LFSE) data given in (Table 2)
supports the proposed geometry for all the complexes.

3.5. Powder X-ray diffraction analysis

The X-ray diffractogram of metal complexes was scanned in the
range 5�–10� at wavelength 1.543 Å. The diffractogram and

associated data depict 2h values for each peak, relative intensity
and interplanar spacing (d-values). The diffractogram of Cu(II)
complex shows 15 reflections with maxima at 2h = 37.798 cor-

responding to d value 2.377 Å. The diffractogram ofNi(II) com-
plex had eleven reflections with maxima at 2h = 89.953�
Corresponding to d value 1.089 Å, where as the diffractogram

of Fe(III) complex had fourteen reflections with maxima at
2h = 23.11� corresponding to d value 3.845 Å. The X-ray dif-
fraction pattern of these complexes with respect to major peaks

having relative intensity greater than 10% have been indexed by
using computer programme (Shoemaker and Garland, 1989).
Cu(II) complex yielded values of lattice constants,
a= 8.364 Å, b = 7.848 Å, c = 7.761 Å and a = c = 90o,

b = 113.20o and unit cell volume V= 468.09 (Å)3. Ni(II) com-
plex yielded values of lattice constants, a= 14.152 Å,
b= 6.147 Å, c = 4.432 Å, a = b = c = 90o and unit cell vol-

umeV= 385.603 (Å)3. Fe(III) complex yielded values of lattice
constants, a= 14.546 Å, b= 5.732 Å, c = 9.940 Å, a = c =
90o, b = 97.396, and unit cell volumeV = 821.942 (Å)3. Cu(II),

Fe(III) complexes of the condition a „ b „ c and a = c =90� „ b
required for the compound to be monoclinic were found to be
satisfactory. While for Ni(II) complex, the condition such as

a „ b „ c and a = b = c = 90� required for the compound to
be orthorhombic was found to be satisfactory. Experimental

density values of the complexes were determined by using spe-
cific gravity method (Coats and Redfern, 1964) and found to
be 2.809, 2.478 and 2.673 gÆcm�3 for Cu(II), Ni(II), and Fe(III)
complexes respectively which were exactly equal to the theoret-

ical calculated values.

3.6. Thermal analysis

The Cu(II), Fe(III) and Mn(II) complexes were chosen for
thermal study. The TG/DT analysis of metal complexes was

carried from ambient temperature to 1000 �C in nitrogen
atmosphere using a-Al2O3 as reference. In the thermogram
of Cu(II) complex, the first step decomposition was shown in

the range 220–490 �C with a mass loss 48.60% (calcd. =
49.79%). Similarly exothermic peaks DTmax = 220 and
320 �C in DTA were attributed to decomposition of non coor-
dinated part of ligand. The second step of decomposition in

the range 480–800 �C corresponds to mass loss due to decom-
position of coordinated part of ligand 39.20% (calcd. =
40.17%), afterward the weight loss remained constant

corresponding to stable metal oxide CuO 10.00% (calcd. =
10.03%).

In Fe(III) complex, the first weight loss in the range 290–

440 �C, indicated the decomposition of non-coordinated part
of complex corresponding to weight loss 49.80% (calcd. =
50.40%). An exothermic peak at temperature 437.51 �C in
DTA corresponds to sudden weight loss. The second step of

decomposition, from temperature 450 �C to 950 �C with
weight loss 40.00% (calcd. = 40.67%) is due to coordinated
part of the complex. Finally stable metal oxide with 9.00%

(calcd. = 9.13%) weight loss was obtained.
In the TG curve of Mn(II) complex, the first weight loss

89.70% (calcd. = 89.90%) in the range 260–900 �C, indicated
the decomposition of non-coordinated part of complex. Exo-
thermic peaks at 267, 302 �C in DTA correspond to sudden
weight loss. Finally stable metal oxide with weight loss

9.00% (calcd. = 9.02%) was obtained Table 3.

3.6.1. Kinetic calculations
The kinetic and thermodynamic parameters for decomposition
of metal complexes have been determined by the Coats–
Redfern method and Horowitz–Metzger method (El-Award,
2000; Nakamoto, 1961) and given in (Table 4). The calculated

free energy of activation is relatively low indicating the auto-
catalytic effect of metal ion on thermal decomposition of metal
complexes (Impura et al., 1983; Irving and Rossotti, 1954;

Nakamoto, 1978). Negative DS values indicate more ordered
activated states that may be possible through chemisorptions
of oxygen and other decomposition products. The more

ordered nature may be due to the polarization of bonds in



Table 3 Magnetic and electronic absorption spectral data (in DMSO) of the compounds.

