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Preface

As a user, acquirer, or developer of a system, product, or service, have you ever been confronted
with one of the situations listed below?

• Wondered if the people who designed a product bothered to ask potential users to simply try
it before selling it to the public.

• Found that during a major program review prior to component development that someone
thought a requirement was so obvious it didn’t have to be written down.

• Participated in a new system development effort and discovered at Contract Award that team
members were already designing circuits, coding software, and developing mechanical draw-
ings BEFORE anyone understood WHAT system users expected the system to provide or
perform?

• Procured one of those publicized “designed for assembly” products and discovered that it
was not designed for maintainability?

• Interacted with a business that employed basic business tools such as desktop computers,
phones, and fax machines that satisfied needs. Then, someone decided to install one of those
new, interactive Web sites only to have customers and users challenged by a “new and
improved” system that was too cumbersome to use, and whose performance proved to be
inferior to that of the previous system?

Welcome to the domain of system analysis, design, and development or, in the case of the scenar-
ios above, the potential effects of the lack of System Engineering (SE).

Everyday people acquire and use an array of systems, products, and services on the pretense
of improving the quality of their lives; of allowing them to become more productive, effective, effi-
cient, and profitable; or of depending on them as tools for survival. The consumer marketplace
depends on organizations, and organizations depend on employees to ensure that the products they
produce will:

1. Perform planned missions efficiently and effectively when called upon.

2. Leverage user skills and capabilities to accomplish tasks ranging from simple to highly
complex.

3. Operate using commonly available resources.

4. Operate safely and economically in their intended environment with minimal risk and intru-
sion to the general public, property, and the environment.

5. Enable the user to complete missions and return safely.

6. Be maintained and stored until the next use for low cost.

7. Avoid any environmental, safety, and health risks to the user, the public, or the 
environment.

In a book entitled Moments of Truth, Jan Carlzon, president of an international airline, observed
that every interaction between a customer and a business through product usage or service support
is a moment of truth. Each customer–product/service interaction, though sometimes brief, produces
and influences perceptions in the User’s mind about the system, products, and services of each
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organization. Moment of truth interactions yield positive or negative experiences. Thus, the expe-
riences posed by the questions above are moments of truth for the organizations, analysts, and 
engineers who develop systems.

Engineers graduate from college every year, enter the workforce, and learn system analysis,
design, and development methods from the bottom up over a period of 10 to 30 years. Many spend
entire careers with only limited exposure to the Users of their designs or products. As engineers
are assigned increasing organizational and contract responsibilities, interactions with organizational
customers also increase. Additionally, they find themselves confronted with learning how to inte-
grate the efforts of other engineering disciplines beyond their field. In effect, they informally learn
the rudiments of System Engineering, beginning with buzzwords, from the bottom up through
observation and experience.

A story is told about an engineering manager with over 30 years of experience. The manager
openly bragged about being able to bring in new college graduates, throw them into the work envi-
ronment, and watch them sink or swim on their own without any assistance. Here was an individ-
ual with a wealth of knowledge and experience who was determined to let others “also spend 30
years” getting to comparable skill levels. Granted, some of this approach is fundamental to the
learning experience and has to evolve naturally through personal trials and errors. However, does
society and the engineering profession benefit from this type of philosophy.

Engineers enter the workplace from college at the lowest echelons of organizations mainly to
apply their knowledge and skills in solving unique boundary condition problems. For many, the
college dream of designing electronic circuits, software, or impressive mechanical structures is
given a reality check by their new employers. Much to their chagrin, they discover that physical
design is not the first step in engineering. They may be even startled to learn that their task is not
to design but to find low-cost, acceptable risk solutions. These solutions come from research of the
marketplace for existing products that can be easily and cost-effectively adapted to fulfill system
requirements.

As these same engineers adapt to their work environment, they implicitly gain experience in
the processes and methods required to transform a user’s operational needs into a physical system,
product, or service to fulfill contract or marketplace needs. Note the emphasis on implicitly. For
many, the skills required to understand these new tasks and roles with increasing complexity and
responsibility require tempering over years of experience. If they are fortunate, they may be
employed by an organization that takes system engineering seriously and provides formal training.

After 10 years or so of experience, the demands of organizational and contract performance
require engineers to assimilate and synthesize a wealth of knowledge and experience to formulate
ideas about how systems operate. A key element of these demands is to communicate with their
customers. Communications require open elicitation and investigative questioning, observation, and
listening skills to understand the customer’s operational needs and frustrations of unreliable, poorly
designed systems or products that:

1. Limit their organization’s ability to successfully conduct its missions.

2. Fail to start when initiated.

3. Fail during the mission, or cause harm to its operators, the general public, personal prop-
erty, or the environment.

Users express their visions through operational needs for new types of systems that require appli-
cation of newer, higher performance, and more reliable technologies, and present the engineer with
the opportunity to innovate and create—as was the engineer’s initial vision upon graduation.

Task leads and managers have a leadership obligation to equip personnel with the required
processes, methods, and tools to achieve contract performance—for example, on time and within
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budget deliverables—and enterprise survival over the long term. They must be visionary and pro-
active. This means providing just-in-time (JIT) training and opportunities to these engineers when
they need these skills. Instead, they defer training to technical programs on the premise that this is
on-the-job (OJT) training. Every program is unique and only provides a subset of the skills that
SEs need. That approach can take years!

While browsing in a bookstore, I noticed a book entitled If I Knew Then What I Know Now
by Richard Elder. Mr. Elder’s book title immediately caught my attention and appropriately cap-
tures the theme of this text.

You cannot train experience. However, you can educate and train system analysts and engi-
neers in system analysis, design, and development. In turn, this knowledge enables them to bridge
the gap between a user’s abstract operational needs and the hardware and software developers who
design systems, products, and services to meet those needs. You can do this in a manner that avoids
the quantum leaps by local heroes that often result in systems, products, or services that culminate
in poor contract program performance and products that fail to satisfy user needs.

Anecdotal evidence suggests that organizations waste vast amounts of resources by failing to
educate and train engineers in the concepts, principles, processes, and practices that consume on
average 80% of their workday. Based on the author’s own experiences and those of many others,
if new engineers entering and SEs already in the workplace were equipped with the knowledge
contained herein, there would be a remarkable difference in:

1. System development performance

2. Organizational performance

3. Level of personal frustrations in coping with complex tasks

Imagine the collective and synergistic power of these innovative and creative minds if they
could be introduced to these methods and techniques without having to make quantum leaps. Instead
of learning SE methods through informal, observational osmosis, and trial and error over 30+ years,
What if we could teach system, product, or service problem-solving/solution development as an
educational experience through engineering courses or personal study?

Based on the author’s experience of over 30 years working across multiple business domains,
this text provides a foundation in system analysis, design, and development. It evolved from a need
to fill a void in the core curriculum of engineering education and the discipline we refer to as system
engineering.

Academically, some people refer to System Engineering as an emerging discipline. From the
perspective of specific engineering disciplines, System Engineering may be emerging only in the
sense that organizations are recognizing its importance, even to their own disciplines. The reality
is, however, the practice of engineering systems has existed since humans first employed tools to
leverage their physical capabilities. Since World War II the formal term “system engineering” has
been applied to problem solving-solution development methods and techniques that many specific
engineering disciplines employ. Thus, system engineering concepts, principles, and practices 
manifest themselves in every engineering discipline; typically without the formal label.

In the chapters ahead, I share some of the If I Knew Then What I Knew Now knowledge and
experiences. Throughout my career I have had the good fortune and opportunities to work and learn
from some of the world’s best engineering application and scientific professionals. They are the
professionals who advanced the twentieth century in roles such as enabling space travel to the Moon
and Mars, creating new building products and approaches, developing highly complex systems, and
instituting high-performance organizations and teams.

This is a practitioner’s textbook. It is written for advancing the state of the practice in the dis-
cipline we refer to as System Engineering. My intent is to go beyond the philosophical buzzwords
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that many use but few understand and address the HOWS and WHYS of system analysis, design,
and development. It is my hope that each reader will benefit from my discussions and will endeavor
to expand and advance System Engineering through the application of the concepts, principles, and
practices stated herein. Treat them as reference guides by which you can formulate your own
approaches derived from and tempered by your own unique experiences.

Remember, every engineering situation is unique. As an engineer, you and your organization
bear sole responsibility and accountability for the actions and decisions manifested in the systems,
products, and services you design, develop, and deliver. Each user experience with those products
and services will be a moment of truth for your organization as well as your own professional rep-
utation. With every task, product, or service delivery, internally or externally, make sure the user’s
moment of truth is positive and gratifying.
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Chapter 1

Introduction

1.1 FRAMING THE NEED FOR SYSTEM ANALYSIS, 
DESIGN, AND DEVELOPMENT SKILLS

One of the most perplexing problems with small, medium, or large system development programs
is simply being able to deliver a system, product, or service without latent defects on schedule,
within budget, and make a profit.

In most competitive markets, changes in technology and other pressures force many organi-
zations to aggressively cut realistic schedules to win contracts to sustain business operations. Many
times these shortcuts violate best practices through their elimination under the premise of “selec-
tive tailoring” and economizing.

Most programs, even under near ideal conditions, are often challenged to translate User needs
into efficient and cost-effective hardware and software solutions for deliverable systems, products,
and services. Technical program leads, especially System Engineers (SEs), create a strategy to
bridge the gap. They translate the User’s abstract vision into a language of specifications, archi-
tectures, and designs to guide the hardware and software development activities as illustrated in
Figure 1.1. When aggressive “tailoring” occurs, programs attempt to bridge the gap via a quantum
leap strategy. The strategy ultimately defaults into a continuous build–test–redesign loop until
resources such as cost and schedules are overrun and exhausted due to the extensive rework.
Systems delivered by these approaches are often patched and are plagued with undiscovered latent
defects.

Bridging the gap between User needs and development of systems, products, and services to
satisfy those needs requires three types of technical activities: 1) system analysis, 2) system design,
and 3) system development (i.e., implementation). Knowledge in these areas requires education,
training, and experience. Most college graduates entering the workforce do not possess these skills;
employers provide very limited, if any, training. Most knowledge in these areas varies significantly
and primarily comes from personal study and experience over many years. Given this condition,
programs have the potential to be staffed by personnel lacking system analysis, design, and devel-
opment skills attempting to make a quantum leap from user needs to hardware and software 
implementation.

Technically there are solutions of dealing with this challenge. This text provides a flexible,
structural framework for “bridging the gap” between Users and system developers. Throughout this
text we will build on workflow to arrive at the steps and practices necessary to plan and implement
system analysis, design, and development strategy without sacrificing best practices objectives.

Part II System Design and Development Practices presents a framework of practice-based
strategies and activities for developing systems, products, and services. However, system develop-
ment requires more than simply implementing a standard framework. You must understand the
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foundation for the framework—HOW TO analyze systems. This requires understanding WHAT
systems are; HOW the User envisions deploying, operating, supporting, and disposing of the
system; under WHAT conditions and WHAT outcome(s) they are expected to achieve. Therefore,
Part I addresses System Analysis Concepts as a precursor to Part 2.

This text identifies fundamental system analysis, design, and development practices that in the
author’s experiences are applicable to most organizations. The concepts, principles, and practices
presented in Parts I and II represent a collection on topics that condense the fundamentals of key
practices. Some of these topics have entire textbooks dedicated to the subject matter.

Your experiences may be different; that’s okay. You and your organization are responsible and
accountable for identifying the key concepts, principles, and practices unique to your line of busi-
ness and programs and incorporate them into its command media—namely policies and procedures.
Using this knowledge and framework, personnel at all levels of the organization are better postured
to make informed decisions to bridging the gap from User needs to system, product, and service
solutions to meet those needs without having to take a quantum leap.

2 Chapter 1 Introduction

Hardware
Engineering Software

EngineeringOperational
Need(s) Solutions Specialty

Engineering

User System Developers

Systems Engineering
Concepts, Principles, & Practices

Operational Need Requirements

Figure 1.1 Systems Engineering—Bridging the Gap from User Needs to System Developers



Chapter 2

Book Organization and Conventions

2.1 HOW THIS BOOK IS ORGANIZED

There is a wealth of engineering knowledge that is well documented in textbooks targeted specif-
ically for disciplinary and specialty engineers. In effect, these textbooks are compartmentalized
bodies of knowledge unique to the discipline. The challenge is that SE requires knowledge, appli-
cation, and integration of the concepts in these bodies of knowledge. The author’s purpose in writing
this book is not to duplicate what already exists but rather to complement and link SE and devel-
opment to these bodies of knowledge as illustrated in Figure 2.1.

To accomplish these interdisciplinary linkages, the topical framework of the book is organized
the way SEs think. SEs analyze, design, and develop systems. As such, the text consists of two
parts: Part I System Analysis Concepts and Part II System Design and Development Practices. Each
part is organized into series of chapters that address concepts or practices and include Definitions
of Key Terms and Guiding Principles.

Part I: System Analysis Concepts

Part I provides the fundamentals in systems analysis and consists of a several series of topics:

• System entity concepts

• System architecture concepts

• System mission concepts

• System operations concepts

• System capability concepts

Each series within a part consists of chapters representing a specific topical discussion. Each chapter
is sequentially numbered to facilitate quick location of referrals and topical discussions. The intent
is to isolate topical discussions in a single location rather than a fragmented approach used in most
textbooks. Due to the interdependency among topics, some overlap is unavoidable. In general, Part
I provides the underlying foundation and framework of concepts that support Part II.

Unlike many textbooks, you will not find any equations, software code, or other technical
exhibits in Part I. SE is a problem solving–solution development discipline that requires a funda-
mental understanding in HOW to think about and analyze systems—HOW systems are organized,
structured, defined, bounded, and employed by the User.
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Part II: System Design and Development Practices

Part II builds on the system analysis concepts of Part I and describes the system design and devel-
opment practices embodied by the discipline we refer to as system engineering. Part II contents
consists of several series of practices that include:

• System development strategies

• System specification

• System design

• Decision support

• System verification and validation

• System deployment, operations, and support

Each series covers a range of topical practices required to support the series.

2.2 DEFINITIONS

SE, as is the case with most disciplines, is based on concepts, principles, processes, and practices.
The author’s context for each of these terms can be better understood as follows:

• Concept A visionary expression of a proposed or planned action that leads to achievement
of a disciplinary objective.

• Principle A guiding thought based on empirical deduction of observed behavior or prac-
tices that proves to be true under most conditions over time.

• Process A sequence of serial and/or concurrent operations or tasks that transform and/or
add value to a set of inputs to produce a product. Processes are subject to external controls
and constraints imposed by regulation and/or decision authority.

4 Chapter 2 Book Organization and Conventions
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• Operation A collection of outcome-based tasks required to satisfy an operational 
objective.

• Task The application of methods, techniques, and tools to add value to a set of inputs—
such as materials and information—to produce a work product that meets “fitness for use”
standards established by formal or informal agreement.

• Practice A systematic approach that employs methods and techniques that have been demon-
strated to provide results that are generally predictable and repeatable under various operating
conditions. A practice employs processes, operations, or tools.

• Best or Preferred Practice A practice that has been adopted or accepted as the most suit-
able method for use by an organization or discipline. Some individuals rebuff the operative
term “best” on the basis it is relative and has yet to be universally accepted as THE one and
only practice that is above all others. Instead, they use preferred practice.

2.3 TEXT CONVENTIONS

This textbook consists of several types of annotations to facilitate readability. These include 
referrals, author’s notes, guideposts, reference identifiers, and examples. To better understand the
author’s context of usage, let’s briefly summarize each.

Referrals. SE concepts, processes, and practices are highly interdependent. Throughout the book
you will find Referrals that suggest related chapters of the book that provide additional information
on the topic.

Author’s Notes. Author’s Notes provide insights and observations based on the author’s own
unique experiences. Each Author’s Note is indexed to the chapter and in sequence within the chapter.

Guideposts. Guideposts are provided in the text to provide the reader an understanding of
WHERE you are and WHAT lies ahead in the discussion. Each guidepost is indexed to the chapter
and sequence within the section.

Reference Identifiers. Some graphics-based discussions progress through a series of steps that
require navigational aids to assist the reader, linking the text discussion to a graphic. Reference
Identifiers such as (#) or circles with numbers are used. The navigational reference IDs are intended
to facilitate classroom or training discussions and reading of detailed figures. It is easier to refer to
“Item or ID 10” than to say “system development process.”

Examples. Examples are included to illustrate how a particular concept, method, or practice is
applied to the development of real world systems. One way SEs deal with complexity is through
concepts such as abstraction, decomposition, and simplification. You do not need a Space Shuttle
level of complexity example to learn a key point or concept. Therefore, the examples are intended
to accomplish one objective—to communicate. They are not intended to insult your intelligence or
impress academic egos.

References. Technical books often contain pages of references. You will find a limited number
of references here. Where external references are applicable and reinforce a point, explicit call-outs
are made. However, this is a practitioner’s text intended to equip the reader with the practical
knowledge required to perform system analysis, design, and development. As such, the book is
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intended to stimulate the reader’s thought processes by introducing fresh approaches and ideas for
advancing the state of the practice in System Engineering as a professional discipline, not
summarizing what other authors have already published.

Naming Conventions. Some discussions throughout the book employ terms that have generic
and reserved word contexts. For example, terms such as equipment, personnel, hardware, software,
and facilities have a generic context. Conversely, these same terms are considered SE system
elements and are treated as RESERVED words. To delineate the context of usage, we will use
lowercase spellings for the generic context and all capitals for the SE unique context—such as
EQUIPMENT, PERSONNEL, HARDWARE, SOFTWARE, and FACILITIES. Additionally,
certain words in sentences require communication emphasis. Therefore, some words are italicized
or CAPITALIZED for emphasis by the author as a means to enhance the readability and
communicate key points.

2.4 GRAPHICAL CONVENTIONS

System analysis and design are graphics-intensive activities. As a result a standard set of graphical
conventions is used to provide a level of continuity across a multitude of highly interdependent
topics. In general, system analysis and design employ the following types of relationships:

1. Bounding WHAT IS/IS NOT part of a system.

2. Abstractions of collections of entities/objects.

3. Logical associations or relationships between entities.

4. Iterations within an entity/object.

5. Hierarchical decomposition of abstract entities/objects and integration or entities/
objects that characterized by one-to-many and many-to-one entity or object 
relationships—for example, parent or sibling.

6. Peer-to-peer entity/object relationships.

7. Time-based, serial and concurrent sequences of workflow, and interactions between enti-
ties.

8. Identification tags assigned to an entity/object that give it a unique identity.

There are numerous graphical methods for illustrating these relationships. The Object Management
Group’s (OMG) Unified Modeling Language (UML®) provides a diverse set of graphical symbols
that enable us to express many such relationships. Therefore, diagrams employing UML symbol-
ogy are used in this book WHERE they enable us to better communicate key concepts. UML anno-
tates one-to-many (i.e., multiplicity) entity relationships with “0 . . . 1,” “1,” “1 . . .*,” and so forth.
Many of the graphics contain a significant amount of information and allow us to forgo the multi-
plicity annotations. Remember, this text is intended to communicate concepts about system analy-
sis, design, and development; not to make you an expert in UML. Therefore, you are encouraged
to visit the UML Web site at www.omg.org for implementation specifics of the language. Currently,
SE versions of UML®, SYSML, is in the process of development.

System Block Diagram (SBD) Symbology

One of the first tasks of system analysts and SE is to bound WHAT IS/IS NOT part of the system.
System Block Diagrams (SBDs), by virtue of their box structure, offer a convenient way to express
these relationships, as illustrated at the left side of Figure 2.2.
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If we attempt to annotate each system input/output relationship with lines, the chart would
become unwieldy and difficult to read. Using the left side of Figure 2.2 as an example, External
System 1 interfaces with Entity A; External System B interfaces with Entities A through D. Exter-
nal System 2 could be the natural environment—consisting of temperature, humidity, and the life—
that affects Entities A through D within your system.

Where a system such as External System B interfaces with ALL internal entities, we simplify
the graphic with a single arrow touching the outer boundary of the system—meaning your system.
Therefore, any arrow that touches the boundary of an entity represents an interface with each item
with the entity.

Aggregation and Composition Relationships Symbology

Object-oriented and entity relationship methods recognize that hierarchical objects or entities are
comprised of lower level sibling objects or entities. Two types of relationships exist in these cases:
aggregation versus generalization. Let’s elaborate on these further.

Aggregation (Composition). Aggregation represents the collection of entities/objects that 
have direct relationships with each other. Composition, as a form of aggregation, characterizes
relationships that represent strong associations between objects or entities as illustrated in Figure
2.3. Entity A consists of Entities A1, A2, A3, and A4 that have direct relationships via interfaces
that enable them to work together to provide entity A’s capabilities. Consider the following example:

EXAMPLE 2.1

An automobile ENGINE consists of PISTONS that have direct relationships via the engine’s SHAFT. 
Therefore, the ENGINE is an aggregation of all entities/objects—such as ENGINE SHAFT and 
PISTONS—required to provide the ENGINE capability.
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External System #2 interface with the dashed line of 
Your System represents Exte rnal System B interfaces 
with each entity - i.e. A - D.

Figure 2.2 Symbolic Interface Representation Convention



UML symbology for aggregation or composition is represented by a filled (black) diamond shape,
referred to as an aggregation indicator, attached to the aggregated object/entity as illustrated at the
left side of Figure 2.3. The diamond indicator is attached to the parent entity, System A, with link-
ages that connect the indicator to each object or entity that has a direct relationship.

Author’s Note 2.1 As a rule, UML only allows the aggregation indicator to be attached to the
aggregated entity/object on one end of the relationship (line). You will find instances in the text
whereby some abstractions of classes of entities/objects have many-to-many relationships with each
other and employ the indicator on both ends of the line.

Generalization. Generalization represents a collection of objects or entities that have loose
associations with each other as illustrated in Figure 2.3. Entity B consists of sibling Entities B1,
B2, B3, and B4, which have not direct relationship with each other. Consider the following example:

EXAMPLE 2.1

A VEHICLE is a generalization for classes of trucks, cars, snowmobiles, tractors, and the like, that have the
capability to maneuver under their own power.

UML® symbology for generalization is represented by an unfilled (white) triangular shape as illus-
trated as the right side of Figure 2.3. The triangle indicator is attached to the parent entity with
linkages that connect the indicator to each lower level object or entity that have loose associations
or relationships.
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Relationship Dependencies

In general, this text employs three types of line conventions to express entity/object relationship
dependencies as illustrated in Figure 2.4.

• Instances of a Relationship That May or May Not Exist (Panel A) Since there are instances
that may or may not contain a specific relationship, a dashed line is used for all or a part of
the line. Where an aggregated entity/object may or may not have all instances of siblings,
the parent half of the line is solid and the sibling half may be dashed.

• Electronic/Mechanical Relationships (Panel B) Some graphics express electronic relation-
ships by solid lines and mechanical relationships by dashed lines. For example, a computer’s
electronic data communications interface with another computer is illustrated by a solid line.
The mechanical relationship between a disc and a computer is illustrated by a dashed line
to infer either a mechanical or a temporary connection.

• Logical/Physical Entity Relationships (Panels C and D) Since entities/objects have logical
associations or indirect relationships, we employ a dashed line to indicate the relationship.

Interaction Diagrams

UML accommodates interactions between entities such as people, objects, roles, and so forth, which
are referred to as actors via interaction or sequence diagrams, as illustrated in Figure 2.5. Each
actor (object class) consists of a vertical time-based line referred to as a lifeline. Each actor’s
lifeline consists of activation boxes that represent time-based processing. When interactions occur
between actors, an event stimulates the activation box of the interfacing actor. As a result, a simple
sequence of actions will represent interchanges between actors.
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Process Activity Graphics

Systems processing consists of sequential and concurrent process flows and combinations of the
two. Key UML elements for representing process flow consist of initial/final states, activities, deci-
sion blocks, and synchronization bars (forks and joins), as illustrated in Figure 2.6.

Initial and Final States. To isolate on specific aspects of process flow, a process requires a
beginning referred to as an INITIAL STATE and an ending we refer to as a FINAL STATE. UML
symbolizes the INITIAL STATE with a filled (black) circle and the FINAL STATE with a large
unfilled (white) circle encompassing a filled (black) circle.

Activities. Activities consist of operations or tasks that transform and add value to one or mode
inputs to produce an objective-based outcome within a given set of performance constraints such
as resources, controls, and time. UML graphically symbolizes activities as having a flat top and
bottom with convex arcs on the left and right sides.

Decision Blocks. Process flows inevitably have staging or control points that require a decision
to be made. Therefore, UML uses a diamond shape to symbolize decisions that conditionally branch
the process flow to other processing activities.

Synchronization Bars. Some entity processing requires concurrent activities that require
synchronization. For these cases, synchronization bars are used and consist of two types: forks and
joins. Forks provide a means to branch condition-based processing flow to specific activities. Joins
synchronize and integrate multiple branches into a single process flow.

Hierarchical Decomposition Notation Conventions

Systems are composed of parent–sibling hierarchies of entities or objects. Each object or entity
within the diagram’s structural framework requires establishing a numbering convention to uniquely
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identify each entity. In general, there are two types of conventions used in the text: decimal based
and tag based.

Decimal-Based Notation. SEs employ decimal notation to delineate levels of information with
the most significant level being in the left most digit position as illustrated in Figure 2.7. Lower
levels are identified as extensions to the previous level such as 1.0, 1.1, 1.1.1, 1.1.1.1 and so forth.

Tag-Based Notation. In lieu of the decimal system in which the decimal point can be misplaced
or deleted, numerical tags are used without the decimal points as illustrated in the right side of
Figure 2.7. Rather than designating these lower level entities with names such as B, C, and D, we
need to explicitly identify each one based on its root traceability to its higher level parent. We do
this by designating each one of the entities as A_1, A_2, and A_3. Thus, if entity A_2 consists of
two lower level entities, we label them as A_21 and A_22. A_21 consists of A_211, A_212, and
A_213. Following this convention, entity A_212 is an element of entity A_21, which is an element
of entity A_2, which is an element of entity A.

2.5 EXERCISES

Most sections of the text consist of two types of exercises: general exercises and organizational
centric exercises.

General Exercises

General exercises are intended to test your understanding of each chapter’s topic to two types of
problems:



1. What You Should Learn from This Chapter questions presented in the Introduction of each
chapter.

2. Progressive application of knowledge to a selected system as listed is Table 2.1.

Organizational Centric Exercises

Organizational Centric Exercises are intended for organizations that may conduct internal SE train-
ing programs. SEs work within the framework of organizational command media such as policies
and procedures and apply that knowledge to contract programs. Therefore, these exercises consists
of two types of problems: research of organizational command media concerning SE topics of inter-
est and interviewing technical leadership of contract programs to understand how they:

1. Approached various facets of SE on their programs.

2. What best or preferred practices were used?

3. What lessons were learned?

2.6 TEAM DECISION MAKING

Team decision making is all about consensus. Development teams such as Integrated Product Teams
(IPTs) consist of personnel from different disciplines that bring knowledge and levels of experi-
ence; some senior level, some young, others in between. The context of the term consensus through-
out this book refers to root wisdom decision making that stands the test of time. It’s NOT about
one person, one vote; seniority; dominating personalities; or compromise. It’s not about show-
casing IPTs to customers while continuing to do business the OLD way.
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Team decision making involves eliciting and integrating team member knowledge and expe-
rience to make choices that clearly represent a path to success and avoid a path to failure. It may
require smart, informed assessments of risk and reward decision making. The bottom line is that
it’s about making technical decisions everyone can and will proactively support.

2.7 WARNINGS AND CAUTIONARY DISCLAIMERS

As a professional, you and your organization are solely responsible and accountable for the appli-
cation and implementation of the concepts, principles, processes, and practices discussed in this
book, the quality of work products produced, and the impact of those actions on society, colleagues,
and the environment. As a practitioner’s book, the discussions reflect experiences that may or may
not be relevant to you, your organization, or program.

You are advised to supplement this information with personal study, education, research, and
experience to enhance your competency skills to the level of performance required and expected
by your organization, contract, profession, and applicable laws and regulations. Where specialized
expertise is required, employ the services of highly qualified and competent subject matter expert
(SME) professionals.
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Table 2.1 Sample systems for application to General Exercises

Individual Project Suggestions Team-Based Project Suggestions

1. Mechanical pencil 1. Exercise room treadmill
2. Desktop stapler 2. Snowmobile
3. Disposable camera 3. Automobile
4. Personal digital assistant (PDA) 4. Word processor
5. Cellular phone 5. Voice mail system
6. Desktop or laptop computer 6. Sports utility vehicle (SUV)
7. Computer mouse 7. Doctor’s office
8. Computer scanner 8. Automatic car wash
9. Computer printer 9. Fast food restaurant with drive—through window

10. Computer display monitor 10. Store (video, grocery, bookstore, etc.)
11. CD/DVD player 11. Shopping mall
12. TV/CD/DVD remote control device 12. Hospital
13. Television 13. School
14. MP3 player 14. Fire department
15. Home 15. Overnight package delivery
16. Residential mailbox 16. Restaurant
17. Lawn mower 17. Garbage collection system
18. Lawn edger 18. Recyclable materials station
19. Hand-held calculator 19. Community landfill
20. Ceiling fan 20. Emergency response system (ERS)
21. Web site 21. City rapid transit system or an element
22. Fast food restaurant drive through 22. Professional sports stadium
23. Airport check-in kiosk 23. Organization within an enterprise
24. Voice mail system 24. Fighter aircraft

25. Commercial jet aircraft
26. NASA Space Shuttle
27. International Space Station (ISS)





Part I

System Analysis 
Concepts

EXECUTIVE SUMMARY

The foundation of any discipline resides in its concepts and guiding principles. Part 1 is structured
around five thematic concepts that are fundamental to understanding systems—WHAT a system is;
WHO its users and stakeholders are; WHY it exists and HOW it benefits its users and stakehold-
ers; HOW it is structured; and HOW it operates, is supported, and disposed. Chapters 3–22 are
grouped and presented in a sequence that supports the five concepts listed below:

• System Entity Concepts 

• System Architecture Concepts

• System Mission Concepts

• System Operations Concepts

• System Capability Concepts

These basic concepts serve as the foundation for understanding Part II System Design and
Development Practices. This foundation fills the void for people and organizations that restrict their
education and training to the philosophy of SE and attempt to make a quantum leap from specifi-
cations to point design solutions due to a lack of understanding of these fundamental concepts.

To better understand what each of these concepts entails, let’s explore a brief introductory 
synopsis of each one.

System Entity Concepts 

Our first series of discussions focus on a simple concept, the system as an entity. The System Entity
Concepts consist of Chapters 3–7. These discussions: define what a system is; identify attributes,
properties, and characteristics common to most systems; address organizational systems roles and
stakeholders; identify key factors that impact user acceptability of a system, and define a model for
the system/product lifecycle.

Given an understanding of the System Entity Concepts, our next discussions shift to under-
standing HOW systems and their operating environments are organized and structured.

System Architecture Concepts 

Most people think of a system and its operating environment in physical terms; however, some
systems may be virtual such as those centered around political or cultural systems. Regardless of

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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whether a system is physical or virtual, we can characterize them in terms of form, fit, and func-
tion using their structural framework as the point of reference. 

Our second series, System Architecture Concepts, decomposes the system into its constituent
parts via its architectural framework. Chapters 8–12 establish a high level analytical framework 
for analyzing how a system interacts with itself and its operating environment. Analyses and obser-
vations of these interactions reveal that we can characterize a SYSTEM OF INTEREST (SOI) 
and its operating environment via system elements—EQUIPMENT, PERSONNEL, MISSION
RESOURCES, PROCEDURAL DATA, and FACILITIES. Our discussions include establishment
of a semantics convention to minimize confusion relating to how developers communicate about
multi-level components within a system and relate to higher-level systems.

Based on an understanding of the System Architecture Concepts, we are ready to explore WHY
a system exists and how an organization employs it as an asset via the System Mission Concepts.

System Mission Concepts 

Every system has a mission or a reason for its existence as envisioned by its acquirer, users, and
stakeholders who expect the system to provide purposeful value and a return on investment (ROI).
The System Mission Concepts series consisting of Chapters 13–17 describe HOW systems are
employed by organizations and assigned performance-based outcome missions to fulfill specific
aspects of organizational objectives. 

Our discussions trace the origins of a system from an organization’s operational need to HOW
users envision operating and supporting the system to perform missions that satisfy that need. We
investigate how systems interact with their operating environment during missions, how missions
are planned, and explore how the user(s) expect the system to perform specific actions related to
achieving mission objectives.

The System Mission Concepts, which define WHAT a system is to accomplish and HOW WELL
from an organizational perspective, provide the foundation for our next topic, the System Opera-
tions Concepts.

System Operations Concepts 

System missions require timely execution of a series of performance-based operations and tasks.
The System Operations Concepts series consisting of Chapters 18–20 explore how users prepare
and configure a system for a mission, conduct the mission, and perform most-mission follow-up.
Analysis and observations of systems reveals that we can create a tailorable System Operations
Model that serves as a basic construct to facilitate identification of phase-based operations common
to all human-made systems. We employ the model’s framework to illustrate how system interac-
tions with its operating environment are modeled for various types of single use and multi-use
applications.

The System Operations Concepts, which structure a system mission into specific operations
and tasks, serve as a framework for identifying system capabilities to be provided by the system
to accomplish mission objectives. This brings us to the final topic of Part I, System Capability 
Concepts.

System Capability Concepts 

The System Capability Concepts series consist of Chapters 21 and 22. We explore HOW to derive
and allocate mission operational capabilities to integrated sets of system elements. Whereas most
people believe a capability is an end in itself, our discussions reveal that a capability has a common
construct that can be universally applied to specifying and implementing all types of capabilities.



Chapter 3

What Is a System?

3.1 INTRODUCTION

Analysis, design, and development systems, products, or services requires answering several fun-
damental questions:

1. WHAT is a system?

2. What is included within a system’s boundaries?

3. WHAT role does a system perform within the User’s organization?

4. What mission applications does the system perform?

5. WHAT results-oriented outcomes does the system produce?

These fundamental questions are often difficult to answer. If you are unable to clearly and con-
cisely delineate WHAT the system is, you have a major challenge.

Now add the element of complexity in bringing groups of people working on same problem 
to convergence and consensus on the answers. This is a common problem shared by Users, 
Acquirers, and System Developers, even within their own organizations.

This chapter serves as a cornerstone for this text. It answers the first question, What is a system?
We begin by defining what a system is and explain the meaning of structural phrases within the
definition. Based on the definition, we introduce various categories of systems and describe the dif-
ferences between systems, products, and tools. We introduce the concept of precedented and
unprecedented systems. Finally, we conclude by presenting an analytical and graphical represen-
tation of a system.

What You Should Learn from This Chapter

• What is a system?

• What are some examples of types of systems?

• What are the differences between systems, products, and tools?

• What is the difference between a precedented system and an unprecedented system?

• How do we analytically represent a system?
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3.2 DEFINITION OF A SYSTEM

The term “system” originates from the Greek term systēma, which means to “place together.” Mul-
tiple business and engineering domains have definitions of a system. This text defines a system as:

• System An integrated set of interoperable elements, each with explicitly specified and
bounded capabilities, working synergistically to perform value-added processing to enable
a User to satisfy mission-oriented operational needs in a prescribed operating environment
with a specified outcome and probability of success.

To help you understand the rationale for this definition, let’s examine each part in detail.

System Definition Rationale

The definition above captures a number of key discussion points about systems. Let’s examine the
basis for each phrase in the definition.

• By “an integrated set,” we mean that a system, by definition, is composed of hierarchical
levels of physical elements, entities, or components.

• By “interoperable elements,” we mean that elements within the system’s structure must be
compatible with each other in form, fit, and function, for example. System elements include
equipment (e.g., hardware and software, personnel, facilities, operating constraints, support),
maintenance, supplies, spares, training, resources, procedural data, external systems, and
anything else that supports mission accomplishment.

Author’s Note 3.2 One is tempted to expand this phrase to state “interoperable and comple-
mentary.” In general, system elements should have complementary missions and objectives with
nonoverlapping capabilities. However, redundant systems may require duplication of capabilities
across several system elements. Additionally, some systems, such as networks, have multiple
instances of the same components.

• By each element having “explicitly specified and bounded capabilities,” we mean that every
element should work to accomplish some higher level goal or purposeful mission. System
element contributions to the overall system performance must be explicitly specified. This
requires that operational and functional performance capabilities for each system element
be identified and explicitly bounded to a level of specificity that allows the element to be
analyzed, designed, developed, tested, verified, and validated—either on a stand-alone basis
or as part of the integrated system.

• By “working in synergistically,” we mean that the purpose of integrating the set of elements
is to leverage the capabilities of individual element capabilities to accomplish a higher level
capability that cannot be achieved as stand-alone elements.

• By “value-added processing,” we mean that factors such operational cost, utility, suitability,
availability, and efficiency demand that each system operation and task add value to its inputs
availability, and produce outputs that contribute to achievement of the overall system mission
outcome and performance objectives.

• By “enable a user to predictably satisfy mission-oriented operational needs,” we mean that
every system has a purpose (i.e., a reason for existence) and a value to the user(s). Its value
may be a return on investment (ROI) relative to satisfying operational needs or to satisfy
system missions and objectives.
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• By “in a prescribed operating environment,” we mean that for economic, outcome, and 
survival reasons, every system must have a prescribed—that is, bounded—operating
environment.

• By “with a specified outcome,” we mean that system stakeholders (Users, shareholders,
owners, etc.) expect systems to produce results. The observed behavior, products, by-
products, or services, for example, must be outcome-oriented, quantifiable, measurable, and
verifiable.

• By “and probability of success,” we mean that accomplishment of a specific outcome
involves a degree of uncertainty or risk. Thus, the degree of success is determined by various
performance factors such as reliability, dependability, availability, maintainability, sustain-
ability, lethality, and survivability.

Author’s Note 3.1 Based on the author’s experiences, you need at least four types of agree-
ment on working level definitions of a system: 1) a personal understanding, 2) a program team
consensus, 3) an organizational (e.g., System Developer) consensus, and 4) most important, a con-
tractual consensus with your customer. Why?

Of particular importance is that you, your program team, and your customer (i.e., a User or
an Acquirer as the User’s technical representative) have a mutually clear and concise under-
standing of the term. Organizationally you need a consensus of agreement among the System Devel-
oper team members. The intent is to establish continuity across contract and organizations as
personnel transition between programs.

Other Definitions of a System

National and international standards organizations as well as different authors have their own def-
initions of a system. If you analyze these, you will find a diversity of viewpoints, all tempered by
their personal knowledge and experiences. Moreover, achievement of a “one size fits all” conver-
gence and consensus by standards organizations often results in wording that is so diluted that many
believe it to be insufficient and inadequate. Examples of organizations having standard definitions
include:

• International Council on Systems Engineering (INCOSE)

• Institute of Electrical and Electronic Engineers (IEEE)

• American National Standards Institute (ANSI)/Electronic Industries Alliance (EIA)

• International Standards Organization (ISO)

• US Department of Defense (DoD)

• US National Aeronautics and Space Administration (NASA)

• US Federal Aviation Administration (FAA)

You are encouraged to broaden your knowledge and explore definitions by these organizations. 
You should then select one that best fits your business application. Depending on your personal
viewpoints and needs, the definition stated in this text should prove to be the most descriptive 
characterization.

Closing Point

When people develop definitions, they attempt to create content and grammar simultaneously.
People typically spend a disproportionate amount of time on grammar and spend very little time
on substantive content. We see this in specifications and plans, for example. Grammar is impor-
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tant, since it is the root of our language and communications. However, wordsmithed grammar has
no value if it lacks substantive content.

You will be surprised how animated and energized people become over wording exercises.
Subsequently, they throw up their hands and walk away. For highly diverse terms such as a system,
a good definition may sometimes be simply a bulleted list of descriptors concerning what a term
is or, perhaps, is not. So, if you or your team attempts to create your own definition, perform one
step at a time. Obtain consensus on the key elements of substantive content. Then, structure the
statement in a logical sequence and translate the structure into grammar.

3.3 LEARNING TO RECOGNIZE TYPES OF SYSTEMS

Systems occur in a number of forms and vary in composition, hierarchical structure, and behavior.
Consider the next high-level examples.

EXAMPLE 3.1
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• Economic systems

• Educational systems

• Financial systems

• Environmental systems

• Medical systems

• Corporate systems

• Insurance systems

• Religious systems

• Social systems

• Psychological systems

• Cultural systems

• Food distribution systems

• Transportation systems

• Communications systems

• Entertainment systems

• Government systems

Legislative systems

Judicial systems

Revenue systems

Taxation systems

Licensing systems

Military systems

Welfare systems

Public safety systems

Parks and recreation systems

Environmental systems

If we analyze these systems, we find that they produce combinations of products, by-products, or
services. Further analysis reveals most of these fall into one or more classes such as individual
versus organizational; formal versus informal; ground-based, sea-based, air-based, space-based, or
hybrid; human-in-the-loop (HITL) systems, open loop versus closed loop; and fixed, mobile, and
transportable systems.

3.4 DELINEATING SYSTEMS, PRODUCTS, AND TOOLS

People often confuse the concepts of systems, products, and tools. To facilitate our discussion, let’s
examine each of these terms in detail.

System Context

We defined the term system earlier in this section. A system may consist of two or more integrated
elements whose combined—synergistic—purpose is to achieve mission objectives that may not be
effectively or efficiently accomplished by each element on an individual basis. These systems typ-
ically include humans, products, and tools to varying degrees. In general, human-made systems
require some level of human resources for planning, operation, intervention, or support.



Product Context

Some systems are created as a work product by other systems. Let’s define the context of product:
a product, as an ENABLING element of a larger system, is typically a physical device or entity
that has a specific capability—form, fit, and function—with a specified level of performance.

Products generally lack the ability—meaning intelligence—to self-apply themselves without
human assistance. Nor can products achieve the higher level system mission objectives without
human intervention in some form. In simple terms, we often relate to equipment-based products as
items you can procure from a vendor via a catalog order number. Contextually, however, a product
may actually be a vendor’s “system” that is integrated into a User’s higher-level system. Effectively,
you create a system of systems (SoS).

EXAMPLE 3.1

A hammer, as a procurable product has form, fit, and function but lacks the ability to apply its self to ham-
mering or removing nails.

EXAMPLE 3.2

A jet aircraft, as a system and procurable vendor product, is integrated into an airline’s system and may possess
the capability, when programmed and activated by the pilot under certain conditions, to fly.

Tool Context

Some systems or products are employed as tools by higher level systems. Let’s define what we
mean by a tool. A tool is a supporting product that enables a user or system to leverage its own
capabilities and performance to more effectively or efficiently achieve mission objectives that
exceed the individual capabilities of the User or system.

EXAMPLE 3.3

A simple fulcrum and pivot, as tools, enable a human to leverage their own physical strength to displace a
rock that otherwise could not be moved easily by one human.

EXAMPLE 3.4

A statistical software application, as a support tool, enables a statistician to efficiently analyze large amounts
of data and variances in a short period of time.

3.5 PRECEDENTED VERSUS UNPRECEDENTED SYSTEMS

Most human-made systems evolve over time. Each new evolution of a system extends and expands
the capabilities of the previous system by leveraging new or advanced technologies, methods, tools,
techniques, and so forth. There are, however, instances where system operating environments or
needs pose new challenges that are unprecedented. We refer to these as precedented and unprece-
dented systems. Although we tend to think in terms of the legal system and its precedents, there
are also precedents in physical systems, products, and services.
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3.6 ANALYTICAL REPRESENTATION OF A SYSTEM

As an abstraction we symbolically represent a system as a simple entity by using a rectangular box
as shown in Figure 3.1. In general, inputs such as stimuli and cues are fed into a system that
processes the inputs and produces an output. As a construct, this symbolism is acceptable; however,
the words need to more explicitly identify WHAT the system performs. That is, the system must
add value to the input in producing an output.

We refer to the transformational processing that adds value to inputs and produces an output
as a capability. You will often hear people refer to this as the system’s functionality; this is par-
tially correct. Functionality only represents the ACTION to be accomplished; not HOW WELL as
characterized by performance. This text employs capability as the operative term that encompasses
both the functionality and performance attributes of a system.

The simple diagram presented in Figure 3.1 represents a system. However, from an analytical
perspective, the diagram is missing critical information that relates to how the system operates and
performs within its operating environment. Therefore, we expand the diagram to identify these
missing elements. The result is shown in Figure 3.2. The attributes of the construct—which include
desirable/undesirable inputs, stakeholders, and desirable/undesirable outputs—serve as a key
checklist to ensure that all contributory factors are duly considered when specifying, designing, and
developing a system.
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3.7 SYSTEMS THAT REQUIRE ENGINEERING

Earlier we listed examples of various types of systems. Some of these systems are workflow-based
systems that produce systems, products, or services such as schools, hospitals, banking systems,
and manufacturers. As such, they require insightful, efficient, and effective organizational structures,
supporting assets, and collaborative interactions.

Some systems require the analysis, design, and development of specialized structures, complex
interactions, and performance monitoring that may have an impact on the safety, health, and well-
being of the public as well as the environment, engineering of systems may be required. As you
investigate WHAT is required to analyze, design, and develop both types of systems, you will find
that they both share a common set concepts, principles, and practices. Business systems, for
example, may require application of various analytical and mathematical principles to develop busi-
ness models and performance models to determine profitability and return on investment (ROI) and
statistical theory for optimal waiting line or weather conditions, for example. In the case of highly
complex systems, analytical, mathematical, and scientific principles may have to be applied. We
refer to this as the engineering of systems, which may require a mixture of engineering disciplines
such as system engineering, electrical engineering, mechanical engineering, and software engi-
neering. These disciplines may only be required at various stages during the analysis, design, and
development of a system, product, or service.

This text provides the concepts, principles, and practices that apply to the analysis, design, and
development of both types of systems. On the surface these two categories imply a clear distinc-
tion between those that require engineering and those that do not. So, how do you know when the
engineering of systems is required?

Actually these two categories represent a continuum of systems, products, or services that range
from making a piece of paper, which can be complex, to developing a system as complex as an
aircraft carrier or NASA’s International Space Station (ISS). Perhaps the best way to address the
question: What is system engineering?

What Is System Engineering?

Explicitly SE is the multidisciplinary engineering of systems. However, as with any definition, the
response should eliminate the need for additional clarifying questions. Instead, the engineering of
a system response evokes two additional questions: What is engineering? What is a system? Pur-
suing this line of thought, let’s explore these questions further.

Defining Key Terms

Engineering students often graduate without being introduced to the root term that provides the
basis for their formal education. The term, engineering originates from the Latin word ingenerare,
which means “to create.” Today, the Accreditation Board for Engineering and Technology (ABET),
which accredits engineering schools in the United States, defines the term as follows:

• Engineering “[T]he profession in which knowledge of the mathematical and natural sci-
ences gained by study, experience, and practice is applied with judgment to develop ways
to utilize economically the materials and forces of nature for the benefit of mankind.”
(Source: Accreditation Board for Engineering and Technology [ABET])

There are a number of ways to define SE, each dependent on an individual’s or organization’s per-
spectives, experiences, and the like. System engineering means different things to different people.
You will discover that even your own views of SE will evolve over time. So, if you have a diver-
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sity of perspectives and definitions, what should you do? What is important is that you, program
teams, or your organization:

1. Establish a consensus definition.

2. Document the definition in organizational or program command media to serve as a guide
for all.

For those who prefer a brief, high-level definition that encompasses the key aspects of SE, con-
sider the following definition:

• System Engineering (SE) The multidisciplinary application of analytical, mathematical,
and scientific principles to formulating, selecting, and developing a solution that has accept-
able risk, satisfies user operational need(s), and minimizes development and life cycle costs
while balancing stakeholder interests.

This definition can be summarized in a key SE principle:

Principle 3.1 System engineering BEGINS and ENDS with the User.

SE, as we will see, is one of those terms that requires more than simply defining WHAT SE does;
the definition must also identify WHO/WHAT benefits from SE. The ABET definition of engi-
neering, for example, includes the central objective “to utilize, economically, the materials and
forces of nature for the benefit of mankind.”

Applying this same context to the definition of SE, the User of systems, products, and serv-
ices symbolizes humankind. However, mankind’s survival is very dependent on a living environ-
ment that supports sustainment of the species. Therefore, SE must have a broader perspective than
simply “for the benefit of mankind.” SE must also ensure a balance between humankind and the
living environment without sacrificing either.

3.8 SUMMARY

This concludes our discussion of what a system is. We defined the term “system” and highlighted the chal-
lenges of defining the term within diverse contexts. We also explored examples of types of systems; distin-
guished between precedented and unprecedented systems and considered the context of systems, products,
and tools.

We concluded with the identification of two categories of systems that produce other systems, products,
or services. Some of these require the engineering of systems or system engineering. Therefore, we defined
engineering, which in combination with the definition of a system, leads to defining system engineering.

With this basic understanding, we are now ready to investigate the key attributes, properties, and char-
acteristics that make each system unique.

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Create your own definition of a system. Based on the “system” definitions provided in this chapter:

(a) Identify your viewpoint of shortcomings in the definitions.

(b) Provide rationale as to why you believe that your definition overcomes those shortcomings.

(c) From an historical perspective, identify three precedented systems that were replaced by unprecedented
systems.
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ORGANIZATION CENTRIC EXERCISES

1. How do you and your organization define a “system”?

2. Do you and your work team have a definition for a “system”? If not, ask members to independently develop
their definition of what a system is. Summarize the results and present individual viewpoints to the team.
Discuss the results and formulate a consensus definition. Report the results to your class. What diversity
of opinions did you observe? What concept or semantic obstacles did the team have to overcome to get to
consensus?

3. Research the definitions for system engineering provided in the list below. Compare and contrast these def-
initions and determine which one best fits your beliefs and experiences?

(a) AFSCM 375-1

(b) Former FM 770-1

(c) Former MIL-STD-499A

(d) EIA/IS-731.1

(e) Defense Systems Management College (DSMC)

(f) International Council on Systems Engineering (INCOSE)

(g) International Organization for Standardization (ISO)

4. For the system, product, or service your organization produces, identify constituent products and tools (e.g.,
external systems) required to create or support it.

5. Identify the paradigms you observe in your: (a) organization, (b) customers, and (c) business domain that
influence system or product design. For each paradigm, what are the characteristic phrases stakeholders
use that make the paradigm self-evident.

6. How does your organization view and define SE?

7. How does the author’s definition of SE compare with your experiences?

8. What challenges and paradigms does your organization or program face in defining SE?
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Chapter 4

System Attributes, Properties, 
and Characteristics

4.1 INTRODUCTION

System engineering requires development of a strong foundation in understanding how to charac-
terize a system, product, or service in terms of its attributes, properties, and performance.

This Chapter introduces system attributes that are common across most natural and human-
made systems. Our discussions address these attributes in terms of a framework that Acquirers 
can use as a checklist for system specifications and System Developers/Service Providers can use
to assess the adequacy of those specifications. The intent is to enable you to learn how to: 1) THINK
about, 2) ORGANIZE, and 3) CHARACTERIZE systems. This knowledge equips SEs and 
system analysts in two ways. First, when you analyze and evaluate specifications, checklists of
commonly used attributes, properties, and characteristics enable us to perform a reality check 
and identify any “holes” in specification requirements. Second, when we develop specifications, it
provides a reference checklist for organizing and specifying key capabilities and their levels of 
performance.

Based on this Introduction, let’s identify what you should learn from the chapter’s discussions.

What You Should Learn from This Chapter

1. What is a system attribute?

2. What is a system property?

3. What is a system characteristic?

4. What makes a system, product, or service unique?

5. Understanding categories of system, product, or service performance

6. What are some types of system characteristics?

7. What constitutes a system’s state of equilibrium?

Definition of Key Terms

• Capability An explicit, inherent feature activated or excited by an external stimulus to
perform a function (action) at a specified level of performance until terminated by external
commands, timed completion, or resource depletion.

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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• Fit An item’s compatibility to interface with another item within a prescribed set of limits
with ease and without interference.

• Form An item’s prescribed shape intended to support one or more interface boundary 
objectives.

• Form, Fit, and Function “In configuration management, that configuration comprising the
physical and functional characteristics of an item as an entity, but not including any charac-
teristics of the elements making up the item.” (Source: IEEE 610.12-1990)

• Function An operation, activity, process, or action performed by a system element to
achieve a specific objective within a prescribed set of performance limits. Functions involve
work—such as to move a force through a distance, analyze and process information, trans-
form energy or physical properties, make decisions, conduct communications, and inter-
operate with other OPERATING ENVIRONMENT systems.

• Functional Attributes “Measurable performance parameters including reliability, main-
tainability, and safety.” (Source: ANSI/EIA-649-1998, para. 3.0, p. 5)

• Level of Performance An objective, measurable parameter that serves to bound the ability
of a system to perform a function based on a set of scenario assumptions, initial conditions,
and operating conditions. Examples include system effectiveness, PERSONNEL Element
proficiency, and system efficiency.

• Performance “A quantitative measure characterizing a physical or functional attribute relat-
ing to the execution of an operation or function.” (ANSI/IEEE 649-1998, para. 3.0, p.5)

“Performance attributes include: quantity (how many or how much), quality (how well),
coverage (how much area, how far), timeliness (how responsive, how frequent), and readi-
ness (availability, mission/operational readiness).” (ANSI/IEEE 649-1998, para. 3.0, p. 5)

• Physical Attributes “Quantitative and qualitative expressions of material features, such as
composition, dimensions, finishes, form, fit, and their respective tolerances.” (Source: ANSI/
EIA-649-1998, Section 3.0, p. 6)

4.2 OVERVIEW OF ATTRIBUTES, PROPERTIES, 
AND CHARACTERISTICS

You will often hear people refer to a system’s attributes, properties, and characteristics. To the
casual observer who researches the definitions of these terms, most dictionaries define these terms
by referencing the other. For purposes of our discussions, we will employ the following as a means
of delineating the differences between the terms.

Attributes

The term attributes classifies functional or physical features of a system. Examples include gender;
unit cost; nationality, state, and city of residence; type of sport; organizational position manager;
and fixed wing aircraft versus rotor.

Properties

The term, properties, refers to the mass properties of a system. Examples include composition;
weight; density; and size such as length, width, or height.
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Characteristics

The term characteristics refers to the behavioral and physical qualities that uniquely identify each
system. Behavioral characteristics examples include predictability and responsivity. Physical char-
acteristics examples include equipment warm-up and stabilization profiles; equipment thermal sig-
natures; aircraft radar crosssections; vehicle acceleration to cruise speed, handling, or stopping; and
whale fluke markings.

The sum of a system’s attributes, properties, and characteristics uniquely identifies and dis-
tinguishes a system, product, or service from others of the same classification. To illustrate this
uniqueness, let’s explore a few aspects that are common to most systems.

4.3 EVERY SYSTEM HAS ITS OWN UNIQUE IDENTITY

All natural and human-made systems have their own attributes (traits) that uniquely characterize,
for example, their roles, behavioral patterns, temperament, and appearance, even within the same
species. In general, key attributes of uniqueness include the following items, which are described
in Table 4.1.

4.4 UNDERSTANDING SYSTEM PERFORMANCE

In general, system performance is the main factor that determines the ultimate level of success of
a system. System functionality is often viewed as the “qualifying criterion” for systems perform-
ance. From the user’s perspective, will the system be operationally effective in accomplishing its
mission and objectives? Let’s begin our discussion by defining “performance.”

Categories of Performance

When you investigate systems, you soon discover two basic categories of performance: 1) objec-
tive performance and 2) subjective performance. Let’s define these terms:

• Objective Performance Performance that produces measurable physical evidence of
system effectiveness based on pre-defined criteria. For example, the temperature of the water
is 108°F.

• Subjective Performance Performance indicated by a subjective quality that varies by indi-
vidual sensory values, interpretations, or perspectives. For example, is the water “warm or
hot”?

Given these definitions, let’s examine each performance category in greater detail.

Objective Performance

From an SE perspective, especially in writing specifications, a system’s capabilities and expected
levels of performance must be specified with clear, unambiguous, quantifiable, measurable, testable,
and verifiable parameters without the influence of subjective interpretations. Examples of objective
performance include:
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Table 4.1 Descriptions of system attributes, properties, and characteristics

ID Attribute Description

1 System Every system has at least one or more benefactors such as owners,
benefactors administrators, operators, and maintainers, who benefit from its behavior, 

products, by-products, or services.

2 System life Every system, product, and service has a life cycle that depicts its level of
cycle maturity.

3 System Every system has an operating domain or “sphere of influence” that bounds its
operating area of coverage, operations, and effectiveness. Humans have learned to extend
domain the area of coverage by employing other assets that enable a specific system to

“amplify” its range.

EXAMPLE 4.1 An aircraft has a specific range under specific operating
conditions such as fuel, payload, and weather. Deploying refueling sources—
airborne tankers—and maintenance facilities along its mission flight path can
extend the range.

4 System frame of Every system at any point in time has a frame of reference that serves as the
reference permanent or temporary:

1. Base of operations for its operating domain.
2. Basis for navigation.

EXAMPLE 4.2 An aircraft may be assigned to a permanent home base that
serves  as the center of its operations. The aircraft may be ordered to perform
special (temporary) assignments from a base in Europe. The Apollo Space
Program used the Kennedy Space Center (KSC) and the Earth as its frame of
reference.

5 Higher order Every system:
systems 1. Operates as part of a higher order system that may govern, direct, constrain, 

or control its operation and performance.
2. Provides resources for missions.

6 Purpose-based Viewing the universe as a “system of systems (SOS),” every natural and man-
role made system has a beneficial role based on a reason for its existence as 

envisioned by its original Acquirer or System Owner.

7 System missions Every system performs missions in fulfillment of its purpose to achieve outcome-
based performance objectives established by its owner and Users.

8 Mission goals Each system and mission must be characterized by a set of goals and 
and objectives, preferably documented. Goals and objectives provide the 
performance fundamental basis for resource expenditures by the system owner and 
objectives shareholders based on a planned set of multifaceted accomplishments and an

expected return on investment(ROI). Each goal must be supported by one or
more specific objectives that are quantifiable, measurable, testable, and
verifiable.

9 System Every system, in execution of its mission, is subjected to a set of
operating operating constraints and conditions controlled by higher order
constraints and systems.
conditions

10 System utility Every system must provide a physical, psychological, sociological, financial, and 
economic value-added utility to its User. System utility includes ease of use,
usefulness, etc.

(continued)
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Table 4.1 continued

ID Attribute Description

11 System Every system has a level of operational suitability to the User in terms of suiting 
suitability its planned application and integration into the users organizational system.

EXAMPLE 4.3 A gas-powered lawn edger is suitable for cutting grass around
trees and flower gardens; they are not, however, suitable for mowing lawns 
unless you do not own a lawn mower.

12 System success Each system and mission requires a set of success criteria that the system owner
criteria and shareholders agree represent WHAT objective criteria constitute successful 

accomplishment of a mission via goals and results-oriented objectives. Ultimate 
success resides in User acceptance and level of satisfaction.

13 Mission Every system is characterized by a probability of success in accomplishing 
reliability mission objectives for a specified mission duration and set of operating 

environment conditions and scenarios.

14 System Every system has some level of cost and technical effectiveness related to 
effectiveness accomplishing the system’s mission with an anticipated probability of success 

per unit of cost.

EXAMPLE 4.4 Consider the system effectiveness of an educational system or a 
health care system. The challenge is: Effectiveness from WHAT stakeholder’s 
perspective?

15 System Every system has a degree of efficiency in processing raw materials, information, 
efficiency stimuli, cues, etc. As engineers, we assign an efficiency metric that provides a

ratio of the quantity of output produced for a known quantity on input.

16 System Every system has a level of integrity in its ability to deliver systems, products, 
integrity and services as required despite operating constraints and conditions.

17 System To ensure success in accomplishing its mission, every system, product, or service 
sustainment requires resources such as personnel, funding, consumables, expendables; 

corrective and preventive maintenance; and support such as spares, supplies, and
training.

18 System Some systems, namely businesses, promote their systems in anticipation of sales
promotion via demonstrations, advertising, etc. The promotion activities may require

protection and security.

EXAMPLE 4.5 A publisher plans to release a new book in a series on a specific 
day and time, promote the book via advertising, and impose sale constraints and
conditions on bookstore owners. The bookstore owners must keep the book
under lock and key (protection) with 24 hour surveillance (security) until the 
official release.

19 System threats Every system and its missions may be threatened by competitors or adversaries 
in its operating environment that may exhibit friendly, benign, or hostile
intentions or actions.

20 System Because of vulnerabilities or the need for the element of surprise, some systems 
concealment require camouflage or concealment to shield or alter their identity.

21 System Every system must have some level of protection to minimize its vulnerability to
protection external threats.

(continued)



Table 4.1 continued

ID Attribute Description

22 System Man-made systems may maintain a level of security such as physical security 
security (PHYSEC), communications security (COMSEC), operational security (OPSEC),

and information security (INFOSEC).

23 System Every system consists of a multi-level, logical (functional) and physical structure
architecture or architecture that provides the framework for its form, fit, and function.

24 System Every system, by definition, has inherent capabilities such as processing,
capabilities strengths, transfer functions that enable it to process inputs such as raw 

materials, information, and stimuli and to provide a response in the form of
behavior patterns, products, and by-products.
System capabilities, like operating domains, can be extended using tools or 
other systems.

25 System concept Every system has a Concept of Operations (ConOps) as envisioned by its system
of operations owner, system developer, and/or system maintainer. The ConOps provides the
(Con Ops) basis for bounding the operating space, system capabilities, interfaces, and 

operating environment.

26 System phases, For each system/product life cycle phase, every system, product, or service 
modes, and states evolves through a series of phases, modes, and state of operation that may be
of operation cyclical or nonrecurring (single use).

27 Operating Every system employs a set of operating norms, standards, and conventions that
norms, governs its operations, morals, ethics, and tolerances.
standards, and
conventions

28 System Every system should have a system description that characterizes the system 
description architecture, its elements, interfaces, etc. Each of these characteristics is 

represented by system capabilities and engineering performance parameters that
must be captured and articulated as requirements in the System Performance
Specification (SPS).

29 System Every system has operating constraints and conditions that may be physical 
operating (capabilities), imposed by higher order authority—international, governmental,
constraints and environmental, social, economic, financial, psychological, etc.
conditions

30 System sensors Every natural and human-made system possesses some form of sensor that
enables it to detect external stimuli and cues.

31 System behavior Every system is characterized by patterns of behavior.
patterns

32 System Every system possesses performance-based behavioral characteristics, such as
responsiveness throughput, that characterize its ability to process raw materials or stimuli and
and sensitivity provide a response. We refer to the quickness as its responsivity.

EXAMPLE 4.8 Accelerator boards enable computer processors to improve 
responsiveness.

33 System Every system has internal and external interfaces that enable it to interact within
interfaces itself and its operating environment.

34 System pedigree Every system has a pedigree derived from predecessor system designs,
technologies, and improvements to those designs to correct for flaws, defects,
deficiencies, errors, etc.
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Table 4.1 continued

ID Attribute Description

35 Mission Every system requires inputs such as tasking, expendables, consumables, and
resources operator actions that can be transformed into specific actions required to
(system inputs) stimulate motivate, maneuver, process, and output behavioral and physical 

responses.

36 System Every system produces:
products, 1. Value-added products and/or performs services that benefit its stakeholders
services, and 2. By-products that may impact system performance and/or its operating 
by-products environment.

EXAMPLE 4.9 By-products include heat, waste products—trash, exhaust,
thermal signatures, and colorations.

37 Procedural data Every human-made system requires procedural data that describe safe operating 
procedures related to equipment, services, and operator interfaces and 
interfaces with external systems. 

38 System lethality Some defensive and offensive systems are characterized by their lethality—their
potential to destroy or inflict damage, disable, neutralize, or otherwise cause 
harm to a threat or target.

39 System Every system has some form vulnerability that exposes uncertainties or
vulnerability shortcomings in its behavioral and physical characteristics. Vulnerability 

includes physical, psychological, social, economic, security, privacy, and other
factors.

EXAMPLE 4.10 Military tanks have additional layers of protection to
minimize the impacts of direct hits. Internet sites have vulnerabilities to
computer “hackers.”

40 System Every system has degrees of fault tolerance that enable it to perform missions 
survivability and achieve mission objectives while operating at a degraded level of 

performance for a given set of internal or external induced or malfunctions.

41 System The state of a system’s operational readiness to perform a mission on-demand. 
availability Availability is a function of the system’s reliability and maintainability.

42 System Every system possesses psychological or appearance characteristics that appeal
aesthetics to the senses or are aesthetically pleasing to its stakeholders.

43 System Every system is unique in its development. This includes design flaws and
blemishes errors, work quality and material defects, imperfections, etc., that may impact 

system performance or cosmetically diminish its value based on appearance.

44 Risk Every system, product, or service has an element of risk related to mission
operations and its operating environment that include:
1. Probability of occurrence.
2. Consequence(s) of failure.

45 System Every human-made system, at various stages of the system/product life cycle,
environmental, may pose environmental, safety, or health risks to system personnel—operators
safety, and and maintainers, private and public property, the environment, etc.
health (ES&H)

46 System health Every system has an operational health status that represents its current state of
status readiness to perform or support User missions.

47 System total cost Every human-made system has a total ownership cost (TOC) over its life cycle
of ownership that includes nonrecurring and recurring development operational costs.
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These are just a few examples of objective performance parameters. Now let’s investigate the other
type, subjective performance.

Subjective Performance

Subjective performance is more difficult to characterize and quantify. Interestingly, we can assign
arbitrary quantities to subjective performance parameters that are measurable, testable, and verifi-
able via surveys and interviews, tests. However, when the survey or interview participants are asked
to indicate their degree of preference, agreement, and like/dislike with the measurable statement,
the response still requires interpretation, value judgment, opinion, and so on. Thus, the response
may be aliased based on past experience and lessons learned. Subjective performance examples
include:

• Quality—clarity, appearance, and color

• Affinity

• Likeability

• Opinion

• Smoothness

• Satisfaction—enjoyment and taste

4.5 SYSTEM CHARACTERISTICS

When we characterize systems, especially for marketing or analysis, there are four basic types 
of characteristics we consider: 1) general characteristics, 2) operating or behavioral characteristics,
3) physical characteristics, and 4) system aesthetics.

General Characteristics

The high-level features of a system are its general characteristics. We often see general charac-
teristics stated in marketing brochures where key features are emphasized to capture a client or cus-

34 Chapter 4 System Attributes, Properties, and Characteristics

• Time

• Distance

• Size

• Length

• Depth

• Thickness

• Weight

• Volume

• Density

• Physical state

• Cost

• Voltage

• Amperage

• Angle

• Displacement

• Velocity

• Acceleration

• Thrust

• Hardness

• Softness

• Horsepower

• Viscosity

• Frequency

• Intensity

• Wavelength

• Maintainability

• Reliability

• Productivity

• Effectiveness

• Efficiency

• Temperature

• Pressure

• Humidity

• Number of errors

• Field of view

• Resolution

• Defects
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tomer’s interest. General characteristics often have some commonality across multiple instances or
models of a system. Consider the following examples:

EXAMPLE 4.12

• Automobile General Characteristics Available in two-door or four-door models; convertible or sedan; air-
conditioned comfort; independent suspension; tinted windows, 22mpg city, 30mpg highway.

• Aircraft General Characteristics Fanjet, 50-passenger, 2000 nautical mile range, IFR capabilities.

• Enterprise or Organization General Characteristics 200 employees; staff with 20 PhD, 50 Master, and 
30 BS degrees; annual sales of $500 M per annum.

• Network General Characteristics Client-server architecture, PC and Unix platforms, firewall security, remote
dial-up access, Ethernet backbone, network file structure (NFS).

Operating or Behavioral Characteristics

At a level of detail below the general characteristics, systems have operating characteristics that
describe system features related to usability, survivability, and performance for a prescribed oper-
ating environment. Consider the following examples:

EXAMPLE 4.17

• Automobile Operating Characteristics Maneuverability, turn radius of 18 ft, 0 to 60 mph in 6 seconds, etc.

• Aircraft Operating Characteristics All-weather application, speed, etc.

• Network Operating Characteristics Authorization, access time, latency, etc.

Physical Characteristics

Every system is described by physical characteristics that relate to nonfunctional attributes such
as size, weight, color, capacity, and interface attributes. Consider the following examples:

EXAMPLE 4.13

• Automobile Physical Characteristics 2000 lbs, curb weight 14.0 cu ft of cargo volume, 43.1 of inches 
(max). of front leg room, 17.1 gals fuel capacity, 240 horsepower engine at 6250 rpm, turbo, available in 
10 colors.

• Enterprise or Organization Physical Characteristics 5000 sq ft of office space, 15 networked computers,
100,000 sq ft warehouse.

• Network Physical Characteristics 1.0 Mb Ethernet backbone, topography, routers, gateways.

System Aesthetic Characteristics

General, operating, and physical characteristics are objective performance parameters. However,
what about subjective characteristics? We refer to these as system aesthetic characteristics because
they relate to the “look and feel” of a system. Obviously, this includes psychological, sociological,
and cultural perspectives that relate to appealing to the User’s, Acquirer’s, or System Owner’s pref-
erences. Thus, some buyers make independent decisions, while others are influenced by external
systems (i.e., other buyers) in matters relating to community or corporate status, image, and the
like.



4.6 THE SYSTEM’S STATE OF EQUILIBRIUM

Every natural and human-made system exists in a state of equilibrium relative to its operating envi-
ronment. In general, we refer to this as the “balance of power.” The state of equilibrium depends
on how a system exists through its own: 1) level of dominance or 2) subordination by other systems.
At any instance of time, a system is typically described by an INITIAL STATE—with conditions,
statics, dynamics, strengths, weaknesses, or stabilization—and a FINAL STATE—with behavior,
product, by-product, or service-oriented result controlled by the balance of power.

Prerequisite Conditions

System stability, integrity, and consistency of performance require that transitions between system
phases, operations, and tasks have clean unambiguous transitions with no ramifications. Thus,
systems are assumed by designers to have pre-requisite or initial conditions or criteria that must
be accomplished prior to entering the next phase, operation, or task. By definition, since a system
is composed of a set of integrated elements, this is important to ensure that all elements of the
system are synchronized and harmonized.

Initial Operating Conditions and State

A system’s initial operating conditions consist of the physical and operational states of the system
and its surrounding operating environment at the beginning of a system mission phase, operation,
or task. Since analyses often require the establishment of basic assumptions for investigating some
facet of system phases, operations, or task, initial conditions serve as a “snapshot” or starting point
that captures the assumptions. To illustrate this concept, consider the following example:

EXAMPLE 4.14

The aircraft took off in a crosswind of 35 knots; the early morning rush hour began as a blizzard with 30mph
windgusts moved through the area.

Statics

When we analyze systems, a key basis for the analysis is often the physical state of the system at
a given “snapshot of time.” Statics are used to characterize a system’s current orientation, such as
state vector or orientation within a larger system. From an overall system perspective, an aircraft
sitting in a hanger, an automobile in a driveway, a network computer system with no message traffic,
and a lighting system in the ON or OFF state, all represent a system in its static state. In contrast,
lower level system components may have a static condition while the system as a whole is in a
dynamic condition.

Mission Dynamics

Every natural and man-made system conducts missions in its operating environment in some form
of dynamic, physical state. Dynamics are a time-based characterization of system statics over a
defined timeframe within its operating environment. The dynamics may range from slow changes—
rock anchored on a hillside—to moderate changes—temperature variations—to violent, sudden
changes—earthquakes or volcanoes.

Dynamics occur as inconsistencies, perturbations, and instabilities in the balance of power in
the local or global environment. Mankind has always been intrigued by the study of dynamics and
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their effect on behavior patterns—of the Earth, weather, oceans, stock market, and people—espe-
cially when its comes to predicting dynamic behavior that can have devastating economic or safety
impacts. Thus, predicting the advancement of the state of the practice and technology is big busi-
ness. Why? We need to be able to confidently predict how a system will behave and perform under
specified—dynamic—operating conditions.

System Stabilization

All natural and man-made systems must maintain a level of stability to ensure their longevity. 
Otherwise, the system can easily become unstable and potentially become a threat to itself and 
surrounding systems. Therefore, systems should have inherent design characteristics that enable
them to stabilize and control their responses to dynamic, external stimuli.

Stabilization is ultimately dependent on having some form of calibrated reference that is stable,
dependent, and reliable. For man-made systems, stabilization is achieved by employing devices
such as inertial navigation gyroscopes, global positioning satellites (GPS), quartz crystals for 
electronic watches, and reference diodes for voltage regulators. In each of these cases, the system
stabilization is accomplished by sensing current free body dynamics; comparing them with a
known, calibrated reference source; and initiating system feedback control actions to correct any
variations.

The Balance of Power

Taking all of these elements into account, system existence and survival are determined by its ability
to: 1) cope with the statics and dynamics of its operating environment and 2) sustain a level of
capability and stabilization that harmonizes with its adjacent systems—the balance of power or
state of equilibrium.

4.7 SUMMARY

Our discussion in this chapter introduced the concept of system attributes, properties, and characteristics. Top-
ically, this information provides the foundation for: 1) characterizing an existing system’s capabilities and 
2) serves as an initial checklist for developing or assessing specifications.

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new system selection, apply your knowledge derived from this chapter’s topical
discussions. Identify the following:

(a) Examples of the selected system’s unique identity via system mission, goals, and objectives.

(b) Types of mission operations attributes.

(c) General, operating, physical, and system aesthetic attributes.

3. What is the frame of reference and operating domain for your: (a) business organization and (b) systems,
products, or the services it provides?

4. Using any system, product, or service your organization provides, identify the human system roles for the
product.
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Chapter 5

System Roles and Stakeholders

5.1 INTRODUCTION

Every system within the universe has a purpose or mission. In other words, every system has a
reason for its existence relative to other systems. Most human-made systems are directed toward
contributing to and achieving the “owner” organization’s roles, missions, and objectives. Each
system performs a role within the owner system’s overall role. This section introduces the concept
of system roles and stakeholders. We explore the roles of organizations that employ systems, prod-
ucts, and services and how physical systems—namely assets—are acquired to perform in support
of organizational roles, missions, and objectives.

The success of man-made systems in achieving success within an organization is determined
by HOW WELL the system is specified, designed, developed, integrated, verified, validated, oper-
ated, and supported. This requires that humans, either directly or indirectly, that a vested interest
in the operational effectiveness of the mission results, performance achieved, and outcome of the
system’s mission and objectives. We refer to these individuals as the system stakeholders. We con-
clude this chapter by identifying the primary system stakeholder roles and their contributions, some-
times positive—sometimes negative—to system mission performance and outcomes.

What You Should Learn from This Chapter

• What is a system role?

• What is a MISSION SYSTEM?

• What is a SUPPORT SYSTEM?

• Who is a stakeholder?

• Who are the various stakeholders?

Definitions of Key Terms

• End User An individual or organization that benefits directly from the outcome or results
of a system, product, or service.

• Stakeholder An individual or organization that has a vested interest (e.g., friendly, compet-
itive, or adversarial) in the outcome produced by a system in performing its assigned mission.

• System User An individual or organization that employs a system, product, or service or
their by-products for purposes of accomplishing a mission-oriented objective or task. For
example, a city transportation system employs bus drivers and buses to transport people from
one location to another. The bus drivers and passengers are categorized as users.

System Analysis, Design, and Development, by Charles S. Wasson
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5.2 ORGANIZATIONAL SYSTEM ROLES

Organizational systems perform roles that reflect their chartered missions and objectives within
their business domains. Table 5.1 provides examples of system roles and missions.

5.3 SYSTEM ROLE CONTEXT

Every man-made system performs mission-oriented operations and tasks intended to accomplish
specific performance-based objectives and outcomes to support their customers, the Users and
stakeholders. The conduct of these missions requires two types of operational roles: mission system
and support system.

SYSTEM OF INTEREST (SOI) Entities

If you analyze human-made systems, you discover that EVERY system performs two simultane-
ous, contextual roles: 1) a MISSION SYSTEM role and 2) a SUPPORT SYSTEM role. Let’s define
each of these roles.

MISSION SYSTEM Role. MISSION SYSTEM roles are performed by systems that are assigned
specific tasks to deliver products and services that achieve performance-based outcome objectives.
Consider the following example:

EXAMPLE 5.1

NASA’s Space Shuttle performs space-based missions to accomplish various scientific objectives.

Author’s Note 5.1 We should note here that the User may or may not own the MISSION
SYSTEM. In some cases, they do; in other cases, they may contract to other organizations to lease
systems. A trucking company, for example, may lease additional vehicles to perform organizational
missions during a business surge.

SUPPORT SYSTEM Role. SUPPORT SYSTEM roles are performed by systems to ensure that
another MISSION SYSTEM(s) is (are) operationally ready to conduct and support assigned tasks
and to perform subsequent maintenance and training. Consider the following examples:

EXAMPLE 5.2

An airline’s MISSION SYSTEM consists of the aircraft and crew with an objective to safely and comfortably
transport passengers and cargo between cities. The aircraft’s SUPPORT SYSTEM consists of baggage han-
dlers, mechanics, facilities, ground support equipment (GSE), and others that function in their own MISSION
SYSTEM roles to prepare the aircraft for a safe flight, replenish expendables and consumables, and load/unload
cargo and passenger luggage.

EXAMPLE 5.3

NASA’s Space Shuttle performs a MISSION SYSTEM role to conduct space-based missions to accomplish
science objectives such as payload bay experiments. As a SUPPORT SYSTEM to the International Space
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Table 5.1 Example system roles and missions

System Role Role-Based Mission

Legislative Establish societal compliance guidance and constraints in the form of laws, statutes, 
regulations, ordinances, policies, etc. that govern other individuals, organizations, or
or governmental entities such as cities or states.

Judicial Adjudicate individual, organizational, or enterprise compliance with established laws,
statutes, regulations, ordinances, policies, etc.

Military Perform cooperative, emergency, peacekeeping, deterrence, and wartime roles that
ensure the survival of a country and protect its constitution, security, and sovereignty.

Transportation Provide transportation services that enable customers and products to move safely 
and efficiently from one location to another by land, sea, air, or space or
combinations of these.

Civic Perform public services that further the goals and objectives of an organization.

Educational Provide educational opportunities for people to gain specialized knowledge and 
enhance their skills to prepare them for becoming contributing members of society.

Resource Provide resources—time, money, fuel, electricity, etc.—commensurate with 
performance and risk to support the missions, goals, and objectives of an
individual, organization, or enterprise with an expectation of a return on the
investment (ROI).

Monitor and Monitor the performance of other systems, evaluate the performance against
control established standards, record objective evidence, and control the performance or the

other systems.

Research and Investigate the research and development, productization, or application of new
development technologies for systems.

Producer Produce large or mass quantities of a system design in accordance with requirements
and standards for the marketplace.

Construction Provide construction services that enable system developers to implement facilities,
sites, etc., that enable Users to deploy, operate, support, train, anddispose of systems.

Agricultural Provide nutritional food and agricultural by-products to the marketplace that are safe
for human and animal consumption and safe for the environment.

Retail or wholesale Supply consumer products and services to the marketplace.
business

Medical Provide medical consultation and treatment services.

Station (ISS), the Space Shuttle ferries astronauts and cargo back and forth between the Kennedy Space Center
(KSC) and the ISS.

Referral For more detailed information about the MISSION SYSTEM and SUPPORT SYSTEM
roles, refer to Chapter 13 Organizational Roles, Missions, and System Applications.

How Do Organizational System Roles Relate to SE?

You may be asking WHY and HOW organizational roles relate to SE and the engineering of systems.
Physical systems, such as hardware, software, and courseware, exist because higher level human



organizations, as Users, employ and leverage physical system capabilities to achieve organizational
goals, missions, and objectives within budgetary cost and schedule constraints.

As an SE, you must fully comprehend, understand, and appreciate HOW the User intends to
deploy and employ a system in a prescribed operating environment to achieve the organization’s
goals, objectives, and missions.

For example, How does this guidance relate to an organization’s Transportation Role? If you
are in the airline business, you provide or contract for reservation and ticketing services, check-in
and baggage handling, aircraft, gate facilities, special services, or security. All these entities require
physical systems—as well as hardware and software—to perform the organization’s role. The
organization may:

1. Develop a system, product, or service.

2. Procure the system, product, or service from other vendors.

3. “Outsource” (e.g., contract, lease) for the systems or services.

In any case each system entity is allocated goals, objectives, missions, or performance requirements
that contribute to achieving the organization’s transportation role.

When an organization, such as an airline, initiates operations, large numbers of humans must
be an integral part of the planning, implementation, and operation activities. Each stakeholder has
a vested interest or stake in the outcomes and successes of the organization’s role and its embed-
ded systems. This brings us to out next topic, understanding the role of system stakeholders.

5.4 UNDERSTANDING THE ROLE OF 
SYSTEM STAKEHOLDERS

Human-made systems, from conception through disposal, require human support, both directly and
indirectly. Humans with vested interests in a system, product, or service expect to contribute to the
conceptualization, funding, procurement, design, development, integration, operation, support, and
retirement of every system. We refer to these people as stakeholders. Depending on the size and
complexity of the system, including risks and importance to the User, stakeholder roles may be per-
formed by an individual, an organization, or some higher level enterprise such as a corporation,
government, or country.

To better understand who stakeholders are, let’s scope and bound the term’s application.

Who Is a System Stakeholder?

A stakeholder is anyone or an organization having a vested interest in a system and its outcomes.
WHO a stakeholder is depends on their role.

System Stakeholder Roles

Every human-made system is supported by human roles with different objectives and agendas that
contribute to the overall longevity and performance of the system throughout its life cycle. Con-
sider the following examples of system roles:
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• System advocate or proponent

• System shareholder

• System owner

• System user(s)

• System architect

• System acquirer

• System developer

• Services provider

• Independent Test Agency (ITA)

• System administrator

• Mission planner

• System analyst

• System support

• System maintainer

• System instructor

• System critic

• System competitor

• System adversary

• System threat

Let’s introduce and define each of these roles. Table 5.2 provides a brief description of each stake-
holder role.

Understanding the Multiplicity of System Stakeholder Roles

The context of stakeholder roles centers on a SYSTEM OF INTEREST (SOI). Recognize that the
individual, organizations, or enterprises that perform these roles may be stakeholders in other
systems. In fact, stakeholder roles may vary from system to system.

EXAMPLE 5.6

The System Advocate for your system may serve as a System Owner for numerous systems. Users may employ
several other systems to achieve their own mission goals and objectives. The System Developer may be the
developer of numerous systems and system maintainer of other systems.

5.5 SUMMARY

Our discussion covered the roles of system stakeholders. Each stakeholder has some level of interest in the
outcome and success of the system, product, or service. Based on these interests, system stakeholders become
key sources for system requirements. Stakeholder satisfaction with system performance ultimately determines
system acceptability, our next topic.

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new system selection, apply your knowledge derived from this chapter’s topical
discussions. Specifically identify the following:

(a) What MISSION SYSTEM and SUPPORT SYSTEM roles does the system perform?

(b) Who are the stakeholders for each system.
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Table 5.2 System stakeholder role definitions

Role Role Description

System An individual, organization, or enterprise that champions the system’s cause, mission, or
advocate or reason for existence.
proponent System advocates may derive tangible or intangible benefits from their support of the 

system, or they may simply believe the system contributes to some higher level cause
that they support.

System An individual, organization, or enterprise that “owns,” either directly or indirectly, all
shareholder or equity shares in the system and its development, operation, products, and by-products.

System An individual, organization, or enterprise that is legally and administratively responsible
owner and accountable for the system, its development, operation, products, by-products, and

outcomes and disposal.

System An individual, organization, or enterprise that derives direct benefits from a system and/or
user(s) its products, services, or by-products. Users may physically operate a system or provide

inputs—data, materials, raw materials, preprocessed materials, etc.—to the system
and await the results of value-added processing in the form of products, services, or
information. Users may directly or indirectly include the System Advocate, System
Owner, or other Users.

System An individual, organization, or enterprise that visualizes, conceptualizes, and formulates
architect the system, system concepts, missions, goals, and objectives. Since SE is viewed as 

multidisciplined, the system architect role manifests itself via hardware architects, 
software architects, instructional architects, etc.

System An agent (or agency) selected by the User to serve as their technical representative to:
acquirer 1. Specify the system.

2. Select a System Developer or Services Provider.
3. Provide technical assistance.
4. Provide contractual oversight for the execution of the contract and delivery of a 

verified and validated system to the User.

System An individual, organization, or enterprise responsible for developing a verified system
developer solution based on operational capabilities and performance bounded and specified in a 

System Performance Specification (SPS).

Services An individual, organization, or enterprise chartered or contracted to provide services to
provider operate the system or support its operation.

Independent An individual, organization, or enterprise responsible for verifying and/or validating that
test agent/ a system will meet the User’s documented operational mission needs for an intended and 
agency (ITA) prescribed operating environment.

System An individual, organization, or enterprise responsible for the general operation, 
administrator configuration, access, and maintenance of the system.

Mission An individual, organization, or enterprise that:
planner 1. Translates mission objectives into detailed tactical implementation plans based on

situational analysis; system capabilities and performance relative to strengths,
weaknesses, opportunities, and threats (SWOT)

2. Develops a course of action, countermeasures, and required resources to achieve
success of the mission and its objectives.

(continued)



ORGANIZATIONAL CENTRIC EXERCISES

1. Identify a contract program within your organization. Interview the program and technical directors to iden-
tify the system’s roles and stakeholders, using Table 5.2 as a checklist.

2. Identify a services group within your organization—such as communications, accounting, or contracts.
Identify the role and stakeholders of the services system using Table 5.2 as a checklist.