Compound leff lB m (cm�1) Band assignment Geometry

HL – 31,055 –

33,783

CuL2 1.81 13,812 2B1g ! 2A1g Octahedral

15,576 2B1g ! 2Eg

27,777 Charge transfer

NiL2 3.15 9433 3A2g ! 3T2gðFÞ Octahedral

14,970 3A1g ! 3T1gðFÞ
27,173 3A2g ! 3T1gðPÞ

CoL2 4.60 10,869 4T1gðFÞ ! 4T1gðPÞ Octahedral

18,867 4T1gðFÞ ! 4A2gðFÞ
26,455 4T1gðFÞ ! 4T1gðPÞ

FeL2 5.80 13,477 6A1gðFÞ ! 4T1ð4DÞ Octahedral

19,011 6A1g ! 4T1g

31,645 6A1g ! 4T2g

MnL2 5.85 13,513 6A1g ! 4T1ðGÞ Octahedral

23,584 6A1g ! 4T2gðGÞ
26,455 6A1g ! 4Eg

Table 4 The kinetic parameters of degradation of the metal complexes calculated by the Horowitz–Metzer (HM) and Coats–Redfern

(CR) methods.

Complex Step Decomposition

temperature (�C)
n Method Ea (kJmol�1) DG* (kJmol�1) DS* (JK�1mol�1) Z (S�1) Correlation

coefficient (r)

CuL2 I 355 1.5 HM 9.64 37.67 �274.89 7 · 10�2 0.9942

CR 9.52 30.69 �271.58 8.85 · 10�2 0.9959

II 640 0.3 HM 11.28 29.20 �173.72 1.12 · 10�1 0.999

CR 16.39 27.73 �159.49 1.769 0.9964

FeL2

I 330 1.45 HM 50.29 84.28 �233.91 15.31 0.9936

CR 50.35 80.45 �235.67 17.82 0.9945

II 660 1.5 HM 18.53 46.63 �260.12 4.81 · 10�1 0.9945

CR 25.76 53.10 �253.21 1.11 0.9996

MnL2 I 365 1.35 HM 11.58 36.60 �240.49 3.57 0.9903

CR 17.01 35.40 �245.38 1.98 0.9993

II 700 0.55 HM 11.58 36.60 �240.49 3.57 0.9903

CR 17.01 35.40 �245.38 1.98 0.9993
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activated state which might happen through charge transfer

electronic transitions.

3.7. Potentiometry

Calvin–Bjerrum pH titration technique as modified by Irving
and Rossotti was used to determine proton-ligand and metal-
ligand stability constants in THF–water mixture (60% v/v) at

a constant temperature 25 �C and ionic strength of 0.1 M
NaClO4. The Irving and Rossotti method was used to calculate
�nA, �n, pK and pL values from the pH titration curves. The con-

stants of ligand and metal complexes are given in the (Table 5).
In the present ligand, protonation takes place in the initial

stages of titration because of the presence of azomethine nitro-

gen. The pK1 and pK2 were determined at �nA = 1.5 and 0.5,
respectively. The first stability constant pK1 therefore refers
to the imine nitrogen. However there are two imine nitrogens

present in the ligand and only one pK value is displayed by
it, suggesting that out of two nitrogens, one is not involved
in protonation. This may be attributed to the intramolecular
hydrogen bonding of nitrogen Nb (Fig. 1) which undergoes
chelation with enolic OH of dehydroacetic acid moiety and

hence does not take part in protonation and deprotonation.
Therefore the pK value shown by the ligand is due to the pro-
tonation of nitrogen Na. The second pK observed as 9.98 in

the ligand is due to the dissociation of enolic proton which is
sufficiently acidic due to the resonance effect. All the metals
form 1:1 and 1:2 chelates with this ligand. The 1:1 and 1:2 che-
lates are formed in a simultaneous process in all the systems.

Hence, the method of least squares has been invariably used
for getting accurate values of log k1 and log k2. These values
are reported in (Table 5).

Coordination of metal ion with ligand takes place via pro-
tonated nitrogen and oxygen of the enolic group. The order of
stability constants is Cu > Ni > Co > Fe >Mn which is in

agreement with the Irving–Williams order (Douglas et al.,
1991).

3.8. Antifungal activity

In the present investigation the free ligand, free metal salts,
control (DMSO solvent), and newly synthesized metal



Figure 1 Resonance structure of the ligand.

Table 5 Stability constants of the complexes at 25 ± 0.1 �C and l = 0.1 M.

Compound CuL2 NiL2 CoL2 FeL2 MnL2

logk1 9.39 8.57 8.54 4.87 2.97

logk2 8.84 8.01 5.05 2.87 2.93

logb 18.23 16.58 13.59 7.74 5.90

Protonation constants of Schiff base pK1 = 3.01 and pK2 = 9.98.

Table 6 Antibacterial activity of compounds (diameter of inhibition zone in mm) antifungal activity (weight in mg% inhibition) of the

ligand and metal complexes.

Compound Antibacterial activity Antifungal activity

E. Coil Staphylococcus Aspergillus niger Trichoderma

0.5 mg/mL 1 mg/mL 0.5 mg/mL 1 mg/mL 0.5 mg/mL 1 mg/mL 0.5 mg/mL 1 mg/mL

Ciprofloxin/control 40 45 42 44 75 72 65 60

HL 09 20 07 16 58(23) 46(36) 50(23) 39(35)

CuL2 19 38 14 30 32(57) 17(76) 33(49) 28(53)

NiL2 10 21 09 20 38(49) 18(75) 35(46) 29(52)

CoL2 12 26 11 24 43(43) 19(73) 41(41) 30(50)

FeL2 14 27 12 26 48(36) 27(66) 42(35) 31(48)

MnL2 16 30 13 28 49(35) 25(65) 45(31) 35(42)

Figure 2 Proposed structure of the metal complexes, where

M= Cu(II), Ni(II), Co(II), Mn(II) and Fe(III).
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complexes were screened for antifungal activity against fungi

like Aspergillus niger and Trichoderma at 0.5 and 1 mg mL�1

levels separately. The cultures of the fungi were purified by sin-
gle spore isolation technique. The concentrations of 0.5 and

1 mg mL�1 of each compound in DMSO were prepared. The
fungi toxicity of Schiff base and its metal complexes in liquid
medium were studied by the mycelia dry method (Sari et al.,
2006) in vitro against A. niger and Trichoderma. The results

of investigation indicate that all the ligands and their metal
complexes arrested the growth of A. niger and Trichoderma.
A considerable increase in fungi toxicity of metal complexes

as compared to their ligands is observed for both 0.5 and
1 mg mL�1.

3.9. Antibacterial activity

The antibacterial activity of ligand and metal complexes was

tested in vitro against bacteria such as Staphylococcus aureus
and Escherichia coli, by paper disc plate method (Sari et al.,
2006). The compounds were tested at the concentration 0.5
and 1 mg mL�1 in DMSO and compared with known antibiot-
ics ciprofloxin given in (Table 6) The results obtained were

compared with known antibiotics, ciprofloxin. Three replicate
values were taken and average value is given in (Table 6).

From the results obtained, it clear that the antibacterial

activity of metal salts is negligibly small. Inhibition by metal
complexes is found to be higher than that of a free ligand
and corresponding metal salts against the same organism un-
der identical experimental conditions. This is similar to earlier

observations (Badwaik and Aswar, 2007). This can be attrib-
uted to Tweedy’s chelation theory, according to which, the
chelation reduces the polarity of the metal atom mainly be-

cause of partial sharing of its positive charge with donor
groups and possible p-electron delocalization over the whole
ring (Thangadurai and Natarajan, 2001). This increases the

lipophilic character of the metal chelates. Transport of both,
metal and ligand across lipophilic membranes to vital intramo-
lecular sites is favored by chelation. Once intracellular, the



Scheme 1 Synthesis of the ligand.
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fully coordinated complex or one of its derivatives, including
the dissociated metal or ligand may be the active entity. For

each class of microorganism, higher activity is shown by Cu(II)
complex. Because of its high stability the Cu(II) chelate as a
whole may be considered to be the most active component.

Investigation of antifungal activity of the ligand and its me-
tal complexes revealed that, all the metal chelates are more
fungi toxic than their parent ligand (Table 6). The antifungal

activity of the ligand is found to enhance several times on
being coordinated with metal ions. Antifungal activity of these
complexes is found to be increased as the stability of the com-
plex increased. The activity of these complexes follow the order

Cu > Ni > Co > Fe >Mn which is exactly same as the or-
der of stability constants of these complexes. Comparison of
activities of the ligand and its metal chelates shows that the

copper complex is more active as the ligand, against A. niger.
Activity of ligand against Trichoderma is found to increase
after chelation. However the extent of the increase is less than

that of A. niger. The high antifungal activity of ligand and its
metal complexes may be due to the fluoro substituents present
in the ligand (Ismail, 2002).

4. Conclusion

On the basis of physicochemical and spectral data discussed

above, octahedral geometry for Cu(II), Ni(II), Co(II), Mn(II)
and Fe(III) complexes is proposed. From IR spectra it is as-
sumed that the ligand behaves as ONN tridentate, coordinat-

ing via phenolic oxygen and imino nitrogen as illustrated in
(Fig. 2a and b) Thermal study reveals that the complexes are
thermally stable. The XRD study suggests the orthorhombic

crystal system for Ni(II) and monoclinic crystal system for
Cu(II) and Fe(III) complexes. The antimicrobial activity of
the complexes is more as compared to the ligand. Antibacterial

activity shows that the copper complex is more biologically ac-
tive in all complexes. Antifungal activity of these complexes is
found to be increased in the similar order of increase in the sta-
bility constants of metal complexes Scheme 1.
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