3. Using any system, product, or service your organization provides, identify what human system roles the
product supports.
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Table 5.2 continued

Role Role Description

System An individual or organization that applies analytical methods and techniques (scientific, 
analyst mathematical, statistical, financial, political, social, cultural, etc.) to provide meaningful 

data to support informed decision making by mission planners, system operators, and
system maintainers.

System An individual, organization, or enterprise responsible for supporting the system, its 
support capabilities, and/or performance at a sustainment level that ensures successful 

achievement of the system’s mission and objectives. System support includes activities 
such as maintenance, training, data, technical manuals, resources, and management.

System An individual, organization, or enterprise accountable for ensuring that the EQUIPMENT
maintainer System Element is properly maintained via preventive and corrective maintenance,

system upgrades, etc.

System An individual or organization accountable for training all members of the PERSONNEL
instructor System Element to achieve a level of performance standard based proficiency in 

achieving the system mission and its objectives.

System critic An individual, organization, or enterprise with competitive, adversarial, or hostile 
motivations to publicize the shortcomings of a system to fulfill its assigned missions, 
goals, and objectives in a cost effective, value-added manner and/or believes the system
is a threat to some other system for which the System Critic serves as a System Advocate.

System An individual, organization, or enterprise whose missions, goals, and objectives compete
competitor to capture similar mission outcomes.

EXAMPLE 5.5 Examples include market share, physical space, etc.

System A hostile individual, organization, or enterprise whose interests, ideology, goals, and 
adversary objectives are:

1. Counter to another system’s missions, goals, and/or objectives.
2. Exhibits behavioral patterns and actions that appear to be threatening.

System A competitive, adversarial, or hostile individual, organization, or enterprise actively
threat planning and/or executing missions, goals, and objectives that are counter to another

system’s missions, goals, and/or objectives.



Chapter 6

System Acceptability

6.1 INTRODUCTION

The degree of success of any human-made system and its mission(s) ultimately depends on:

1. Whether the marketplace is ready for introduction of the system—an operational need
driven “window of opportunity.”

2. The User’s perception of the system’s operational utility, suitability, and availability.

3. The system’s ability to accomplish the User’s mission—system effectiveness.

4. The return on investment (ROI) for the resources expended to operate and maintain the
system—cost effectiveness.

Most people view system acceptability in a customer satisfaction context. Engineers often shrug it
off as something that can be measured by customer satisfaction surveys AFTER a system or product
has been delivered or distributed to the marketplace. Based on WHAT the organization learns from
the postdelivery surveys, they may improve the system or product if:

1. The User awards them another contract to correct any deficiencies, assuming the deficiences
are not covered by the contract.

2. Longer term profit projections make internal investment worthwhile.

You should understand the User’s operational needs prior to the system development rather than
from postdelivery surveys. You need to understand:

1. HOW the User intends to use the system or product.

2. WHAT measures of success are to be applied?

3. The consequences and ramifications of User failure or degrees of success.

Author’s Note 6.1 This topic is seldom addressed by many texts and is typically one of the last
concepts engineers learn. Yet, it is one of the most important concepts. If system developers do not
understand the success criteria for user acceptance, the most elegant designs are worthless. There-
fore, this topic is introduced as part of the System Entity Concepts.

The four degree of success factors listed at the start of this chapter are seldom optimum simul-
taneously. Though appearing to be equal, psychologically, the subjective measures—namely, per-
ception of operational utility, suitability, and availability (factor 2)—often obscure the objective
measures of system success—system and cost effectiveness (factors 3 and 4).

System Analysis, Design, and Development, by Charles S. Wasson
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• Subjective look, feel, and perception within the peer community or by the funding source
factors often obscure User acceptance that a system may only be partially successful.

• Conversely, the User for the same subjective reasons may reject an objectively successful
system.

Ultimately, some event often brings a reality check. A decision to continue with the system may
require an upgrade to correct deficiencies or to phase out the system and replace it with a new
system. Operational utility, suitability, availability and effectiveness drive the need to ensure that
SE is an integral part of overall system development from conception through disposal. These
factors thrive as common buzzwords among marketers and are often very difficult to quantify for
implementation. The implementation typically requires specialists that spend entire careers focused
exclusively on quantifying and presenting this information in a manner that is realistic and easily
understood by key decision makers.

What You Should Learn from This Chapter

• What factors influence system acceptability to Users?

• Why are system introduction, feasibility, and affordability important?

• What is meant by the operational utility of a system?

• What is meant by the operational suitability of a system?

• What is operational availability?

• What is meant by the operational effectiveness of a system?

• What is meant by the cost effectiveness of a system?

• What is system verification?

• What is system validation?

• Why are system verification and validation important to Users, Acquirers, and System 
Developers?

Definitions of Key Terms

• Measures of Effectiveness (MOE) “A qualitative or quantitative measure of the perform-
ance of a model or simulation or a characteristic that indicates the degree to which it per-
forms the task or meets an operational objective or requirement under specified conditions.”
(Source: DoD 5000.59-M Modeling and Simulation (M&S) Glossary, Part II, Glossary A-
318, p. 134)

• Measures of Performance (MOP) “Measures of lowest level of performance representing
subsets of measures of effectiveness (MOEs). Examples are speed, payload, range, time on
station, frequency, or other distinctly quantifiable performance features.” (Source: DSMC—
Test & Evaluation Management Guide, Appendix B, Glossary of Test Terminology)

• Measures of Suitability (MOS) Objective performance measures derived from subjective
user criteria for assessing a system’s operational suitability to the organizational and mission
applications.

• Operational Effectiveness “An operational Test & Evaluation (OT&E) metric that meas-
ures the overall degree of mission accomplishment of a system when used by representative
personnel in the environment planned or expected (e.g., natural, electronic, threat) for oper-
ational employment of the system considering organization, doctrine, tactics, survivability,
vulnerability, and threat (including countermeasures, initial nuclear weapons effects, nuclear
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biological, and chemical contamination threats). The operational system that is provided to
users from the technical effort will be evaluated for operational effectiveness by a service
OT&E agency. Also a useful metric for operational effectiveness assessments.” (Source:
INCOSE Handbook, Section 12, Appendix Glossary, p. 36)

• Operational Suitability “The degree to which a system can be placed satisfactorily in field
use with consideration being given to availability, compatibility, transportability, inter-
operability, reliability, . . . usage rates, maintainability, safety, human factors, manpower sup-
portability, logistic supportability, natural environmental effects and impacts, documentation,
and training requirements.” (Source: Adated from DoD Glossary, Defense Acquisition
Acronyms and Terms)

• System Effectiveness “A quantitative measure of the extent to which a system can be
expected to satisfy customer needs and requirements. System effectiveness is a function of
suitability, dependability, (reliability, availability, maintainability), and capability.” (Source:
INCOSE Handbook, Section 12, Appendix Glossary, p. 43)

Key Challenges in Developing Systems 
Acceptable to Their Users

The success and level of acceptance of a system, product, or service is often measured by a series
of questions that are answered by analysis before a system is developed and by User feedback and
actual results after the system is implemented in the field. The questions include:

1. Is the timing RIGHT for the introduction of a new system? Is the marketplace “mentally
and emotionally ready” ready for this system, product, or service as driven by operational
needs?

2. Is system feasibility sufficient to warrant User/System Developer investments that may result
in a return on investment (ROI) at a later date?

3. Does the proposed system have OPERATIONALLY UTILITY to the User relative to their
organizational missions and objectives?

4. Is the proposed system OPERATIONALLY SUITABLE for all stakeholders relative to its
intended application?

5. Is the proposed system OPERATIONALLY AVAILABLE when tasked to perform missions?

6. Is the system OPERATIONALLY EFFECTIVE, in terms of cost and technical performance,
for its intended mission applications and objectives?

The underlying foundation for all of these questions resides in User and system stakeholder per-
ceptions of the system. An old adage states “perception is reality.” Despite the physical realities of
system success, the User and stakeholders must be technically convinced via objective, fact-based,
compelling evidence that the system does or will meet their missions and objectives.

This chapter provides an overview of the concepts of: 1) marketplace timing, 2) system afford-
ability, 3) system operational utility, suitability, and system effectiveness; and 4) system verifica-
tion and validation.

6.2 SYSTEM INTRODUCTION, FEASIBILITY, 
AND AFFORDABILITY

The decision to proceed with development of new systems, products, and services involves three
basic questions:
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1. Is the timing right to introduce a new system to the market/User, particularly in the com-
mercial environment?

2. Is it economically feasible to develop a new system with the technologies currently avail-
able within budgetary constraints?

3. If development is economically feasible, will the User be able to afford the operating and
maintenance costs over the planned service life of the system?

Let’s investigate each of these questions further.

System Timing to the Marketplace

History is filled with examples of systems or products that were delivered to the marketplace pre-
maturely or too late. You can innovate and develop the best widget or electronic mouse trap.
However, if the marketplace is not mentally or skillfully ready for the device or can afford it, your
efforts and investments may be futile—timing is critical to User acceptance!

The same is true for proposing new systems or capabilities to Users. They may WANT and
NEED a system yet lack sufficient funding. In other cases their funding may be placed “on hold”
by decision authorities due to a lack of consensus regarding the maturity in system definition or
understanding the system’s requirements.

For this reason, most organizations develop a series of decision-making “gates” that qualify the
maturity of a business opportunity and incrementally increase the level of commitment, such as
funding. The intent is to ensure that the RIGHT system/product solution is introduced at the RIGHT
time for the RIGHT price and is readily accessible when the User is ready to purchase. Therefore,
organizations must do their homework and work proactively with the Users to ensure that system
timing is right. This leads to the next point: User system/product feasibility and affordability.

System Feasibility and Affordability

If a determination is made that the timing for a system, product, or service is RIGHT, the next chal-
lenge comes in determining if the system, as currently specified, can be feasibly developed and pro-
duced with existing technologies within the planned development and life cycle budget at
acceptable risk for the User or Acquirer.

System feasibility ultimately focuses on four key questions:

1. WHAT does the User WANT?

2. WHAT does the User NEED?

3. WHAT can the User AFFORD?

4. WHAT is the User WILLING to PAY?

As an SE, chances are you will be required to provide technical support to business development
teams working on a new system or product acquisition. If not, you may be supporting an SE who
is. From a technical perspective, the multidisciplinary SE team is expected to conceptualize, mature,
and propose technical solutions to satisfy the system feasibility questions noted above.

Author’s Note 6.2 If you choose to AVOID business development support, others within your
organization may potentially formulate a risky or undesirable solution or commitment that you
have to live with later. Conversely, if the others solicit engineering support and you choose to
IGNORE them, you may be stuck with the consequences of your own inaction. Therefore, proac-
tively support and technically influence business development activities and decision making—It’s
a win–win for all stakeholders.
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6.3 OPERATIONAL UTILITY AND SUITABILITY

If you determine that the market timing is RIGHT and the Users can AFFORD the system/product,
the next challenge is managing User perceptions of operational utility and operational suitability.

Operational Utility

Users expect systems and products to have a level of operational utility that enables them to accom-
plish the organizational missions and achieve the stated goals and objectives. These are nice words,
but what does operational utility really mean? A system or product having operational utility is
one that is:

1. The RIGHT system, product, or service for the objective to be accomplished.

2. Does not pose any unacceptable safety, environment, or health hazards or risks to its 
operators or the public.

So, if a system satisfies these operational utility criteria, how do we determine operational
suitability?

Operational Suitability

Operational suitability characterizes HOW WELL a system or product is:

1. Suited to a User’s specific application in a given operating environment.

2. Integrates and performs within the User’s existing system.

Some systems and products may have significant operational utility for some applications but
simply are not operationally suited to a specific User’s intended application and operating envi-
ronment. Consider the following example:

EXAMPLE 6.1

From a transportation perspective, vehicles such as cars may have operational utility to a User. However, if
the User plans to use the vehicle off the road in a rugged, harsh environment, only specific types of vehicles
may be operationally suitable for the application. If the User intends to carry heavy loads, only specific types
of trucks may be operationally suitable for the application.

Operational Availability

Operational availability means that the system, product, or service is ready ON DEMAND to
perform a mission WHEN tasked. Operational availability becomes a critical metric for assessing
the degree of readiness to perform missions. Availability is a function of SYSTEM reliability and
maintainability. Consider the following example:

EXAMPLE 6.2

911 calls to police, fire departments, and emergency medical responders TEST the respective organization’s
system availability—its personnel and equipment—to respond to emergencies and disasters.



6.4 OPERATIONAL EFFECTIVENESS

If the User deems a system or product to: 1) have operational utility, 2) be operationally suitable
for the application, and 3) operationally available to perform missions, the next challenge is deter-
mining if the system is operationally effective. Users and organizations are chartered with specific
goals, missions, and objectives. Users acquire and implement systems, products, or services specif-
ically to support achievement of those goals, missions, and objectives. If the system, product, or
service is not or is only marginally operationally effective, it is of limited or no value to the User.

The Elements of Operational Effectiveness

A system, product, or service must be capable of supporting User missions to a level of perform-
ance that makes it operationally effective in terms of accomplishing organizational goals and objec-
tives, namely outcomes, cost, schedule, and risk.

EXAMPLE 6.3

For a military system, system effectiveness depends on environmental factors such as operator organization,
doctrine, and tactics; survivability; vulnerability; and threat characteristics. (Source: DSMC, System Engi-
neering Fundamentals, Chapter 14, Measures of Effectiveness and Suitability, p. 125)

If you analyze operational effectiveness, two key elements emerge:

1. HOW WELL the system accomplishes its mission objectives—operational effectiveness.

2. HOW WELL the system integrates and performs missions within the User’s organizational
structure and operating environment—operational suitability.

Therefore, we need to establish metrics that enable us to analyze, predict, and measure mission
operational outcomes. We do this with two key metrics measures of effectiveness (MOEs) and meas-
ures of suitability (MOSs).

Measures of Effectiveness (MOEs)

MOEs enable us to evaluate the first objective—HOW WELL the system accomplished its mission
objectives. MOEs are objective measures that represent the most critical measures—performance
effecters—that contribute to mission outcome success. Consider the following example:

EXAMPLE 6.4

Did we meet our financial target? How far did we miss the target? Did we meet our production goals? Did
we finish the production run on schedule?

MOEs are used as the basis for deriving measures of performance (MOP) parameters stated as
requirements in system performance and item development specifications.

Measures of Suitability (MOSs)

MOSs enable us to evaluate the second objective—HOW WELL the system integrates into the
User’s organizational structure, mission applications, and operating environment. MOSs represent
integrated measures that objectively quantify issues such as supportability, human interface com-
patibility, and maintainability.
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EXAMPLE 6.5

1. What anthropometrics, skills, tools, and equipment are required to operate and maintain the
system to a specific level of performance?

2. Do the control panels incorporate ergonomic designs and devices that minimize operator fatigue?

MOSs are characterized measures of performance (MOP) parameters stated as requirements in
system specifications.

6.5 COST EFFECTIVENESS

The objective measure of system success ultimately depends on its cost effectiveness. From an orga-
nizational perspective: Does the system produce outcome-based performance and results that
provide a return on investment (ROI) that justifies continued use?

Engineers, by virtue of their technical backgrounds, often have difficulty in relating to the
concept of cost effectiveness; they tend to focus on system effectiveness instead. The reality is:
system life cycle operational costs and the profits derived from system applications DRIVE orga-
nizational decision making. You can innovate the best system, product, or service with outstand-
ing system effectiveness. However, if the recurring operating and support costs are unaffordable 
for its Users, the system may “dead on arrival” at system delivery, especially in commercial 
environments.

Cost effectiveness, as a metric, is computed from two elements: 1) life cycle cost and 2) system
effectiveness.

System Effectiveness

As an objective factor, system effectiveness represents the physical reality of outcome-based per-
formance and results.

Outcome-based performance and results occur in two basic forms: planned and actual per-
formance. When system development is initiated, the System Developer is dependent on analyses,
models, and simulations to provide technical insights that will reveal how a system is projected to
perform. These data are used to:

1. Bound and specify the system or one of its items.

2. Compare actual versus planned performance or expected results.

Various techniques, such as rapid prototypes, proof of concept prototypes, and technology demon-
strations, are employed to validate models and simulations as predictors of system performance
ands reduce risk. The intent is to collect objective, empirical evidence “early on” to gain a level of
confidence that the system, or portions thereof, perform as expected. The net result is to verify and
validate the predictions.

When the actual system is ready for field-testing, actual performance data are collected to:

1. Verify accomplishment of the requirements.

2. Validate models that the system successfully performs according to the User’s intended 
use.

System effectiveness requires understanding the contributory factors such as reliability, maintain-
ability, and performance.
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Quantifying System Effectiveness

Although the concepts of cost effectiveness and system effectiveness are intriguing, the challenge
is being able to translate concepts into simple, physical reality that people can easily understand.
We make the translation by establishing metrics that enable us to analytically and objectively quan-
tify system effectiveness and the level of performance required to achieve the effectiveness. System
effectiveness metrics include: MOEs and MOSs supported by MOPs. MOPs are stated as technical
performance parameters (TPPs) in specifications.

MOEs and MOSs are outcome-based measures of operational effectiveness. Operational effec-
tiveness is further defined as “the overall degree of a system’s capability to achieve mission success
considering the total operational environment” (Source: DSMC, Systems Engineering Fundamen-
tals, Dec. 2000, para. 14.1, p. 125). MOEs and MOSs “identify the most critical performance
requirements to meet system-level mission objectives, and will reflect key operational needs in the
operational requirements document” (Source: DSMC, Systems Engineering Fundamentals, Dec.
2000, para. 14.1, p. 125).

6.6 REALITY CHECK

All of this discussion sounds fine, but how does it apply to the real world? Traditionally, organi-
zations have developed procurement packages and employed cost models to provide a rough order
of magnitude (ROM) estimate for system development. In effect, Acquirers solicited a point solu-
tion for a specified capability.

Although the cost model estimates were generally accurate, surprises did occur. If the cost
proposals exceeded the original estimate that had been budgeted, the Acquirer and User were con-
fronted with recompeting the contract. Generally, negotiations took place to arrive at a contract
price for a system that was affordable but often with lesser capabilities.

WHAT Acquirers and Users wanted to hear was “Give us a proposal that describes the range
and mix of capabilities and levels of performance—the system/cost effectiveness—that can be pro-
cured for a specific set of system objectives or requirements.”

In concept, this approach focuses on cost effectiveness—namely how much system effective-
ness can we acquire per unit of life cycle cost. A more formal term, cost as an independent vari-
able (CAIV), is applied to the concept. As a result, System Developer proposals may be required
to submit graphical analyses that plot system performance options along the horizontal axis and
cost on the vertical axis. Figure 6.1 provides an example view.

One final point. Today’s society is continually innovating new contracting approaches to assist
organizations that have sporadic funding. Due to the cost of acquiring, developing, operating, and
supporting new system, organizations often shift the investment cost burden of system develop-
ment to contractors. The intent is to procure on a fee for service basis to meet budgetary needs. As
a result, contracts between these organizations incorporate system availability clauses that require
the system to be operationally available on-demand when the User needs the system. The bottom
line is that if the system is not operationally available, the contractor is not paid. Therefore, system
availability becomes a prime measure of success criteria for system acceptability—meaning User
willingness or desire to employ your systems, products, and services to achieve individual or orga-
nizational goals and objectives.

Are cost effectiveness and system effectiveness analyses easy to perform? No. In fact both are
often very difficult to quantify and measure. Implementation of these details varies by organization
and program. Military organizations employ subject matter experts (SMEs) with specialized skills
in these areas to assess survival in battlefield operations. If you fail to plan for system effective-
ness and all the factors that contribute to its success, you place organizational and mission objec-
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tives at risk. Are these concepts important to retailer companies doing business on the World Wide
Web? You, bet! Especially from a User interface, security, and billing perspective. Is system effec-
tiveness important in educational and training systems? A resounding Yes!

6.7 SYSTEM VERIFICATION AND VALIDATION (V&V)

The subject of system acceptability is often abstract and is OPEN to INTERPRETATION to dif-
ferent people. WHAT constitutes acceptability to one User may not be acceptable to another User.
Our discussion of system operational utility, suitability, and effectiveness ultimately influences the
User’s decision as to whether the system satisfies their operational needs. The degree of satisfac-
tion for a given system application establishes user perceptions concerning whether they procured
the RIGHT system. We refer to this as system validation.

System validation draws yet another question: If the Users have a vision of WHAT they WANT,
HOW do they:

1. Translate the vision into a specification to produce the visionary system?

2. Have a level of confidence that the system, product, or service delivered will be that RIGHT
system?

3. Be able to reproduce multiple copies of the system?

The first question requires the “engineering of the system.”
The second question requires building integrity into the evolving “engineering of the system”

to ensure that the source requirements manifest themselves in the design of the deliverable system,
product, or service and can be demonstrated at system delivery to be satisfied. We refer to this as
system verification.

The third question requires that the “engineering of the system” establish high-quality docu-
mentation and process standards that enable skilled workers to reliably and predictably reproduce
each copy of the system, product, or service within specified performance constraints.

Let’s focus our attention briefly on the concepts of system validation and system verification.
Figure 6.2 provides an illustration of system verification and system validation that helps in better
understanding these concepts.
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Figure 6.1 Cost as an Independent Variable (CAIV) plot for making cost-capability decisions



Operational Need

Beginning in the upper left corner of the figure, Users have operational needs related to their
assigned organizational and system missions. Later we will discuss the context of this operational
need in terms of a problem space or and solution space. To satisfy this operational need, the User
must translate the operational need  requirements into a specification that is legally sufficient for
procurement. Since the creation of the specification requires specialized expertise provided by
subject matter expert (SME) SEs, the User’s organization may lack this capability. Where this is
the case, the User may employ the services of an Acquirer organization to serve as their technical
and contractual representatives.

System Verification

Throughout the development of the multi-level specifications, the Acquirer and User must answer
the question: Are we specifying the RIGHT system that will satisfy the User’s operational need?
This is an Acquirer-User process that is highly iterative until the requirements reach a state of matu-
rity sufficient for initiating a procurement action. Once the procurement action begins, the formal
Request for Proposal (RFP) solicitation process for a system provides additional insights, such as
from proposals by System Developer candidates concerning the RIGHT system from an objective,
technical perspective. The formal RFP solicitation process culminates in the award of a system
development or procurement contract.

Once the contract is awarded, the challenge becomes: HOW do we ensure that the system will
be built RIGHT—that is, correctly — in accordance with the contract specification? The Acquirer,
User, and System Developer must answer this question mainly through a series of technical reviews,
technical demonstrations, and risk assessments that occur throughout the system development con-
tract. As a result, the teams must continually assess compliance of the evolving system design solu-
tion relative to the specification requirements. We refer to the evolving system design solution as
the Developmental Configuration and the test activities during system development as the Devel-
opmental Test and Evaluation (DT&E).
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Ultimately, when system or product development is complete, those responsible and account-
able for system acceptance must answer the question: Did we build the system RIGHT—that is, 
in accordance with specification requirements? This question is typically answered with a System
Verification Test (SVT) that documents test results for each specification requirement based on 
prescribed verification methods.

System Validation

Once the system has been verified as meeting its specification requirements, the next question that
the Acquirer and User must answer is: Did we procure the RIGHT system? This is the ultimate test
of HOW WELL the Acquirer, in collaboration with the User, performed the up-front process of
partitioning the operational need—meaning the problem space—into a solution space that can be
bounded and technically described via a procurement specification.

Author’s Note 6.3 For introductory overview purposes, the scope of the following discussion
focuses on system validation of the completed system. System validation occurs throughout system
development from Contract Award through formal system acceptance. Contextually, system verifi-
cation and validation apply to each step along the supply chain (e.g., customer-supplier) involv-
ing the User, Acquirer, System Developer, Subcontractor, and vendor organizations as well as
individuals within those organizations.

During system validation the User or an Independent Test Agency (ITA) subject the system,
product, or service to actual operating field conditions, using trained system operators and main-
tainers. Actual devices or surrogate representations of the operational need are employed to for-
mally evaluate the overall system responsiveness and effectiveness, including operator and
maintainer actions, to satisfy the operational need. We refer to this phase of system development
as Operational Test and Evaluation (OT&E). Depending on contract requirements, results of 
OT&E are incorporated as corrective actions into the Developmental Configuration of the design
solution.

Depending on contract requirements, on completion of the OT&E activities, the Acquirer and
System Developer conduct a functional configuration audit (FCA) and a physical configuration
audit (PCA). The FCA verifies that SVT results fully comply with specification requirements. 
The PCA verifies that the physical components of the “As Verified” and “As Validated” system
identically match the “As Designed” requirements (drawings, wiring diagrams, etc.). Results of the
FCA and PCA are certified at a System Verification Review (SVR) prior to system delivery and
acceptance. As part of the SVR, the Product Baseline is established as a precursor for system 
production.

Due the expense of producing production items and the need to avoid rework, the Product Base-
line is crucial for reproducing production quantities of the system. The Product Baseline represents
the physical state of the Developmental Configuration. This does not mean necessarily that the
design has achieved a low cost suitable for production. Additional design refinements may be
required to REDUCE recurring production costs. Once the design solution has matured, a Produc-
tion Baseline can be established.

Author’s Note 6.4 Operational needs and intended usage must be documented BEFORE system
development, rather than AFTER the system is delivered for system validation. Documenting these
needs AFTER system development invalidates the specification process intended to document
system requirements derived from validated User operational needs. The User certainly has the
prerogative to change their minds about their intended needs at any time during the system devel-



opment process. However, this means modifying the contract requirements, which were based on
the original needs, via an engineering change proposal (ECP).

One of the challenges of SE is being able to translate User operational needs into specifica-
tion requirements, especially if you have a customer who says “We don’t know WHAT we WANT,
but we will KNOW it WHEN we see it!” You MUST be able to validate, document, and bound
WHAT they WANT—up front! Otherwise, your contracts organization should work with the
Acquirer to establish a cost plus contract vehicle—that allows further exploration, definition, and
refinement of these needs until the User identifies WHAT they WANT.

Author’s Note 6.5 System validation may be performed formally as part of contract require-
ments or informally by the System Developer prior to system delivery or by the User(s) after con-
tract system delivery. System validation is sometimes specified in contracts that may involve
development of systems planned for large production quantities. As an Acquirer or User, you DO
NOT want to invest large sums of money to procure systems in large quantities that DO NOT satisfy
User needs. Even in smaller quantities, there may be instances where the system requires valida-
tion of human systems integration (HSI).

6.8 GUIDING PRINCIPLES

In summary, the preceding discussions provide the basis with which to establish the guiding prin-
ciples that govern system acceptability.

Principle 6.1 System acceptability is determined user satisfaction; user satisfaction is deter-
mined by five User criteria:

1. Provide value—meaning operational utility.

2. Fit within the user’s system and mission applications—meaning operational suitability.

3. Be available to conduct missions—meaning operational availability.

4. Accomplish performance objectives—meaning operational effectiveness.

5. Be affordable—meaning cost effectiveness.

Principle 6.2 Despite the most technically innovative and elegant SE design solutions, Users’
perceptions of a system, product, or service constitute reality.

6.9 SUMMARY

In our discussion of system acceptability, we have identified, defined, and provided examples of the factors
that contribute to this goal: 1) system introduction, 2) system affordability, 3) system feasibility, 4) operational
utility, 5) operational suitability, 6) operational availability, 7) operational effectiveness, 8) cost effectiveness,
and 9) system effectiveness. Our purpose in introducing these concepts at this time is to highlight key show-
stopper drivers that determine system success but are often swept aside by most authors and SEs. Our intent
is to emphasize these concepts up front and not as notional afterthoughts determined by business development
customer satisfaction surveys AFTER a system, product, or service has been fielded.

As an SE you should visualize the system entity as a simple box whose performance and success are
measured by these criteria. Why? Some engineers are notorious for immersing themselves into math and
science details BEFORE they have an in-depth understanding of WHAT is expected from the system by the
User. These engineers lack the fundamental knowledge of system acceptability factors that help one to better
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understand how the element of the system contributes to the overall system capabilities and performance.
Your challenge as an SE is to make sure system acceptability criteria are manifested in the specifications,
designs, testing, verification, and validation of each hierarchical element of the system.

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new system, selection, apply your knowledge derived from this chapter’s topical
discussions. Identify acceptance criteria for the stakeholders of each system.

3. Identify three instances of systems that were deemed by Users as unacceptable, were rejected, and subse-
quently failed in the marketplace.

4. Identify three instances of systems that were deemed by Users as acceptable and highly successful in the
marketplace.

5. Identify three instances of systems you purchased that met your specification requirements (e.g., verifica-
tion) but failed to satisfy your needs (e.g., validation).

6. Identify three instances of systems you use. How would you quantify their:

(a) System effectiveness?

(b) Cost effectiveness?

ORGANIZATIONAL CENTRIC EXERCISES

1. What command media does your organization have that provides guidance related to system acceptability?

2. Contact a contract program in your organization. Interview the Program Director and Technical Director.

(a) What success criteria has the user established?

(b) How our these criteria documented and implemented in specifications?

REFERENCE

Defense Systems Management College (DSMC) Ft. Belvoir, VA. 2001. Systems Engineering Fundamentals.

ADDITIONAL READING

58 Chapter 6 System Acceptability

Blanchard, Benjamin S. 1998. System Engineering Man-
agement. New York: Wiley.

Defense Systems Management College (DSMC) Ft.
Belvoir, VA. 2001. Glossary—Defense Acquisition
Acronyms and Terms, 10th ed. Defense Acquisition Uni-
versity Press.

NASA SP-6105. 1995. Systems Engineering Handbook.
Defense Systems Management College (DSMC) Ft.

Belvoir, VA. 1998. Test and Evaluation Management
Guide, 3rd ed.



Chapter 7

The System/Product Life Cycle

7.1 INTRODUCTION

The system/product life cycle serves as the fundamental roadmap for understanding and commu-
nicating how natural and human-made systems evolve through a progression of sequential life cycle
phases. For human-made systems the roadmap provides a basis for assessing existing system capa-
bilities and performance relative to threats and opportunities; defining, procuring, and developing
new systems to respond to the threats and opportunities; and implementing new systems to achieve
mission objectives that counter or leverage the threats and opportunities.

This section introduces the concept of the system life cycle, the top-level life cycle framework
for human-made systems. As the final discussion in the System Entity Series, we characterize the
concept-to-disposal evolution of a system, product, or service.

What You Should Learn from This Chapter

• What is the system/product life cycle?

• What is the System Definition Phase; when does it start, and when does it finish?

• What is the System Procurement Phase; when does it start, and when does it finish?

• What is the System Development Phase; when does it start, and when does it finish?

• What is the System Production Phase; when does it start, and when does it finish?

• What is the System Operations and Support (O&S) Phase; when does it start, and when does
it finish?

• What is the System Disposal Phase; when does it start, and when does it finish?

• What are life cycles within life cycles?

• How is a legacy system’s life cycle used to establish requirements for a new system?

7.2 SYSTEM LIFE CYCLE OVERVIEW

The evolution of any system made by or known to humankind begins at the point of conception
and ends at disposal. This process is referred to as the system life cycle. The system life cycle
serves structurally as the foundation for system development. Human-made systems are conceptu-
alized, planned, organized, scheduled, estimated, procured, deployed, operated and supported, and
disposed of using this structure. Natural systems follow similar constructs with life phases.

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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The life cycle for any system, product, or service consists of a series of phases starting with
system conception and continuing through final disposal. For human-made systems the beginning
and ending of each phase is marked by a significant control point or staging event such as a key
decision at a technical review or a field event that authorizes progression to the next phase.

Author’s Note 7.1 There are a number of ways to define a system life cycle. Ten people will
have 10 different versions of this graphic. You and your organization should choose one that best
reflects your organization and industry’s perspective of the life cycle.

The typical system life cycle is composed of a series of phases as shown in Figure 7.1. The
phases are:

• System Definition Phase

• System Procurement Phase

• System Development Phase

• System Operations and Support (O&S) Phase

• System Production Phase

• System Disposal Phase

This chapter presents the system/product life cycle as a top-level framework of embedded phases
required to evolve a User operational need for a system, product, or service from conceptual
“vision” through disposal. Each of the phases represents a collection of activities that focus on spe-
cific program objectives and work products. As you will soon discover, some of these phases have
well-defined endings marked by key milestones while other phases overlap and transition from one
to another.

7.3 SYSTEM LIFE CYCLE PHASE SYNOPSIS

The System Definition Phase

The System Definition Phase begins with recognition by the User that a new system or upgrade to
an existing system, product, or service is required to satisfy an operational need. The operational
need may be derived from: 1) mission opportunities, 2) threats, or 3) projected system capability
and performance “gaps” or deficiencies.

On determination to initiate definition of a new system, the User analyzes existing system oper-
ational needs and defines requirements for a new system, product, or service. In some instances the
User may enlist the services of an Acquirer to procure and develop the system and serve as the
User’s technical and contract representative.

The Acquirer assists the User in analyzing the opportunity or problem space that created the
need. The Acquirer, in collaboration with the User, bounds the solution space in the form of a set
of system requirements to serve as the basis for a system development contract.
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When the System Definition Phase has reached sufficient maturity, the Acquirer initiates the
System Procurement Phase.

The System Procurement Phase

The System Procurement Phase consists of those activities required to procure the new system or
upgrades to the existing system. These activities include:

1. Qualifying capable system, product, or service vendors.

2. Soliciting proposals from qualified vendors (offerors).

3. Selecting a preferred vendor (offeror).

4. Contracting with the vendor to develop the system, product, or service.

The selected vendor (offeror) becomes the System Developer or Services Provider.

The System Development Phase

The System Development Phase consists of those activities required to translate the contract system
specifications into a physical system solution. Key System Development Phase activities include:

1. System Engineering Design

2. Component Procurement and Development

3. System Integration, Test, and Evaluation (SITE)

4. Authenticate System Baselines

5. Operational Test and Evaluation (OT&E)

Throughout the phase, the multi-level system design solution evolves through a progression
of maturity stages. Each stage of maturity typically consists of a major technical design review
with entry and exit criteria supported by analyses, prototypes, and technology demonstrations. The
reviews culminate in design baselines that capture snapshots of the evolving Developmental Con-
figuration. When the system engineering design is formally approved, the Developmental Config-
uration provides the basis for component acquisition and development. We refer to the initial
system(s) as the first article of the Developmental Configuration.

Acquired and developed components are inspected, integrated, and verified against the respec-
tive design requirements and performance specifications at various levels of integration. The intent
of verification is to answer the question: Did we develop the system CORRECTLY?—in accordance
with the specification requirements. The integration culminates in a System Verification Test (SVT)
that proves the system, product, or service fully complies with the contract System Performance
Specification (SPS). Since the System Development Phase focuses on the creation of the system,
product, or service from Contract Award through SVT, we refer to this as Developmental Test and
Evaluation (DT&E).

When the first article system(s) of the Developmental Configuration has been verified as
meeting the SPS requirements, one of two options may occur, depending on contract requirements.
The system may deployed to:

1. Another location for validation testing by the User or an Independent Test Agency (ITA)
representing the User’s interests.

2. The User’s designated field site for installation, checkout, and final acceptance.

Validation testing, which is referred to as Operational Test and Evaluation (OT&E), enables Users
to determine if they specified and procured the right SYSTEM to meet their operational needs. Any
deficiencies are resolved in accordance with the terms and conditions (Ts&Cs) of the contract.
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After an initial period of system operational use in the field to correct deficiencies and defects
and collect field data to validate system operations, a decision is made to begin the System Pro-
duction Phase, if applicable. If the User does not intend to place the system or product in produc-
tion, the Acquirer and User formally accepts system delivery, thereby initiating the System
Operations and Support (O&S) Phase.

The System Production Phase

The System Production Phase consists of those activities required to produce small to large quan-
tities of the system. The initial production typically consists of a Low-Rate Initial Production (LRIP)
to verify and validate that:

1. Production documentation and manufacturing processes are mature.

2. Latent defects such as design errors, design flaws, or poor workmanship are eliminated.

When the production process has been verified and validated based on field tests of system pro-
duction samples, large-scale production, if applicable, may be initiated. Since the system and pro-
duction engineering designs have already been verified, each production system is:

1. Inspected.

2. Verified against key System Performance Specification requirements.

3. Deployed to the User’s designated field site(s) for implementation (i.e., operations and
support).

The System Operations and Support (O&S) Phase

The System Operations and Support (O&S) Phase consists of User activities required to operate,
maintain, and support the system including training for system users to perform the system’s oper-
ational mission. If the system is directed to change physical or geographic locations in preparation
for the next mission, the system is redeployed. On deployment, the system, product, or service
begins active duty.

Throughout the system’s operational life, refinement and enhancement upgrades may be pro-
cured and installed to improve system capabilities and performance in support of organizational
missions. The system configuration at initial delivery and acceptance represents the Initial Oper-
ational Capability (IOC). System upgrades, referred to as incremental builds, are released and
incorporated into the fielded system or product until the system reaches a planned level of matu-
rity referred to as Full Operational Capability (FOC).

Although most systems have a planned operational service life, the expense of maintaining a
system via upgrades and ability to upgrade the existing system with new technologies is not always
cost effective. As a result, the User may be forced to procure a new system, product, or service to
replace the existing system. Where this is the case, a new system life cycle is initiated while the
existing system is still in active duty.

As the first articles of the new system are placed into active duty, a transition period occurs
whereby the legacy (i.e., existing) system and the new system are in operation simultaneously in
the field. Ultimately, a decision will be made to deactivate and phase out the legacy system from
active duty. When system phase-out occurs, the legacy system’s disposal phase begins.

The System Disposal Phase

The System Disposal Phase consists of those activities required to phase out an existing or legacy
system from active duty. Each system or the lot of systems may be dispositioned for sale, lease,
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storage or disposal. Disposal alternatives include mothballing for future recommissioned use, dis-
assembly, destruction, burning, and burial. System disposal may also require environmental reme-
diation and reclamation to restore the system’s field site or disposal area to its natural state.

7.4 LIFE CYCLES WITHIN LIFE CYCLES

Now that we have a basic understanding of the system life cycle we can shift our attention to under-
standing how a system’s life cycle fits within an organization’s context.

Understanding the Organizational Aspects of 
System Life Cycles

Each system, product, or service is an asset of a higher level organization (i.e., system) that also
has a system life cycle. Those same systems and products may include lower level systems or prod-
ucts that also have system life cycles. Therefore, we have multiple levels of system life cycles
within higher level system life cycles.

Suppose that a user has quantities of a product or system, including various versions in inven-
tory. At some point in time, the User may decide to replace a specific product or a group of products.

For example, an airline might decide to replace a specific aircraft by tail number or replace an
entire fleet of aircraft over a period of time. Each aircraft, which has its own system life cycle, is
part of a much larger system such as a fleet of aircraft, which also has its own system life cycle.
To illustrate this point, Figure 7.2 provides an example.

7.4 Life Cycles Within Life Cycles 63

Enterprise Level Life Cycles

Organization #1 Life Cycle

Organization #2 Life Cycle

Line of Business #2 Life Cycle

Line of Business #y Life Cycle

Product Model #1 Life Cycle

Product Model #2 Life Cycle

Product Model #z Life Cycle

Line of Business #1 Life Cycle

Line of Business #1 Life Cycle

Organization #x Life Cycle

Business Entity #2 Life Cycle

Time

Figure 7.2 System Life Cycles within Life Cycles



Assume we have a corporation that has evolved over a number of years. Historically, we can
state that the business came into existence as Organizational Entity 1. As the business entity grows,
it changes its name and becomes Organizational Entity 2, and so forth.

If we examine the system life cycle of Organizational Entity 2, we might find that the organ-
ization evolves through several lines of business (LOBs): LOB 1, LOB 2, and so on. Within each
LOB, the organization has a core product line that consists of Product Model 1, which evolves into
Product Model 2, and so forth. Observe the overlapping of Product 1 and Product 2 life cycles. The
evolution of this product line continues until the organization decides to terminate the product or
LOB. How is this concept applied to the real world?

Application of System Life Cycles

We can apply the concept of system life cycles within system life cycles to an example such as
small engine developer. The organization, which has a life cycle, may evolve through a number of
organizational life cycles—as small business, corporation, and so on. During Organizational Life
Cycle 2, the organization may develop several LOBs—two-cycle engines, four-cycle engines, and
so on—to support marketplace opportunities such as lawn mowers, edgers, and small tractors. The
organization’s four-cycle LOB may evolve through Product Model 1, Product Model 2, and so
forth. Each product model builds on its predecessor (i.e., precedented system) to improve capabil-
ities and performance to meet marketplace needs.

The preceding discussion focused on a system or product suppliers system life cycles. The
same analogy applies to users of system, product, and services. Their organizations evolve through
similar life cycles. The differences occur when Product Model 1:

1. Fails.

2. Becomes to costly to maintain.

3. Is predicted to be vulnerable to system threats.

4. Lacks the specific level of capability or performance to meet predicted organizational needs.

Now, why is this relevant to SE? As a systems engineer, you need to understand what:

1. LOB the User is engaged in.

2. Opportunities, problems, or issues the User is chartered to address as part of its LOB. 
We refer to this as the opportunity space; specific targets as targets of opportunity
(TOO).

3. Missions the User performs to support the LOB. We refer to this as the solution space.

4. Capabilities are required to support solution space missions now and in the future.

5. Existing systems, products, or services the User employs to provide those capabilities.

6. Deficiencies—or opportunities—exist in the current system, product, or service and how
you and your organization can cost effectively eliminate those deficiencies with new tech-
nologies, systems, products, or services.

Based on this knowledge and understanding, the SE’s role as a problem solver-solution developer
becomes crucial. The challenge is how do SEs work with Users and Acquirers to:

1. Collaboratively identify and partition the opportunity space into one or more solution
spaces,

2. Technically bound and specify the solution space in terms of capability and performance
requirements that are legally sufficient to procure systems, products, and services,
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3. Verify that the new system complies with those requirements,

4. Validate that the system developed satisfies the User’s original operational needs?

The remainder of this book is intended to answer this question.

Evolutionary Life Cycles

Although the preceding discussion appears straightforward, it can become very complicated, espe-
cially with highly complex, precedented systems even when the requirements are reasonably well
known. The question is: What happens when the requirements are not well known?

In this case the system, product, or service requirements evolve over a series of iterative system
development cycles that may include TEST markets. A planned product system life cycle may have
a System Development Phase that may include several prototype or technology demonstration life
cycles. Consider the following example.

EXAMPLE 7.1

An organization may award a series of sequential contracts to develop analyses, prototypes, and technology
demonstrators of a system. The key work product of each contract may be to mature and refine the system,
product, or service requirements of the preceding contract as a means of getting to a set of requirements that
can be used to develop the end product. This approach, which is referred to as spiral development, serves to
reduce system development risks when dealing with unprecedented or highly complex systems, new tech-
nologies, poorly defined requirements, and the like.

To better understand how a User acquires a new system and phases out the current system, let’s
explore the basic strategy.

7.5 SYSTEM TRANSITION STRATEGY 
AND SEQUENCING OVERVIEW

During the System Operations and Support (O&S) Phase of System 1 as shown in Figure 7.3, a
decision event (1) occurs to replace System 1. The acquisition strategy is to bring the new System
2 “on-line” or into active service as noted by the First Article Field Delivery (5) event.

After a System Transition Period (6) for checkout and integration of System 2 into the HIGHER
ORDER SYSTEM, an Existing System Deactivation Order (7) is issued. At that time, System 2
becomes the primary system and System 1 enters the System Disposal Phase of its life cycle. At
some time period later, the disposal of System 1 is marked by the Existing System Disposal Com-
plete (8) event.

So, how do we initiate actions to get System 2 into active service by the planned new system’s
First Article Field Delivery (5) event without disrupting organizational operations? Let’s explore
that aspect.

When the new system Operational Need Decision (1) event is made, procurement actions (2)
are initiated to initiate System 2’s life cycle. Thus, the System Definition Phase of System 2’s life
cycle begins. System 2’s System Development Phase must be complete (4) and ready for field inte-
gration by the New System’s First Article Field Delivery (5) event. System 2 then enters the System
Operations and Support (O&S) Phase of its life cycle.

By the time the Existing System Deactivation Order (7) event is issued, System 2 must be “on-
line” and in active service. As a result, System 1 completes its life cycle at the Existing System Dis-
posal Complete (8) event thereby completing the transition.
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GENERAL EXERCISE

1. Answer each of the What You Should Learn from This Chapter points identified at the beginning of this
chapter.

ORGANIZATIONAL CENTRIC EXERCISE

1. Research system life cycle standards of the following organizations. Summarize your findings for each and
contrast them with your own system/product domain.

(a) Department of Defense (DoD)

(b) NASA

(c) IEEE 1220-1998

(d) ANSI/EIA 632-1999

(e) International Council on Systems Engineering (INCOSE)

(f) International Organization of Standardization (ISO)

(g) ISO/IEC 15288

(h) Your local organization

(i) Your customer’s life cycle

ADDITIONAL READING
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Chapter 8

The Architecture of Systems

8.1 INTRODUCTION

Every human-made and natural system is characterized by a structure and framework that supports
and/or enables the integrated elements of the system to provide the system’s capabilities and
perform missions. We refer to this integrated framework as the system’s architecture.

This chapter introduces the System Architecture Concepts Series and provides an overview to
chapters that follow. We introduce the concept of the system element architecture via a construct
consisting of two key entities: 1) the SYSTEM OF INTEREST (SOI) and 2) its OPERATING
ENVIRONMENT.

Each of these entities is decomposed into lower tier elements. The SOI is composed of one or
more MISSION SYSTEM(s) (role) and a SUPPORT SYSTEM (role). The OPERATING ENVI-
RONMENT consists of: 1) HIGHER ORDER SYSTEMS domain and 2) a PHYSICAL ENVI-
RONMENT domain. We conclude our discussion by introducing the conceptual “building blocks,”
referred to as the system elements, for each domain.

What You Should Learn from This Chapter

1. What systems comprise the SYSTEM OF INTEREST (SOI)?

2. What systems comprise the OPERATING ENVIRONMENT?

3. Identify the MISSION SYSTEM and SUPPORT SYSTEM system elements?

4. How do the MISSION SYSTEM and SUPPORT SYSTEM system elements differ?

5. Identify the HIGHER ORDER SYSTEMS domain elements?

6. Identify the PHYSICAL ENVIRONMENT domain elements.

Before we begin, let’s define a few terms that are relevant to our discussion.

Definitions of Key Terms

• Abstraction An analytical representation of an entity for a specific purpose in which lower
level details are suppressed. For example, a “family” is an abstraction that suppresses lower
level entities such as father, mother, and children.

• Entity A noun-based person, place, or virtual object that represents a logical or physical
system entity.

• Entity Relationships The hierarchical relationships and interactions between multi-level
logical and physical system elements.

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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• Environment “The natural (weather, climate, ocean conditions, terrain, vegetation, dust,
etc.) and induced (electromagnetic, interference, heat, vibration, etc.) conditions that con-
strain the design for products and their life cycle processes.” (Source: Kossiakoff and Sweet,
System Engineering, p. 448)

• Hierarchical Interactions Actions between authoritarian command and control systems
that lead, direct, influence, or constrain MISSION SYSTEM and SUPPORT SYSTEM
actions and behavior. For analytical purposes, we aggregate these systems into a single entity
abstraction referred to as the HIGHER ORDER SYSTEMS domain.

• Logical Entity Relationship A high-level, functional association that exists between two
system entities without regard to physical implementation.

• Object See entity.

• Physical Entity Relationship A physical, point-to-point interface between two or more
entities that may be unidirectional or bi-directional.

• System Element A label applied to classes of entities that comprise the MISSION
SYSTEM/SUPPORT SYSTEM, HIGHER ORDER SYSTEMS, or PHYSICAL ENVIRON-
MENT domains. As a convention, specific system element names are capitalized throughout
the text to facilitate identification and context of usage as illustrated in the descriptions below.

• System of Interest (SOI) The system consisting of a MISSION SYSTEM and its SUP-
PORT SYSTEM(s) assigned to perform a specific organizational mission and accomplish
performance-based objective(s) within a specified time frame.

• Taxonomy “A classification system. Provides the basis for classifying objects for identifi-
cation, retrieval and research purposes” (MORS Report, October 27, 1989. (Source: DoD
5000.59, Glossary A—Item 505, p. 163)

Based on this introduction, let’s begin our discussion with the introduction of the system architec-
ture construct.

8.2 INTRODUCING THE SYSTEM ARCHITECTURE CONSTRUCT

All natural and human-made systems exist within an abstraction we refer to as the system’s OPER-
ATING ENVIRONMENT. Survival, for many systems within the OPERATING ENVIRONMENT,
ultimately depends on system capabilities—physical properties, characteristics, strategies, tactics,
security, timing, and luck.

If we observe and analyze these systems and their patterns of behavior  to understand how 
they adapt and survive, we soon discover that they exhibit a common construct—template—that
describes a system’s relationship to their OPERATING ENVIRONMENT. Figure 8.1 provides a
graphical depiction of the construct. This construct establishes the foundation for all systems.

When systems interact with their OPERATING ENVIRONMENT, two types of behavior pat-
terns emerge:

1. Systems interact with or respond to the dynamics in their OPERATING ENVIRONMENT.
These interactions reflect peer-to-peer role-based behavioral patterns such as aggressor,
predator, benign, and defender or combinations of these.

2. System Responses—behavior, products, by-products, or services—and internal failures
sometime result in adverse or catastrophic effects to the system—creating instability,
damage, degraded performance, for example—that may place the system’s mission or sur-
vival at risk.
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When you analyze interactions of a SYSTEM OF INTEREST (SOI) with its OPERATING ENVI-
RONMENT, two fundamental types of behavior emerge:

1. Hierarchical interactions (i.e., vertical interactions under the command and control of higher
order systems).

2. Peer level interactions.

When a MISSION SYSTEM interacts with its OPERATING ENVIRONMENT, it:

1. Performs mission task assignments established by higher level, chain-of-command, deci-
sion authorities.

2. Interacts with external systems (i.e., human-made systems, natural environment, and its
induced operating environment during mission execution environment).

We characterize SOI interactions with its OPERATING ENVIRONMENT to include two types of
entities: 1) HIGHER ORDER SYSTEMS and 2) a PHYSICAL ENVIRONMENT. 

The identification of OPERATING ENVIRONMENT domains enables us to expand the
System Architecture construct shown in Figure 8.1. The result is Figure 8.2.

Author’s Note 8.1 Figure 8.2 features a subtlety that may not be readily apparent. Observe
that the PHYSICAL ENVIRONMENT is shown on the left and the SYSTEM OF INTEREST is placed
on the right-hand side.

Most engineering environments establish standards and conventions for interpretive reading.
For example, graphics read from left to right and from top to bottom. The convention is that data
processing and work flow progress from left to right. If we had placed the SOI on the left side and
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the OPERATING ENVIRONMENT on the right side, this would have created a false perception
that the SOI drives its OPERATING ENVIRONMENT.

Although the SYSTEM OF INTEREST does influence and may exercise some limited control
over the OPERATING ENVIRONMENT, the OPERATING ENVIRONMENT actually stimulates the
SOI to action and invokes a behavioral response. Where practical, we will employ this left-to-right
convention throughout the book.

8.3 INTRODUCTION OF THE SYSTEM ELEMENTS

As abstractions, the SYSTEM OF INTEREST (SOI)—meaning a MISSION SYSTEM and its
SUPPORT SYSTEM(s)—interact with HIGHER ORDER SYSTEMS and the PHYSICAL ENVI-
RONMENT within the SOI’s OPERATING ENVIRONMENT. Each of these abstractions is com-
posed of analytical building blocks referred to as the System Elements. The System Elements, when
integrated into an architectural framework, form the System Architecture that serves as a key con-
struct for system analysis and design. As an introduction to the System Elements, let’s identify and
define each element as it relates to the SOI and its operating environment.

To derive the system elements, we decompose or expand the SYSTEM OF INTEREST (SOI)
and its OPERATING ENVIRONMENT into lower levels of abstraction or classes. Table 8.1 pro-
vides a listing. We will describe each of these system elements later in their respective sections.

Author’s Note 8.2 Due to the unique identities of the System Elements, this text CAPITALIZES
all instances of each term to facilitate easy recognition in our discussions.

Importance of the System Elements Concept

The System Elements concept is important for three reasons. First, the system elements enable us
to organize, classify, and bound system entity abstractions and their interactions. That is, it is a way
to differentiate what is and what is not included in the system. Second, the System Element Archi-
tecture establishes a common framework for developing the logical and physical system architec-
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Table 8.1 Identification of system element classes by domain

Domain System Element Classes Apply to

SYSTEM OF • PERSONNEL • MISSION SYSTEM role
INTEREST (SOI) • FACILITIES • SUPPORT SYSTEM role

• EQUIPMENT
• MISSION RESOURCES
• PROCEDURAL DATA
• SYSTEM RESPONSES

OPERATING • ROLES and MISSIONS HIGHER ORDER
ENVIRONMENT • ORGANIZATIONAL STRUCTURE SYSTEMS

• OPERATING CONSTRAINTS
• RESOURCES
• HUMAN-MADE SYSTEMS PHYSICAL
• NATURAL ENVIRONMENT ENVIRONMENT
• INDUCED ENVIRONMENT



tures of each entity within the system hierarchy. Third, the system elements serve as an initial start-
ing point for allocations of multi-level performance specification requirements.

Despite strong technical and analytical skills, engineers are sometimes poor organizers of
information. Therein lies a fundamental problem for the engineering of systems. Being able to
understand and frame/structure the problem is 50% of the solution. The organizational framework
of the System Element Architecture concept provides the framework for defining the system and
its boundaries.

The challenge in analyzing and solving system development and engineering problems is being
able to identify, organize, define, and articulate the relevant elements of a problem (objectives,
initial conditions, assumptions, etc.) in an easy-to-understand, intelligible manner that enables us
to conceptualize and formulate the solution strategy. Establishing a standard analytical framework
enables us to apply “plug and chug” mathematical and scientific principles, the core strength of
engineering training, to the architecture of the system.

Problem Solving to Reduce Complexity

System analysis and engineering is deeply rooted in the concept of analytically decomposing large,
complex problems into manageable problems that can be easily solved. Unfortunately, many engi-
neers lack the training to be able to organize, structure, and analyze a system problem around its
system elements.

In practical terms, you should ingrain this concept as a basis for organizing and structuring rel-
evant parts your problem. However, a word of caution: Avoid temptation to tailor out relevant
system elements without supporting rationale that can withstand professional scrutiny. You may
pay a penalty in overlooked system design issues.

For now, we have one remaining system element concept to introduce—entity relationships
(ERs).

8.4 UNDERSTANDING SYSTEM ELEMENT 
ENTITY RELATIONSHIPS

The architectural concept discussions that follow describe the entity relationships (ERs) between
each of the System Elements identified in Table 8.1. Before we begin these discussions, let’s intro-
duce the types of relationships that exist between these elements.

System element interactions can be characterized by two types of relationships: logical and
physical. Perhaps the best way to think of logical and physical relationships is to focus on one topic
at a time and then integrate the two concepts.

Logical Entity Relationships

The first step in identifying logical entity relationships is to simply recognize and acknowledge that
some form of association exists through deductive reasoning. You may not know the physical
details of the relationship—that is, how they link up—but you know a relationship does or will
exist. Graphically, we depict these relationships as simply a line between the two entities.

The second step is to characterize the logical relationship in terms of logical functions—
that is, what interaction occurs between them—must be provided to enable the two entities to 
associate with one another. When we assemble the logical entities into a framework that graphi-
cally describes their relationships, we refer to the diagram as logical architecture. To illustrate, let’s
assume we have a simple room lighting situation as shown in Figure 8.3.
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EXAMPLE 8.1

Room Lighting—Logical Architecture Entity Relationships The top portion of Figure 8.3 depicts a simple
ROOM LIGHTING SYSTEM consisting of a PERSON (entity) desiring to control a room LIGHT SOURCE
(entity). As a logical representation, we draw a line between the PERSON (entity) and the LIGHT SOURCE
(entity) to acknowledge the relationship. Thus, we state that the PERSON (entity) has a logical association
or entity relationship with the LIGHT SOURCE.

Author’s Note 8.3 Observe that we are interested in simply establishing and acknowledging
the need for the logical relationship—meaning capability. The need for the capability serves as the
basis for a specification requirement—meaning WHAT—and HOW much illumination is required.
HOW this logical entity relationship is physically implemented via design and components becomes
the basis for engineering analysis and design—with the application of mathematical and scientific
principles.

Next, we need a control mechanism for the LIGHT SOURCE (logical entity), which derives its energy from
a POWER SOURCE (logical entity). We complete the representation by connecting the PERSON (logical
entity) with the LIGHTING CONTROL (logical entity). The LIGHTING CONTROL enables the flow of
current from the POWER SOURCE to the LIGHT SOURCE. When energized, the LIGHT SOURCE illumi-
nates the room and the PERSON.

From this description you should note that we purposely avoided specifying HOW the:

1. PERSON (logical entity) interfaced with the LIGHTING CONTROL (logical entity).

2. LIGHTING CONTROL (logical entity) controlled the POWER SOURCE (logical entity).

3. POWER SOURCE (logical entity) provided current to the LIGHT SOURCE (logical entity).

4. LIGHT SOURCE (logical entity) illuminated the PERSON (logical entity).
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The diagram simply documents associative relationships. Additionally, we avoided specifying what mecha-
nisms were used for the LIGHTING CONTROL, POWER SOURCE, or LIGHT SOURCE. These decisions
will be deferred to our next topic.

Based on this logical representation, let’s investigate the physical implementation of the ROOM LIGHT-
ING SYSTEM.

Physical Entity Relationships

The physical implementation of system element interfaces requires more in-depth analysis and deci-
sion making. Why? Typically, cost, schedule, technology, support, and risk become key drivers that
must be “in balance” for the actual implementation. Since there should be a number of viable can-
didate options available for implementing an interaction, trade studies may be required to select
the best selection and configuration of physical components. Graphically, we refer to the physical
implementation of an interface as a physical representation.

As we select components (copper wire, light switches, lighting fixtures, etc.), we configure
them into a system block diagram (SBD) and electrical schematics that depict the physical rela-
tionships. These diagrams become the basis for the Physical System Architecture. To illustrate a
physical architecture depicting physical entity relationships, let’s continue with our previous
example.

EXAMPLE 8.2

Room Lighting—Physical Architecture Entity Relationships After some analysis we develop a physical
representation or physical system architecture of the ROOM LIGHTING SYSTEM. As indicated by Figure
8.4, the system consists of the following physical entities: a POWER SOURCE, WIRE 1, WIRE 2, LIGHT
SWITCH, a BUILDING STRUCTURE, a PERSON, and a LIGHT RECEPTACLE containing a LIGHT
BULB. The solid black lines represent electrical interfaces; the dashed lines represent mechanical interfaces.
In physical terms, the BUILDING STRUCTURE provides mechanical support for the LIGHT SWITCH,
WIRE 1, WIRE 2, and LIGHT FIXTURE that holds the LIGHT BULB.

When the PERSON (physical entity) places the LIGHT SWITCH (physical entity) in the ON position,
AC current (physical entity) flows from the POWER SOURCE (physical entity) through WIRE 1 (physical
entity) to the LIGHT SWITCH (physical entity). The AC current (physical entity) flows from the LIGHT
SWITCH (physical entity) through WIRE 2 (physical entity) to the LIGHT RECEPTACLE (physical entity)
and into the LIGHT BULB. Visible light is then transmitted to the PERSON until the LIGHT SWITCH is
placed in the OFF position, the LIGHT BULB burns out, or the POWER SOURCE is disconnected.

Logical and Physical Architecture Approach

The partitioning and sequencing of these discussions provides a fundamental portion of the method-
ology for developing systems, products, or services. If you observe and analyze human behavior,
you will discover that humans characteristically have difficulty deciding WHAT decisions to make
and the strategic steps required to make those decisions. We desire lots of information but are often
unable to synthesize all of the data at the individual or team levels to arrive at an encompassing,
multi-level design solution in a single decision. As a result, the ramifications of the decision-making
process increases exponentially with the size and complexity of the system.

Given this characteristic, humans need to incrementally progress down a decision path from
simple, high-level decisions to lower level detail decisions based on the higher level decisions. The
flow from logical to physical entity relationships enables us to incrementally decompose com-
plexity. Illustrations enable us to progress from simply acknowledging the existence of a relation-
ship to detailed decisions regarding HOW the logical relationship can be physically implemented.
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As summarized in Figure 8.4, we evolve the logical architecture representation of the Room Light-
ing System from the abstract to the detailed physical architecture representation.

This point is important. It provides the basis for a later discussion when we introduce the
concept of the system solution domains in Part II. The domain solutions include: 1) a Requirements
Domain Solution, 2) an Operational Domain Solution, 3) a Behavioral Domain Solution, and 4) a
Physical Domain Solution.

8.5 GUIDING PRINCIPLES

In summary, the preceding discussions provide the basis with which to establish the guiding prin-
ciples that govern the architecture of systems.

Principle 8.1 System interact with external entities in their OPERATING ENVIRONMENT and
themselves.

Principle 8.2 Every system serves at the pleasure of higher order, human and natural systems
that exercise authority over the system and its operation.

Principle 8.3 Every system is part of a larger system of systems (SoS).

8.6 SUMMARY

Our discussion in this chapter introduced the fundamental concepts that form the basis for the system archi-
tecture. We introduced the concepts of the OPERATING ENVIRONMENT, SYSTEM OF INTEREST (SOI),
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MISSION SYSTEM, and SUPPORT SYSTEM, and their interactions. We also decomposed each of these enti-
ties into classes or sets of systems elements.

The next chapter on system architecture levels of abstraction and semantics complements the discussion
of this chapter by introducing the way system elements expand into lower level abstractions. In the two sub-
sequent chapters we will discuss the SYSTEM OF INTEREST (SOI) architecture and the OPERATING
ENVIRONMENT architecture, and identify system elements within their respective abstractions and describe
those system elements in terms of the SOI and OPERATING ENVIRONMENT architectures.

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new system selection, apply your knowledge derived from this chapter’s topical
discussions.

(a) Identify and bound the SOI’s OPERATING ENVIRONMENT

(b) Identify and bound the HIGHER ORDER SYSTEMS, PHYSICAL SYSTEMS ENVIRONMENT,
MISSION SYSTEM, and SUPPORT SYSTEM

ORGANIZATIONAL CENTRIC EXERCISES

1. Contact a system development program and investigate how their SOI interfaces with HIGHER ORDER
SYSTEMS, PHYSICAL SYSTEMS ENVIRONMENT, and SUPPORT SYSTEM. How are these elements
addressed in their system architecture diagrams? Report on your findings and observations.
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Chapter 9

System Levels of Abstraction 
and Semantics

9.1 INTRODUCTION

Every natural and human-made system is part of a HIGHER ORDER SYSTEM. The universe, for
example, can be viewed as a hierarchy of systems. Any system within that hierarchy is composed
of lower level systems. As such, we refer to it as a system of systems (SoS). Systems within the
hierarchy range from infinitely large, complex systems that exceed human comprehension and
knowledge down to the smallest instance of physical matter.

When humans, especially system analysts and SEs, attempt to communicate about systems
within the hierarchy of systems, the context of their viewpoint and semantics becomes a critical
communications issue. Despite the breadth of the English language in terms of words, those appli-
cable to the engineering of systems are finitely limited. Thus, when we attempt to apply a limited
set of semantics to large numbers of system levels, confusion ultimately results.

A common comment that echoes throughout engineering development organizations is Whose
system are you referring to? The question surfaces during conversations among Users, the Acquirer,
and System Developers. Engineering organizations grapple with trying to understand the context
of each person’s semantics and viewpoint of the system. The problem is exacerbated by a mixture
of SEs with varying degrees of semantics knowledge derived from: 1) on the job training (OJT),
2) personal study, 3) brochureware, and 4) formal training.

This section introduces the concept of system levels of abstraction that form the semantics
frame of reference used in this text. We define the context of each level of abstraction. Given that
system size and complexity vary from system to system, we describe how to tailor these levels to
your SYSTEM OF INTEREST (SOI). We conclude with some guidelines that govern system
decomposition and integration.

What You Should Learn from This Chapter

• What is an abstraction?

• For a six-level system, what are its levels of abstraction?

• How do you tailor the levels of abstraction to fit your system?

• Describe the scope and boundaries of a Level 0 or Tier 0 System?

• Describe the scope and entity relationships of a Level 1 or Tier 1 System?

• Describe the scope and entity relationships of a Level 2 or Tier 2 System?

System Analysis, Design, and Development, by Charles S. Wasson
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9.2 Establishing a Semantics Frame of Reference 77

• Describe the scope and entity relationships of a Level 3 or Tier 3 System?

• Describe the scope and entity relationships of a Level 4 or Tier 4 System?

• Describe the scope and entity relationships of a Level 5 or Tier 5 System?

• Describe the scope and entity relationships of a Level 6 or Tier 6 System?

• Describe the scope and entity relationships of a Level 7 or Tier 7 System?

• For an eight-level system, identify entity relationships between the various levels of 
abstraction

• For an eight-level system, identify the entity relationships for system integration.

Definitions of Key Terms

• Product Structure The hierarchical structure of a physical system that represents decom-
positional relationships of physical entities. A top assembly drawing, specification tree, and
a bill of materials (BOM) are primary documents for describing a SYSTEM’s product 
structure.

9.2 ESTABLISHING A SEMANTICS FRAME OF REFERENCE

One of your first tasks as a system analyst or SE is to establish a semantics frame of reference for
your SYSTEM OF INTEREST (SOI). When most people refer to systems, they communicate about
a system from their own observer’s frame of reference of everyday work tasks. When you listen to
communications between Users, the Acquirer, and System Developers, you soon discover that one
person’s SYSTEM equates to another person’s SUBSYSTEM, and so forth.

The System Context and Integration Points

When a system is specified and procured, one of the key issues is to understand the SYSTEM OF
INTEREST (SOI) or deliverable system’s context within the User’s OPERATING ENVIRON-
MENT. From a hierarchical system of systems (SoS) context, a System Developer’s contract deliv-
erable system is an entity within the User’s HIGHER ORDER SYSTEM abstraction. We refer to
the location within the HIGHER ORDER SYSTEM where the deliverable system is integrated as
its Integration Point (IP).

Who Is the System’s User?

Part of the challenge in defining the SYSTEM OF INTEREST (SOI) is identifying the User(s).
Some systems have both direct and indirect Users. Consider the following example:

EXAMPLE 9.1

A computer system may have several Users. These include:

1. The day-to-day operator of the computer system.

2. Maintenance personnel.

3. Personnel who receive work products generated by the computer system.

4. Trainers who provide hands-on instruction to the operators.

5. Electronic mail recipients.

So, when you say you are developing a system for the “User,” to which user are you referring?



Solving the Semantics Communication Problem

One of the ways to alleviate this problem is to establish a standard set of semantics that enable SEs
from all disciplines to communicate intelligibly using a common contextual language. We need to
establish a standard semantics convention. Once the convention is established, update the appro-
priate command media—meaning the organizational policies and procedures for use in training
organizational personnel.

9.3 UNDERSTANDING SYSTEM LEVELS OF ABSTRACTION

When we address the deliverable system context, we need a standard way of communicating the
embedded levels of abstraction. Since all systems are hierarchical, the User’s system may be a sup-
porting element of HIGHER ORDER SYSTEM. Given the large number of direct and indirect
Users of the system, how can we establish a simple method of communicating these levels of
abstraction? First, let’s define the term:

Author’s Note 9.1 On the surface, you may view the discussion in this section as academic
and esoteric. The reality is you, your customer (the User, Acquirer, etc.), and vendors must reach
a common consensus as to WHAT IS and WHAT IS NOT part of the SOI or deliverable system.
Does your contract or agreement explicitly delineate boundaries of the deliverable system? Ulti-
mately, when the system is verified and validated, you do not want any contract conflicts as to
WHAT IS or IS NOT included in the deliverable system.

In the contracts world, objective evidence such as a Statement of Objectives (SOOs), System
Performance Specification (SPS), Contract Work Breakdown Structures (CWBSs), and Terms and
Conditions (Ts&Cs) serve as mechanisms for documenting the understanding between both parties
regarding the system’s boundaries and work to be accomplished relative to those boundaries. As
such, they provide the frame of reference for settling programmatic and technical issues. In general,
undocumented intentions and assumptions about a system’s boundaries are unacceptable.

How the term abstraction applies to systems is illustrated in Figure 9.1. Beginning in the upper
left corner, a system, product, or service consists of an initial set of loosely coupled entities such
as ideas, objectives, concepts, and parts (i.e., items A through N).

If we analyze these entities or objects, we may determine that various groupings may share a
common set of objectives, characteristics, outcomes, etc. as illustrated in the lower left portion of
the figure. We identify several groupings of items:

1. Entity 10 consists of Entities A and E.

2. Entity 20 consists of Entities C, F, and I.

3. Entity 30 consists of Entities D, J, H, and M.

4. Entity 40 consists of Entities B, K, L, N, and O.

Each entity represents a class of object or abstraction. Abstractions or classes of objects are actu-
ally hierarchical groupings that suppress lower level details as illustrated by the right side of the
Figure 9.1. Here we have a structure that represents the hierarchical structure, or taxonomy, of a
system and each of its levels of abstraction.

The concept of generic levels of abstraction is useful information for simple systems. However,
large, complex systems involve multiple levels of detail or abstraction. Where this is the case, How
do system analysts and SEs delineate one level of abstraction from another? They do this by estab-
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lishing an observer’s frame of reference convention. In a contractual context, the contract estab-
lishes the basis.

Establishing a Frame of Reference Convention

Some organizations establish a contextual frame of reference convention for a system to facilitate
communications about specific entities within the system. The intent is to designate a reference
point for the deliverable system. One example convention employs Level 0, Level 1, Level 2, and
so forth semantics as depicted in Figure 9.2. Another convention employs Tier 0, Tier 1, and so
forth semantics. However, Levels or Tiers 0 through X are simply identifiers that need more explicit
nomenclature labels. Table 9.1 provides an example nomenclature naming convention and a brief,
scoping definition.

The key point of this discussion is for you and your colleagues to establish a semantics con-
vention (Level 0/Tier 0, Level 1/Tier 1, etc.) that enables the team to communicate with a common
frame of reference relative to the User’s system—i.e. Level 0 or Tier 0. Based on an understand-
ing of the system levels of abstraction, let’s explore how we define and depict these graphically.

Relating System Levels of Abstraction and Semantics to
System Architecture

The preceding discussion describes each level and entity in terms of its hierarchical and peer 
level entity relationships. These relationships provide the basic framework for defining the system
logical and physical architectures discussed later in Part II on System Design and Development
Practices.
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Tailoring Levels of Abstraction for Your System’s Application

The preceding discussion also introduced a set of semantics for application to large, complex
systems. You and your organization may or may not have an eight-level system. Tailor the number
of system levels of abstraction to match your system’s application.

To illustrate this point, Figure 9.3 presents a tailored application of the standard system levels.
The left side of the figure represents the standard system levels; the right side represents an orga-
nization’s tailoring of the standard system levels. In this case the organization has adopted the fol-
lowing semantics: User system, SYSTEM, SUBSYSTEM, ASSEMBLY, and PART levels. As a
result reference level numbers. (Level 1, Level 2, etc.) have been sequentially applied to match the
tailoring.

9.4 SYSTEM DECOMPOSITION AND INTEGRATION 
DESIGN GUIDELINES

System structures are viewed from two SE perspectives:

1. Analytically, as a top-down, hierarchical decomposition or expansion.

2. Physically, as bottom-up, vertically integrated sets of entities.

System composition entity relationships (ERs) enable us to analytically decompose hierarchical
systems into manageable design levels of complexity. Figure 9.4 provides a framework for the rules
stated in Table 9.2.
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Table 9.1 System levels of abstraction descriptions

Level Nomenclature Scoping Definition
or Tier (Optional)

0 User’s A level of abstraction that represents the User’s business environment with
SYSTEM Level your SYTEM OF INTEREST (SOI) as an embedded element. We refer to

this as the Level 0 or Tier 0 system.

1 SYSTEM Level A level of abstraction that describes on the top-level representation of your
SOI from the organization’s (observer’s) frame of reference.
Architectural representations (i.e., an architectural block diagram, ABD)
of the SYSTEM level include the SOI boundaries, interfaces to external
systems in the operating environment, and embedded SEGMENT level
entities (if applicable) or PRODUCT level entities and their interfaces. This
level of abstraction is referred to as a Level 1 or Tier 1 system.

2 SEGMENT Level Refers to system entities at the first level of decomposition below the
(optional) SYSTEM level. Each instance of a SEGMENT level entity is referred to as

a Level 2 or Tier 2 system.
An architectural representation of a SEGMENT level entity includes:
1. Level 3 or Tier 3 PRODUCTS and lower level entities.
2. Their internal PRODUCT level relationships.
3. The SEGMENT’s relationships with external entities within the SYSTEM

(i.e., with other SEGMENTS) and external systems beyond the 
SYSTEM’s boundaries, as applicable. Consider the following example:

EXAMPLE 9.2 A communications SYSTEM might consist of land-based,
sea-based, air-based, and space-based SEGMENTS.

3 PRODUCT Level Refers to system entities at the first level of decomposition below the 
(optional) SEGMENT level. Each instance of a PRODUCT Level entity is referred to

as a Level 3 or Tier 3 system.
An architectural representation of a PRODUCT level entity includes:
1. Level 4 or Tier 4 SUBSYSTEMS and lower level entities.
2. Their internal SUBSYSTEM level entity relationships.
3. The PRODUCT’s relationships with external entities within the SYSTEM

(i.e., with other PRODUCTS) and external systems beyond the
SYSTEM’s boundaries, as applicable.

4 SUBSYSTEM Refers to system entities at the first level of decomposition below the
Level PRODUCT Level. Each instance of a SUBSYSTEM level entity is referred

to as a Level 4 or Tier 4 system.
An architectural representation of a SUBSYSTEM level entity includes:
1. Level 5 or Tier 5 ASSEMBLIES and lower level entities.
2. Their internal ASSEMBLY level entity relationships.
3. The SUBSYSTEM’s relationships with external entities within the

SYSTEM (i.e., with other SUBSYSTEMS) or external systems beyond
the SYSTEM’s boundaries, as applicable.

5 ASSEMBLY Refers to system entities at the first level of decomposition below the
Level SUBSYSTEM level. Each instance of an ASSEMBLY level entity is

referred to as a Level 5 or Tier 5 system.
An architectural representation of an ASSEMBLY level entity includes:

(continued)
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Author’s Note 9.3 Hierarchical decomposition follows the same rules as outlining a report.
Avoid having a single item subordinated to a higher level item. Good design practice suggests that
you should always have at least two or more entities at a subordinated level. In the case of systems
this does not mean that the subordinate entities must be at the same level of abstraction.

For example, the Bill of Materials (BOM)—meaning a parts list—for a top level assembly
within a product structure may consist of at least one or more SUBSYSTEMS, one or more ASSEM-
BLIES, and at least one or more PARTS kit (e.g., nuts and bolts). If we depict the BOM as an inden-
tured list, the PARTS kit used to mechanically and electrically connect the SUBSYSTEMS and
ASSEMBLIES into an INTEGRATED SYSTEM may be at the same level of abstraction as the SUB-
SYSTEMS and ASSEMBLIES.

As a final note, this text treats entities at any level of abstraction as components of the system.

9.5 SUMMARY

Our discussion in this chapter has introduced the hierarchical concept of system levels of abstraction and
semantics. This hierarchical framework enables SEs to standardize analysis and communications about their
SYSTEM OF INTEREST (SOI). The intent of a semantics convention is to synchronize members of a System
Developer’s team, the Acquirer, and the User on a common set of terms to use in communicating complex
hierarchies.

Table 9.1 continued

Level Nomenclature Scoping Definition
or Tier (Optional)

1. Level 6 or Tier 6 COMPONENTS and lower level entities.
2. Their internal SUBASSEMBLY level entity relationships.
3. The ASSEMBLY’s relationships with external entities within the

SYSTEM (i.e., with other ASSEMBLIES) or external systems beyond
the SYSTEM’s boundaries, as applicable.

6 SUBASSEMBLY Refers to system entities at the first level of decomposition below the
Level ASSEMBLY level. Each instance of a SUBASSEMBLY level entity is 

referred to as a Level 6 or Tier 6 system.
Architectural representation of a SUBASSEMBLY Level entity includes:
1. Level 7 or Tier 7 PARTS.
2. Their internal PART level entity relationships.
3. The SUBASSEMBLY’s relationships with external entities within the

SYSTEM (i.e., with other SUBASSEMBLIES) or external systems
beyond the SYSTEM’s boundaries, as applicable.

7 PART Level Refers to the lowest level decompositional element of a system.
An architectural representation of a PART includes form factor envelope
drawings, schematics, and models.

Author’s Note 9.2 Engineering drawings, which are produced at all
system levels of abstraction, consist of two basic types:
1. Dimensional drawings or schematics for internally developed or 

externally procured and modified internally items.
2. Source control drawings that bound part parameters and characteristics

for externally procured parts.
For software systems, the PART level equates to a source line of code
(SLOC).
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Standard System Levels Tailored System Levels
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As part of our discussion, we provided a mechanism for System Developers that allows them to bench-
mark their system in the context of the User’s larger system. This was accomplished using the Level 0 or Tier
0 convention. This convention, or whatever you and your team decide to use, must answer the central ques-
tion, Whose system are you referring to?

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new selection, apply your knowledge derived from this chapter’s topical 
discussions.

(a) Equate system levels of abstraction to multi-level entities of the physical system selected.

(b) Develop an entity relationships diagram that identifies physical entity relationships.

Table 9.2 System entity decomposition and integration rules

Level or Tier Entity Entity Decomposition/Integration rules

0 User Level The User’s SYSTEM is bounded by its organizational mission and
consists of the system element assets required to accomplish that
mission within its OPERATING ENVIRONMENT.

1 SYSTEM Level Each instance of a SYSTEM consists of at least two or more
instances of SEGMENT, PRODUCT, SUBSYSTEM, ASSEMBLY,
SUBASSEMBLY, or PART level entities or combinations thereof.

2 SEGMENT Level If the SEGMENT level of abstraction or class is applicable, each
SEGMENT level entity consists of at least two or more instances of
PRODUCT, SUBSYSTEM, ASSEMBLY, SUBASSEMBLY, or PART
level entities or combinations thereof.

3 PRODUCT If the PRODUCT level of abstraction or class is applicable, each 
Level instance of a PRODUCT level entity consists of at least two or

more instances of SUBSYSTEM, ASSEMBLY, SUBASSEMBLY, or
PART level entities or combinations thereof.

4 SUBSYSTEM If the SUBSYSTEM level of abstraction or class is applicable, each
Level instance of a SUBSYSTEM level entity consists of at least two or

more instances of ASSEMBLY, SUBASSEMBLY, or PART level 
entities or combinations thereof.

5 ASSEMBLY If the ASSEMBLY level of abstraction or class is applicable, each 
Level instance of an ASSEMBLY level entity consists of at least two or

more instances of SUBASSEMBLY or PART level entities or 
combinations thereof.

6 SUBASSEMBLY If the SUBASSEMBLY level of abstraction or class is applicable, 
Level each instance of a SUBASSEMBLY level entity must consist of at 

least two or more instances of PART level entities.

7 PART The PART level is the lowest decompositional element of a  system.
Level

Note: For hierarchical decomposition, read the table top-down from Level 0 to Level 7 order; for integration, read the
table bottom-up in reverse order—from Level 7 to Level 0.



ORGANIZATION CENTRIC EXERCISES

1. Contact a program organization and investigate what levels of abstraction and semantics are used.

2. Research your organization’s command media for guidance in identifying levels of abstraction.

(a) What guidance, if any, is provided?

(b) How does each program establish its own guidance?

Organization Centric Exercises 85



Chapter 10

The System of Interest Architecture

10.1 INTRODUCTION

The central focal point for the development of any system is the SYSTEM OF INTEREST (SOI)
consisting of the MISSION SYSTEM(s) and its SUPPORT SYSTEM(s). Since every system within
the supply chain performs two roles—MISSION SYSTEM and SUPPORT SYSTEM—analysis
reveals that each role consists of seven classes of system elements that form its architectural 
framework.

This section introduces the concept of SOI system elements. We identify the system elements
and describe the System Element Architecture that forms the analytical basis for analyzing systems
and their interactions with their OPERATING ENVIRONMENT. We describe the scope and bound
the contents of each element.

What You Should Learn from This Chapter

• What is an SOI?

• What are the key elements of an SOI?

• Graphically depict the generalized system architecture of an SOI including its external 
interfaces.

• What are the key elements of a MISSION SYSTEM?

• Graphically depict the generalized system architecture of a MISSION SYSTEM including its
external interfaces.

• What is the scope of the PERSONNEL, EQUIPMENT, MISSION RESOURCES, PROCE-
DURAL DATA, FACILITIES, and SYSTEM RESPONSES elements?

• What are the key elements of the EQUIPMENT Element?

• Why is the SOFTWARE Element separate from the EQUIPMENT Element?

• What are the key elements of the SUPPORT SYSTEM?

• Graphically depict the generalized system architecture of a SUPPORT SYSTEM including
its external interfaces.

• How does the MISSION SYSTEM architecture differ from the SUPPORT SYSTEM 
architecture?

• What are the key elements of a SUPPORT SYSTEM’s EQUIPMENT Element?

• What are CSE and PSE?

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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10.2 THE SYSTEM ELEMENT ARCHITECTURE CONSTRUCT

Every human-made system consists of a generalized framework we refer to as the System Element
Architecture (SEA). The SEA represents a logical arrangement of system elements that serve as gen-
eralized construct or template for systems design and analysis. Figure 10.1 provides a graphical
representation of the SEA. To promote readability and simplicity in the figure, the OPERATING
ENVIRONMENT is abstracted as a single entity.

Every system performs MISSION SYSTEM and SUPPORT SYSTEM roles as part of its
tasking from HIGHER ORDER SYSTEMS. Regardless of the system role, each system consists
of combinations of system elements with specific system and mission objectives.

Mission System and Support System Compositional Elements

Each MISSION SYSTEM and SUPPORT SYSTEM consists of a unique set of integrated system
elements that enable the system to accomplish its mission and objectives. The mission/support
system elements are PERSONNEL, EQUIPMENT, SOFTWARE, MISSION RESOURCES, 
PROCEDURAL DATA, and SYSTEM RESPONSES. Table 10.1 relates each of these elements to
the MISSION SYSTEM and SUPPORT SYSTEM roles.

Author’s Note 10.1 MISSION SYSTEMS such as aircraft, vehicles, etc. do not have a FACIL-
ITIES Element. In contrast, a home or an office owned by the occupants, as a MISSION SYSTEM,
does have a FACILITIES Element.

SOI Architectural System Elements

The System Element Architecture consists of analytical abstractions that represent the SYSTEM
OF INTEREST (SOI) interactions with its OPERATING ENVIRONMENT. The SOI consists of
the MISSION SYSTEM as an abstraction with interfaces to the SUPPORT SYSTEM.
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EXAMPLE 10.1

A new automobile serves a MISSION SYSTEM (role) for the User. The transporter vehicle that delivers the
new car to the dealership where the car is purchased serves as a SUPPORT SYSTEM (role) to the MISSION
SYSTEM. To the organization that owns and operates the transporter, the transporter vehicle performs a
MISSION SYSTEM role.

The PERSONNEL System Element

The PERSONNEL element 1) consists of all human roles required to perform the system mission
operations in accordance with safe operating practices and procedures, and 2) has overall account-
ability for accomplishing mission objectives assigned by HIGHER ORDER SYSTEMS.

• MISSION SYSTEM PERSONNEL Roles Include all personnel directly required to
operate the MISSION SYSTEM and accomplish its objectives. In general, these personnel
are typically referred to as System Operators.

• SUPPORT SYSTEM PERSONNEL Roles Include personnel who support the MISSION
SYSTEM through maintenance, supply support, training, publications, security, and other
activities.

The EQUIPMENT System Element

The EQUIPMENT system element consists of any physical, multi-level, electromechanical optical
device that represents an integration of the HARDWARE Element and the SOFTWARE Element,
if applicable. This integration of elements is:

1. Developed and/or procured to satisfy a system entity capability and performance 
requirement.

2. Used to operate and maintain the system.

3. Used to generate or store energy required by the system.

4. Used to dispose of a system.

The ultimate success of the MISSION SYSTEM requires that the EQUIPMENT Element be oper-
ationally available and fully capable of supporting the system missions and the safety of its PER-
SONNEL to ensure a level of success. As a result specialty engineering (reliability, availability,
maintainability, vulnerability, survivability, safety, human factors, etc.) becomes a key focus of the
EQUIPMENT Element. Depending on the application, EQUIPMENT may be fixed, transportable,
or mobile.

Table 10.1 System elements common to MISSION SYSTEM and SUPPORT SYSTEM roles

System Element MISSION SYSTEM Role SUPPORT SYSTEM Role

PERSONNEL • •
EQUIPMENT • •
MISSION RESOURCES • •
PROCEDURAL DATA • •
SYSTEM RESPONSES • •
FACILITIES •
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The HARDWARE System Element

The Hardware Element represents the integrated set of multi-level, physical components—mechan-
ical, electrical/electronic, or optical less software—configured in accordance with the system archi-
tecture. Whereas the Hardware Element is common to both the MISSION SYSTEM and the
SUPPORT SYSTEM, there are difference in the classes of components. MISSION SYSTEM hard-
ware components are physically integrated to provide the capabilities required to accomplish
mission objectives. SUPPORT SYSTEM hardware components consist  of tools required to main-
tain and support the MISSION SYSTEM. These tools are categorized as: 1) Common Support
Equipment (CSE) and 2) Peculiar Support Equipment (PSE).

Common Support EQUIPMENT (CSE). Common support equipment (CSE) consists of the
items required to support and maintain the system or portions of the system while not directly
engaged in the performance of its mission. CSE items are in the organization’s inventory for support
of other systems. CSE excludes:

• Overall planning, management and task analysis functions inherent in the work breakdown
structure element, Systems Engineering/Program Management.

• Common support equipment, presently in the inventory or commercially available, bought
by the User, not by the Acquirer.

Peculiar Support EQUIPMENT (PSE). MIL-HDBK-881 characterizes peculiar support
equipment (PSE) as follows:

. . . the design, development, and production of those deliverable items and associated software
required to support and maintain the system or portions of the system while the system is not directly
engaged in the performance of its mission, and which are not common support equipment (CSE).

(Source: Mil-HDBK-881, Appendix H, para. 3.6).

PSE includes:

• Vehicles, equipment, tools, etc., used to fuel, service, transport, hoist, repair, overhaul, assemble, 
disassemble, test, inspect, or otherwise maintain mission equipment.

• Any production of duplicate or modified factory test or tooling equipment delivered to the (Acquirer)
for use in maintaining the system. (Factory test and tooling equipment initially used by the contractor
in the production process but subsequently delivered to the (Acquirer) will be included as cost of the
item produced.)

• Any additional equipment or software required to maintain or modify the software portions of the
system.

(Source: Mil-HDBK-881, Appendix H, para. 3.6).

CSE and PCE Components

Common support equipment (CSE) and peculiar support equipment (PSE) each employ two cate-
gories of equipment that are common to both types: 1) test, measurement, and diagnostics equip-
ment (TMDE) and 2) support and handling equipment.

Test, Measurement, and Diagnostics Equipment (TMDE). MIL-HDBK-881 characterizes
test, measurement, and diagnostics equipment (TMDE) as follows:

. . . consists of the peculiar or unique testing and measurement equipment which allows an operator 
or maintenance function to evaluate operational conditions of a system or equipment by performing



specific diagnostics, screening or quality assurance effort at an organizational, intermediate, or depot
level of equipment support.

TMDE, for example, includes:

• Test measurement and diagnostic equipment, precision measuring equipment, automatic test equipment,
manual test equipment, automatic test systems, test program sets, appropriate interconnect devices,
automated load modules, taps, and related software, firmware and support hardware (power supply
equipment, etc.) used at all levels of maintenance.

• Packages which enable line or shop replaceable units, printed circuit boards, or similar items to be
diagnosed using automatic test equipment.

(Source: Mil-HDBK-881, Appendix H, para. 3.7.1)

Support and Handling EQUIPMENT. Support and handling EQUIPMENT consists of the
deliverable tools and handling equipment used for support of the MISSION SYSTEM. This includes
“. . . ground support equipment (GSE), vehicular support equipment, powered support equipment,
unpowered support equipment, munitions material handling equipment, materiel-handling
equipment, and software support equipment (hardware and software).” (Source: Mil-HDBK-881,
Appendix H, para. 3.7.2)

The SOFTWARE System Element

The SOFTWARE element consists of all software code (source, object, etc.) and documentation
required for installation, execution, and maintenance of the EQUIPMENT Element. You may ask
why some organizations separate the SOFTWARE Element from its EQUIPMENT element. There
are several reasons:

1. EQUIPMENT and SOFTWARE may be developed separately or procured from different
vendors.

2. SOFTWARE may provide the flexibility to alter system capabilities and performance 
(decision-making, behavior, etc.) without having to physically modify the EQUIPMENT,
assuming the current EQUIPMENT design is adequate.

Author’s Note 10.2 The EQUIPMENT element consists of integrated HARDWARE and SOFT-
WARE as subordinated and supporting elements. Engineers become prematurely focused with
hardware and software details long before higher level SOI decisions have been made—namely
EQUIPMENT requirements. EQUIPMENT decisions lead to lower level HARDWARE and SOFT-
WARE use cases and decisions. These decisions subsequently lead to the question: What capabil-
ities should be implemented in HARDWARE versus those implemented in SOFTWARE?

SE logic says that HARDWARE and SOFTWARE may be separately procurable items. The under-
lying philosophy is SOFTWARE, as a system element, should be isolated to accommodate modi-
fication without necessarily having to modify the HARDWARE.

Application specific SOFTWARE can be procured as a separate item, regardless of its posi-
tion within the system structure as long as a controlled software requirements specification (SRS)
exists for the item’s development. As new versions of application specific SOFTWARE are released,
the User can procure the item without modifying the EQUIPMENT. There may be exceptions,
however, where SOFTWARE requirements and priorities force the User to upgrade the computer
HARDWARE capabilities and performance.
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The PROCEDURAL DATA System Element

The PROCEDURAL DATA element consists of all documentation that specifies HOW to safely
operate, maintain, deploy, and store the EQUIPMENT Element. In general, the PROCEDURAL
DATA Element is based on operating procedures. Operating procedures document sequences of
PERSONNEL actions required to ensure the proper and safe operation of the system to achieve its
intended level of performance under specified operating conditions. The PROCEDURAL DATA
Element includes items such as reference manuals, operator guides, standard operating practices
and procedures (SOPPs), and checklists.

Author’s Note 10.3 Unfortunately, many people view checklists as bureaucratic nonsense,
especially for organizational processes. Remember, checklists incorporate lessons learned and best
practices that keep you out of trouble. Checklists are a state of mind—you can view them as
“forcing” you to do something or as a “reminder” to “think about what you may have overlooked.”
As a colleague notes, when landing an aircraft, if the checklist says to “place the landing gear in
the deployed and locked position,” you may want to consider putting the landing gear down before
you land! Bureaucratic or not, the consequences for a lack of compliance can be catastrophic!

The MISSION RESOURCES System Element

The MISSION RESOURCES element includes all data, consumables, and expendables required
on-board to support the system mission. This element consists of:

1. Data to enable the EQUIPMENT and the PERSONNEL Elements to successfully  plan and
conduct the mission based on “informed” decisions.

2. Consumables such as fuel and water to support the EQUIPMENT and PERSONNEL Ele-
ments during the mission.
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3. Expendables such as personal and defensive systems and products to ensure a safe and
secure mission.

4. Recorded data for postmission performance analysis and assessment.

Let’s scope each of the four types of MISSION RESOURCES in detail.

• Mission Data Resources Consist of all real-time and non-real-time data resources such as
tactical plans, mission event timelines (METs), navigational data, weather conditions and
data, situational assessments, telecommunications, telemetry, and synchronized time that are
necessary for performing a mission with a specified level of success.

• Expendable Resources Consist of physical entities that are used and discarded, deployed,
lost, or destroyed during the course of mission operations.

• Consumable Resources Consist of physical entities that are ingested, devoured, or input into
a processor that transforms or converts the entity into energy to power the system and may
involve physical state changes.

The SYSTEM RESPONSES Element

Every natural and human-made system, as a stimulus-response mechanism, responds internally or
externally to stimuli in its OPERATING ENVIRONMENT. The responses may be explicit (reports,
communications, altered behavior, etc.) or implicit (mental thoughts, strategies, lessons learned,
behavioral patterns, etc.).

SYSTEM RESPONSES occur in a variety of forms that we characterize as behavioral pat-
terns, products, services, and by-products throughout the system’s pre-mission, mission, and post-
mission phases of operation. So, what do we mean by system behavior, products, services, and
by-products?

• System Behavior Consists of SYSTEM RESPONSES based on a plan of action or physical
stimuli and audiovisual cues such as threats or opportunities. The stimuli and cues invoke
system behavioral patterns or actions that may be categorized as aggressive, benign, defen-
sive, and everywhere in between. Behavioral actions include strategic and tactical tactics and
countermeasures.

• System Products Include any type of physical outputs, characteristics, or behavioral
responses to planned and unplanned events, external cues, or stimuli.

• System By-products Include any type of physical system output or behavioral that is not
deemed to be a system, product, or service.

• System Services Any type of physical system behavior, excluding physical products, that
assist another entity in the conduct of its mission.

Author’s Note 10.4 It is important to note here that abstracting “behavioral responses” via a
“box” called SYSTEM RESPONSES is simply an analytical convenience—not reality. Most system
element descriptions fail to recognize this box for what it is, expected outcome-based system per-
formance such as operational utility, suitability, availability, and effectiveness.

The SUPPORT SYSTEM Element

The SUPPORT SYSTEM consists of an integrated set of system elements depicted in Table 10.1
required to support the MISSION SYSTEM. The SUPPORT SYSTEM and its system elements
perform mission system support operations that consist of the following:

92 Chapter 10 The System of Interest Architecture



• Decision support operations

• System maintenance operations

• Manpower and personnel operations

• Supply support operations

• Training and training support operations

• Technical data operations

• Computer resources support operations

• Facilities operations

• Packaging, handling, storage, and transportation (PHST) operations

• Publications support operations

Let’s briefly describe each of these types of operations.

Decision Support Operations. Mission operations often require critical and timely decisions
based on massive amounts of information that exceed the mental capabilities of the human decision
maker. Decision support operations ensure that the decision maker always has immediate access to
the most current, processed system mission information to support an informed decision.

System Maintenance Operations. System maintenance operations include system main-
tenance support concepts and requirements for manpower and personnel; supply support; support
and test equipment; technical data; training and support; facilities; and packaging, handling, storage,
transportation; computer resources support required insightful planning. Maintenance support 
operations establish support for both general system operations and mission specific operations
throughout the System O&S Phase. Examples include software maintenance concepts, pre-planned
product improvements (P3I), outsourcing, and transition planning.

Between operational missions, maintenance personnel normally perform corrective and pre-
ventative maintenance on the system. Maintenance activities may be conducted in the field, at a
depot or maintenance facility at some central location, or at the manufacturer’s facility.

Generally, a system may be temporarily removed from active duty during maintenance. Types
of maintenance include:

1. System upgrades, enhancements, and refinements.

2. Replenishment and refurbishment of system resources (fuel, training, etc.).

3. Diagnostic readiness tests.

4. Backup of system information for archival purposes.

Maintenance may also include investigations of mission or system anomalies through duplication
of technical problem or investigations of system health and status resulting from abnormal operat-
ing conditions before, during, or after a mission. On completion of the maintenance activities, the
system may be returned to a state of operational readiness and active duty or scheduled for system
operator or readiness training.

Manpower and Personnel Operations. Manpower and Personnel operations consist of all
personnel required to manage, operate, and support the system throughout its operational life.
Manpower and personnel considerations include in-house versus contractor tasks, skill mixes, 
and human-system interfaces. When designing systems, systems engineering must factor in
considerations of the skill levels of the available personnel, training costs, labor costs of operate,
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and leverage technology such as built-in diagnostics, information technology, and expert systems
to provide the best life cycle cost trade-offs—given the skill levels.

Supply Support Operations. Supply support operations ensure that all equipment and spares
required to support the primary system, system support, and test equipment and the “supply lines”
for those items are established to support pre-mission, mission, and post-mission operations. Some
organizations refer to the initial support as provisioning and follow-on requirements as routine
replenishment. A key supply support objective is to minimize the number of different PARTS and
promote standardization of parts selection and usage. Key issues to be addressed include
communication transfer media, inventory management, configuration management, storage,
security, and licensing.

Training and Training Support Operations. Training and training support operations ensure
that all personnel required to support the pre-mission, mission, and post-mission operations are
fully trained and supported. Personnel training consists of those activities required to prepare system
personnel such as operators, maintenance personnel, and other support personnel to conduct or
support pre-mission, mission, and postmission operations. Personnel must be trained with the
appropriate skills to perform their assigned mission objectives and tasks on specific equipment to
achieve the required level of performance and expected results.

Technical Data Operations. Pre-mission, mission, and post-mission operations require
accurate, precise, and timely technical data. Technical data operations support personnel and
computer equipment decision making to ensure that all decisions are made when scheduled or as
appropriate to achieve the mission objectives, level of performance, and expected results.

Computer Resources Support Operations. Many systems are highly dependent on
technology such as computer resources to provide information and processing of data to support
pre-mission, mission, and post-mission operations. Computer resources support operations include:
planning, procurement, upgrade, and maintenance support to ensure that system reliability,
availability, and maintainability (RAM) requirements will be achieved in a cost-effective manner.

Packaging, Handling, Storage, and Transportation (PHST) Operations. During system
deployment, redeployment, and storage, system support activities must provide the capability to
safely and securely transport and store the system and its components. Shipment and storage must
be accomplished to avoid damage or decomposition. PHST activities must have a clear
understanding of the environmental conditions and characteristics that pose risk to the system while
in transit as well as long-term shelf-life effects on materials.

Publications Support Operations. System maintenance and support personnel require
immediate access to the most current information regarding system and system support equipment
to ensure proper maintenance and usage. Publication support activities, sometimes referred to as
Tech Pubs, produce technical manuals, reference guides, and the like, that enable SUPPORT
SYSTEM personnel training activities, maintenance activities, and general operations in support of
pre-mission, mission, and post-mission operations.

The FACILITIES System Element

The FACILITIES element includes all the system entities required to support and sustain the
MISSION SYSTEM Elements and the SUPPORT SYSTEM Elements.
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System support for pre-mission, mission, and post-mission operations requires FACILITIES to
enable operator and support PERSONNEL to accomplish their assigned mission tasks and objec-
tives in a reasonable work environment. Depending on the type of system, these FACILITIES
support the following types of tasks:

1. Plan, conduct, and control the mission.

2. Provide decision support.

3. Brief and debrief personnel.

4. Store the physical system or product between missions.

5. Configure, repair, maintain, refurbish, and replenish system capabilities and resources.

6. Analyze post-mission data.

Where practical, the FACILITIES element should provide all of the necessary and sufficient capa-
bilities and resources required to support MISSION SYSTEM and human activities during pre-
mission, mission, and post-mission operations objectives. FACILITIES may be owned, leased,
rented, or be provided on a limited one-time use agreement.

In general, people tend to think of FACILITIES as enclosures that provide shelter, warmth,
and protection. This thought process is driven by human concerns for creature comfort rather than
the mission system. Rhetorically speaking, Does an aircraft ever know that it is sitting in the 
rain? No, but members of the SUPPORT SYSTEM’S PERSONNEL Element are aware of the 
conditions.

Perhaps the best way to think of the FACILITY Element is to ask the question: What type of
interface is required to support the following MISSION SYSTEM Elements—namely EQUIPMENT
Element, PERSONNEL Element, MISSION DATA Element, and RESOURCES Element—during all
phases of the mission.

The FACILITIES Element fulfills a portion of the SUPPORT SYSTEM role. Depending on
the MISSION SYSTEM and its application, the FACILITIES Element may or may not be used in
that context. For example, an aircraft—which is a MISSION SYSTEM—does not require a FACIL-
ITY to perform its primary mission. However, between primary missions, FACILITIES are required
to maintain and prepare the aircraft for its next mission.

10.3 SYSTEM ELEMENT INTERACTIONS

Figure 10.1 illustrates the System Element Architecture (SEA) for a SOI. When you define your
system and identify physical instances of each system element, the next step is to characterize the
levels of interactions that occur between each interface. The Contract Work Breakdown Structure
(CWBS) should include a CWBS Dictionary that scopes and documents the physical items included
in each CWBS element such as EQUIPMENT.

One approach to ensuring system element interactions are identified and scoped is to create a
simple matrix such as the one shown in Figure 10.2. For illustration purposes, each cell of the
system element matrix represents interactions between the row and column elements. For your
system, employ such a scheme and document the interactions in a description of the system archi-
tecture. Then, baseline and release this document to promote communications among team members
developing and making system element decisions.
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10.4 SUMMARY

In our discussion of the SYSTEM OF INTEREST (SOI) architecture we introduced the concept of the system
elements, which are common to all human-made systems be they friendly, benign, or adversarial. The system
elements common to the MISSION SYSTEM and SUPPORT SYSTEM consist of the following:

• PERSONNEL Element

• EQUIPMENT Element

• MISSION RESOURCES Element

• PROCEDURAL DATA Element

• SYSTEM RESPONSES Element

• FACILITIES Element

The FACILITIES Element is typically unique to the SUPPORT SYSTEM.
Our discussion included the System Element Architecture and illustrated how the system elements are

integrated to establish the basic architectural framework for a MISSION SYSTEM or a SUPPORT SYSTEM.
We are now ready to examine how the system interfaces with its OPERATING ENVIRONMENT and its 
elements.

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new system selection, apply your knowledge derived from this chapter’s topical
discussions.

(a) Equate system elements to real world components for each system.

(b) Prepare a paper entitled “An Architectural Description of the [fill in from list in Chapter 2] System.”

ORGANIZATIONAL CENTRIC EXERCISES

1. Contact a system development program within your organization. Research how the program documented
and specified the SYSTEM OF INTEREST (SOI) architecture in the following System Element areas:

(a) MISSION SYSTEM and SUPPORT SYSTEMs

(b) PERSONNEL

(c) MISSION RESOURCES

(d) PROCEDURAL DATA

(e) EQUIPMENT

(f) SYSTEM RESPONSES

(g) FACILITIES

2. For the system development program above, what lessons learned did technical management identify that
were overlooked.
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Chapter 11

The Operating Environment
Architecture

11.1 INTRODUCTION

The success of any system is ultimately determined by its ability to:

1. Conduct its planned missions and achieve performance mission objectives.

2. Cope with threats—namely, vulnerability and survivability—within its prescribed OPER-
ATING ENVIRONMENT.

For a system to accomplish these objectives, SE’s face several major challenges.

1. Understand WHAT missions the User plans for the system to accomplish.

2. Based on the missions, specifically bound the system’s OPERATING ENVIRONMENT.

3. Understand the OPERATING ENVIRONMENT opportunities and threats related to those
missions.

4. Identify the most likely or probable OPERATING ENVIRONMENT opportunity and threat
scenarios that influence/impact system missions.

The OPERATING ENVIRONMENT represents the totality of natural and human-made enti-
ties that a system must be prepare to cope with during missions and throughout its lifetime. As one
of a system’s key life expectancy dependencies, the system’s ability to: 1) prepare for, 2) conduct,
and 3) complete missions successfully is influenced by its OPERATING ENVIRONMENT.

What You Should Learn from This Chapter

1. What are the two classes of OPERATING ENVIRONMENT domains?

2. What are the four classes of system elements of a system’s HIGHER ORDER SYSTEMS
domain?

3. What are the three classes of system elements of a system’s PHYSICAL ENVIRONMENT
domain?

4. What are the four classes of systems that comprise the NATURAL ENVIRONMENT domain?

5. How do you graphically depict the OPERATING ENVIRONMENT’s architecture that
includes detail interactions of the HIGHER ORDER SYSTEMS and PHYSICAL ENVI-
RONMENT domains?

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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11.2 APPLICATION OF THIS CONCEPT

A significant aspect of systems engineering (SE) is recognizing the need to fully understand,
analyze, and bound relevant portions a system’s OPERATING ENVIRONMENT. Why? System
analysts and SEs must be capable of:

1. Fully understanding the User’s organizational system mission, objectives, and most prob-
able use case applications.

2. Analytically organizing, extracting, and decomposing the OPERATING ENVIRONMENT
relative to the mission into manageable problem space(s) and solution space(s).

3. Effectively developing a system solution that ensures mission success within the constraints
of cost, schedule, technology, support, and risk factors.

Engineers and analysts can academically analyze a system’s OPERATING ENVIRONMENT’s
problem space forever—a condition referred to as “analysis paralysis.” However, success ultimately
depends on making informed decisions based on the key facts, working within the reality of limited
resources, drawing on seasoned system design experience, and exercising good judgment. The 
challenge is that most large complex problems require large numbers of disciplinary specialists to
solve these problems. This set of people often has diverging rather than converging viewpoints of
the OPERATING ENVIRONMENT.

As a system analyst or SE, your job is to facilitate a convergence and consensus of viewpoints
concerning the definition of the system’s OPERATING ENVIRONMENT. Convergence and con-
sensus must occur in three key areas:

1. WHAT IS/IS NOT relevant to the mission in the OPERATING ENVIRONMENT?

2. WHAT is the degree of importance, significance, or influence?

3. WHAT is the probability of occurrence of those items of significance?

So how do you facilitate a convergence of viewpoints to arrive at a consensus decision?
As leaders, the system analyst and the SE must have a strategy and approach for quickly organ-

izing and leading the key stakeholders to a convergence and consensus about the OPERATING
ENVIRONMENT. Without a strategy, chaos and indecision can prevail. You need analytical skills
that enable you to establish a framework for OPERATING ENVIRONMENT definition decision
making.

As a professional, you have a moral and ethical obligation to yourself, your organization, and
society to ensure the safety, health, and well-being of the User and the public when it comes to
system operations. If you and your team OVERLOOK or choose to IGNORE a key attribute of the
OPERATING ENVIRONMENT that impacts human life and property, there may be SEVERE con-
sequences and penalties. Therefore, establish common analytical models for you and your team to
use in your business applications to ensure you have thoroughly identified and considered all OPER-
ATING ENVIRONMENT entities and elements that impact system capabilities and performance.

11.3 OPERATING ENVIRONMENT OVERVIEW

Analytically, the OPERATING ENVIRONMENT that influences and impacts a system’s missions
can be abstracted several different ways. For discussion purposes the OPERATING ENVIRON-
MENT can be considered as consisting of two high-level domains: 1) HIGHER ORDER SYSTEMS
and 2) the PHYSICAL ENVIRONMENT as shown in Figure 11.1. Let’s define each of these system
elements.
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HIGH ORDER SYSTEMS Domain

All natural and human-made systems function as individual SYSTEMS OF INTEREST (SOIs)
within a hierarchical system of systems. Each higher level abstraction serves as a HIGHER ORDER
SYSTEM within the system of systems hierarchy that has its own scope of authority and opera-
tional boundaries. HIGHER ORDER SYSTEMS are characterized by:

1. Organizational purpose or mission.

2. Organizational objectives.

3. An organizational structure.

4. Command media such as rules, policies, and procedures of operation.

5. Resource allocations.

6. Operating constraints imposed on embedded system entities.

7. Accountability and objective evidence of valued-added tasks performed.

8. Delivery of systems, products, and services.

For most human-made systems, we refer to the vertical HIGHER ORDER SYSTEM–
to–SYSTEM OF INTEREST (SOI) interaction as C3I—meaning command, control, communica-
tions, and intelligence. The Information Age has added a fourth item—computers—thereby 
changing the acronym to C4I—command, control, computers, communications, and intelligence.
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If we observe the behavior of HIGHER ORDER SYSTEMS and analyze their interactions, we
can derive four classes of system elements: 1) ORGANIZATION, 2) ROLES and MISSIONS, 
3) OPERATING CONSTRAINTS, and 4) RESOURCES. Let’s define each of these system element
classes.

• ORGANIZATION Element The hierarchical command and control reporting structure,
authority, and its assigned accountability for organizational roles, missions, and objectives.

• ROLES AND MISSIONS Element The various roles allocated to and performed by
HIGHER ORDER SYSTEMS and the missions associated with these roles and objectives
to fulfill the organization’s vision. Examples include: strategic and tactical plans, roles, and
mission goals and objectives.

• OPERATING CONSTRAINTS Element International, federal, state, and local statutory,
regulatory, policies, and procedures as well as physical laws and principles that govern and
constrain PHYSICAL ENVIRONMENT systems and SYSTEM OF INTEREST (SOI)
actions and behavior. Examples include: assets, capabilities, consumables and expendables;
weather conditions; doctrine, ethical, social and cultural considerations; and moral, spiritual,
philosophical.

• RESOURCES Element The natural and physical raw materials, investments, and assets
that are allocated to the PHYSICAL ENVIRONMENT and SYSTEM OF INTEREST (SOI)
to sustain missions—namely deployment, operations, support, and disposal. Examples
include commodities such as time, money, and expertise.

Contexts of HIGHER ORDER SYSTEMS. HIGHER ORDER SYSTEMS have two application
contexts: 1) human-made systems, such as command and control or social structure, and 2) physical
or natural laws.

• Human-made Systems Context Organizations and governments, exercise hierarchical
authority, command, and control over lower tier systems via organizational “chain of
command” structures, policies, and procedures, and mission tasking; constitutions, laws, and
regulations, public acceptance and opinion, and so on.

• Physical or Natural Laws Context All systems, human-made and natural, are governed by
natural and physical laws such as life science, physical science, physics, and chemistry.

Given this structural framework of the HIGHER ORDER SYSTEMS domain, let’s define its coun-
terpart, the PHYSICAL ENVIRONMENT.

The PHYSICAL ENVIRONMENT Domain

Human-made systems have some level of interaction with external systems within the PHYSICAL
ENVIRONMENT. In general, we characterize these interactions as friendly, cooperative, benign,
adversarial, or hostile.

If we observe the PHYSICAL ENVIRONMENT and analyze its interactions with our system,
we can identify classes of constituent system elements: 1) NATURAL ENVIRONMENT, 2)
HUMAN-MADE SYSTEMS, and 3) the INDUCED ENVIRONMENT as shown in Figure 11.1.
Let’s briefly define each of these:

• NATURAL ENVIRONMENT Element All nonhuman, living, atmospheric, and geophys-
ical entities that comprise the Earth and celestial bodies.

• HUMAN-MADE SYSTEMS Element External organizational or fabricated systems
created by humans that interact with your system entity at all times, during pre-mission,
mission, and post-mission.
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• INDUCED ENVIRONMENT Element Discontinuities, perturbations, or disturbances
created when natural phenomenon occur or HUMAN-MADE SYSTEMS interact with the
NATURAL ENVIRONMENT. Examples include thunderstorms, wars, and oil spills.

Based on this high-level introduction and identification of the OPERATING ENVIRONMENT ele-
ments definitions, we are now ready to establish the architecture of the OPERATING ENVIRON-
MENT. Let’s begin with the Physical Environment Domain.

PHYSICAL ENVIRONMENT Domain Levels of Abstraction

The PHYSICAL ENVIRONMENT consists of three levels of analytical abstractions: 1) local envi-
ronment, 2) global environment, and 3) cosmospheric environment. Figure 11.2 uses an entity rela-
tionship diagram (ERD) to illustrate the composition of the PHYSICAL ENVIRONMENT. At a
high level of abstraction, the PHYSICAL ENVIRONMENT consists of the three classes of system
elements—HUMAN-MADE, INDUCED, and NATURAL environment elements. Each type of 
environment consists of three levels of abstraction-Cosmospheric, Global, or Local.

Author’s Note 11.1 You may determine that some other number of system levels of abstrac-
tion is more applicable to your line of business. That’s okay. What is IMPORTANT is that you and
your team have a simple approach for abstracting the complexity of the PHYSICAL ENVIRON-
MENT domain into manageable pieces. The “pieces” must support meaningful analysis and ensure
coverage of all relevant aspects that relate to your problem and solution spaces. Remember, bound-
ing abstractions for analysis is analogous to cutting a pie into 6, 8, or 10 pieces. As long as you
account for the TOTALITY, you can create as many abstractions as are REASONABLE and PRAC-
TICAL; however, KEEP IT SIMPLE.
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11.4 PHYSICAL ENVIRONMENT DOMAIN SYSTEM ELEMENTS

A system’s PHYSICAL ENVIRONMENT consists of three classes of system elements. These
include: 1) the HUMAN-MADE SYSTEMS element, 2) the INDUCED ENVIRONMENT element,
and 3) the NATURAL ENVIRONMENT element. Let’s scope and define each of these elements.

The NATURAL ENVIRONMENT System Element

The NATURAL ENVIRONMENT System Element includes all naturally occurring entities that
are not human-made. These entities are actually environmental “systems” that coexist within a pre-
carious balance of power. In general, these systems represent geophysical and life form classes of
objects.

Cosmospheric Environment Level of Abstraction. The Cosmospheric Environment is 
an abstraction that represents the totality of the Cosmos—the universe—as humankind under-
stands it. Analytically, the Cosmospheric Environment consists of an infinite number of Global
Environments.

You may ask why the Cosmospheric Environment is relevant to SE. Consider space probes that
have flown beyond the boundaries of our solar system. The SEs and physicists who bounded the
OPERATING ENVIRONMENT had to identify all of the global entities that had a potential impact
on the space probe’s mission. Obviously, these global entities did not move out of the way of the
probe’s mission path. The SEs and physicists had to understand:

1. WHAT entities they might encounter during the missions.

2. WHAT each global entity’s performance characteristics are.

3. HOW to navigate and maneuver among those entities throughout the mission without an
adverse or catastrophic impact.

Global Environment Level of Abstraction. The Global Environment is an abstraction that
represents the PHYSICAL ENVIRONMENT surrounding a heavenly body. This includes entities
such as stars, planets, and satellites of planets. Analytically, we state that the Global Environment
of any heavenly body consists of an infinite number of Local Environments.

If you operate an airline, each aircraft is surrounded by a Local Environment within the Earth’s
global environment. In contrast, NASA launches interplanetary space probes experience an infinite
number of local environments throughout the mission and global environments—namely Earth,
planets, and the planetary moons. Although the global environments may share a common set of
physical attributes and characteristics, such as gravity and the atmosphere, their values can vary
significantly. As a result, OPERATING ENVIRONMENT requirements may require SEs to bound
ranges of worst-case parameters across the spectrum of global entities encountered.

As humans, our observer’s frame of reference is planet Earth. Therefore, we typically relate to
the global entity environment as that of the Earth and its gaseous atmosphere—some people simply
call it the Earth’s environment. Applying the same convention to Mars, we could refer to it as the
Mars’s global environment.

The challenge question is: Where do SEs draw the line to delineate overlapping global envi-
ronment influences. How do we bound the Earth’s and Moon’s OPERATING ENVIRONMENT influ-
ences? Do we arbitrarily draw a line at the midpoint? Obviously, this is not based on scientific
principles. Alternatively, do we bound the Earth’s and Moon’s environments as a region encom-
passing both bodies with a “no man’s” zone in between? How do we “bound” a varying contin-
uum such as the electromagnetic field, the atmosphere, or gravity?
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From an SE perspective, one approach is to delineate the two environments by asking the ques-
tion, What characteristics below some arbitrary threshold are unique or “native” to the “global”
SYSTEM OF INTEREST (SOI)? If the boundary conditions of two or more entities overlap, the
objective would be to determine criteria for the boundary conditions.

As a systems analyst or SE, you represent the technical side of the program-technical boundary
for the discussions that follow. Thus, you have a professional, technical OBLIGATION to ensure
that the INTEGRITY of these decisions is supported by:

1. Objective, factual data to the extent practical and available.

2. Valid assumptions that withstand peer and stakeholder scrutiny.

3. Most likely or probable operational scenarios and conditions.

Remember, the analytical relevance of the decisions you make here may have a major impact on
your system’s design, cost, reliability, maintainability, vulnerability, survivability, safety, and 
risk considerations. These decisions may have adverse impacts on human life, property, and 
environment.

Analytically, we can partition the NATURAL ENVIRONMENT Global and Local levels of
abstraction into five subelements:

• Atmospheric systems environment

• Geospheric systems environment

• Hydrospheric systems environment

• Biospheric systems environment

Author’s Note 11.2 A word of caution: The point of our discussion here is not to present a
view of the physical science. Our intent is to illustrate HOW SEs might approach analysis of the
NATURAL ENVIRONMENT. Ultimately, you will have to bound and specify applicable portions of
this environment that are applicable to your SYSTEM OF INTEREST (SOI). The approach you and
your team choose to use should be ACCURATELY and PRECISELY representative of your system’s
operating domain and the relevant factors that drive system capabilities and levels of performance.
However, you should always consult subject matter experts (SMEs), who can assist you and your
team in abstracting the correct environment.

Atmospheric Systems Environment. The Atmospheric Systems Environment is an abstrac-
tion of the gaseous layer that extends from the surface of a planetary body outward to some pre-
defined altitude.

Geospheric Systems Environment. The Geospheric Systems Environment consists of the
totality of the physical landmass of a star, moon, or planet. From an Earth sciences perspective, the
Earth’s Geospheric Systems Environment includes the Lithospheric Systems Environment, the rigid
or outer crust layer of the Earth. In general, the lithosphere includes the continents, islands, moun-
tains, and hills that appear predominantly at the top layer of the Earth.

Hydrospheric Systems Environment. The Hydrospheric Systems Environment consists of all
liquid and solid water systems, such as lakes, ponds, rivers, streams, waterfalls, underground
aquifers, oceans, tidal pools, and ice packs, that are not part of the gaseous atmosphere. In general,
the key abstractions within the Hydrospheric Systems Environment include: rainwater, soil waters,
seawater, surface brines, subsurface waters, and ice.
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Biospheric System Environment. The Biospheric Systems Environment is defined as the
environment comprising all living organisms on the surface of the Earth. In general, the Earth’s
biosphere consists of all environments that are capable of supporting life above, on, and beneath
the Earth’s surface as well as the oceans. Thus, the biosphere overlaps a portion of the atmosphere,
a large amount of the hydrosphere, and portions of the lithosphere. Examples include: botanical,
entomological, ornithological, amphibian, and mammalian systems. In general, biospheric systems
function in terms of two metabolic processes: photosynthesis and respiration.

Local Environment Level of Abstraction. The Local Environment is an abstraction that
represents the PHYSICAL ENVIRONMENT encompassing a system’s current location. For
example, if you are driving your car, the Local Environment consists of the OPERATING
ENVIRONMENT conditions surrounding the vehicle. Therefore, the Local Environment includes
other vehicles and drivers, road hazards, weather, and any other conditions on the roads that
surround you and your vehicle at any instant in time. As an SE, your challenge is leading system
developers to consensus on:

1. WHAT is the Local Environment’s frame of reference?

2. WHAT are the local environment’s bounds (initial conditions, entities, etc.) at any point in
time?

Author’s Note 11.3 If you are a chemist or physicist, you may want to consider adding a fourth
level molecular environment assuming it is germane to your SOI.

Author’s Note 11.4 Your “takeaway” from the preceding discussion is not to create five types
of NATURAL ENVIRONMENT abstractions and document each in detail for every system you
analyze. Instead, you should view these elements as a checklist to prompt mental consideration for
relevance and identify those PHYSICAL ENVIRONMENT entities that have relevance to your
system. Then, bound and specify those entities.

HUMAN-MADE SYSTEMS Environment Element

Our discussions of the NATURAL ENVIRONMENT omitted a key entity, humankind. Since SE
focuses on benefiting society through the development of systems, products, or services, we can
analytically isolate and abstract humans into a category referred to as the HUMAN-MADE
SYSTEMS Environment element. HUMAN-MADE SYSTEMS include subelements that influence
and control human decision making and actions that affect the balance of power on the planet.

If we observe HUMAN-MADE SYSTEMS and analyze how these systems are organized, 
we can identify seven types of subelements: 1) historical or heritage systems, 2) cultural systems,
3) urban systems, 4) business systems, 5) educational systems, 6) transportation systems, and 
7) governmental systems. Let’s explore each of these further.

Historical or Heritage Systems. Historical or heritage systems in abstraction include all 
artifacts, relics, traditions, and locations relevant to past human existence such as folklore and 
historical records.

You may ask why the historical or heritage systems are relevant to an SE. Consider the fol-
lowing example:
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EXAMPLE 11.1

Let’s assume that we are developing a system such as a building that has a placement or impact on a land use
area that has HISTORICAL significance. The building construction may disturb artifacts and relics from the
legacy culture, and this may influence technical decisions relating to the physical location of the system. One
perspective may be to provide physical space or a buffer area between the historical area and our system. Con-
versely, if our system is a museum relevant to an archeological discovery, the location may be an INTEGRAL
element of the building design.

From another perspective, military tactical planners may be confronted with planning a mission
and have an objective to avoid an area that has historical significance.

Urban Systems. Urban systems include all entities that relate to how humans cluster or group
themselves into communities and interact at various levels of organization—neighborhood, city,
state, national, and international.

EXAMPLE 11.2

Urban systems include the infrastructure that supports the business systems environment, such as transporta-
tion systems, public utilities, shopping, distribution systems, medical, telecommunications, and educational
institutions.

Systems engineering, from an urban systems perspective, raises key issues that effectively require
some form of prediction. How do systems engineers plan and design a road system within resource
constraints that provide some level of insights into the future to facilitate growth and expansion?

Cultural Systems. Cultural systems include multi-faceted attributes that describe various iden-
tities of humans and communal traits, and how humans interact, consume, reproduce, and survive.
Examples include: the performing arts of music and other entertainment, civic endeavors, and pat-
terns of behavior. As the commercial marketplace can attest, cultural systems have a major impact
on society’s acceptance of systems.

Business Systems. Business systems include of all entities related to how humans organize into
economic-based enterprises and commerce to produce products and services to sustain a livelihood.
These include research and development, manufacturing, products and services for use in the 
marketplace.

Educational Systems. Educational systems include all institutions dedicated to educating and
improving society through formal and informal institutions of learning.

Financial Systems. Financial systems include banks and investment entities that support per-
sonal, commercial, and government financial transactions.

Government Systems. Government systems include all entities related to governing humans
as a society—international, federal, state, county, municipality, etc.

Medical Systems. Medical systems include hospitals, doctors, and therapeutic entities that
administer to the healthcare needs of the public.

Transportation Systems. Transportation systems include land, sea, air, and space transporta-
tion systems that enable humans to travel safely, economically, and efficiently from one destination
to another.
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The INDUCED ENVIRONMENT Element

The preceding discussions isolated the NATURAL ENVIRONMENT and HUMAN-MADE
SYSTEMS as element abstractions. While these two elements enable us to analytically organize
system OPERATING ENVIRONMENT entities, they are physically interactive. In fact, HUMAN-
MADE SYSTEMS and the NATURAL ENVIRONMENT each create intrusions, disruptions, per-
turbations, and discontinuities on the other.

Analysis of these interactions can become very complex. We can alleviate some of the com-
plexity by creating the third PHYSICAL ENVIRONMENT element, the INDUCED ENVIRON-
MENT. The INDUCED ENVIRONMENT enables us to isolate entities that represent the intrusions,
disruptions, perturbations, and discontinuities until they diminish or are no longer significant or
relevant to system operation. The degree of significance of INDUCED ENVIRONMENT entities
may be temporary, permanent, or dampen over time.

11.5 OPERATING ENVIRONMENT 
DECISION-MAKING METHODOLOGY

The OPERATING ENVIRONMENT imposes various factors and constraints on the capabilities
and levels of performance of a SYSTEM OF INTEREST (SOI), thereby impacting missions and
survival over the planned life span. As a system analyst or SE, your responsibility is to:

1. Identify and delineate all of the critical OPERATING ENVIRONMENT conditions.

2. Bound and describe technical parameters that characterize the OPERATING 
ENVIRONMENT.

3. Ensure those descriptions are incorporated into the System Performance Specification (SPS)
used to procure the SOI.

The process of identifying the SOI’s OPERATING ENVIRONMENT requirements employs a
simple methodology as depicted in Figure 11.3. In general, the methodology implements the logic
reflected in the PHYSICAL ENVIRONMENT levels of abstraction and classes of environments
previously described.

The methodology consists of three iterative loops:

Loop 1: Cosmospheric level requirements (1).

Loop 2: Global entity level requirements (2).

Loop 3: Local level requirements (3).

When each of these iterations is applicable to a SOI, the logic branches out to a fourth loop that
investigates which of three classes of environments—HUMAN-MADE SYSTEMS (4), NATURAL
ENVIRONMENT (6), or INDUCED ENVIRONMENT (8) is applicable. For each type of envi-
ronment that is applicable, requirements associated with that type are identified—HUMAN-MADE
SYSTEMS (5), NATURAL (7), and INDUCED (9). When the third loop completes its types of
environment decision-making process, it returns to the appropriate level of abstraction and finishes
with the local level requirements (3).

11.6 ENTITY OPERATING ENVIRONMENT 
FRAME OF REFERENCE

The preceding discussions address the OPERATING ENVIRONMENT from the SYSTEM’s frame
of reference. However, lower levels of abstraction within a SYSTEM are, by definition, self-
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contained systems of integrated components. The OPERATING ENVIRONMENT contextually
must be established from the entity’s frame of reference as illustrated in Figure 11.4. So, WHAT
constitutes an ASSEMBLY’s OPERATING ENVIRONMENT? This can be anything external to the
ASSEMBLY’s boundary, such as other ASSEMBLIES, SUBSYSTEMS, or PRODUCTS. Consider
the following example:



EXAMPLE 11.3

A processor board within a desktop computer chassis has an OPERATING ENVIRONMENT that consists of
the motherboard; other boards it interfaces directly with; electromagnetic radiation from power supplies;
switching devices, and so on.

11.7 CONCLUDING POINT

You may ask isn’t the HIGHER ORDER SYSTEMS domain part of the PHYSICAL ENVIRON-
MENT domain? You could argue this point. However, Figure 11.1 represents an analytical per-
spective with a key focus on DIRECT, peer-to-peer and command and control (C2) interactions.
From an SOI perspective, it responds to human managerial authority. Therefore, we depict the
HIGHER ORDER SYSTEMS in terms of human supervisory control of the SOI. Are HIGHER
ORDER SYSTEMS (human) above the PHYSICAL ENVIRONMENT? No, in fact we are phys-
ically subordinated to it. Yet, as we see in phenomena such as global warming, our collective actions
can have an adverse impact on it, and in turn on our lives.

11.8 GUIDING PRINCIPLES

In summary, the preceding discussions provide the basis with which to establish the guiding prin-
ciples that govern the architecture of a system’s operating environment.

Principle 11.1 A system’s OPERATING ENVIRONMENT consists of two classes of domains:
HIGHER ORDER SYSTEMS and a PHYSICAL ENVIRONMENT.

Principle 11.2 A system’s PHYSICAL ENVIRONMENT domain consists of three classes of
system elements: NATURAL, HUMAN-MADE, and INDUCED. NATURAL and HUMAN-MADE
ENVIRONMENTs systems interact; the INDUCED ENVIRONMENT represents the time-
dependent result of that interaction.

11.9 SUMMARY

Our discussion in this section provides an orientation of the OPERATING ENVIRONMENT, its levels of
abstraction, and classes of environments. Based on identification of these OPERATING ENVIRONMENT
elements, we introduced Figure 11.1 to depict relationships among PHYSICAL ENVIRONMENT levels of
abstraction and its system elements.

Next we introduced the concept of the OPERATING ENVIRONMENT architecture as a framework for
linking the OPERATING ENVIRONMENT system elements. The architectural framework of interactions pro-
vided a basis for us to define several system element interaction principles.

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new system selection, apply your knowledge derived from this chapter’s topical
discussions. Identify the following:

(a) HIGHER ORDER SYSTEMS domain and its system elements

(b) PHYSICAL ENVIRONMENT domain, its system elements, and levels of abstraction.
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ORGANIZATIONAL CENTRIC EXERCISES

1. Contact a system development program in your organization. Research how they analyzed their SYSTEM
OF INTEREST (SOI), its OPERATING ENVIRONMENT, and their respective system elements. How was
this analysis reflected in the SOI architecture?

ADDITIONAL READING
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Chapter 12

System Interfaces

12.1 INTRODUCTION

One of the crucial factors of system success is determined by what happens at its internal and exter-
nal interfaces. You can engineer the most elegant algorithms, equations, and decision logic, but if
the system does not perform at its interfaces, the elegance is of no value. System interface char-
acterizations range from cooperative interoperability with external friendly systems to layers of
protection to minimize vulnerability to external threats (environment, hostile adversary actions,
etc.) and structural integrity to ensure survivability.

This chapter introduces the context of system interfaces, their purpose, objectives, attributes,
and how they are implemented. Our discussions explore the various types of interfaces and factors
that delineate success from failure. This information provides the basis for the next chapter, which
addresses interface design and control.

What You Should Learn from This Chapter

1. What is an interface?

2. What is the purpose of an interface?

3. What are the types of interfaces?

4. What is a point-to-point interface?

5. What is a logical interface?

6. What is a physical interface?

7. How do logical and physical interfaces interrelate?

8. Identify seven types of physical interfaces?

9. What are the steps of the interface definition methodology?

10. What is a generalized interface solution?

11. What is a specialized interface solution?

12. How does a generalized solution relate to a specialized solution?

13. How do generalized and specialized solutions relate to logical and physical interfaces?

14. What are some methods of limiting access to interfaces?

15. What constitutes an interface failure?

16. What are some examples of interface failures?

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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Definitions of Key Terms

• Human-Machine Interface “The actions, reactions, and interactions between humans and
other system components. This also applies to a multi-station, multi-person configuration 
or system. Term also defines the properties of the hardware, software or equipment which
constitute conditions for interactions.” (Source: MIL-HDBK-1908, p. 21)

• Interchangeability “The ability to interchange, without restriction, like equipments or por-
tions thereof in manufacture, maintenance, or operation. Like products are two or more items
that possess such functional and physical characteristics as to be equivalent in performance
and durability, and are capable of being exchanged one for the other without alteration of
the items themselves or of adjoining items, except for adjustment, and without selection for
fit and performance.” (Source: MIL-HDBK-470A, Appendix G, Glossary, p. G-7)

• Interface “The functional/logical relationships and physical characteristics required to exist
at a SYSTEM or entity boundary with its OPERATING ENVIRONMENT that enable the
entity to provide a mission capability.” (Source: Adapted from DSMC—Glossary of Terms)

• Interface Control “The process of: (1) identifying all functional and physical characteris-
tics relevant to the interfacing of two or more items provided by one or more organizations;
and (2) ensuring that proposed changes to these characteristics are evaluated and approved
prior to implementation.” (Source: Former MIL-STD-480B, para. 3.1.43)

• Interface Device “An item which provides mechanical and electrical connections and any
signal conditioning required between the automatic test equipment (ATE) and the unit under
test (UUT); also known as an interface test adapter or interface adapter unit.” (Source: MIL-
HDBK-470A, Appendix G, Glossary, p. G7)

• Interface Ownership The assignment of accountability to an individual, team, or organi-
zation regarding the definition, specification, development, control, operation, and support
of an interface.

• Interoperability “The ability of two or more systems or components to exchange informa-
tion and to use the information that has been exchanged.” (Source: IEEE 610.12-1990)

• Peer level Interactions SYSTEM OF INTEREST (SOI) interactions—namely MISSION
SYSTEM and SUPPORT SYSTEM—with external systems in the OPERATING ENVI-
RONMENT. For analytical purposes, we aggregate these systems into a single entity abstrac-
tion referred to as the PHYSICAL ENVIRONMENT SYSTEMS domain.

• Point-to-Point An interface configuration that characterizes the physical connectivity
between two points, typically accomplished via dedicated, direct line. For example, a light
switch connection to a room light.

Based on this introduction, let’s begin our discussion by exploring what an interface is.

12.2 WHAT IS AN INTERFACE?

System engineering efforts often focus on:

1. The composition of the system architecture.

2. How those elements interact with each other and their OPERATING ENVIRONMENT.

You can develop the most innovative devices, computers, and algorithms. Yet, if those innovations
are unable to reliably interact and interoperate with their OPERATING ENVIRONMENT when
required, they may be of limited or no value to the entity or SYSTEM.
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Interfaces occur between combinations of two or more system elements—such as EQUIP-
MENT, PERSONNEL, and FACILITIES—or between entities within system element levels of
abstractions. However, what is the purpose of an interface?

Interface Purposes

The purpose of an interface is to associate or physically connect a SYSTEM, PRODUCT, 
SUBSYSTEM, ASSEMBLY, SUBASSEMBLY, or PART level component to other components
within its OPERATING ENVIRONMENT. A component may associate or connect to several
components; however, each linkage represents a single interface. If a component has multiple 
interfaces, the performance of that interface may have an influence or impact on the others.

The purpose stated above is a very broad description of WHY an interface exists. The ques-
tion is: HOW does an interface accomplish this? An interface has at least one or more objectives,
depending on the component’s application. Typical interface objectives include the following:

Objective 1: Physically link or bind two or more system elements or entities.

Objective 2: Adapt one or more incompatible system elements or entities.

Objective 3: Buffer the effects of incompatible system elements.

Objective 4: Leverage human capabilities.

Objective 5: Restrain system element or its usage.

Let’s explore each of the objectives further.

Objective 1: Physically Link or Bind Two or 
More System Elements or Entities

Some systems link or bind two or more compatible system elements or element components to
anchor, extend, support, or connect the adjoining interface.

EXAMPLE 12.1

A communications tower has cables at critical attach points to anchor the tower to the ground for stability.

Objective 2: Adapt One or More Incompatible System
Elements or Entities

Some system elements—such as EQUIPMENT and PERSONNEL—or entities may not have com-
patible or interoperable interfaces. However, they can be adapted to become compatible. Figure
12.1 illustrates how NASA developed an adapter for the Apollo-Soyuz Program. Software appli-
cations that employ reusable models may create a “wrapper” around the model to enable the model
to communicate with an external application, and vice versa.

Objective 3: Buffer the Effects of Incompatible 
System Elements

Some systems such as automobiles are generally not intended to interact with each other. Where
the unintended interactions occur, the effects of the interaction must be minimized in the interest
of the safety and health of the Users. Consider the following two cases:

Case 1: An automobile’s impact on another can be lessened with a shock absorber bumper and
body crumple zones.
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Case 2: System A is required to transmit data to System B. Because of the limited speed of the
interfacing components, System A includes a buffer area for storing data for communi-
cation to free up the processor to perform other tasks. On the other side of the interface,
System B may be unable to process all of the incoming data immediately. To avoid this
scenario, a buffer area is created to store the incoming data until the processor can
process the data.

For this objective, SEs analyze the interface and take reasonable measures to create a “bound-
ary layer” or buffer between system elements or entities. Thus each is buffered to minimize the
effects of the impact to the system or environment and, if applicable, safety to the operators or the
public.

Objective 4: Leverage Human Capabilities

Humans employ interface capabilities to leverage our own skills and capabilities. Early humans
recognized that various tools—namely simple machines—could serve as interface devices to
expand or leverage our own physical capabilities in accomplishing difficult tasks.

Objective 5: Restrain SYSTEM Element or Its Usage

Some interfaces serve as restraints to ensure a level of safety for system elements. Consider the
following example:

Figure 12.1 NASA Apollo-Soyuz Spacecraft Docking System

Source: NASA History Office Web Site—www.hq.nasa.gov/office/pao/History/diagrams/astp/pk69.htm



EXAMPLE 12.2

A safety chain is added to a trailer hitch used by an automobile to tow a trailer. A lock is added to a power
distribution box to prevent opening by unauthorized individuals.

Each of these objectives illustrates HOW an interface is implemented to achieve a purposeful action.
Depending on a systems application, other objectives may be required.

Interoperability—The Ultimate Interface Challenge

The ultimate success of any interface resides in its capability to interact with friendly and hostile
systems in its intended OPERATING ENVIRONMENT as envisioned by the User, specified by the
Acquirer, and designed by the System Developer. We refer to this as interoperability.

12.3 INTERFACE TYPES

Interfaces exhibit three types of operation: active, passive, or active/passive.

Active Interfaces

Active interfaces interact with external systems or components in a friendly, benign, or coopera-
tive manner. Consider the following example:

EXAMPLE 12.3

Radio stations, as active “on the air” systems, radiate signals at a designated frequency via patterns to spe-
cific areas for coverage.

Passive Interfaces

Passive interface interactions with external components simply receive or accept data without
responding. Consider the following example:

EXAMPLE 12.4

A car radio, when powered ON and viewed by a radio station system, PASSIVELY receives signals over a
tuned frequency. The radio processes the information and provides an ACTIVE audio interface for the occu-
pants in the car.

Combination Active/Passive Interfaces

Active/passive interfaces perform under the control of transmitters or receivers. Consider the fol-
lowing example:

EXAMPLE 12.5

A two-way walkie-talkie radio has an ACTIVE interface when the User presses the “Push to Talk” button to
broadcast audio information to others listening on the same frequency within a specified transmission range
and conditions. When the “Push to Talk” button is OFF, the device has a PASSIVE interface that monitors
incoming radio signals for processing and audio amplification as controlled by the User.
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12.4 UNDERSTANDING LOGICAL AND 
PHYSICAL INTERFACES

One of the recurring themes of this book is the need to decompose complexity into one or more
manageable levels. We do this by first identifying logical/functional interfaces that ask several 
questions:

1. WHO interacts with WHOM?

2. WHAT is transferred and translated?

3. WHEN does the transference or translation occur?

4. Under WHAT conditions?

Then, we translate the logical/functional connectivity into a physical interface that represents HOW
and WHERE the interface will be implemented.

Analytically, system interfaces provide the mechanism for point-to-point connectivity. We
characterize interface connectivity at two levels: 1) logical and 2) physical.

• Logical interfaces Represent a direct or indirect association or relationship between two
entities. Logical interfaces establish:

1. WHO—Point A—communicates with WHOM—Point B.
2. Under WHAT scenarios and conditions the communications occur.
3. WHEN the communications occur.
Logical interfaces are referred to as “generalized” interfaces.

• Physical interfaces Represent physical interactions between two interfacing entities. Phys-
ical interfaces express HOW devices or components (boxes, wires, etc.) will be configured
to enable Point A to communicate with Point B. Physical interfaces are referred to as “spe-
cialized” interfaces because of their dependency on specific mechanisms (electronics, optics,
etc.) to realize the interface.

Consider the following example:

EXAMPLE 12.6

The Internet provides a mechanism for a User with a device such as a computer equipped with the appropri-
ate hardware and software to communicate with an external Web site. In this context a logical interface or
association exists between the user and the Web site. When the User connects with the Web site, a physical
interface is established.

The preceding discussion highlighted two “levels” of connectivity. This is an important point, espe-
cially from a system design perspective involving humans. Engineers have a strong tendency to
jump to defining the physical interface BEFORE anyone has decided WHAT the interface is to
accomplish. Therefore, you must:

1. Identify which system elements or entities must associate or interact.

2. Understand WHY they “need to connect.”

3. Determine WHEN the associations or interactions occur.
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12.5 INTERFACE DEFINITION METHODOLOGY

The preceding discussions enable SEs to establish a basic methodology for identifying and char-
acterizing interfaces.

Step 1: Identify logical interfaces. When systems are designed, logical interfaces enable us to
acknowledge that an association or relationship exists. Therefore, the interface becomes
a logical means of expression that enables us to characterize WHAT the interface is
required to accomplish.

Step 2: Identify and define physical interfaces. The physical implementation of a logical or gen-
eralized interface requires selection from a range of candidate solutions subject to tech-
nical, technology, cost, schedule, and risk constraints. This being the case, SEs typically
conduct one or more trade studies to select the most appropriate implementation.

12.6 PHYSICAL INTERFACE TYPES

If we analyze how interfaces are implemented in the physical domain, our analysis will reveal that
interfaces occur in mechanical, electrical, optical, acoustical, natural environment, chemical, and
biological forms, and as combinations of these forms. For all these types of physical interfaces
there are specialized solutions. To further understand the specialized nature of these interface solu-
tions, let’s explore each one.

Mechanical Interfaces

Mechanical interfaces consist of boundaries that exist between two physical objects and include
characterizations such as function, form, and fit. Characterizations include:

1. Material Properties Composition.

2. Dimensional Properties Length, width, and depth; mass properties such as weight, density,
and shape.

3. Structural Integrity Properties Shock, vibration, etc.

4. Aerodynamic Properties Drag, fluid flow, etc.

Electrical Interfaces

Electrical interfaces consist of direct electrical or electronic connections as well as electromagnetic
transmission in free air space. Attributes and properties include voltages, current, resistance, induc-
tance, capacitance, grounding, shielding, attenuation, and transmission delays.

Optical Interfaces

Optical interfaces consist of the transmission and/or receipt of visible and invisible wavelengths of
light. Attributes and properties include intensity, frequency, special ranges, resolution, distortion,
contrast, reflection, refraction, filtering, modulation, attenuation, and polarization.

Acoustical Interfaces

Acoustical interfaces consist of the creation, transmission, and receipt of frequencies that may be
audible or inaudible to humans. Attributes and properties include volume, frequency, modulation,
and attenuation.



Natural Environment Interfaces

Natural environment interfaces consist of those elements that are natural occurrences of nature.
Attributes and properties include temperature, humidity, barometric pressure, altitude, wind, rain,
snow, and ice.

Chemical Interfaces

Chemical interfaces consist of interactions that occur when chemical substances are purposefully
introduced or mixed with other chemicals or other types of interfaces. Attributes and properties
include heat, cold, explosive, toxicity, and physical state changes.

Biological Interfaces

Biological interfaces consist of those interfaces between living organisms or other types of inter-
faces. Attributes and properties include touch, feel, smell, hearing, and sight.

12.7 STANDARDIZED VERSUS DEDICATED INTERFACES

Interfaces allow us to establish logical or physical relationships between system elements via a
common, compatible, and interoperable boundary. If you analyze the most common types of inter-
faces, you will discover two basic categories: 1) standard, modular interfaces and 2) unique, ded-
icated interfaces. Let’s define the context of each type.

• Standard, Modular Interfaces System developers typically agree to employ a modular, 
interchangeable interface approach that complies with a “standard” such as RS-232, 
Mil-Std-1553, Ethernet, and USB (Universal Serial Bus).

• Unique, Dedicated Interfaces Where standard interfaces may not be available or adequate
due to the uniqueness of the interface, SE designers may elect to create a unique, dedicated
interface design for the sole purpose limiting compatibility with other system elements or
entities. Examples include special form factors and encryption that make the interface unique.

12.8 ELECTRONIC DATA INTERFACES

When the User’s logical interfaces are identified in the SYSTEM or entity architecture, one of the
first decisions is to determine HOW the interface is to be implemented. Key questions include:

1. Does each interface require discrete inputs and outputs?

2. WHAT function does the interface perform (data entry/output, event driven interrupt, etc.)?

3. Are the data periodic (i.e., synchronous or asynchronous)?

4. WHAT is the quantity of data to be transmitted or received?

5. WHAT are the time constraints for transmitting or receiving the data?

Electronic data communications mechanisms employ analog or digital techniques to communicate
information.

Analog Data Communications

Analog mechanisms include amplitude modulated (AM) microphone and speaker based I/O devices
such as telephones and modems.
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Digital Data Communications

Digital mechanisms include synchronous and asynchronous bipolar signals that employ specific
transmission protocols to encapsulate encoded information content. Digital data communications
consists of three basic types of data formats: discrete, serial, or parallel.

Discrete Data Communications. Discrete data consist of dedicated, independent instances of
static ON or OFF data that enable a device such as a computer to monitor the state or status
condition(s) or initiate actions by remote devices. Digital discrete data represent electronic
representations for various conditions or states—such as ON/OFF, INITIATED, COMPLETE, and
OPEN/CLOSED.

Discrete data communications also include event driven interrupts. In these applications a
unique, dedicated signal line is connected to an external device that senses specific conditions.
When the condition is detected, the device toggles the discrete signal line to notify the receiving
device that a conditional event has occurred.

Parallel Data Communications. Some systems require high-speed communications between
electrical devices. Where this is the case, parallel data communications mechanisms may be
employed to improve SYSTEM performance by simultaneously transmitting synchronous data
simultaneously over discrete lines. Consider the following example:

EXAMPLE 12.7

An output device may configured to set any one or all 8 bits of discrete binary data to turn ON/OFF individ-
ual, external devices.

Parallel data communications mechanisms may increase hardware component counts, develop-
ment and unit costs, and risks. In these cases, performance must be traded off against cost and risk.
Parallel data communications may be synchronous—meaning periodic—or asynchronous, depend-
ing on the application.

Serial Data Communications. Some systems require the transmission of data to and from
external systems at rates that can be accomplished using serial data communications bandwidths.
Where applicable, serial data communication approaches minimize parts counts, thereby affecting
PC board layouts, weight, or complexity.

Serial data communications mechanisms may be synchronous—meaning periodic—or asyn-
chronous, depending on the application. Serial data communications typically conform to a number
of standards such as RS-232, RS-422 and Ethernet.

12.9 LIMITING ACCESS TO SYSTEM INTERFACES

Some interfaces require restricted access to only those devices accessible by authorized Users. In
general, these interfaces consist of those applications whereby the User pays a fee for access, data
security on a NEED TO KNOW basis, posting of configuration data for decision making, and so
on. How is this accomplished?

Limited access can be implemented via several mechanisms such as: 1) authorized log-on
accounts, 2) data encryption devices and methods, 3) floating access keys, 4) personal ID cards, 
5) personal ID scanners, and 6) levels of need to know access.
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• Authorized User Accounts Employed by Web sites or internal computer systems and require
a UserID and password. If the user forgets the password, some systems allow the user to
post a question related to the password that will serve as memory jogger. These accounts
also must make provisions to reset the password as a contingency provided the user can
authenticate themselves to the computers system via personal ID information.

• Data Encryption Methods and Techniques Employed to encrypt/decrypt data during trans-
mission to prevent unauthorized disclosure. These devices employ data “keys” to limit
access. Encryption applications range from desktop computer communications to highly
sophisticated banking and military implementations.

• Floating Access Key Software applications on a network that allow simultaneous usage by
a subset of the total number of personnel at any given point in time. Since organizations do
not want to pay for unused licenses, floating licenses are procured based on projected peak
demand. When a user logs onto the application, one of the license keys is locked until the
user logs out. Since some users tend to forget to log out and thereby locking other users from
using the key, systems may incorporate timeout features that automatically log out a user
and make the key accessible to others.

• Personal ID Cards Magnetically striped ID badges or credit cards assigned to personnel that
allow access to facilities via security guards or access to closed facilities via magnetic card
readers and passwords.

• Personal Authentication Scanners Systems enabling limited access by authenticating the
individual via optical scanners that scan the retina of an eye or thumbprint and match the
scanned image against previously stored images of the actual person.

• Levels of Need to Know Access Restricted access based on the individual’s need to know.
Where this is the case, additional authentication may be required. This may require com-
partmentalizing data into levels of access.

12.10 UNDERSTANDING INTERFACE PERFORMANCE 
AND INTEGRITY

Interfaces, as an entry point or portal into a system, are vulnerable to threats and failures, both
internally and externally. Depending on the extent of the physical interface interaction and result-
ing damage or failure, the interface capability or performance may be limited or terminated. Our
discussion here focuses on understanding interface design performance and integrity. Let’s begin
by first defining the context of an interface failure.

What Constitutes an Interface Failure?

There are differing contexts regarding WHAT constitutes an interface failure including degrees of
failure. An interface might be considered failed if it ceases to provide the required capability at a
specified level of performance when required as part of an overall system mission. Interface fail-
ures may or may not jeopardize a system mission.

Consequences of an Interface Failure

Interface failures can result in the LOSS of system control and/or data; physical damage to system
operators, equipment, property or the environment. As a result, system interfaces that may poten-
tially impact mission success, cause damage to the system, the public, or environment; as well as
loss of life should be thoroughly analyzed. This includes understanding HOW the internal or exter-
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nal interface may fail and its impact on other components. Let’s examine how interface failures
may occur.

Interface Failures

Interfaces fail in a number of ways. In general, physical interfaces can fail in at least four types of
scenarios: 1) disruption, 2) intrusion, 3) stress loading, and 4) physical destruction.

• Disruptions can be created by acts of nature, component reliability, poor quality work,
animals, lack of proper maintenance, and sabotage. Examples include: 1) failed components,
2) cable disconnects; 3) loss of power, 4) poor data transmission; 5) lack of security; 
6) mechanical wear, compression, tension, friction, shock, and vibration; 7) optical attenua-
tion and scattering; and 8) signal blocking.

• Intrusion examples include: 1) unauthorized electromagnetic environment effects (E3);
2) data capture through monitoring, tapping, or listening; and 3) injection of spurious signals.
Intrusion sources include electrical storms and espionage. Intrusion presentation solutions
include proper shielding, grounding, and encryption.

• Stress Loading includes the installation of devices that “load,” impede, or degrade the
quality or performance of an interface.

• Physical Attack includes physical threat contact by accident or purposeful action by an 
external entity on the system to inflict physical harm, damage, or destruction to a SYSTEM,
entity, or one of their capabilities.

Interface Vulnerabilities

Interface integrity can be compromised through inherent design defects, errors, flaws, or vulnera-
bilities. Interface integrity and vulnerability issues encompass electrical, mechanical, chemical,
optical, and environmental aspects of interface design. Today most awareness to interface vulner-
ability tends to focus on secure voice and data transmissions, and network firewalls. Vulnerability
solutions include secure voice and data encryption; special, shielded facilities; armor plating; com-
partmentalization of tanks; cable routing and physical proximity; and operational tactics.

Interface Latency

Interface latency is a critical issue for some systems, especially if one interfacing element requires
a response within a specified timeframe. As an SE, you will be expected to lead the effort that deter-
mines and specifies time constraints that must be placed on interface responses. If time constraints
are critical, what is the allowable time budget that ensures the overall system can meet its own time
constraints.

Interface Failure Mitigation and Prevention

When you design system interfaces, there are a number of approaches to mitigate the occurrence
of interface failures or results. In general, the set of solutions have a broad range of costs. SEs often
focus exclusively on the hardware and software aspects of the interface design. As a natural start-
ing point, hardware and software reliability, availability, and maintainability (RAM), in combina-
tion with failure modes and effects analysis (FMEA), should be investigated.

System operation involves all of the system elements: PERSONNEL, EQUIPMENT, and
SUPPORT. The point is that there may be combinations of system element actions or tactics that
allow you to optimize system performance while reducing system cost.
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EXAMPLE 12.9

Mirrors on vehicles provide a critical interface for the vehicle operator. The mirrors “bend” the operator’s line
of sight, thereby enabling the operator to maneuver the vehicle in close proximity to other vehicles or struc-
tures. Vehicles, such as trucks, with side mirrors that extend away from the cab are especially vulnerable to
being damaged or destroyed.

Hypothetically, one solution is to design outside mirrors with deflectors that protect the mirrors from
damage. However, since vehicles move forward and backward, deflectors on the front side of the mirror might
limit the operator’s line of sight. Additionally the cost to implement a design of this type would be expensive.
A low-cost solution is to simply train the operators on the importance of operational safety. Thus, we pre-
serve SYSTEM performance while minimizing EQUIPMENT costs.

12.11 SUMMARY

During our discussion of system interface practices we identified the key objectives of interfaces, identified
various types, and emphasized the importance of system interface integrity.

Our discussion of logical and physical entity relationships should enable you to describe how the system
elements interact at various levels of detail. The entity relationships, in turn, should enable you to assimilate
the relationships into an architectural framework. To facilitate the decision-making process, we established
the logical entity relationships or associations between the system elements via a logical architectural repre-
sentation. Once the logical architecture was established, we progressed the decision-making process to the
physical architecture representation or physical architecture.

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new system selection, apply your knowledge derived from this chapter’s topical
discussions. Identify the following:

(a) Types of interfaces.

(b) Specific interfaces and objectives.

(c) Examples of generalized and specialized solutions for each types of interface.
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Chapter 13

Organizational Roles, Missions, 
and System Applications

13.1 INTRODUCTION

System Owner and User organizational roles, missions, and objectives establish the driving need
for system and mission capabilities and performance requirements. Each role, mission, and objec-
tive serves as the benchmark frame of reference for scoping and bounding what is and is not rele-
vant as an organization’s mission space.

Understanding the problem, issue, or objective the User is attempting to solve, resolve, or
achieve is key to understanding WHY a system exists and WHAT purpose it serves within the
System Owner’s organization. HIGHER ORDER SYSTEMs, such as corporate enterprise man-
agement, shareholders, and the general public, have an expectation that short- and long-term ben-
efits (survival, profits, return on investment (ROI), etc.) are derived by establishing an organization
that fulfills marketplace needs.

Our discussion introduces the closed loop system of organizational entity relationships that
define requirements for a system in terms of the organization’s roles, missions, and objectives. The
description centers on technical accountability and discusses how system capability and perform-
ance requirements are derived to address the organization’s assigned OPERATING ENVIRON-
MENT problem and solution spaces.

Definitions of Key Terms

• Paradigm An in-grained mindset or model that filters or rejects considerations to adopt or
employ new innovations and ideas that may impact the status quo.

• Situational Assessment An objective evaluation of current strengths, weaknesses, oppor-
tunities, and threats (SWOTs) of a SYSTEM OF INTEREST (SOI) relative to operating con-
ditions and outcome-based objectives. Results of a situational assessment document the
prioritized mission operational needs for the organization.

• Strategic Plan An outcome-based, global or business domain document that expresses the
organizational vision, missions, and objectives of WHERE it wants to be at some point in
time and what it wants to accomplish in the long term, typically five years or more hence.
The challenge for most organizations is: WHAT business or line of business (LOB) are your
currently in versus WHAT do you WANT to be in five years from now versus WHAT LOB
you should be in?

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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• Tactical Plan A near-term, mission-specific plan that expresses how the organization’s lead-
ership plans to deploy, operate, and support existing assets—such as people, products,
processes, and tools—to achieve organizational objectives allocated from the strategic plan
within time frame and resource constraints, typically one year or less.

13.2 ORGANIZATIONAL MISSIONS WITHIN THE ENTERPRISE

While many people have the perception that organizations procure systems based on a whim or
simple need, we need to first understand why organizations acquire systems to support strategic
and tactical objectives. The operational need is deeply rooted in understanding the organization’s
vision and mission.

Organizationally we model the strategic and tactical planning process as illustrated in Figure
13.1. In general, the process consists of a Strategic Planning Loop (1) and a Tactical Planning Loop
(7). These two loops provide the basis for our discussion.

The Strategic Planning Loop (1)

The seed for long-term organizational growth and survival begins with an organizational vision.
Without a vision and results-oriented plan for action, the organization’s founders would be chal-
lenged to initially or continually attract and keep investors, investment capital, and the like.

The directional heading of most organizations begins with a domain analysis of the OPER-
ATING ENVIRONMENT consisting of targets of opportunity (TOOs) and threat environment. The
analysis task, which is scoped by the organizational vision, produces a Market and Threat Assess-
ment Report. The report, coupled with the long-term organizational vision of what is to be accom-
plished, provides the basis for developing the organization’s strategic plan.
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As the organization’s capstone planning document, the strategic plan defines where the organ-
ization expects to be five years or more from now. The plan identifies a set of long-term objectives,
each of which should be realistic, measurable, and achievable. As with any system, strategic plan-
ning objectives are characterized by performance-based metrics that serve as benchmarks for assess-
ing planned versus actual progress.

Author’s Note 13.1 It is important to underscore the global nature of the strategic plan. The
approved document forms the frame of reference for initiating tactical plans that focus on organi-
zational LOB specific missions and objectives for their systems, products, or services.

The Tactical Planning Loop (7)

Once the strategic plan is established, the key question is: HOW do we get from WHERE we are
NOW to five years from now? The answer resides in creating and maintaining incremental, short-
range tactical plans that elaborate near-term (e.g., one year) objectives and actions required to
achieve strategic planning objectives.

Executive management decomposes strategic objectives into tactical objectives and assigns
the objectives to various organizational elements. Performance-based metrics or measures of per-
formance (MOPs) benchmark the required performance of each tactical objective. The MOPs serve
as benchmarks for assessing planned versus actual progress in achieving the objectives.

Tactical Plans (8)

In response to the tactical objectives, each organizational element develops a tactical plan that
describes HOW the each organization’s leadership plans to achieve the objectives relative to the
MOP benchmarked. In terms of HOW, the tactical plan describes the ways the Organizational
System Elements (OSEs)—such as PERSONNEL, FACILITES, EQUIPMENT, PROCEDURAL
DATA, and MISSION RESOURCES—will be deployed, operated, and supported. Thus, each OSE
requires a specified level of capabilities and performance to support accomplishment of the tacti-
cal objectives. To illustrate an aspect of a tactical plan, consider the following example:

EXAMPLE 13.1

Assume an organization requires a fleet of 10 delivery vehicles with an operational availability of 0.95 and
you only have 6 vehicles, the tactical plan describes HOW the organization plans to:

1. Acquire at least four additional vehicles.

2. Operate the vehicles to achieve organizational objectives.

3. Maintain the vehicles to achieve an operational availability of 0.95.

System Element Resources (9)

System element resources in inventory and their current conditions represent the existing system/
product capabilities. Assuming the organization has a realistically achievable strategic plan and
supporting tactical plans, these documents and supporting organizational system elements have a
shelf life. Competitive or hostile threats, as well as opportunities, evolve over time. As a result, two
types of situations occur:

1. Threat capabilities begin to exceed your organization’s system element capabilities.

2. As new opportunities arise, each system element asset requires a projected level of per-
formance to defend against threats or capitalize on the opportunities.
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Given that the organizational system elements have a shelf life, your organization may find itself
with gaps between WHAT you currently have and WHAT you operationally NEED to survive orga-
nizational threats or capitalize on opportunities.

As the tactical plans for achieving specific missions mature and are approved, system
elements—namely PERSONNEL, FACILITIES, DATA, and EQUIPMENT—are fully funded to
achieve the mission objectives. The updates may include:

1. Deployment of a new system, product, or service.

2. Upgrades, enhancements, and refinements to existing systems, products, or services.

3. Updates to organizational doctrine and command media revisions.

4. Personnel training and skills enhancement.

5. Revisions to operational tactics.

Depending on the level of urgency for these capabilities, a tactical plan may require several days,
weeks, months, or a year to implement and bring the organizational capabilities up to required level
of performance. Consider the following example:

EXAMPLE 13.2

An organization fields a system or product with an Initial Operational Capability (IOC) and incrementally
upgrading via “builds” until a Full Operational Capability (FOC) is achieved.

Additionally, until the required capabilities are firmly established, interim operational tactics may be
employed to project a perception to adversarial or competitive threats to a capability that may only exist in
virtual space. History is filled with examples of decoy systems or products that influence competitor, adver-
sary, or customer perceptions of reality until the actual system, product, or service capability is fielded.

Guidepost 13.1 At this point, recognize that the organization was established to capitalize on
targets of opportunity (TOOs) in the marketplace. As the organization delivers or employs those
products or services in the OPERATING ENVIRONMENT, the organization must continually assess
a system’s operational utility, suitability, availability and effectiveness via mission gap analysis.
The analysis collects and analyses data from User interviews, observations, lessons learned, trouble
reports (TRs), and deficiencies, for example—comprising the mission capability gaps. The bottom
line is:

1. Here’s WHAT we set out to accomplish with our products and services.

2. Here’s HOW they performed in the marketplace.

3. Here’s WHAT our customers told us about their PERCEPTIONS and level of 
SATISFACTION.

4. Here’s the SCORECARD on performance results.

Existing System/Product Capabilities (10)

Effective mission gap analysis requires a realistic, introspective assessment of the existing
system/product capabilities. Organizations, by nature and “spin control” media relations, project a
positive image outside the organization, thereby creating a “perception” that the organization may
appear to be much stronger than the existing capabilities indicate. Depending on the context, serious
business ethics may be at issue with specific consequences.

For internal assessment purposes, the path to survival demands objective, unbiased, realistic
assessments of system, product, or service capabilities. Otherwise, the organization places itself
and its missions at risk by believing their own rhetoric. This paradigm includes a concept referred
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to as group think, whereby the organization members synergize their thought processes to a level
of belief that defies fact-based reality.

User Moments of Truth (11)

Real world field data based on User moments of truth represent a level of risk that does have an
impact on the organization, physical assets, or human life. The physical interactions may be 
aggressive, defensive, or benign encounters as part of the normal course of day-to-day business
operations.

Field engineers, User interviews and feedback, or broader-based User community surveys serve
as key collection points for moments of truth data. The interviews accumulate User experiences,
lessons learned, and best practices based on direct physical interactions with the TOOs or threat
environment.

Author’s Note 13.2 A common challenge many organizations face is having decision makers
who emphatically insist that they “know best” what the User wants. Although this may be true in
a few instances, objective evidence should reasonably substantiate the claim. Otherwise, the claim
may be nothing more than pompous chest beating, unsubstantiated observation, or assertion. Com-
petent professionals recognize this trap and avoid its pitfalls.

Mission Gap Analysis (12)

Mission gap analysis focuses more in-depth on a strengths, weaknesses, threats, and opportunities
(SWOT) or gap analysis between the organization’s existing system, product, or service capabili-
ties, operational state of readiness and targets of opportunity (TOOs) or threats. The analysis
includes conducting what if scenarios; assessment of operational strengths, definition of measures
of effectiveness (MOEs) and measures of suitability (MOSs); and leveraged capabilities. Based on
the mission gap analysis results, prioritized operational needs are documented and serve as inputs
into tactical plans.

Referral For more information about MOEs and MOSs, refer to Chapter 34 on Operational
Utility, Suitability, and Effectiveness Practices in Part II.

It is important to note here that the gap analysis may have two types of information:

1. The paper analysis comparison.

2. Real world field data based on actual physical interactions between the existing system or
product and the TOOs or threat environment.

The paper analysis is simply an abstract analysis and comparison exercise based on documented
evidence such as “brochureware” in trade journals, customer feedback, surveys, intelligence, and
problem reports. The analysis may be supported by various validated models and simulations that
can project the virtual effects of interactions between the existing system, product, or service capa-
bilities and TOOs or threats. Though potentially lacking in physical substance and validation, the
paper analysis approach should convey a level of risk that may have an impact on the organiza-
tion, physical assets, human life, property, or the environment.

Prioritized Operational Needs (13)

The results of the mission gap analysis are documented as prioritized operational needs. Docu-
mentation mechanisms include Mission Needs Statements (MNS), Statement of Objectives (SOOs),
Operational Requirements Documents (ORDs), and Operational Concept Descriptions (OCDs).
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Obviously the nature of these documents focuses on technical capability requirements rather than
resources to implement the capabilities. Various criteria and labels are assigned to indicate the PRI-
ORITY level (numerical, phrases, etc.) such as absolutely mandatory, desired, and nice-to-have.

Guidepost 13.2 The preceding discussion provides the backdrop as to HOW organizations iden-
tify marketplace system, product, and service needs. Let’s shift our focus to understanding the tech-
nical aspect of HOW organizations employ organizational roles and missions to identify system
capability requirements.

13.3 THE SYSTEM AND MISSION CAPABILITIES FOUNDATION

Before a system is acquired or developed, SEs analyze the OPERATING ENVIRONMENT and
opportunity/problem space to support system acquisition or development decision making. The
results of these analyses ultimately bound the solution space(s) within which the MISSION
SYSTEM is intended to operate. In performing this role, SEs support business development organ-
izations attempting to bound the operating environment and define the types of missions the system
must be capable of conducting.

System Objectives

Every system, product, or service is characterized by a set of operational need-based objectives that
drive the system’s missions and applications. Consider the following example:

EXAMPLE 13.3

An automobile manufacturer may conduct marketing analysis and identify an operational need(s) for a family
vehicle that can comfortably provide general transportation for up to four adults. Further analysis reveals that
families searching for this type of vehicle are sports oriented and need to carry bicycles, kayaks, or storage
containers over rough roads in mountainous territory in all weather conditions. Thus, a general system objec-
tive is established for a class of vehicle.

Mission Objectives

Most families, however, do not have the luxury of performing sports all week and have other family-
based missions (shopping, school carpools, etc.). Therefore, the vehicle’s system objectives must
be capable of supporting multiple mission objectives that are User-oriented and support all system
stakeholders.

How do system and mission objectives relate to a system’s purpose? Consider the following
example.

EXAMPLE 13.4

A retail store may target a specific market niche based on demographics, products and services, and market
environment—coupled with financial performance to form organizational objectives. Accomplishment of the
organizational objectives requires supporting system elements of the business—such as PERSONNEL EQUIP-
MENT, and FACILITIES—on specific mission objectives—such as increasing customer awareness, boosting
sales, improving profitability, and introducing new merchandise.

This leads to two key questions:
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1. WHAT is the importance of delineating organizational mission and system objectives?

2. WHY do we do it?

The reason is the System Owner and/or the User has organization roles and missions to fulfill. Roles
and missions are accomplished by the integrated set of organizational systems or assets such the
PERSONNEL, EQUIPMENT, and PROCEDURAL DATA elements.

Each of these systems or assets provides system capabilities that fulfill a bounded solution
space subject to affordability and other constraints. System capabilities, which vary by phase of
operation, are identified, analyzed, and translated into system or item specification requirements.

Organizational Efficiency and Accountability

All multi-level elements of a system must be traceable back to system objectives that define the
system’s purpose or reason for its existence. The typical profit-centric business view is that each
capability must:

1. Enable to organization to achieve both strategic and/or tactical planning objectives.

2. Efficiently and effectively provide streamlined, value-added benefits—such as return on
investment (ROI)—to the organization.

Therefore, from an SE perspective, there must be some form of system accountability.
System accountability means that all system capabilities, requirements, and “end game”

performance must be:

1. Assigned to organizational owners—Users, Acquirer, System Developer personnel, Sub-
contractors, etc.—or organizational accountability.

2. Traceable back to higher level system objectives that identify and bound the opportunity
space or solution space—or technical accountability.

Organizations establish technical accountability by a “linking” process referred to as requirements
TRACEABILITY. To better understand the requirements traceability process, let’s examine the key
entities of technical accountability.

13.4 KEY ENTITIES OF TECHNICAL ACCOUNTABILITY

The key entities of technical accountability include organizational objectives, system objectives,
and mission objectives. To see how these topics interrelate from a technical accountability per-
spective, refer to Figure 13.2.

Operating Environment (1)

The organization characterizes its OPERATING ENVIRONMENT in terms of problem/
opportunity spaces as illustrated in Figure 13.2. From an organizational perspective, each
problem/opportunity space includes a number of validated operational needs that can be partitioned
into solution spaces. Depending on the type of organization—whether military or business—the
operational need may be driven by the marketplace or by threats. In either case, targets of oppor-
tunity (TOO) may emerge.

You may ask, how does an organization respond to its OPERATING ENVIRONMENT? Cor-
porate management assigns responsibilities to most organizations to provide systems, products, and
services to customers. To fulfill the corporate charter, each organization performs various roles and
conducts MISSIONS to achieve goals, be they financial, or otherwise.
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At the highest level, the organization assesses the OPERATING ENVIRONMENT for threats
and targets of opportunity (TOOs), whichever is applicable. Results of the assessment and derived
strategy are documented in the organization’s strategic plan and implemented via a series of
mission-oriented tactical plans.

In performing this corporate mission, each organization must use existing resources to procure,
implement, and upgrade a MISSION SYSTEM (17) that can perform the missions and achieve the
objectives. This, in turn, requires specifying system “solutions” that can achieve specific mission
objectives.

To satisfy the solution space(s), System Owner/User Operations (5) and Mission Requirements
(10) are identified.

Mission Requirements (10)

Fulfillment of a solution space may require several types of missions to satisfy, correct, or fill the
void. Each type of mission is documented by a strategic plan and supporting tactical plans. These
plans identify, define, and document specific mission requirements.

Author’s Note 13.3 In the interest of space and simplicity, we have arbitrarily abstracted the
MISSION REQUIREMENT elements as shown. Entities such as resources should also be consid-
ered. The six entities presented are intended to illustrate the technical “thought process.”

Based on an understanding of the mission requirements, let’s shift to understand HOW a MISSION
SYSTEM (17) operates to conduct its missions.

Mission System (17)

When tasked by HIGHER ORDER SYSTEMS—namely by System Owners/Users—each
MISSION SYSTEM (17) must be physically configured to meet the specific mission requirements.
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These requirements include mission objectives, mission outcomes, and Mission Event Timelines—
as part of the organizational roles and missions. Additionally, the MISSION SYSTEM (17) is
selected as the “system of choice” and is linked to the Mission Requirements (10). For example,
Phases of Operation (19) and Modes of Operation (20), Mission Outcome(s) (12), and Mission
Event Timelines (14) must be linked.

Guidepost 13.3 At this point we have established the mission requirements and identified the
MISSION SYSTEM (17). The final part of our discussion focuses on the System Requirements (24)
of the selected MISSION SYSTEM.

System Requirements (24)

MISSION SYSTEM objectives are achieved by procuring and implementing MISSION SYSTEMS
(17) designed specifically for satisfy Mission Requirements (10). In general, systems are procured
to handle a diversity of missions ranging from highly specialized to very general. The mechanism
for documenting the total set of mission requirements is the system specification or System Per-
formance Specification (SPS).

Author’s Note 13.4 Under System Requirements (24), there should also be entity relationships
for nonfunctional requirements. Because of space limitations, Figure 13.2 only depicts the func-
tional requirements.

As Figure 13.2 shows, System Requirements (24) specify and bound System Capabilities (25),
which consist of System Functions (26). Each system function is bounded by at least one or more
Measures of Performance (MOPs) (27). Technical Performance Parameters (TPPs) (28), which
represent areas of performance that are critical to the mission and system, are selected for special
tracking from the set of Measures of Performance (MOPs).

Referral For more information about traceability of system capabilities, please refer to Chapter
System Operational Capability Derivation and Allocation.

13.5 UNDERSTANDING ORGANIZATIONAL 
ROLES AND MISSIONS

MISSION SYSTEM and SUPPORT SYSTEM roles are determined by their role-based contexts
within the System of Systems (SoS). Human-made systems consist of integrated supply chains of
systems in which an organization produces systems, products, and services to support another
“downstream” system. Two key points:

• In the system-centric context, a MISSION SYSTEM performs specific objectives defined by
contract, tasking, or personal motivation.

• In the supply chain context, the same system serves as a SUPPORT SYSTEM to another via
the delivery of systems, products, or services.

As a result, every system in the SoS supply chain serves in two contextual roles as:

1. MISSION SYSTEM

2. SUPPORT SYSTEM



If we investigate the MISSION SYSTEM and the SUPPORT SYSTEM roles and their interactions
with the SOI’s OPERATING ENVIRONMENT, every system performs a function, by definition,
and produces value-added products, by-products, and services that are used by other systems. In
effect we can establish a customer–supplier relationship boundary between the system and exter-
nal systems within its OPERATING ENVIRONMENT.

We can describe the SOI’s value-added processing graphically as shown in Figure 13.3. System
1 performs value-added processing to transform MISSION RESOURCES inputs—namely data and
raw materials—into SYSTEM RESPONSES outputs—namely behavior, products, by-products, and
services. The success of MISSION SYSTEM operations is subject to HIGHER ORDER Systems:

• Operating Constraints—Command-and-control mission tasking, policies and procedures,
contracts, etc.

• Organizational Resources Constraints—Processes and methods, facilities, training, tools,
personnel, etc.

“Fitness-for-Use” Criteria

Customers or Acquirers of systems, by virtue of validated operational needs, have minimum require-
ment thresholds and expectations that must be met to ensure the products, by-products, and serv-
ices they acquire are acceptable for use by their technical capability, quality, and safety and are not
detrimental to the environment and human health. Analytically, we refer to these expectations and
requirements as fitness-for-use criteria. Contractually, fitness-for-use criteria establish a basis for:

1. Acquirer (role) specification of system/entity requirements

2. Acceptance of contract deliverables.
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System Interfaces and PRODUCER–SUPPLIER Relationships

The construct depicted in Figure 13.3 represents linkages within an overall chain of SUPPLIER
(role) to CUSTOMER (role) exchanges. We refer to the “linkages” as supplier–customer role 
relationships.

If we analyze each system within the supplier–customer chain, we discover that every system
has a mission and objectives to achieve. The missions and objectives focus on products, by-
products, and services provided by a SYSTEM OF INTEREST (SOI) to satisfy customer 
operational needs and provide a return on investment (ROI) to the supplier’s organizational stake-
holders. Therefore, a system fulfills two roles:

1. A Mission Role Produce value-added products, by-products, and services.

2. A Support Role Deliver those products, by-products, and services to other systems.

Each system in the supplier–customer chain performs MISSION SYSTEM and SUPPORT
SYSTEM roles relative the predecessor and successor interface systems.

As illustrated by the figure, System 1 performs a MISSION SYSTEM role as a producer of
value-added products, by-products, and services to meet consumer marketplace or contract require-
ments. The marketplace or contract establishes fitness-for-use standards and acceptance criteria
for use by System 2. As a supplier of products, by-products, and services, System 1 performs a
SUPPORT SYSTEM role to System 2.

To illustrate HOW organizational elements perform in their MISSION SYSTEM and
SUPPORT SYSTEM roles, let’s explore the role-based interaction between a system development
program and the accounting department.

EXAMPLE 13.5

A system development program, as a MISSION SYSTEM, designs and develops a product and provides serv-
ices to fulfill the requirements of a contract. The program organization, functioning in a SUPPORT SYSTEM
role to the accounting organization, provides weekly labor charges—namely mission support data.

The accounting organization, functioning in its MISSION SYSTEM role, is tasked to collect, analyze,
and report financial data via accounting reports (products) and services. The accounting organization, func-
tioning in its SUPPORT SYSTEM role, provides timely mission support data and services to system devel-
opment programs to assess earned value against plans that enable them to make corrective actions, if necessary,
to meet their contract performance obligations.

EXAMPLE 13.6

During NASA Space Shuttle missions, organizations such as the Kennedy Space Center (KSC) in Florida,
Mission Control at the Johnson Space Center (JSC) in Houston, the Marshall Space Flight Center (MSFC) in
Huntsville, Alabama, other NASA centers, and Vandenburg Air Force Base (VAFB) in California perform
SUPPORT SYSTEM roles that include pre-mission, mission, and/or postmission operations support.

Let’s delineate the context of the MISSION SYSTEM and SUPPORT SYSTEM roles further.

• While in its MISSION SYSTEM role, a SOI conducts assigned missions to accomplish
mission objectives.

• While performing its MISSION SYSTEM role, a SOI serves as a SUPPORT SYSTEM to
the HIGHER ORDER SYSTEM that assigned the task (vertical entity relationships). In so
doing, the SOI may support other peer level systems in their respective MISSION SYSTEM
roles (horizontal entity relationships).



Organizational Roles and System Application Rules

Based on the preceding discussion, we can establish several organizational roles and system appli-
cation development rules. Table 13.1 provides a summary of these rules.

13.6 GUIDING PRINCIPLES

In summary, the preceding discussions provide the basis with which to establish the guiding prin-
ciples that govern organizational roles, missions, and system applications concepts.

Principle 13.1 Every system performs two contextual roles: a MISSION SYSTEM role and a
SUPPORT SYSTEM role.
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Table 13.1 Organizational roles and system application rules

Rule Title Role-Based System Rules

13.1 Organizational Establish your organization’s vision, mission, and objectives in a 
vision, mission, and strategic plan.
objectives

13.2 Tactical planning Based on your organization’s strategic plan’s vision, mission and 
objectives, establish mission driven tactical plans.

13.3 Capability gap Conduct a gap analysis of organizational and system strengths,
analysis weaknesses, opportunities, and threats (SWOTs) capabilities required to

achieve the strategic and tactical plans.

13.4 Targets of Based on your organizational vision, conduct a gap analysis of the
opportunity and global marketplace’s targets of opportunity (TOOs) and threat 
threat environments.
environments

13.3 Strategic planning Establish an organizational strategic plan that defines the vision for 
where the organization intends to be in 5 years or longer.

13.4 Producer and Every system performs two types of supply chain roles:
supplier roles 1. As a MISSION SYSTEM, the system is a producer of products,

by-products, or services based on marketplace needs or contract
requirements.

2. As a SUPPORT SYSTEM, the system is a supplier of products,
by-products, or services to satisfy Acquirer system needs.

13.5 Value-added In its MISSION SYSTEM role, every system:
producer-supplier 1. Consumes MISSION RESOURCES inputs—namely expendables and

consumables such as raw or processed materials and data.
2. Transforms, converts, or processes mission resources inputs to add

value.
3. Supplies value-added products, by-products, and services that are

used by other systems.

13.6 Acquirer fitness for Each instance of system products, by-products, and services supplied to
use criteria an Acquirer must meet pre-defined and agreed to fitness for use standards

and performance criteria.
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Principle 13.2 As MISSION SYSTEM, a system performs task-based missions to achieve spe-
cific outcomes.

Principle 13.3 As a SUPPORT SYSTEM, a system delivers products, by-products, or services
that serve as the MISSION RESOURCES element to another system’s MISSION SYSTEM role.

Principle 13.4 A system lacking purpose and missions reflects organizational neglect, product
obsolescence, or both.

Principle 13.5 For a supply chain to be successful, every system input and output must meet
pre-defined sets of fitness for use performance criteria established with Users.

13.7 SUMMARY

During our discussion of organizational roles and system applications, we employed entity relationships to
illustrate how the OPERATING ENVIRONMENT’s opportunity and solution spaces are linked to mission
requirements, User operations, mission systems, and subsequently system requirements.

We addressed the highly iterative strategic planning loop and tactical planning loop. Each of these loops
provide situational assessments of existing organizational systems, products, and services relative to TOOs
and threats in the operating domain and the organization’s strategic and tactical plans. When the level or
urgency triggers the need to procure a new system, product, capability, or service, work products (ONS, SOOs,
ORD, etc.) are generated to serve as inputs to the system procurement phase.

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new system selection, apply your knowledge derived from this chapter’s topical
discussions. Specifically, use Figure 13.2 as a topical framework to create a presentation for the selected
system or product. Describe how its capabilities support the organizational mission.

ORGANIZATIONAL CENTRIC EXERCISES

1. Depending on the nature of your business, use Figure 13.2 as a framework to describe your organization’s
or User’s organizational roles, missions, and system requirements.

ADDITIONAL READING
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Chapter 14

Understanding the System’s
Problem, Opportunity, 
and Solution Spaces

14.1 INTRODUCTION

The concept of identifying and bounding the problem space and the solution space is one that you
occasionally hear in buzzword vocabularies. Sounds great! Impresses bystanders! However, if you
ask the same people to differentiate the problem space from the solution space(s), you either get a
blank stare or a lot of animated arm-waving rhetoric.

Most successful missions begin with a thorough identification and understanding of the
problem, opportunity, and the solution space(s). One system’s problem space may be an opportu-
nity space for another that desires to capitalize on the weakness.

This chapter introduces the concept of the problem/opportunity space and its solution space(s).
Once you understand the organization’s roles and mission, the first step is to understand WHAT
problem the User is trying to solve. People can become experts in analyzing system requirements;
however, system analysis, design, and development success begins with understanding the User’s
problem/opportunity and solution spaces. A worst-case scenario is writing perfectly worded
requirements for the wrong problem.

Our discussions begin with an overview of the problem space and formulation of the problem
statement. The discussion continues with an overview of the solution space and its relationship to
all or a portion of the problem space. We contrast common misperceptions of the solution space
using a geographical context. Although the solution space is capability based, we illustrate through
examples how a lesser capability can leverage the capabilities of other systems to greatly project
or expand, as a force multiplier, its sphere of influence.

What You Should Learn from This Chapter

1. What is a problem space?

2. What is an opportunity space?

3. What is the relationship between a problem space and an opportunity space?

4. What is a solution space?

5. What is the relationship between the problem/opportunity space and a solution space?

6. How do you write a problem statement?

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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7. Identify three rules for writing problem statements.

8. How do you forecast the problem/opportunity spaces?

9. How does an organization resolve gaps between a problem space and its solution space(s)?

Definitions of Key Terms

• Opportunity Space A gap or vulnerability in a system, product, or service capability that
represents an opportunity for: 1) a competitor or adversary to exploit or 2) supplier to offer
solutions.

• Problem Space An abstraction within a system’s OPERATING ENVIRONMENT or
mission space that represents an actual, perceived, or evolving gap, hazard, or threat to an
existing capability. The potential threat is perceived either to pose some level of financial,
security, safety, health, or emotional, risk to the User or to have already had an adverse impact
on the organization and its success. One or more lower level solution space systems, prod-
ucts, or services resolve the problem space.

• Problem Statement A brief, concise statement of fact that clearly describes an undesirable
state or condition without identifying the source or actions required to solve the problem.

• Situational Assessment Refer to the definition in Chapter 13 on Organizational Roles, Mis-
sions, and System Application.

• Solution Space A bounded abstraction that represents a capability and level of performance
that, when implemented, is intended to satisfy all or a portion of a higher level problem
space.

14.2 UNDERSTANDING OPERATING 
ENVIRONMENT OPPORTUNITIES

HUMAN-MADE SYSTEMS, from an organizational viewpoint, exploit opportunities and respond
to threats. Organizations assign missions and performance objectives—financial, market share, and
medical—that support the founder’s or system owner’s vision of capitalizing on opportunities or
neutralizing threats.

Survivalist opportunity and threat motives are common throughout the OPERATING ENVI-
RONMENT. Depending on one’s perspective, some refer to this as the “natural ordering of systems.”
The animal kingdom that exists on the plains of Africa is an illustrative example. One animal’s
prey—or opportunity—may be viewed by the prey as a threat. Consider the following example:

EXAMPLE 14.1

An aggressor organization views a fledgling business as an opportunity to exploit or capitalize on the fledg-
ling’s weaknesses. In turn, the larger organization may be viewed by the fledgling business as the threat to its
survival.

Types of System Opportunities

Opportunities generally are of two basic types:

1. Time-based. Waiting for the right time.

2. Location-based. Waiting for a lease to expire.

Let’s explore both of these further.
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Time-Based Opportunities. Time-based opportunities can occur randomly or predictably.
Random opportunities are sometimes viewed as “luck.” Predictable opportunities are dependent
on periodic or repeatable behavioral patterns (i.e., knowledge applied to practice) that enable an
aggressor system to capitalize on a situational weakness.

Location-Based Opportunities. Location-based opportunities, as the name implies, relate to
being in the right place at the right time. In the business world success is often said to be driven
by “Location! Location! Location!” Obviously, a good location alone does not make a business
successful. However, the location positions the business for mission success.

14.3 UNDERSTANDING THE PROBLEM SPACE

One of the first steps in SE is to understand WHAT problem the User is attempting to solve. The
term problem space is relativistic. Consider competition in the commercial marketplace or military
adversaries. An organization may view a competitor or adversary and their operating domain as a
problem space. Hypothetically, if you were to ask the competitor or adversary if they were a
“problem,” to the other organization, they may state unequivocally “yes!” or emphatically “no!”
Therefore, the context of a problem space resides in the eyes and minds of those who perceive the
situation. Sometimes there is little doubt as evidenced by acts of aggression or hostility such as
invasion of a country’s air space or hostile business takeovers.

The term problem has two contexts: 1) a User-Acquirer’s perspective and 2) a System Devel-
oper perspective. A problem space for the User-Acquirer represents an opportunity—solution space
for the System Developer. In turn a System Developer’s problem space of finding a design solu-
tion becomes an opportunity space for subcontractors, vendors, and consultants to offer solutions.

OPPORTUNITY Versus PROBLEM Semantics

Technically a problem does not exist until the hazard that poses a potential risk occurs. Then you
actually have a problem! The infamous “OK, Houston, we have a problem . . .” communicated by
Apollo 13 Commander Jim Lovell is one of the best illustrations of the context used here.

In a highly competitive marketplace and adversarial, hostile world, survival for many organi-
zations requires proactive minimization of system vulnerability. Organizations that are proactive in
recognizing opportunities initiate risk mitigation actions to prevent hazards from occurring and
becoming problems—or tomorrow’s corporate headlines. In contrast, procrastinators deal with
problems by becoming reactionary “firefighters,” assuming that they were aware of the potential
hazard and did not mitigate it; they seem to never get ahead. Since the term problem space is com-
monly used and SE focuses on problem solving, this text uses the term problem space.

Problem Solving or Symptom Solving?

Organizations often convince themselves and their executive management they are problem solving.
In many cases the so-called problem solving is actually symptom solving. This question leads to
critical question for the User, Acquirer, and System Developers: Is this the RIGHT problem to solve
or a downstream symptom of the problem?

Dynamics of the Problem Space

For most organizational systems, problem spaces are dynamic and evolutionary. They evolve over
time in a number of ways. Some occur as instantaneous, catastrophic events, while others emerge
over several years—such as the hole in the ozone layer of Earth’s atmosphere. The root causes for
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problem spaces in system capabilities and performance originates from several potential sources
such as:

1. System neglect.

2. Improper oversight or maintenance.

3. Ineffective training of the User Operators.

4. Budgetary constraints.

Organizationally, managers have an obligation to track problem spaces. The problem is that some
managers are reluctant to surface the problem spaces until it is too late. In other cases management
fails to provide the proper visibility and priority to seemingly trivial issues until they become full-
fledged problem spaces—the proverbial “head in the sand.” When this happens, four potential out-
comes can occur:

1. Operationally, the source of the problem space goes away.

2. The organization’s management becomes distracted or enamored by other priorities.

3. Organizational objectives change.

4. Catastrophic (worst-case) events heighten awareness and sensitivity.

In general, people tend to think of the problem space as static. In fact, the primary issue with the
problem space is its continual dynamics, especially in trying to bound it.

Forecasting the Problem Space

The challenge for most organizations is How do we forecast a problem space in system capabili-
ties with some level of confidence? The answer resides in the organizational and system level strate-
gic and tactical plans, system missions, and objectives.

Organizational strategic and tactical plans establish the reference framework for evaluating
current capabilities versus planned capabilities. Using these objectives as the basis, situational
assessments and gap analysis are employed as tools to compare the state of existing to projected
system capabilities and performance against projected capabilities and performance of competitors
or adversaries. The results may indicate a potential GAP in capabilities and/or levels of perform-
ance. The identification of the gap establishes the basis for organizational problem spaces. Dynam-
ically, gaps may occur rapidly or evolve slowly over time.

When Does a “Gap” Become a Problem? This is perhaps the toughest question, especially
in a forecasting sense. Obviously, you know you have a problem when it occurs such as malfunction,
emergency, or catastrophic events. One approach may be to determine whether a potential hazard
with a level of risk has outcome-based, consequences that are unacceptable. In effect, you need to
establish levels or thresholds for assessing the degree of problem significance.

Establishing Problem Space Boundaries. Conceptually, we illustrate a problem space with
solid lines to symbolically represent its perimeter. For some systems such as a lawn, the property
boundaries are clearly defined for ownership accountability. In other cases, the boundaries are
elusive and vague. Consider civil unrest and wars in countries where people take sides but look,
dress, and communicate similarly. How does one differentiate friend versus foe? On WHICH day
of the week?

Lines drawn around abstractions such as ideology, politics, and religion are often blurry, vague,
and ill defined. To see this, consider the graphic shown in Figure 14.1. The figure illustrates problem
space boundaries by gray edges. The “center of mass” is indicated by the dark area whose edges,
however, are blurry and indistinct. In some cases the problem space has tentacles that connect to
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other problem spaces, each having an effect on the other. The blurriness may not be static but a
continuum of dynamic, evolving changes as with clouds or a thunderstorm.

Controlling the Problem Space

Depending on the source or root cause of the problem and the degree of risk to your system or its
objectives, the natural tendency of most organizations is to eliminate the problem—namely the prob-
lems within their control, resources, or sphere of influence. However, the reality is you may not be
able to eliminate the problem space. At best, you may only be able to manage and control it—that
is, keep it in balance and check. Consider the following example:

EXAMPLE 14.2

Weeds are a continual problem for lawns and reappear annually for a variety of reasons. There are a number
of approaches to getting rid of the weeds, some more desirable than others in terms of environmental, health,
application, and cost considerations. Since you have limited control over how the weeds get transplanted
(winds, water, birds, etc.), you have a choice: 1) coexist and control the weeds or 2) “pay the price” to hire a
contractor to eliminate the weeds.

Defining the Problem Statement

Our discussion to this point focuses on the problem space in an abstract sense. The rhetorical ques-
tion that requires specificity is: WHAT problem is the User attempting to solve? Before any solu-
tion analysis can proceed, it is crucial for you and your development team, preferably in
collaboration with the User, to simply document WHAT problem the User is attempting to solve.
You need to define a problem statement. Ultimately this leads to the question: HOW should a
problem statement be written? Although there are a number of ways of developing a problem state-
ment, there are some general guidelines to apply:

1. Avoid identifying the source or root cause of a problem.

2. Identify the operational scenario or operating conditions under which the problem occurs.

3. Avoid stating any explicit or implicit solutions.
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Consider the following example:

EXAMPLE 14.3

Viruses are corrupting desktop computers on our network.

Note that the example does not specify: WHERE the viruses originate, the source or root cause of
the problem, WHAT the impact is, or HOW to solve the problem.

Partitioning the Problem Space

As your understanding of the problem space matures, the next step is to partition it into one or more
solution spaces. Work with system stakeholders to partition the complex problem space into more
manageable solution spaces. The identification of one or more solution spaces requires highly iter-
ative collaboration, analysis, and decision making. Consider the challenge of attempting to partition
the ambiguous problem space shown at left side of Figure 14.1. Through partitioning, our objective
is to isolate key properties and characteristics of the problem as abstractions that enable us to ulti-
mately develop solutions.

Author’s Note 14.1 Problem solving requires establishing a conceptual solution as a starting
point. This solution may evolve throughout the process and may not be recognizable at completion.
Some people are very ineffective at conceptualizing the starting point. One approach is to gather
the facts about a problem space and create DRAFT solution space boundaries. Then, as the analy-
sis progresses, adjust the boundaries until decisions about the solution space boundaries mature
or stabilize. The key point is: some problem spaces are described as “wicked” due their dynamic
nature and are effectively unsolvable. In general, you have a choice:

1. Flounder in the abstractness, or

2. Make a decision, move on to the next decision, and then revisit and revise the original deci-
sion when necessary.

Problem Space Degree of Urgency

The level of risk and degree of urgency of the problem space as a whole or portions thereof may
influence or drive solution space decisions, especially, where budgets or technology are constrained.
The net result may be a decision to prioritize solution spaces and levels of capability within solu-
tion spaces.

We meet this challenge by establishing an Initial Operational Capability (IOC) at system deliv-
ery and acceptance. Then, as budgets or technologies permit, IOC is followed by a series of incre-
mental builds that enhance the overall capability. Finally, as the system matures with the integration
of the “builds,” an overall capability, referred to as a Full Operational Capability (FOC), is achieved.

To illustrate the partitioning of the problem space into solution spaces, consider the graphic in
Figure 14.2. Symbolically, we begin with a problem space represented by a large box. Next, we
partition the box into five solution spaces, each focused on satisfying a set of problem space capa-
bility and performance requirements allocated to the solution space. Initially we could have started
with four or six solution spaces. Through analysis, we ultimately decide there should be five solu-
tion spaces. So, HOW does this relate to system development? The large box symbolizes the total
system solution. We partition the complexity of the system solution into PRODUCT level or SUB-
SYSTEM level solution spaces. Let’s explore this point further.
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Problem Space Partitioning and Decomposition

When SEs deal with problem spaces, the exercise is accomplished through a multi-level decom-
position or narrowing process as shown in Figure 14.3. We begin with the high-level problem space
shown in the upper left-hand corner of the diagram. We partition the problem space into four solu-
tion spaces, 1.0 through 4.0. Solution space 3.0 becomes problem space 3.0 for the next lower level
and is partitioned into solution spaces 3.1 through 3.4. The partitioning process continues to the
lowest level. The net result of the narrowing process is shown in the upper right-hand corner of the
figure.

Guidepost 14.1 Given a fundamental understanding of the problem space and its relationship
to the solution space, we are now ready to explore the development of the solution space.

14.4 UNDERSTANDING THE SOLUTION SPACE(S)

Solution spaces are characterized by a variety of boundary conditions:

1. Distinct, rigid boundaries.

2. Fuzzy, blurry boundaries.

3. Overlapping or conflicting boundaries.

The degree to which the solution space is filled is determined by the capabilities required, priorities
assigned to, and resources allocated to the problem space “zone.” HIGHER ORDER SYSTEMS con-
tractually and organizationally impose RESOURCE and OPERATING CONSTRAINTS system ele-
ments that may ultimately limit the degree of solution coverage. Consider the following examples:

EXAMPLE 14.4

Because of reduced budgets and funding, home refuse pick up and disposal service may be reduced from two
days per week to one day per week.
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EXAMPLE 14.5

A solution space normally satisfied by airline flights between two cities will be reduced from three flights per
week to one flight per week during the non-tourist season.

Eliminating the Problem–Solution Space Gap

When a gap is identified in a system or product capability, it generally takes a finite amount of time
to fill, especially if system development is involved. If the gap is of a defensive nature, the system
or product may be vulnerable or susceptible to acts of aggression and hostilities from competitors
or adversaries. If the gap represents a deficiency in an offensive capability, work must be performed
to eliminate the gap by upgrading system capabilities and performance.

Depending on the system or product’s application, operational tactics such as decoys, cam-
ouflage, and operational patterns may be employed to supplement the gap until a new system,
product, or service is available.

Solution Capability Force Multipliers

Most people tend to think of the solution space in a geographical boundary context. Our portrayal
in Figure 14.3 resembles real-estate plots. Remember, the problem/solution spaces are capability
based. So, what does this mean?

Capability-based solutions represent abstractions of the strength, capacity, and reliability
required to accomplish mission objectives.

1. Strength. Power to accept a specific type of mission challenge.

2. Capacity to Project. Multiply that power over a defined range.

3. Reliability. A probability of completing a mission of a given duration in a specified OPER-
ATING ENVIRONMENT.
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You can expand the solution capability of a system by synergistically leveraging capabilities of
other systems to dramatically change their sphere of influence. Consider the following example:

Author’s Note 14.2 Recall the shadow game children play by standing in front of a ground-
based floodlight pointed toward a nearby wall? The floodlight, in combination with body move-
ments, projects a greater than life size silhouette onto the wall, thereby creating for the child the
perception of a much larger person. So we can leverage the geometry of object position and light
to create perceptions of capabilities beyond our individual capability. The same is true for the orga-
nizational or operational tactics for creating perceptions that are virtual but not reality.

The key point is you don’t have to build an expensive aircraft to cover X square miles. What you
need to do is figure out how to build a reasonably priced aircraft and be able to “project” that capa-
bility into a 10X square mile domain by leveraging other systems and their capabilities. Consider
the following example:

EXAMPLE 14.6

A fighter aircraft has a limited engagement range due to fuel capacity. However, by leveraging the capabili-
ties of air-to-air refueling, the fighter can command a much larger area of coverage.

Author’s Note 14.3 You may recall from our discussion in Chapter 4 on system attributes,
properties, and characteristics that systems have a frame of reference and an operating domain.
For example, an aircraft has a home base—or frame of reference—and has an operating range—
or domain—that is limited by fuel consumption and maintenance considerations. Employing
“tanker” aircraft to replenish fuel in-flight can expand the aircraft’s effective operating range.

Selecting Candidate Solutions for the Solution Space

Each solution space is bounded by technical, technology, support, cost, and schedule constraints.
The challenge is to identify and evaluate several viable candidate solutions that satisfy the techni-
cal requirements and then recommend the preferred solution. The selection requires establishing
pre-defined, objective criteria and then performing a trade study to select the recommended solu-
tion. We will elaborate on this point further in the following discussions.

14.5 EXPOSURE TO PROBLEM–SOLUTION SPACES

Every person in your organization should have exposure to and an understanding of your organi-
zation’s opportunity-solution spaces. Unfortunately, travel budgets and the User’s desire and ability
to accommodate throngs of people prevents first hand observations of HOW the system they
develop will be deployed, operated, and supported. As with any scientific field, observation is a
critical skill of SEs. Seeing, touching, feeling, operating, hearing, and studying existing systems
in action has a profound influence on SEs throughout system development. Consider the follow-
ing example:

EXAMPLE 14.7

A company is contracted to design a large piece of computer equipment. Since one of the considerations is
always getting equipment through doorways, business development personnel describe the doorway and



hallway leading to the room entrance. Engineering personnel were denied the opportunity to conduct a site
survey of the facility.

Convinced that they could develop a cabinet to fit through a narrow doorway, engineering proceeded with
the design. When the system was delivered, the installation team encountered major problems. They discov-
ered that the cabinet could be moved down the narrow hallway to the door but could not make a 90-degree
turn through the door. Lesson learned: ALWAYS send an SE to accompany business development personnel
during on-site visits to understand, analyze, and document the opportunity/problem and solution spaces.

Final Thoughts

Understanding problem–solution spaces requires continual assessments due to the dynamics of the
OPERATING ENVIRONMENT. SEs often erroneously believe that filling the solution space with
development of a new system, product, or service is an end all answer. As is the case of scientific
law, every action by the User can be expected to have an equal and opposite reaction by competi-
tors and adversaries. So, when you bound the solution space, the bounding process must also 
consider:

1. The potential reactions of competitors and adversaries.

2. HOW the new system, product, or service minimizes susceptibility and vulnerability to those
threats, at least for a reasonable period of time.

14.6 GUIDING PRINCIPLES

In summary, the preceding discussions provide the basis with which to establish the guiding prin-
ciples that govern our understanding of a system’s problem, opportunity, and solution spaces.

Principle 14.1 System analysis requires recognition and validation of three types of User oper-
ational needs: real, perceived, or projected.

Principle 14.2 One system’s problem space is an opportunity space for a competitor or adver-
sarial system.

Principle 14.3 Manage problem space complexity by decomposing it into one or more solution
spaces that are solvable.

Principle 14.4 When bounding a solution space, anticipate competitor or adversarial reactions
to counter the solution space capabilities.

Principle 14.5 There are two types of solution development activities: problem solving and
symptom solving. Recognize the difference.

14.7 SUMMARY

Our discussion of problem and solution spaces serves as an SE concept for a number of reasons.

• Problem solving begins with bounding and understanding the problem space and its constraints.

• The fundamental concepts discussed here serve as key element of the SE Process Model.

Referral More information on the SE Process Model is provided in Part II in Chapter 26.
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• The investigation of alternative concepts and solutions that satisfy the solution space provide the foun-
dation for developing candidate system solutions for evaluation and decision.

Referral More information on system solution development is provided in Chapter 23 System Analy-
sis Synthesis and Chapters 37–40 on system solution development.

Now that we have an understanding of the problem space and the solution space concept, we are ready
to investigate HOW the User employs systems, products, and services to perform organizational and system
missions. This brings us to our next topic, system interactions with its operating environment.

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new system selection, apply your knowledge derived from this chapter’s topical
discussions. Specifically identify the following:

(a) Problem space(s)

(b) Opportunity space(s)

(c) Solution space(s)

3. Cite various solution space tools that enable a homeowner to leverage their time, resources, and skills to
maintain their lawn.

4. Cite two examples of human-made systems and two examples of natural systems that project or expand
their sphere of influence by leveraging the capabilities of other systems.

ORGANIZATIONAL CENTRIC EXERCISES

1. For your organization, identify the following related to the systems, product, or services it provides:

(a) Problem space(s)

(b) Opportunity space(s)

(c) Solution space(s)

2. Pick a contract program within your organization. From the User’s organizational mission perspective,
equate the following for the system, product, or service deliverables the contract provides:

(a) Problem space(s)

(b) Opportunity space(s)

(c) Solution space(s)
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Chapter 15

System Interactions with Its
Operating Environment

15.1 INTRODUCTION

Every natural and human-made system exhibits a fundamental stimulus–response behavior pattern.
For example, systems may respond positively to good news. Conversely, a system may respond
negatively to threats and employ defensive tactics, pre-emptive, or retaliatory strikes. The response
ultimately depends on how your system is designed and trained to respond to various types of
inputs—stimuli and information, under specified types of operating conditions and constraints.

This section builds on the system architecture concepts discussions. Each SYSTEM OF
INTEREST (SOI) coexists and interacts with external systems that comprise its OPERATING
ENVIRONMENT—namely HUMAN-MADE SYSTEMS, the PHYSICAL ENVIRONMENT, and
the INDUCED ENVIRONMENT. System analysts, designers, and developers need an under-
standing in HOW those systems INTERACT and respond to stimuli and cues in their OPERAT-
ING ENVIRONMENT.

Our discussion begins with the fundamentals of system behavior. We establish a basic system
behavioral model that depicts HOW a SOI interacts with and responds to its OPERATING ENVI-
RONMENT. The discussion highlights key concepts such as system stimuli, transfer function,
response time, and feedback control loops.

We introduce the concepts of strategic and tactical interactions, and system adaptation to its
operating environment. From a SE perspective, SOI interactions with its OPERATING ENVI-
RONMENT require an analytical understanding of each interaction. To establish this understand-
ing, we introduce an approach for analyzing system interfaces and their outcomes. As we analyze
system interactions and responses, we investigate HOW some SOIs employ tactics, countermea-
sures, and counter-countermeasures (CCMs).

The final part of this section concludes with a discussion of the system’s degree of compliance
with its OPERATING ENVIRONMENT. All systems, whether desired or not, operate and interact
within the balance of power that exists in their respective domains of operation. The level of
society’s acceptance of a system and a key factor in its success is determined by its ability to func-
tion and comply within its prescribed OPERATING ENVIRONMENT.

What You Should Learn from This Chapter

1. What is the purpose of the system behavioral response model?

2. What are the key elements and interfaces of the model?

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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3. What is a compatible interface?

4. What is an interoperable interface?

5. What are examples of HUMAN-MADE SYSTEMS ENVIRONMENT threat
sources?

6. What are examples of NATURAL ENVIRONMENT threat sources?

7. What are examples of INDUCED ENVIRONMENT threat sources?

8. What are system countermeasures?

9. What are system counter-countermeasures?

10. What is meant by a system’s compliance with its OPERATING 
ENVIRONMENT?

11. What are the consequences of a system’s noncompliance with its OPERATING
ENVIRONMENT?

12. Identify two levels of system interactions.

13. Identify and describe six types of system interactions with its OPERATING
ENVIRONMENT.

Definitions of Key Terms

• Compatibility “The ability of two or more systems or components to perform their required
functions while sharing the same hardware or software environment.” (Source: IEEE 610.
12-1990)

• Comply To obey in strict accordance with the provisions of a contract or agreement’s terms
and conditions. (Ts & Cs).

• Conform To adapt or tailor an organization’s standard methods or processes to another
organizations request or instructions.

• Countermeasure An operational capability or tactic employed by a system to camouflage
its identity, deceive or defeat adversarial or hostile system’s capabilities, or minimize vul-
nerability by protecting itself from unauthorized access.

• Counter-Countermeasure (CCM) An operational capability or tactic employed by a
system to neutralize another system’s countermeasures.

• Engagement A single instance of a friendly, cooperative, benign, competitive, adversarial,
or hostile interaction between two systems.

• Strategic Threats Entities that have long-term plans to exploit opportunities that leverage
or enhance the organization’s reputation or equity to achieve a long-term vision and upset
the “balance of power.” For example, an organization has a long-term vision to predominate
a software market.

• System Adaptation The ability of a system to acclimate physically and functionally to a
new OPERATING ENVIRONMENT with a minimal degree of degradation to capability 
performance.

• System Threat Any type of entity that has the potential to cause or inflict varying degrees
of harm on another entity and its mission, capabilities, or performance. A system threat is
any interaction by an external system that is hostile or impedes the operation and perform-
ance of your system in accomplishing its intended mission.
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• Tactical Threats Entities that pose a potential, short-term hazard to another organization or
system and its mission. For example, counter a competitor’s advertising campaign.

• Transfer Function A mathematical expression used to model the relationship between a
system’s behavioral response to a range of inputs and constraints.

15.2 SYSTEM BEHAVIORAL RESPONSE MODEL

During our discussion of the OPERATING ENVIRONMENT architecture, Figure 11.1 served as
a high-level model to illustrate a SYSTEM OF INTEREST’s interactions with its OPERATING
ENVIRONMENT. To see how this interaction occurs, let’s investigate a simple behavioral response
model.

Modeling the SOI’s OPERATING ENVIRONMENT Interfaces

If we expand the SYSTEM OF INTEREST (SOI) aspect of Figure 11.1 to the next level of detail,
the top-level system shown in Figure 15.1 emerges. The top-level system consists of the PHYSI-
CAL ENVIRONMENT (1) and the SYSTEM OF INTEREST (2), both of which are controlled by
a HIGHER ORDER SYSTEM (3).

The HIGHER ORDER SYSTEM (3) provides an ORGANIZATION (4), allocates ROLES and
MISSIONS (5), imposes OPERATING CONSTRAINTS (6), and provides RESOURCES (7) to the
SOI.

Elements of the PHYSICAL ENVIRONMENT (1)—such as HUMAN-MADE SYSTEMS (8),
INDUCED ENVIRONMENT (9), and NATURAL ENVIRONMENT (10)—provide input stimuli
into the SOI as well as affect its operating capabilities and performance.
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Modeling the SOI’s Behavior

Stimuli serve as inputs to the Sensory Receiver (11) capability of the SOI (2). These can be cues,
information, data, interrupts, and actions. The Sensory Receiver (11) decodes the stimuli and infor-
mation as inputs to the Processor (12). The processor adds value to the data within the boundaries
of OPERATING CONSTRAINTS (6) and RESOURCES (7) that are levied by HIGHER ORDER
SYSTEM (3).

The Response Sampler (13) samples the results of the value-added processing and compares
those results to OPERATING CONSTRAINTS (6)—namely mission tasking—established by a
HIGHER ORDER SYSTEM (3). Based on the results of the Comparison, Corrective Actions (14)
are initiated as feedback to the Processor (12).

The clockwise workflow of steps (12) through (14) form an Internal Feedback Loop (15). When
the processing is deemed acceptable relative to the OPERATING CONSTRAINTS (6), the System
Response (16) is produced. The System Response (16) is then fed back (17) to the OPERATING
ENVIRONMENT (1) thereby completing the External Feedback Loop (18).

Understanding the Model’s Behavioral Transfer Function

In terms of the system control model introduced in Figure 15.1, the SOI’s transfer or response func-
tion is dependent on the planned behavior of the SYSTEM OF INTEREST (SOI) relative to its
OPERATING ENVIRONMENT. Consider HOW this model relates to an organization.

EXAMPLE 15.1

An organization’s executive management formulates a strategic plan based on its vision and analysis of the
OPERATING ENVIRONMENT—in threats and opportunities—as well as tactical plans (refer to Figure
13.1). The vision, philosophy, missions, and mission objectives conveyed in these documents, as well as its
command media—its policies and procedures—establishes how the organization and elements of the organi-
zation are to respond to the PHYSICAL ENVIRONMENT.

Several Key Points

Figure 15.1 illustrates several key points regarding system interactions with its OPERATING
ENVIRONMENT.

• System Interactions Stimuli or data (8)(9)(10)—composed of cues, information, and behav-
ior—as well as the system response (16) to its OPERATING ENVIRONMENT (1) form a
closed loop (18) of system interactions.

• Input Data Occurrence External stimuli or data (8)(9)(10) may occur as a “triggering
event”—as communications data, an observation, or transfer of information—or as “trend
data” over time.

• Measured or Conditioned System Response Steps (11) through (14) form an internal control
loop (15) that results in measured response appropriate for the stimuli and information (8).

• System Transfer Function Steps (11), (12), (13), and (14) collectively form a system trans-
fer function that shapes the system response (16).

• System Responsiveness The time required from the SYSTEM OF INTEREST (2) to respond
to external stimuli (8), (9), and (10) and information until a system response (16) is pro-
duced is referred to as system responsiveness, system response time, or system throughput.



15.3 SYSTEM BEHAVIORAL RESPONSES

Most people tend to think of a system’s responses to its OPERATING ENVIRONMENT in terms
of products, by-products, and services. However, system behavioral responses such as body lan-
guage, communications (degree of bluntness, etc.) intentionally or unintentionally communicate
the true message that may or may not correlate with the verbal message.

Systems generally respond to external stimuli and information as aggressors, neutral, or as
defenders. The system response may be aggressive (i.e., proactive) or defensive (i.e., reactive). Let’s
consider some examples of system behavior.

• Police In a potentially hostile protest demonstration, strategically placed police in riot gear
stand prepared to respond on command to acts of violence or public disturbances.

• Paramedics On receipt of an emergency call, paramedics respond with medical attention.

• Education Corrective action based on test results is taken to eliminate a deficiency in student
skill levels in mathematics.

System Interaction Compatibility and Interoperability

When two or more systems interact, we refer to the interaction as an engagement or encounter.
Engagements can be characterized with a number of terms. Examples include friendly, coopera-
tive, neutral, adversarial, and hostile. The effects or results of the engagement can be described as
positive, benign, negative, damaging, or catastrophic, depending on the system roles, missions, and
objectives. Generally, the effects or outcomes can be condensed into a key question. Was the engage-
ment compatible and interoperable from each system’s perspective? Let’s explore both the context
of both of these terms.

Differentiating Compatibility and Interoperability

Compatibility often has different contextual meanings. We use the term in the context of physical
form, fit, and function capability. Notice that we used the operative term capability. Having the
capability does not mean the engagement or interface is interoperable or enabled.

To illustrate the application of the terms compatibility and interoperability, consider the fol-
lowing examples.

EXAMPLE 15.2

Two people from different countries speaking different languages may attempt to communicate—an interac-
tion or engagement between system entities. We could say their voice communications are compatible—trans-
mitting and receiving. However, they are unable to decode, process, assimilate, or “connect” what information
is being communicated—interoperability.

EXAMPLE 15.3

You can have an RS-232 data communications interface between two systems that use a standard cable and
connectors for transmitting and receiving data. Thus, the interface is physically compatible. However, the data
port may not be enabled or the receiving system’s software capable of decoding and interpreting the infor-
mation—interoperability.
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15.4 UNDERSTANDING THE SYSTEM THREAT ENVIRONMENT

The exploitation of opportunities may be viewed by some organizations as threatening to the sus-
tainment and survival of the organization. Whether the scenario involves increasing market share,
defending national borders, or developing a secure Internet Web site, you must ensure that your
system is capable of sustaining itself and its long-term survival.

Long-term survival hinges on having a thorough and complete understanding of the potential
threat environment and having the system capabilities to counter the threat that serve as obstacles
to mission success. So, how does this relate to SE? When you specify requirements for your system,
system requirements must include considerations of what capabilities and levels of performance
are required to counter threat actions.

Sources of Threats

System threats range from the known to the unknown. One approach to identifying potential system
threats can be derived from the PHYSICAL ENVIRONMENT elements—NATURAL ENVI-
RONMENT, HUMAN-MADE SYSTEMS, and the INDUCED ENVIRONMENT.

NATURAL ENVIRONMENT Threat Sources. NATURAL ENVIRONMENT threat sources,
depending on perspective, include lightning, hail, wind, rodents, and disease.

HUMAN-MADE SYSTEMS Threat Sources. External HUMAN-MADE SYSTEMS threat
sources include primarily PERSONNEL and EQUIPMENT elements. The motives and actions of
the external systems delineate friendly, competitive, adversarial, or hostile intent.

INDUCED ENVIRONMENT Threat Sources. INDUCED ENVIRONMENT threat sources
include contaminated landfills, electromagnetic interference (EMI), space debris, ship wakes, and
aircraft vortices.

Types of System Threats

System threats occur in a number of forms, depending on the environment—HUMAN-MADE
SYSTEMS, INDUCED ENVIRONMENT, and NATURAL ENVIRONMENTs.

HUMAN-MADE SYSTEMS and NATURAL SYSTEMS ENVIRONMENT Aggressor

Threats. Generally, most HUMAN-MADE SYSTEMS and NATURAL ENVIRONMENT
aggressor threats fall into the categories of strategic threats or tactical threats related to the balance
of power, motives, and objectives.

Other NATURAL ENVIRONMENT Threats. Other natural environment threats are attributes
of the NATURAL ENVIRONMENT that impact a system’s inherent capabilities and performance.
Examples include temperature, humidity, wind, lightning, light rays, and rodents. Although 
these entities do not reflect premeditated aggressor characteristics, their mere existence in the 
environment, seemingly benign or otherwise, can adversely impact system capabilities and 
performance.

Threat Alliances. Sometimes threats emerge from a variety of sources that form strategic
alliances. Examples include businesses, nations, and individuals.
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Threat Behavioral Characteristics, Actions, and Reactions

Threats exhibit characteristics and actions that may be described as adversarial, competitive,
hostile, and benign. Some threats may be viewed as aggressors. In other cases, threats are gener-
ally benign and only take action when someone “gets into their space.” For example, an unau-
thorized aircraft purposefully or unintentionally intrudes on another country’s airspace creating a
provocation of tensions. The defending system response course of action may be based on proto-
col or a measured retaliatory physical or verbal warning.

Threats, in general, typically exhibit three types of behavior patterns or combinations thereof:
aggressive, concealed, and benign. Threat patterns often depend on the circumstances. For example,
aggressors exhibit acts of aggression. Benign threats may “tend to their business” unless provoked.
Concealed threats may appear to be benign or disguised and strike targets of opportunity (TOO)
unexpectedly.

Threat Environment Constraints. The threat environment is characterized by boundaries that
have various attributes that are confined by constraints such as resources and physical constraints.

Ideology, Doctrine, and Training Constraints. Ideology, doctrine, and training are often key
factors in threat actions.

Threat Encounters

When systems interact with known threats, the interactions—such as encounters or engagement—
should be documented and characterized for later use by other systems in similar encounters. Threat
encounters intended to probe another system’s defenses can be described with a number of descrip-
tors: aggressive, hostile, cooperative, inquisitive, investigative, bump and run, and cat and mouse.

When threat encounters turn hostile and defensive action must be taken, systems resort to
various tactics and countermeasures to ensure their survival.

System Tactics. When systems interact with their OPERATING ENVIRONMENT, they often
ENGAGE threats or opportunities. Systems and system threats often employ or exhibit a series of
evasive actions intended to conceal, deceive, or camouflage the target of opportunity (TOO).
Generally, when evasive tactics do not work, systems deploy countermeasures to disrupt or distract
hostile actions. Let’s examine this topic further.

Threat Countermeasures. To counter the impact or effects of threats on a system, systems
often employ threat countermeasures. Threat countermeasures are any physical action performed
by a system to deter a threatening action or counter the impact of a threat—i.e., survivability.
Sometimes adversarial systems acquire or develop the technology to counter the TOO’s system
countermeasures.

Threat Counter-Countermeasures (CCM). Sometimes system threats compromise the
established security mechanisms by deploying counter-countermeasures (CCM) to offset the effects
of a TOO’s countermeasures.

Concluding Thoughts

This concludes our overview of system threats and opportunities. You should emerge from this dis-
cussion with an awareness of how the system you are using or developing must be capable of inter-
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acting with threats and opportunities in the OPERATING ENVIRONMENT. More explicitly, you
will be expected to develop a level of technical knowledge and understanding to enable your team
to specify or oversee the specification of system capabilities and levels of performance related to
threats and opportunities.

Now that we have an understanding of the opportunistic and potentially hostile entities, we are
now ready to investigate how a system interacts with its OPERATING ENVIRONMENT and the
balance of power to perform missions.

15.5 EXAMPLE CONSTRUCTS OF SYSTEM 
BEHAVIORAL INTERACTIONS

If we observe and analyze the pattern of interactions between human-made systems, we can iden-
tify some of the primary interaction constructs. In general, examples of common interactions of
most friendly systems include the following:

• Open loop command interactions (Figure 15.2)

• Closed loop command and control (C2) interactions (Figure 15.2)

• Peer data exchange system interactions (Figure 15.3)

• Status and health broadcast system interactions (Figure 15.4)

• Issue arbitration/resolution system interactions (Figure 15.5)

• Hostile encounter interactions (Figure 15.6)
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15.6 SYSTEM COMPLIANCE WITH ITS 
OPERATING ENVIRONMENT

The balance of power of systems, coupled with humankind’s general desire for peace and harmony,
requires systems to comply with standards imposed by society. Standards in this context refer to
explicit and implicit, self-imposed expectations by society such as laws, regulations, ordnances,
codes of conduct, morals, and ethics. Thus, system survival, peace, and harmony are often driven by
a system’s compliance to these standards. System adherence to these standards involves two terms
that are often interchanged and require definition. The terms are compliance and conformance.
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The Consequences of Noncompliance

When a system fails to adhere to established standards, it places itself at risk with society. Society’s
response to a lack of compliance generally involves formal or informal notification, establishment
that noncompliance occurred, adjudication of the degree or noncompliance, and sentencing in
accordance with prescribed consequences or penalties. In some cases the system may voluntarily
elect to bring itself into compliance or be mandated to be compliant. In other cases, society may
ostracize or punish the instigators.
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For systems such as ships, aircraft, and automobiles intentional or unintentional noncompli-
ance with the NATURAL ENVIRONMENT, HUMAN-MADE SYSTEMS, and INDUCED ENVI-
RONMENT can be very unforgiving or even worse, catastrophic.

Levels of System Interactions

System interactions with its OPERATING ENVIRONMENT occur at two levels: strategic inter-
actions and tactical interactions. Let’s explore each of these in detail.

Strategic Interactions. HUMAN-MADE SYSTEMS exhibit a higher level of behavior that
reflects a desire to advance our current condition as a means of achieving higher level vision. To
achieve the higher-level vision, humans must implement a well-defined strategy, typically long
term, based on stimuli and information extracted from out operating environment. We refer to
implementation of this long-term strategy as strategic interactions. These strategic interactions are
actually implemented via a series of premeditated missions—tactical interactions—with specific
mission objectives.

Tactical Interactions. All life forms exhibit various types of tactics that enable the system to
survive, reproduce, and sustain itself. We refer to a system’s implementation of these tactics within
the confines of its operating environment as tactical interactions. In general, this response 
mechanism focuses all existing survival needs in the short term—obtaining the next meal.

System Interaction Analysis and Methodology. Depending on the compatibility and inter-
operability of an interface, consequences of the engagement may be positive, neutral, or negative.
As a system analyst or SE, your mission is to:

1. Develop a thorough understanding of the engagement participants (systems).

2. Define the most probable use cases and scenarios that characterize how the User intends
to use the system.

3. Analyze the use cases by applying natural and scientific laws of physics to thoroughly
understand the potential outcomes and consequences.

4. Specify system interface requirements that ensure engagement compatibility and inter-
operability success within cost, schedule, and technology constraints.

Adapting to the OPERATING ENVIRONMENT. Most systems are designed to perform in a
prescribed OPERATING ENVIRONMENT. There are situations whereby a system is transferred
to a new location. The net result is the need for the system to adapt to its new operating environ-
ment. Consider the following examples:

EXAMPLE 15.4

Military troops deploy to arid or snow regions. Depending on the initial conditions—namely acclimation to
the previous environment—the troops must learn to adapt to a new operating environment.

EXAMPLE 15.5

As part of a strategy for climbing a high mountain, mountain climbers travel to a series of base camps to
satisfy logistics requirements and allow their bodies time to acclimate to the thin air environment over a period
of several days.



System Interactions Synthesis

As an SE, you must learn to synthesize these interactions in terms of an overall system solution.
Figure 15.7 provides an illustration.

Here we have a diagram that captures the high-level interactions between the SYSTEM OF
INTEREST (SOI) (1), HIGHER ORDER SYSTEM (9) and the OPERATING ENVIRONMENT
(14). The SOI is illustrated via a “fishbone” diagram. We include in the diagram the system ele-
ments that are performance AFFECTER factors that must integrate harmoniously to achieve the
mission objectives. In combination the SOI elements produce the SYSTEM RESPONSES (8)
element, which consists of behavior, products, by-products, and services.

In operation, the SOI (1) responds to command and control guidance and direction from the
HIGHER ORDER systems element that consists of ORGANIZATION (10), ROLES AND MIS-
SIONS (11), OPERATING CONSTRAINTS (12), and RESOURCES (13) system elements. Based
on this direction, the SOI system elements interact with the OPERATING ENVIRONMENT and
provide SYSTEM RESPONSES (8) back to the OPERATING ENVIRONMENT and the HIGHER
ORDER SYSTEMS element.

15.7 GUIDING PRINCIPLES

In summary, the preceding discussions provide the basis with which to establish the guiding prin-
ciples that govern system interactions with its OPERATING ENVIRONMENT.

Principle 15.1 System interactions with its OPERATING ENVIRONMENT during an engage-
ment may be cooperative, friendly, benign, competitive, adversarial, hostile, or combination of
these.
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Principle 15.2 Every system responds to stimuli and cues in its OPERATING ENVIRONMENT
with behavioral actions, products, by-products, services, or combinations thereof.

15.8 SUMMARY

During our discussion of system interactions with its operating environment, we described a system’s inter-
actions via the Behavioral Responses Model. A system’s responses are driven by strategic and tactical inter-
actions related to opportunities and threats in the environment. Systems generally interact with cooperative,
benign, competitive, or aggressor systems. Based on those responses, we indicated how a system might employ
countermeasures and counter-countermeasures to distract, confuse, defend or interact with other systems. We
concluded our discussion by highlighting the context of the OPERATING ENVIRONMENT based on the
SYSTEM OF INTEREST perspective.

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new system selection, apply your knowledge derived from this chapter’s topical
discussions.

(a) If applicable, identify whether the system operates by a closed loop or an open loop.

(b) If by a closed loop, how does the system process stimuli and cues and provide measured responses.

3. Identify external systems that interface with your product or service. Characterize them in terms of coop-
erative, benign, or adversarial.

4. What vulnerabilities or susceptibilities does your system, product, or service have to threats in its operat-
ing environment? What capabilities, tactics, or procedures have been added to the product to minimize vul-
nerability or susceptibility?



Chapter 16

System Mission Analysis

16.1 INTRODUCTION

The primary purpose of any system is to satisfy individual or organizational objectives with an
expected tangible or intangible return on investment (ROI). These objectives may range from the
quality of life such as happiness, entertainment, education, and health to the basic necessities of
life—organizational survival, profitability, food, and shelter. The act of striving to accomplish these
objectives can be summarized in one operative term, mission.

The accomplishment of individual and organizational missions requires the employment of
systems, products, and services that leverage human capabilities. Selection or acquisition of those
systems begins with understanding the WHO, WHAT, WHEN, WHERE, and HOW system User(s)
plan to accomplish the mission(s). We refer to activities required to develop this understanding as
a mission analysis.

This chapter introduces the key elements of the mission analysis and provides the foundation
for deriving system capabilities and requirements. Our discussions focus on the key attributes of a
mission.

What You Should Learn from This Chapter

1. What are the key tasks required to define a system mission?

2. What is a Mission Event Timeline (MET)?

3. What is mission task analysis?

4. What are the primary mission phases of operation?

5. What system related operations and decisions are performed during the pre-mission phase?

6. What system related operations and decisions are performed during the mission phase?

7. What system related operations and decisions are performed during the postmission?

8. What are the key decisions that occur within mission phases and trigger the next phase?

Definitions of Key Terms

• Mission A pre-planned exercise that integrates a series of sequential or concurrent opera-
tions or tasks with an expectation of achieving outcome-based success criteria with quan-
tifiable objectives.

• Mission Critical System “A system whose operational effectiveness and operational suit-
ability are essential to successful completion or to aggregate residual (mission) capability. If

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.

159



this system fails, the mission likely will not be completed. Such a system can be an auxil-
iary or supporting system, as well as a primary mission system.” (Source: DSMC—adapted
from Glossary: Defense Acquisition Acronyms and Terms)

• Mission Needs Statement (MNS) “A nonsystem specific statement that identifies an orga-
nizational operational capability need.” (Source: Adapted from DSMC T&E Mgt. Guide,
Appendix B, DoD Glossary of Test Terminology, p. B-20-21)

• Mission Reliability “The probability that a system will perform its required mission criti-
cal functions for the duration of a specified mission under conditions stated in the mission
profile.” (Source: Glossary: Defense Acquisition Acronyms and Terms)

• Operational Constraints “Initially identified in the Mission Need Statement (MNS). As a
minimum, these constraints will consider the expected threat and natural environments, the
possible modes of transportation into and within expected areas of operation, the expected
(operating) environment, operational manning limitations, and existing infrastructure support
capabilities.” (Source: Adapted from DSMC—Glossary: Defense Acquisition Acronyms and
Terms)

• Phase of Operation A high-level, objective-based abstraction representing a collection 
of SYSTEM OF INTEREST (SOI) operations required to support accomplishment of a
system’s mission. For example, a system has pre-mission, mission, and postmission 
phases.

• Point of Delivery A waypoint or one of several waypoints designated for delivery of mission
products, by-products, or services.

• Point of Origination or Departure The initial starting point of a mission.

• Point of Termination or Destination The final destination of a mission.

• Task Order A document that: 1) serves as triggering event to initiate a mission and 2)
defines mission objectives and performance-based outcomes.

• Time Requirements “Required functional capabilities dependent on accomplishing an
action within an opportunity window (e.g., a target is vulnerable for a certain time period).
Frequently defined for mission success, safety, system resource availability, and production
and manufacturing capabilities.” (Source: Former MIL-STD-499B Draft)

• Timeline Analysis “Analytical task conducted to determine the time sequencing between
two or more events and to define any resulting time requirements. Can include task/time-
line analysis. Examples include:
a. A schedule line showing key dates and planned events.
b. An engagement profile detailing time based position changes between a weapon and its

target.
c. The interaction of a crewmember with one or more subsystems.” (Source: Former MIL-

STD-499B Draft)

• Waypoint A geographical or objective-based point of reference along a planned roadmap
to mark progress and measure performance.

16.2 MISSION DEFINITION METHODOLOGY

Organizational and system missions range from simple tasks such as writing a letter to performing
highly complex International Space Station (ISS) operations, managing a government. Regardless
of application, mission analysis requires consideration of the steps specified below:
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Step 1: Define the primary and secondary mission objective(s).

Step 2: Develop a mission strategy.

Step 3: Define phase-based operations and tasks.

Step 4: Create a Mission Event Timeline (MET).

Step 5: Bound and specify the mission OPERATING ENVIRONMENT interactions.

Step 6: Identify outcome-based system responses to be delivered.

Step 7: Identify mission resources and sustainment methods.

Step 8: Perform a mission task analysis.

Step 9: Assess and mitigate mission and system risk.

Let’s explore each of these steps in more detail.

Step 1: Define the Primary Mission Objective(s)

People often mistakenly believe that missions begin with the assignment of the “mission” to be
accomplished. However, missions are action-based applications of systems, products, or services
to solution spaces for the purposes of resolving or eliminating all or a portion of an operational
need—meaning a problem or opportunity space. These actions may be oriented toward a single
event or occur via one or more reusable missions over a period of time. Consider the following
examples:

EXAMPLE 16.1

The NASA Space Shuttle’s external tank (ET), which is expendable, represents a single event mission applica-
tion. On completion of its mission, the ET is jettisoned and burns up in the atmosphere.

EXAMPLE 16.2

NASA’s Space Shuttle Orbiter vehicle performs via a series of mission applications to ferry components of
the International Space Station (ISS) for integration and support of science.

As with any system, the initial step in performing mission analysis is to understand the underlying
motivation and primary/secondary objectives to be accomplished. Mission objectives are charac-
terized by several attributes. For our discussion the two primary attributes are:

1. Outcome-based results to be achieved.

2. Mission reliability required to achieve those results.

Identify the Outcome-Based Results. When you define a mission objective, the first step is
to define WHAT results are expected to be produced. The results should be:

1. Preferably tangible as well as measurable, testable, and verifiable.

2. Contribute to accomplishment of HIGHER ORDER SYSTEM tasking.

Determine the Mission Reliability. Human systems, despite careful planning and execution,
are not infallible. The question is: Given resource constraints, WHAT is the minimum level of level
of success you are willing to accept to provide a specified return on investment (ROI). From an SE
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point of view, we refer to the level of success as mission reliability. Mission reliability is influenced
by internal EQUIPMENT element failures or over/undertolerance conditions, human operator
performance ( judgment, errors, fatigue etc.) and interactions with OPERATING ENVIRONMENT
entities and threats.

Mission reliability is the probability that a system will successfully accomplish a mission 
of a specific duration in a prescribed OPERATING ENVIRONMENT and accomplish objectives
without a failure event. Depending on the system application, 100% mission reliability may be pro-
hibitively expensive, but a 90% mission reliability may be affordable.

Authors Note 16.1 Since reliability ultimately has a cost, establish an initial reliability esti-
mate as simply a starting point and compute the cost. Some Acquirers may request a Cost-as-an-
Independent-Variable (CAIV) plot of cost as a function of capability or reliability to determine what
level of capability or reliability is affordable within their budgetary constraints.

Specify and Bound the Required Level of Performance. Once the mission reliability is
established, system designers can proceed with identifying the level of performance required of the
system elements, such as EQUIPMENT and PERSONNEL, subject to cost, schedule, and risk
constraints.

Once we establish the primary mission objectives, the next step of mission analysis is to define
the mission profile.

Step 2: Develop a Mission Strategy

A mission begins with a point of origination and terminates at a point of destination. As end-to-
end boundary constraints, the challenge question is: HOW do we get from the point of ORIGINA-
TION to the point of DESTINATION?

We begin by establishing a strategy that leads to a mission profile or a roadmap that charts
progress through one or more staging and control points, or waypoints. A waypoint represents a
geographical location or position, a point in time, or objective to be accomplished as an interim
step toward the destination, as illustrated in Figure 16.1. Each phase of operation is decomposed
into one or more objectives focused on the pathway to successful completion of the mission. Con-
sider the following examples:
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EXAMPLE 16.3

A ship cruise line has several ports of call or waypoints on its scheduled item erary for a 7-day voyage. A
package delivery service has performance-based deliveries or waypoints for a delivery route.

Step 3: Define Phase-Based Operations and Tasks

Human-made systems, especially cyclical systems, sequence through three sets of objective-based
actions to accomplish a mission: 1) prepare for the mission, 2) conduct the mission, and 3) perform
post-mission actions and processing. We characterize these objectives as the pre-mission, mission,
and post-mission phases of operation. For those systems to be placed in storage following the
mission, an interim phase—storage—may be added.

When implemented, the SYSTEM OF INTEREST (SOI) consisting of the MISSION SYSTEM
and SUPPORT SYSTEM must provide capabilities and levels of performance to support these
phases of operation. Each phase consists of use case based operations and tasks, all focused on
accomplishing the phase outcome-based performance objective(s).

Step 4: Create a Mission Event Timeline (MET)

Once we establish the waypoints, the next task is to determine waypoint time constraints. We refer
to these time constraints as milestone requirements derived from the mission event timeline (MET).
The MET can be presented as a simple, high-level schedule down to a highly detailed, multi-level,
networked schedule.

Guidepost 16.1 Mission analysis up to this point has focused on the “ideal” mission—namely
what we intend to accomplish. However, to accomplish a mission, the MISSION SYSTEM must
interact with the OPERATING ENVIRONMENT and its elements, consisting of HUMAN-MADE
systems, the NATURAL ENVIRONMENT, and the INDUCED ENVIRONMENT. This brings us to
our next mission analysis task: bound and specify the OPERATING ENVIRONMENT.

Step 5: Bound and Specify the Mission OPERATING
ENVIRONMENT Interactions

Once the basic mission is defined, the next step is to bound and specify its OPERATING ENVI-
RONMENT. Throughout the pre-mission, mission, and postmission phases, the SOI interacts with
external systems within its OPERATING ENVIRONMENT. These systems may include friendly
systems, benign systems, or hostile threats and harsh environmental conditions.

Collectively the mission analysis identifies and analyses these systems, their roles 
relative to the mission, and what impacts they may have on performing the mission and accom-
plishment of its performance objectives. For example, what systems does the MISSION SYSTEM
need to: 1) communicate with, 2) perform deliveries and transfers to, and 3) interact with on an
encounter/engagement basis along with the mission profile.

Guidepost 16.2 Our earlier discussion emphasized the need to identify the outcome-based
results of the mission. The question is: WHAT products, by-products, or services is the system
required to PRODUCE or AVOID to achieve the OUTCOME-based results. This brings us to the
next task: identify system responses.
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Step 6: Identify Outcome-Based System Responses

Throughout all phases of the mission, an SOI produces a series of behaviors, products, by-
products, and services to satisfy internal and external requirements. Internal requirements include
performance monitoring, resource consumption, and payload/cargo manifests. External require-
ments include the examples listed in Table 16.1.

Step 7: Identify Mission Resources and Sustainment Methods

Human-made systems have finite resource capacities that require replenishment and refurbishment.
Depending on the mission operating range of the system relative to its current mission application,
mission analysis must consider HOW the system’s expendables and consumables will be resup-
plied and replenished. Operationally, the question is: How will the organization sustain and main-
tain the mission from beginning to end?

Step 8: Perform a Mission Task Analysis

Throughout the pre-mission, mission, post-mission phases, specific operational tasks must be per-
formed to accomplish the phase-based mission objectives. These tasks ultimately provide the basis
for capabilities the SOI must provide to accomplish the mission. Therefore the mission analysis
should:

1. Identify the high-level outcome-based mission tasks to be performed.

2. Synchronize those tasks to the Mission Event Timeline (MET).

3. Identify the task performance-based objectives.

Step 9: Assess and Mitigate Mission and System Risk

Some systems are required to perform missions in harsh OPERATING ENVIRONMENTs that may
place the system at risk to threats, not only in completing its mission but also in returning safely
to its home base. Consider the following example:

EXAMPLE 16.4

Loose, hidden objects on a lawn can cause injury to people and damage a lawnmower blade and engine. Birds,
ducks, and geese pose threats to airports and aircraft in flight. Loose objects and debris thrown into the air by
vehicles on the road can cause injury to others and damage to vehicles. Unprotected computer systems are
vulnerable to viruses.
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Table 16.1 Examples of mission requirements derived from analysis of external systems

Type of External System Example Sources of Requirements

Friendly or cooperative systems Communications
Deliverable items, etc.

Benign systems Communications
Detection and avoidance
Evasive tactics, etc.

Hostile or Adversarial systems Rules of engagement
Detection and avoidance
Countermeasures/counter-counter measures
Aggressive/defensive actions, etc.



Risks assessments include considerations of system vulnerability, susceptibility, survivability, and
maintainability. Most people tend to think in terms of external benign, adversarial, or hostile
systems that may be threats to the system. However, since a system interacts with itself, it can also
be a threat to itself. Recall from our discussion of the architecture of systems in Chapter 8 how a
system interacts with: 1) its OPERATING ENVIRONMENT and 2) itself. Analytically, the sources
of these threats begin with the MISSION SYSTEM and SUPPORT SYSTEM elements—comprised
of PERSONNEL, EQUIPMENT, MISSION RESOURCES, PROCEDURAL DATA, SYSTEM
RESPONSES, and FACILITIES. Consider the following EQUIPMENT system element examples.

EXAMPLE 16.5

Failed automobile components, such as a blown tire, can cause a driver to loose control of the vehicle while
driving. Failures in an aircraft’s flight control system or broken blades in a jet engine fan can force and emer-
gency landing or have catastrophic consequences.

Internal failures or degraded performance also has negative impacts on system performance that ulti-
mately translates into mission failure or degree of success. Perhaps one of the most notable examples is the
Apollo 13 catastrophe. Mission analysis should identify those areas in system capabilities that may be vul-
nerable or susceptible to external internal threats, especially for mission critical components.

Author’s Note 16.1 Internal threat analysis is typically performed via failure modes and effects
analysis (FMEA). For mission critical components, the FMEA may be expanded into a failure
modes, effects, and criticality analysis (FMECA) that assesses the degree of criticality.

16.3 GUIDING PRINCIPLES

In summary, the preceding discussions provide the basis with which to establish the guiding prin-
ciples that govern mission analysis.

Principle 16.1 Every system mission must accomplish one or more organizational performance
objectives.

Principle 16.2 Human-made systems have three primary phases of operation: pre-mission,
mission, and post-mission; an interim phase may be further required for some systems.

Principle 16.3 Every system phase of operation must satisfy one or more outcome-based per-
formance objectives associated with accomplishment of an overall system mission and its per-
formance objectives.

Principle 16.4 Mission success requires five key elements: a purpose, resources, a reasonably
achievable outcome-based performance objective(s), a Mission Event Timeline (MET), and a will-
ingness to perform. Where there is no willingness to act, the other elements are meaningless.

16.4 SUMMARY

Our discussion of mission analysis highlighted several key points that require emphasis:

• Every system concept consists of interactions of abstract entities derived from the System Element
Architecture: 1) SYSTEM OF INTEREST (SOI) consisting of the MISSION SYSTEM and the
SUPPORT SYSTEM and 2) the OPERATING ENVIRONMENT.
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• Each mission begins with a point of origination and concludes with a destination or point of termina-
tion with intervening staging, control, or waypoints based on specific objectives and Mission Event
Timeline (MET) events.

• Between the point of origination and point of termination, some missions may require interim way-
points or delivery points that satisfy specific mission objectives.

• Every mission must be founded on an operational strategy that defines HOW the system elements—
namely PERSONNEL, EQUIPMENT, and FACILITIES—will be deployed and employed at critical
staging events to accomplish mission objectives constrained by a Mission Event Timeline (MET).

• Every mission is characterized by at least three mission phases of operation: 1) pre-mission, 2) mission,
and 3) post-mission.

• During each phase of operation, system element interactions must be orchestrated and synchronized in
accordance with mission objectives and a Mission Event Timeline (MET).

• Every mission requires mission critical capabilities with a minimum level of performance to be pro-
vided by the system elements—namely PERSONNEL, EQUIPMENT, and MISSION RESOURCES—
to achieve a specified outcome.

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new system selection, apply your knowledge derived from this chapter’s topical
discussions. Identify the following:

(a) How many different missions does the system perform?

(b) What are those missions?

(c) Pick two missions and perform a mission analysis using the methodology described in this section.

ORGANIZATIONAL CENTRIC EXERCISES

1. Select a contract program within your organization. Interview program personnel to understand what form
of mission analysis was performed on the program.

(a) Was the mission analysis required as a contract deliverable? If so, when was it required to be deliv-
ered? Were subsequent updates required? Was there a required outline format?

(b) Who performed the mission analysis?

(c) How was the mission analysis documented?

(d) What was the most difficult parts of the analysis to accomplish?

(e) In what ways do program personnel believe the analysis benefit the program?

(f) What would you do differently next time?

(g) How did program and executive management view the importance of the analysis?

(h) Were the right amount of resources and expertise applied to accomplish the task?

(i) What were the shortcomings, if any, of the end product?
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Chapter 17

System Use Cases and Scenarios

17.1 INTRODUCTION

From an SE perspective the challenge in developing systems is being able to translate mission
objectives, operations, and tasks into a set of capability requirements that can be transformed into
a physical design solution. Most organizations and individuals attempt to make a quantum leap
from the mission objectives to writing text requirements into the System Performance Specifica-
tion (SPS). This is typically accomplished without understanding:

1. What problem space the User is attempting to solve.

2. How they intend to deploy and employ the solution space system to perform missions to
address all or a portion of the problem space.

As systems become more complex, they require a solution development methodology that is easily
understood by Acquirers, Users, and System Developers. One method is to employ system use cases
and scenarios to bridge the gap between mission objectives and specification requirements.

What You Should Learn from This Chapter

• What is a system use case?

• What are the attributes of a use case?

• What is a use case analysis and how do you perform one?

• How do use cases relate to system capability requirements?

Definitions of Key Terms

• Actor “A role of object or objects outside of a system that interacts directly with it as part
of a coherent work unit (a use case). An Actor element characterizes the role played by an
outside object; one physical object may play several roles and therefore be modeled by
several actors.” (UML Notation Guide, para. 6.1.2, p. 75)

• Operational Scenario A hypothesized narrative that describes system entity interactions,
assumptions, conditions, activities, and events that have a likelihood or probability of actu-
ally occurring under prescribed or worst-case conditions.

• Sequence Diagram “A diagram that represents an interaction, which is a set of messages
exchanged among objects within a collaboration to effect a desired operation or result.”
(UML Notation Guide, para. 7.2.1, p. 80)

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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• Use Case A statement that expresses how the User envisions deploying, operating, sup-
porting, or disposing of a system, product, or service to achieve a desired performance-based
outcome.

• Use Case Diagram “A graph of actors, a set of use cases enclosed by a system boundary,
communication (participation) associations between the actors and the use cases, and gen-
eralizations among the use cases.” (UML Notation Guide, para. 6.1.2, p. 75)

• Use Case Scenario A set of conditions a MISSION SYSTEM use case may encounter in
its OPERATING ENVIRONMENT that requires a unique set of capabilities to produce a
desired result or outcome. Scenarios include considerations of HOW a User or threat might
apply, misapply, use, misuse, or abuse a system, product, or service.

17.2 UNDERSTANDING THE ANALYTICAL 
CONTEXT OF USE CASES AND SCENARIOS

A reference framework that illustrates the context of use cases and scenarios and their importance
is provided in Figure 17.1. Note that the entity relationships in the figure are partitioned into three
domains: an Operations Domain, an Analysis Domain, and an Engineering Domain. Based on this
framework, let’s characterize these relationships.

1. Each mission is assigned at least one or more mission objectives.

2. Each mission objective is accomplished by an integrated set of mission operations per-
formed by the MISSION SYSTEM and SUPPORT SYSTEM.

3. Each MISSION SYSTEM and SUPPORT SYSTEM operation is decomposed into hierar-
chical chains of sequential and concurrent tasks.

4. Each task is performed and measured against one or more performance standards and imple-
mented via at least one or more use cases.
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5. Each use case is bounded by at least one or more use case scenarios.

6. Each use case scenario represents HOW the use case can be applied, used, misused, abused,
etc. and is bounded and specified by at least one or more required operational capabilities.

7. Each required operational capability identifies WHAT the system, product, or service must
perform to fulfill each use case and accommodates various use case scenarios and is quan-
tified by at least one or more performance requirements.

This introductory framework establishes the backdrop for our discussion of system use cases and
scenarios.

17.3 WHAT ARE USE CASES?

A use case is characterized by a set of attributes that describe HOW the User might deploy, operate,
support, or dispose of the system. The attributes, which serve as a checklist for developing use
cases, include:

• Unique identifier

• Objective

• Outcome-based results

• Assumptions
Initial state
Final state
Environmental conditions
Preceding circumstances (optional)
Operating constraints
External inputs
Resources
Event-based timeline
Frequency of occurrence and utility priorities

• Processing capabilities

• Scenarios and consequences
Probability of occurrence
Use case scenario actors
Stimuli and cues
Consequences
Compensating/mitigating actions

Given this list, let’s briefly describe each one and its contribution to the characterization.

Attribute 1: Unique Identifier

Each use case should have its own unique identity and not overlap, conflict, or duplicate other use
cases. Therefore each use case should be tagged with its own unique identifier and title.

Attribute 2: Objective

Each use case must have at least one or more outcome-based performance objectives.
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Attribute 3: Outcome-Based Results

Use cases should produce at least one or more system/entity behaviors, products, by-products, or
services that may be tangible or intangible to achieve the desired outcome-based objective.

Attribute 4: Assumptions

The formulation of use cases requires that SEs make assumptions that characterize the initial con-
ditions that form the basis for initiating a use case. Assumptions include the following:

Initial State. The INITIAL state of a use case represents the assumed physical operational state
of the system, product, or service when the use case is initiated.

Final State. The FINAL state represents the desired physical or operational state of the system
when the desired outcome has been achieved.

Environmental Conditions. The current environmental conditions specify and bound the
OPERATING ENVIRONMENT conditions that exist when a system, product, or service use case
is initiated.

Preceding Circumstances (Optional). For some applications, the circumstance or sequence
of events leading up to the initiation of a use case need to be identified. Preceding circumstances
provide a basis for documenting this assumption.

Operating Constraints. For some use cases the system, product, or service may have opera-
tional constraints such as organizational policies, procedures, task orders; local, federal, state, and
international regulations or statutory laws; or public opinion; or a Mission Event Timeline (MET).
Operational constraints thus serve to bound or restrict the acceptable set of corporate, moral, ethical,
or spiritual actions allowed for a use case.

External Inputs. Every system, product, or service processes external inputs to add value to
achieve the specified outcome.

Resources. Every system, product, or service requires MISSION RESOURCES to perform its
mission. MISSION RESOURCES are typically finite and are therefore constrained. The resources
attribute documents what types of resources (i.e. expendables or consumables) are required to
sustain system/entity operations.

Event-Based Timeline. Use cases may require a Mission Event Timeline (MET) to synchro-
nize the planned actions or intervention of human operators or expected responses from the system
or its operators.

Frequency of Occurrence and Utility Priorities. Every use case has a cost and schedule for
development, training, implementation, and maintenance. The realities of budgetary cost and sched-
ule limit the number of use cases that can be practically implemented. Therefore, prioritize use
cases and implement those that maximize application and safety utility to the User.

Note that we said, to maximize application and safety utility. If you prioritize use cases, emer-
gency capabilities and procedures should have a very remote frequency of occurrence. Neverthe-
less, they can be the most critical. As is the case in trade study evaluation criteria, you may need
to analytically express utility in terms of a multiplicative factor. Instead of assigning a 1 (low) to
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5 (high) weighting factor priority to each use case, multiply the factor by a level of criticality from
1 (low) to 5 (high) to ensure the proper visibility from a safety perspective.

Commercial organizations produce products and services to sell in the marketplace at a profit
and sustain the business operations for the long term. Organizational products and services MUST
be SAFE for the Users to deploy, operate, and support. Hypothetically, you could focus all resources
on safety features and produce a product that is so burdened with safety features that it has no
application utility to the User.

Although our discussion focuses on the development of a product or service, remember that
the system has other elements than just EQUIPMENT (PERSONNEL, PROCEDURAL DATA,
etc.). So, when confronted with increasing design costs, there may be equally effective alternatives
for improving safety such as operator certification, training and periodic refresher training, cau-
tionary warning labels, and supervision that may not require product implementation.

Attribute 5: Processing Capabilities

The heart of a use case centers on stimulus-response processing for a specified set of conditions to
produce the desired or required outcome. Some domains refer to this as a transfer or response func-
tion. Consider the following example:

EXAMPLE 17.1

A photovoltaic or solar cell transforms sunlight into electrical energy.

Author’s Note 17.1 Remember, the context here is a simple box representing a system or item
at any level of abstraction with input(s) and output(s). Focus on simplification of the solution space.
Avoid attempting to define processing for multiple levels simultaneously.

Attribute 6: Scenarios and Consequences

As humans, we tend to be optimistic and ideally believe that everything will be successful. While
this is true most of the time, uncertainties do occur that create conditions we have not planned for
operationally or in terms of system, product, or service capability. Once a use case is identified,
ask the question: WHEN the User employs this use case:

1. WHAT can go wrong that we haven’t anticipated?

2. WHAT are the consequences of failure and how do we mitigate them?

We refer to each of these instances as use case scenarios and consequences? Consider the follow-
ing example:

EXAMPLE 17.2

Suppose that we are designing a compact disk (CD) or digital video disk (DVD) player. Ideally, the high-level
CD/DVD use case describes a User inserting the CD/DVD into the player—and magic happens! The User
gets the result, be it music or a movie. The User has thus a use case scenario with a POSITIVE outcome.
Now, what happens if the User inserts the CD/DVD upside down? The User has a use case scenario with a
NEGATIVE outcome. This leads to the question: When we design the CD/DVD device, how should the User
be advised of this situation? If we add notification capability to the device, development costs increase. In
contrast, the LOW-COST solution may be to simply inform the User via the product manual about the con-
vention of ALWAYS inserting the CD/DVD so that the title faces upward.
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Probability of Occurrence. Once use case scenarios are identified, we need to determine the
probability of occurrence of each one. As in the earlier discussion of use case priorities, scenarios
have a probability of occurrence. Since additional design features have a cost, prioritize scenarios
with User safety as a predominant consideration.

Use Case Scenario Actors. Our discussion up to this point has focused on the WHAT is most
likely or probable to occur: use cases or scenarios. The key question is: WHO or WHAT are the
interacting entities during use cases and scenarios. The Unified Modeling Language (UML®)
characterizes these entities as “actors.”

Actors can be persons, places, real or virtual objects, or events. UML® represents actors as
stick figures and use cases as ellipses, as shown in Figure 17.2.

• User 1 (actor) such as a system administrator/maintainer interacts with use cases 1 through 3.

• User 2 (actor) interacts with use cases 1 and 2 (capabilities).

• User 3 (actor) interacts with use case 3 (capabilities).

In our previous example, the actors include User, CD/DVD, and CD/DVD player.

Stimuli and Cues. Use cases are initiated based on a set of actions triggered by system
operator(s), external systems, or the system. Consider the following stimulus–response actions:

• The User or an external system initiates one or more actions that cause the system to respond
behaviorally within a specified time period.

• The system notifies the User to perform an action—to make a decision or input data.

• The User intervenes or interrupts ongoing actions by the system.

Each of these examples represents instances whereby the User or System stimulates the other to
action. Figure 17.3 illustrates such a sequence of actions using a UML sequence diagram.
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Scenario Consequences. Each use case and scenario produces an outcome that may have
consequences. Consider the following example:

EXAMPLE 17.3

If scenario X occurs and the operator or system responds in a specified manner, instabilities and
perturbations may be induced into the system that may have NEGATIVE consequences. Therefore each use
case and scenario should identify the potential consequences of proper use/misuse, application/misapplication,
and abuse.

Compensating/Mitigating Actions. Given the set of consequences identified for use cases
and use case scenarios, we need to identify what compensating/mitigating actions should be
incorporated into the system, product, or service to eliminate or minimize the effects of a
NEGATIVE outcome consequences. Consider the following example:

EXAMPLE 17.4

Suppose that we are to design a car. Since a car can collide with other vehicles, walls, or trees, a generalized
interface solution of the car body-to-external system is insufficient. An analysis of use cases and use case sce-
narios suggests that passengers can lose their lives or sustain injuries in a collision. So a specialized interface
consisting of a bumper is added to the car frame as a compensating/mitigating action. However, impact tests
reveal that the bumper is inadequate and requires yet a more specialized solution including the following
sequences of design actions:

Design action 1: Incorporate shock absorbers into the vehicle’s bumpers.

Design action 2: Install and require use of seat belts.

Design action 3: Install an air bag system.

Design action 4: Install an anti-lock braking system (ABS).

Design action 5: Specify proper vehicle operating procedures.

Design action 6: Increase driver awareness to drive safely and defensively.
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17.4 USE CASE ANALYSIS

Each use case and its most likely or probable scenarios represent a series of anticipated interac-
tions among the actors. Once the scenarios and actors are identified, system analysts need to under-
stand the most likely or probable interactions between the system or entity of interest and external
systems within its OPERATING ENVIRONMENT.

UML® tools are useful in understanding the stimuli, cues, and behavioral responses between
interacting systems. Sequence diagrams serve as a key tool. Sequence diagrams consist of actors
and lifelines as illustrated in Figures 2.5 and 17.3.

• Actors Consist of entities at a given level of abstraction—such as SYSTEM, PRODUCT, and
SUBSYSTEM—and external systems within the abstraction’s OPERATING ENVIRON-
MENT. For example, a SUBSYSTEM use case might depict its operator(s), if applicable, 
and external systems such as other SUBSYSTEMS, and PHYSICAL ENVIRONMENT
conditions.

• Lifeline Consists of a vertical line to represent time relative processing. Bars are placed
along the lifeline to represent entity activities or processing of external inputs, stimuli, or
cues and behavioral responses.

• Swim Lanes Consist of the regions between the actor lifelines for illustrating sequential
operations, tasks, products, by-products, or services interactions and exchanges and between
each actor.

To illustrate HOW these are employed, consider the following example:

EXAMPLE 17.5

Let’s suppose a User (actor) interacts with a calculator (actor) to accomplish a task to perform a mathemati-
cal calculation and communicate the results. Figure 17.4 provides a simple illustration of the interaction.
Observe that Figure 17.4 is structurally similar to and expands the level of detail of Figure 17.3. To keep the
example simple, assume the calculator consists of two SUBSYSTEMS, 1 and 2.

The User and each of the SUBSYSTEMS have an INITIAL State and FINAL State and conditional
loops that cycle until specific decision criteria are met to terminate operation. We assume each of
the SUBSYSTEM activities include wait states for inputs. When inputs arrive, processing is per-
formed, and control is passed to the next activity. Here’s how a potential use case scenario might
be described.

• SUBSYSTEM 1 performs Activity 20 to await user inputs via the keyboard.

• When the System Operator Activity 10 enters data as Output 10, Activity 20 accepts 
the operator keyboard entries and converts the information into machine-readable code as
Output 20.

• SUBSYSTEM 2 performs: 1) Activity 30 to await data inputs and 2) Activity 31 to perform
the required computation and output the mathematical results as Output 31.

• In the interim SUBSYSTEM 1 Activity 21: 1) awaits Output 31 results, 2) converts the results
into meaningful operator information, and 3) displays the results as Output 21.

• Following data entry (i.e., Activity 10), the System Operator performs Activity 11 to: 1) await
Output 21 results, 2) record the results, and 3) communicate the results as Output 11.

These cycles continue until the calculator is turned off, which is the FINAL State.
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How Many Use Cases?

A key question people often ask is: How many use cases are required for a system? There are no
magic answers; 10 through 30 use cases might be average. Some highly complex systems may just
have 5 or 6; others, 10 to 20. All depends on the individuals and organizations involved. Some
want simplicity to keep the number small; others want detailed lists. Keep in mind that a system
may have 5 to 8 primary use cases; the remainder may be secondary or subordinate use cases that
support the primary use cases.

17.5 RELATING USE CASES TO 
SPECIFICATION REQUIREMENTS

You may note that the application of use cases is fine for system design, but WHY are we address-
ing them here? There are several reasons:

1. Use cases serve as a valuable tool for Acquirer SEs to work with Users to understand their
needs and translate their visions of HOW they intend to deploy, operate, and support the
system into a more technical description. Use cases isolate on specific system features and
associated capabilities that the User can easily understand. This avoids the need to write
abstract system requirements language that may or may not have meaning or interest to the
User.

2. Once the use cases and scenarios are identified and prioritized, they provide a basis 
for translation into specification requirements suitable for system, product, or service 
acquisition.

3. Use cases, which can be derived from Acquirer specifications, provide a mechanism for
System Developers to formulate system operational concepts and design solutions.
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17.6 FINAL THOUGHTS

From a SE perspective, use case analysis should be a key tool of any system development effort.
However, engineers often view this activity as non–value-added paperwork to the User and product,
and believe their time is better spent contemplating creation of elegant designs. The reality is the
most elegant designs are useless unless the User can easily and understandably implement them
with their current skill set to perform missions. This is WHY “just in time” training for system
operators must take place prior to system acceptance and delivery.

Keep in mind that the people who give the bureaucratic argument are the same people who,
after a system fails during integration and test, capitulate and remark, HOW was I to know WHAT
the User wanted? I’m only human. . . . Besides they couldn’t decide what they wanted. Docu-
menting use cases is a simple matter. It requires professional discipline, something that tends to
get lost in modern-day engineering efforts. If you doubt this, ask yourself how many products have
disappointed you and made you wonder . . . why no one within the System Developer’s organiza-
tion bothered to consult the Users. If they had, they would have easily learned that this step is crit-
ical to the User’s success and acceptance of the system, product, or service.

17.7 GUIDING PRINCIPLES

In summary, the preceding discussions provide the basis with which to establish the guiding prin-
ciples that govern system use cases and scenarios.

Principle 17.1 Every use case has at least one or more most likely or probable scenarios, some
with positive outcomes, others with negative outcomes: your mission as an SE is to mitigate risk
and maximize positive outcomes.

Principle 17.2 Every use case, scenario, and requirement has a value to the User, a cost to
implement, and a level of acceptable operational risk.

Principle 17.3 Every system mission consists of one or more use case based capabilities.

17.8 SUMMARY

Our discussion of system use cases and scenarios highlighted the need to employ use cases as a means of
avoiding quantum leaps between User’s visionary requirements and system design. We also showed that use
cases and scenarios provide a powerful tool that Users, Acquirers, and System Developers. They can be used
to improve communications and to understand how the envisioned system is to be deployed, operated, and
supported.

• Use cases provide a means of identifying and prioritizing key User requirements for implementation.

• Use cases must be prioritized, based on most likely or probable occurrences for development subject
to program technical, cost, and schedule constraints.

• Use case scenarios provide a basis for understanding not only how the User might use a system,
product, or service. Also how the misuse or abuse might result in risks with consequences that require
design compensating or mitigating actions.

• Use case scenarios must be prioritized within use case technical, cost, and schedule constraints.

• Use case attributes provide a standard framework to uniformly and consistently characterize each use
case.
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• UML interaction diagrams serve as a useful tool for understanding the sequencing of actor interac-
tions and behavioral responses.

• Each use case and its attributes should be documented and placed under baseline management control
for decision making.

NOTE

The Unified Modeling Language (UML®) is a registered trademark of the Object Management Group (OMG).

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new system selection, apply your knowledge derived from this chapter’s topical
discussions. Identify the following:

(a) System actors

(b) System use cases

(c) System use case diagrams

(d) Use case sequence diagrams

ORGANIZATION CENTRIC EXERCISES

1. Check with your organization to see if any programs employ use cases and scenarios for deriving system
capabilities and requirements.

(a) Were these required by contract or a program decision?

(b) What were the programs experiences?

(c) Were the teams properly trained in applying use cases and scenarios?

(d) What tools were used to perform use case analysis?

(e) How were the use cases and scenarios documented?

(f) How did the program link use cases and scenarios to specification requirements?

REFERENCE

Object Management Group (OMG). 1997. Unified Modeling Language (UML®) Notation Guide, Version 1.1, Needham,
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Chapter 18

System Operations Model

18.1 INTRODUCTION

As the mission analysis identifies a system’s use cases and scenarios, preferably in collaboration
with the User, the next challenging concept is working with the User to conceptualize how they
intend to deploy, operate, support, and dispose of a system. One of the mechanisms for documenting
the conceptualization is the system concept of operations, or ConOps. This section introduces the
System Operations Model that provides the structural framework for developing the ConOps.

The System Operations Model provides a high-level operational workflow that characterizes
HOW a system: 1) is configured for a mission, 2) conducts the mission, and 3) is supported fol-
lowing a mission. The structure of the model consists of operations and tasks that can be translated
into specification requirements or as workflow for the system engineering design solution.

Our discussions provide insights regarding how the model’s operational capabilities are allo-
cated and flowed down to the system elements—such as EQUIPMENT, PERSONNEL, and FACIL-
ITIES. As a result, these discussions provide the foundation for the topic that follows, system
mission and support operations.

What You Should Learn from This Chapter

1. What is the System Operations Model?

2. What is a Concept of Operations (ConOps)?

3. What is the purpose of the System Operations Model?

4. Graphically illustrate the System Operations Model.

5. Describe each of the model’s operations or tasks.

6. Delineate the differences in the model from its robust version.

7. What is a System Operations Dictionary?

Definitions of Key Terms

• Concept of Operations (ConOps) A description of the workflow of a system’s sequential
and/or concurrent operations required to achieve pre-mission, mission, and postmission
phase outcome-based performance objectives.

• Control or Staging Point A major decision point that limits advancement of workflow
progress to the next set of objective-based operations until a set of go–no go decision crite-
ria are accomplished.

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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• System Operations A set of multi-level, interdependent activities or tasks that 
collectively contribute to satisfying a pre-mission, mission, or postmission phase objective.

• System Operations Dictionary A document that scopes and describes system entity oper-
ational relationships and interactions required to support a specific phase and mode of oper-
ation. The operational relationships and interactions are analyzed and translated into a set of
required operational capabilities, which are then transformed into system performance
requirements to support each mode of operation.

• System Operations Model A generalization of system operations that can be employed as
an initial starting point for identifying the workflow and operations for most systems.

18.2 THE SYSTEM CONCEPT OF OPERATIONS (ConOps)

Once a system’s problem space and solution spaces are bounded, the next step is to understand HOW
the User intends to use a solution space system. Most systems are precedented and simply employ
new technologies to build on the existing infrastructure of operations, facilities, and skills. This does
not mean, however, that unprecedented systems do not occur.

Referral For more information about precedented and unprecedented systems, refer to Chapter
3 on the definition of these systems.

If you expand the problem–solution space concept, our analysis reveals that the solution space time-
based interactions—namely entity relationships—can be characterized by a set of operations that
can be generalized into the System Operations Model. In turn, the model provides a framework for
developing the ConOps, which describes the top-level sequential and concurrent operations
required to accomplish the system’s mission.

EXAMPLE 18.1

A system concept of operations (ConOps) for a system such as the Space Shuttle system describes the oper-
ational sequences required to deliver a payload into outer space, deploy the payload and conduct experiments,
and return the cargo and astronauts safely to Earth.

We refer to Example 18.1 as cyclical operations within the system/product life cycle. Living organ-
isms, such as humans, exhibit this cyclical characterization as evidenced by our daily need for food,
water, rest, and sleep.

We can generalize a ConOps in terms of a common set of objectives that reflect how the User
plans to use the system. These objectives include:

1. Deploy the system.

2. Configure the system for deployment and operational use.

3. Check the system’s readiness to conduct pre-mission, mission, and postmission operations.

4. Employ the system asset.

5. Clean it up and store it for the next use.

6. Discard the system, when appropriate.

To better understand HOW these objectives can be integrated into a total system operations solu-
tion, let’s explore a description of the System Operations Model.
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18.3 THE SYSTEM OPERATIONS MODEL

The System Operations Model depicted in Figure 18.1 provides a construct that can be applied to
HUMAN-MADE systems. Although there are a number of variants on this graphic, let’s explore
this model to better understand how it operates. First, a word about the contents of the graphic.

Each box in Figure 18.1 represents an integrated, multi-level collection of system use case-
based capabilities and activities required to achieve an overall mission objective. We can expand
or decompose each of these capabilities into lower level operational capabilities. Ultimately these
capabilities and their respective levels of performance are allocated to one or more of the system
elements—such as PERSONNEL, EQUIPMENT, and FACILITIES.

Each decision block (diamond) is referred to as a control or staging point and requires a go–no
go decision from a decision authority based on a predefined set of exit or entrance criteria. Each
operation and control point is tagged with a unique identifier. The identifier is used to map to a
specific requirements section in the System Performance Specification (SPS) or to a detailed nar-
rative in an operational concept description (OCD).

Referral For more information about linking ConOps operations and capabilities to the SPS,
refer to Chapter 28 System Specification Practices.

Author’s Note 18.1 Observe the usage of ConOps and OCD. Various organizations use one
or the other term. ConOps, to some people, infers a summary discussion of how a system will
operate while OCD infers supporting detail to a ConOps. Pick one term or the other and apply it
consistently across programs.
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18.4 SYSTEM OPERATIONS MODEL DESCRIPTION

Figure 18.1 depicts the System Operations Model that applies to most HUMAN-MADE systems.
Entry into the model begins when a system is transitioned from its System Development Phase (1)
of the system/product life cycle. Entrance criteria (2) are evaluated to assess system readiness to
begin active duty. Let’s explore the field operations that follow.

Operation 3.0: Deploy System

Operation 3.0 to deploy the system addresses system capabilities and activities required to deliver
and install the system at the User’s required destination. As each system rolls off the production
line and is verified against performance requirements, the system is packed and shipped for deploy-
ment or distribution to the User. Activities include: transportation; load/unloading; crate/uncrating;
initial setup, installation, and assembly; system checkout; verification; integration into higher level
systems; and verification of interoperability at that level.

On completion of all planned activities, the Operation 4.0 Conduct System/Mission Training
decision is made.

Operation 4.0: Conduct System/Mission Training Decision

Operation 4.0 Conduct System/Mission Training, a decision control point, determines if the system
is to be placed immediately into active duty or reserved for operator training or demonstrations.

• If the system/mission training decision is Yes or TRUE, workflow progresses to Operation
17.0 Conduct System Training.

• If the system/mission training decision is No or FALSE, workflow progresses to Operation
5.0 Await Mission Notification decision.

Operation 5.0: Mission Notification Decision

Operation 5.0 Mission Notification, a decision control point, must await notification to prepare to
conduct a mission. Depending on the system and application, Operations 4.0 and 5.0 are each effec-
tively a cyclical WAIT STATE for the system that loops until a higher level authority issues an
order to conduct the mission.

• If the mission notification decision is Yes or TRUE, workflow progresses to Operation 6.0
Configure System for Mission.

• If the mission notification decision is No or FALSE, workflow cycles back to Operation 4.0
Conduct System/Mission Training decision.

Operation 6.0: Configure System for Mission

Operation 6.0 Configure System for Mission includes system capabilities and activities required to
prepare and configure the system for the required mission. On receipt of mission orders, the system
is configured and supplied for the mission. Operational activities include pre-mission planning,
physical hardware and software changes, personnel training, and refueling. System configura-
tion/reconfiguration activities include the synchronized orchestration of the system elements such
as:

1. PERSONNEL Operators, administrators, etc.

2. PROCEDURAL DATA Operating procedures, media, etc.
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3. Interfaces with HUMAN-MADE SYSTEMS Friendly, cooperative systems.

4. SUPPORT SYSTEM Media, instructors, supply, maintainers, etc., into a planned, coherent
operation focused on achieving the allocated mission tasks and objectives.

On completion of the activities, system verification is performed to ensure that the system is
properly configured for the mission.

• If the system verification check is successful, workflow progresses to Operation 7.0, Assess
Operational Mission Readiness.

• If system defects or deficiencies are discovered, workflow progresses to Operation 20.0
Perform System Maintenance.

Operation 7.0: Assess Operational Mission Readiness

Operation 7.0 Assess Operational Mission Readiness includes system capabilities and activities
required to review the overall readiness to conduct the assigned mission. After the system has been
configured for the mission and all system element resources are fully integrated and operational,
mission operational readiness is assessed. The assessment evaluates the readiness posture of the
integrated set of system elements—such as EQUIPMENT, PERSONNEL, and FACILITIES—to
perform their assigned mission.

If the readiness assessment is No, the system is tagged as operationally deficient with a RED
or YELLOW tag. A mission impact risk assessment decision is made to determine if the deficiency
warrants cancellation of the mission or replacement of the system/element with a backup system.

• If the system requires maintenance, workflow progresses to Operation 20.0 Perform System
Maintenance.

• If the system is determined to provide the capabilities required to support the mission, work-
flow progress to Operation 9.0 Await Mission Go-ahead Decision.

Author’s Note 18.2 To facilitate a later discussion in this chapter, Operations 8.0, 11.0, 12.0,
and 19.0 are unused in Figure 18.1 and reserved for our follow-on topical discussion.

Operation 9.0: Mission Go-Ahead Decision

Operation 9.0 Mission Go-ahead, a decision control point, determines if tasking orders to conduct
the mission have been issued.

• If Operation 9.0 Await Mission Go-ahead Decision is Yes or TRUE, workflow proceeds to
Operation 10.0 Conduct Mission.

• If the Operation 9.0 Await Mission Go-ahead Decision is No or FALSE, system readiness is
periodically checked by cycling back to Operation 7.0 Assess Operational Mission Readiness.

Operation 10.0: Conduct System Mission

Operation 10.0 Conduct System Mission includes system capabilities and activities required to
conduct the system’s primary and secondary mission(s). During this operation the system may
encounter and engage threats and opportunities as it performs the primary and secondary mission
objectives.

If the system requires maintenance during the conduct of the mission, Operation 16.0 Replen-
ish System Resources or Operation 20.0 Perform System Maintenance may be performed, if 
practical.
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EXAMPLE 18.2

A fighter aircraft may require refueling during the conduct of an operational mission.

On completion of the mission, workflow proceeds to Operation 13.0 Assess Mission and System
Performance.

Operation 13.0: Assess Mission and System Performance

Operation 13.0 Assess Mission and System Performance includes system capabilities and activi-
ties required to review the level of mission success based on mission primary and secondary objec-
tives and system performance contributions to that success. Activities include postmission data
reduction, target impact assessment, strengths, and weaknesses; threats; mission debrief observa-
tions and lessons learned; and mission success. These operations also provide the opportunity to
review human performance, strengths, and weaknesses in the conduct of the mission. On comple-
tion of Operation 13.0 Assess Mission System Performance, workflow progresses to Operation 14.0,
a Deactivate/Phase-out System Decision.

Operation 14.0: Deactivate/Phase-out System Decision

Operation 14.0 Deactivate/Phase-out System, a decision control point, determines if the system is
to continue current operations, be upgraded, or be decommissioned or phased out of active duty.
The decision is based on exit criteria (15) that were established for the system.

• If the deactivate/phase-out system decision is Yes or TRUE, workflow progresses to Opera-
tion 21.0 Deactivate/Phase-out System.

• If the decision is No or FALSE, workflow proceeds to Operation 16.0 Replenish System
Resources.

Operation 16.0: Replenish System Resources

Operation 16.0 Replenish System Resources includes system capabilities and activities required to
restock or replenish system resources such as personnel, fuel, and supplies. If deficiencies are found
in the system, the system is sent to Operation 20.0 Perform System Maintenance. On completion
of Operation 16.0 Replenish System Resources, workflow progresses to Operation 18.0 Redeploy
System decision.

Operation 17.0: Conduct System/Mission Training

Operation 17.0 Conduct System Training includes capabilities and activities required to train Users
or system operators in how to properly operate the system. For larger, more complex systems, initial
operator training is sometimes performed at the System Developer’s factory prior to system deploy-
ment to the field. Remedial and skills enhancement training occurs after the system is already in
field service.

During Operation 17.0 Conduct System Training, new system operators are instructed in the safe
and proper use of the system to develop basic skills. Experienced operators may also receive reme-
dial, proficiency, or skills enhancement training based on lessons learned from previous missions or
new tactics employed by adversarial or competitive threats.

On completion of a training session, workflow progresses to Operation 16.0 Replenish System
Resources. If the system requires maintenance during training, Operation 20.0 Perform System
Maintenance is activated.
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Operation 18.0: Redeploy System Decision

Operation 18.0 to redeploy the system, a decision control point, determines if the physical system
is to be repeployed to a new User location to support organizational mission objectives.

• If Operation 18.0 Redeploy System decision is Yes or TRUE, workflow progresses to 
Operation 3.0, which is to deploy the system.

• If Operation 18.0 Redeploy System decision is no or FALSE, workflow proceeds to Opera-
tion 4.0 Conduct System/Mission Training decision and the cycle repeats back to Operation
18.0 Deploy System Decision.

Operation 20.0: Perform System Maintenance

Operation 20.0 Perform System Maintenance includes system capabilities and activities required
to upgrade system capabilities or correct system deficiencies through preventive or corrective main-
tenance. Systems are tagged with easily recognizable color identifiers such as RED or YELLOW
to represent corrective or preventive maintenance actions required to correct any defects or defi-
ciencies that may impact mission success.

On successful completion of system maintenance, the system is returned to active duty via the
next operation—be it Operation 6.0 Configure System Mission, Operation 7.0 Assess Operational
Mission Readiness, Operation 10.0 Conduct Mission, Operation 16.0 Replenish System Resources,
or Operation 17.0 Conduct System/Mission Training—of the requested need for maintenance.

Operation 21.0: Deactivate/Phase-out System

Operation 21.0 Deactivate/Phase-out System includes system capabilities and activities required to
disengage and remove the system from active duty, store, warehouse, “mothball,” or disassemble
the system and properly dispose of all its components and elements. Some systems may be stored
or “mothballed” until needed in the future to support surges in mission operations that cannot be
supported by existing systems. On completion of the deactivation, the system proceeds to the
System Disposal Phase (22) of its system/product life cycle.

System Operations Dictionary

Obtaining team agreement on the graphical depiction of the concept of operations is only the first
step. When working with larger, complex systems and development teams, diagrams at this level
require scoping definitions for each capability to ensure proper understanding among team
members. For example, you and your team may define a specific operational capability differently
from a team operating in another business domain, depending on the system’s application.

One solution is to create a System Operations Dictionary. The dictionary, which defines and
scopes each capability similar to the previous System Operations Model descriptions, should be
maintained throughout the life of the system.

Final Thoughts

The System Operations Model is used to define systems, products, organizations, services, etc. We
can apply this model as an initial starting point for most, if not all, HUMAN-MADE SYSTEMS,
such as automobiles, the Space Shuttle, airlines, hospitals, businesses, fire and ambulance services.

Collectively and individually, each of the model’s operations represents a generalized construct
applicable to most systems. As an SE, collaborate with the User(s) to tailor the System Operations
Model to reflect their needs within the constraints of contractual, statutory, and regulatory require-
ments. Each operation should be scoped and bounded via a System Operations Dictionary to ensure
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all members of the Acquirer, User, and system development teams clearly understand what is/is not
included in specific operations—with no surprises!

From an individual’s perspective, the System Operations Model may appear to be very simple.
However, on closer examination, even simple systems often require forethought to adequately
define the operational sequences. If you challenge the validity of this statement, consider the 
following:

• Develop the System Operations Model for a car and driver.

• Conduct a similar exercise with each of three colleagues who are unfamiliar with the Model.
The diversity of colleague opinions may be enlightening.

• Repeat the exercise as a team focused on achieving a single, collaborative consensus for the
final diagram.

Now consider the case where the System Operations Model involves the definition of a more
complex system with a larger stakeholder community. If you contemplated the previous car and
driver exercise, you should appreciate the challenges of getting a diverse group of people from
various disciplines, political factions, and organizations to arrive at a consensus on a System Oper-
ations Model for a specific system.

You will discover that engineers often refer to the System Operations Model as “textbook
stuff.” They:

1. Act offended to spend time addressing this concept.

2. Have a natural tendency to focus immediately on physical hardware and software design,
such as resistors, capacitors, data rates, C++ language, and operating systems.

3. Whine to their management about the need to focus their time on resistors, coding, etc.

Beware If your program, customer, and User community have not agreed to this top-level
concept and its lower level decomposition, system development problems further downstream his-
torically can be traced back to this fundamental concept. Even worse, fielding a system that does
not pass customer validation for intended usage presents even greater challenges, not only techni-
cally but also for your organization’s reputation.

• Obtain Acquirer and User community consensus and “buy in” prior to committing resources
for development of the system. Investigate how the User envisions operating the planned
system to achieve organizational mission objectives. Avoid premature hardware and software
development efforts until these decisions are approved and flowed down and allocated to
hardware and software specifications.

• Use the System Operations Model as an infrastructure for identifying and specifying opera-
tional capabilities that can be translated into System Performance Specification (SPS)
requirements.

• When reviewing and analyzing specifications prepared by others, use the System Operations
Model to assess top-level system performance requirements for completeness for system
operations.

18.5 DEVELOPING A MORE ROBUST SYSTEM 
OPERATIONS MODEL

The preceding System Operations Model provided a fundamental understanding of how a system
might be employed by the User. As a high level model, it serves a useful tutorial purpose. The
model, however, has some areas that need to be strengthened to accommodate a broader range of
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Figure 18.2 Robust System Concept of Operations (ConOps) Model

system applications. Figure 18.2 provides an expanded System Operations Model. To maintain con-
tinuity with the previous model, we have preserved the original numbering convention and simply
added the following operations:

Operation 8.0: Mission Ready Decision

Operation 11.0: Provide Mission Oversight and Support

Operation 12.0: Mission Complete Decision

Operation 19.0: Remediate and Restore Site

18.6 THE IMPORTANCE OF THE GENERALIZED 
SYSTEM OPERATIONS MODEL

The System Operations Model serves as a high-level framework that orchestrates the totality of
system synchronized to a time-based schedule. Operations in the model are performed by one 
of more of the system elements (EQUIPMENT, PERSONNEL, FACILITIES, etc.). The allocation
of these operations to the system elements is important from several perspectives.

Specification Developer’s Perspective

From a specification developer’s perspective, the System Operations Model construct provides the
infrastructure for working with customers and Users to capture, organize, and specify system
requirements. Operational capabilities and performance decomposed and derived from this infra-
structure can be translated into text requirements for system or lower level specifications.

Referral For more information about translating operational capabilities into specification
requirements, please refer to Chapter 32 Specification Development Practices.
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Specification Analyst Perspective

From a system analyst’s perspective, the System Operations Model construct can be used to as an
infrastructure to assign existing specification requirements for specific operations. If each System
Operations Model operation is decomposed into hierarchical levels of sub operations, the system
analyst can easily find the holes representing missing requirements or the need for clarification.

Author’s Note 18.3 Properly trained system engineers and others who develop systems (prod-
ucts, organizations, services, etc.) understand and appreciate the importance of capturing Acquirer
and User community expectations of system capabilities, behavior, and performance based on how
the system will be used. The System Operations Model, as a high level of system abstraction, serves
as the top-level infrastructure to define how the system is to be operated. Using the model as a
framework, system operational capabilities and performance can be easily specified. System oper-
ational analysis enables us to decompose each of the system life cycle operations into successively
lower level tasks and activities, each of which is characterized by a specific system capability,
behavior, and performance.

Author’s Note 18.4 Many untrained specification writers focus exclusively on Operation 10.0
Conduct Mission. Even worse, they employ the feature-based approach by specifying features of the
system for Operation 10.0. As human products of electrical, mechanical, and software disciplines,
engineers of this type immediately focus on their “comfort zone,” physical system hardware and soft-
ware requirements and solutions. As a result the specifications often fall short of complete system
requirements coverage as noted by the absence of mission requirements for Operations 3.0 through
13.0 and 16.0 through 19.0. Even within Operation 10.0 Conduct Mission, these writers focus only
on specific physical features without consideration for system phases, modes, and states when using
cases and scenarios, and so on. As a result, many requirements are missed or misplaced.

1. Despite the shortcoming noted in the previous points, standard system specification outlines
such as the former MIL-STD-490A tend to force the specification developers to at least par-
tially consider these missing steps (Operations 3.0–13.0 and 16.0–19.0) in areas such as
Design and Construction Constraints.

2. Based on the author’s experience, competent systems engineers begin their systems analy-
sis work with the System Operations Model or some version tailored specifically for their
system application and User needs. This statement serves as a key indicator of the train-
ing and maturity level of system engineers. Application of the System Operations Model
enables you to sort out the true system engineers from the “wannabes” and the level of risk
associated with their position on the program.

18.7 GUIDING PRINCIPLES

In summary, the preceding discussions provide the basis with which to establish the guiding prin-
ciples that govern development of the System Operations Model.

Principle 18.1 Every human-made system has its own unique System Operations Model that
represents HOW the User deploys, operates, supports, and phases out the MISSION SYSTEM.

Principle 18.2 Each MISSION SYSTEM operation or task and its supporting system elements
either adds value and contributes to achieving a phase-based performance objective or not; if not,
eliminate it!
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Principle 18.3 Synchronize every System Operation Model operation or task to a 
performance-based Mission Event Timeline (MET).

Principle 18.4 Every System Operation Model operation or task represents a system use case;
each use case represents a capability that must produce a defined outcome while coping with one
or more most likely or probable OPERATING ENVIRONMENT scenarios.

18.8 SUMMARY

The preceding discussions represent the embryonic, conceptual views of how the User intends to use the
system. The operations can be translated into explicit system level capabilities and performance requirements.
These requirements should ultimately be allocated to the system elements, the EQUIPMENT, PERSONNEL,
FACILITIES, and so on. Our next discussion will decompose these operations into greater levels of detail via
system phases, modes, and states of operation. We will thus begin to narrow, bound, and specify system capa-
bilities and performance required of each of the system elements to support the ConOps operational tasks.

Author’s Note 18.5 As we stated earlier, it is impractical to illustrate all conceivable applications of
systems. Our discussion over the past few pages has been intended to provide a basic orientation and aware-
ness that will stimulate your thought processes and enable you to translate these approaches into your own
business domain systems.

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new system selection, apply your knowledge derived from this chapter’s topical
discussions.

(a) Apply the System Operations Model to the selected system to determine which operations apply.

(b) Does the system have operations that are not identified in the model?

(c) Using the System Operations Model as the initial starting point, tailor the model to the system and its
application.

(d) As a sanity check, map each use case to the System Operations Model operations. For those opera-
tions that are not addressed by a use case, is the set of use cases deficient? If the User did not have
resource constraints, how would you address the deficiencies with the User?

ORGANIZATIONAL CENTRIC EXERCISES

1. Research your organization’s command media for direction and guidance in the development of the system
Concept of Operations (ConOps) or operational concept description (OCD).

(a) What requirements are levied on development of the ConOps or OCD?

(b) When does the media required development of either of these documents?

2. Contact a small, medium and large contract program within your organization.

(a) Does the contract require development of a ConOps or OCD?

(b) Does the program have a ConOps or OCD? If not, why not?

(c) If so, how did the ConOps or OCD benefit the program?

(d) Based on development of the ConOps or OCD, what would the program do differently next time?



Chapter 19

System Phases, Modes, 
and States of Operation

19.1 INTRODUCTION

Our discussion of the System Operations Model provides a workflow that illustrates HOW the User
might deploy, operate, and support a system or product to perform organizational missions. In
general, the workflow consists of objective-based sequential and concurrent operations, each requir-
ing two or more tasks to be accomplished. Tasks in turn are subdivided into subtasks, and so on.

As we probe deeper into the System Operations Model, our analysis reveals that it consists 
of three types of SYSTEM OF INTEREST (SOI) operations. These operations are required to: 
1) prepare for a mission, 2) conduct and support a mission, and 3) follow-up after the mission.
These SOI operations are performed by the integrated efforts of the MISSION SYSTEM (s) and
the SUPPORT SYSTEM.

When a system is fielded, Users learn the basics of system operations that include HOW to
employ a system, product, or service during these phases of operation via user’s guides, reference
manuals, and checklist procedures. Each phase of operation, which is assigned objectives to be
accomplished, consists of embedded modes of operation. Each mode of operation represents User
selectable options available to perform specific mission operations and tasks. Users also learn about
EQUIPMENT capabilities, safe operating procedures, and performance limitations available to
support these operations and tasks. WHAT the User sees are the results of system development;
however, they do not reflect the highly iterative, time-consuming analysis and decision making that
the SE design process requires to produce these results.

Our discussion in this chapter introduces the concept of system phases, modes, and states of
operation. We build on the foundation of use cases and use case scenarios and System Operations
Model to illustrate how SEs:

1. Establish phases of operation.

2. Derive modes of operation from use cases.

3. Derive system architectural configurations and interfaces that represent the system’s state
of operation.

Given a foundation in HOW a system is organized, we explore how modal transitions occur within
and between system phases of operation. Finally, we illustrate how modal capabilities are accu-
mulated and integrated as physical configurations or states of the architecture to support User phase-
based objectives.

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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What You Should Learn from This Chapter

• What is a phase of operation?

• What is the objective of the pre-mission phase of operation?

• What is the objective of the mission phase of operation?

• What is the objective of the postmission phase of operation?

• What is a mode of operation?

• What is a state of operation?

• What is the difference between an operational state and a physical state?

• What are the relationships among phases, modes, and states of operation?

• How do use cases and scenarios relate to modes of operations?

• What is a modal triggering event?

Definitions of Key Terms

• Mode of Operation An abstract label applied to a collection of system operational capa-
bilities and activities focused on satisfying a specific phase objective.

• Phase of Operation Refer to definition provided in Chapter 16 System Mission Analysis.

• State of Operation The operational or operating condition of a SYSTEM OF INTEREST
(SOI) required to safely conduct or continue its mission. For example, the operational state
of an aircraft during take-off includes architectural configuration settings such as wing flap
positions, landing gear down, and landing light activation.

• State “A condition or mode of existence that a system, component, or simulation may be
in; for example, the pre-flight state of an aircraft navigation program or the input state of
given channel.” (Source: IEEE 610.12-1990)

• State Diagram “A diagram that depicts the states that a system or component can assume,
and shows the events or circumstances that cause or result from a change from one state 
to another.” (Source: IEEE 610.12-1990) State diagrams are also called state transition 
diagrams.

• State Machine A device that employs a given configuration state to perform operations 
or tasks until conditions or an external triggering event causes it to transition to another 
configuration state.

• Triggering Event An external OPERATING ENVIRONMENT stimuli or cue that causes
a system to initiate behavioral response actions that shift from a current mode to a new mode
of operation.

19.2 SYSTEM PHASES, MODES, AND STATES RELATIONSHIPS

To facilitate your understanding of system phases, modes, and states of operation, let’s establish
their context using the entity relationship framework shown in Figure 19.1.

Author’s Note 19.1 The following description depicts the results of a highly iterative analysis
of system phases, modes, and states that may be very time-consuming, depending on system com-
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plexity. In the list there are included subphases and submodes of operation, although most systems
do not employ these features. They are provided here for illustration purposes for those systems
that do employ those terms.

1. Each phase of operation (1):
a. Consists of at least one or more modes of operation (2).
b. Allows application of at least one or more use cases (3).
c. May consist of at least two or more subphases of operation (4).

2. Each subphase of operation (4) (if applicable) is:
a. An element of a higher level phase of operation (1).
b. Accommodates at least one or more use cases (3).
c. Supported by at least one or more modes of operation (2).

3. Each use case (3) is:
a. Applicable to at least one or more phases of operation (1).
b. Analytically abstracted into at least one or more higher level modes of operation (2) or

into submodes of operation (5).
c. May require one or more physical configurations (7).

4. Each mode of operation (2):
a. Is unique to one and only one phase of operation (1).
b. Accommodates at least one or more use cases (3).
c. Supported by at least one or more physical configurations (7).

5. Each submode of operation (if applicable) is:
a. Unique to one and only one mode of operation (2).
b. Accommodates at least one or more use cases (3).
c. Supported by at least one or more states of operation (6).
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6. Each state of operation (6):
a. Supports at least one or more modes of operation (2) or submodes of operation (5).
b. Consists of at least one or more physical configurations (7).

7. Each physical configuration (7) is:
a. Characterized by the system/item architecture, interfaces, and settings.
b. Unique to a state of operation (6).
c. Employed by at least one or more use cases (3).

Author’s Note 19.2 Since our focus here is on general relationships of system phases, modes,
and states of operation, Figure 19.1 is presented with those key elements. As we will see in Chapter
21 System Operational Capability Derivation and Allocation, the linkages between use cases,
modes and states of operation, and physical configuration states (i.e., the physical design solution)
are accomplished via required operational capabilities that lead to performance requirements. The
subject of phases, modes, and states is often confusing; this is because it is complicated by people
who often misapply the terms. Therefore, we defer the required operational capabilities dimension
until later.

Given this framework of entity relationships, let’s begin our discussion with system phases of 
operation.

19.3 UNDERSTANDING SYSTEM PHASES OF OPERATION

Our discussion of the System Operations Model introduced a key concept in understanding how
human-made systems typically operate. The operations presented in Figures 18.1 and 18.2 provide
an initial framework for organizing and collecting system capability requirements as well as 
developing the initial system engineering design. Let’s explore the relationship of phases and 
operations.

Operational Phase Objectives

If we analyze and assimilate the set of system operations and their objectives, we can partition the
operations into three distinct classes of abstraction: pre-mission, mission, and postmission operations.
Analytically we refer to these abstractions as phases of operation.

Author’s Note 19.3 All human-made systems have at least three phases of operation. Although
some systems may be placed in storage, keep in mind that the operative term is “operation.” Since
the system does not perform an action, storage represents an action performed on a system and is
therefore not considered an operation.

Pre-mission Phase Objective. The objective of the pre-mission phase of operations, at a
minimum, is to ensure that the SYSTEM OF INTEREST (SOI) (i.e., MISSION SYSTEM and
SUPPORT SYSTEM) is fully prepared, configured, operationally available and ready to conduct
its organizational mission when directed.

Mission Phase Objective. The objective of the mission phase of operations, at a minimum, is
to conduct the mission SYSTEM OF INTEREST (SOI). Besides achieving the SOI’s mission
objectives, one must mitigate mission risks and ensure the system’s safe operation and return.

Post-mission Phase Objective. The objectives of the postmission phase of operations, at a
minimum, are to:
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1. Analyze mission outcome(s) and performance objective results.

2. Replenish system consumables and expendables, as applicable.

3. Refurbish the system.

4. Capture lessons learned.

5. Analyze and debrief mission results.

6. Improve future system and mission performance.

To see how phases of operation may apply to a system, consider the example of an automobile trip.

EXAMPLE 19.1

During the pre-mission phase prior to driving an automobile on a trip, the driver:

1. Services the vehicle (oil and filter change, new tires, repairs, etc.).

2. Fills the tank with gasoline.

3. Checks the tire pressure.

4. Inspects the vehicle.

5. Loads the vehicle with personal effects (suitcases, coats, etc.).

During the mission phase following a successful pre-mission checkout, the driver:

1. Departs on the trip from the point of origination.

2. Drives defensively in accordance with vehicle safe operating procedures.

3. Obeys vehicular laws.

4. Navigates to the destination.

5. Periodically checks and replenishes the fuel and coolant supply enroute.

6. Arrives at the destination.

During the post-mission phase on arrival at the point of destination, the driver:

1. Parks the vehicle in a permissible space.

2. Unloads the vehicle.

3. Safely secures the vehicle until it is needed again.

Subphases of Operation

Some complex systems may employ subphases of operation. Airborne systems such as aircraft and
missiles have phases of flight within the mission phase. Phases of flight for an aircraft system might
include: 1) push back, 2) taxi, 3) take-off, 4) climb, 5) cruise, 6) descend, 7) land, 8) taxi, and 9)
park. Using the phases of operation as the frame of reference, the phases of flight would be equated
to subphases of the mission phase of operation. Each of the subphases focuses on specific aspects
and objectives that contribute to the overall aircraft system objective: transport passengers safely
and securely from a Point of Origination or Departure to a Point of Termination or Destination.

Guidepost 19.1 Once the systems phases of operation are established, we can proceed with
aligning the use cases with the respective phases.

Aligning Use Cases with System Phases of Operation

Once the system’s use cases have been identified, SEs align each use case with a specific phase of
operation as shown in Table 19.1. Each use case in the table is associated with a phase of operation.
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19.4 UNDERSTANDING SYSTEM MODES OF OPERATION

Operationally, modes of operation represent options available for selection at the User’s discretion,
assuming certain conditions and criteria are met. Consider the following example:

EXAMPLE 19.2

An automobile driver, assuming certain conditions and criteria are met, has the following modes of operation
available for discretionary selection: PARK, REVERSE, NEUTRAL, DRIVE, and LOW. While the vehicle
is in the DRIVE mode, the driver is permitted by the vehicle’s design to shift to the REVERSE mode subject
to satisfying the following conditions and criteria:

1. The vehicle is at a safe location conducive to the action permissible under law and safe driving rules.

2. The vehicle is safely stopped and the brake pedal is depressed.

3. The driver can view on-coming traffic from all directions.

4. The action can be safely completed before other traffic arrives.

Deriving Modes of Operation

When we analyze use cases aligned with specific phases of operation, we soon discover that some
use cases share an objective or an outcome. Where there is sufficient commonality in these sets or
clusters of use cases that share an objective, we abstract them into higher level modes of opera-
tion. Figure 19.2 illustrates how use cases (UCs) are abstracted into modes of operation.

Author’s Note 19.4 You may discover that some modes can be further abstracted into higher
level modes. Where this is the case, we establish a modal hierarchy and designate submodes within
a mode of operation. For simplicity, we assume that all use cases reside at the same level in the
Figure 19.2 illustration.
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Table 19.1 Assignment of use cases to specific system phases of operation

Use Case Use Case Description Phase of Operation
(UC)

Pre-mission Phase Mission Phase Postmission Phase

UC 1 (Description) •
UC 2 (Description) •
UC 3 (Description) •
UC 4 (Description) •
UC 5 (Description) •
UC 6 (Description) •
UC 7 (Description) •
UC 8 (Description) •
UC 9 (Description) •
UC 10 (Description) •
UC 11 (Description) •
UC 12 (Description) •
UC 13 (Description) •
UC 14 (Description) •



Author’s Note 19.5 In some cases there are no specific guidelines for identifying modes of
operation. Independent teams of equally capable SE analysts and developers can then hypotheti-
cally design and produce a system or product that complies with a set of User capability and per-
formance requirements. Each team may nevertheless have variations of system modes of operation.
The point is to learn to recognize, understand, and establish a team-based consensus concerning
system phases and modes of operation. Then, together, the team can apply common sense in
abstracting operations into modes of operation.

Understanding the Modes of Operation Construct

Modes of operation can be depicted graphically or in tabular form. Since SEs communicate with
graphics, we will employ the basic construct shown in Figure 19.3.

The construct is divided into pre-mission, mission, and postmission phases of operation to
facilitate a left to right control flow. Although each of these phases of operation may consist of one
or more modes of operation, only one mode is shown in each phase for simplicity.

Other than a general left-to-right cyclical workflow (pre-mission to mission to postmission),
modes of operation are both time dependent and time independent. Many systems establish Mission
Event Timelines (METs) that constrain: 1) the pre-mission-to-mission transition, 2) mission-to-
post-mission transition, and 3) post-mission-back to pre-mission transition during the system turn-
around. Within each mode of operation the MET event constraints may be further subdivided.

Understanding System Modal Transitions

The preceding discussion highlights the identification of system modes of operation by phase and
the transition diagram used to modal interactions. Based on this understanding, we are now ready
to investigate the stimulus or triggering events and conditions that initiate transition from one mode
to another.
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Note that each mode in Figure 19.3 is interconnected via curved lines with arrows that repre-
sent transitions from one mode to another. These transitions are initiated by pre-defined triggering
events or conditions.

Our discussion here focuses on the entity relationships of phases, modes, use cases, use case
scenarios, and required operational capabilities. The question is: What causes a system, product,
or service to transition from one phase, mode, and use case to another during a mission? This
brings us to a discussion of triggering events.

Triggering Event-Based Transitions. Most systems, as state machines, are designed to cycle
within a given mode of operation until some external stimulus such as an operator initiates a tran-
sition to a new mode of operation. The occurrence of the external stimulus is marked as a trigger-
ing event. As discussed earlier, the triggering event may be data or interrupt driven whereby:

1. The system receives data from an external system.

2. A system User enters/inputs data into the system in accordance with prescribed Standard
Operating Practices and Procedures (SOPPs) or rules of engagement to transition to the
next phase or mode of operation.

Data-driven triggering events may be synchronous (i.e., periodic) or asynchronous (i.e., random)
occurrences. When making the transition from one mode to another, the User may impose specific
time requirements and constraints.

Figure 19.4 illustrates a simple, two-mode system that transitions from Mode 1 to Mode 2
when triggering Event 1 occurs and from Mode 2 back to Mode 1 on triggering Event 2. Trigger-
ing event transitions from Mode 1 to Mode 2 and back to Mode 1 require different sets of assump-
tions and conditions.

The graphic depicts the bidirectional transition as two separate transitions, T1 and T2. For T1,
some external triggering Event t1 initiates the transition from Mode 1 to Mode 2; transition to Mode
2 is completed at Event t2. Some time later, another stimulus triggers Event t3, which initiates a
transition from Mode 2 to back to Mode 1; transition to Mode 1 is completed by Event t4.
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Author’s Note 19.6 The system development team must establish the convention for transi-
tioning from one mode of operation to another. For example, do you establish an entry criterion
for the next mode or an exit criterion for the current mode? Typically a mode does not have both
entry and exit criteria. Why? The transition from the current mode, n, to the next mode, n + 1, is
a single transition. You do not specify the exit criterion for the current mode and then specify that
same condition as the entry criterion for the other side of the modal interface. In most applica-
tions, the best approach is to define only the exit criterion for the current mode of operation.

Describing Modal Transitions. Once you establish a conceptual view of the system phases and
modes, the next step is to characterize the triggering events and conditions for initiating the modal
transitions. One mechanism for accomplishing this is the mode transition table shown in Table 19.2.

In general, Table 19.2 depicts how a system transitions from its current mode: leftmost column
to the next mode, which is the rightmost column. Interior columns define information relating to
the transition conditions. Each row in the table represents a single mode of operation and includes
a numerical transition ID. Transition information includes: identification of the triggering source
or event, the type of event—asynchronous or synchronous—and any transition resource or time
constraints for completion of the transition. Consider the following example from Table 19.2.

EXAMPLE 19.3

If the system is in the OFF Mode, placement of the Power Switch in the ON position (e.g. 
ASYNChronous triggering event) initiates Transition ID T1. Transition from the OFF MODE to the POWER-
UP INITIALIZATION Mode is constrained to 30 seconds maximum. This leads to various power system sta-
bilization capability and performance requirements.

19.4 Understanding System Modes of Operation 197

Mode 1 Mode 2

T1

T2

System

Transition

Transition

Event 1 Event 2

Event 3Event 4

External
Stimulus or Cue

Time Constraints

External
Stimulus or Cue

Figure 19.4 Modal Transition Loop Construct



Author’s Note 19.7 Note that the process of identifying system modes of operation and modal
transitions is highly iterative and evolves to maturity. Since subsequent technical decisions are
dependent on the system modes decisions, your role as an SE is to facilitate and expedite team 
convergence.

Analyzing Mode Transitions. Modal transitions represent interfaces whereby control flow is
passed from one mode to another. While the modes characterize SYSTEM level operations, there
may be instances whereby different PRODUCTs or SUBSYSTEMs provide the mode’s primary
capabilities. If separate system development teams are addressing the same modes, make sure that
both teams operate with the same set of assumptions and decisions. Otherwise, incompatibilities
will be created that will not surface until system integration and test. If left undiscovered and
untested, a potential hazard will exist until field system failures occur, sometimes catastrophically.

The challenge for SEs is to ensure compatibility between any two modes such that initializa-
tions and conditions established for one mode are in place for the successor mode processing. The
intent is to ensure that modal transitions are seamless. How do you ensure consistency? Document
the modes of operation, Mission Event Timeline (MET), and modal transitions in the system’s
ConOps or operational concept description (OCD) document.

Final Thoughts about Modal Transitions. In our discussion of system operations and
applications, we highlighted various types of system applications—single use, reusable, recyclable,
and so forth. Most reusable systems are characterized by cyclical operations. Cyclical systems have
a feedback loop that typically returns workflow or control flow back to the pre-mission phase of
operation, either powered down or prepared for the next mission.

Now consider a system such as the Space Shuttle’s External Tank (ET). From a mission per-
spective, the ET’s fuel resource is a consumable item and the ET’s entity is an expendable item.
At a specific phase of flight and MET event, the ET is jettisoned from the Orbiter Vehicle, tumbles
back toward Earth, and burns up on reentry into the atmosphere.

In the case of an expendable system such as the ET, one might expect the modes of operation
to be sequential without any loop backs to previous modes. However, from an SE design perspec-
tive, ET operations involve systems that may require cycling back to an initial mode due to
“scrubbed” launches. Therefore, expendable systems require modes of operation that ultimately
transition to a point of termination mode—such as REENTRY.
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Table 19.2 Modal transition table example

Current Triggering Triggering Event Type Transition Next Mode
Mode n Event Event Constraints n + 1

Condition (seconds)

OFF T1 Power ASYNC 30 Sec. POWER-UP/
Switched ON INITIALIZATION

ACTIVATE T2 I/O Device ASYNC 3 Sec. CONFIGURE
ACTIVATE T6 I/O Device ASYNC 3 Sec. NORMAL

OPERATIONS
CONFIGURE T4 I/O Device ASYNC 3 Sec. POWER-UP

INITIALIZATION
CONFIGURE T3 I/O Device ASYNC 3 Sec. CALIBRATE
CONFIGURE T5 I/O Device ASYNC 3 Sec. POWER-UP

INITIALIZATION
Etc.



Generalized Modes of Operation for Large, Complex Systems

The preceding discussions addressed a simple product example as a means of introducing and illus-
trating system modes of operation. When you investigate the modes of operation for large, complex,
multipurpose, reusable systems, additional factors must be considered.

EXAMPLE 19.3

Example considerations include reconfiguration, calibration, alignment, replenishment of expendables, and
consumables.

As in the case of the System Operations Model, we can define a template that can be used as an
initial starting point for identifying classes of modes.

Generalized Modes of Operation Template

Theoretically we can spend a lot of time analyzing and abstracting use cases into a set of modes
by phase of operation. Once you develop a number of systems, you soon discover that system
modes are similar across numerous systems and you begin to see common patterns emerge. This
leads to the question: Rather than reinvent via modal use case analysis the modes for every system,
WHY NOT explore the possibility of starting with a standard set of modes and tailoring them to
the specific system application? If this is true what are the common set of modes?

Table 19.3 provides a listing of common phase-based modes of operation. Further analysis
reveals that these modes have interdependent relationships. We illustrate these relationships in
Figure 19.5. Is this template applicable to every system as a starting point? Generally, so. Recog-
nize this is simply a starting point, not an end result.

19.5 UNDERSTANDING SYSTEM STATES OF OPERATION

Scientifically, the term state refers to the form of physical matter, such as solid, liquid, or gas. In
this context a state relates to the structure—meaning a configuration—and the level of activity
present within the structure. Therefore, a state:
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Table 19.3 Generalized modes of operations by phase

Phase of Operation Potential Mode of Operation

Pre-mission Phase* • OFF mode (coincides with state)
• POWER-UP /INITIALIZATION mode
• CONFIGURE mode
• CALIBRATE/ALIGNMENT mode
• TRAINING mode
• DEACTIVATE mode

Mission Phase* • NORMAL operations mode
• ABNORMAL operations mode

Postmission Phase* • SAFING mode
• ANALYSIS mode
• MAINTENANCE mode

* Some systems may permit MAINTENANCE mode(s) in all three phases.



1. Should be observable, testable, measurable, predictable, and verifiable.

2. May be STATIC or DYNAMIC—having an infinite number of time-variant states.

Author’s Note 19.8 The term “infinite states” refers to situations, such consumables, whereby
the amount of the resource remaining represents a physical state. Examples include fluid levels,
brake pad wear, and tire wear. SE, as a discipline, builds on the physical configuration theme to
define the STATE of a system, product, or service. Therefore, STATE encompasses the system’s phys-
ical architecture, such as interfaces and configuration settings, and a range of acceptable tolerances
of physical components at a given instance in time or time period.

Operational versus Physical States

The concept of states of operation is often confusing because of two contexts: operational versus
physical. Let’s describe each of these.

Operational States. We describe the state of a system or product in simple terms such as ON
(operating) and OFF (nonoperating). Organizations often use the term state to represent the state
of readiness or operational readiness of the integrated set of system elements—such as
PERSONNEL or EQUIPMENT. By inference, this means that the integrated system and each
system element is:

• Physically Configured Architectures and interfaces with a capability necessary and suffi-
cient to conduct specific types of mission(s).

• In acceptable operating condition or health at a given point in time sufficient to safely and
reliably accomplish the mission and its objectives.

Operating states are generally identified by terms with “-ed” or “-ing” suffixes. Consider the fol-
lowing examples:
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EXAMPLE 19.4

The operational states of an aircraft (EQUIPMENT, crew, etc.) include parked, taxiing, taking off, ascend-
ing, cruising, descending, and landing.

EXAMPLE 19.5

A lawnmower having an adequate supply of fuel and oil and tuned for efficient operation can be described in
the following operational states:

1. STOPPED/READY In a state of readiness for the homeowner (the User) to mow the lawn or store the
mower.

2. IDLING Engine operating with blade disengaged; mower standing still.

3. MOWING Engine operating with blade engaged; mower moving across lawn mowing grass.

4. STORAGE Stored with the fuel drained from the tank, etc.

EXAMPLE 19.6

Consider an automobile operating on a flat road surface. When the driver configures the vehicle in the DRIVE
(mode), the vehicle’s physical design responds to the driver’s inputs. In response, the vehicle configures its
subsystems to respond to the stimulus accordingly. The drive train—meaning the engine and transmission—
are designed to allow the driver to control the following vehicle operational states: PARKED, STOPPED,
ACCELERATING, CRUISING, DECELERATING, and BRAKING.

Physical Configuration States. The OPERATIONAL state of a system or product may consist
a number of allowable PHYSICAL configuration states. Building on our previous discussion,
consider the following example:

EXAMPLE 19.7

An automobile’s physical system design consists of several subsystems such as drive train, electrical, environ-
mental, fuel, and entertainment. Subject to some prerequisite conditions, the automobile’s design allows each
of these subsystems to operate simultaneously and independently. Thus, when the vehicle is in an operational
state—such as STOPPED or CRUISING—the driver can choose to:

1. Turn the sound system ON or OFF.

2. Turn the windshield wipers ON, OFF, or change their wiping interval.

3. Adjust the heating/cooling temperature level.

4. Adjust seat positions.

5. Apply force to or release the accelerator.

6. Apply braking.

Each of these physical adjustments ranges from finite to an infinite number of physical configura-
tion states.

The preceding example illustrates WHY a system’s operational state includes one or more
physical configuration states. This leads to the question: What is the relationship between system
phases, modes, operational states, and physical configuration states of operation? As illustrated in
Figure 19.6, we can define the entity relationships via a set of design rules listed in Table 19.4.

To see how these entity relationships are applied, consider the following example:
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EXAMPLE 19.8

The driver of an automobile places the vehicle in DRIVE (mode) and starts moving forward (operational state),
both allowable actions. As the vehicle moves forward (operational state) at a threshold speed, the vehicle’s
computer system automatically locks (allowable action) the doors to prevent passengers from inadvertently
opening the doors and falling from the vehicle (prohibited action).
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Table 19.4 System operations, phases, modes, operational states, and physical configuration states entity
relationship rules

ID Entity Entity Relationship Rules

19.1 System operations System operations consists of at least three phases of operation.

19.2 Phases of operation Each phase of operation consists of at least one or more use case-based
modes of operation.

19.3 Modes of operation Each mode of operation controls of at least one or more system
operational states.

19.4 Operational states Each system operational state is supported by at least one or more 
physical states of operation.

19.5 Physical configuration Each physical configuration state of operation is characterized by at least
states one or more allowable actions and at least one or more prohibited

actions.



19.6 EQUATING SYSTEM CAPABILITIES TO MODES

The preceding discussions enable us to link system operations, phases, modes, and states. Ulti-
mately these linkages manifest themselves in the deliverable system that has allowable and pro-
hibited actions as documented in the User’s manual for safe and proper operating practices.
Allowable actions represent physical capabilities that the system provides subject to contract cost,
schedule, technology, and risk constraints.

In our discussion of the system modes of operation, we considered the need to organize and
capture capabilities for a given system element, OPERATING ENVIRONMENT, and design con-
struction and constraints. For each type of capability, we described HOW operational capabilities
are:

1. Represented by aggregations of integrated sets of requirements.

2. Documented in the SPS.

3. Allocated and flowed down to multiple system levels of abstraction.

If we analyze the System Capabilities Matrix from a mode of operation perspective, the matrix
reveals combinations of system elements that must be integrated to provide the required operational
capabilities for each mode of operation. Each of these combinations of elements and interactions
are referred to as the system’s physical configuration state or architecture. Thus each mode of oper-
ation is accomplished by architectural configurations of system elements. Let’s explore this point
further by using Figure 19.7.

The icon in the upper left side of the chart symbolically represents the System Capabilities
Matrix. Note that an arrow links each of the horizontal rows of capabilities for each mode of oper-
ation to a specific Physical (Architecture) State. Thus, for the POWER OFF mode, there is a unique
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physical architecture required to support the mode. Similarly, for the NORMAL OPERATIONS
mode, each system entity within each level of abstraction has a unique architectural configuration
that is integrated to form the Normal Operations mode configuration.

Concept Synthesis

In summary, Figure 19.7 illustrates how required operational capabilities flow from the System
Capabilities Matrix into the SPS and subsequently are allocated to and provided by the system
architecture physical states of operation for each mode of operation.

19.7 GUIDING PRINCIPLES

In summary, the preceding discussions provide the basis with which to establish guiding principles
that apply to development of system phases, modes, and states of operation.

Principle 19.1 Every system phase of operation consists of at least two or more User-selectable
modes of operation.

Principle 19.2 Every system mode of operation represents a capability to accommodate one or
more use cases, each with one or more probable scenarios.

Principle 19.3 Each system mode of operation requires a pre-defined set of condition-based trig-
gering event criteria for transitioning to another mode of operation.

Principle 19.4 Every system mode of operation requires at least one or more capability-based
operational states to accomplish its performance-based objective.

Principle 19.5 Each operational state is supported by at least one or more physical configura-
tion states of operation.

Principle 19.6 Each physical state of operation is characterized by at least one or more allow-
able actions and at least one or more prohibited actions.

19.8 SUMMARY

We have seen how system modes of operation are supported by the system element capabilities. Capabilities,
in turn, are documented as a set of capabilities with bounded levels of performance in the System Performance
Specification (SPS), flowed down and allocated to system elements levels of abstraction within the various
levels of its abstraction.

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new system selection, apply your knowledge derived from this chapter’s topical
discussions.

3. For each of the following types of systems, identify the various states of operation.

(a) Data communications
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(b) Aircraft operations

(c) Computer system states

(d) Package delivery service

(e) Organization operations

(f) Building environmental control

(g) Food service operations

(h) Natural environment

(i) Vehicle operations
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Chapter 20

Modeling System and 
Support Operations

20.1 INTRODUCTION

Our previous discussion introduced the System Operations Model as the foundation for identify-
ing, organizing, and conceptualizing the capabilities of the SYSTEM OF INTEREST (SOI). The
results of this exercise can be translated into System Performance Specification (SPS) by the
Acquirer or employed by a System Developer to analyze the SPS.

Referral For more information about analyzing specifications, refer to the discussion on Speci-
fication Analysis practices in Chapter 28.

Once the SOI’s capabilities are identified, the key question is: WHO is accountable for perform-
ing those capabilities and achieving the associated level of performance? More specifically, are
they performed by the MISSION SYSTEM or SUPPORT SYSTEM or both?

Once we understand HOW the MISSION SYSTEM and SUPPORT SYSTEM interact, we can
allocate the interactions as constraints down to each entity’s system elements (PERSONNEL,
EQUIPMENT, etc.). Ultimately system element interactions will be flowed down as constraints to
the EQUIPMENT and its supporting HARDWARE and SOFTWARE elements.

This section explores the MISSION SYSTEM and SUPPORT SYSTEM interactions. Our dis-
cussions employ a matrix mapping technique to illustrate how system operations within the system
Concept of Operations (ConOps) are allocated to pre-mission, mission, and postmission phases.
Since MISSION SYSTEM and SUPPORT SYSTEM operations are application dependent, we
introduce a method for modeling the operations. The discussion employs several examples to illus-
trate application of the method.

Author’s Note 20.1 The discussions in this chapter establish a base for understanding how the
system will be applied to perform missions and interactions. You will find people who believe this
is a case of analysis paralysis. Granted, you have to strike a BALANCE between LEAF level analy-
sis details and being able to “see the forest.” Those who diminish the value of defining system
interactions are also the ones who:

1. Carry the information around in their heads.

2. Fail to document anything.

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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3. Do not communicate their understanding to others.

4. Complain that everyone else should know what they know about the system.

Remember, as an SE, one of your many roles is simplification that leads to decision making and
immediate communications about those decisions. Complex system designs are simplified by
decomposition and analysis; documentation is the preferred method for capturing engineering deci-
sion making for communications.

What You Should Learn from This Chapter

1. What are some types of system applications?

2. What are dedicated use operations?

3. What are reusable/recyclable systems?

4. What is means by a system’s control flow?

5. What is means by a system’s data flow?

6. How are control flow and data flow related?

7. What are system operations cycles?

20.2 MISSION PHASES AND OPERATIONS

Our previous discussion of the generalized System Operations Model provided conceptual insights
into the system Concept of Operations (ConOps). The key question is: WHAT system elements are
accountable for providing the capabilities required to perform these operations?

Referral For more information about the generalized system operations model, refer to the dis-
cussion of System Concept of Operations in Chapter 18.

Recall the ConOps tasks depicted in Figures 18.1 and 18.2. We observed that the tasks can be 
ORGANIZED into three types of system phases and operations: 1) pre-mission operations, 2)
mission operations, and 3) post-mission operations. Each of these mission phase operations includes
concurrent MISSION SYSTEM Operations (e.g., aircraft) and SUPPORT SYSTEM Operations (e.g.,
aircraft ground-based flight controllers).

To better see how the operational tasks in Figures 18.1 and 18.2 relate to the operations cate-
gories, let’s employ a matrix mapping technique that enables us to relate System Operations Model
operations to the MISSION SYSTEM and SUPPORT SYSTEM and their respective phases of 
operation.

Equating System Operations to MISSION SYSTEM and
SUPPORT SYSTEM

Figure 20.1 shows the numerous concurrent MISSION SYSTEM and SUPPORT SYSTEM oper-
ations that occur throughout the pre-mission, mission, and post-mission phases. Concurrent oper-
ations require synchronized, simultaneous interactions between the MISSION SYSTEM (e.g., the
Space Shuttle) and the SUPPORT SYSTEM (the ground/flight controllers, communications
systems, etc.). Interoperability between the MISSION SYSTEM and SUPPORT SYSTEM is crucial
to mission success. Recognize that Figure 20.1 is simply an analytical tool to understand which
operational tasks are performed by the MISSION SYSTEM and SUPPORT SYSTEM by opera-
tional phase.
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Modeling SYSTEM OF INTEREST (SOI) Operations

Once the logical entity relationships are identified between system elements, the next step is to
understand how the relationship interactions occur. We can do this by modeling the system element
interactions.

Figure 20.2 illustrates how a SYSTEM OF INTEREST (SOI) might operate relative its OPER-
ATING ENVIRONMENT. To keep the diagram simple, we depict Operation 1.0 (pre-mission oper-
ations) and Operation 3.0 (post-mission operations) as high-level abstractions. Operation 2.0 on
mission operations is expanded to a lower level of detail to depict Operation 2.1 on MISSION
SYSTEM operations and Operation 2.2 on SUPPORT SYSTEM operations.

Author’s Note 20.2 Based on the convention previously established, the OPERATING ENVI-
RONMENT interfaces (arrows) that touch the Operation 2.0 dashed boundary represent interfaces
or interactions with all embedded operations—operations 2.1 and 2.2, operation 4.1 (HIGHER
ORDER SYSTEMS interfaces) with Operations 2.1 and 2.2, and so forth.

This diagram illustrates two key points concurrently:

1. SOI operations cycle or loop sequentially from pre-mission to mission to post-mission
phases of operation.

2. The system interacts with its OPERATING ENVIRONMENT while performing these 
operations.

Regarding the second point, during the SOI’s mission phase the MISSION SYSTEM and the
SUPPORT SYSTEM interact continuously via physical contact, informational data exchanges, or
visually as indicated by the interconnecting, bidirectional arrow. To better understand these two
key points, let’s investigate this flow in detail.

1

3.0 Deploy System

4.0 Conduct Training Decision

= Reference to description

= Not Applicable

5.0 Mission Notification Decision

6.0 Configure System for Mission

7.0 Assess Mission Readiness

9.0 Mission Go-Ahead Decision

10.0 Conduct System Mission

13.0 Assess Mission & System Performance

14.0 Deactivate System Decision

16.0 Replenish System Decision

17.0 Conduct System Training

18.0 Redeploy System Decision

20.0 Perform System Maintenance

21.0 Deactivate / Phase-Out System

Pre-Mission Mission Post Mission
System Phase of Operation

MISSION
SYSTEM
Elements

SUPPORT
SYSTEM
Elements

MISSION
SYSTEM
Elements

SUPPORT
SYSTEM
Elements

MISSION
SYSTEM
Elements

SUPPORT
SYSTEM
ElementsOperational Task

#

Figure 20.1 Mapping Operational Tasks to MISSION SYSTEM and SUPPORT SYSTEM Elements as a Function of
System Phases of Operations
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Operational Control Flow and Data Flow

When you analyze systems, two types of flows occur: 1) control flow or work flow
and 2) data flow. Control flow or workflow enables us to understand how system operations are
sequenced. Data flows enable us to understand how information—such as electrical, optical, or
mechanical—is transferred or exchanged between the system entities. To illustrate these points,
let’s investigate the control flow and data flow aspects further.

Figure 20.3 depicts intersecting arrows on the left hand side and the SOI operations on the
right side. The vertical arrow symbolizes control flow; the horizontal arrow symbolizes data flow.
By convention, control flow or workflow sequences down the page from one operation to another;
data flow moves laterally back and forth across the page between system entities.

By this convention, control flow or work flow:

1. Proceeds from Initial/State to Operation 1.0, Pre-Mission Operations

2. Proceeds to Operation 2.0, Mission Operations

3. Proceeds to Operation 3.0, Post-Mission Operations

4. Proceeds to Final/State.

Cyclical systems may employ a feedback loop as indicated by the line from the Final/State deci-
sion block back to START. From a data flow perspective, information is exchanged between 
Operation 2.1 (MISSION SYSTEM Operations) and Operation 2.2 (MISSION SUPPORT
SYSTEM Operations) throughout Operation 2.0 (Mission Operations).

If we expand the MISSION SYSTEM and SUPPORT SYSTEM operational interactions to
include all phases of operation—pre-mission, mission, and post-mission, Figure 20.4 results. Each
of the phases of operation is expanded into concurrent MISSION SYSTEM and SUPPORT
SYSTEM operations.
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Figure 20.2 Concurrent Mission Operations
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Transitions between the pre-mission, mission, and post-mission phases are illustrated with deci-
sion control points: 1) Operation 1.3 (Conduct Mission?), 2) Operation 2.3 (Mission Complete?),
and 3) Operation 3.3 (Post-Mission Complete?) to represent cyclical loop back decision points. A
fourth decision control point, Operation 3.4 (Deactivate System?), is also included. If a system is
to continue active duty service, control flow or workflow passes back to Inital/State.
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20.3 UNDERSTANDING SYSTEM 
OPERATIONAL APPLICATIONS

When analyzing and designing systems, SEs need to understand how the User intends to operate
the system. Although every system exhibits areas of commonality at high levels of abstraction,
uniqueness occurs at lower levels based on User applications. These graphical illustrations repre-
sent only a few unique applications. You should analyze the types of products and services your
organization provides to identify how this discussion applies to your business domain.

Types of User Applications

User system applications and operations are categorized a number of ways. Examples include:

1. General use or multipurpose applications.

2. Dedicated use applications.

3. Types of stakeholders.

To better illustrate these categories, let’s explore some examples.

General Use or Multipurpose System Applications. General use or multipurpose system
applications refer to a MISSION SYSTEM that is developed for general application across a broad
spectrum of User missions and mission applications. Consider the following example:

EXAMPLE 20.1

General use or multipurpose system applications include desktop computers, automobiles, tables, and chairs,
and so on. Figure 20.5 provides a high-level model of an automobile’s operations.

Some systems, such as aircraft and computers, may be multipurpose and capable of being config-
ured for specific mission applications. Consider the following example:

EXAMPLE 20.2

A military aircraft platform is designed with standardized mechanical, electrical, and communications inter-
faces to accommodate a variety of payloads that enable the aircraft system aircraft and pilot—to perform
reconnaissance, air-to-air, air-to-ground, damage assessment, among the missions.

Dedicated Use System Application. When a system is configured for a specific type of
mission, we refer to the configuration as a dedicated use application. Consider the following
example:

EXAMPLE 20.3

A commercial aircraft may be configured for dedicated use in transporting ticketed passengers on charter flights
or have the seats removed for multi-use transportation of cargo.

Based on this discussion and examples, some SOIs are multi-use systems capable of being con-
figured for dedicated use applications. The act of reconfiguring or replenishing MISSION
RESOURCES for the system after each mission for new applications is referred to as cyclical
operations.



212 Chapter 20 Modeling System and Support Operations

Single-Use or Reusable System Applications. In general, most systems are either single
use or reusable. Single-use applications are those such as missile systems that have a single concept-
to-disposal operational life cycle. Reusable or recyclable applications refer to cyclical systems that
are used repeatedly with a defined life expectancy, such as the automobile. Consider the following
examples:

EXAMPLE 20.4

Single-use system applications include the Space Shuttle’s External Tank (ET), missiles and munitions, com-
mercial product packaging, and fireworks.

EXAMPLE 20.5

Reusable applications include the Space Shuttle’s Orbiter Vehicle (OV) and Solid Rocket Boosters (SRBs),
automobiles, and disposable cameras (i.e., from the consumer’s perspective).

Reusable systems typically require some level of replenishment and/or refurbishment after each
application or operational cycle to restore it to a state of readiness for the next mission. Reusable
systems must be designed to include technical considerations such as reliability, availability, main-
tainability, and safety.
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Types of Stakeholders. Types of Users influence system operational capabilities. Thus, a
MISSION SYSTEM may require capabilities to: 1) conduct actual missions and 2) serve as training
mechanisms when not conducting missions. Consider the following example:

EXAMPLE 20.6

Some systems such as aircraft used for training pilots may require capabilities to accommodate flight instruc-
tors and controls for the instructors. Automobile driving schools employ special vehicles that include an
instructor brake.

Modeling Business Operations

The preceding discussions focused exclusively on a SYSTEM OF INTEREST (SOI)—namely the
car and driver. Now, what about businesses that perform MISSION SYSTEM and SUPPORT
SYSTEM roles such as restaurants and car dealerships? From the business owner’s perspective,
the organization performs as a MISSION SYSTEM. In performing that role, the business must
provide systems, products, or services to customers in a SUPPORT SYSTEM role.

We can model these dual MISSION SYSTEM/SUPPORT SYSTEM roles by the simple model
shown in Figure 20.6 via operations A through n. In the model a customer enters the business via
Operation A, progresses through the workflow, and exits the shopping and dining experience via
Operation n. From the business perspective operations A through n represent concurrent operations
such as clothing, sporting goods, and lawn and garden tools. As a recyclable system, daily busi-
ness operations begin with the Initial State and conclude with Final State representing termination
of the day’s operations. Figure 20.6 illustrates a basic business operations model such as a restau-
rant, automobile dealership, amusement park, or photo processing LAB.
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Points to Ponder

The preceding paragraphs provided examples of general use, multipurpose, and dedicated use
system applications; single-use, multi-use, and reusable applications; and types of stakeholders. As
an SE, you may not always be able to delineate these types of systems easily. Your job will be to
make sure that all stakeholders have a clear and concise understanding about the semantics of usage
and the applications. To illustrate how these terms are stakeholder dependent, consider the follow-
ing example.

EXAMPLE 20.7

Disposable cameras illustrate a reusable MISSION SYSTEM that can be viewed from a number 
of different perspectives. A customer purchases a disposable camera, makes pictures, returns the camera to a
processing laboratory, and receives a set of prints. From the customer’s perspective, the camera—or MISSION
SYSTEM—is:

1. Single use with one operational cycle—namely one roll of film limited by frame count.

2. Disposable—namely returned to the processing laboratory.

From the processing laboratory perspective, the camera is viewed as:

1. Dedicated use—namely designed for specific film speed, aperture settings, etc.

2. Recyclable—namely replenished with film after each use for another consumer application,
assuming that the camera meets a set of technical “fitness for use” criteria.

Reusable or multi-use mission operations, maintenance, and training activities continue until a deac-
tivation order is received to transition the existing system from active duty service. When this
occurs, the existing system or capability is phased out over time, simultaneously with a phase-in
of a new system or capability. Typically, the new system operates in a concurrent, “shadow,” or
“pilot” mode to verify and validate interoperability with external systems until replacement of the
existing system or capability begins.

20.4 OPERATIONAL CYCLES WITHIN CYCLES

While businesses have daily cyclical operations at the enterprise level, entities within the business
may have iterative cycles. If you investigate the context of the MISSION SYSTEM’s application,
analysis reveals several embedded or nested operational cycles. Let’s explore an example of this
type.

City Bus Transportation System

Let’s assume we have a city bus transportation system that makes a loop around the city several
times a day, every day of the week, seven days a week. As part of each route, the bus makes sched-
uled stops at designated passengers pickup/drop-off points, passengers board, pay a token, ride to
their destination, and exit the vehicle.

At the end of each route, the vehicle is returned to a maintenance facility for routine preven-
tive maintenance. If additional corrective maintenance is required, the vehicle is removed from
active service until the maintenance action is performed. During maintenance, an assessment deter-
mines if the vehicle is scheduled for replacement. If repairable, the vehicle is returned to active
service. If the vehicle is to be replaced, a new vehicle is acquired. The current vehicle remains in



active service until it is decommissioned, which may or may not be linked to the new vehicle enter-
ing service, depending on business needs.

Figure 20.7 provides an operational model for this example to illustrate nested operational cycle
within cycles. The six operational cycles, which are assigned reference identifiers (1) through (6),
include: a Vehicle Life Cycle (1), a Daily Schedule Cycle (2), a Driver Shift Cycle (3), a Route Cycle
(4), a Passenger Cycle (5), and a Maintenance Cycle (6). Depending on the structure of the business
a seventh, Vehicle Fleet Cycle may be applicable. Such is the case with aircraft, delivery vehicles,
rental cars, police cars, and so forth. While there are numerous ways of creating this graphic, the
primary message here is LEARN to RECOGNIZE embedded operational cycles that include the 
integration of the MISSION SYSTEM with the SUPPORT SYSTEM during various cycles. 

20.5 SUMMARY

The preceding discussions describe high-level, conceptual views of concurrent, dedicated use, recyclable
systems and how the User intends to use the MISSION SYSTEM. The operations represent, and can be trans-
lated into, explicit system-level capabilities and performance requirements. These requirements will ultimately
be allocated to the system elements (EQUIPMENT, PERSONNEL, FACILITIES, etc.). However, require-
ments allocations often require support from modeling and simulation of operations.

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new system selection, apply your knowledge derived from this chapter’s topical
discussions on that system.
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3. NASA’s Space Shuttle employs a launch configuration that integrates the Orbiter Vehicle (OV), Solid
Rocket Boosters (SRBs), and External Tank (ET). During the launch the SRBs are jettisoned. Later the ET
is jettisoned and the Orbiter Vehicle continues in flight. If you were to model the system from the SRB 
or ET perspective, using Figure 20.5 as a reference, how would you depict the time-based control flow
operations?

4. Develop a multi-phase operations model that includes control flow and data flow operations for the fol-
lowing systems. Use Figure 20.6 as a reference construct.

(a) Automobile dealership and customers.

(b) Retail business such as a movie theatre, fast food restaurant, or baseball stadium.

(c) K-12 public school.

5. What embedded cyclical operations occur in each of the systems in exercise 4.

ORGANIZATIONAL CENTRIC EXERCISES

1. Identify a contract program within your organization, and research how they operationally delineate
MISSION SYSTEM and SUPPORT SYSTEM operations for their deliverable system, product, or service.
Report your findings, observations, and results.
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Chapter 21

System Operational Capability
Derivation and Allocation

21.1 INTRODUCTION

When the system phases and modes of operation are defined, SEs must answer several key 
questions:

1. What operational capabilities are required for each phase and mode of operation that the
MISSION SYSTEM and SUPPORT SYSTEM must provide and perform?

2. How are those capabilities allocated and flowed down to system entities—namely the
PRODUCT and SUBSYSTEM—at various levels of abstraction?

Our discussion in this section introduces and explores an analytical approach for deriving, allocat-
ing, and flowing down system capabilities. The approach is presented from an instructional per-
spective to explain the basic concept. Actual implementation can be achieved with automated tools
or other methods tailored to your application.

What You Should Learn from This Chapter

• What is system operational capability?

• What are required operational capabilities (ROCs)?

• What is an Operational Capability Matrix?

• What is the relationship between modes of operation and system capabilities?

Definition of Key Terms

• Design and Construction Constraints User or Acquirer constraints such as size, weight,
color, safety, material properties, training, and security imposed on all or specific elements
of the deliverable system or product.

• System Capabilities Matrix A matrix method that enables the identification of required
operational capabilities by analytical investigation of operations and interactions for each
mode of operation and MISSION SYSTEM and SUPPORT SYSTEM elements, OPERAT-
ING ENVIRONMENT elements, and design and construction constraints. The matrix also
identifies the unique architectural configuration required to support the mode of operation.

• System Operational Capability A use case based operation or task that performs an action
to produce a specific performance-based outcome. Note that a system capability represents

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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the potential to perform an action. In contrast, an operational capability may integrate several
physical system capabilities to produce a specific outcome to achieve a mission objective.

21.2 CONCEPT OVERVIEW

To better understand how system operational capability derivation and allocation are performed,
let’s establish the relationships between the organizational mission and the system. Figure 21.1 pro-
vides a graphical framework.

Organizational Roles and Mission Objectives (1) are accomplished by MISSION SYSTEM
Operations (3) synchronized with a Mission Event Timeline (MET) (2). MISSION SYSTEM oper-
ations (3) interact with the OPERATING ENVIRONMENT system elements (4). During these inter-
actions MISSION SYSTEM Operations (3) consist of Phases of Operation (5), each of which may
consist of several Modes of Operation (6).

For the MISSION SYSTEM to perform its operations (3), it must provide System Operational
Capabilities (7). Each of these capabilities is translated into System Performance Requirements (8)
that are allocated to applicable MISSION SYSTEM elements (9) (PERSONNEL, EQUIPMENT,
etc.). The system’s stakeholders may also identify Design and Construction Constraints (10) that
are levied on one or more System Performance Requirements (8).

System Performance Requirements (8), allocated to the MISSION SYSTEM elements (9), are
used to formulate and select the MISSION SYSTEM and the System Architectural Configuration(s)
(11) of the system element level. System Performance Requirements (8) are then allocated to each
selected System Architectural Configuration (11). Each System Architectural Configuration (11) is
verified against the System Performance Requirements (8) to formally demonstrate that the require-
ments have been satisfied.

Based on this framework, let’s begin with our first discussion topic, identifying and deriving
system operational capabilities.
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21.3 REQUIRED OPERATIONAL CAPABILITIES

Every use case represents an application of the system, product, or service employed by the End
User to conduct organizational missions, operations, or tasks. Therefore, each use case represents
a required operational capability (ROC).

Use cases often express very broad, general statements of User expectations. These expecta-
tions require clarification via analytical WHAT IF scenarios. Consider the following example:

EXAMPLE 21.1

Suppose a use case characterizes a required operational capability for a DVD player to respond to user com-
mands when a DVD is inserted. WHAT IF the user inserts a single-sided DVD upside down?

As illustrated earlier in Figure 17.1, use case scenarios represent HOW the User might apply, use,
misuse, or abuse the system, product, or service. As such, a use case scenario may motivate System
Developers to specify lower level required operational capabilities mandating:

1. A warning or caution to the User about an unacceptable, dangerous, or hazardous action,
safety violation, or condition and request a decision.

2. Automatical correction of the problem, if practical.

Therefore, the system design must be sufficiently robust to respond to the action or condition
without failure or degraded performance. This is why we organize this information and relation-
ships as illustrated in Figure 21.2. Note how each cell representing a logical physical relationship
has its own unique identifier. Ultimately, the required operational capabilities will be translated into
singular SPS or item development specification (IDS) requirements statements.
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20.0 Perform System Maintenance

21.0 Deactivate / Phase-Out System

Figure 21.2 Operational Tasks to Phases Mapping Representing Required Operational Capabilities



21.4 IDENTIFYING AND DERIVING SYSTEM 
OPERATIONAL CAPABILITIES

Expanding on our discussion in Chapter 19, System Phases, Modes, and States of Operation, we
need to answer a key question: WHAT are the required operational capabilities for each phase and
mode of operation that the MISSION SYSTEM and the SUPPORT SYSTEM must provide to
support? We can answer this question by creating a System Capability Matrix such as the one
shown in Figure 21.2. Observe that the operations names shown in the left column are based on
those defined earlier in our System Operations Model discussion of Figure 18.1.

The System Capability Matrix maps system operations to phases of operation. The phases of
operation are subdivided into pre-mission, mission, and post-mission phases for the SYSTEM OF
INTEREST (SOI). Each SOI phase is further subdivided into MISSION SYSTEM elements and
SUPPORT SYSTEM elements.

Each intersecting cell in the matrix contains a unique reference identifier (ID). This identifier
links the matrix cell to an explicit description that scopes and describes what capabilities are pro-
vided. Thus, for Operation 3.0 Deploy System, (1) represents the pre-mission capabilities required
of the MISSION SYSTEM and (2) represents the capabilities required of the SUPPORT SYSTEM.

When matrix mapping is employed, we may not know explicitly WHAT each system element’s
contribution and relationship are to the overall performance of the operational task. However, by
deductive reasoning and experience it is known that an entity or associative relationship exists. The
intent, as indicated by the reference IDs, is to simply acknowledge that each element has some level
of contribution and relationship of accountability.

To facilitate the definition of these acknowledgments, ID numbers serve as symbolic notations
of the reference descriptions. These descriptions may begin informally and evolve to a formaliza-
tion. Remember, the ID entries describe system operations that require operational capabilities and
are translated into one or more specification requirements. The matrix shown in Figure 21.2 serves
as a valuable system analysis tool to indicate HOW Operations 3.0 through 21.0—namely Figure
18.1 of the System Operations Model—are supported by capabilities and performance requirements
associated with each MISSION SYSTEM or SUPPORT SYSTEM during each phase of operation.

Author’s Note 21.1 When you create a matrix such as Figure 21.2, the contents can become
very busy, making it difficult to discern which tasks are applicable. For illustrative purposes, let’s
assume we have a system where some operational tasks are not applicable to specific system 
elements.

We could arbitrarily leave the cell empty, as do most people. The problem is that reviewers
may not know if the SE or analyst considered the applicability and intentionally left the cell blank,
ignored it, or simply overlooked it. Therefore, AVOID deleting the ID. Rather, note in the ID’s
description:

1. If the operation is applicable to the MISSION SYSTEM or SUPPORT SYSTEM.

2. The rationale as to why the operation is not applicable. Later, if it is determined that the
operation is applicable, the “placeholder” allows you to add the capability and avoid
having to renumber the document test.

Disciplined SE practices require that you at least acknowledge the consideration. One method to
accomplish this is to avoid deleting the ID and shade the background in dark gray as shown in
Figure 21.2. This way tasks that are not applicable (N/A) are explicitly identified.

Additionally, if the reviewer wants to know WHY the task is not applicable, they can use the
reference ID to link to the rationale for the decision. There will often be instances where either
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requirements change or document reviewers determine that this decision did not include a key con-
sideration of the other factors. Thus, the act of leaving the ID intact in a description enables the
document to be easily updated, as required, and the change incorporated into the linked documen-
tation without the IDs having to be renumbered.

System Operations Dictionary

Mapping matrices such as Figure 21.2 should be supported by a System Operations Dictionary that
provides a brief description of how each task is accomplished by the MISSION SYSTEM and/or
SUPPORT SYSTEM. Dictionary descriptions of the matrix serve to bound the derivation of the
MISSION SYSTEM and SUPPORT SYSTEM capabilities and performance requirements.

Concluding Point

The casual reader may remark that it is impractical to document all 84 IDs shown in Figure 21.2.
Yet, in completing a system development effort, you will unknowingly spend numerous hours on
each of these 84 items. Those who view this matrix as impractical are the same people who often
have to explain to program management during the System Integration, Test, and Evaluation (SITE)
Phase WHY certain items have been inadvertently overlooked or ignored during the design phase.
For those programs, SITE requires two to three times the nominally required time. Perform your
analyses “up front” and make sure the 84 items in the figure are documented, scoped, and well
communicated. The matrix approach simply provides an analytical structure to improve your
chances of success.

21.5 ALLOCATING AND FLOWING DOWN 
SYSTEM REQUIREMENTS

The preceding discussion provides a method for identifying system operational capabilities required
for each SYSTEM level mode of operation. The capabilities represent WHAT is required to accom-
plish specific objectives associated with each mode of operation. Therefore, the MISSION
SYSTEM and SUPPORT SYSTEM must be capable of being configured with capabilities and
levels of performance to support each of these modes of operation. To better understand HOW these
capabilities are defined, refer to Figure 21.3.

MISSION SYSTEM Modal Operations and Interactions

You should recognize the key elements of Figure 21.3 from an earlier description of Figure 21.2.
In the earlier figure we mapped modes of operation to the MISSION SYSTEM and SUPPORT
SYSTEM for each of the three phases of operation—pre-mission, mission, and postmission. Recall
that the IDs enable us to link system capabilities to descriptions defined in a System Operations
Dictionary.

Figure 21.3, as an expansion of Figure 21.2, enables us to an answer to some basic questions.
For each of a system’s modes of operations (left column):

1. WHICH phase(s) of operation does the mode support?

2. WHAT operations and interactions occur with each of the MISSION SYSTEM and OPER-
ATING ENVIRONMENT system elements?

3. WHAT are the system design and construction constraints that limit these operations and
interactions?

4. WHAT architectural configuration satisfies items 1, 2, and 3 above?
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From Figure 21.3, similar charts are developed for the PRODUCT level of abstraction. The process
continues to lower levels until all aspects of the system design solution are defined. For example,
the PRODUCT’s unique EQUIPMENT element operations and interactions ultimately are allo-
cated to its HARDWARE and SOFTWARE elements. Consider the following example:

EXAMPLE 21.2

For the NORMAL OPERATIONS mode, Capability (81) describes operational capabilities required for the
EQUIPMENT element. Capability (86) identifies operational and system capabilities to be established for the
MISSION SYSTEM to avoid, camouflage, conceal, or defend itself from external system threats. Capability
(87) identifies any system level operations required for the system to perform in the prescribed INDUCED
ENVIRONMENT.

Consider the next example:

EXAMPLE 21.3

The Space Shuttle conducts space-based missions in an INDUCED ENVIRONMENT that includes space
debris. So, if you wanted to read about system capabilities required to cope with and operate in the INDUCED
ENVIRONMENT, Capability (87) should provide the answer. If not, it needs to be defined.

One of the unique attributes of Figure 21.3 is that the IDs in any column can be “collected” for a
given MISSION SYSTEM element or OPERATING ENVIRONMENT. This collection of opera-
tions and interactions can then be translated into requirements documented in specific sections of
the System Performance Specification (SPS).
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The Importance of the Operational Capability Matrix

On the surface, Figure 21.3 appears to be just another matrix for mapping modes of operation to
the system elements, OPERATING ENVIRONMENT, and Design and Construction Constraints to
satisfy analytical curiosity. The mapping serves three very important purposes:

1. It provides a methodical means for organizing and covering all relevant aspects of a system
design solution.

2. It provides a mechanism for SEs to “collect” system operational capability needs on an
attribute basis by column for all phases and modes of operation.

3. Once requirements are documented, the “collection” process can be reversed to trace back
to the source of a requirement.

Recall from our earlier discussion that the system levels of abstraction—such as SYSTEM,
PRODUCT, SUBSYSTEM, ASSEMBLY, and SUBASSEMBLY—consist of one or more physical
instances of items referred to as configuration items (CIs), commercial-off-the-shelf (COTS), and
nondevelopmental items (NDIs). As we derive requirements from the operational capabilities iden-
tified in Figure 21.3, these requirements are allocated and flowed down to subsequent levels by
using similar mapping techniques at each level.

EXAMPLE 21.4

EQUIPMENT element capabilities and performance identified at the SYSTEM level are derived, allocated,
and flowed down to subsequent PRODUCT, SUBSYSTEM, ASSEMBLY, SUBASSEMBLY, and PART levels.
Each physical component of the system, regardless of level of abstraction, must support one or more modes
of operation discussed here.

EXAMPLE 21.5

A potentiometer—which is an adjustable resistance device—installed on a printed circuit board may only
support the CALIBRATE mode.

Final Thoughts

With time, a system analyst becomes proficient in being able to mentally assimilate the informa-
tion and synthesize the Operational Capability Matrix. Although SEs may not realize it, we sub-
consciously assimilate and synthesize this information all the time.

For those SEs who can assimilate this information, you have a challenge. Although you may be
recognized by management and your peers for this ability, the challenge is communicating and
explaining, via matrices such as the one illustrated, WHAT YOU KNOW to others on the develop-
ment team so that the team benefits.

Author’s Note 21.2 When working in an Integrated Product Team (IPT) and other environ-
ments, prepare yourself to be challenged by other disciplines concerning the utility of this approach.
Many view the matrix as analytical bureaucracy. This may require a training session for the team.

Organizational management has a tendency to recognize “hero” personalities who have this level
of ability. However, program and system development success requires more than philosophical
wizards walking about with a lot of information in their heads; the information must be documented,
communicated, and reduced to practice for the personnel.
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Organizations and programs that are built around “heroes” often get into trouble during the
System Integration, Test, and Evaluation (SITE) Phase and focus blame on the other personnel. The
blaming rationale is that the others should have known WHAT the so-called hero knew but failed
to properly communicate or explain. From the hero’s perspective, the idea was so intuitively obvious
that no explanation was required.

EXAMPLE 21.6

During a dry run for a Critical Design Review (CDR), which is the final technical design review, one of the
presenters describes HOW they anticipated testing a particular operational requirement related to software.
Immediately one of the software SEs asks, “Where did that requirement come from? It isn’t documented in
the specification.” The presenter replies, “I thought it was so obvious it didn’t have to be documented.” No
one, should be immune from employing sound engineering practices including documentation coordination,
and communication.

21.6 COLLECTING SYSTEM ELEMENT REQUIREMENTS

Recall the mapping of system operational modes to: phases of operation, system elements, the
OPERATING ENVIRONMENT, and Design Construction Constraints in Figure 21.3. We are now
ready to begin summarizing system capability and performance requirements. To facilitate our 
discussion, these modes of operation are diagramed in Figure 21.4. In this figure the Operational
Capability Matrix is represented as a small graphic in the upper left-hand corner. Cells within 
the matrix link to a description of capabilities and performance required to support each mode of
operation.
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SYSTEM ELEMENTS OP. ENVIRON.

OP’L. MODE

PHASE

31 2

1917 18

3533 34

5149 50

6765 66

14 15

30 31

46 47

62 63

78 79

D
es

ig
n 

 &
 

C
on

st
ru

ct
. 

C
on

st
ra

in
ts

A
rc

hi
te

ct
ur

al
co

nf
ig

ur
at

io
n

16

32

48

64

80

8381 82 94 95 96

8381 82 94 95 96

8381 82 94 95 96

8381 82 94 95 96

8381 82 94 95 96

8381 82 94 95 96

Formal SolicitationContract Element

System
Performance
Specification

(SPS)

System
Requirements

Document
(SRD)

5

21

37

53

69

85

85

85

85

85

85

6

22

38

54

70

86

86

86

86

86

86

7

23

39

55

71

87

87

87

87

87

87

9

25

41

57

73

89

89

89

89

89

89

8

24

40

56

72

88

88

88

88

88

88

10

26

42

58

74

90

90

90

90

90

90

11

27

43

59

75

91

91

91

91

91

91

12

28

44

60

76

92

92

92

92

92

92

13

29

45

61

77

93

93

93

93

93

93

Required
Operational
Capabilities

Figure 21.4 Collecting System Operational Capability Requirements for Specification Development



• Vertical columns represent the collection of required operational capabilities for the
MISSION SYSTEM elements, OPERATING ENVIRONMENT elements, Design and Con-
struction Constraints, etc.

• The operational capabilities of the vertical columns, denoted by the black-filled circles, are
“collected” and translated into specific types of requirements as shown in the lower center
of the graphic.

Acquirer’s translate, organize, and incorporate these required operational capabilities into a System
Requirements Document (SRD) used for formal solicitation of proposals. Subsequently, at contract
award, the System Performance Specification (SPS) becomes the basis for System Developers to
reverse the process by extracting the various requirements shown in the bottom center of the
graphic.

System Element Requirements Allocations and Flow Down

As the System Developer analyses each SPS requirement, the question is: WHAT system elements—
such as EQUIPMENT or PERSONNEL—are accountable for providing WHAT required opera-
tional capabilities and levels of performance to satisfy the SPS requirement? We answer this
question via a process referred to as requirements allocation and flow down.

When we allocate the Level 0 system requirements identified in Figure 21.4 to the Level 1
MISSION SYSTEM or SUPPORT SYSTEM, we do so as illustrated in Figure 21.5. Then,
MISSION SYSTEM or SUPPORT SYSTEM requirements are allocated and flowed down to the
respective system elements.

EQUIPMENT System Element Allocations

For those requirements allocated to the EQUIPMENT element and documented in the SPS, the
question becomes: WHAT system entities—such as PRODUCT, SUBSYSTEM, ASSEMBLY, SUB-
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ASSEMBLY, and PART levels—are accountable for providing the EQUIPMENT level operational
capabilities and levels of performance to satisfy each SPS requirement? We answer this question
by expanding each set of requirements allocations to lower levels. Figure 21.6 illustrates our 
discussion.

Each requirement allocated to the EQUIPMENT element is allocated to PRODUCT 1,
PRODUCT 2, and PRODUCT 3 as shown at the right side of the graphic. Each capability number
represents the various types of SPS requirements allocated to PRODUCT 1, PRODUCT 2, and
PRODUCT 3. Once the allocations are made, the set of requirements allocated to each PRODUCT
are documented in the topical section of the respective PRODUCT Item Development Specification
(IDS), as shown in Figure 21.7.

Top-down/Bottom-up Iterations

The preceding discussion focused on the top-down allocation and flow down of requirements to
various system levels of abstraction. However, despite the nomenclature this is not a linearly
sequential process. It is a highly iterative process whereby requirements allocations between levels
must be reconciled within the architecture for that particular item and traded off within the system
capability and performance constraints. The result is a set of highly iterative top-down/bottom-
up/left-right/right-left set of decision-making activities. Therefore, the oval icon in the upper left
center portion of Figure 21.7 symbolizes this top-down/bottom-up process for all levels of system
decomposition.

21.7 SUMMARY

In summary, this chapter introduced the concept of deriving and allocating required operational capabilities
to multi-level system entities. We began with the system’s modes of operation and identified the various oper-
ational capabilities and interactions required for each mode. This included the system elements for the
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MISSION SYSTEM and SUPPORT SYSTEM, OPERATING ENVIRONMENT, and Design and Construc-
tion Constraints.

Next we described how the required operational capabilities were aggregated and documented in the
System Performance Specification (SPS). We also learned that SPS requirements are allocated and flowed
down to system entities at various system levels of abstraction and documented in their respective Item
Development Specification (IDS).

We also described how the set of required operational capabilities for each mode of operation must be
provided by a unique configuration of system elements referred to as its architecture. The convolution of mode-
based architectural configurations is referred to as the system architecture.

Does an SE have to perform all of the analytical work? You and your organization have to answer this
question. With time and experience, you will learn to mentally assimilate and process this concept. Remem-
ber, the methods described in this chapter aim to explain a concept for instructional purposes. The challenge
questions SEs must answer are:

1. How do we assure a program’s management that all aspects of a system’s specification or design solu-
tion are sufficiently addressed to ensure program success.

2. What tools, methods, and techniques do we use to provide that assurance and level of confidence
without getting “analysis paralysis.”

For many applications, automated tools based on relational databases are available to support the concept
described here.

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new system selection, apply your knowledge derived from this chapter’s topical
discussions.
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(a) Create a System Capabilities Matrix for the selected item that identifies the item’s modes of operation.

(b) For each mode of operation, pick one or more system elements and identify what operational capabil-
ities are required to support the mode.

(c) Repeat item (b) for design and construction constraints.

(d) Repeat item (b) for OPERATING ENVIRONMENT interactions.

ORGANIZATIONAL CENTRIC EXERCISES

1. Contact a program within your organization and research how they analyzed, allocated, and flowed down
their SPS requirements to the various system levels of abstraction. Document your findings and observa-
tions. Avoid specifying programs and individuals by name.

(a) What methods, such as the System Capabilities Matrix, did the program use to ensure that: 1) all
required operational capabilities were addressed in the SPS and 2) they fully understood the implica-
tions of satisfying the requirements as evidenced by derivation of lower level requirements.

(b) Were the SPS requirements identified via an organized analytical process or random accumulations of
requirements? Report your findings and observations.

2. For the program in item 1 above. Based on the method(s) selected:

(a) What types of tools were used (e.g., internally developed database, spreadsheet, requirements man-
agement tool)?

(b) Is this practice common across all programs?

(c) How many people were involved in the exercise? Was any training provided?

(d) To what extent was the tool employed?

(e) How did the amount of time available factor into the usage of the tool?

(f) What lessons learned did the program collect from the exercise?

228 Chapter 21 System Operational Capability Derivation and Allocation



Chapter 22

The Anatomy of a 
System Capability

22.1 INTRODUCTION

Every man-made system provides operational capabilities to support accomplishment of the User’s
organizational or personal missions. Your mission, as an SE, is to ensure that system capabilities
support this mission as discussed in Chapter 13 Organizational Roles, Missions, and System Appli-
cations. Operational capabilities, as system assets, characterize the mechanical, electrical, optical,
chemical, or processing features that enable a system to function, process MISSION RESOURCES,
make decisions, and achieve a required level of success based on performance. 

If you ask most SEs what a capability is, the typical response includes the usual function with
one or more performance bounding elements. Certainly a capability includes these elements;
however, those elements characterize the outcome of a capability. From an engineering perspec-
tive, a capability is broader in scope than simply a functional element, especially in large, com-
plex systems. It represents a physical potential—strength, capacity, endurance—to perform an 
outcome-based action for a given duration under a specified set of OPERATING ENVIRONMENT
conditions.

This section explores the anatomy of a system operational capability. We begin our discussion
with the introduction of the System Capability Construct, a graphical template that enables system
analysts and SEs to model a system capability’s behavior. As you will discover, a system capabil-
ity is a “system” in its own context and has its own set of pre-mission, mission, and postmission
phases. We investigate each phase of a capability and the tasks performed.

What You Should Learn from This Chapter

1. What are the phases of operation of a capability?

2. Differentiate automated from semi-automated capabilities.

3. What is the System Capability Construct?

4. Why is the System Capability Construct important?

5. Recreate the System Capability Construct, and describe each of its task flows and 
interdependencies.

6. What is meant by capability exception handling?

7. Why is exception handling required?

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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Definition of Key Terms

• Automated or Semi-automated Capability A capability that has been mechanized or pre-
programmed to execute a series of tasks on receipt of external data or triggering event such
as an interrupt.

22.2 BOUNDING AN OPERATIONAL CAPABILITY

If you ask a sampling of engineers how they specify a system’s capabilities, most will respond, “We
write requirements.” Although this response has a degree of correctness, requirements are a merely
mechanisms for documenting and communicating WHAT the User requires in terms of acceptance
at delivery. The response you should hear from SEs is: “We specify system capabilities and levels
of performance to achieve specific outcomes required by the User.”

When engineers focus on writing requirements statements (i.e., requirements centric approach)
rather than specifying capabilities (i.e., capability centric approach), requirements statements are
what you get. When you attempt to analyze specifications written with a requirements centric
approach, you will encounter a wish list domain that is characterized by random, semi-organized
thoughts; overlapping, conflicting, replicated, and missing requirements; ambiguous statements
subject to interpretation; compound requirements; contract statement of work (CSOW) tasks; 
mixtures of goals and requirements, and so on.

In contrast, specifications written by SEs who employ model-based requirements derived from
coherent structures of system capabilities generally produce documents that eliminate or reduce the
number and types of deficiencies noted above. These specifications also tend to require less main-
tenance and facilitate verification during the system integration and test phase of the program.

If you analyze and characterize work products of the requirements centric approach, several
points emerge:

1. Lack of understanding of the end product (e.g., bounding system capabilities) and its inter-
actions with its OPERATING ENVIRONMENT.

2. Lack of training and experience in how to identify and derive capability-based requirements.

3. Poor understanding of the key elements of a requirements statement.

We will address the last two points in later chapters. Our discussion in this chapter focuses on the
first item; understanding system capabilities.

Referral More information about writing requirements will be presented in Chapter 33 Require-
ments Statement Development practices.

Implicit and Explicit Meanings of a Capability

The term “capability” for most systems has both implicit and explicit meanings. Implicitly, the term
infers the unrealized potential to perform an action. Explicitly, a capability is realized when the
system performs its planned action(s) in its prescribed OPERATING ENVIRONMENT as intended
by its developers.

EXAMPLE 22.1

A simple device such as a log implicitly has the unrealized potential or capability to displace heavy objects.
Explicitly, the log has a realized capability to physically displace heavy objects WHEN controlled by a human
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with a fulcrum and manipulated by human actions. To successfully complete the desired human outcome—
to displace a heavy object—the log must possess a bounded and integrated set of physical characteristics and
properties—capability—to perform the action.

Automated or Semi-automated Capabilities

In the preceding example the set of actors—human–log-fulcrum—were integrated and mechanized
into a set of semi-automated actions intended to achieve a specified result, which was to displace a
heavy object. If the fulcrum were implemented as a programmed, repeatable assembly line device,
we could refer to it as automated. Thus the integration, mechanization, and automation of compat-
ible and interoperable system element actions into a “working system” capability provide the basis
for our next discussion.

22.3 THE SYSTEM CAPABILITY CONSTRUCT

A system’s operational capability can be modeled using a basic construct. The construct consists
of sequential and concurrent control flow operations required to: 1) initialize, 2) implement, and 
3) complete the capability or action. This is particularly useful when modeling automated or semi-
automated sequences of complex system operations that are common to many human-made
systems.

If you observe and analyze how an automated or semi-automated, cyclical capability is imple-
mented, you will discover that the construct has its own life cycle with pre-mission, mission, and
post-mission phases. In general, an automated or semi-automated capability is characterized by:

1. An initial set of preparatory operations, conditions, or configurations.

2. A set of primary operations that are executed to accomplish the capability.

3. A set of closure or termination operations.

To illustrate how these three sets of operational phases and operations are implemented, refer to
Figure 22.1.

Exploring the System Capability Construct

On inspection of Figure 22.1, observe that the model flows from the INITIAL STATE to the FINAL
STATE via a series of sequential and concurrent operations. Thus a system can initiate a capabil-
ity to perform a single action or loop continuously until directed to stop by the HIGHER ORDER
SYSTEM capability—the DO UNTIL (condition). To better understand how the capability is
implemented, let’s investigate each of its operations.

Operation 1.0: Activate Capability Decision. The basic System Capability Construct begins
with a simple “activate capability” decision control point that determines whether the capability is
to be activated or enabled. If the capability is not required and is presently deactivated or disabled,
control flow transfers to the FINAL STATE. If a capability is to be activated, control flow transfers
to Operation 2.0, Initialize the Decision and begin activation.

Operation 2.0: Initialize Decision. From a pre-mission perspective, the first operation of a
capability should be to establish any initial conditions that may be required to accomplish the
capability including Initialization. The initial conditions may include data retrieval, initialization
of variables, calibration, and alignment. As a result an initialize decision is made.
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EXAMPLE 22.2

A process control computer system may require initialization of specific parameters, variables, or positioning
of a mechanical arm on some device prior to executing the capability action—namely moving the 
mechanical arm.

If the Initialize decision is Yes or TRUE, control flow transfers to Operation 3.0, which is to 
establish initial conditions. If the Initialize decision is No or FALSE, control flow progresses to
Operation 4.0, Perform Capability Operations.

232 Chapter 22 The Anatomy of a System Capability

No Report

Enable/Activate
Capability

Report
Results

Unrecoverable 
Capability

Failure

Mission
Resources

• Consumables
• Expendables

Exception
Handling

Post-Mission 
Operations

Pre-Mission
Operations

Corrective
Action

Final State

Initial State

1.0

2.0

Capability
Disabled/Failed 

Initialize

7.0
Report 
Results

Perform Post-
Processing 
Operations

6.0

Resume
Capability

Establish Initial 
Conditions

Perform
Abnormal Recovery

Operations

Perform Capability 
Operations

3.0

4.0

9.0

8.0

5.0

Disable/Deactivate
Capability

Initial Conditions
Established

Figure 22.1 Basic System Entity Capability Construct



Author’s Note 22.1 The FALSE decision result is intended to accommodate cyclical capabil-
ity actions—namely DO UNTIL (condition)—whereby the capability has already been initialized
in a previous cycle of the construct.

Operation 3.0: Establish Initial Conditions. Operation 3.0 to establish the initial conditions
depends on the type of capability application.

EXAMPLE 22.3

Computational solutions may require initialization of variables to default values or settings. Mechanical
devices may have a mechanical arm that requires pre-positioning (i.e., alignment) to a calibrated reference
point, step, or stop. Devices with heating or cooling elements may require activation and stabilization over a
prescribed period of time.

Some applications may also require that some form of initial or readiness health status check be
conducted before, during, or following performance of the capability.

EXAMPLE 22.4

A daily operational readiness test (DORT) may be required to be performed at the beginning of each workday.

Finally, some systems may also include a requirement to report the results of the Establish Initial
Conditions (Operation 3.0) as a health check status back to some central collection point such as a
computer, file, or system operator I/F. When the initial conditions established by Operation 3.0 have
satisfied a pre-determined set of exit criteria or encountered a triggering event or an interrupt by an
external stimulus, such as a system operator input, control flow transfers to Operation 4.0, Perform
Capability Operations.

Operation 4.0: Perform Capability Operations

Operation 4.0 Perform Capability Operations  represents the core execution of the capability. The
operation illustrated here is a high-level abstraction that represents the multiple levels of subordi-
nate operations required to perform the primary mission. As the system’s capability is being per-
formed, replenishment of the MISSION RESOURCES element assets such as consumables and
expendables are required to support and sustain system operations.

Error conditions and latent defects such as design deficiencies, flaws, or malfunctions can deter
mechanical capability and force the system to shift to an ABNORMAL operating condition or state.
Abnormal conditions include:

1. Nonfatal, degraded performance operations.

2. Emergency operations.

3. Catastrophic operations that require employment of special actions.

If an abnormal condition triggers a disruption of mechanical capability, control flow transfers to
Operation 5.0, Perform Abnormal Recovery Operations.

When the mechanical operations are successfully completed and determined to satisfy a set of
exit criteria, control flow transfers to Operation 7.0, Report Results decision.
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Operation 5.0: Perform Abnormal Recovery Operations

When an error, latent defect, exception, or malfunction triggers an abnormal condition, the system
may immediately shift to some form of recovery operation. In general, these conditions are called
exception handling or error correction.

EXAMPLE 22.5

Software logs an error condition and attempts to resume normal processing or restarts. Data communicaitons
links detect errors and request retransmission or attempt to correct data bits. Watchdog timers are employed
by hardware designers as a periodic heartbeat that restarts the system if not reset within a specified timeperiod
such as 1 second.

If an ABNORMAL condition occurs, the system should be expected to log or record the event as
well as the conditions under which the event occurs. In this manner, an historical record documents
objective evidence to support reconstruction of the chain of events to better understand how and
why the system encountered the exception. Analysis of results and sequences of actions or condi-
tions leading up to the event may indicate that an operational scenario of a specific system mode
of operation had not been anticipated by the SE.

EXAMPLE 22.6

A flight data recorder, referred to as the “black box,” records vital aircraft systems information such as air-
craft configuration, sequences of events, and flight conditions.

When recovery operations satisfy a set of exit criteria, control flow transfers to Operation 6.0,
Resume Capability decision control point.

Operation 6.0: Resume Capability Decision

Operation 6.0 Resume Capability decision makes the determination whether normal capability
operations can be resumed. In general, control flow can transfer to any one of three options: 1)
resume capability, 2) perform corrective action, or 3) exit due to failure. If the recovery has been
successful and satisfies pre-determined exit criteria, control flow resumes to Operation 4.0, Perform
Capability Operations.

If recovery is impractical or impossible under the current conditions, the capability is disabled
or deactivated for the remainder of the mission or until the condition that created it changes. If a
capability is disabled or deactivated, control flow transfers to FINAL STATE. When this occurs,
some systems may require software flags or indicators to be set to indicate the condition and disable
the capability for the remainder of the mission. For hardware systems, power cables may be dis-
connected, maintenance tags may be attached to the equipment, and/or locks may be installed to
prevent usage until the fault is corrected.

If the recovery has not been completed and the condition is recoverable, control flow trans-
fers back to Operation 5.0, Perform Abnormal Recovery Operations.

Operation 7.0: Report Results Decision

When Operation 4.0 Perform Capability Operations is complete, control flow progresses to Oper-
ation 7.0, Report Results decision control point. If the decision is Yes or TRUE, control flow trans-
fers to Operation 8.0, Report Results. If the decision is No or FALSE, control flow transfers to
Operation 9.0, Perform Postprocessing Operations.
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Author’s Note 22.2 In the context of systems, a system’s mechanical capability may not have
a reporting requirement—as in Operation 8.0. However, a PERSONNEL system element capabil-
ity, operating concurrently with a mechanical capability and with each part performing its own
capability construct, may have a requirement to report results of mechanical capability. For
example, astronauts operating the Space Shuttle’s mechanical robotic arm may observe and ver-
bally report status, results, and completion of mission operations tasks.

Operation 8.0: Report Results

When required, Operation 8.0 Report Results communicates the outcome of operations perform-
ance or status and health checks. The “report” in this context is a generic term that refers to audible,
visual, mechanical, or electrical methods for reporting results. Remember, a report gives informa-
tional, cautionary, or warning indications, depending on the operating condition or situation.

EXAMPLE 22.7

Audible results include PERSONNEL reporting the results of an operation. A gunshot indicates the shooting
of a projectile, the slam of a door indicates the closure of a mechanism, and so on. Visual examples include
a burst of light from an explosion, a static or flashing signal light from an aircraft, and so on. Mechanical
examples include a movement of a mechanical arm during a hard copy printout, and electrical examples
include a spark or smoke.

When the reporting operations are complete, satisfying pre-determined exit criteria, control flow
transfers to Operation 9.0, Perform Postprocessing Operations.

Operation 9.0: Perform Postprocessing Operations

When completed, the final operations of the System Capability Construct is to:

1. Place the capability in a safe and secure standby, stowed, or dormant physical state or con-
dition to protect the capability from intrusion or interference by external capabilities or
threats.

2. Posture or prepare the capability for its next iterative cycle.

EXAMPLE 22.8

A mechanical arm must be stowed to a specific condition, clearing out a software buffer, resetting or recon-
figuring a computer I/O port, and so on. When the postprocessing operations are complete, control flow pro-
gresses to FINAL STATE, at least for this cyclical iteration.

EXAMPLE 22.9

The Space Shuttle’s robotic arm is retracted and stowed in its Cargo Bay at the completion of a mission for
the return flight back to Earth.

Concluding Point

A system is actually an integrated set of multi-level capabilities to achieve a higher level capabil-
ity. To illustrate this point, consider the Car-Driver system shown in Figure 22.2. Here, the Driver
has a capability construct that interacts with the overall Car capability construct.
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To further understand how the capabilities interact, refer to Figure 22.3. The figure illustrates
the car’s various capability options that can be exercised at the driver’s discretion. Each of the 
capabilities (i.e., engine, lights, etc.) has its own high-level capability construct (Figure 22.1). From
an SE perspective, the key is to: 1) identify and define each capability and 2) synchronize the
capabilities into a coherent system operation. This includes the allowable actions and prohibited
actions illustrated in Figure 19.6.
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22.4 SYSTEM OPERATIONAL CAPABILITY ANALYSIS RULES

Our discussion of the automated or semi-automated system capability construct and its application
as a generic template enables us to establish the System Operational Capability analysis rules 
identified in Table 22.1.

Table 22.1 System operational capability analysis guidelines

ID Topic System Analysis and Design Rules

22.1 Multi-phase Operations Every automated or semi-automated system capability consists of at
least three types of operations: pre-mission, mission, and postmission.

22.2 Capability activated Each capability must be enabled or activated to perform its intended
decision mission. If not, the capability remains DEACTIVATED or DISABLED

until the decision is revisited in the next cycle.

22.3 Capability initialized Each automated or semi-automated system capability, when
decision ACTIVATED or ENABLED, may require initialization to establish a set

of initial conditions that enable the capability to perform its mission.
If initialization is not required, workflow progresses to the next cycle,
perform capability operations.

22.4 Perform capability Each automated or semi-automated system capability must perform a
operations primary mission that focuses on accomplishing a specific system level

mission objective (i.e., the SPS requirement).

22.5 Perform exception Each automated or semi-automated system capability should provide a
handling mechanism for recognizing, recording, and processing exceptions and 

errors.

22.6 Perform abnormal Every automated or semi-automated system capability should provide
recovery operations a mechanism for the capability to safely recover from processing 

exceptions and errors without destructive consequences to the system,
life, property, or the environment.

22.7 Resume capability As each recovery operation is attempted, the system must decide 
decision whether additional attempts are justified.

22.8 Report results decision When a capability completes its operations, other capabilities external
to the capability may require automatic or manual reporting.

22.9 Report results decision Every automated or semi-automated system capability may require a
mechanism for reporting accomplishment of the capability’s mission 
and outcome.

22.10 Perform Postprocessing Every automated or semi-automated system capability may require a set
operations of operations or actions to safely and securely store or stow the 

capability to protect it from external threats or itself within resource
constraints.

22.11 Cycle back to INITIAL Once a capability has cycled through its planned operations, it returns
STATE to its INITIAL STATE or repeats, if so commanded.
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The Importance of the System Capability Construct

At the start of this chapter we contrasted traditional engineering approaches that focus on writing
requirements with modern-day engineering approaches that focus on specifying capabilities. Our
discussion of the System Capability Construct serves as compelling objective evidence as to WHY
it is important to structure and specify a capability and then translate it into a requirements state-
ment. Operations within the structure serve as a graphical checklist for specification requirements—
namely WHAT is to be accomplished and HOW WELL (performance) without stating HOW it is
to be implemented.

Author’s Note 22.3 For those who think that we have violated a cardinal rule of system spec-
ifications by specifying HOW to implement a solution, our answer is no. We have not specified
HOW. Instead, we have translated System Capability Construct operations or tasks into text-based
requirements statements that identify WHAT must be accomplished. The HOW occurs when you
specify:

1. The physical configuration implementation.

2. The logical sequences of operations depicted in the construct.

Referral More information on specification development methods as provided in Chapter 32 on
System Specification practices.

As our discussion illustrated, a capability consists of a series of operations—functional tasks, deci-
sions, inputs, and outcomes. Each of these operations is translated into a specific requirement state-
ment and is integrated into a set of requirements that bound the total set of capabilities. Without
the capability centric focus, the end product—e.g. specification—is nothing more than a set of
random, loosely coupled text statements with missing requirements representing overlooked oper-
ations within the capability construct.

Does this mean every operation within the construct must have a requirements statement? No,
you have to apply good judgment and identify which operations require special consideration by
designers during the capability’s implementation.

Remember the old adage: If you do not tell someone WHAT you want, you cannot complain
about WHAT gets delivered. If you forget to specify a specific operational aspect of a capability,
the System Developer will be pleased to accommodate that requirement for a price—and in some
cases, a very large price. Therefore, do your homework and make sure all capability requirements
are complete. The capability construct provides one approach for doing this, but the approach is
only as good as YOU define it.

Our discussion introduced the concept of automated or semi-automated system capabilities.
We described how most human-made system capabilities can be modeled using the System Capa-
bility Construct as a template. The construct provides an initial framework for describing require-
ments that specify and bound the capability.

Resource Utilization Considerations

Now consider situations whereby physical device resources may be limited due to expense, weight,
and size. The solution may require round-the-clock operations in the form of shifts. Examples
include situations where several people utilize single pieces of equipment or where space restric-
tions limit how many people can work in close proximity without interference as in the Space
Shuttle or International Space Station. As a result some workers may perform the primary mission
capabilities while others are in a “sleep cycle”—all concurrent operations.



22.5 GUIDING PRINCIPLES

In summary, the preceding discussions provide the basis with which to establish guiding principles
that govern the implementation of a system capability.

Principle 22.1 Every operational capability has a System Capability Construct that models the
capability’s action-based operations, tasks, and external interactions.

Principle 22.2 Every operational capability requires an external trigger—a cue or a stimulus—
to initiate its outcome-based processing.

Principle 22.3 Every operational capability, as an integrated system, consists of three sequen-
tial phase-based actions: 

1. Pre-mission phase—initialization.

2. Mission phase—application-based performance.

3. Post-mission phase—analysis and deactivation.

Principle 22.4 Every capability requires consideration of HOW exceptions to NORMAL and
ABNORMAL operations will be handled.

Principle 22.5 On completion of tasking, every capability should report notification of suc-
cessful completion. 

22.6 SUMMARY

This chapter introduced the System Capability Construct and discussed its application to systems. Our dis-
cussion covered the construct’s operations and control flows, and equated its structure to real world examples.
We also emphasized the importance of the construct as a graphical checklist for specifying capability require-
ments statements in terms of WHAT must be accomplished and HOW WELL without specifying HOW the
requirement was to be implemented.

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new system selection, apply your knowledge derived from this chapter’s topical
discussions. If you were the designer of a specific capability, using Figure 22.1 as a guide,

(a) Describe the set of tasks the capability should perform.

(b) How would you handle exceptions?

(c) How are outcome based results of the capability reported? In what format and media?

(d) Translate each of the capability tasks into a set of operational capability requirements.
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ORGANIZATIONAL CENTRIC EXERCISES

1. Contact a program within your organization. Interview SEs concerning how they define and implement a
capability.

(a) How do their designers accommodate the various operations or tasks of the System Capability 
Construct?

(b) Without making them aware of this chapter’s discussions or Figure 22.1, have they synthesized 
this concept on their own or just unconsciously do things ad hoc based on lessons learned from 
experience?

(c) Present your findings and observations.
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Chapter 23

System Analysis Synthesis

Throughout Part I we sequenced through topical series of chapters that provide an analytical per-
spective into HOW to THINK about, organize, and characterize systems. These discussions provide
the foundation for Part II System Design and Development Practices, which enable us to translate
an abstract System Performance Specification (SPS) into a physical system that can be verified and
validated as meeting the User’s needs. So, HOW did Part I System Analysis Concepts provide this
foundation?

23.1 SYNTHESIZING PART I ON SYSTEM 
ANALYSIS CONCEPTS

Part I concepts were embodied in several key themes that systems analysts and SEs need to under-
stand when developing a new system, product, or service.

1. WHAT are the boundary conditions and constraints imposed by the User on a 
system, product, or service in terms of missions within a prescribed OPERATING 
ENVIRONMENT?

2. Given the set of boundary conditions and constraints, HOW does the User envision deploy-
ing, operating, and supporting the system, product, or service to perform its missions within
specific time limitations, if applicable?

3. Given the deployment, operation, support, and time constraints planned for the system,
product, or service, WHAT is the set of outcome-based behaviors and responses required
of the system to accomplish its missions?

4. Given the set of outcome-based behaviors and responses required of the system to accom-
plish its mission, HOW is the deliverable system, product, or service to be physically imple-
mented to perform those missions and demonstrate?

To better understand HOW Part I’s topical series and chapters supported these themes, let’s briefly
explore each one.

Theme 1: The User’s Mission

Boundary conditions and constraints for most systems are established by the organization that owns
or acquires the system, product, or service to accomplish missions with one or more outcome-based
performance objectives. The following chapters provide a topical foundation for understanding
organizational boundary conditions and constraints.

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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Chapter 13: Organizational Roles, Missions, and System Applications

Chapter 14: Understanding the System’s Problem, Opportunity, and Solution Spaces

Chapter 15: System Interactions with Its OPERATING ENVIRONMENT

Chapter 16: System Mission Analysis

Theme 2: Deployment, Operations, and Support of the System

Once the organization’s vision, boundary conditions, and constraints are understood, we addressed
HOW the User envisions deploying, operating, and supporting the system to perform its missions.
The following chapters provide a topical foundation for understanding HOW systems, products, or
services are deployed, operated, and supported.

Chapter 17: System Use Cases and Scenarios

Chapter 18: System Operations Model

Chapter 19: System Phases, Modes, and States of Operation

Theme 3: System Behavior in Its OPERATING ENVIRONMENT

Given the deployment, operation, support, and time constraints planned for the system, product,
or service, we need to identify the set of outcome-based behaviors and responses required of the
system to accomplish its missions. The following chapters provide a topical foundation for under-
standing HOW systems, products, or services are expected to behave and interact with their OPER-
ATING ENVIRONMENT.

Chapter 20: Modeling System and Support Operations

Chapter 21: System Operational Capability Derivation and Allocation

Chapter 22: The Anatomy of a System Capability

Theme 4: Physical Implementation of the System

Based on an understanding of outcome-based behaviors and responses required of the system to
accomplish its mission, the question is: HOW do we physically implement a system, product, or
service to perform those missions? The following chapters provide a topical foundation for under-
standing HOW systems, products, or services are physically implemented.

Chapter 8: The Architecture of Systems

Chapter 9: System Levels of Abstraction and Semantics

Chapter 10: System of Interest (SOI) Architecture

Chapter 11: Operating Environment Architecture

Chapter 12: System Interfaces

By inspection, these themes range from the abstract concepts to the physical implementation; this
is not coincidence. This progression is intended to show HOW SEs evolve a system design solu-
tion from abstract vision to physical realization.

After examining this list, you may ask: Why did we choose to talk about system architectures
early in an order that puts it last in this list? For instructional purposes, system architectures rep-
resent the physical world most people can relate to. As such, architectures provide the frame of ref-
erence for semantics that are key to understanding Chapters 13–22.
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23.2 INTRODUCING THE FOUR DOMAINS 
OF SOLUTION DEVELOPMENT

If we simplify and reduce these thematic groupings, we find that they represent four classes or
domains of solutions that characterize HOW a system, product, or service is designed and devel-
oped, the subject of Part II. Table 23.1 illustrates the mapping between the Part I’s systems analy-
sis concepts themes and the four domain solutions.

There are several key points to be made about the mapping. First, observe that objectives 1
and 2 employ the User as the “operative” term; Objectives 3 and 4 do not. Does this mean the User
is “out of the loop”? Absolutely not! Table 23.1 communicates that the User, Acquirer, and System
Developer have rationalized and expressed WHAT is required. Given that direction, the system
development contract imposes boundary conditions and constraints on developing the system. This
communicates to the System Developer “Go THINK about this problem and TELL us about your
proposed solution in terms of its operations, behaviors, and cost-effective implementation.” Since
Table 23.1 represents how a system evolves, User involvement occurs explicitly and implicitly
throughout all of the themes. Remember, if the User had the capabilities and resources available,
such as expertise, tools, and facilities to satisfy Objectives 3–4, they would have already inde-
pendently developed the system.

Second, if: 1) a SYSTEM has four domains of solutions and 2) the SYSTEM, by definition,
is composed of integrated sets of components working synergistically to achieve an objective
greater that the individual component objectives, deductive reasoning leads to a statement that 
each of the components ALSO has four domains of solutions, all LINKED, both vertically and
horizontally.

The four themes provide a framework for “bridging the gap” between a User’s abstract vision
and the physical realization of the system, product, or service. Thus, each theme builds on 
decisions established by its predecessor and expands the level of detail of the evolving system
design solution as illustrated at the left side of in Figure 23.1. This allows us to make several 
observations:
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Table 23.1 Linking Part I System Analysis Concepts themes into Part II System Design and Development
Practices semantics

ID Part I Thematic Objectives Domain Solutions

23.1 Objective 1—WHAT are the boundary conditions and constraints imposed Requirements
by the User on a system, product, or service in terms of missions within a Domain Solution
prescribed OPERATING ENVIRONMENT?

23.2 Objective 2—Given the set of boundary conditions and constraints, HOW Operations Domain
does the User envision deploying, operating, and supporting the system, Solution
product, or service to perform its missions within specific time limitations,
if applicable?

23.3 Objective 3—Given the deployment, operation, support, and time constraints Behavioral Domain
planned for the system, product, or service, WHAT is the set of outcome- Solution
based behaviors and responses required of the system to accomplish its 
missions?

23.4 Objective 4—Given the set of outcome-based behaviors and responses Physical Domain
required of the system to accomplish its mission, HOW is the deliverable Solution
system, product, or service to be physically implemented to perform those
missions and demonstrate?



• The mission (i.e., the opportunity/problem space) forms the basis for the User to establish
the Requirements Domain Solution (i.e., the solution space).

• The Requirements Domain Solution forms the basis for developing and maturing the Oper-
ations Domain Solution.

• The evolving Operations Domain Solution forms the basis for developing and maturing the
Behavioral Domain Solution.

• The evolving Behavioral Domain Solution forms the basis for developing and maturing the
Physical Domain Solution based on physical components and technologies available.

From a workflow perspective, the design and development of the system solution evolves and
matures from the abstract to the physical over time. However, the workflow progression consists
of numerous feedback loops to preceding solutions as System Analysts and SEs mature the solu-
tions and reconcile critical operational and technical issues (COIs/CTIs). As a result, we symbol-
ize the system solution domains as shown at the right side of Figure 23.1.

23.3 SYSTEM DOMAIN SOLUTION SEQUENCING

Figure 23.2 provides a way to better understand how the system domain solutions evolve over time.
As shown, the Requirements Domain Solution is initiated first, either in the form of a contract
System Performance Specification (SPS) or a System Developer’s item development specification.
Here is how the sequencing occurs:

• When the Requirements Domain Solution is understood and reaches a level of maturity suf-
ficient to develop concepts of operation, initiate the Operations Domain Solution.

• When the Operations Domain Solution reaches a level of maturity sufficient to define 
relationships and interactions among system capabilities, initiate the Behavioral Domain
Solution.
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• When the Behavioral Domain Solution reaches a level of maturity sufficient to allocate the
behavioral capabilities to physical components, initiate the Physical Domain Solution.

• Once initiated, the Requirements, Operations, Behavioral, and Physical Domain Solutions
evolve concurrently, mature, and stabilize.

23.4 SUMMARY

In this chapter we synthesized our discussions in Part I on system analysis concepts and established the foun-
dation for Part II on system design and development. The introduction of the Requirements, Operations,
Behavioral, and Physical Solution Domains, coupled with chapter references in each domain, encapsulate the
key system analysis concepts that enable us to THINK about, communicate, analyze, and organize systems,
products, and services for design and development. With this foundation in place, we are now ready to proceed
to Part II System Design and Development Practices.
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Part II

Systems Design and
Development Practices
EXECUTIVE SUMMARY

Part II, System Design and Development Practices, builds on the foundation established in Part I
System Analysis Concepts and consists of 34 chapters organized into six series of practices. The
six series consist of: 

• System Development Strategies Practices

• System Specification Practices

• System Design and Development Practices

• Decision Support Practices

• System Verification and Validation Practices

• System Deployment, Operations, and Support Practices

As an introductory overview, let’s explore a brief synopsis of each of these practices.

System Development Strategy Practices

Successful system development requires establishing an insightful strategy and supporting work-
flow that employs proven practices to enable a program to efficiently progress from contract award
to system delivery and acceptance. The System Development Strategy Practices, which consists of
Chapter 24–27, provide insights for establishing a program strategy.

Our discussions describe how a program employs verification and validation concepts intro-
duced in Part I to create a workflow that translates multi-level specifications into a physical design
solution that leads to delivery of systems, products, or services. We explore various development
methods such as the waterfall approach, incremental development, evolutionary development, and
spiral development. We also dispel a myth that V & V are only performed after a system has been
integrated and tested; V & V are performed continuously from contract award through system deliv-
ery and acceptance.

Given an understanding of System Development Strategy Practices, we introduce the corner-
stone for system design and development via the System Specification Practices.

System Specification Practices

System design and development begins with the derivation and development of system specifica-
tions and requirements that bound the User’s solution space subject to technology, cost, schedule,

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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support, and risk constraints. The System Specification Series, which consist of Chapters 28–33,
explore what a specification is; types of specifications; how specifications are analyzed and devel-
oped; and how specification requirements are analyzed, derived, developed, and reviewed. 

The System Specification Practices provide the cornerstone for our next topical discussion,
System Design and Development Practices.

System Design and Development Practices

The design and development of a system requires that the developers establish an in-depth under-
standing of WHAT the user is attempting to accomplish and select a solution from a set of viable
candidates based on decision factors such as technical, technology, support, cost, schedule, and risk. 

The System Design and Development Practices series consists of Chapters 34–46 and cover a
diverse range of system design and development practices. Our discussions include: understanding
the operational utility, suitability, effectiveness, and availability requirements; formulation of
domain solutions; selection of a system architecture; configuration identification; system interface
design; standards and conventions; and design and development documentation.

The System Design and Development Practices require timely data to support informed deci-
sion making that the RIGHT system solution is selected. This brings us to our next topic, Decision
Support Practices, which provide the data.

Decision Support Practices

The design and development of integrated sets of system elements requires analytical support to
provide data and ensure that the system design balances technical, technology, support, cost, sched-
ule, and risk considerations. The Decision Support Practices series, which consist of Chapters
47–52, provide mechanisms that range from analyzes to prototypes and demonstrations to provide
timely data and recommendations.

Our discussions address analyses; statistical variation influences on system design; system per-
formance budgets and margins; system reliability, availability, and maintainability; system model-
ing and simulation; and trade study analysis of alternatives.

System design and development requires on-going integrity assessments to ensure that the
system is being designed correctly and will satisfy the user’s operational need(s). This brings us to
our next topic, Verification and Validation Practices, which enable us to assess the integrity of the
evolving system design solution.

Verification and Validation Practices

System design and development requires answering two key questions: 1) Is the system being
designed and developed RIGHT—in accordance with the contract requirements and 2) Does the
system satisfy the user’s operational needs? The Verification and Validation Practices series, which
consist of Chapters 53 through 55, enable the system users, acquirer, and developers to answer
these questions from contract award through system delivery and acceptance. 

Our discussions explore what verification and validation are; describe the importance of tech-
nical reviews to verify and validate the evolving and maturing system design solution; and address
how system integration, test, and evaluation plays a key role in performing V & V. We introduce
verification methods such as inspection/examination, analysis, test, and demonstration that are
available for verifying compliance to specification requirements.

Once a system is verified, validated, and delivered for final acceptance, the user is ready to
employ the system to perform organizational missions.  This brings us to our next topic, System
Deployment, Operations, and Support Practices.



System Deployment, Operations, and Support Practices

People often believe that SE and analysis end with system delivery and acceptance by the user; SE
continues throughout the operational life of the system, product, or service. The System Deploy-
ment, Operations, and Support Practices series, which consist of Chapters 56 and 57, provide key
insights into system and mission applications and performance that require system analyst and SE
assessments, not only for corrective actions to the current system but requirements for future
systems and capabilities.

Our discussions explore how a system is deployed including site selection, development, and
activation; describe key considerations required for system integration at a site into a higher level
system; address how system deficiencies are investigated and form the basis for acquisition require-
ments for new systems, products, or services; and investigate key engineering considerations that
must be translated into specification requirements for new systems. 
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Chapter 24

System Development 
Workflow Strategy

24.1 INTRODUCTION

The award of a system development contract to a System Developer or Services Provider signifies
the beginning of the System Development Phase. This phase covers all activities required to 
meet the provisions of the contract, produce the end item deliverable(s), and deploy or distribute
the deliverables to the designated contract delivery site.

On contract award, the Offeror transforms itself from a proposal organization to a System
Developer or Service Provider organization. This requires the organization to demonstrate that they
can competently deliver the proposed system on time and within budget in accordance with the
provisions of the contract. This transformation is best captured in a business jest: “The good news
is we won the contract! The bad news is WHAT have we done to ourselves?”

Our discussion of this phase focuses on how a proposed system is developed and delivered to
the User. We explore how the System Developer or Service Provider evolves the visionary and
abstract set of User requirements through the various stages of system development to ultimately
produce a physical system. The “system” may be country, a space shuttle, a mass mailing service,
a trucking company, a hospital, or a symposium. The important point to keep in mind is that the
duration of the System Development Phase may last from a few weeks or months to several years.

Author’s Note 24.1 The System Development Phase described here, in conjunction with the
System Procurement Phase, may be repeated several times before a final system is fielded. For
example, in some domains, the selection of a System Developer may require several sequences of
System Development Phase contracts to evolve the system requirements and down select from a
field of qualified contractors to one or two contractors. Such is the case with spiral development.

For a System Service Provider contract, the System Development Phase may be a preparatory
time to develop or adapt reusable system operations, processes, and procedures to support the con-
tract’s mission, support services for the System Operations Phase. For example, a healthcare insur-
ance provider may win a contract to deliver “outsourced” support services for a corporation’s
insurance program. The delivered services may be a “tailored” version similar to programs the
contractor has administered for other organizations.

Once you have mastered the concepts discussed in this section, you should have a firm under-
standing of how the SE process should be implemented and how to manage its implementation.

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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What You Should Learn from This Chapter

1. What are the workflow steps in system development?

2. What is the verification and validation (V&V) strategy for system development?

3. How does the V&V strategy relate to the system development workflow?

4. Why is the V and V strategy important?

5. What is the Developmental Configuration?

6. When does the Developmental Configuration start and end?

7. What is a first article system?

8. What is developmental test and evaluation (DT&E)?

9. How is DT&E performed?

10. When is DT&E performed during the System Development Phase?

11. Who is responsible for performing DT & E?

12. What is operational test & evaluation (OT&E)?

13. When is OT&E performed during the System Development Phase?

14. What is the objective of OT&E?

15. Who is responsible for performing OT&E?

16. What is the System Developer’s role in OT&E?

Definitions of Key Terms

• Developmental Test and Evaluation (DT&E) “Test and evaluation performed to:
1. Identify potential operational and technological limitations of the alternative concepts and

design options being pursued.
2. Support the identification of cost-performance trade-offs.
3. Support the identification and description of design risks.
4. Substantiate that contract technical performance and manufacturing process requirements

have been achieved.
5. Support the decision to certify the system ready for operational test and evaluation.”

(Source: MIL-HDBK-1908, Section 3.0, Definitions, p. 12)

• Developmental Configuration “The contractor’s design and associated technical docu-
mentation that defines the evolving configuration of a configuration item during develop-
ment. It is under the developing contractor’s configuration control and describes the design
definition and implementation. The developmental configuration for a configuration item
consists of the contractor’s released hardware and software designs and associated technical
documentation until establishment of the formal product baseline.” (Source: MIL-STD-973
(Canceled), Configuration Management, para. 3.30)

• First Article “[I]ncludes preproduction models, initial production samples, test samples,
first lots, pilot models, and pilot lots; and approval involves testing and evaluating the first
article for conformance with specified contract requirements before or in the initial stage of
production under a contract.” (Source: DSMC—Test & Evaluation Management Guide,
Appendix B, Glossary of Test Terminology)

• Functional Configuration Audit (FCA) “An audit conducted to verify that the development
of a configuration item has been completed satisfactorily, that the item has achieved the per-
formance and functional characteristics specified in the functional or allocated configuration
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identification, and that its operational and support documents are complete and satisfactory.”
(Source: IEEE 610.12-1990 Standard Glossary of Software Engineering Terminology)

• Independent Test Agency (ITA) An independent organization employed by the Acquirer
to represent the User’s interests and evaluate how well the verified system satisfies the User’s
validated operational needs under field operating conditions in areas such as operational
utility, suitability, and effectiveness.

• Operational Test and Evaluation (OT&E) Field test and evaluation activities performed
by the User or an Independent Test Agency (ITA) under actual OPERATING ENVIRON-
MENT conditions to assess the operational utility, suitability, and effectiveness of a system
based on validated User operational needs. The activities may include considerations such
as training effectiveness, logistics supportability, reliability and maintainability demonstra-
tions, and efficiency.

• Physical Configuration Audit (PCA) “An audit conducted to verify that a configuration
item, as built, conforms to the technical documentation that defines it.” (Source: IEEE
610.12-1990 Standard Glossary of Software Engineering Terminology)

• Quality Record (QR) A document such as a memo, e-mail, report, analysis, meeting
minutes, and action items that serves as objective evidence to commemorate a task-based
action or event performed.

Phase Objective(s)

The primary objective of the System Development Phase is to translate the contract and System
Performance Specification (SPS) requirements into a physical, deliverable system that has been:

1. Verified against those requirements.

2. Validated by the User, if required.

3. Formally accepted by the User or the Acquirer, as the User’s contract and technical 
representative.

24.2 SYSTEM DEVELOPMENT VERIFICATION 
AND VALIDATION STRATEGY

During our discussion of system entity concepts in Figure 6.2 we explored the basic concept of
system verification and validation. Verification and validation (V&V) provides the basis for a con-
ceptual strategy to ensure the integrity of an evolving SE design solution. Let’s expand on Figure
6.2 to establish the technical and programmatic foundation for our discussion in this chapter. Figure
24.1 serves as a navigation aid for our discussion for a closed loop V&V system.

System Definition and System Procurement Phases V&V

When the User identifies an Operational Need (1), the User may employ the services of an Acquirer
to serve as a contract and technical representative for the procurement action. The operational
needs, which may already be documented in a Mission Needs Statement (MNS), are translated by
the Acquirer into an Operational Requirements Document (ORD) (2) and validated in collabora-
tion with the User. The ORD becomes the basis for the Acquirer to develop a System Requirements
Document (SRD) (3) or Statement of Objectives (SOO). The SRD/SOO specifies the technical
requirements for the formal solicitation—namely the Request for Proposal (RFP)—in an OPEN
competition to qualified Offerors.



Offerors analyze the SRD/SOO, derive and develop a System Performance Specification (SPS)
(4) from the SRD/SOO (2), and submit the SPS as part of their proposal. When the Acquirer makes
a final source selection decision, a System Development Agreement (6) is formally established at
the time of contract award (5).

System Development Phase V&V

The SPS (4) provides the technical basis for developing the deliverable system or product via
System Engineering and Development (6) activities. Depending on the maturity of the require-
ments, the System Developer may employ spiral development and other strategies to develop the
system design solution. In support of the system engineering and development (6) activity, Deci-
sion Support (8) performs analyses and trade studies, among other such activities, with inputs and
preliminary assessments provided from User Feedback (9), such as validation on the implementa-
tion of requirements.

As the SE design evolves, System Verification (12) methods are continually applied to assess
the requirements allocation, flow down, and designs at all levels of abstraction—at the PRODUCT,
SUBSYSTEM, ASSEMBLY, SUBASSEMBLY, and PART levels. Design verification activities
include Developmental Test and Evaluation (DT&E) (10) and Major Technical Reviews and Trace-
ability Audits (11). The purpose of these verification activities is to assess and monitor the progress,
maturity, integrity and risk of the SE design solution. Baselines are established at critical staging
or control points—using technical reviews—to capture formal baselines of the evolving Develop-
mental Configuration to facilitate decision making.

Author’s Note 24.2 Although it isn’t explicitly shown in Figure 24.1, validation activities con-
tinually occur within the System Developer’s program organization. Owners VALIDATE lower level
design solution implementations in terms of documented use case-based requirements.

254 Chapter 24 System Development Workflow Strategy

Operational
Need

System
Engineering & 
Development

System Verification
Did We Build the Product Right?

System Verification
Did We Build the Product Right?

Operational Test & 
Evaluation (OT&E)

System
Verification
Test (SVT)

Decision Support
Analyses, Trade 
Studies, Models, 
Simulations, & 

Prototypes

7

8

FCA

15

12

19PCA

SVR
16 18

TRRs

14
Operational

Requirements
Document

(ORD)

2

System
Requirements

Document
(SRD)

3
System

Performance
Specification

(SPS)

4

System Development Phase6

Customer Satisfaction22 20

System Validation
Did We Acquire the Right Product?

21

175
13

Contract
Award

Major Technical Reviews 
& Traceability Audits11 CDR

User
Feedback

9

Developmental Test & Evaluation (DT&E) 10

1

Figure 24.1 System V & V—Programmatic Perspective



24.3 Implementing the System Development Phase 255

Design requirements established at the Critical Design Review (CDR) (13) provide the basis for
procuring and developing components. As each component is completed, the item is verified for
compliance to its current design requirements baseline.

Successive levels of components progress through levels of System Integration, Test, and Eval-
uation (SITE) and verified against their respective item development specifications (IDSs). Test
Readiness Reviews (TRRs) (14) are conducted at various levels of integration to verify that all
aspects of a configuration and test environment are ready to commence testing with low risk.

When the SYSTEM level of integration is ready to be verified against the SPS (4), a System
Verification Test (SVT) (15) is conducted. The SVT must answer the question “Did we build the
system or product RIGHT?”—in accordance with the SPS (4) requirements.

Following the SVT, a Functional Configuration Audit (FCA) (16) is conducted to authenticate
the SVT results, via quality records (QRs), as compliant with the SPS (4) requirements. The FCA
may be followed by a Physical Configuration Audit (PCA) (17) to authenticate by physical meas-
urement compliance of items against their respective design requirements. On completion of the
FCA (16) and PCA (17), a System Verification Review (SVR) (18) is conducted to certify the results
of the FCA and PCA.

Depending on the terms and conditions (T&Cs) of the System Development Agreement (6),
completion of the SVR (18) serves as prerequisite for final system or product delivery and accept-
ance (19) by the Acquirer for the User. For some agreements an Operational Test and Evaluation
(OT&E) (20) may be required. In preparation for the OT&E (20), the User or an Independent Test
Agency (ITA) representing the User’s interests may be employed to conduct scenario-based field
exercises using the system or product under actual or similar OPERATING ENVIRONMENT
conditions.

During OT&E (20), Acquirer System Validation (21) activities are conducted to answer the
question “Did we acquire the RIGHT system or product?”—as documented in the ORD or the SOO,
whichever is applicable. Depending on the scope of the contract (5), corrective actions may be
required during OT&E (20) for any design flaws, latent defects, deficiencies, and the like. Follow-
ing OT&E (20), the ITA prepares an assessment and recommendations.

Author’s Note 24.3 Although the System Development contract (6) may be complete, the User
performs system verification and validation activities continuously throughout the System Devel-
opment and system Operations and Support (O&S) phases of the system product life cycle. V&V
activities expand to encompass organizational and system missions. As competitive and adversar-
ial threats in the OPERATING ENVIRONMENT evolve and maintenance costs increase, “gaps”
emerge in achieving organizational and system missions with existing capabilities. These degree
of urgency to close these gaps subsequently leads to the next system or product development or
upgrade to existing capabilities.

Now that we have established the V&V strategy of system development, the question is: HOW do
we implement it? This brings us to our next topic, Implementing the system development phase.

24.3 IMPLEMENTING THE SYSTEM DEVELOPMENT PHASE

The workflow during the system development phase consists of five sequential workflow processes
as illustrated in Figure 24.2. The processes consist of:

1. System Design Process

2. Component Procurement and Development Process



3. System Integration, Test, and Evaluation (SITE) Process

4. Authenticate System Baseline Process

5. Operational Test, and Evaluation (OT&E) Process

While the general workflow appears to be sequential, there are highly iterative feedback loops that
connect to predecessor segements.

The System Development Phase begins at contract award and continues through deliverable
system acceptance by the Acquirer and User. During this phase the approach that enabled the
System Developer or Service Provider to convince the Acquirer that the organization can perform
on the contract is implemented. Remember those brochureware phrases: well-organized, seamless
organization, highly efficient, highly trained and performing teams; no problem, and so on.

The System Development Phase includes those technical activities required to translate the
contract performance specifications into a physical system solution. We refer to the initial system(s)
as the first article of the Developmental Configuration. Throughout the phase, the highly iterative
system design solution evolves through a progression of maturity stages. Each stage of maturity
typically consists of a series of design reviews with entry and exit criteria supported by analyses,
prototypes, and technology demonstrations. The reviews culminate in design baselines that capture
snapshots of the evolving Developmental Configuration. When the system design solution is for-
mally approved at a Critical Design Review (CDR), the Developmental Configuration provides the
basis for component procurement and/or development.

Procured and developed components are inspected, integrated, and verified against their respec-
tive design requirements-drawings- and performance specifications at various levels of integration.
The intent of verification is to answer the question: “Did we develop the system RIGHT?”—accord-
ing to the specification requirements. The integration culminates with a System Verification Test
(SVT) against the System Performance Specification (SPS). Since the System Development Phase
focuses on development of the system, product, or service, testing throughout SVT is referred to
as Developmental Test and Evaluation (DT&E).
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When the first article system(s) of the Developmental Configuration has been verified as
meeting its SPS requirements, one of two options may occur, depending on contract requirements.
The system may be deployed to either of the following:

1. Another location for validation testing by the User or an Independent Test Agency (ITA)
representing the User’s interests.

2. The User’s designated field site for installation, checkout, integration into the user’s Level
0 system, and final acceptance.

Validation testing, which is referred to as Operational Test and Evaluation (OT&E), enables the
User to make a determination if they specified and procured the RIGHT SYSTEM to meet their
validated operational needs. Any deficiencies are documented as discrepancy reports (DRs) and
resolved in accordance with the terms and conditions (Ts&Cs) of the contract.

After an initial period of system operational use in the field to correct latent defects such as
design flaws, errors and deficiencies and collect field data to validate system operations, a decision
is made to begin the System Production Phase, if applicable. If the User does not intend to place
the system or product in production, the Acquirer formally accepts system delivery, thereby initi-
ating the System Operations and Support (O&S) Phase.

Technical Management Process

The technical orchestration of the System Development Phase resides with the Technical Manage-
ment Process. The objective of this process is to plan, staff, direct, and control product-based team
activities focused on delivering their assigned items within technical, technology, cost, schedule,
and risk constraints.

Decision Support Process

The Decision Support Process supports all aspects of the System Development Phase process 
decision-making activities. This includes conducting analyses, trade studies, modeling, simulation,
testing, and technology demonstrations to collect data to validate models and provide prioritized
recommendations to support informed decision making within each of the workflow processes.

Exit to System Production Phase or 
System Deployment Phase

When the System Development Phase is completed, the workflow progresses to the System Pro-
duction Phase or System Operations and Support (O&S) Phase, whichever is applicable.

Guidepost 24.1 Based on a description of the System Development Phase workflow processes,
let’s investigate HOW the V&V strategy is integrated with the workflow progression.

24.4 APPLYING V&V TO THE SYSTEM 
DEVELOPMENT WORKFLOW

So far we have introduced the System Development Phase processes and described the sequential
workflow. Each of these processes enables the System Developer to accomplish specific objectives
such as:

1. Select and mature a design from a set of viable candidate solutions based on an analysis of
alternatives.
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2. Procure, fabricate, code, and test PART level components.

3. Perform multi-level system integration, test, and evaluation.

4. Verify items at each level of integration satisfy specification requirements.

5. Validate, if applicable, the integrated SYSTEM as meeting User operational needs.

Until the system is delivered and accepted by the Acquirer, the Developmental Configuration, which
captures the various design baselines, is always in a state of evolution. It may require redesign or
rework to correct latent defects, deficiencies, errors, and the like. So how do we minimize the
impacts of these effects? This brings us to the need for an integrated verification and validation
(V&V) strategy. To facilitate our discussion, Figure 24.3 provides a framework.

System Performance Specification (SPS) V&V Strategy

During the System Procurement Phase, Operational Needs (1) identified by the User and Acquirer
are documented (2) in the System Performance Specification (SPS) (3). This is a critical step. The
reason is that by this point the Acquirer, in collaboration with the User, has partitioned the organi-
zational problem space into one or more solution spaces.

Each solution space is bounded by requirements specified in its SPS. If there are any errors in
tactical or engineering judgment, they manifest themselves in the requirements documented in the
SPS. Therefore the challenge question for the Acquirer, User, and ultimately the System Developer
is: Have we specified the RIGHT system—solution space—to satisfy one or more operational
needs—problem space? How do we answer this question?

SPS requirements should be subjected to Requirements Validation (4) against the Operational
Need (1) to validate that the right solution space description has been accurately and precisely
bounded by the SPS (3).
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Author’s Note 24.4 A word of caution: any discussions with the User and Procurement Team
regarding the System Performance Specification (SPS) requirements validation requires tactful pro-
fessionalism and sensitivity. In effect, you are validating that the Acquirer performed their job cor-
rectly. On the one hand they may be grateful for you identified any potential deficiencies in their
assessment. Conversely, you may highly offend! Approach any discussions in a tactful, well-
conceived, professional manner.

SE Design V&V Strategy

When the SPS requirements have been validated, the SPS (3) serves as originating or source
requirements inputs to system design. During the system design, Interim Design Verification (6) is
performed on the evolving system design solution by tracing allocated requirements back to the
SPS and prototyping design areas for RISK mitigation and critical operational or technical issue
(COI/CTI) resolution. Design Validation (7) activities should also be performed to confirm that the
User and Acquirer, as the User’s technical representative, agree that the evolving System Design
Solution satisfies their needs.

Author’s Note 24.5 The Interim Design Verification (6) and Interim Design Validation (7), or
design “verification and validation,” are considered complete when the system has been verified,
validated, and legally accepted by the User via the Acquirer in accordance with the terms of the
contract. Therefore the term “interim” is applied.

Design verification and validation occurs throughout the SE Design Process. Validation is accom-
plished via: 1) technical reviews (e.g., SDR, SSR, PDR, and CDR) and 2) technical demonstra-
tions. Communications media such as conceptual views, sketches, drawings, presentations,
technical demonstrations, and/or prototypes are used to obtain Acquirer and User validation accept-
ance and approval, as appropriate. On completion of a system level CDR, workflow progresses to
Component Procurement and Development (8).

Component Procurement and Development V&V Strategy

During Component Procurement and Development (8), design requirements from the System
Design (5) serve as the basis for procuring, fabricating, coding, and assembling system compo-
nents. Each component undergoes component verification (10) against its Design Requirements (5).
As components are verified, workflow progresses to System Integration, Test, and Evaluation
(SITE) (11).

System Integration, Test, and Evaluation (SITE) V&V Strategy

When components complete verification, they enter System Integration, Test, and Evaluation (11).
Activities performed during this process are often referred to as developmental test and evaluation
(DT&E) (12). DT&E occurs throughout the entire System Development Phase, from System Design
(5) through SITE (11). The purpose of DT&E in this context is to verify that the system and its
embedded subsystems, HWCIs/CSCIs, assemblies, and parts are compatible and interoperable with
themselves and the system’s external interfaces.

To accomplish the SITE Process, Verification Methods and Requirements (13) defined in the
SPS (3) and multi-level item development specifications (IDSs) are used to develop Verification
Procedures (14). Verification methods—consisting of inspection, analysis, test, demonstration, and
similarity—are defined by the SPS for each requirement and used as the basis for verifying com-
pliance. One or more detailed test procedures (14) that prescribe the test environment configura-
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tion—such as the  OPERATING ENVIRONMENT (initial and dynamic), data inputs, and expected
test results—support each verification method.

During SITE (11), the System Developer formally tests the SYSTEM with representatives of
the Acquirer and User as witnesses. Multi-level system verification activities, at appropriate inte-
gration points (IPs) review (15) test data and results against the verification procedures (14) and
expected results specified in the appropriate development specifications. When the system com-
pletes SITE (11), a formal System Verification Test (SVT) corroborates the system’s capabilities
and performance against the SPS.

Authenticate System Baselines V&V Strategy—First Pass

When the SVT is completed, workflow progresses to Authenticate System Baselines (18). The
process contains two authentication processes that may be performed at different times, depending
on contract requirements. The first authentication consists of a Functional Configuration Audit
(FCA) (17). Using the SPS and other development specification requirements as a basis, the FCA
reviews the results of the As-Designed, Built, and Verified system that has just completed the SVT
to verify that it fully complies with the SPS functional and performance requirements. The FCA
may be conducted at various levels of IPs during the SITE Process.

On successful completion of the FCA, the system may be deployed to a User’s test range or
site to undergo Operational Test and Evaluation (OT&E) (19). On completion of OT&E, the system
may reenter the Authenticate System Baselines process for the second pass.

Validate System Process V&V Strategy

Up to this point, the system is verified by SVT and audited by FCA to meet the SPS requirements.
The next step is to validate that the As-Designed, Built, and Verified system satisfies the User’s
Operational Needs (1) as part of the Operational Test and Evaluation (OT&E) (20) activities.

System validation activities (20) demonstrate how well the fielded system performs missions
in its intended operational environment as originally envisioned by the User. Any system latent
defects and deficiencies discovered during system validation are recorded as problem reports and
submitted to the appropriate decision authority for disposition and corrective action, if required.

Author’s Note 24.6 During system validation, a determination is made that an identified defi-
ciency is within the scope of the original contract’s SPS. This is a critical issue. For example, did
the User or Acquirer overlook a specific capability as an operational need and failed to document
it in the SPS? This point reinforces the need to perform a credible Requirements Validation (4)
activity prior to or immediately after Contract Award to AVOID surprises during system accept-
ance. If the deficiency is not within the scope of the contract, the Acquirer may be confronted with
modifying the contract and funding additional design implementation and efforts to incorporate
changes to correct the deficiency.

Authenticate System Baselines V&V Strategy—Second Pass

During the second pass through Authenticate System Baselines (18), the As Designed, Built, Ver-
ified, and Validated (20) configuration system is subjected to a Physical Configuration Audit (PCA)
(17). PCA audits the As-Designed, Built, and Verified physical system to determine if it fully com-
plies with its design requirements such as drawings and parts lists. On successful completion of
the PCA (17), a System Verification Review (SVR) is conducted to:

1. Certify the results of the FCA and PCA.

2. Resolve any outstanding FCA/PCA issues related to those results.

3. Assess readiness-to-ship decision.

260 Chapter 24 System Development Workflow Strategy



On successful completion of the OT&E Process (19), a Verified and Validated System (22) should
be ready for delivery to the User via formal acceptance by the Acquirer.

Guidepost 24.2 Integrating the V&V strategy into the System Development Phase workflow
describes the mechanics of ensuring the evolving Development Configuration is progressing to a
plan. However, performing to a plan does not guarantee that the system can be completed suc-
cessfully on schedule and within budget. The development, especially for large, complex systems,
must resolve critical operational and technical issues (COIs/CTIs), each with one or more risks.
So how do we mitigate these risks? This brings us to our next topical discussion, the roles of the
Developmental Test and Evaluation (DT&E) and the Operational Test and Evaluation (OT&E).

24.5 RISK MITIGATION WITH DT&E AND OT&E

Satisfactory completion of system development requires that a robust strategy be established up
front. We noted earlier that although the workflow appears to be sequential, each process consists
of highly iterative feedback loops with each other as illustrated by Figure 24.4. To accomplish this,
two types of testing occur during the System Development Phase: 1) Developmental Test & Eval-
uation (DT & E) and 2) Operational Test & Evaluation (OT & E).

Developmental Test and Evaluation (DT&E)

Developmental testing (DT) serves as a risk mitigation approach to ensure that the evolving system
design solution, including its components, complies with the System Performance Specification
(SPS) requirements. DT focuses on two themes:

1. Are we building the system or product right—meaning using best practices in compliance
with the SPS.

2. Do we have a design solution that represents the best, acceptable risk solution for a given
set of technical, cost, technology, and schedule constraints?
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The DSMC T&E Management Guide states that the objectives of DT&E are to:

1. Identify potential operational and technological capabilities and limitations of the alterna-
tive concepts and design options being pursued;

2. Support the identification of cost-performance tradeoffs by providing analyses of the capa-
bilities and limitations of alternatives;

3. Support the identification and description of design technical risks;

4. Assess progress toward meeting critical operational issues (COIs), mitigation of 
acquisition technical risk, achievement of manufacturing process requirements and system
maturity;

5. Assess validity of assumptions and conclusions from the analysis of alternatives (AOA);

6. Provide data and analysis in support of the decision to certify the system ready for opera-
tional test and evaluation (OT&E);

7. In the case of automated information systems, support an information systems security cer-
tification prior to processing classified or sensitive data and ensure a standards conformance
certification.

(Source: Adapted from DSMC Test & Evaluation Management Guide, App. B, p. B-6)
DT&E is performed throughout System Design Process, Component and Procurement Process,

and the SITE Process. Each process task verifies that the evolving and maturing system or product
design solution—the Developmental Configuration—fully complies with the SPS requirements.
This is accomplished via reviews, proof of principle and proof of concept demonstrations, tech-
nology demonstrations, engineering models, simulations, brass boards, and prototypes.

On completion of verification, the physical system or product enters OT&E, whereby it is val-
idated against the User’s documented operational need.

Operational Test and Evaluation (OT&E)

Operational test and evaluation (OT&E) activities are typically conducted on large, complex
systems such as aircraft and military acquirer activity systems. The theme of OT&E is: Did we
acquire the RIGHT system or product to satisfy our operational need(s)? OT&E consists of sub-
jecting the test articles to actual field environmental conditions with operators from the User’s
organization. An Independent Test Agency (ITA) designated by the Acquirer or User typically con-
ducts this testing. To ensure independence and avoid conflicts of interest, the contract precludes
the System Developer from direct participation in OT&E; the System Developer may, however,
provide maintenance support, if required.

Since the OT&E is dependent on how well the system’s Users perform with the new 
system or product, the ITA or System Developer train the User’s personnel to safely operate the
system. This may occur prior to system deployment following the SVT or on arrival at the OT&E
site.

During the OT&E, the ITA trains the User’s personnel in how to conduct various operational
use cases and scenarios under actual field OPERATING ENVIRONMENT conditions. The use
cases and scenarios are structured to evaluate system operational utility, suitability, availability,
and effectiveness. ITA personnel instrument the SYSTEM to record and observe the human–system
interactions and responses. Results of the interactions are scored, summarized, and presented as
recommendations.

On successful completion of the DT&E and OT&E and the follow-on Authenticate System
Baselines Process, the verified and validated system or product is delivered to the Acquirer or User
for final acceptance.



24.6 GUIDING PRINCIPLES

In summary, the preceding discussions provide the basis with which to establish the guiding prin-
ciples that govern system development workflow strategy practices.

Principle 24.1 A system development strategy must have three elements:

1. A strategy-based roadmap to get from Contract Award to system delivery and acceptance
supported by incremental verification and validation.

2. A plan of action for implementing the strategy.

3. Documented objective evidence that you performed to the plan via work product quality
records.

Principle 24.2 System verification and validation applies to every stage of product development
workflow beginning at Contract Award and continuing until system delivery and acceptance.

Principle 24.3 Developmental test and evaluation (DT&E) is performed by the System Devel-
oper to mitigate Developmental Configuration risks; Users employ the operational test and evalu-
ation (OT&E) to determine if they acquired the right system.

24.7 SUMMARY

During our discussion of the system development workflow strategy we introduced the system development
phase processes. The System Development Phase processes include:

1. System Design

2. Component Procurement and Development

3. System Integration, Test, and Evaluation (SITE)

4. Authenticate System Baseline

5. Operational Test, and Evaluation (OT&E)

Based on the System Development Phase processes, we described an overall workflow strategy for ver-
ification and validation. This strategy provides the high-level framework for transforming a User’s validated
operational need into a deliverable system, product, or service.

We introduced the concepts of developmental test and evaluation (DT&E) and operational test and eval-
uation (OT&E). Our discussion covered how DT&E and OT&E serve as key verification and validation activ-
ities and their relationship to the system development workflow strategy.

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Using a system listed in Table 2.1, develop a description of the activities for each System Development
Phase process to be employed and integrated into an overall V & V strategy.

ORGANIZATIONAL CENTRIC EXERCISES

1. Research your organization’s command media for guidance and direction in implementing the System
Development Phase from an SE perspective.

(a) What requirements are levied on SE contributions?

Organizational Centric Exercises 263
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ADDITIONAL READING

(b) What overall process is required and how do SEs contribute?

(c) What SE work products and quality records are required?

(d) What verification and validation activities are required?

2. Contact a small, medium, and a large contract program within your organization. Interview the Technical
Director or Project Engineer to identify the following information:

(a) Request the individual to graphically depict their development strategy?

(b) What factors drove them to choose the implementation strategy?

(c) What were some of the lessons learned from developing and implementing the strategy that would
influence their approach next time?

(d) How was the V & V strategy implemented?
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Chapter 25

System Design, Integration, 
and Verification Strategy

25.1 INTRODUCTION

Our discussion of the system development workflow strategy established a sequence of highly inter-
dependent processes that depict the workflow for translating the System Performance Specification
(SPS) into a system design solution. The strategy provides a frame of reference to:

1. Verify compliance with the SPS requirements.

2. Validate that the deliverable system satisfies the User’s validated operational needs.

The workflow strategy identified two key processes that form the basis for designing and devel-
oping a system: the System Design Process and the System Integration, Test, and Evaluation (SITE)
Process.

This section focuses on the strategies for implementing the System Design Process and the
SITE Process. Each strategy expands each process via lower level processes. Finally, we integrate
the two strategies into an overall strategy referred to as the V-Model for system deployment.

What You Should Learn from This Chapter

1. What is the basic strategy for implementing the System Design Process of the System
Development Phase?

2. What is the basic strategy for implementing the SITE Process of the System Development
Phase?

3. What is the V-Model of system design and development?

4. What is an integration point?

5. How do the system design process strategy and the SITE Process integrate?

Definitions of Key Terms

• Corrective Action The set of tasks required to correct or rescope specification contents,
errors, or omissions; designs flaws or errors; rework components due to poor workmanship,
defective materials or parts; or correct errors or omissions in test procedures.

• Discrepancy Report (DR) A report that identifies a condition in which a document or test
results indicate a noncompliance with a capability and performance requirement specified in
a performance or item development specification.

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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• Integration Point Any one of a number of confluence points during the System Integra-
tion, Test, and Evaluation (SITE) Process where two or more entities are integrated.

• V-Model A graphical model that illustrates the time-based, multi-level strategy for (1)
decomposing specification requirements, (2) procuring and developing physical components,
and (3) integrating, testing, evaluating, and verifying each set of integrated components.

25.2 SYSTEM DESIGN PROCESS STRATEGY

The System Design Process of the System Development Phase employs a highly iterative, top-
down/bottom-up/lateral process. Since the process requires analysis and decomposition/expansion
of abstract, high-level SPS requirements into lower levels of detail for managing complexity, each
lower level design activity subsequently occurs in later time increments. Figure 25.1 illustrates this
sequencing. Each horizontal bar in the figure:

1. Represents design activities that may range from very small to very large level of efforts
(LOEs) over time.

2. Includes preliminary activities that ramp up with time.

This graphic is representative of most development programs. Some programs may be unprece-
dented and require more maturity at higher levels until lower level design activities are initiated as
evidenced by the white, horizontal bars. Other systems may be precedented and reuse some or most
of an existing design solution. Thus preliminary design activities at all levels may be initiated with
a small effort at Contract Award and ramp up over time. Given this backdrop, let’s describe the
strategy for creating the multi-level design solution.
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Guidepost 25.1 At this point we have established the theoretical approach for performing
system design. This brings us to the next topic, implementing the System Design Process.

25.3 IMPLEMENTATION OF THE SYSTEM DESIGN PROCESS

The initial implementation of the System Design Process occurs during the System Procurement
Phase of the system/product life cycle. During the System Procurement Phase, the System Devel-
oper proposes solution responses to the Acquirer’s formal Request for Proposal (RFP) solicitation.

When the System Development Phase begins at Contact Award (CA), the System Design
Process is repeated to develop refinements in the PROPOSED system design solution. These refine-
ments are implemented to accommodate requirements changes that may have occurred as part of
the final contract negotiation and maturation of the proposed design solution.

The actual implementation involves several design approaches. Among these approaches are
Waterfall, Incremental Development, and Spiral Development which are introduced in a later
chapter. The approach selected depends on criteria such as:

1. Level of understanding of the problem and solution spaces.

2. The maturity of the SPS requirements.

3. Level of risk.

4. Critical operational or technical issues (COIs/CTIs).

Some people may categorize Figure 25.1 as the Waterfall Model for system development. While it
may appear to resemble a waterfall, it is not a true waterfall in design. The Waterfall Model pre-
sumes each level of design to be completed just before the next level is initiated (as illustrated in
Figure 27.1). The fallacy with the Waterfall approach is:

• You must perform lower level analysis and preliminary design to be able to understand the
requirements decisions at a higher level and their lower level ramifications.

• As a typical entry criterion for the Critical Design Review (CDR), the total system design
is expected to have a reasonable level of maturity sufficient to commit component procure-
ment and development resources with acceptable risk. Remember, at CDR most system
designs solutions are UNPROVEN—that is, as the fully integrated system. Therefore, the
system level design solution is NOT considered officially complete UNTIL the system has
been formally accepted in accordance with the terms and conditions (T&Cs) of the contract.

As Figure 25.1 illustrates, each level of design occurs concurrently at various levels of effort
throughout the System Design Process. Since every design level incrementally evolves to maturity
over time toward CDR, the level of activity of each design activity bar diminishes toward CDR.
By CDR, the quantity of requirements and performance allocation changes should have diminished
and stabilized as objective evidence of the maturity.

Concurrent, Multi-level Design Activities

Each activity (bar) in Figure 25.1 consists of a shaded Preliminary Design segment followed by a
Design Activity segment.

Preliminary Design segments are shaded from left to right, with darker shading to represent
increasing level of effort (LOE) work activity. These preliminary design activities may involve
analyses, modeling, and simulation to investigate lower level design issues to support higher level
decision making by one or more individuals on a part-time or full-time basis. Consider the fol-
lowing example:
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EXAMPLE 25.1

An Integrated Product Team (IPT) may be tasked or subcontractor contracted to perform preliminary analy-
sis and design with the understanding that a task or contract option may be to shift work activities at any level
from feasibility studies to actual design activities.

The distinction between Preliminary Design (shaded) and Design Activities is graphically sepa-
rated for discussion purposes. Within System Developer organizations, there is no break between
segments—just an expansion in LOE from one or two people to five or ten.

Design Maturation Reviews

Throughout the System Design Process, program formal and informal reviews are conducted to
assess the maturity, completeness, consistency, and risk of the evolving system design solution.

Referral A detailed description of these reviews appears in Chapter 54 Technical Review Prac-
tices used in the verification and validation phase of the design process.

Guidepost 25.2 Given an overview of the system design strategy, let’s shift our focus to the
system integration, test, and evaluation (SITE) strategy.

25.4 IMPLEMENTING THE SYSTEM DESIGN 
PROCESS STRATEGY

To illustrate HOW the system design activities are implemented, consider the example illustrated
in Figure 25.2. In the figure the SPS (1) is analyzed, a SYSTEM level Engineering Design (3) is
selected, and requirements are allocated (2) to PRODUCTS A and B. SPS requirements allocated
to PRODUCT B are flowed down (5) and captured via the PRODUCT B Development Specifica-
tion (7). PRODUCT B Development Specification requirements are then traced (6) back to the
source or originating requirements of the SPS.

To fully understand the implications of requirements allocated to PRODUCT B, a design team
initiates PRODUCT B’s Engineering Design (9). PRODUCT B’s Engineering Design (9) is selected
from a set of viable candidates. PRODUCT B’s Development Specification requirements are then
allocated (8) to SUBSYSTEMS B1 and B2.

At each level, formal and informal technical review(s) are conducted to verify (4), (10), (16),
and (22) that the evolving designs comply with the requirements allocated from their respective
specifications. The process repeats until all levels of abstraction have been expanded into detailed
designs for review and approval at the SYSTEM level CDR.

Guidepost 25.3 At this point we have investigated the strategy that depicts how the SPS is
translated into a detailed design for approval at the CDR. Next we explore the SITE strategy that
demonstrates that the various levels of integrated, physical components satisfy their specification
requirements.

25.5 SYSTEM INTEGRATION, TEST, AND 
EVALUATION (SITE) STRATEGY

The system design strategy is based on a hierarchical decomposition framework that partitions a
complex system solution space into lower level solution spaces until the PART level is reached.
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For system integration we reverse this strategy by integrating the PART level solutions into higher
levels of complexity. Thus we establish the fundamental strategy for SITE.

The SITE Process is implemented by integrating into successively higher levels physical com-
ponents that have been verified at a given level of abstraction. We refer to each integration node as
an Integration Point (IP). Figure 25.3 provides an illustrative example of the time-based graphical
sequence of our discussion.

Multi-level Integration and Verification Activities

Suppose that we have a system that consists of multiple levels of abstraction. Physical hardware
PARTS and/or computer software units (CSUs) that have been verified are integrated into higher
level hardware SUBASSEMBLIES and/or computer software components (CSCs). Each SUB-
ASSEMBLY/CSC is then formally verified for compliance to its respective specification or design
requirements. The process continues until SYSTEM level integration and verification is completed
via a formal System Verification Test (SVT).

Applying Verification Methods to SITE

Each integration step employs INSPECTION, ANALYSIS, DEMONSTRATION, or TEST verifi-
cation methods prescribed by the respective development specification. Verification methods are
implemented via acceptance test procedures (ATPs) formally approved by the program and
Acquirer, if applicable, and maintained under program CM control. Representatives from the
System Developer, the Acquirer, to the User organizations, as appropriate, participate in the formal
event and witness verification of each requirement.

25.5 System Integration, Test, and Evaluation (SITE) Strategy 269

6

13

Requirements
Traceability

Requirements
Traceability

Requirements
Traceability

System
Performance
Specification

(SPS)

Product B 
Development 
Specification

Subsystem
B2

Development 
Specification

CSCI B22 
Software

Requirements
Specification

(SRS)

H
ig

hl
y 

It
er

at
iv

e 
T

op
-D

ow
n/

B
ot

to
m

-U
p/

L
at

er
al

 D
es

ig
n

H
ig

hl
y 

It
er

at
iv

e 
T

op
-D

ow
n/

B
ot

to
m

-U
p/

L
at

er
al

 D
es

ig
n

Subsystem
B2

Subsystem
B1

CSCI
B22

HWCI
B21

CSCI
B21

PRODUCT
B

1

12

18

SYSTEM Level Engineering Design

PRODUCT
A

Product B Engineering Design

Subsystem B2 Engineering Design

CSC
B221

CSCI B22 Engineering Design

CSC
B222

CSC
B223

3

15

21

5

17

10

8

16

14

22

20

11

7

2

4

23
CSU Level

Flow Down

Flow Down

Flow Down

Allocations

Verification

Allocations

Verification

Verification

Allocations

Verification

9

Allocations

19

Figure 25.2 System Engineering Design Strategy



Author’s Note 25.1 The level of formality required for witnessing verification events varies by
contract and organization. For some systems, certified System Developer testers at lower levels
may be permitted to verify some components without a quality assurance (QA) witness. At higher
levels the Acquirer may elect to participate and invite the User. Consult your contract and orga-
nization’s policies and protocols for specific guidance. For some systems, critical technologies may
require involvement of all parties in formal verification events at lower levels.

Correcting Design Flaws, Errors, Defects, and Deficiencies

If discrepancies between actual results and expected results occur, corrective actions are initiated.
Consider the following example:

EXAMPLE 25.2

Corrective actions include:

1. Modification or updating of the specification requirements.

2. Redesign of components.

3. Design changes or error corrections.

4. Replacement of defective parts or materials, etc.

5. Workmanship corrections.

6. Retraining of certified testers, etc.

When the verification results have been approved and all critical Discrepancy Reports (DRs) are
closed, the item is then integrated at the next higher level. In our example, the next level consists
of hardware configuration items (HWCIs) and computer software configuration items (CSCIs).
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25.6 IMPLEMENTING THE SITE PROCESS STRATEGY

Our previous discussions presented the top-down, multi-level, specification driven, SE Design
Process. In this chapter we present a bottom-up, “mirror image” discussion regarding HOW the
multi-level SITE Process and system verification are accomplished.

Our discussion of the system integration, test, and verification (SITE) strategy uses Figure 25.4
as a reference. Let’s begin by highlighting key areas of the figure.

• The left side of the chart depicts the multi-level specifications used by the System Engi-
neering (SE) Design Process to create the system design solution.

• The right side of the chart depicts a hierarchical structure that represents how system com-
ponents at various levels begin as verified hardware PARTS or computer software units
(CSUs) are integrated to form the SYSTEM at the top of the structure.

• The horizontal gray arrows between these two columns represent the linking of verification
methods, acceptance test procedures (ATPs), and verification results at each level.

Author’s Note 25.2 As previously discussed in the SE Design Process, the contents of this chart
serve as an illustrative example for discussion purposes. Attempting to illustrate all the combina-
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tions and permutations for every conceivable system in a single chart can be confusing and imprac-
tical. You, as a practicing Systems Engineer, need to employ your own mental skills to apply this
concept to your own business domain, systems, and applications.

Guidepost 25.4 The preceding discussions focused on the individual system design and SITE
strategies. Next we integrate these strategies into a model.

25.7 INTEGRATING SYSTEM DESIGN AND 
DEVELOPMENT STRATEGIES

Although the system design and SITE strategies represent the overall system development work-
flow, the progression has numerous feedback loops to perform corrective actions for design flaws,
errors, and deficiencies. As such, the two strategies need to be integrated to form an overall strat-
egy that enables us to address the feedback loops. If we integrate Figures 25.1 and 25.3, Figure
25.5 emerges and forms what is referred to as the V-Model of system development.

The V-Model is a pseudo time-based model. In general, workflow progresses from left to right
over time. However, the highly iterative characteristic of the System Design Process strategy and
verification corrective action aspects of SITE may require returning to a preceding step. Recall
from above that the corrective actions might involve a re-working of lower level specifications,
designs, and components. So, as the corrective actions are implemented over time, workflow does
progress from left to right to delivery and acceptance of the system.

Author’s Note 25.3 This point illustrates WHERE and HOW system development programs
become “bottlenecked,” consuming resources without making earned value work progress because
of re-work. It also reinforces the importance of investing in up-front SE as a means of minimizing
and mitigating re-work risks! Despite all of the rhetoric by local heroes that SE is a non–value-
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added activity, SITE exemplifies WHY homegrown ad hoc engineering efforts falter and program
cost and schedule performance reflects it.

Final Thought

Although we have not covered it in this chapter, some programs begin work from a very abstract
Statement of Objectives (SOO) rather than an SPS. Where this is the case, spiral development is
employed to reiterate the V-Model for incremental builds intended to mature knowledge about the
SYSTEM requirements. We will discuss this topic in Chapter 27 on system development Models.

25.8 GUIDING PRINCIPLES

In summary, the preceding discussions provide the basis with which to establish the guiding prin-
ciples that govern system design, integration, and verification strategy practices.

Principle 25.1 System design is a highly iterative, collaborative, and multi-level process with
each level dependent on maturation of higher level specification and design decisions.

Principle 25.2 A system design solution is not contractually complete until it is verified as com-
pliant with its Acquirer approved System Performance Specification (SPS). Technically it is not
complete until all latent defects are removed, but most systems exist between these two extremes.

Principle 25.3 The number of latent defects in the fielded system is a function of the thor-
oughness of the effort—time and resources—spent on system integration, test, and evaluation
(SITE).

25.9 SUMMARY

During our discussion of the system design, integration, and verification strategy, we described the SE design
strategy that analyzes, allocates, and flows down System Performance Specification (SPS) requirements
through multiple levels of abstraction to various item development specifications and item architectural
designs. Next we described a strategy for integrating each of the procured or developed items into succes-
sively higher levels of integration. At each level each item’s capabilities and levels of performance are to be
verified against their respective specifications.

1. The SE process strategy provides a multi-level model for allocating and flowing down SPS require-
ments to lower levels of abstraction.

2. Unlike the Waterfall Model, the SE Process strategy accommodates simultaneous, multi-level design
activities including Preliminary Design activities.

3. Whereas a design at any level may be formally baselined to promote stability for lower level deci-
sion making, a design at any level is still subject to formal change management modification through
the end of formal acceptance for delivery.

4. The SE design strategy includes multiple control points to verify and validate decisions prior to com-
mitment to the next level of design activities.

5. The SITE Process implements a strategy that enables us to integrate and verify lower level compo-
nents into successively higher levels until the system is fully assembled and verified.

6. The SITE Process strategy includes breakout points to implement corrective actions that often lead
back to the SE Design Process.

7. Corrective actions may require revision of lower level specifications, redesign, rework of components,
or retraining of test operators to correct for design flaws and errors, deficiencies, discrepancies, etc.
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8. The integration of the System Design Process and SITE Process strategies produces what we refer to
as the V-Model of system development.

9. The V-Model, which represents a common model used on many programs, may be performed numer-
ous times, especially in situations such as spiral development to evolve requirements to maturity.

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

ORGANIZATIONAL CENTRIC EXERCISES

1. Research your organization’s command media for direction and guidance in developing SE design and
system integration, test, and evaluation (SITE) strategies. Report your findings.

2. Contact a small, medium, and a large program within your organization. Interview the Lead SE or Tech-
nical Director to understand what strategies the program used for SE design and system integration, test,
and evaluation (SITE) and sketch a graphic of the strategy. For each type of program:

(a) How did the strategy prove to be the right decision.

(b) How would they tailor the strategy next time to improve its performance?
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Chapter 26

The SE Process Model

26.1 INTRODUCTION

If you were to survey organizations to learn about what methods they employ to develop systems,
products, or services, the responses would range from ad hoc methods to logic-based methodolo-
gies. Humans, by nature, generally deplore structured methods and will naively go to great lengths
to avoid them without understanding: 1) WHY they exist and 2) HOW they benefit from them.
While ad hoc methods may be proved successful on simple, small systems and products, the scal-
ability of these methods to large, complex programs employing dozens or hundreds of people results
in chaos and disorder. So, the question is: Does a simple methodology exist that is scalable and
can be applied for all size programs?

At the beginning of Part II, we introduced the basic workflow that System Developers employ
to transform the abstract System Performance Specification (SPS) into a deliverable, physical
system undergo. Although we described that workflow in terms of its six processes, the workflow
does not capture HOW TO create the system, product, or service. Only how it evolves like a pro-
duction line from conceptualization to delivery over time.

Our introduction of the system solution domains at the conclusion of Part I presented the
Requirements, Operations, Behavioral, and Physical Domain Solutions, their sequential develop-
ment, and interrelationships. The system solution domains enable us to describe the key elements
of a system, product, or service solution. So the challenge question is: HOW do we create a logical
method that enables us to:

1. Develop a system, product, or service?

2. Apply it across all system development phase workflow processes?

This chapter introduces the SE Process Model, its underlying methodology, and application to
developing an SE design for a system or one of its components. Our discussion begins with a graph-
ical depiction and accompanying descriptions of the SE Process Model and its methodology. Since
the model is described by two characteristics: highly iterative and recursive, we illustrate how the
model’s internal elements iterate and show how the model applies to multiple levels of abstraction
within the system design process. We provide an example of HOW the model applies to entities at
various levels of abstraction.

Finally, we illustrate HOW the application of the model produces an integrated framework that
represents the multi-level system design workflow progression via the Requirements, Operations,
Behavioral, and Physical Domain Solutions. The last point illustrates, by definition, a system com-
posed of integrated elements synergistically working to achieve a purpose greater than their indi-
vidual purpose-focused capabilities.

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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What You Should Learn from This Chapter

1. What is the SE Process Model?

2. What are the key elements of the SE Process Model?

3. How do the elements of the SE Process Model interrelate?

4. What are the steps of the underlying SE Process Model methodology?

5. What is meant by the Process Model’s highly iterative characteristic?

6. What is meant by the Process Model’s recursive characteristic?

Definitions of Key Terms

• Behavioral Domain Solution A technical design that:
1. Represents the proposed logical/functional solution to a specification.
2. Describes the entity relationships between an entity’s logical/functional capabilities

including external and internal interface definitions.
3. Provides traceability between specification requirements and logical/functional 

capabilities.
4. Is traceable to the multi-level Physical Domain Solution via physical configuration items

(PCIs).

• Iterative Characteristic A characterization of the interactions between each of the SE
Process Model’s elements as an entity’s design solution evolves to maturity.

• Operations Domain Solution A unique view of a system that expresses HOW the System
Developer, in collaboration with the User and Acquirer, envision deploying, operating, sup-
porting, and disposing of the system to satisfy a solution space mission objectives and, if
applicable, safely return the system to a home base or port.

• Physical Domain Solution A technical design that: 1) represents the proposed physical
solution to a specification, 2) describes the entity relationships between hierarchical, physi-
cal configuration items (PCIs)—namely the physical components of a system—including
external and internal interface definitions, 3) provides traceability between specification
requirements and PCIs, and 4) is traceable to the multi-level Behavioral design solution via
functional configuration items (FCIs).

• Recursive Characteristic An attribute of the SE Process Model that enables it to be applied
to any system or entity within a system regardless of level of abstraction.

• Requirements Domain Solution A unique view of a system that expresses: 1) the hierar-
chical framework of specifications—namely a specification tree—and requirements, 2)
requirements to capability linkages, and 3) vertical and horizontal traceability linkages to
User originating or source requirements and between specifications and their respective
requirements.

• SE Process Model A construct derived from a highly iterative, problem solving-solution
development methodology that can be applied recursively to multiple levels of system 
design.

• Solution Domain A requirements, operations, behavioral, or physical viewpoint of the
development of a multi-level entity or configuration item (CI) required to translate and elab-
orate a set of User requirements into a deliverable system, product, or service.
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26.2 SE PROCESS MODEL OBJECTIVE

The objective of the SE Process Model is enable SEs to transform and evolve a User’s abstract
operational need(s) into a physical system design solution that represents the optimal balance of
technical, technology, cost, schedule, and support solutions and risks.

Brief Background on SE Processes

Since World War II several types of SE processes have evolved. Organizations such as the US
Department of Defense (DoD), the Institute of Electrical and Electronic Engineers (IEEE), Elec-
tronics Industries Alliance (EIA), and the International Council of System Engineers (INCOSE)
have documented a series of SE process methodologies. The more recent publications include US
Army FM 770-78, Mil-Std-499, commercial standards IEEE 1220-1998, EIA-632 and ISO/IEC
15288. Each of these SE process methodologies highlights the aspects its developers considered
fundamental to engineering practice.

Although the SE processes noted above advanced the state of the practice in SE, in the author’s
opinion, no single SE process captures the actual steps performed in engineering a system, product,
or service. As is the case with a recipe, SEs and organizations often formulate their own variations
of how they view the SE process based on what works for them. This chapter introduces an SE
Process Model validated through the experiences of the author and others. Note the two terms:
process and model.

In this chapter’s Introduction, we considered a general workflow progression that translates a
User’s abstract operational needs into a physical system, product, or service solution. We can state
this progression to be a process. However, the workflow process steps required to engineer systems
must involve highly iterative feedback loops to preceding steps for reconciliation actions. The SE
Process is more than simply a sequential end-to-end process. The SE Process is an embedded
element of a problem-solving/solution-development model that transforms a set of inputs and oper-
ating constraints into a deliverable system, product, or service. Therefore, we apply the label SE
Process Model.

Entry Criteria

Entry criteria for the SE process are established by the system/product life cycle phase that imple-
ments the SE Process. In the case of the System Development Phase, the SE Process Model is
applied with the initiation of each entity or configuration item (CI’s) SE design. This includes the
SYSTEM, PRODUCT, SUBSYSTEM, ASSEMBLY, SUBASSEMBLY, and PART levels.

26.3 SE PROCESS MODEL METHODOLOGY

We concluded Part I with an introduction to the system solution domains, consisting of Require-
ments, Operations, Behavioral, and Physical Domain Solutions. Although the domain solutions
provide a useful means to characterize a system or one of its entities, individually, they do not help
us create the total system solution. So, how do we do this?

We can solve this challenge by creating a system development model that enables us to trans-
late the User’s vision into a preferred solution. However, the domain solutions are missing two key
elements:

1. Understanding the opportunity/problem space and the relationship of the solution space.

2. Optimizing the domain solutions to achieve mission objectives.
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If we integrate these missing elements with the sequencing of the system solution domains, we can
create a methodology that enables us to apply it to any entity, regardless of level of abstraction.
The steps of the methodology are:

Step 1: Understand the entity’s opportunity/problem and solution spaces.

Step 2: Develop the entity’s Requirements Domain Solution.

Step 3: Develop the entity’s Operations Domain Solution.

Step 4: Develop the entity’s Behavioral Domain Solution.

Step 5: Develop the entity’s Physical Domain Solution.

Step 6: Evaluate and optimize the entity’s total design solution.

When we depict these steps, their initial sequencing, and interrelationships graphically, Figure 26.1
emerges. We will refer to this as the SE Process Model.

Before we proceed with describing the SE Process Model, let’s preface our discussion with
several key points:

1. The description uses the term, entity, to denote a logical/functional capability or physical
item such as PRODUCT, SUBSYSTEM, ASSEMBLY, SUBASSEMBLY, and PART. You
could apply the term, component. However, there may be some unprecedented systems in
which physical components may not emerge until later in a design process. Therefore, we
use the term entity.

2. The act of partitioning a problem space into lower level solution spaces is traditionally
referred to in SE as decomposition. Since decomposition connotes various meanings, some
people prefer to use the term expansion.

3. Since the model applies to any level of abstraction, role-based terms such as Acquirer, User,
and System Developer are contextual. For example, the Acquirer (role) of a system con-
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tracts with a System Developer (role). Within the contractor’s (System Developer role)
program organization, a PRODUCT level team (Acquirer role) allocates requirements to
Development Team (System Developer role) to develop and deliver a SUBSYSTEM. The
SUBSYSTEM development team, acting as an Acquirer (role), may procure some of the
SUBSYSTEM’s components from various vendors (System Developer roles).

4. For simplicity, the description addresses a one-time procurement for a system, product, or
service. Some complex system development efforts may consist of a series spiral develop-
ment deliverables or contracts. In these cases, the requirements may be initially immature
thereby necessitating stages of development to mature the requirements to a level neces-
sary and sufficient for final system development. Thus the SE Process Model is reapplied
to all levels of abstraction for each iteration of the spiral. These approaches serve to reduce
system development risk.

Step 1: Understand the Entity’s Opportunity/Problem and
Solution Spaces

The first step of the SE Process Model is to simply understand the entity’s opportunity/problem and
solution spaces. System analysts and SEs need to understand and validate: HOW the User intends
to use the system as well as WHAT expectations are levied on the entity to achieve higher-level
mission objectives. This requires understanding:

1. The entity’s contextual role in the next higher level solution space—namely the User’s level
0 system or the deliverable SYSTEM, PRODUCT, SUBSYSTEM, SUBASSEMBLY, and
other levels.

2. HOW the User plans to deploy, operate, support, and dispose of the system—namely use
cases and scenarios.

3. The system’s interfaces with external systems in its OPERATING ENVIRONMENT such as
HUMAN-MADE, NATURAL, and INDUCED ENVIRONMENTS.

4. The system’s mission event timeline (MET) or allocations.

5. The expected outcomes from system interactions with its OPERATING ENVIRONMENT.

6. Products, by-products, and services comprising the system outputs required to accomplish
those outcomes.

Step 2: Develop the Entity’s Requirements Domain Solution

As the understanding of the entity’s opportunity/problem and solution spaces evolves and matures,
the next step is to Develop the Requirements Domain Solution. The requirements, which specify
and bound the entity’s solution space, document the Acquirer’s (role) required system capabilities
via Statement of Objectives (SOO) or System Performance Specification (SPS). Within the System
Developer’s program, lower level PRODUCT, SUBSYSTEM, ASSEMBLY, or SUBASSEMBLY
item development specification (IDS), as applicable, capture the entity’s requirements.

As illustrated by the SE Process Model in Figure 26.1, the entity’s Requirements Domain 
Solution:

1. Serves as the frame of reference for deriving the Operations, Behavioral, and Physical
Domain Solutions.

2. Iterates with understand the opportunity/problem and solution spaces.

3. Iterates with the Operations, Behavioral, and Physical Domain Solutions.
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4. Integrates with a higher level User, SYSTEM, PRODUCT, ASSEMBLY, etc., level Require-
ments Domain Solution (Figure 26.6).

5. May be expanded or decomposed into at least two or more lower level entity Requirements
Domain Solutions and documented in development specifications.

6. Provides the decision criteria used by the Evaluate and Optimize the System Design 
Solution step to assess design compliance (e.g., verification, consistency, and traceability).

The Requirements Domain Solution consists of a hierarchical set of requirements derived from a
User’s source or originating requirements, typically in a contract System Performance Specifica-
tion (SPS). Any entity requirement that is:

1. Too abstract and broad.

2. Complicates implementation and verification, is simplified by decomposing it into two or
more lower level SIBLING or DERIVED requirements.

Derived requirements more explicitly define WHAT is required and HOW WELL. Thus they
become more manageable and eliminate the possibility of multiple interpretations. As a result each
derived requirement simplifies and clarifies WHAT must be accomplished to satisfy a portion of
the higher parent requirements.

Since requirements express User (role) expectations for acceptance of each entity, at a
minimum, each requirement is assigned a verification method such as inspection, analysis, demon-
stration, or test. Additional verification criteria such as the level where a specific requirement will
be verified and verification conditions may also be added. The set of verification methods, levels,
and criteria that serve as the basis for delivery acceptance are documented as a key section of the
entity’s specification.

Step 3: Develop the Entity’s Operations Domain Solution

As each entity’s Requirements Domain Solution evolves to maturity, System Developers formulate
and mature the Operations Domain Solution. Operational concepts are synthesized and documented
in the entity’s Concept of Operations (ConOps) document or Theory of Operations. The ConOps:

1. Identifies the Level 0 User’s operational architecture that includes the MISSION
SYSTEM(s) and SUPPORT SYSTEM(s).

2. Identifies friendly, benign, and hostile systems and threats in the OPERATING ENVI-
RONMENT that interact with the system.

3. Identifies system operations and tasks required to accomplish the mission.

4. Synchronizes the tasks with the mission event timeline (MET) or allocations.

5. Identifies products, by-products, or services required to achieve mission outcomes.

Referring to Figure 26.1, an entity’s Operations Domain Solution:

1. Implements requirements allocated and derived from the entity’s Requirements Domain
Solution.

2. Documents work products that serve as inputs for deriving the entity’s Behavioral Domain
Solution.

3. Integrates with a higher level User, SYSTEM, PRODUCT, ASSEMBLY, and SUB-
ASSEMBLY Operations Domain Solution (Figure 26.6).

4. May be expanded or decomposed into at least two or more lower level entity 
Operations Domain Solutions (Figure 26.6).
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5. Iterates with the Requirements and Behavioral Domain Solutions for completeness, con-
sistency, and traceability.

6. Is assessed for consistency, compliance, and performance by the Evaluate and Optimize the
System Design Solution.

Step 4: Develop the Entity’s Behavioral Domain Solution

As each entity’s Operations Domain Solution evolves to maturity, System Developers formulate
and mature the Behavioral Domain Solution. The Behavioral Domain Solution describes WHAT is
to be accomplished in terms of logical interactions and sequences of tasks or processing required
to produce the desired outcomes. This includes:

1. Identification of the required capabilities—namely functions and performance.

2. Constructing system interaction and sequence diagrams that depict HOW the SYSTEM is
envisioned to react and respond to various external stimuli and cues from its OPERATING
ENVIRONMENT.

3. Synchronizing those interactions, products, by-products, and services with the MET.

4. Analyzing, modeling, and simulating capability sequences and performance to ensure com-
pliance with requirements and balance performance allocations.

Referring to Figure 26.1, an entity’s Behavioral Domain Solution:

1. Is allocated requirements from and must be traceable to the entity’s Requirements Domain
Solution.

2. Documents work products that serve as the inputs for the developing Physical Domain 
Solution.

3. Integrates with a higher level User, SYSTEM, PRODUCT, ASSEMBLY, and 
SUBASSEMBLY Behavioral Domain Solution (Figure 26.6).

4. May be expanded or decomposed into at least two or more lower level entity Behavioral
Domain Solutions (Figure 26.6).

5. Iterates with the Operations and Physical Domain Solutions.

6. Is assessed for consistency, compliance, and performance by the Evaluate and Optimize the
System Design Solution.

Step 5: Develop the Physical Domain Solution

As the entity’s Behavioral Domain Solution evolves to maturity, System Developers formulate and
mature the Physical Domain Solution. This solution describes HOW the Behavioral Domain Solu-
tion is implemented via multi-level physical components. This requires:

1. Formulating several viable candidate architectures for the entity.

2. Conducting analyses and trade studies to evaluate and score the merits of each architecture
relative to a set of pre-defined decision criteria.

3. Selecting a preferred architecture from a viable set of alternatives.

4. Establishing performance budgets and safety margins.

5. Finalizing selection of components to satisfy the entities identified within the architecture.

6. Translating the physical architecture into a detailed design—such as assembly drawings,
schematics, wiring diagrams, and software design.

26.3 SE Process Model Methodology 281



7. Assessing compatibility and interoperability with external systems in the entity’s OPER-
ATING ENVIRONMENT.

Referring to Figure 26.1, each entity’s Physical Domain Solution:

1. Is allocated requirements from and must be traceable to the entity’s Requirements Domain
Solution.

2. Integrates with a higher level User, SYSTEM, PRODUCT, ASSEMBLY, and SUB-
ASSEMBLY Physical Domain Solution (Figure 26.6).

3. May be expanded or decomposed at least two or more lower level entity Physical Domain
Solutions (Figure 26.6).

4. Is assessed for consistency, compliance, and performance by the Evaluate and Optimize the
System Design Solution.

Step 6: Evaluate and Optimize the Entity’s Total 
Design Solution

As the Physical Domain Solution evolves and matures, the next step is to Evaluate and Optimize
the System Design Solution. The purpose of this step is to verify and validate that the entity’s
Requirements, Operations, Behavioral, and Physical Design Solutions:

1. Are consistent with each other.

2. Fully comply with and are traceable to its Requirements Domain Solution.

These objectives are accomplished via the following:

1. Technical reviews.

2. Technical audits.

3. Prototype development.

4. Modeling and simulation.

5. Proof of concept or technology demonstrations.

You will encounter people who contend that you cannot optimize a system for a diverse set of oper-
ating scenarios and conditions, it can only be optimal: let’s differentiate the two viewpoints.

For a prescribed set of operating conditions and priorities, you can theoretically optimize a
system. The challenge is that these conditions are often independent and statistically random occur-
rences in the OPERATING ENVIRONMENT. As a result a system, product, or service performance
may not be optimized for all sets of random variable conditions. So people characterize the
SYSTEM’s performance as optimal in dealing with these random variables.

There is an unwritten rule that says that most human attempts fall short of their goals. Assum-
ing you have realistic goals, WHAT you accomplish depends on WHAT you strive to achieve. So
in Step 6, Evaluate and Optimize System Design Solution, we use the term optimize to communi-
cate WHAT we strive to achieve. Given human performance history in goal achievement, striving
to simply be optimal will probably produce a result that is less than optimal, an even less desir-
able outcome.

26.4 DECISION SUPPORT TO THE SE PROCESS MODEL

Decision support practices such as analyses, trade studies, prototypes, demonstrations, models, and
simulations, etc. are employed to provide recommendations for technical decisions that bound the
system’s solution space—such as the Requirements Domain Solution compliance.
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26.5 EXIT CRITERIA

Since the SE Process Model is highly iterative and subject to development time constraints of the
entity, exit criteria are determined by:

1. Level of maturity required of the entity being designed and its required work products—
specifications, designs, verification procedures, etc.

2. Level of criticality and practicality in correcting discrepancies between specification
requirements and verification data subject to cost and schedule constraints.

26.6 WORK PRODUCTS AND QUALITY RECORDS

The SE Process Model supports the development of numerous system/product life cycle phase work
products and quality records. When applied to a phase specific process, the SE Process produces
four categories of work products for each entity: 1) the Requirements Domain Solution, 2) the Oper-
ations Domain Solution, 3) the Behavioral Domain Solution, and 4) the Physical Domain Solution.

General examples of work products and quality records include specifications, specification
trees, architectures, analyses, trade studies, drawings, technical reports, verification records, and
meeting minutes. Refer to Chapters 37–40 for details of each solution description that follows for
specific work products and quality records.

Author’s Note 26.1 People often confuse the purpose of any SE Process. They believe that the
SE Process is established to create documentation; this is erroneous! The purpose of the SE Process
Model is to establish a methodology to solve problems and produce a preferred solution that sat-
isfies contract requirements subject to technical, cost, schedule, technology, and risk constraints.
Work product and quality record documentation are simply enablers and artifacts of the process,
a means to an end, not the primary focus.

Author’s Note 26.2 Remember, if you focus on producing documentation, you get documenta-
tion and a design solution that may or may not meet requirements. If you focus on producing a
design solution via the SE Process Model, you should arrive at a design solution that satisfies
requirements supported by documentation artifacts that prove the integrity and validity of the 
solution.

26.7 SE PROCESS MODEL CHARACTERISTICS

The SE Process Model is characterized as being highly iterative and recursive. To better under-
stand these characteristics, let’s explore each.

Highly Iterative Characteristic

The SE Process Model, when applied to a specific entity within a system level of abstraction, is
characterized as highly iterative as illustrated in Figure 26.2. Although each of the multi-level 
steps of the methodology has a sequential workflow progression, each step has feedback loops that
allow a return to preceding steps and reassess decisions when issues occur later along the work-
flow. As a result the feedback loops establish the highly iterative characteristic as illustrated in
Figure 26.3.
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Recursive Characteristic

Referring to Figure 26.2, observe that the SE Process Model is applied to every level of abstrac-
tion. We call this its recursive characteristic. Thus the same model applies to the SYSTEM level
as its does at the SUBASSEMBLY level. Let’s explore this point further.

We can simplify Figure 26.3 as shown in Figure 26.4. Note that each system development
program begins with the System Performance Specification (SPS) and evolves through all four solu-
tion domains. This graphic with its alternating gray quadrants and R (requirements), O (operations),
B (behavioral), and P (physical) symbols—in short, ROBP—will be used as an icon to symbolize
the four solution domains in our later discussions on system design practices.

Applying the SE Process Model to System Development

Now let’s suppose that we have the system shown in Figure 26.5. The SYSTEM consists of PROD-
UCTS 1 and 2. PRODUCT 1, a large, complex design, consists of SUBSYSTEMs 1 and 2.
PRODUCT 2, a simpler design, consists of hardware configuration item (HWCI) 21 and computer
software configuration item (CSCI) 21. We apply the SE Process Model to each entity as illustrated
by the boxes. Application of the SE Process Model to each entity continues until the SE design is
mature and ready to commit to implementation. Figure 26.6 illustrates the state of the system design
solution at completion.

Here we see a multi-level framework that depicts the horizontal workflow progression over
time. Vertically, the Requirements, Operations, Behavioral, and Physical Domain Solutions are
decomposed into various levels of abstraction. Collectively the framework graphically illustrates a
system, which by definition, is the integration of multiple levels of capabilities to a higher level
purpose that is greater than their individual capabilities.
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26.8 EVOLVING AND REVIEWING THE SYSTEM SOLUTIONS

Based on the highly iterative and recursive characteristics, System Developers evolve the system
design solution over time from the SPS into a series of workflow progressions through each level
of abstraction until the system design solution is initially complete. Figure 26.7 illustrates how the
total system design solution evolves through the domain solutions at each level of abstraction and
culminates with the Critical Design Review (CDR).

Symbolically, the inner loops of the spiral represent increasing levels of detail until; the CDR
is conducted. Each loop of the spiral culminates in a technical review that serves as a critical staging
or control point for commitment to the next level of detail. Each loop includes a breakout point to
permit reconciling changes with previous levels and to continue to evolve and mature the higher
level solutions until CDR.

Author’s Note 26.3 The context of Figure 26.7 is for the period between Contract Award and
CDR when the total design solution is approved and released for component procurement and devel-
opment. However, the system design solution IS NOT finalized until the first article system or
product has been integrated, tested, verified, validated (optional), and accepted by the Acquirer or
User.

26.9 GUIDING PRINCIPLES

In summary, the preceding discussions provide the basis with which to establish the guiding prin-
ciples that govern the implementation of the SE Process Model.
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Principle 26.1 Problem solving and solution development lead to an optimal design solution;
simply creating a point design solution does not always indicate problem solving.

Principle 26.2 An entity’s design solution is composed of four domain solutions: Requirements,
Operations, Behavioral, and Physical.

Principle 26.3 As a workflow, system design is the highly iterative, multi-level, transformation
of an entity’s requirements into operations, behavior, and physical implementation.

26.10 SUMMARY

This section introduced the SE Process Model and its structure. In our discussion we described how the model
integrates the Requirements, Operations, Behavioral, and Physical Domain Solutions into a highly iterative
framework that can be applied to the design of entities at all levels of abstraction. We noted that the SE Process
Model’s multi-level application attribute is referred to as its recursive characteristic.

The first step of the model is to Understand the Opportunity/Problem and Solution Spaces to appreciate
the context of the requirements allocated to each entity. As a highly iterative model, we described how the
model incorporates the workflow from the Requirements Domain to the Operations Domain to the Behavioral
Domain to the Physical Domain. Since design solutions must be traceable to their requirements allocations as
documented in the entity’s specification, we illustrated how the Requirements Domain Solution links to the
Operations, Behavioral, and Physical Domain Solutions. Since every design solution must be evaluated and
optimized, we illustrated how the Evaluate and Optimize the Entity’s Design Solution activity supports the
Operations, Behavioral, and Physical Domain Solutions.

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercise or a new system, selection, apply your knowledge derived from this chapter’s topical dis-
cussions. Describe how the SE Process Model is applied to identify the following:

(a) The system’s opportunity/problem space and solution space(s).

(b) The Requirements Domain Solution.

(c) The Operations Domain Solution.

(d) The Behavioral Domain Solution.

(e) The Physical Domain Solution.

ORGANIZATIONAL CENTRIC EXERCISES

1. Research your local command media for SE process requirements.

(a) Does your organization have a standard SE Process?

(b) How are SEs within the organization trained to apply the SE Process?

(c) Compare and contrast the organization’s SE process with the one described here.

(d) How are multidisciplined SEs trained to apply the process?

2. Research the following SE processes created over several decades. Develop a paper that describes each SE
process, compare and contrast the differences; note evolutionary changes over time, and contrast with your
own experiences.

(a) US Army Field Manual FM-770-78

(b) MIL-STD-499

288 Chapter 26 The SE Process Model



(c) IEEE 1220–1998

(d) International Council on Systems Engineering (INCOSE)

(e) ANSI/EIA 632

3. Contact technical programs within your organization and interview personnel concerning what SE 
process or methodology they employed to develop their systems or products. Report your findings and
observations.
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Chapter 27

System Development Models

27.1 INTRODUCTION

Our discussions up to this point have viewed the System Performance Specification (SPS) as an
ideal requirements document with mature, well-defined requirements. In reality, however, require-
ments range from those that are well defined to those that are very immature, or ambiguous. So,
how does an SE deal with this wide variety of requirements maturity? Actually there are several
system development models that provide a basis for dealing with the requirements maturity
problems.

This chapter introduces and investigates various system development models that represent
various methodologies for developing systems. The models include:

1. The Waterfall Development Model

2. The Evolutionary Development Model

3. The Incremental Development Model

4. The Spiral Development Model

Our discussions describe each model, identify how each evolved, highlight flaws, and provide illus-
trative, real world examples.

You may ask why topics such these are worthy of discussion in an SE book. There are two
good reasons:

• First, you need a toolkit of system development approaches that enables you to address a
variety of requirements definition and maturity challenges.

• Second, you need to fully understand each of these models, their origin, attributes and flaws
to make sure you have the RIGHT approach to specific types of system development.

As an SE, you need to fully understand HOW the models are applied to various system develop-
ment scenarios. You will encounter people throughout industry that refer to these models via buzz-
words but often lack an understanding of each type of model’s background and application.

What You Should Learn from This Chapter

1. What is a system development model?

2. What are the four primary system development models?

3. What is the Waterfall Development Model, its characteristics, and shortcomings?

4. What is the Evolutionary Development Model, its characteristics, and shortcomings?

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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5. What is the Incremental Development Model, its characteristics, and shortcomings?

6. What is the Spiral Development Model, its characteristics, and shortcomings?

7. How is the SE Process Model applied to these development models?

Definitions of Key Terms

• Evolutionary Development Strategy A development strategy used to develop “a system
in builds, but differs from the Incremental Strategy in acknowledging that the user need is
not fully understood and all requirements cannot be defined up front. In this strategy, user
needs and system requirements are partially defined up front, then are refined in each suc-
ceeding build.” (Source: Former MIL-STD-498, para. G.3)

• Grand Design Development Strategy A development strategy that is “essentially a ‘once-
through, do-each-step-once’ strategy. Simplistically: determine user needs, define require-
ments, design the system, implement the system, test, fix, and deliver.” (Source: Former
MIL-STD-498, para. G.3)

• Incremental Development “A software development technique in which requirements def-
inition, design, implementation, and testing occur in an overlapping, iterative (rather than
sequential) manner, resulting in incremental completion of the overall software product.”
(Source: IEEE 610.12-1990)

• Incremental Development Strategy A development strategy that “determines user needs
and defines the overall architecture, but then delivers the system in a series of increments
(“software builds”). The first build incorporates a part of the total planned capabilities, the
next build adds more capabilities, and so on, until the entire system is complete.” (Source:
Glossary: Defense Acquisition Acronyms and Terms)

• Spiral Development Strategy A development strategy that “develops and delivers a system
in builds, but differs from the incremental approach by acknowledging that the user need is
not fully formed at the beginning of development, so that all requirements are not initially
defined. The initial build delivers a system based on the requirements as they are known 
at the time development is initiated, and then succeeding builds are delivered that meet 
additional requirements as they become known.” (Source: Glossary: Defense Acquisition
Acronyms and Terms)

• Spiral Model “A model of the software development process in which the constituent activ-
ities, typically requirements analysis, preliminary and detailed design, coding, integration,
and testing, are performed iteratively until the software is complete.” (Source: IEEE 
610.12-1990)

• Waterfall Model “A model of the software development process in which the constituent
activities, typically a concept phase, requirements phase, design phase, implementation
phase, test phase, and installation and checkout phase, are performed in that order, possibly
with overlap but with little or no iteration.” (Source: IEEE 610.12-1990)

• Waterfall Development Strategy A strategy in which “development activities are per-
formed in order, with possibly minor overlap, but with little or no iteration between activi-
ties. User needs are determined, requirements are defined, and the full system is designed,
built, and tested for ultimate delivery at one point in time.” (Source: Glossary: Defense
Acquisition Acronyms and Terms)
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27.2 SYSTEM DEVELOPMENT MODELS

The trends of increasing technical complexity of the systems, coupled with the need for repeatable
and predictable process methodologies, have driven System Developers to establish development
models.

Background Leading to System Development Models

Systems and products prior to the 1950s were hardware intensive systems. Processing was accom-
plished via electromechanical devices that implemented logical and mathematical computational
processes. By the 1960s, analog and digital small-, medium-, and large-scale integrated circuits,
coupled with modular design methods, enabled developers to improve the reliability and accuracy
of the computations with some limited software involvement. During these years when design
errors or changes occurred, the cost of making corrections in mechanical hardware and electronic
circuitry was becoming increasingly expensive and time-consuming.

With the introduction of microprocessor technologies in the early 1970’s, software became a
viable alternative to system development. Conceptually, capabilities that had to be implemented
with hardware could now be implemented more easily and quickly in software. As a result system
design evolved toward flexible, reconfigurable systems that enable System Developers and main-
tainers to target unique field applications simply by tailoring the software.

The shift toward software intensive systems advanced faster than the methods used to produce
the software. As the software applications became larger and more complex, so did the risks and
problem areas. System Developer organizations became more sensitive to the challenges and risks
associated with meeting contract cost, schedule, and technical performance criteria and the risks of
failure to meet those criteria. Additionally the costs of rework and poor quality became central
issues, especially in areas such as reliability, safety, and health. The need for repeatability and pre-
dictability in development process was also a critical issue.

To meet these challenges, system development models began evolving in the software domain
and have since expanded to the broader engineering of systems domain as overall system devel-
opment approaches.

System Development Models

System and product development approaches generally follow four commonly used models or
hybrids. The most common models include the: 1) Waterfall Development Model, 2) Evolutionary
Development Model, 3) Incremental Development Model, and 4) Spiral Development Model. Dr.
Barry Boehm, who has written numerous technical books and articles about software development,
provides some key insights regarding the evolution, strengths, and weaknesses of the models. To
facilitate our discussion, we will reference some of Dr. Boehm’s observations.

Author’s Note 27.1 Historically, you will find many instances of problem solving–
solution-development methodologies that emerge within a discipline and are equally applicable to
other disciplines. In the discussions that follow, you will discover how software development, as an
emerging discipline, tackled a problem space and produced an evolving set of methodologies that
are equally applicable to SE and hardware engineering.

27.3 THE WATERFALL DEVELOPMENT MODEL

The Waterfall Development Model represents one of the initial attempts to characterize software
development in terms of a model. Today, the Waterfall Model exemplifies how many organizations
develop systems and products. Figure 27.1 provides an illustration of this model.
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Author’s Note 27.2 The term “waterfall” has always been a misnomer and tends to confuse
many people. The term reflects the graphical top-down, diagonal representation rather than the
actual implementation. As we will see in a later chapter, the earlier stages do represent expansion
of levels of design detail over time. The latter stages, beginning with “Integration,” represent the
“upside” of the V-Model discussed in Figure 25.5. Unlike the Waterfall Model, the V-Model is
implemented with highly iterative and recursive feedback loops within and between levels of
abstraction.

In the Waterfall approach, “development activities are performed in sequential order, with possi-
bly minor overlap, and minimal or no iteration between activities. User needs are determined,
requirements are defined, and the full system is designed, built, and tested for ultimate delivery at
one point in time. Some people refer to this as a stage-wise model.” (Source: Glossary: Defense
Acquisition Acronyms and Terms)

27.4 THE EVOLUTIONARY DEVELOPMENT MODEL

In general, the Evolutionary Development Model is based on the premise that “stages consist of
expanding increments of an operational software product, with the directions of evolution being
determined by operational experience.” (Source: Boehm, p. 63) This conception is based on an evo-
lutionary strategy of a system or product development through a series of pre-planned product
improvement (P3I) releases.

Evolutionary development provides a potential solution for Acquirers, Users, and System
Developers. As discussed in an earlier section, some systems/products are single-use items; others
are longer term, multi-application items. For some mission and system applications, you generally
know at system acquisition what the requirements are. In other applications, you may be able to
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define a few up-front objectives and capabilities. Over time, the fielded system/product requires
new capabilities as problem/opportunity spaces evolve.

Some systems, such as computers, become obsolete in a very short period of time and are dis-
carded. From a business perspective, the cost to upgrade and maintain the devices is prohibitive
relative to purchasing a new computer. In contrast, some Users, driven by decreasing budgets and
slow changes in the external environments, may use systems and products far beyond their origi-
nal intended service lives. Consider the following example:

EXAMPLE 27.1

The US Air Force B-52 aircraft is postured to achieve the longest service life of any aircraft. During its life-
time, the aircraft’s systems and missions have evolved from their initial operational capability (IOC) when
the aircraft was first introduced to the present via capability upgrades. The projected service lifespan far
exceeds what the aircraft’s innovators envisioned.

The Evolutionary Development Model is based on the premise that a system’s capabilities evolve
over time via a series upgrades.

Fallacies of the Evolutionary Development Model

Conceptually, the Evolutionary Development Model may be suited for some applications; however,
it, too, has its fallacies. Dr. Boehm (p. 63) notes the following points:

Fallacy 1: The Evolutionary Development Model is difficult to delineate from the build, test, and
fix approaches “whose spaghetti code and lack of planning were the initial motivation
for the “waterfall model.”

Fallacy 2: The Evolutionary Development Model stemmed from the “often unrealistic” assump-
tion that the system would always provide the flexibility to accommodate unplanned
evolution paths.

Regarding fallacy 2, Dr. Boehm (p. 63) states “This assumption is unjustified in three primary 
circumstances:

1. Circumstance in which several independently evolved applications must subsequently be
closely integrated.

2. Information sclerosis” cases, in which temporary work-around for software deficiencies
increasingly solidify into unchangeable constraints on evolution, . . .

3. Bridging situations, in which the new software is incrementally replacing a large existing
system. If the system is poorly modularized, it is difficult to provide a good sequence of
‘bridges’ between old software and the expanding increments of new software.”

27.5 THE SPIRAL DEVELOPMENT MODEL

Because of inherent flaws in the Evolutionary Development Model, coupled with a lack of under-
standing, maturity, and risk in system requirements up front, Dr. Boehm introduced the Spiral
Development Model illustrated in Figure 27.2.

Spiral development employs a series of highly iterative development activities whereby the
deliverable end product of each activity may not be the deliverable system. Instead, the evolving
set of knowledge and subsequent system requirements that lead to development of a deliverable
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system contribute to the maturing design solution. The knowledgebase evolves via technology or
proof of concept demonstrations to a level of maturity worthy of: 1) introduction to the market-
place and 2) production investments from an acceptable risk perspective.

DSMC describes the model in this manner. “The spiral approach also develops and delivers a
system in builds, but differs from the incremental approach by acknowledging that the user need
is not fully formed at the beginning of development, so that all requirements are not initially defined.
The initial build delivers a system based on the requirements, as they are known at the time devel-
opment is initiated, and then succeeding builds are delivered that meet additional requirements as
they become known. (Additional needs are usually identified and requirements defined as a result
of user experience with the initial build).” (Source: Glossary: Defense Acquisition Acronyms and
Terms)

Spiral Model Description

The development spiral consists of four quadrants as shown in Figure 27.2:

Quadrant 1: Determine objectives, alternatives, and constraints.

Quadrant 2: Evaluate alternatives, identify, resolve risks.

Quadrant 3: Develop, verify, next-level product.

Quadrant 4: Plan next phases.

Although the spiral, as depicted, is oriented toward software development, the concept is equally
applicable to systems, hardware, and training, for example. To better understand the scope of each
spiral development quadrant, let’s briefly address each one.
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Quadrant 1: Determine Objectives, Alternatives, 
and Constraints

Activities performed in this quadrant include:

1. Establish an understanding of the system or product objectives—namely performance, func-
tionality, and ability to accommodate change. (Boehm, p. 65)

2. Investigate implementation alternatives—namely design, reuse, procure, and procure/
modify.

3. Investigate constraints imposed on the alternatives—namely technology, cost, schedule,
support, and risk.

Once the system or product’s objectives, alternatives, and constraints are understood, Quadrant 2
(Evaluate alternatives, identify, and resolve risks) is performed.

Quadrant 2: Evaluate Alternatives, Identify, Resolve Risks

Engineering activities performed in this quadrant select an alternative approach that best satisfies
technical, technology, cost, schedule, support, and risk constraints. The focus here is on risk miti-
gation. Each alternative is investigated and prototyped to reduce the risk associated with the devel-
opment decisions. Boehm (p. 65) describes these activities as follows:

. . . This may involve prototyping, simulation, benchmarking, reference checking, administering user
questionnaires, analytic modeling, or combinations of these and other risk resolution techniques.

The outcome of the evaluation determines the next course of action. If critical operational and/or
technical issues (COIs/CTIs) such as performance and interoperability (i.e., external and internal)
risks remain, more detailed prototyping may need to be added before progressing to the next quad-
rant. Dr. Boehm (p. 65) notes that if the alternative chosen is “operationally useful and robust
enough to serve as a low-risk base for future product evolution, the subsequent risk-driven steps
would be the evolving series of evolutionary prototypes going toward the right (hand side of the
graphic) . . . the option of writing specifications would be addressed but not exercised.” This brings
us to Quadrant 3.

Quadrant 3: Develop, Verify, Next-Level Product

If a determination is made that the previous prototyping efforts have resolved the COIs/CTIs, activ-
ities to develop, verify, next-level product are performed. As a result, the basic “waterfall” approach
may be employed—meaning concept of operations, design, development, integration, and test of
the next system or product iteration. If appropriate, incremental development approaches may also
be applicable.

Quadrant 4: Plan Next Phases

The spiral development model has one characteristic that is common to all models—the need for
advanced technical planning and multidisciplinary reviews at critical staging or control points.
Each cycle of the model culminates with a technical review that assesses the status, progress, matu-
rity, merits, risk, of development efforts to date; resolves critical operational and/or technical issues
(COIs/CTIs); and reviews plans and identifies COIs/CTIs to be resolved for the next iteration of
the spiral.

Subsequent implementations of the spiral may involve lower level spirals that follow the same
quadrant paths and decision considerations.
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27.6 THE INCREMENTAL DEVELOPMENT MODEL

Sometimes the development of systems and products is constrained by a variety of reasons. Reasons
include:

1. Availability of resources (expertise, etc.)

2. Lack of availability of interfacing systems

3. Lack of funding resources

4. Technology risk

5. Logistical support

6. System/product availability

When confronted by these constraints, the Users, the Acquirer, and the System Developer may be
confronted with formulating an incremental development strategy. The strategy may require estab-
lishing an Initial Operational Capability (IOC) followed by a series of incremental development
“builds” that enhance and refine the system or product’s capabilities to achieve a Full Operational
Capability (FOC) by some future date. Figure 27.3 illustrates how incremental development is
phased.

The DoD Glossary of Terms characterizes incremental development as follows: “The incre-
mental approach determines user needs and defines the overall architecture, but then delivers the
system in a series of increments—i.e., software builds. The first build incorporates a part of the
total planned capabilities, the next build adds more capabilities, and so on, until the entire system
is complete.” (Source: Glossary: Defense Acquisition Acronyms and Terms)
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Implementation

Implementation of the Incremental Development Model requires that a sound “build” strategy be
established “up front.” As each build cycle is initiated, development teams establish unique system
requirements for each build—either by separate specification or by delineated portions of the System
Performance Specification (SPS). Each build is designed, developed, integrated, and tested via a
series of overlapping V-Models, as illustrated in Figure 27.4.

The Challenge for Systems Engineering

When implementing the Incremental Development Model approach, SEs, in collaboration with other
disciplines, must:

1. Thoroughly analyze and partition each “build’s” system requirements based on a core set
of requirements.

2. Flow down and allocate the requirements to PRODUCTS, SUBSYSTEMS, or 
ASSEMBLIES.

3. Schedule the “builds” over time to reflect User priorities (capability “gaps, resources, 
schedules, etc.).

Incremental “builds” may include integrating new components into the system and upgrading exist-
ing components. The challenge for SEs is to determine how to establish and partition the initial set
of functional capabilities and integrate other capabilities over time without disrupting existing
system operations. Intensive interface analysis is required to ensure the “build” integration occurs
in the proper sequence and the support tools are available.
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27.7 SYSTEM VERSUS COMPONENT 
DEVELOPMENT STRATEGIES

Recognize that any system development programs may employ several different development
strategies, depending on the SYSTEM or entity. You may find instances where the SYSTEM is
developed using incremental development of which one or more of its “builds” may employ another
development strategy such as spiral development.

If you analyze most systems, you will find SUBSYSTEMS, ASSEMBLIES, and SUB-
ASSEMBLIES that:

1. Have well-defined requirements.

2. Employ mature, off-the-shelf technologies and design methods that have been around for
years.

3. Are developed by highly experienced developers.

Other SUBSYSTEMS and ASSEMBLIES may have the opposite situation. They may have:

1. Ill-defined or immature requirements.

2. Employ immature technologies and design methods.

3. Inexperienced developers.

4. Or, all of these.

Where this is the case, you may have to select a specific development strategy that enables you to
reduce the risk of development. Consider the following example:

EXAMPLE 27.2

Over the years automobile technology has evolved and increased in complexity. Today, we enjoy the benefits
of new technologies such as fuel injection systems, anti-lock braking systems (ABS), front wheel drive, air
bag safety restraint systems (SRS), crumple zones, GPS mapping, and so on. All facets of automobile design
have changed over the years. However, for illustration purposes, imagine for a moment that the fundamental
automobile at higher levels of abstraction did not change drastically. It still has four doors, a passenger com-
partment, trunk, windshield, and steering. However, the maturation of the major technologies noted earlier
required strategies such as spiral development that enabled them to mature and productize technologies
such as ABS and SRS for application and integration into Evolutionary Development Model of the basic 
automobile.

27.8 GUIDING PRINCIPLES

In summary, the preceding discussions provide the basis with which to establish the guiding prin-
ciples that govern system development strategy practices.

Principle 27.1 Select a development strategy based on the maturity of the SYSTEM/entity
requirements, risk, budgeted schedule and costs, and User delivery needs.

Principle 27.2 A SYSTEM level development strategy may be different from an entity’s devel-
opment strategy, depending on the maturity of the requirements, technologies, processes, and expe-
rience and skill levels of the developers.



Principle 27.3 Each development strategy selection should include rationale for: 1) its selection
and 2) for not selecting other strategies.

Principle 27.4 A system development program may consist of a mixture of development models,
each chosen to uniquely satisfy SYSTEM or component development requirements and develop-
ment constraints.

27.9 SUMMARY

Our discussion in this chapter provided an orientation on the various System Development Strategy practices.
System and product development approaches require implementing a smart strategy that enables you to meet
technical, cost, and schedule requirements with acceptable risk as well as User operational needs. Selecting
the RIGHT system or product development strategy is a key competitive step. From an SE perspective, you
should be familiar with the basic attributes of each type of model and understand how to apply it to meet your
specific application’s needs.

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercise or a new system selection, apply your knowledge derived from this chapter’s topical 
discussions.

(a) What type of system development model would you recommend for developing the system?

(b) For each of the other models not selected, provide supporting rationale on their degree of relevance
and why they should not be used.

3. Identify three types of systems or system upgrades that may be ideal candidates for a Spiral Development
Model strategy.

4. Identify three types of systems or system upgrades that may be ideal candidates for a Waterfall Develop-
ment Model strategy.

5. Identify three types of systems or system upgrades that may be ideal candidates for Incremental Develop-
ment Model.

6. In your own words and experiences, pick a system and describe how any of the following approaches might
apply for someone who is unfamiliar with the methods?

(a) Waterfall Approach

(b) Evolutionary Approach

(c) Incremental Approach

(d) Spiral Approach

ORGANIZATIONAL CENTRIC EXERCISES

1. Contact two or three contract development programs within your organization.

(a) Interview key personnel to discuss the type(s) of development strategies that were employed and the
rationale for each.

(b) Document and report your results.
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Chapter 28

System Specification Practices

28.1 INTRODUCTION

The formal mechanism for specifying WHAT capabilities a system is required to provide and HOW
WELL the capabilities are to be performed is the System Performance Specification (SPS). The SPS
establishes the formal technical requirements of the contract between the Acquirer, as the User’s
contract and technical representative, and the System Developer.

Many people erroneously believe specifications are documents used on the “front end” of a
program to design the system; this is only partially true. Specifications serve as the basis for deci-
sion making throughout the System Development Phase. They:

1. Represent human attempts to translate, bound, and communicate the User’s prescribed solu-
tion space into a language of text and graphics for capability (i.e., functional and perform-
ance) requirements to produce a physical system, product, or service that satisfies the
intended operational need.

2. Serve as a frame of reference for decision making by establishing the thresholds for eval-
uating and verifying technical compliance as a precursor for final system acceptance and
delivery.

Specification development requires support from a multi-level system analysis process. The analy-
sis decomposes bounded solution space capabilities into manageable, lower level specifications for
the SUBSYSTEMS, PRODUCTS, and ASSEMBLIES that ultimately form the totality of the
system.

This section introduces specification practices that establish the multi-level, integrated frame-
work of specifications required to develop a system, product(s), or services. Our discussions intro-
duce the various types of specifications, what they contain, and how they relate to one another. The
discussion includes a general specification outline that can be used as reference model.

What You Should Learn from This Chapter

1. What is a specification?

2. What makes a “good” specification?

3. Describe the evolution of specifications from initial system concept to System Performance
Specification (SPS).

4. What are the basic types of specifications?

5. How does each type of specification apply to system development?

6. What is a specification tree?

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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7. How is the specification tree structured?

8. What is the standard format for most specifications?

Definitions of Key Terms

• Detail specification “A specification that specifies design requirements, such as materials
to be used, how a requirement is to be achieved, or how an item is to be fabricated or con-
structed. A specification that contains both performance and detail requirements is still con-
sidered a detail specification.” (Source: MIL-STD-961D, para. 3.9, p. 5)

• Development Specification “A document applicable to an item below the system level
which states specification performance, interface, and other technical requirements in 
sufficient detail to permit design, engineering for service use, and evaluation.” (Source: 
Kossiakoff and Sweet, System Engineering, p. 447)

• Deviation “A written authorization, granted prior to the manufacture of an item, to depart
from a particular performance or design requirement of a specification, drawing or other doc-
ument for a specific number of units or a specified period of time.” (Source: DSMC, Defense
Acquisition Acronyms and Terms, Appendix B Glossary of Terms)

• Interface Specification “A specification, derived from the interface requirements, that
details the required mechanical properties and/or logical connection between system ele-
ments, including the exact format and structure of the data and/or electrical signal commu-
nicated across the interface.” (Source: Kossiakoff and Sweet, System Engineering, p. 449)

• Performance Specification “A specification that states requirements in terms of the
required results with criteria for verifying compliance, but without stating the methods for
achieving the required results. A performance specification defines the functional require-
ments for the item, the environment in which it must operate, and interface and inter-
changeability characteristics.” (Source: MIL-STD-961D, para. 3.29, p. 7)

• Source or Originating Requirements The set of requirements that serve as the publicly
released requirements used as the basis to acquire a system, product, or service. In general,
a formal Request for Proposal (RFP) solicitation’s Statement of Objectives (SOO) or System
Requirements Document (SRD) are viewed as source or originating requirements.

• Specification A document that describes the essential requirements for items, materials,
processes, or services of a prescribed solution space, data required to implement the require-
ments, and methods of verification to satisfy specific criteria for formal acceptance.

• Specification Tree “The hierarchical depiction of all the specifications needed to control
the development, manufacture, and integration of items in the transition from customer needs
to the complete set of system solutions that satisfy those needs.” (Source: Former MIL-STD-
499B Draft (cancelled), Appendix A, Glossary, p. 39)

• Tailoring “The process by which individual requirements (sections, paragraphs, or sen-
tences) of the selected specifications, standards, and related documents are evaluated to deter-
mine the extent to which they are most suitable for a specific system and equipment
acquisition and the modification of these requirements to ensure that each achieves an optimal
balance between operational needs and cost.” (Source: MIL-STD-961D, para. 3.40, p. 8)

• Waiver “A written authorization to accept a configuration item (CI) or other designated
item, which, during production, or after having been submitted for inspection, is found to
depart from specified requirements, but nevertheless is considered suitable “as is” or after
rework by an approved method.” (Source: DSMC, Defense Acquisition Acronyms and Terms,
Appendix B, Glossary of Terms)
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28.2 WHAT IS A SPECIFICATION?

Development of any type of requirements requires that you establish a firm understanding of:

1. WHAT is a specification?

2. WHAT is the purpose of a specification?

3. HOW does a specification accomplish a specific objective?

If you analyze the definition of a specification provided in this chapter’s Definition of Key Terms,
there are three key parts of this definition. Let’s briefly examine each part.

• First—“. . . essential requirements for items, materials, processes, or services . . .” Specifi-
cations are written not only for physical deliverable items but also for services and multi-
level components, materials that compose those components, and procedural processes
required to convert those materials into a usable component.

• Second—“. . . data required to implement the requirements . . .” System development is often
constrained by the need to adhere to and comply with other statement of objectives (SOO),
design criteria, specifications, and standards.

• Third—“. . . methods of verification to satisfy specific criteria for formal acceptance.” Spec-
ifications establish the formal technical agreement between the Acquirer and System Devel-
oper regarding HOW each requirement will be formally verified to demonstrate the physical
SYSTEM/entity has fully achieved the specified capability and associated level of perform-
ance. Note that verifying the achievement of a requirement may only satisfy incremental cri-
teria required by contract for formal Acquirer acceptance. The contract may require other
criteria such as installation and checkout in the field; field trails and demonstrations; opera-
tional test and evaluation (OT&E); resolution of outstanding defects, errors, and deficien-
cies. Remember, System Performance Specifications (SPS) are subordinate elements of the
contract and represent only a portion of criteria for deliverable system acceptance and sub-
sequent contract completion.

Given these comments concerning the definition of a specification, let’s establish the objective of
a specification.

Objective of Specifications

The objective of a specification is to document and communicate:

1. WHAT essential operational capabilities are required of an item (SYSTEM, PRODUCT,
SUBSYSTEM, etc.)?

2. HOW WELL the capabilities must be performed?

3. WHEN the capabilities are to be performed?

4. By WHOM?

5. Under WHAT prescribed OPERATING ENVIRONMENT (i.e., bounded ranges of
ACCEPTABLE inputs and environmental conditions)?

6. WHAT desirable or acceptable results or outcomes (e.g., behavior, products, by-products,
and services) are expected?

7. WHAT undesirable or unacceptable results or outcomes are to be minimized or avoided?
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Delineating Specifications and Contract 
Statements of Work (CSOWs)

People often have problems delineating a specification from a Contract Statement of Work (CSOW).
As evidence of this confusion, you will typically see CSOW language such as activities, tasks, and
work products written into specifications. So, what is the difference between the two types of
documents?

The CSOW is an Acquirer’s contract document that specifies the work activities to be accom-
plished and work products to be delivered by the System Developer, subcontractor, or vendor to
fulfill the terms and conditions (Ts&Cs) of the contract. In contrast, the specification specifies and
bounds the capabilities, characteristics, and their associated levels of performance required of the
deliverable system, product, or service.

Requirements versus Specification Requirements

Some people often use the term “requirements” while others refer to “specification requirements.”
What is the difference? The answer depends on the context. The contract, as the overarching doc-
ument, specifies requirements that encompass, among other things specification requirements,
schedule requirements, compliance requirements, and cost requirements. For brevity, people often
avoid saying specification requirements and shorten the form to simply “requirements.” As we will
see, for systems with multiple levels of specifications and specifications within levels, general usage
of the term “requirements” must be cast in terms of context—of which specification is the frame
of reference.

28.3 WHY DO WE NEED SPECIFICATIONS?

A common question is: WHY do we need specifications. The best response is to begin with an old
adage: If you do not tell people WHAT you WANT, you can’t complain about WHAT they deliver.
“But that’s not WHAT we asked for” is a frequent response, which may bring a retort “we deliv-
ered what you put on a piece of paper . . . [nothing!].” There is also another adage, which raises
grammarians’ eyebrows, that states: If it isn’t written down, it never happened!

In any case, if the technical wrangling continues, legal remedies may be pursued. The legal
community seeks to unravel and enlighten:

1. WHAT did you specify via the contract, meeting minutes, official correspondence, conver-
sations, etc.?

2. WHO did you talk to?

3. WHERE did you discuss the matter?

4. WHEN did you discuss it?

5. HOW did you document WHAT you agreed to?

The best way to avoid these conflicts is to establish a mechanism “up front” prior to Contract Award
(CA). The mechanism should capture the technical agreements between the Acquirer and the
System Developer to the mutual satisfaction and understanding of both parties. From a technical
perspective, that mechanism is THE System Specification Performance (SPS).

The conflicts discussed above, which characterize the Acquirer and System Developer/Services
Provider—Subcontractor—Vendor interfaces, are not limited to organizations. In fact, the same
issues occur vertically within the System Developer’s program organization between the SYSTEM,
PRODUCT, SUBSYSTEM, ASSEMBLY, SUBASSEMBLY, and PART levels of abstraction. As a
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result, the allocation and flow down of requirements from the System Performance Specification
(SPS) to lower levels requires similar technical agreements between SE design teams. This occurs
as each allocated and assigned problem space is decomposed into lower level solution spaces
bounded by specifications.

Therefore, WHY do we need specifications? To explicitly articulate and communicate in a lan-
guage that:

1. Employs terms that are simple and easy for the Acquirer, User, and System Developer stake-
holders to understand.

2. Expresses essential features and characteristics of the deliverable product.

3. Avoids the need for “open” interpretation or further clarification that may lead to potential
conflict at final system, product, or service acceptance.

28.4 WHAT MAKES A GOOD SPECIFICATION?

People commonly ask What constitutes a GOOD specification? “Good” is a relative term. What is
GOOD to one person may be judged as POOR to someone else. Perhaps the more appropriate ques-
tion is “What makes a well-defined specification ‘good’?”

SEs often respond to this question with comments such as “It’s easy to work with,” “we didn’t
have to make too many changes to get it RIGHT,” “we didn’t have any problems with the Acquirer
at acceptance,” and so on. However, some explicit characteristics make well-defined specifications
standout as models. So let’s examine two perspectives of well-written specifications.

General Attributes of Specifications

Well-written specifications share several general attributes that contribute to the specification’s
success.

Standard Outline. Well-written specifications are based on standard outline topics that are rec-
ognized by industry as best practices. The outline should cover the spectrum of stakeholder engi-
neering topics to ensure all aspects of technical performance are addressed. We will address this
topic in more detail later in this chapter.

Ownership Accountability. Well-written specifications are assigned to and owned by an indi-
vidual or a team that is accountable for the implementation of the specification requirements, main-
tenance, verification, and final acceptance of the deliverable system, product, or service of the
specification.

Baseline Control and Maintenance. Specifications are baselined at a strategic staging or
control points when all stakeholders are in mutual agreement with its contents.

Referral For more information about event-based control points for specification review,
approval, and release, refer to Chapter 46 System Design and Development Documentation Prac-
tices (refer to Figure 46.2) and Chapter 54 on Technical Review Practices.

Once the baseline is established, specifications are updated and verified through a stakeholder
review agreement process (i.e., configuration control) that ensures that the document properly
reflects the current consensus of stakeholder requirements.
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Traceable to User Needs. Well-written specifications should be traceable to a User’s prescribed
solution space and fulfill validated operational needs derived from a problem space relative to the
organization’s mission and objectives.

Written in a Language and Terms That Are Simple and Easy to Understand. Well-
written specifications are written in a language that uses terms that are well defined and are easy
to understand. In general, many qualified people should independently read any requirement 
statement and emerge with the same interpretation and understanding of technical performance
requirements.

Feasible to Implement. A well-defined specification must be feasible to implement within real-
istically achievable technologies, skills, processes, tools, and resources with acceptable technical,
cost, schedule, and support risk to the Acquirer and the System Developer or Services Provider.

28.5 UNDERSTANDING TYPES OF SPECIFICATIONS

When SEs specify the items, materials, and processes required to support system, product, or service
development, how is this accomplished? These work products are specified via a hierarchical set
of specifications that focus on:

1. Defining the requirements for multi-level system items.

2. Supporting specifications for materials and processes to support development of those
items.

The hierarchical set of specifications is documented via a framework referred to as the specifica-
tion tree. We will discuss the specification tree later in this section. To understand the hierarchical
structure within the specification tree, we need to first establish the types of specifications that may
appear in the framework.

The classes of specifications include the following:

• General or performance specifications

• Detail or item development specifications

• Design or fabrication specifications

• Material specifications

• Process specifications

• Product specifications

• Procurement specifications

• Inventory item specifications

• Facility interface specifications

Figure 28.1 illustrates the primary types of specifications.

28.6 PUTTING SPECIFICATIONS INTO PERSPECTIVE

To place all of these various types of specifications into perspective, let’s use the example illus-
trated in Figure 28.2. Requirements for a SYSTEM, as documented in the System Performance
Specification (SPS), are allocated and flowed down one or more levels to one or more items—such
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as PRODUCTS, SUBSYSTEMS, ASSEMBLIES. Requirements for these items are captured 
in their respective development or procurement specifications that document the “As Specified”
configuration.

As the highly iterative, multi-level, and recursive design effort evolves, SEs develop one or
more design or fabrication specifications to capture the attributes and characteristics of the physi-
cal PARTS to be developed. In the design effort one or more process specifications and material
specifications are developed to aid in the procurement, fabrication, coding, assembly, inspection,
and test of the item. The collective set of baselined specifications represent the “As Designed”
Developmental Configuration that documents HOW to develop or procure the item.

The set of specifications generated for each item or configuration item (CI) serve as the basis
for its development, as well as facilities, either internally or via external subcontractors or vendors.
When the CI completes the System Integration, Test, and Evaluation (SITE) phase that includes
system verification, the “As Verified” configuration is documented as the product baseline and 
captured as the CI’s product specification.

28.7 THE SPECIFICATION TREE

The multi-level allocation and flow down of requirements employs a hierarchical framework that
logically links SYSTEM entities vertically into a structure referred to as the specification tree. The
right side of Figure 28.3 provides an example of a specification tree.

Specification Tree Ownership and Control

The specification tree is typically owned and controlled by a program’s Technical Director or a
System Engineering and Integration Team (SEIT). The SEIT also functions as a Configuration
Control Board (CCB) to manage changes to the current baseline of a specification.
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Linking the Specification Tree to the CWBS 
and System Architecture

People often mistakenly develop the specification tree as an independent activity unrelated to the
system architecture and contract work breakdown structure (CWBS). This is a serious error! The
specification tree and the CWBS should reflect the primary structure of the system architecture and
be linked accordingly. To illustrate this point, consider the graphic shown in Figure 28.3.

Guidepost 28.1 Now that we have established the specification tree as the framework for
linking SYSTEM entity specifications, let’s shift our focus to understanding the structure of most
specifications.

28.8 UNDERSTANDING THE BASIS FOR 
SPECIFICATION CONTENT

The learning process for most engineers begins with a specification outline. However, most engi-
neers lack exposure and understanding as to HOW the specification outline was derived. To elim-
inate the gap in this learning process, let’s back away from the details of outlines and address WHAT
specifications should specify. Let’s begin by graphically depicting a system entity and the key
factors that drive its form, fit, and function. Figure 28.4 serves this purpose.

Author’s Note 28.1 Remember, the term SYSTEM or entity is used here in a generic sense.
By definition, SEGMENTs, PRODUCTs, SUBSYSTEMs, ASSEMBLIES, HWCIs, and CSCIs are
SYSTEMs. Thus, the discussion here applies to any level of abstraction.
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Specifying the System of Interest (SOI)

The SYSTEM entity, for which the specification is to be written, is shown in the central part of the
figure. If we analyze systems, we will find there are several key attributes that characterize a system
entity or item. These attributes include: 1) operational characteristics, 2) physical characteristics,
3) modes and states, 4) interfaces, 5) growth capacity, 6) products and services, 7) by-products, 
8) mass properties, 9) quality factors, and 10) documentation. The intent here is to characterize 
the entity’s behavioral and physical characteristics and properties.

The challenge question is, however, HOW do we arrive at this set of attributes? The answer
resides in a variety of external factors that influence and constrain the entity. Let’s investigate these
external factors.

External Factors That Drive SYSTEM Requirements

The process of specifying a SYSTEM entity’s requirements is driven by external factors that bound
and constrain the entity’s solution.

Operational Need (2). The purpose of a SYSTEM entity is to satisfy a User(s) operational
needs. Thus, the specification must specify requirements for capabilities and level of performance
that have been derived from and are traceable to the User’s operational needs.

Specifications, Standards, and Statutory Constraints (3). The design of any SYSTEM
entity often requires strict compliance with existing specifications, standards, and statutory
constraints that may include interfacing systems, workmanship, and materials.

Notes and Assumptions (4). Since requirements are specified with text and graphics, they
often call for contextual clarifications. Where some requirements are unknown, assumptions may
be used. Additionally graphical conventions may have to be clarified. Therefore, specifications
should include Notes and Assumptions to provide a definition, context and usage information, and
terms and conventions.

Verification Methods (5). Requirements that specify key attributes of a SYSTEM entity are
often written in language and terms the system designers understand. The challenge is, however,
HOW do you verify and validate that the physical entity complies with the requirements? To solve
this dilemma, specifications include a section that specifies requirements for entity verification and
validation (User option).

System Engineering Practices (6). Successful system development requires that best
practices derived from lessons learned and engineering discipline be consistently applied to
minimize risk. Therefore, specifications invoke system engineering practices to ensure that the
deliverable product will achieve SYSTEM requirements.

Design and Construction Constraints (7). Specifications do more than communicate WHAT
and HOW WELL a SYSTEM/entity must be accomplished. They communicate the constraints that
are levied on the SYSTEM and development decisions related to SYSTEM operations and
capabilities. We refer to these as design and construction constraints. In general, design and
construction constraints consist of nonfunctional requirements such as size, weight, color, mass
properties, maintenance, safety restrictions, human factors, and workmanship.



Preservation, Packaging, and Delivery (8). When the SYSTEM is to be delivered, care must
be taken to ensure that it arrives fully capable and available to support operational missions.
Preservation, packaging, and delivery requirements specify how the deliverable SYSTEM/entity is
to be prepared, shipped, and delivered.

SUPPORT SYSTEM Element Requirements (9). MISSION SYSTEMS require sustainable
pre-mission, mission, and postmission support test equipment (STE) at critical staging events and
areas. This may require the use of existing facilities and support equipment such as common support
Equipment (CSE) or peculiar support Equipment (PSE) or the need to develop those items.
Therefore, specifications include SUPPORT SYSTEM element requirements.

PERSONNEL Element Requirements (10). Many SYSTEMs typically require the
PERSONNEL Element for “hands-on” operation and control of the SYSTEM during pre-mission,
mission, and postmission operations. Additionally, human-machine trade-offs must be made to
optimize system performance. This requires delineating and specifying WHAT humans do best
versus WHAT the EQUIPMENT element does best. Therefore, specifications identify the skill and
training requirements to be levied on the PERSONNEL Element to ensure human-system
integration success.

Operating Environment Conditions (11). Every entity must be capable of performing
missions in a prescribed OPERATING ENVIRONMENT at a level of performance that will ensure
mission success. Therefore, specifications must define the OPERATING ENVIRONMENT
conditions that drive and bound entity capabilities and levels of performance.

Design Performance Criteria (12). SYSTEM entities are often required to operate within
performance envelopes, especially when simulating the performance of or interfacing with the
physical SYSTEMs. When this occurs, the specification must invoke external performance
requirements that are characterized as design criteria. In these cases a Design Criteria List (DCL)
for the interfacing systems or system to be simulated is produced to serve as a reference.

28.9 UNDERSTANDING THE GENERALIZED 
SPECIFICATION STRUCTURE

We discussed earlier in this practice the need to employ a standard outline to prepare a specifica-
tion. Standard specifications typically employ a seven-section outline. The basic structure includes
the following elements:

Front Matter

Section 1.0: Introduction

Section 2.0: Referenced Documents

Section 3.0: Requirements

Section 4.0: Qualification Provisions

Section 5.0: Packaging, Handling, Storage, and Delivery

Section 6.0: Requirements Traceability

Section 7.0: Notes

We will address these requirements in more detail in Chapter 32 Specification Development
Practices.
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Author’s Note 28.2 As is ALWAYS the case, consult your contract for guidance on perform-
ance specification formats—and your Contract Data Requirements List (CDRL) item formats. If
guidance is not provided, confer with the Program’s Technical Director or organization’s Con-
tracting Officer (ACO).

28.10 SPECIFICATION DEVELOPMENT 
EVOLUTION AND SEQUENCING

To better understand the development and sequencing of specifications, we use the structure of the
System Development Process workflow as illustrated in Figure 24.2. If we generalize the System
Development Process in time, Figure 28.5 illustrates HOW the family of specifications evolves
over time from Contract Award through System Verification Test (SVT).

28.11 GUIDING PRINCIPLES

In summary, the preceding discussions provide the basis with which to establish the guiding prin-
ciples that govern specification approaches.

Principle 28.1 Specifications state WHAT the SYSTEM/entity is to accomplish and HOW
WELL; CSOWs specify tasks that the System Developer is to perform and the work products to
be delivered. Preserve and protect the scope of each document. 

28.12 SUMMARY

In our discussion of the specification practices we identified key challenges, issues, and methods related to
developing system specifications. As the final part of the concept, we introduced the structure for a general
specification. Given a fundamental understanding of specifications, we are now ready to explore types of
requirements documented in a specification via the next topic on understanding system requirements.
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GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercise or a new system, selection, apply your knowledge derived from this chapter’s topical dis-
cussions. If you were a consultant to an Acquirer that had ample resources:

(a) What types of specifications would you recommend as Contract Data Requirements List (CDRL) items.
Provide rationale for your decisions.

(b) Annotate each of the specification outline topics with a brief synopsis of what you would recommend
the Acquirer’s SEs address in the System Performance Specification (SPS).

ORGANIZATION CENTRIC EXERCISES

1. Research your organization’s command media for guidance concerning development of specifications.

(a) What requirements do the command media impose on contract programs?

(b) What does the media specify about timing for developing and approving specifications?

2. Contact a contract program within your organization.

(a) What specifications are required to be delivered as Contract Data Requirements List (CDRL) items?

(b) What delivery requirements are levied on the program specification CDRL deliveries during the System
Development Phase?

(c) Does the program have a specification tree?

(d) Contrast the specification tree structure with the multi-level system architecture. Do they identically
match? How do they differ? What is the program’s rationale for the difference?

(e) What specifications are required that are viewed as unnecessary?

(f) What specification did the program develop that were not required by contract?
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Chapter 29

Understanding Specification
Requirements

29.1 INTRODUCTION

Specifications establish the agreement of the technical capabilities and levels of performance
required for a system to achieve its mission and objectives within a prescribed solution space. As
such, specifications represent human attempts to specify and bound the prescribed solution space
that will enable the User to accomplish their organizational mission and objectives.

This chapter provides the foundation for specifying system, product, or service requirements.
We explore the various categories and types of stakeholder and specification requirements—such
as operational, capability, nonfunctional, interface, verification, and validation requirements. We
expand the discussion of operational requirements and link them to the fours modes of operation—
such as NORMAL, ABNORMAL, EMERENCY, and CATASTROPHIC.

Specification requirements that bound a solution space are hierarchical and interrelated. We
discuss the hierarchical structure and relationships among the various types of requirements. We
illustrate why specifications prepared in an ad hoc manner are prone to problems of missing,
misplaced, conflicting, and duplicated requirements. These problems represent risk areas that SEs
need to understand and recognize.

What You Should Learn from This Chapter

1. What is a requirement?

2. What is a source or originating requirement?

3. What is a stakeholder requirement?

4. What is an objective requirement?

5. What is a threshold requirement?

6. What are the categories of specification requirements?

7. What are operational requirements?

8. What are capability requirements?

9. What are nonfunctional requirements?

10. What are interface requirements?

11. What are verification requirements?

12. What are validation requirements?

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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13. What are requirement priorities?

14. What are the four types of operational requirements?

15. What are four common problems with requirements?

Definitions of Key Terms

• Nonfunctional Requirement A statement of a static, nonbehavioral requirement that char-
acterizes an attribute—such as appearance, and weight, dimensions—of an entity.

• Objective Requirement The objective value is that value desired by the user, which the
PM is contracting for or otherwise attempting to obtain. The objective value could represent
an operationally meaningful, time critical and cost-effective increment above the threshold
for each program parameter. (Adapted from the DoD Acquisition Program Preparation
Instruction; Source: DoD 5000.2R Draft, Jan. 1, 2001, Section 1.2)

• Operational Requirement A statement of a required capability the represents an integrated
set of operations needed to satisfy a specific mission objective and outcome within a speci-
fied time frame and prescribed OPERATING ENVIRONMENT.

• Performance Requirement “A criterion that identifies and quantifies the degree to which
a particular attribute of a function must be accomplished, and the conditions under which
this capability is to be achieved.” (Source: Kossiakoff and Sweet, System Engineering,
p. 451)

• Threshold Requirements Requirements stated with a minimum acceptable value that, in
the user’s judgment, is necessary to satisfy the need. If threshold values are not achieved,
program performance is seriously degraded, the program may be too costly, or the program
may no longer be timely. (Adapted from the DoD Acquisition Program Preparation Instruc-
tion; Source: DoD 5000.2R Draft, Jan. 1, 2001, Section 1.2)

• Requirement Elicitation The act of identifying and collecting stakeholder requirements
through understanding of the problem and solution spaces such as via personal interviews
and observation.

• Requirement Stakeholder Anyone who has a stake or vested interest in identifying, defin-
ing, specifying, prioritizing, verifying, and validating system capability and performance
requirements. Requirements stakeholders include all personnel responsible for system defi-
nition, procurement, development, production, operations, support, and retirement of a
system, product or service over its life cycle.

• Requirement “Any condition, characteristic, or capability that must be achieved and is
essential to the end item’s ability to perform its mission in the environment in which it must
operate is a requirement. Requirements must be verifiable.” (Source: SD-15 Performance
Specification Guide, p. 9)

• Verification Requirement A statement of a method and conditions for demonstrating suc-
cessful achievement of a system, product, or service capability and its minimum/maximum
level of performance.

• Validation Requirement A statement of an approach and/or method to be employed to
demonstrate and confirm that a system, product, or service satisfies a User’s documented
operational need.
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29.2 WHAT IS A REQUIREMENT?

The heart of a specification resides in the requirements. Each requirements statement serves to
specify and bound the deliverable system, product, or service to be developed or modified. The pre-
requisite to developing requirements is to first identity WHAT capability is required. Therefore,
you need to understand HOW requirements are categorized.

Understanding Types of Requirements

People often think of requirements in a generic sense and fail to recognize that requirements also
have specific missions and objectives. If you analyze the requirements stated in the specifications,
you will discover that requirements can be grouped into various categories. This discussion 
identifies the types of requirements and delineates usage of terms that sometimes complicate the
application.

Source or Originating Requirements

When an Acquirer formally releases a requirements document that specifies and bounds the system
or entity for procurement, the specifications are often referred to as the SOURCE or ORIGINAT-
ING requirements. These requirements can encompass multiple categories of requirements in a
single document or several documents, such as a System Requirements Document (SRD) and a
Statement of Objectives (SOO).

One of the problems in applying the term source or originating requirements is that it is rela-
tive. Relative to WHOM? From an Acquirer’s perspective, the source or originating requirements
should be traceable to the User’s validated operational need. These needs may evolve through a
chain of decision documents that culminate in a procurement specification as illustrated earlier in
Figure 24.5.

From a System Developer’s perspective, source or originating requirements are applied to the
Acquirer’s procurement specification such as the Request for Proposal (RFP), SRD, or SOO used
to acquire the system, product, or service.

Stakeholder Requirements

A specification captures all essential and prioritized stakeholder requirements that FIT within User’s
budget and development schedule constraints.

Requirements Stakeholder Objectives. The primary objectives of the requirements stake-
holders are to ensure that:

1. All requirements essential to their task domain are identified, analyzed, and documented in
a System Performance Specification (SPS).

2. Specific requirements are accurately and precisely specified and given an equitable prior-
ity relative to other stakeholder requirements.

3. Domain/disciplinary requirements are clear, concise, easy to understand, unambiguous,
testable, measurable, and verifiable.

Requirements Stakeholder Elicitation and Documentation. Since stakeholder require-
ments reside on both sides of the contract interface boundary, each organizational entity—User,
Acquirer, and System Developer—is accountable for stakeholder requirements identification. So,
HOW does this occur?
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The Acquirer is typically accountable for establishing a consensus of agreement, preferably
before the contract is awarded, of all User operational stakeholders. Specifically, stakeholders with
accountability for the system outcomes and performance during the System Production, System
Deployment, System Operations and Support (O&S), and System Disposal Phases of the system/
product life cycle.

Author’s Note 29.1 The System Developer also has contract stakeholder performance and
financial interests in clarifying any internal stakeholder requirements that relate to the System
Development and System Production, if applicable, Phases of the contract. Thus, the System Devel-
oper stakeholder requirements must be addressed prior to submitting the SPS as part of a proposal
as well as during contract negotiations.

Warning! Read, fully understand, and comprehend WHAT you are signing the contract to
perform.

29.3 SPECIFICATION REQUIREMENTS CATEGORIES

Requirements can be organized into various categories to best capture their intended use and objec-
tives. Typical categories include: 1) operational requirements, 2) capability and performance
requirements, 3) nonfunctional requirements, 4) interface requirements, 5) design and construction
requirements, 6) verification requirements, and 7) validation requirements. Let’s briefly describe
each of these categories of requirements.

Operational Requirements

Operational requirements consist of high-level requirements related to system mission objectives
and behavioral interactions and responses within a prescribed OPERATING ENVIRONMENT and
conditions. In general, WHAT is the entity expected to accomplish?

Capability Requirements

Capability requirements specify and bound a solution space with functional/logical and perform-
ance actions each system entity or item must be capable of producing such as outcome(s), prod-
ucts, by-products, or services. Traditionally these requirements were often referred to as functional
requirements and focused on the function to be performed. Capability requirements, however,
encompass both the functional/logical substance and level of performance associated with HOW
WELL the function must be performed.

Nonfunctional Requirements

Nonfunctional requirements relate to physical system attributes and characteristics of a system or
entity. Nonfunctional requirements DO NOT perform an action but may influence a specific oper-
ational outcome or effect. For example, does bright yellow paint (nonfunctional requirement)
improve safety?

Interface Requirements

Interface requirements consist of those statements that specify and bound a system’s direct or indi-
rect connectivity or logical relationships with external system entities beyond its own physical
boundary.
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Verification Requirements

Verification requirements consist of requirements statements and methods to be employed to assess
system or entity compliance with a capability, performance parameter, or nonfunctional require-
ment. Verification requirements are typically stated in terms of verification methods such as inspec-
tion, analysis, demonstration, and test.

Validation Requirements

Validation requirements consist of mission-oriented, use case scenario statements intended to
describe WHAT must be performed to clearly demonstrate that the RIGHT system has been built
to satisfy the User’s intended operational needs. Validation requirements are typically documented
in an Operational Test and Evaluation (OT&E) Plan prepared by the User or an Independent Test
Agency (ITA) representing the User. Since use cases represent HOW the User envisions using the
SYSTEM, a use cases document would serve a comparable purpose. In general, validation should
demonstrate that critical operational and technical issues (COIs/CTIs) have been resolved or 
minimized.

29.4 REQUIREMENTS PRIORITIES

When requirements of elicited, each stakeholder places a value on the importance of the require-
ment to enable them to achieve their organizational missions. We refer to the value as a priority.
The realities of system development are that EVERY requirement has a cost to implement and
deliver. Given limited resources and stakeholder values, bounding the solution space requires rec-
onciling the cost of the desired requirements with the available resources. As a result, requirements
must be prioritized for implementation.

Threshold and Objective Requirements

One method of expressing and delineating requirements priorities is to establish threshold and
objective requirements.

• Threshold requirements express a minimum acceptable capability and level of performance.

• Objective requirements express goals above and beyond the threshold requirements level that
the Acquirer expects the System Developer to strive to achieve.

EXAMPLE 29.1

A User may require a minimum level of acceptable SYSTEM performance—threshold requirement—with an
expressed desire to achieve a specified higher level. Achievement of a higher level objective requirement may
be dependent on the maturity of the technology and a vendor’s ability to consistently and reliably produce the
technology.

Threshold and objective requirements must be consistent with the Operational Requirements Doc-
ument (ORD) and the Test and Evaluation Master Plan (TEMP).

When you specify threshold and objective requirements, you should explicitly identify as such.
There are several ways of doing this.

Option 1: Explicitly label each threshold or objective requirement using parenthesis marks such
as XYZ Capability (Threshold) and ABC Capability (Objective).
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Option 2: Specify “up front” in the specification that unless specified otherwise, all requirements
are “threshold requirements.” Later in the document when objective requirements are
stated, the following label might be used “. . . ABC Capability (Objective). . . .”

In any case, you should ALWAYS define the terms (i.e., threshold and objective) in the appropri-
ate section of the specification. A third option might involve a summary matrix of threshold and
objective requirements. A shortcoming of the matrix approach is that it is physically located away
from the stated requirement. This approach, which may be confusing to the reader, creates extra
work flipping back and forth between text and the matrix. KEEP IT SIMPLE and tag the statement
(threshold or objective) with the appropriate label.

29.5 TYPES OF OPERATIONAL REQUIREMENTS

When specification developers derive and develop requirements, human tendencies naturally focus
on the SYSTEM operating ideally—meaning normally and successfully. In the ideal world this
may be true, but in the real world systems, products, and services have finite reliabilities and life
cycles. As such, they may not always function normally. As a result, specifications must specify
use case requirements that cover phases and modes for a prescribed set of OPERATING ENVI-
RONMENT scenarios and conditions.

Phases of Operation Requirements

Systems, products, and services perform in operational phases. As such, SEs must ensure that the
requirements that express stakeholder expectations for each phase are adequately addressed. At a
minimum, this includes pre-mission phase, mission phase, and postmission phase operations.

Modes of Operation Requirements

Each phase of operation includes at least one or more modes of operation that require a specified
set of capabilities to support achievement of mission phases of operation objectives. If you inves-
tigate and analyze most MISSION SYSTEM operations, you will discover that the SYSTEM must
be prepared to cope with four types of OPERATING ENVIRONMENT scenarios and conditions:
(1) NORMAL, (2) ABNORMAL, (3) EMERGENCY, and (4) CATASTROPHIC. Let’s define the
context of each of these conditions:

NORMAL Operations

NORMAL operations consist of the set of MISSION SYSTEM activities and tasks that apply to
SYSTEM capabilities and performance operating within their specified performance limits and
resources.

ABNORMAL Operations. ABNORMAL operations consist of a set of SYSTEM operations and
tasks that focus on identifying, troubleshooting, isolating, and correcting a functional or physical
capability condition. These conditions represent levels of performance that are outside the tolerance
band for NOMINAL mission performance but may not be critical to the safety of humans, property,
or the environment.

EMERGENCY Operations. EMERGENCY operations consist of a set of SYSTEM operations
and tasks that focus exclusively on correcting and eliminating a threatening, hazardous to safety,
physical capability condition that has the potential to pose a major health, safety, financial, or
security risk to humans, organizations, property, or the environment.
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CATASTROPHIC Operations. CATASTROPHIC operations consist of a set of operations or
tasks performed following a major SYSTEM malfunction event that may have adversely affected
the health, safety, financial, and security of humans, organizations, property, and the environment
in the immediate area.

Relationships between Operating Condition Categories

Requirements for SYSTEM operating conditions must not only scope and bound the use case sce-
nario or the condition but also the transitory modes and states that contributed to the conditions.
To better understand this statement, refer to Figure 29.1.

As indicated in the figure, a SYSTEM operates under NORMAL operations. The challenge for
SEs is to derive reliability, availability, maintainability, and spares requirements to support onboard
preventive and corrective maintenance operations to sustain NORMAL operations. If a condition
or event occurs prior to, during, or after a mission, the SYSTEM may be forced to transition (1) 
to ABNORMAL operations. NORMAL operations can conceivably encounter an emergency and
transition (3) immediately to EMERGENCY operations. Analytically, Figure 29.1 assumes some
ABNORMAL conditions precede the EMERGENCY.

During ABNORMAL operations, a SYSTEM or its operators institute recovery operations,
correct or eliminate the condition, and hopefully return to NORMAL operations (2). During
ABNORMAL operations, an emergency condition or event may occur forcing the SYSTEM into a
state of EMERGENCY mode operations (3). Depending on the system and its post emergency
health condition, the SYSTEM may be able to shift back to ABNORMAL operations (4).

If EMERGENCY operations are unsuccessful, the SYSTEM may encounter a catastrophic
event, thereby requiring CATASTROPHIC mode operations (6).
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How Do These Categories Relate to SYSTEM Requirements?

Depending on the SYSTEM and its mission applications, the System Performance Specification
(SPS) must specify capability and performance requirements that cover these conditions to ensure
the safety of humans, property, and the environment. Will you find a section in the SPS titled
NORMAL, ABNORMAL, EMERGENCY, or CATASTROPHIC operations? Generally, no. Instead,
requirements for these types of conditions are distributed throughout the SPS. As a matter of good
practice, however, it is recommended that Acquirer and System Developers maintain some type of
documentation that links SPS requirements to these conditions to ensure proper coverage and 
consideration.

Failure to Define Requirements for these Categories

History is filled with events that exemplify a SYSTEM’s inability to COPE with physical condi-
tions in its OPERATING ENVIRONMENT simply because these conditional and scenario require-
ments were ignored, overlooked, or assumed to have only a remote probability of occurrence.

Allocation of Conditional sRequirements to System Elements

When you develop the SPS, keep in mind that the SYSTEM must be capable of accommodating
all types of NORMAL, ABNORMAL, EMERGENCY, or CATASTROPHIC conditions within the
practicality of budgets. Note the operative word “SYSTEM” here. Remember, a SYSTEM encom-
passes ALL system elements. Ultimately, when EQUIPMENT is specified, SEs also allocate respon-
sibility and accountability for some conditional requirements to the PROCEDURAL DATA,
PERSONNEL, MISSION RESOURCES, or SUPPORT SYSTEM elements that satisfy safety
requirements and reduce development costs.

29.6 UNDERSTANDING THE REQUIREMENTS HIERARCHY

System Performance Specification (SPS) requirements generally begin with high-level, mission-
oriented requirements statements. These high-level statements are then elaborated into successively
lower level requirements that explicitly clarify, specify, and bound the intent of the higher level
requirements. In effect, a hierarchical structure of requirements emerges.

Contrary to what many people believe, requirements should not be stated as random thoughts
or wish lists. Objective evidence of this mindset is illustrated in the way specifications are often
written. We will discuss this point later in Specification Development Practices. Instead, specifica-
tions should be structured and organized via a framework of hierarchical links. Thus, the frame-
work provides a referential mechanism to trace requirements back to one or more source or
originating requirements.

We can depict the hierarchical structure of these requirements graphically as shown in Figure
29.2. Note that each of the requirements is labeled using a convention that depicts its lineage and
traceability to higher level requirements.

EXAMPLE 29.2

Parent capability requirement, R1, has three SIBLING capability requirements, R11, R12, and R13. The label-
ing convention simply adds a right-most digit for each level and begins the numerical sequence with “_1.”
Thus, you can follow the “root lineage” for each requirement by decoding the numerical sequence of digits.
The lineage of requirement, R31223, is based on the following decompositional “chain”: R3 fi R31 fi R312
fi R3122 fi R31223.
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Author’s Note 29.2 The hierarchy shown is best described as ideal—meaning all requirements
are properly aligned to higher level requirements. For discussion purposes, we will restrict the sim-
plicity of this diagram to generic requirements. Requirements are derived from and must be trace-
able to measures of effectiveness (MOEs), measures of suitability (MOSs), and measures of
performance (MOPs) at the system and mission levels.

Referral For more information about MOEs, MOS, and MOPs, refer to the Operational Utility,
Suitability, and Effectiveness Practices discussion in Chapter 34.

The SYSTEM’s mission represents the highest level requirement in Figure 29.2. The mission is
scoped, bounded, and described by three high-level capability requirements, R1, R2, and R3. When
a single requirement, such as R12, R32, and R33, effectively ends the chain, the term “leaf” require-
ment is sometimes used.

Guidepost 24.1 From this basic understanding of a theoretical capability requirement hierar-
chy we are now ready to investigate common problems with specification requirements.

29.7 COMMON PROBLEMS WITH 
SPECIFICATION REQUIREMENTS

Specifications often have imperfections and are unintentionally released with a number of errors,
defects, and deficiencies. To illustrate these conditions, let’s identify a series of undesirable condi-
tions that commonly plague specifications.

We noted earlier that some people develop specifications as random sets of thoughts or wish
lists organized to a standard outline structure. Specifications of this type typically evolve from infor-
mal to formal brainstorming sessions. Requirements captured during the session are published for
review. During the session reviewers lobby other reviewers to support additions of their respective
desires to the structure.
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Author’s Note 29.3 Requirements should NOT be added to a specification unless budgetary
resources are provided. Remember, each requirement costs money to implement—be it hardware
or software. At the SPS level, requirements changes should be managed as contract modifications.
Within the System Developer’s organization, any additional requirements should include com-
mensurate cost and schedule modification considerations.

If you analyze specification work products, you will discover they typically exhibit at least four
major types of problems:

Problem 1: Missing capability requirements

Problem 2: Misplaced capability requirements

Problem 3: Conflicting specification requirements

Problem 4: Duplicated requirements

Figure 29.2 illustrates these conditions that often result in errors, defects, and deficiencies.
These four conditions exemplify a few of the common problems specification analysts and SEs

encounter. This further illustrates two key points:

• WHY it is important to formally train SEs, specification requirements analysts, and stake-
holders in HOW to analyze, prepare, and review the specifications before you contractually
commit to their implementation.

• WHY it is important to conduct specification reviews with all stakeholders. People who casu-
ally read specifications in a linear “front to back” or sectional manner for proper grammar
and text usage typically overlook or fail to assimilate and recognize these conditions.

29.8 GUIDING PRINCIPLES

In summary, our discussions in this section provide the basis with which to establish the several
guiding principles that govern specification requirements practices.

Principle 29.1 Every specification must specify requirements that address four types of system
conditions:

1. Normal operations

2. External system failures

3. Degraded operations

4. Internal system failures

29.9 SUMMARY

Our discussion of specification requirements provided an introduction into the types of requirements contained
within specifications statements. Later, chapters will use this foundation to determine the requirements for
internally developed configuration items (CIs) or the procurement of nondevelopmental items (NDIs) from
external vendors.
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GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new system selection, apply your knowledge derived from this chapter’s topical
discussions. Identify and describe the four types operations—NORMAL, ABNORMAL, EMERGENCY,
and CATASTROPHIC, as applicable—that apply to the selected system.

ORGANIZATION CENTRIC EXERCISES

1. Contact several contract programs within your organization. Request an opportunity to analyze the System
Performance Specification (SPS) for each program and answer the following questions:

(a) Identify five examples of operational requirements.

(b) Identify five examples of capability requirements.

(c) Identify five examples of nonfunctional requirements

(d) Identify five different examples of verification requirements.

(e) Identify five examples of design and construction constraints.

(f) Are threshold and objective requirements identified?

2. Interview program technical management and SEs. How were requirements in the System Performance
Specification (SPS) elicited and collected from stakeholders? Document your findings and observations?

3. What lessons learned did program personnel learn in the following areas and how did they resolve the
issue?

(a) Missing requirements

(b) Misplaced requirements

(c) Conflicting requirements

(d) Duplicated requirements

(e) Nonfunctional requirements

(f) Verification requirements

4. What types of metrics are used to track specification defects and deficiencies?

5. Select a specification on a contract program for analysis. Using the concepts discussed in this chapter, as
a consultant to the specification developer, identify defects and deficiencies in the specification and suggest
recommendations for improvement.

6. Research contract specifications and identify those that specify the precedence of requirements for deci-
sion making.

7. For a contract program, identify who the SPS stakeholders are based on the specified requirements. Based
on those stakeholders, prioritize them in terms of an estimate based on requirements count.
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Chapter 30

Specification Analysis

30.1 INTRODUCTION

When systems, products, and services are acquired, the Acquirer typically provides a System
Requirements Document (SRD) or Statement of Objectives (SOO) with the formal Request for Pro-
posal (RFP) solicitation. The SRD/SOO expresses the required set of capabilities and performance
Offerors use as the basis to submit solution-based proposals. The challenge for Acquirers and
System Developers is to formulate, derive, and negotiate a System Performance Specification (SPS)
that:

1. Concisely and completely bounds the solution space.

2. Is well understood by all stakeholders.

3. Establishes the basis for deliverable system, product, or service technical acceptance.

Our discussion in this chapter describes various Specification Analysis Practices. We explore
various methods and techniques used to analyze specification requirements for completeness from
several perspectives. We introduce common specification practice deficiencies and investigate
methods for identifying, tracking, and resolving these deficiencies. We also consider semantic ambi-
guities such as comply versus conform versus meet that Acquirers and System Developers employ
that do have significance in interpretation.

What You Should Learn from This Chapter

1. How do you methodically analyze a specification?

2. What are some common types of specification requirements deficiencies?

3. When requirements deficiencies are identified, how should you resolve them?

4. What does it mean to comply with a requirement?

5. What does it mean to conform to a requirement?

6. What does it mean to meet a requirement?

30.2 ANALYZING EXISTING SPECIFICATIONS

Our previous discussion focused on HOW an Acquirer might develop their procurement System
Requirements Document (SRD) or the System Developer might developer lower level item devel-
opment specifications. However, WHAT if a specification already exists? HOW does the Acquirer

System Analysis, Design, and Development, by Charles S. Wasson
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or a System Developer candidate analyze the specification for completeness, reasonableness, and
feasibility?

There are two key contexts regarding analysis of specifications:

1. Acquirer verification PRIOR TO formal solicitation.

2. System Developer analysis during the proposal process and following Contract Award (CA).

Let’s investigate these contexts further.

Acquirer Perspective

Acquirers start by reducing the risk of the procurement action. How can this be accomplished? It
is by releasing a high-quality draft specification that accurately, precisely, and completely speci-
fies and bounds the solution space system, product, or service. Before release, the Acquirer must
thoroughly review the specification for accuracy, completeness, specificity, and legal purposes. Key
review questions to ask might include:

1. Have all User System Deployment Phase, System Operations and Support (O&S) Phase,
and System Disposal Phase stakeholder requirements been adequately identified, priori-
tized, scoped, and specified?

2. Have we bounded the CORRECT solution space within the problem space?

3. Have we identified the RIGHT system to fill the prescribed solution space and cope with
OPERATING ENVIRONMENT?

4. Does this specification adequately, accurately, and precisely specify the selected solution
space?

5. If we procure a system based on these requirements, will the deliverable product satisfy the
User’s intended operational needs?

6. Can the system specified be developed within the total life cycle cost—such as acquisition,
operations and support (O&S), and retirement costs—budgets that are available?

What happens if you inadequately address these and other questions? Later, if it is determined that
the requirements have latent defects such as errors, deficiencies, or omissions, the cost to modify
the contract can be very expensive. To minimize specification risk, Acquirers often release a pre-
solicitation draft specification for qualified candidate Offeror comments.

System Developer Perspective

In contrast, the System Developer must reduce contract cost, schedule, and technical risk. To do
this, specification analysis must answer many questions. Key review questions might include:

1. Do we fully understand the scope of the effort we are signing up to perform?

2. Do the system requirements, as stated, specify a system that satisfies the User’s operational
needs? If not, what approach must we use to inform them?

3. Have we thoroughly investigated and talked with a representative cross section of the User
community to validate their requirements and needs?

4. Do we understand the problem the User is attempting to solve by procuring this system?
Does the specification bound the problem or a symption of the problem?

5. Can the requirements, as stated, be verified within reasonable expectations, cost, schedule,
and risk?

6. Do these requirements mandate technologies that pose unacceptable risks?
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30.3 SPECIFICATION ANALYSIS

Given the Acquirer and System Developer perspectives, HOW do they approach analysis of the
specification? The answer encompasses the methods and techniques identified in earlier questions
in Chapters 3 to 29. Due to the broad scope of this answer, we will briefly address some high level
approaches you can apply to specification analysis.

Visually “Inspect” the Specification Outline

Examine the outline STRUCTURE for missing sections and topics that are crucial to developing
a system of the type specified.

Perform System Requirements Analysis (SRA)

Perform a System Requirements Analysis (SRA) to understand WHAT the system is expected to
do. Ask key questions such as:

1. Do the list of requirements appear to be generated as a feature-based “wish list” or reflect
structured analysis?

2. Do the requirements follow standard guidelines discussed later in Requirements Statement
Development Practices?

3. Do the requirements appear to have been written by a seasoned subject matter expert (SME)
or semi-knowledgeable person?

4. Do the requirements adequately capture User operational needs? Are they necessary and
sufficient?

5. Do the requirements unnecessarily CONSTRAIN the range of viable solutions?

6. Are all system interface requirements identified?

7. Are there any TBDs remaining in the specification?

8. Are there any critical operational or technical issues (COIs/CTIs) that require resolution
or clarification?

Perform Engineering Graphical Analysis

1. Based on the requirements, as stated, can we draw a simple graphic of the system and its
interactions with its OPERATING ENVIRONMENT?

2. Are there any obvious “holes” in the graphic that are not specified as requirements in the
specification?

Hierarchical Analysis

1. Are there any misplaced, overlapping, duplicated, or conflicting requirements?

2. Are the requirements positioned and scoped at the right levels?

3. Are there any “holes” in the set of requirements?

Technology Analysis

Do the specification requirements indicate a willingness or unwillingness by the Acquirer to con-
sider and accept new technologies or solutions?
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Competitive Analysis

Do the specification requirements favor or target a competitor’s products, services, or organiza-
tional capabilities?

Modeling and Simulation Analysis

If appropriate, is it worthwhile to develop models and simulations as decision aids to analyze system
performance issues?

Verifying Specification Requirements

1. Are there any requirements that are unreasonable, unverifiable, or cost prohibitive using the
verification methods specified?

2. Does verification require any special test facilities, tools, equipment, or training?

Validating Specification Requirements

When SEs analyze specifications, especially those prepared by external organizations, most engi-
neers presume the specification has been prepared by someone who:

1. Understands the User’s problem space and solution space(s).

2. Accurately analyzes, translates, and articulates the solution space into requirements that
can be implemented economically with acceptable risk, and so forth.

Exercise CAUTION with this mindset! AVOID assuming anything UNTIL you have VALI-
DATED the specification requirements.

30.4 DEALING WITH CONTRACT 
SPECIFICATION DEFICIENCIES

Human systems, even with the best of intentions, are not perfect. Inevitably, every contract System
Performance Specification (SPS) has blemishes, degrees of goodness, strong and weak points.
Although the degree of goodness has an academic connotation, “goodness” resides in the minds
and perceptions of the Acquirer and System Developer. Remember, one person’s work of art may
be viewed by another person as unorganized rambling.

Discussions by both parties reach a point whereby willingness to entertain contract modifica-
tion to eliminate specification blemishes or deficiencies are rejected. The Acquirer may want
changes but is reluctant to request changes due to the System Developer taking advantage of the
situation via cost changes.

Conversely, the System Developer may WANT changes but the Acquirer is unwilling to allow
any changes for FEAR of the unknown that may result from the changes. Even when both parties
agree, there may be latent SPS deficiencies that lie dormant and go undiscovered until late in the
System Development Phase of the contract. The best that can occur is for both parties to accom-
modate each other’s wishes at no cost, assuming that is the appropriate and reasonable solution.

Regardless of the scenario you may have a situation where the System Performance Specifi-
cation (SPS) contains defects, deficiencies, or errors and the Acquirer refuses to modify the con-
tract. What do you do?

One solution is to create an electronic System Design Notebook (SDN); some people refer to
this as a Design Rationale Document (DRD). Why do you need an SDN or DRD? You need a mech-
anism to record design assumptions and rationale for requirements allocations and design criteria.
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Under the Terms and Conditions (Ts&Cs) of the contract, the System Developer must perform to
the SPS requirements that are flowed down to lower level development specifications. Therefore,
lacking a definitive set of SPS requirements, you may want to consider an AT RISK solution that
expresses your organization’s interpretation of the ambiguous requirements. A copy of the docu-
ment should be provided through contracting protocol to the Acquirer’s Contracting Officer (ACO).

Author’s Note 30.1 The point above highlights the need to THINK SMARTLY “up front” about
requirements and AVOID this situation. You will find executives and impatient people who insist
that you move on and not worry about interpretations. “Besides, it’s perfectly clear to me!”
BEWARE! Any time investment and energy spent up front clarifying SPS requirements BEFORE
they become contract obligations will be significantly less costly than after Contract Award.

When you conduct the System Requirements Review (SRR), SPS defects and deficiencies should
be addressed with the Acquirer. The requirements defects and deficiencies discussion and decisions
should be recorded in the SRR meeting minutes. If the Acquirer refuses to allow corrections via
contract modification, they may acknowledge via the Acquirer Contracting Officer (ACO) your
chosen approach. Therefore, document your design assumptions and include open distribution or
accessibility of that portion of the SDN to the Acquirer.

Author’s Note 30.2 Every contract and situation is different and requires decision making on
its own merits. Professionally and technically speaking, the Acquirer and System Developer should
emerge from the SRR with no outstanding issues. The reality is:

1. The Acquirer may have to settle for a negotiated acceptance of the system AS IS with known
deficiencies at system delivery.

2. The System Developer may be UNABLE to perform to the terms and conditions (Ts&Cs) of
the contract.

All stakeholders need to emerge from the contract as winners! Therefore, AVOID this problem and
resolve it up front during the proposal phase or not later than the SRR and throughout the System
Development Phase, as appropriate.

30.5 COMMON SPECIFICATION DEFICIENCIES

If you analyze specification requirements practices in many organizations, there are a number of
deficiencies that occur frequently. These include:

Deficiency 1: Failure to follow a standard outline

Deficiency 2: Specification reuse risks

Deficiency 3: Lack of specification and requirements ownership

Deficiency 4: Specifying broad references

Deficiency 5: Reference versus applicable documents

Deficiency 6: Usage of ambiguous terms

Deficiency 7: Missing normal, degraded, and emergency scenario requirements

Deficiency 8: Specification change management

Deficiency 9: Over-underspecification of requirements

Deficiency 10: References to unapproved specifications
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Deficiency 11: Failure to track specification changes and updates

Deficiency 12: Failure to appropriate time for specification analysis

Deficiency 13: Requirements applicability–configuration effectivity

Deficiency 14: Dominating personality specification writers

Deficiency 1: Failure to Follow a Standard 
Specification Outline

Many specification issues are traceable to a lack of commitment to establish and employ standard
specification development outlines and guidelines. Standard outlines represent organized lessons
learned that reflect problem areas or issues that someone else has encountered and must be cor-
rected in future efforts. Over time they incorporate a broad spectrum of topics that may or may not
be applicable to all programs. The natural tendency of SEs is to delete nonapplicable sections of a
standard specification outline. Additionally, management often dictates that specific topics are to
be deleted because “We don’t want to bring it to someone’s attention that we are not going to
perform (topic).”

The reality is standard outlines include topics that are intended to keep you out of trouble!
A cardinal rule of system specification practices requires you to provide rationale as to WHY a
standard outline topic is not applicable to your program. The rationale communicates to the reader
that you:

1. Considered the subject matter.

2. Determined the topic is not relevant to your system development effort for the stated 
rationale.

Thus, if someone more knowledgeable determines later that “Yes, it is relevant,” you can correct
the applicability statement. This is true for plans, specifications, and other types of technical 
decision-making documents.

Problems arise when SEs purposefully delete sections from a standard outline. Once deleted,
the section is “out of sight, out of mind.” Since contract success is dependent on delivering a prop-
erly designed and developed SYSTEM on schedule and within budget, you are better off identify-
ing a topical section as “Not Applicable.” Then, if others determine that it is applicable, at least
you have some lead time to take corrective action BEFORE it is too late.

If you follow this guideline and go into a System Requirements Review (SRR), any non-
applicability issues can be addressed at that time. All parties emerge with a record of agreement
via the conference minutes concerning the applicability issue.

Author’s Note 30.3 Remember, the cost to correct specification errors and omissions require-
ments increases almost exponentially with time after Contract Award.

Deficiency 2: Specification Reuse Risks

Some engineers pride themselves in being able to quickly “assemble a specification” by duplicat-
ing legacy system specifications without due operational, mission, and system analysis. Guess
what? Management takes great pride in the practice, as well. AHEAD of schedule, LIFE is ROSY!
Later SEs discover that key requirements were overlooked or ignored, were not estimated, and have
significant cost to implement. Guess what? Management is very unhappy!

Where precedented systems exist and are used as the basis to create new specifications with
only minor modifications, the practice of plagiarizing existing specifications may be acceptable.
However, be cautious of the practice. Learn WHEN and HOW TO apply specification REUSE
effectively.
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Deficiency 3: Lack of Specification 
and Requirements Ownership

Specification requirements are often ignored due to a lack of ownership. Two SEs argue that each
thought the other was responsible for implementing the requirement. Every requirement in every
specification should have an OWNER who either generated the requirement or is accountable for
its implementation and verification.

Deficiency 4: Specifying Broad References

Specification writers spend the bulk of their time wordsmithing and correcting documents and very
limited time, if any time, on systems analysis—even less on specification references. References
are often inserted at the last minute. Why?

Typically, those same SEs do not have the time to thoroughly research the references. They
make broad references such as “in accordance with MIL-STD-1472 Human Engineering” because:

1. Management is demanding completion.

2. We’ll “clean it up” later.

3. We don’t understand WHAT the reference means, but it sounds GOOD; “saw it in another
spec one time so let’s use it,” etc.

Since this is a specification and the System Developer is required by contract to implement the pro-
visions of the SPS, are you prepared to PAY the bill to incorporate ALL provisions of Mil-Std-1472,
for example? Absolutely not! With luck, the problem may work itself out during the proposal phase
via the Offeror formal question and answer process.

This problem is a challenge for the Acquirer and System Developers.

1. The referenced document may be outdated or obsolete. Professionally speaking, this can be
embarrassing for the organization and specification developer.

2. Unskilled specification writers—despite 30 years of experience in other nontopic areas—
may inadvertently make technical decisions that may have legal, safety, and risk 
ramifications.

3. System Developers often fail to properly research Request for Proposal (RFP) references,
thereby costing significant amounts of money to implement the reference as stated in the
System Performance Specification (SPS).

Do yourself and your organization a favor. Thoroughly research RFP references, REQUEST
Acquirer (role) clarifications or confirmations, and then document in brief form WHAT the refer-
ence EXPLICITLY requires. Remember, UNDOCUMENTED Acquirer comments are magically
FORGOTTEN when things go WRONG!

Deficiency 5: Reference versus Applicable Documents

Referenced documents refer to those documents—namely specifications and standards—explicitly
specified in the Section 3.0 requirements and listed in Section 2.0 Referenced or Applicable Doc-
uments of the specification. In contrast, Applicable Documents are those containing relevant infor-
mation to the topic but are not REQUIRED or REFERENCED by the specification. AVOID listing
these documents in a specification’s Section 2.0 Referenced Documents.

Deficiency 6: Usage of Ambiguous Terms

Specification writers are notorious for writing requirements statements that employ ambiguous
words that are subject or open to interpretation. In accordance with specification practices that
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promote explicitness, ambiguous words and terms should be avoided or defined. Consider the fol-
lowing example:

EXAMPLE 30.1

Simulation community specifications often include terms such as realistic representation and effective
training.

The challenge for the Acquirer and System Developer is: How do you know WHEN a “realistic
representation” or “effective training” has been successfully achieved? The answer is to explic-
itly define the terms. WHAT subjective criteria will the User, subconsciously in their minds and
perceptions, use to determine successful achievement of the requirements?

Deficiency 7: Missing Scenario Requirements

Most SEs prepare specifications for the “ideal” world. The reality is systems and interfaces fail,
sometimes with CATASTROPHIC consequences. When specifications are written, make sure the
requirements are specified to address NORMAL, DEGRADED, EMERGENCY, and, if appropri-
ate, CATASTROPHIC operations.

Author’s Note 30.4 Remember, system safety design issues demand proper consideration 
to minimize risk to the SYSTEM and its personnel (people). This includes direct or indirect im-
pacts by the system and its operation or lack thereof on the public, physical property, and the 
environment.

Deficiency 8: Specification Change Management

Once a specification is approved, baselined, and released, changes must be formally approved and
communicated to stakeholders—among them management and SE designers. Because of a lack of
communications, two problems can occur.

First, program and technical management often lack an appreciation of the need to communi-
cate specification changes to program personnel. Ironically, the technical integrity of the program
is at risk, which is the very topic management seems to be averse to. Second, when management
does communicate changes, Program personnel often IGNORE announcements about specification
changes and continue to work with a previous version. Programs need to learn how to better com-
municate! Verify that program documentation communications are clearly communicated and
understood!

Deficiency 9: Over-Underspecification of Requirements

Specification developers are often confronted with uncertainty regarding the adequacy of the
requirements. Specification requirements can be overspecified or underspecified.

The way to AVOID over-underspecification involves three criteria:

1. Focus on specifying the system item’s performance envelope—meaning boundaries for
capabilities and performance.

2. AVOID details that specify HOW the capability-performance envelope is to be implemented.

3. AVOID specifying capabilities more than one level below the entity’s level of abstraction.
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Deficiency 10: References to Unapproved Specifications

When the System Developer’s organization plans to develop several multi-level item development
specifications, the efforts must be synchronized. One of the ironies of specification writing is a per-
ception that multi-level specifications can be written simultaneously to cut development time. This
is an erroneous perception that ultimately leads to technical CHAOS—conflicts and inconsisten-
cies! The sequencing and approval of specification development at lower levels is dependent on
maturation and approval of higher level specifications. There are ways of accomplishing this,
assuming teams at multiple levels communicate well and mature decisions quickly at higher levels.

Deficiency 11: Failure to Track Specification 
Changes and Updates

System integrity demands change management process discipline: track approved specification
updates, incorporate changes immediately, and notify all stakeholders of the latest changes. This
includes proper versioning to enable stakeholders to determine currency.

Deficiency 12: Failure to Appropriate Time for 
Specification Analysis

One of the ironies of system development is failure to allocate the proper amount of time to analyze
or develop specifications.

Wasson’s Law. The time allocated by management for most program and technical decision
making tasks is inversely proportional to the significance of the tasks or decision to the deliverable
product, User, or organization.

Three of the most crucial specification analysis tasks during a proposal effort are 
understanding:

1. WHAT problem the User is trying to solve.

2. WHAT system, product, or service does the Acquirer’s formal solicitation’s SRD/SOO
specify.

3. WHAT you have committed yourself and your organization to via the draft System Perfor-
mance Specification (SPS) submitted as the proposal response.

Despite their significance, these three tasks often fall back in the priority list behind multi-level
managerial briefings, which are important, and other “administrative” tasks.

Deficiency 13: Requirements Applicability—
Configuration Effectivity

Some specification requirements may only be applicable to specific configurations and units—that
is, configuration effectivity. Where this is the case, label the requirement as only applicable to the
configurations A, B, C, etc., or serial numbers XXXX to YYYY. If this occurs, include a statement
to the reader on the cover and in the Section 1.0 Introduction that this specification applies to con-
figurations A, B, and C and serial number effectivity XXXX through YYYY. Then, list the serial
numbers.

Deficiency 14: Dominating Personality Specification Writers

As much as we aspire to objectively neutralize the personality factor in specification writing, per-
sonalities sometimes have a dominating influence over specification development. There are ego-
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tists whom programs defer to because of their personalities rather than their technical competence.
If you allow this practice to occur on your program, you may be jeopardizing your own success as
well as that of the program.

There are times when dominating personalities will “bully” requirements through that do not
make sense—“Makes sense to me . . . why can’t you see the same?” As a result there may be highly
competent reviewers who have a “gut instinct” that something is not right yet are unable to artic-
ulate or identify the problem for corrective action. If this scenario occurs, view it as a risk indica-
tor, take notice, and get the situation corrected technically. Level the playing field. Keep the team
focused on technical solutions and resolving issues!

30.6 CLARIFYING AND RESOLVING SPECIFICATION 
ISSUES AND CONCERNS

Specifications often contain requirements that require clarification to ensure the proper interpreta-
tion and understanding of the requirement. Some requirements, however, raise critical operational
issues (COIs) or critical technical issues (CTIs), that present major challenges to implementation.
The issues may reflect technical, technology, cost, schedule, or support risks as well as TBDs, and
so on.

Requirements issues and the need for clarifications occur BEFORE and AFTER Contract
Award. Let’s briefly explore the handling of issues during these two time frames.

Issue Resolution Prior to Contract Award

Acquirers often release the draft version of a formal solicitation—such as a Request for Proposal
(RFP)—for review and comment. The draft SRD may contain various specification requirements
issues and the need for clarifications.

The first step of any specification analysis should be to identify and tag all requirements requir-
ing clarification—technical, cost, schedule, technology, and support risks, and so on. Remember,
publicly surfacing issues and clarifications during the RFP process may potentially tip competitors
regarding your proposal strategy. Therefore, the proposal team must make a decision regarding
which issues to submit for clarification and which to give additional internal analysis and/or 
follow-up.

The key point is that Offerors (System Developers) must thoroughly analyze, scrutinize, and
resolve all requirements issues and clarifications BEFORE they submit their specification as part
of the proposal and sign a contract.

Issue Resolution after Contract Award (ACA)

Requirements issue resolution after Contract Award (ACA) varies by contract and Acquirer. The
WILLINGNESS to modify specification requirements language may depend on how recently the
Contract Award has occurred.

Prior to the System Requirements Review (SRR)

If the System Requirements Review (SRR) has not been conducted, there may be an opportunity
to address the need for clarifications or to correct deficiencies. Even then, some Acquirers may be
reluctant to agree to specification changes via contract modifications.

From the Acquirer’s perspective, the need to change always goes back to the proposal response
prior to Contract Award “. . . WHY wasn’t the matter addressed at that time or during contract nego-
tiations?” The problem is exacerbated if the Offeror (System Developer) voluntarily proposed spec-
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ification requirements language without adequate analysis or consideration. The situation poten-
tially has degrees of organizational, professional, and technical embarrassment.

Post–SRR Requirements Issues

There are occasions when latent specification requirements defects go undiscovered until after SRR,
generally due to poor analysis. Acquirers may reluctantly consider and accept engineering change
proposals (ECPs) for requirements changes. Depending on the situation, the only workable solu-
tion may be to request a deviation to the specification requirements.

Final Points

When specification requirements issues are discovered, surfacing the issue to the surprise of the
Acquirer program manager in a major technical review may have consequences. People, in general,
do not like surprises, especially in public forums. Although the handling of an issue depends on
the personnel and organizations involved, the best advice may be for the System Developer’s
program or technical director to informally introduce the issue off-line—meaning in private con-
versation—with the Acquirer program manager prior to a review. Depending on the outcome and
response, the System Developer may choose to address the issue formally through normal pro-
curement channels.

Finally, the reluctance and willingness of the Acquirer to entertain the idea of specification
requirements changes may be driven by having to implement a contract modification that requires
numerous approvals and justifications, a laborious and career risk process. It also challenges the
initiator(s) to explain to your management WHY you failed to recognize this situation and rectify
it during contract negotiations.

Tracking Requirements Issues and Clarifications

When specification requirements issues and clarifications are identified, it is critical to bring all of
them to closure quickly. One mechanism for tracking closure status is to establish a metric that rep-
resents the number of outstanding COIs, CTIs, TBDs, TBSs, and clarifications.

30.7 REQUIREMENTS COMPLIANCE AND CONFORMANCE

As a System Developer, one of the most common questions posed by management to SEs is: Can
we meet the specification’s requirements? The response typically involves words such as comply,
conform, and meet. Since SEs often lack training on the proper usage of the terms, you will find
these terms are used interchangeably. So, what do the terms mean?

If you delve into the definitions of comply, conform, or meet in most dictionaries, you may
emerge in a state of confusion. The reason is that most dictionary definitions of these terms employ
either of the other two terms as part of the definition, resulting in circular references. So, to bring
some clarity to this confusion, consider the following explanations.

Compliance

The term, compliance, is often used in references to requirements compliance, process compliance,
and regulatory compliance. In general, compliance infers STRICT adherence or obedience to the
“letter” of a requirement with no exceptions. Despite the term’s intent you will often find degrees
of compliance. Within the system development contracting domain, there is an expectation that any
organization that refuses to or is unable to comply with specification requirements formally noti-
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fies the Acquirer and documents the exception, its supporting rationale, and proposed remedy.
Failure to achieve full compliance often results in contract performance penalties or a negotiated
reduction in contract payments.

EXAMPLE 30.2

People are expected to comply with the letter of the law or requirement regarding statutes and 
regulations established by international, federal, state, and local governmental authority.

Conformance

We often hear the phrase “We will conform to your requirements.” The response communicates,
“We have standard organizational practices—such as processes, methods, and behavioral patterns—
that we use on a regular basis. However, to promote harmony among team members and a posi-
tive relationship, we will ADAPT or ADOPT—that is, to conform to—a set of processes, methods,
and behavioral patterns to be mutually acceptable to the other party.”

EXAMPLE 30.3

You visit a foreign country and discover their eating habits are different from yours. You have a choice: 
1) conform to their practices, 2) go without food supply, or 3) bring your own chef and food.

“Meet” Requirements

You often hear someone say they or their organization can meet the requirements. What does this
mean? In general, the term meet carries a minimum threshold connotation. In effect they are stating,
“We will meet your MINIMUM requirements.”

To summarize our discussion in an SE context, a subcontractor might tell a System Developer,
“For this subcontract, we will conform to your documentation system’s review and approval
process. When we submit our documents for review and approval, we will comply with the sub-
contract’s instructions for document format and submittal via the Contracting Officer.”

30.8 GUIDING PRINCIPLES

In summary, the preceding discussions provide the basis with which to establish the guiding prin-
ciples that govern specification analysis practices.

Principle 30.1 Undocumented verbal agreements vaporize when either party in an agreement
gets into trouble.

30.9 SUMMARY

We began our discussion of specification analysis by addressing Acquirer and System Developer perspectives
for a specification. We introduced various methods that System Developers employ to provide a high-level
assessment of the “goodness” of the specification.

Next we introduced common deficiencies such as missing, misplaced, overlapping, or duplicated require-
ments that plague many specifications. We described how specification issues and concerns should be resolved
between the System Developer and Acquirer prior to and after Contract Award.
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Last, we delineated three terms—comply, conform, and meet—that contractors express interchangeably
but have different connotations.

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

ORGANIZATIONAL CENTRIC EXERCISES

1. Research your organization’s command media. What guidance or requirements are levied on contract pro-
grams concerning specification analysis? Document your findings.

2. Contact several contract programs within your organization. Interview the Technical Director, Project Engi-
neer, or Lead SEs to answer the following questions:

(a) How were system requirements analyzed during the proposal effort that culminated in the develop-
ment of the program’s System Performance Specification (SPS)?

(b) What deficiencies—missing, misplaced, conflicting, or duplicated requirements—did personnel find in
the Acquirer’s System Requirements Document (SRD) provided with the solicitation? How were the
deficiencies resolved?

(c) Were there any requirements issues and or requirements that required clarification? Did the System
Developer or the Acquirer write these requirements? How were these resolved? Did the Acquirer refuse
to make changes to the SPS to resolve or clarify issues? How did the program deal with the refusal to
modify SPS requirements?
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Chapter 31

Specification Development

31.1 INTRODUCTION

Performance and development specifications serve as the formal mechanism for an Acquirer (role)
to:

1. Specify WHAT capabilities a system or entity is required to provide.

2. Bound HOW WELL the capabilities are to be performed.

3. Identify external interfaces the SYSTEM/entity must accommodate.

4. Levy constraints on the solution set.

5. Establish criteria concerning HOW the System Developer is to demonstrate compliance as
a precursor for delivery and acceptance.

At the highest level, the System Performance Specification (SPS) or Statement of Objectives (SOO)
establish a contract’s technical agreement between the Acquirer, as the User’s technical represen-
tative, and the System Developer. This section introduces Specification Development Practices and
expands on the standard outline discussion in Chapter 28 System Specification.

When tasked to write a specification, most engineers have a tendency to approach specifica-
tion development as if it were a test.

1. Identify the SYSTEM OF INTEREST (SOI).

2. What is the system’s mission?

3. What are its modes and states of operation?

4. What functions should the SYSTEM/entity perform?

5. Identify the system’s interfaces?

6. Any weight restrictions?

7. Any special considerations about safety?

8. Any other constraints concerning the way the SYSTEM/entity is to be designed and 
constructed?

9. What about training?

This chapter introduces and explores some of the more common approaches to specification
development. Our discussion introduces a logical strategy that provides the basis for structuring a
specification. Using this strategy, you can create an outline that best fits your organization.

Based on an understanding of methods for creating a specification and its topical outline, we
shift our focus to investigating an example approach for creating a meaningful specification. We
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leverage our discussions in Chapter 18 System Operations Model and use it as an analytical tool
to organize requirements within the specification outline structure via model-based structured
analysis. We conclude with a suggested a checklist for developing specifications and conducting
specification reviews.

What You Should Learn from This Chapter

1. What are some common approaches to developing specifications?

2. What is the architecture-based specification development approach?

3. What is the performance-based specification development approach?

4. What is the feature-based specification development approach?

5. What is the reuse specification development approach?

6. What is the model-based development approach to specification development?

7. How are specification reviews performed?

Definitions of Key Terms

• Architecture-Based Approach A structured analysis approach that employs: 1) conceptual
system phases and modes of operation and 2) a multi-level logical architecture (i.e., entities
and interfaces) as the framework for specifying system capabilities and performance
requirements.

• Performance-Based Approach A specification development approach that analytically
treats a system or entity as a box and specifies condition-based inputs, outputs, behavioral
capabilities and responses, and constraints for developing specification requirements.

• Specification Review A technical review by stakeholders, peers, and subject matter experts
(SMEs) to assess the completeness, accuracy, validity, verifiability, producibility, and risk
of a specification.

• Reuse-Based Approach An approach that exploits or plagiarizes an existing specification
that may or may to be applicable to a specific application and uses it as the basis for creat-
ing a new specification. This approach, which is typically prone to errors and omissions, is
highly dependent on the specification writer’s and reviewer’s knowledge and expertise to
identify and correct errors and omissions.

• Feature-Based Approach An ad hoc brainstormed approach to specification requirements
development. This approach, by virtue of its feature-based nature, is subject to omissions in
the hierarchy of requirements and is highly dependent on reviewer assimilation and recog-
nition of the omissions to correct them.

31.2 UNDERSTANDING WHAT A 
SPECIFICATION COMMUNICATES

Specifications are not intended to be Pulitzer Prize winning novels on the bestseller list. However,
like novels, they do require some insightful forethought to bring a degree of continuity and
coherency to a set of mundane, disjointed outline topics.

There are numerous ways of structuring a specification outline. Rather than elaborate on com-
monly available specification outlines, let’s take a different approach and THINK about WHAT we
need to communicate in the specification. Then, based on that discussion, translate the information
into a meaningful outline structure that best fits your organization or application.
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Standard Outline Templates

As with any commonly used documentation, start with a standard outline, tailor, and apply it across
all specifications for a contract program. If you do not have one, consider establishing one in your
organizational command media.

If you analyze and implement most specification outlines, you will discover two things:

1. People who are not practitioners with in-depth experience often create specification out-
lines used in many organizations. Outline topics are mismatched and disorganized. While
the outline satisfies an organizational ego, it may be useless to stakeholders—namely the
practitioners and readers.

2. Specification outline creators tend to structure outlines from an academic perspective that
makes the outline unwieldy for practitioners. You can organize a specification with many
levels of hollow academic structure that addresses the first requirement at the fourth, 
fifth, or sixth level. Imagine having such as high-level statement as “The system shall
perform the following capabilities;” appear in Section 3.X.X.X.X. Since specifications 
for large, complex systems often require four to eight or ten levels of detail, placing the
first requirements at the fifth level makes the document IMPRACTICAL to read and 
reference.

The point is to organize the outline structure in a meaningful way that posts major requirements at
least by the third level.

Specification Outline

To facilitate our understanding as to WHAT a specification communicates, let’s use the following
structure to guide our discussion. You may decide to restructure these topics to better suit your
needs:

1.0 INTRODUCTION

2.0 REFERENCED DOCUMENTS

3.0 REQUIREMENTS

3.1 Operational Performance Characteristics

3.1.1 System (Level 1 System) Entity Definition

3.1.2 System Mission(s)

3.1.3 Phases of Operation

3.1.4 Mission Reliability

3.1.5 System Maintainability

3.1.6 System Availability

3.1.n (Other Mission Related Topics)

3.2 SYSTEM/Entity Capabilities (Level 1)

3.2.1 System Capability Architecture

3.2.2 Phase-Based Capability Application Matrix

3.2.3 through 3.2.n (Individual Capabilities)

3.3 System Interfaces

3.3.1 External Interfaces (Level 1)

3.3.2 Internal Interfaces (Level 2)
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3.4 Design and Construction Constraints

3.5 Personnel and Training

3.6 Operations and Support (O&S)

3.7 Transportability

3.8 Technical Documentation

3.9 Precedence and Criticality of Requirements

4.0 QUALIFICATION PROVISIONS

4.1 Responsibility for Verification

4.2 Verification Methods

4.3 Quality Conformance Inspections

4.4 Qualification Tests

5.0 PACKAGING

6.0 REQUIREMENTS TRACEABILITY

7.0 NOTES

7.1 Acronyms and Abbreviations

7.2 Definitions

7.3 Assumptions

Guidepost 32.1 As a general rule, most organizations employ some form of the outline struc-
ture above. Beyond this point, specification development depends on the organization or devel-
oper’s preferred approach.

We now shift our focus to understanding HOW many organizations and individuals develop 
specifications.

31.3 SPECIFICATION DEVELOPMENT APPROACHES

Organizations and SEs employ a number of approaches to development of specifications. Typical
approaches include:

1. Feature-based approach

2. Reuse-based approach

3. Performance-based approach

4. Model-based approach

Let’s explore a brief description each type beginning with the most informal, the feature-based
approach.

The Feature-Based Approach

Feature-based specifications are essentially ad hoc brainstormed lists of requirements. People who
LACK formal training in specification development commonly use a feature-based approach. Spec-
ifications developed in this manner are often just formalized wish lists. Although feature-based
specifications may use standard specification outlines, they are often poorly organized and prone
to missing, misplaced, conflicting or contradictory, and duplicated requirements.
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Advantages of the Feature-Based Approach. The feature-based approach enables devel-
opers to quickly elicit and collect requirements inputs with a minimal effort. Specification devel-
opers spend very little time analyzing and understanding potential implications and impacts of the
requirements. When time is limited or a new system is being developed from minor modifications
of an existing system, this method may be minimally acceptable. Every system is different and
should be evaluated on a case-by-case basis. Remember, it is easy to rationalize erroneous logic
that ignores common sense to meet schedule and budget constraints.

Disadvantages of the Feature-Based Approach. The disadvantages of the feature-based
approach are that the random method produces a smattering of hierarchical requirements with:

1. Compound requirements written in paragrah style prose.

2. Conflicts with other requirements.

3. Multiple instances of duplication.

4. Vague, ambiguous requirements statements open to interpretation.

Figure 29.2 illustrates how this approach might affect the quality of the specification and result in
DEFICIENCIES such as missing, misplaced, conflicting, or duplicated requirements.

The Reuse-Based Approach

The reuse-based approach simply exploits or plagiarizes an existing specification or integrates
“snippets” from several specifications. The underlying assumption is that existing specifications are
reference models. This can potentially be a big mistake! THINK about it! The source specification
you plan to use as a starting point may be of poor quality!

The reuse-based approach is often used under the guise of economy—meaning saving time
and money. The developers fail to recognize that corrections to the product design due to specifi-
cation deficiencies, such as overlooked and incorrect requirements, often cost more than employ-
ing model-based structured analysis discussed later in this chatper.

Specification reuse often occurs within a product line, which is fine. You are working from a
known entity accepted and refined by the organization. However, specification reuse occurs across
product domains and organizations that may be unrelated, which may cause significant risk.

Author’s Note 31.1 The reuse-based approach is generally the standard repertoire for most
new engineers, especially if they have not been given formal training in the proper ways to develop
specifications. A manager tasks an engineer to develop a specification. Confronted with meeting
schedule commitments, the engineer decides to contact someone who might have an existing spec-
ification and simply ADAPT it to meet the needs of the task. Constructively speaking, this approach
becomes the DEFAULT survival mechanism for the engineer without ever learning the proper way.
Some engineers spend their entire careers without ever learning methods that are more appropri-
ate. Unfortunately, most organizations and managers contribute to the problem. They lack knowl-
edge themselves and fail to recognize the need to provide the proper training.

The risk of using the reuse-based approach is the source or “model” specification may be intended
for a totally different system, system application, or mission. The only commonalities between
applications may be the high-level topics of the outline. As a result, the specification could poten-
tially contain two types of flaws:

1. References to inappropriate or obsolete external specifications and standards.

2. Retention of requirements that are not relevant or applicable.
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Even if the requirements are topically relevant, they may miss or over-/underspecify the capabili-
ties and levels of performance required for the new system’s field application.

Guidepost 31.2 Our discussion of the performance-based and model–based approaches
provide a better method of developing a specification. As we will see, the model-based approach
presumes some knowledge of the SYSTEM/entity architecture and employs the model-based
approach to specify entities with the architecture.

The Performance-Based Approach

The performance-based approach specifies SYSTEM/entity capability requirements in terms of
performance boundary conditions and transactions. The SYSTEM/entity is automatically treated
as a simple box with inputs and outputs, as illustrated in Figure 31.1.

The specification’s Section 3.0 Requirements identifies the SYSTEM/entity:

1. Relationship to User Level 0/Tier 0 systems—or external interfaces

2. System missions, phases, modes/use cases

3. ACCEPTABLE and UNACCEPTABLE inputs

4. Capabilities required to transform the inputs into performance-based outcomes

5. ACCEPTABLE and UNACCEPTABLE outputs—behavior, products, by-products, and
services

6. Design and construction constraints

Performance specifications represent the preferred approach to specification development for many
applications, particularly unprecedented systems. By AVOIDING design specific requirements, the
Acquirer provides the System Developer with the flexibility to innovate and create any number of
architectural solutions within contract cost, schedule, and risk constraints. Depending on the
Acquirer’s intent, performance-based specifications require extensive System Developer/
Subcontractor’s structured analysis and derivation of requirements to select a preferred system
architecture.

Most Acquirers developing an unprecedented system—unproved—tend to favor the perform-
ance-based specification approach as the initial step of a multi-phase acquisition strategy where

System/Entity
• Operational Capabilities

- Use Case #1
- Use Case #2

- ……...
- Use Case #n

System/Entity
• Operational Capabilities

- Use Case #1
- Use Case #2

- ……...
- Use Case #n

ACCEPTABLE 
Range(s) of Inputs

UNACCEPTABLE 
Range(s) of Inputs

Products
• Acceptable

• Unacceptable

By-Products
• Acceptable

• Unacceptable

Services
• Acceptable

• Unacceptable

Design & Construction 
Constraints

Figure 31.1 Performance-Based Approach to Specification Development



346 Chapter 31 Specification Development

requirements may be unknown or immature. The strategy may employ a series of spiral develop-
ment contracts to evolve and mature the system requirements. Consider the following example:

EXAMPLE 31.1

An Acquirer plans to develop an unprecedented system. After due consideration, the Acquirer decides to estab-
lish a multi-phase acquisition strategy. Phase 1 of the acquisition strategy results in the award of a perform-
ance-based specification contract to develop initial prototypes for testing, collecting, and analyzing
performance data; selecting a system architecture; and producing a set of requirements as the work product
for a Phase 2 follow-on prototype or system. There may even be several other spiral development phases, all
focused on derisking the final system development.

As the Phase 1 requirements and system architecture mature over one or more contracts, the
Acquirer may shift to our next topic, the model-based structured analysis approach.

The Model-Based Structured Analysis Approach

The model-based structured analysis approach focuses on specifying and bounding capabilities and
performance for elements within a defined SYSTEM/entity model-based architectural framework,
as illustrated in Figure 31.2. This approach is often referred to as model-based structured analysis.
The SYSTEM level is still treated as a “box.” However, the SYSTEM is analytically decomposed
into an architecture of interrelated entities or capabilities. Each SYSTEM architectural entity—
SUBSYSTEM—or capability can be treated two ways:

1. As a performance-based entity using the performance-based approach.

2. Or, decomposed to lower level architectures of entities or capabilities.

To illustrate this approach, consider the following example:

External
System #1

External
System #1

External
System #2

External
System #2

External
System #3

External
System #3

A1

A3

A2

A4

C1

C3

C2

Subsystem A

Subsystem C

B1 B2

D1

D3

D4

D5

Subsystem D

Subsystem B

SYSTEM

Input #1

Input #2

Input #3

Input #4

Out #1

MISSION 
RESOURCES

MISSION 
RESOURCES

Design & 
Construction 
Constraints

Design & 
Construction 
Constraints

A2 - B1

A4 - C2

C2 - D1

B1 - D1

External
System #4

External
System #4

Out #3

Out #4

Out #5

External
System #6

External
System #6

External
System #7

External
System #7

D2

External
System #5

External
System #5

Out #2
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EXAMPLE 31.2

A System Performance Specification (SPS) is to be developed for a vehicle. Section 3.1 addresses operational
performance and characteristics assembled in the same manner as the performance-based approach. Next,
specification developers structure Section 3.2 Capabilities based on the architectural elements:

3.2 Capabilities

3.2.1 Vehicle Frame System

3.2.2 Body System

3.2.3 Propulsion System

3.2.4 Fuel System

3.2.5 Electrical System

3.2.6 Cooling System

3.2.7 Steering System

3.2.8 Entertainment System

3.2.9 Storage System, etc.

Implementing the Model–Based Analysis Approach. Suppose that a specification devel-
opment team or developer creates an analytical architecture for a SYSTEM that includes SUB-
SYSTEM’s A through D, as illustrated in Figure 31.2. SUBSYSTEM A consists of capabilities A1
through A4, SUBSYSTEM B consists of capabilities B1 and B2, and so forth. The team constructs
an architectural model that expresses the relationships between:

• The SYSTEM and External Systems 1 through 5.

• SUBSYSTEMs A through D.

• Capabilities A1–A4, B1–B2 and so forth within each SUBSYSTEM.

Author’s Note 31.2 Note the use of the term “architectural model.” The specification devel-
opment team creates a model of the system that is informally or formally controlled by the team
for their exclusive use. Based on the analysis, the specification developer(s) structure specification
Section 3.2 Capabilities as follows:

3.2 System Capabilities

3.2.1 Capability A

3.2.1.1 Capability A1

3.2.1.2 Capability A2

3.2.1.3 Capability A3

3.2.1.4 Capability A4

3.2.2 Capability B

3.2.2.1 Capability B1

3.2.2.2 Capability B2

3.2.3 Capability C

3.2.3.1 Capability C1

3.2.3.2 Capability C2

3.2.3.3 Capability C3
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3.2.4 Capability D

3.2.4.1 Capability D1

3.2.4.2 Capability D2

3.2.4.3 Capability D3

3.2.4.4 Capability D4

The model represents the configuration of capabilities that accommodates all instances 
of SYSTEM/entity use cases and scenarios. This means that for any use case or scenario, the ana-
lysts can trace the “thread” from input through each capability to produce a performance-based
outcome.

Using this method, the specification developer(s) translate WHAT capabilities the SYSTEM is
required to provide via text statements positioned in the specification outline. For analysis purposes,
you may decide to insert specification paragraph references in the appropriate graphical model
element without dictating a specific configuration solution. Each capability is then decomposed into
multi-level subcapabilities that form the basis for outcome-based performance requirement
statements.

For specifications developed for implementation within the System Developer’s organization
such as configuration items (CIs), you may decide to include Figure 31.2 in the document. However,
if you intend to procure the SYSTEM or one or more SUBSYSTEMs from external vendors, you
may be dictating a specific solution.

Later, if the you or the vendor determines that the graphic overlooked a key capability, you
may be confronted with modifying the contract and paying additional money to incorporate the
missed capability. The downside here is that it gives the vendor the opportunity to recover costs of
other capabilities they overlooked in their original estimate at your expense.

Additionally, if the vendor develops the system you mandated graphically and it fails to satisfy
your needs, the vendor’s response will be “We built the system YOU contracted us to develop.” The
bottom line is: Exercise CAUTION when inserting architectural graphics into specifications, espe-
cially SYSTEM/entity architecture graphics.

By creating an analytical architecture such as Figure 31.2 to support specification develop-
ment, you improve your chances of expressing the capabilities you desire without mandating a 
specific solution. IF you perform the analysis well and translate it into capability-based require-
ments, the reader with some insight should be able to “reverse engineer” the system graphic. The
difference is: You haven’t told the System Developer HOW TO design the system.

Applying the Model-Based Analysis Approach. Model-Based specifications are well-suited
for precedented system applications where there is an established architecture—such as airframe,
propulsion system, and cockpit. However, when the specification developers specify the primary
architectural components, they may limit the potential for new and innovative architectures that
may be able to exploit new technologies and methods such as combining two traditional components
into one.

Additionally, there is ALWAYS the risk that requirements specified for a SUBSYSTEM may
unintentionally constrain the design of an interfacing SUBSYSTEM. As a result, cost and sched-
ule impacts may be incurred. Simply state the architectural component capabilities as performance-
based entities. Consider the following example:
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EXAMPLE 31.3

Traditionally, a commercial aircraft crew consisted of a pilot, a copilot, and a navigator. As a paradigm, most
aircraft had three crewmembers. However, technology advances, in combination with the need to reduce oper-
ating costs, contributed to the elimination of the navigator position. Thus, the paradigm shifted to integrating
the NAVIGATOR function into the pilot and copilot roles and designing navigation systems to support those
two roles.

Using the example above, mentally contrast a model-based specification approach that required three
crewmember positions versus a performance-based specification approach that simply identifies
three functional roles and thereby leaving the physical implementation to the System Developer.

Guidepost 32.3 At this point we have introduced some of the more common approaches to spec-
ification development. Our next discussion delves into HOW we create specifications.

31.4 UNDERSTANDING THE SPECIFICATION 
DEVELOPMENT PARADIGM

Most people have the perception that specification developers write a specification as if they were
writing a novel as THE only work product of the exercise. They provide no supporting analyses or
rationale as to HOW they arrived at the capabilities and levels of performance specified in the doc-
ument. This is a paradigm that exemplifies WHY many contracts and system development efforts
“get off to the wrong start,” beginning at Contract Award.

Specification development is a multi-level, concurrent, system analysis, conceptual design
effort that requires documented rationale of decisions. Some organizations and SEs say, “We do
this. If Joe is writing a specification and has a TBD that needs to be replaced with a numeric value,
we perform a ‘back of the envelope’ analysis or go into the lab and run a simulation, and give him
a number. So the problem is solved!” That’s NOT what we are referring to here.

Our point is that when you develop a specification, we want to know WHAT architectural and
behavioral analyses you performed and the source criteria that compelled you to make informed
decisions concerning the capability-based requirement. How did you:

1. AVOID missing, misplaced, conflicting, or duplicated specification requirements.

2. Support requirement allocations to lower level specifications.

The answer resides in implementation of the SE Process Model, as illustrated in Figure 31.3. Let’s
briefly describe the process.

SE Process Model Implementation

From an implementation perspective, the System Engineering and Integration Team (SEIT):

1. Implements the SYSTEM level SE Process Model and analyzes the SPS.

2. Creates the SE Process Model’s Operational, Behavioral, and Physical Domain Solutions.

During the creation of these domain solutions, the SEIT may request Decision Support assistance
to obtain data to support requirements allocations to PRODUCT level development specifications.
This cycle repeats at lower levels as the respective development or integrated product teams (IPTs)
implement the SE Process Model, as illustrated in Figure 31.3.

Now, let’s investigate HOW the SE Process Model relates to specification development at each
level.
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Applying the SE Process Model to Specification Development

We can apply the preceding strategy to our earlier discussion of the model-based approach. Figure
31.4 illustrates this application of the specification development strategy for the system illustrated
in Figure 31.2.

For any specification, the SEIT, IPT, and other teams analyze multi-level User requirements
such as a Statement of Objectives (SOOs), System Requirements Document (SRD), SPS, and devel-
opment specifications. Based on the analysis, which includes understanding the problem and solu-
tion space, use cases, scenarios, and the like, the team identifies the SYSTEM/entity I/O Model
capabilities (2). Given those capabilities, they formulate a set of viable candidate architectures and
select the most suitable one (4) based on pre-defined selection criteria.

At this point, the accountable team has to answer the question: HOW does the selected archi-
tecture relate to higher level source requirements or specification capabilities? They answer the
question by creating a simple matrix (7) that allocates or links architectural elements to derived
capabilities. Based on those allocations, requirements are flowed down to lower level specifica-
tions. It is important to note here that the requirements allocated and flowed down are high-level
translations of WHAT the User wants the entity to accomplish and HOW WELL.

To illustrate HOW model-based specification development occurs from a multi-level perspec-
tive, let’s return to the model-based approach. Let’s investigate HOW lower level specifications can
be developed using SUBSYSTEM A of Figure 31.2 as an example. Figure 31.5 provides a graph-
ical illustration.

• The SEIT analyzes the SPS, employs the SE Process Model to create an I/O Model of multi-
level capabilities, selects a SYSTEM architecture, allocates capabilities to architectural ele-
ments, and flows requirements allocations down to the PRODUCT A3 Development
Specification.
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• The PRODUCT A3 IPT analyzes its requirements allocations, employs the SE Process Model
to create an I/O Model of multi-level capabilities, selects the PRODUCT A3 architecture,
allocates capabilities to architectural elements, and flows requirements allocations down to
the SUBSYSTEM A33 Development Specification.

If we employed the traditional Waterfall Model discussed earlier in Chapter 27 System Develop-
ment Models, these steps would be performed sequentially—starting at a higher-level specification.
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Its design would be complete before progressing to the next level. As the highly iterative ovals
indicate, specification development is a multi-level effort.

Realities

As the preceding discussion illustrates, specification development is a highly iterative, multi-level
process. Obviously to more efficiently and effectively utilize personnel resources, requirements allo-
cations at higher levels have to reach a level of maturity before initiating lower level specification
development efforts. So, there may be some offsets in the start of specifications at multiple levels.

In any case, CONCURRENT specification development drives the need to investigate lower
level critical operational and technical issues (COIs/CTIs) to understand and reconcile WHAT
needs to be specified at higher levels. You may ask: WHY is this?

At each level of SYSTEM decomposition and specification development, each requirement
has:

1. A priority to the User.

2. A cost to implement.

3. A level of risk.

4. A schedule time element to implement.

So, you need to develop multi-level specifications for an internal-to-the-program “go investigate
and determine the feasibility of implementing these capabilities and provide us feedback” activity.
Whereas higher level specifications tend to be abstract, lower level specifications represent
WHERE items are physically developed or procured from external vendors. You need this feed-
back to mature higher level specifications over time. This illustrates WHY specification develop-
ment is a multi-level TOP-DOWN, BOTTOM-UP, LEFT-RIGHT, RIGHT-LEFT process. When
you complete specification development:

1. Requirements at any level should be traceable to the next higher level and subsequently to
the Acquirer’s source or originating procurement requirements—SOO or SRD.

2. Specification requirements should be realistically achievable within cost and schedule
budgetary constraints with acceptable risk.

31.5 CREATING THE SPECIFICATION SECTIONS

When we develop a specification, we employ an outline structure to communicate HOW the User
wants the SYSTEM/entity to operate. So, the specification Section 3.0 consists of Section 3.1 which
addresses operational characteristics. For performance-based specifications, you may choose 
to bypass Section 3.2 on System Capabilities, shift the outline, and have a Section 3.2 System
Interfaces.

The process of developing specification Section 3.1 Characteristics is illustrated in Figure 31.6.
The figure shows HOW the operational entity relationships identified in Figure 31.2 enable us to
structure and translate operational capabilities into multi-level capability-based requirements state-
ments. Since most specifications are developed for precedented systems, they employ Section 3.1,
as stated above, and elaborate specific architectural element requirements in Section 3.2 on System
Entity Capabilities. This allows the Acquirer to express requirements that relate to specific archi-
tectural capabilities. The specification developer(s) create an analytical architecture such as Figure
31.2. Based on the architecture, they organize specification Section 3.2 into a hierarchical structure
and translate architectural capabilities into requirements, as illustrated in Figure 31.7.
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Final Thoughts

Specification development approaches ARE NOT foolproof. Approaches are ONLY as GOOD as
the analysts who identify and specify the requirements. However, the model-based structured analy-
sis approach is superior to the feature-based method for ensuring more complete coverage of
SYSTEM capability requirements during all phases and modes of operation.

31.6 SPECIFICATION DEVELOPMENT CHECKLIST

SYSTEM/entity specifications offer a number of challenges to their developers. Based on lessons
learned from developing specifications, here are some suggestions:

1. AVOID stating CSOW tasks as specification requirements.

2. Understand the User’s problem and solution spaces.

3. Validate operational requirements with the User.

4. State requirements using terminology familiar to the stakeholders; create lower level spec-
ifications using terminology familiar to the developers.

5. Specify the RIGHT solution space and system.

6. Adequately bound the solution space and OPERATING ENVIRONMENT.

7. Identify system threats and priorities.

8. AVOID dictating a system design solution.

9. Specify requirements that state WHAT rather than HOW.

10. Delineate threshold requirements from goal-based objective requirements.

11. Explicitly identify and bound external reference requirements.

12. Select the minimum verification method to prove compliance at the least cost.

13. AVOID writing incomplete requirements.

14. AVOID writing subjective requirements that are open to interpretation.

15. AVOID duplicating, conflicting, and missing requirements.

16. AVOID requiring unnecessary precision and accuracy.

17. Ensure requirements consistency and completeness within and across specifications.

18. Balance technical, technology, support, cost, and schedule risk.

19. Assign specification development and ownership accountability.

20. Identify and scope verification methods.

21. Establish and maintain requirements traceability.

22. Provide definitions of key terms, notes, and assumptions to clarify meanings.

23. Prioritize requirements for implementation and cost purposes.

24. Include system block diagrams (SBDs) if they CLARIFY and DO NOT conflict with text-
based requirements.

25. Elicit stakeholder requirements and review comments.
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31.7 SPECIFICATION REVIEWS

When a specification reaches a level of maturity, conduct a specification review with stakeholders.
There are several ways of conducting these reviews.

Line-by-Line Reviews

Some individuals and organizations conduct specification reviews on a line-by-line basis that con-
sumes hours.

Reviewer Comments–Issues Approach

An alternative approach is to distribute the document electronically, request that comments be
inserted as changes in a different color font, and returned. Review the comments and incorporate
those that make sense; follow up with the stakeholder for comments that require clarification.

Based on the collection of review comments, identify any major issues and conduct a review
with the stakeholders. The purpose of this review is to simply resolve major issues. Based on the
results of the review, update the document for the next review or approval for baselining and release.
This approach avoids consuming hours of stakeholder time changing “happy” to “glad” on a line-
by-line basis.

Review Records

Whichever approach is best for the review, document the list of stakeholder attendees, approved
changes, decisions, and action items in conference minutes.

Specification Baselines

You may ask: When should certain types of specifications be baselined? First, ALWAYS consult
your contract for specific requirements. As a general rule, specifications are baselined and released,
as listed in Table 31.1. Figure 46.2 provides a graphical view of the sequences.

31.8 GUIDING PRINCIPLES

In summary, our discussions in this chapter provide the basis with which to establish the several
key principles that govern specification development practices.

Table 31.1 Example specification release time frames

Technical Review Specifications Approved

System Requirements Review (SRR) System Performance Specification (SPS)

System Design Review (SDR) PRODUCT/SUBSYSTEM development specifications

Hardware Specification Review (HSR) Hardware configuration item (HWCI) requirements specifications

Software Specification Review Computer software configuration item (CSCI) requirements
(SSR) specifications

Preliminary Design Review (PDR) • Lower level development specifications, as applicable
• Facility interface specifications (FIS)
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Principle 31.1 Anyone can WRITE to a specification outline; however, DEVELOPING a spec-
ification requires premeditated forethought supported by informed analysis.

Principle 31.2 Every specification must have an assigned owner accountable for its develop-
ment, implementation, and maintenance.

Principle 31.3 Every specification expresses two aspects of requirements:

1. WHAT the SYSTEM/entity is to accomplish and HOW WELL.

2. Qualification provisions for verifying requirements compliance.

Principle 31.4 Use system specification terminology that is familiar to the Acquirer and User.
Apply terminology familiar in developers in lower level specifications.

Principle 31.5 SHALL requirement statements express mandatory actions required to achieve
compliance; GOALS express nonmandatory or voluntary desires to strive for.

31.9 SUMMARY

Our discussion of specification development practices identified the key challenges, issues, and methods
related to developing system specifications. As the final part of the concept, we introduced a basic methodol-
ogy for preparing specifications. The methodology provides an operational approach to specification devel-
opment based on HOW the User intends to use the system. We are now ready to focus on developing the
system solution as a response to the System Performance Specification (SPS) requirements.

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new system selection, apply your knowledge derived from this chapter’s topical
discussions. Specifically identify the following:

(a) Annotate HOW you believe the System Performance Specification (SPS) Section 3.0 outline should be
structured.

(b) Pick a component of the system. Annotate the Section 3.0 outline for the components’s development
specification.

ORGANIZATIONAL CENTRIC EXERCISES

1. Contact several contract programs within your organization. Interview the Technical Director, Project/Chief
Engineer, or lead SEs and answer the following questions:

(a) What type of specifications are required by the contract?

(b) How was each specification developed—by feature-based, reuse, or structured analysis?

(c) Based on the interviewee(s) opinion, if they were to redevelop the specification, what would they do
differently?

2. Research your organization’s command media. What guidance or direction is provided concerning devel-
opment of specifications and approaches?
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Chapter 32

Requirements Derivation, Flow
Down, Allocation, and Traceability

32.1 INTRODUCTION

Development of the System Performance Specification (SPS) typically represents only a small
portion of a large, complex system’s hierarchy of requirements. The challenge for SEs is: How do
we establish the lower level specifications that enable system developers to ultimately create PART
level designs?

This chapter introduces the requirements derivation, allocation, flow down, and traceability
practices that enable us to create the specification-based hierarchy of system requirements. Our dis-
cussions delineate the terms requirements derivation, allocation, and flow down. We explore how
requirements are derived, identify a methodology for deriving requirements, and how to apply the
methodology.

What You Should Learn from This Chapter

1. What is requirements derivation?

2. How do you derive requirements?

3. What is requirements allocation?

4. How do you allocate requirements?

5. How do you flow down requirements?

6. How do you trace requirements? To where?

Definitions of Key Terms

• Leaf Requirement The lowest level derived requirement for a specified capability.

• Requirements Allocation The act of assigning accountability for implementation of a
requirement to at least one or more lower level contributing system elements—such as
EQUIPMENT, PERSONNEL, and FACILITIES—or embedded items within those elements.

• Requirements Derivation The act of decomposing an abstract parent requirement into
lower level objective, performance-based sibling actions. Collective accomplishment of the
set of derived “sibling” actions constitutes satisfactory accomplishment of the “parent”
requirement.

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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• Requirements Flow Down The act of transferring accountability for implementation of a
requirement or portion thereof to a lower system level of abstraction—such as SYSTEM to
PRODUCT or PRODUCT to SUBSYSTEM.

• Requirements Testing The act of evaluating the lineage, content, and quality of a require-
ment statement relative to a pre-defined set of requirements development criteria. The
purpose is to determine if a requirement is ambiguous, testable, measurable, verifiable, and
traceable.

• Requirements Traceability The establishment of bottom-up, multi-level linkages between
lower level specification requirements back to one or more source or originating
requirements.

• Requirements Verification The act of proving by verification methods such as inspection,
analysis, demonstration, or test that a logical or physical item clearly complies with allocated
capability and performance requirements documented in its performance or item develop-
ment specification, as applicable. Requirements verification occurs throughout the System
Procurement Phase and System Development Phase of the system/product life cycle.

• Requirements Validation An activity performed by the User or Acquirer to ensure that the
stated requirements completely, accurately, and precisely address the RIGHT problem space,
specify and bound the User’s intended operational needs as delineated by the solution space.

32.2 UNDERSTANDING HOW REQUIREMENTS ARE DERIVED

The identification and derivation of requirements for various multi-level system items requires more
than simply documenting text statements. The process is a highly iterative and immersive envi-
ronment that must consider, reconcile, and harmonize a large number of constraints. Perhaps the
best way to describe the process is by depicting the environment using the graphic shown in Figure
32.1. The following discussion serves as an overview for the Requirements Derivation Process, our
next topic, symbolized at the top center of the chart.

Requirements Derivation via the System Engineering Process

The focal point for requirements identification and derivation is the SE Process Model as symbol-
ized at the center of the chart. As the SE Process Model is applied to each level of abstraction and
entity, requirements are allocated and flowed down from higher level specifications to lower level
item development specifications (IDS). As the multi-level SYSTEM solution evolves, requirements
are allocated and flowed down via lower level item development specifications.

You should also recall that the Decision Support Process supports the SE Process Model, as
illustrated in Figure 26.1. Technical decisions related to requirements derivation may require in-
depth analyses and trade studies to be performed. In turn, completion of the decision support analy-
ses and trade studies may require development of prototypes, models, and simulations to provide
data to support informed decision making.

Relationships and Interfaces with Other Processes

The Requirements Derivation Process, symbolized at the top center of Figure 32.1, is actually 
part of the Develop Requirements Domain Solution within the SE Process Model. The  Require-
ments Derivation Process, which is more than simply a set of sequential decision steps, as 
noted by the “clouds”, is characterized by highly iterative interfaces with the following SE Process
activities:

32.2 Understanding How Requirements Are Derived 359
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• Understand the Entity’s Problem and Solution Spaces.

• Develop the Entity’s Operational Domain Solution.

• Develop the Entity’s Behavioral Domain Solution.

• Develop the Entity’s Domain Solution.

The Understand Item Problem and Solution Spaces activity demands that requirements developers
thoroughly understand and appreciate:

1. HOW the SYSTEM or item, for which requirements are being developed, is intended to fill
a given solution space.

2. HOW that solution space relates to a higher level problem space.

This brings us to HOW the Requirements Derivation Process “fits” within this environment. Thus,
SEs must employ mission analysis methods and techniques to understand the context, sequencing,
and dependencies of the solution space within the problem space.

Reconciling WHAT the Customer WANTS, NEEDS, 
Can AFFORD, and WILLING to PAY

The flow down of requirements from higher-level specifications expresses WHAT the Acquirer or
higher level System Developer teams WANT. The Requirements Derivation Process must also rec-
oncile WHAT the User (role) WANTs versus WHAT they NEED versus WHAT they can AFFORD
versus WHAT they are WILLING to PAY as illustrated in Figure 32.2.

Finally, within this same context, understand the system entity’s solution space in terms of
WHAT is required.
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• How does the User intend to use the system entity?

• How do we bound the system entity’s operational effectiveness, utility, and suitability rela-
tive to User’s WANTS, NEEDS, can AFFORD, and WILLINGNESS to PAY?

Let’s explore this further.

Understanding Each Requirement’s Intent and Meaning

As higher level specification requirements are allocated and flowed down to the system entities,
SEs must analyze each requirement to understand its relationship and contribution to bounding the
system entity’s solution space. Each requirement, by definition, identifies, specifies, and bounds a
system item capability and its level of performance. The analysis must answer questions such as:

1. WHAT outcomes must be achieved to satisfy this requirement?

2. WHEN is the capability to be provided to achieve the desired outcome?

3. HOW WELL must each required capability be performed?

4. Under WHAT scenarios and conditions should each capability be performed?

5. WHAT is the relationship of this capability to others?

The answers to these thought provoking questions must evolve harmoniously through preliminary
graphical and text descriptions such as the item concept of operations (ConOps), item modes and
states, item behavioral/logical solution, and item physical solution. These descriptions enable SEs
deriving the requirements to gain multi-perspective views that scope of the domain and context of
the requirement.

Concluding Point

As we will see, deriving requirements statements is just one portion of the process. The other portion
is developing requirements statements for capabilities and levels of performance that can be:

1. Easily communicated and understood by the implementers.

2. Traced back to higher level source requirements.

3. Physically verified.
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Thus, pre-defined fitness-for-use requirement evaluation criteria must be established to ensure a
level of quality as well as maintain integrity of the requirements traceability. Given that require-
ments derivation is a chain of decisions, each dependent on the integrity and quality of its parent
requirement’s derivation, requirements traceability is paramount for ensuring system integrity.

Based on this fundamental understanding of the requirements derivation environment, let’s
begin our discussion of the requirements derivation methodology.

32.3 REQUIREMENTS DERIVATION METHODOLOGY

The derivation of requirements requires a methodology that can be easily communicated and pro-
duces repeatable, predictable results. To facilitate an understanding of the need for the methodol-
ogy, let’s first understand the mindsets and environment surrounding the process.

Derivation Paradigms

Requirements derivation, as an abstract label, falls into the category of topics of every day vocab-
ularies. Yet, few engineers actually understand WHAT is required to derive the requirements.
Objective evidence of this point is illustrated in specifications based on multi-level Wiley & CW
feature-based specifications.

The problem is that this label DOES NOT educate newcomers without some form of under-
standing its origin. Ironically, many people learn to flaunt the buzzword to impress their peers with
their SE vocabulary without ever understanding WHAT the label means.

In SE, requirements derivation refers to elaborating an abstract parent requirement statement
into a set of lower level, objective, performance-oriented sibling requirements in which collective
accomplishment constitutes satisfaction of the parent requirement.

The Requirements Derivation Methodology

One approach to requirement derivation focuses on a line of investigative questions tempered by
seasoned experience and observations. The purpose of these questions is to identify key elements
that will be used as a methodology for deriving requirements. Read, understand, tailor, and apply
this methodology accordingly to your specific business needs and applications. The steps of this
methodology include:

Step 1: Analyze a requirement (1).

Step 2: Identify outcomes (2)—behaviors, products, by-products, and services.

Step 3: Derive capabilities, behavioral responses, and performance from outcomes (3).

Step 4: Identify and bound capability operating scenarios and conditions (4).

Step 5: Bound capability levels of performance (5).

Step 6: State the requirement (6).

Step 7: Identify the verification method(s) for the requirement (7).

Step 8: Validate the requirement (8).

Step 9: Proceed to the next requirement (10).

Figure 32.3 provides a graphical illustration of these steps.
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32.4 APPLYING THE REQUIREMENTS 
DERIVATION METHODOLOGY

After reading through the methodology, you might ask: How can we apply the requirements deri-
vation methodology to develop a specification that may contain hundreds of requirements? The
answer resides in seasoned SE experience.

Most seasoned SEs imprint a methodology such as this in their minds. Then, when called upon
to develop a specification, their subconscious thought processes automatically cycle through this
methodology. The more experience you have, the more proficient you become in applying the
methodology.

User Interface Requirements Derivation

The requirements derivation methodology applies to most requirements situations. There are some
instances, however, that pose challenging questions when deriving User interface requirements.
When addressing the SYSTEM level mission requirements, we characteristically use requirements
phrases such as “. . . user friendly . . . intuitively obvious . . . effective training . . . realistically rep-
resentative of the real world . . . easy to maintain . . . aesthetically pleasing”.

As humans, engineers have both a case of the smarts and the uncertainties regarding these
terms. We generally have a “gut instinct,” through our own personal experiences and frustrations,
as to WHAT the specification writer is attempting to communicate. Conversely, we also have uncer-
tainty as to WHAT this term or phrases requires. HOW do we verify a SYSTEM’s user friendli-
ness, intuitively obvious interactions, effective training, and the like? There are ways of dealing
with these problems.

Generally, engineers ask two questions regarding developing subjective requirements:

1. Is it okay to include subjective requirements statements in the specification?

2. If we leave the statement in, how do we verify SYSTEM compliance?
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The answer to the first question, depending on the situation, is generally a qualified yes. The answer
to the second question requires statement of subordinate requirements that explicitly state WHAT
user friendliness, intuitively obvious, and effective training, for example, mean to the User. Then,
structure the parent requirement statement to indicate compliance with all of the sibling require-
ments constitutes accomplishment of the parent requirement.

This may seem a bit surprising but the world is far from perfect. Although we like to espouse
beliefs that we only write objective requirements, there are times when subjective requirements,
when properly stated and clarified, are effective in communicating WHAT the User desires.
Remember, one of the key objectives of the System Performance Specification (SPS) is to com-
municate requirements in a language that is easily understood by all stakeholders—the User, the
Acquirer, and the System Developer. Lower level specifications written for an internal system devel-
opment team—the Integrated Product Team (IPT)—are a different matter and have a different set
of stakeholders.

Ironically, explicit statements of objective requirements in language that is unfamiliar or mis-
understood by stakeholders may be worse that having subjective requirements. If the Acquirer and
Users have “warm, fuzzy feelings” about user friendly phrases in specifications, for example, this
may be acceptable as long as there is a consensus by ALL stakeholders that compliance with sup-
porting sibling requirements constitutes the basis for compliance with the subjective requirement.
There must be qualifying and clarifying requirements that explicitly state HOW the stakeholders
will know WHEN user friendliness has been achieved to the satisfaction of the Acquirer and User.

Visual Configuration Requirements

When developing specifications, there may be some requirements that are best depicted graphically
rather than by using text. Consider the following examples:

EXAMPLE 32.1

Visual display layouts, panel layouts, safety icons, graphics, and graphical plots overcome the difficulty of
attempting to describe a graphic image in words that are open to creating false impressions and are open to
interpretation.

The reality is that attempting to describe displays and panel layouts using text language is often imprac-
tical and produces ambiguous results. A solution may be to simply specify that the display, panel layouts, and
other layouts match or use Figure XX as a guide. Then, insert the graphic as Figure XX in the specification.

The preferred approach to this type of problem is through a performance specification that uniquely
bounds human engineering requirements for display, panel, safety, and other layouts. This approach
leaves many decisions “open” to collaborative interpretation by the System Developer. The fact is
that Users either have some idea concerning WHAT they WANT or expect the System Developer
to possess the expertise in ergonomic design to offer options from which the user can decide.

The best way to bring a convergence and consensus of the minds is to simply develop “rapid
prototypes”—such as actual displays, viewgraphs and so forth—using conventional presentation
software tools for the User to evaluate, validate, and offer recommendations. This is a classic case
of spiral development whereby the requirements may be undefined, and numerous iterations are
required to “get the requirements right.” The product of the exercise is a set of graphics that capture
the consensus of the User desires within the specification.

Referral For more information about spiral development, refer to Chapter 27 on System Devel-
opment Models practices.
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Performance Characteristics Requirements

The development of systems often requires extensive engineering analysis data and derived from
reference models, experimentation, and data collection.

EXAMPLE 32.2

Examples include performance characteristics of propulsion systems and behavior of materials.

The problem is HOW do you communicate performance characteristics in a language-based spec-
ification? One solution resides in developing language-based specification requirements that refer-
ence graphical plots and tables that characterize data or a performance envelope.

A Word of Caution! If you specify a capability that has a behavioral response represented by
a linear or nonlinear graphical plot over a range of values, you may be expected to verify the
system response at each point along the line for the respective inputs. Therefore, when you include
such as plot in a specification, provide only the specific data points along the curve that are to be
formally verified, such as end and middle points.

Final Thoughts

Requirements derivation focuses on decomposing a higher level objective or capability into lower
level supporting capabilities that can be translated into design requirements. On the surface this
appears to be a mundane process in which each requirement leads to the next. As you derive lower
level requirements closer to the ASSEMBLY/CSC level, there is another method you can employ
to ensure that all aspects of a capability are derived.

You should recall our discussion of Chapter 22 on the Anatomy of a System Capability. Figure
22.1 illustrated the basic construct for a generic capability. The point is that you should consider
using this figure to facilitate some of the deliberations of requirements derivation, especially at
lower levels such as development specification levels for SUBSYSTEMS or lower, as appropriate.

32.5 REQUIREMENTS ALLOCATION, FLOW DOWN, 
AND TRACEABILITY

The cornerstone for developing specification requirements resides in the integrity of the require-
ments allocation, flow down, and traceability.

Requirement Allocation and Flow Down

Requirements allocation, flow down, and traceability can be illustrated by a simple construct such
as the one shown in Figure 32.4. For this illustration, let’s assume that the SUBSYSTEM A Devel-
opment Specification includes use case based capability requirement A_11. The requirement spec-
ifies and bounds a capability to input, process, and display data. SEs perform a use case analysis
and construct a use case thread that characterizes HOW this capability can be accomplished. This
way they manage to obtain the required performance-based outcome. Based on the analysis, they
translate each of the use case steps into Capability Requirements, A_111, A_112, and A_113.

This illustration provides insights for deriving capability requirements within a specification.
Now, suppose that we have a SYSTEM level requirement that must be implemented ACROSS
several SUBSYSTEMs, each with its own development specification.

32.5 Requirements Allocation, Flow Down, and Traceability 365
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Author’s Note 32.1 As you allocate and flow down requirements observe a basic WHY–HOW
construct. From any requirement position within the hierarchy between the top and bottom, moving
upward within the hierarchy represents WHY the requirement exists. Moving downward elaborates
HOW the requirement is accomplished.

Requirements Derivation, Allocations, and Flow Down Across
Entity Boundaries

When you allocate and flow down requirements across entity specification boundaries. The process
becomes more challenging, as illustrated in Figure 32.5. SEs, as facilitators of the requirements
allocation and flow down process, must ensure that the use case thread is traceable across ALL
applicable specifications via their respective requirements.

Suppose that we have a SYSTEM level capability requirement, SYS_11. The SEIT analyzes
the requirement, performs a use case analysis, and derives sibling requirements A_11 and B_11.

Author’s Note 32.2 At this point, the SEIT has not allocated requirements A_11 and B_11 to
SUBSYSTEMs A and B. We designate each for now as A_11 and B_11 to delineate the uniqueness
of each requirement.

Use case analysis reveals that Requirements A_11 and B_11 require further decomposition. So,
without becoming immersed into whether requirement A_11 should be allocated to SUBSYSTEM
A or B, SEs construct a use case thread. Based on that analysis, SEs derive:

• Requirements A_111 and A_112 from A_11.

• Requirements B_111, B_112, and B_113 from B_11.

Subsequently these requirements are allocated to SUBSYSTEMs A and B and flowed down to their
respective development specifications.

So, in terms of what the SYSTEM is expected to accomplish, what does this mean? It means:
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• If you want to accomplish the performance-based outcome specified by SYSTEM Require-
ment SYS_11, SUBSYSTEM A must accomplish Requirement A_11 and provide the result
(outcome) to SUBSYSTEM B, which must accomplish requirement B_11 and produce the
final result (outcome).

How do SUBSYSTEMs A and B accomplish requirements A_11 and B_11 respectively?

• SUBSYSTEM A accomplishes requirement A_11 by performing requirements A_111 and
A_112.

• SUBSYSTEM B accomplishes requirement B_11 by performing requirements B_111,
B_112, and B_113.

Consider the following example:

EXAMPLE 32.3

Suppose that we have a simple system that has a remote sensor (SUBSYSTEM A). The sensor collects input
data and transmits it to a central site as illustrated in Figure 32.5.

• The central site (SUBSYSTEM B) receives and processes data to produce a report. So, the Remote
Sensor Development Specification must state that it: 1) collects data (A_111) and 2) transmits data to
the central site (A_112).

• The Central Site Development Specification includes the remainder of the requirements use case thread
to: 1) receive data (B_111), 2) process data (B_112), and 3) report data (B_113).

32.6 REQUIREMENTS TRACEABILITY

When requirements are derived, the allocation and flow down process should be verified via bottom-
up requirements traceability linkages to higher level requirements and ultimately to the source or
originating requirements.
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Individual, Contract, and Organizational 
Requirements Traceability

Anecdotal evidence suggests that engineers and organizations tend to learn and mature in require-
ments traceability via a three-stage process. The degree of evolution depends on the size, com-
plexity, and risk of SYSTEMs being developed and an organizational and individual desire and
willingness to improve performance.

Stage 1: There is general recognition of the need to organize and structure requirements using a
standard specification outline. Over a period of time, the individual and organizational
lessons learned, such as missing, misplaced, and conflicting requirements, indicate 
that a new level of requirements implementation capability is required. This leads to
Stage 2.

Stage 2: The individual or organization recognizes that multi-level system requirements involve
vertical requirements traceability via lineage with high-level requirements. Again, over
time and many painful experiences in implementing specification requirements, there is
a recognition and appreciation that vertical requirements traceability is one-dimensional.
This leads to Stage 3.

Stage 3: The individual and organization recognize the need for two-dimensional requirements
traceability, VERTICALLY through the requirements hierarchy to the source or origi-
nating requirements and HORIZONTALLY via the use case thread traceability.

What Happens If You Fail to Do This?

You may ask, “Why bother to do all of this consistency thread checking?” If we limit the require-
ments derivation, allocation, and flow down to only vertical linkages from Capability Requirement
B_11 to Capability Requirement B_111, B_112, and B_113:

1. What will the text of language of each of these requirements state?

2. Will there be any objective evidence of WHAT outcome is expected when capability
requirement B_111 is implemented, and WHAT is the relationship of this outcome to capa-
bility requirements A_112 and B_112?

3. Will capability requirement A_112 indicate WHAT it expects from capability requirement
A_111, and WHAT transformational processing is required to produce an output acceptable
for requirement B_111?

Generally, no. Limiting requirements allocation and flow down to strictly VERTICAL entity rela-
tionships DOES NOT guarantee that teams implementing requirements B_111 through B_113 will:

1. Communicate with each other.

2. If they do communicate, incorporate the results into design documentation.

Unfortunately, many SEs do not discover these discontinuities in system use case threads until the
system is in integration and test when the cost to correct is prohibitively expensive.

32.7 GUIDING PRINCIPLES

In summary, our discussions in this chapter provide the basis to establish the several key princi-
ples that govern practices requirement derivation, flow down, allocation, and traceability.



Principle 32.1 When deriving SYSTEM/entity requirements, understand:

1. What the User NEEDs.

2. What the User WANTs.

3. What the User can AFFORD.

4. What the User is WILLING to pay.

Principle 32.2 Specification requirements allocations ensure vertical requirements traceability;
use case threads integrate those allocations into horizontal workflows that produce SYSTEM level
performance-based outcomes.

32.8 SUMMARY

In our discussion of the requirements derivation, allocation, flow down, and traceability practices, we
described a methodology for deriving multi-level specification requirements. We considered the importance
of vertical requirements traceability based on requirements allocations and flow down. We showed also the
importance of horizontal requirements traceability based on use case continuity thread checks.

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter General
Exercises or a new system, apply your knowledge derived from this chapter’s topical discussions.

(a) Using the system architecture previously created, identify PRODUCTs or SUBYSTEMs that will
require development specifications.

(b) Create a SYSTEM level, use case based requirement concerning system operation.

(c) Derive sibling requirements.

(d) Allocate and flow down the requirements to PRODUCTS or SUBSYSTEMs.

(e) Perform a use case continuity I/O thread check between the respective PRODUCT or SUBSYSTEM
requirements.

ORGANIZATIONAL CENTRIC EXERCISES

1. Research your organization’s command media. What guidance and direction is provided for deriving, allo-
cating, flowing down, and tracing requirements?

2. Contact a contract program within your organization and interview the Technical Director, Project Engi-
neer, and Lead SEs to answer the following questions:

(a) How were requirements derived?

(b) Did the contract mandate traceability of requirements?

(c) Did the program use a requirements management tool to enable traceability between specifications? If
not, how were requirements traced?

(d) What analysis tools were used to reconcile and balance performance allocations?

(e) What did personnel learn from the exercise?

Organizational Centric Exercises 369



Chapter 33

Requirements Statement
Development

33.1 INTRODUCTION

Once a solution space is identified, the challenge for SEs is being able to accurately and precisely
bound and specify it via the System Performance Specification (SPS) or entity development spec-
ification. Our discussion on specification development practices provided an approach for identi-
fying types of specification requirements.

This chapter focuses on the formulation and development of those requirements statements.
Our discussions introduce and explore various methods for preparing requirements statements. We
identify a syntactic structure to facilitate definition of a requirement. The discussions emphasize
the need to define the substantive content of a requirement before focusing on the grammar. To
facilitate preparation of requirements, we provide requirements development guidelines and discuss
how to “test” a requirement.

We conclude the chapter with a discussion of one of the challenges of specification 
requirements development: knowing WHEN a set of requirements is necessary and sufficient. 
We explore the need to minimize the quantity of requirements and avoid overspecification and
underspecification.

What You Should Learn from This Chapter

1. What are the attributes of a “good” requirement?

2. When is a “requirement” officially recognized as a requirement?

3. What are some suggestions for preparing “good” requirements?

4. What is a common pitfall in preparing requirements statements?

5. What methodology should one use to create a requirements statement?

6. What criteria do you use to “test” a requirement?

7. How do you identify a requirement’s verification method(s)?

8. What is a Requirements Verification Matrix (RVM)?

9. How do you develop an RVM?

10. What is requirements minimization?

11. How do you minimize requirements?

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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Definition of Key Term

• Specification Language “A language, often a machine-processible combination of natural
and formal language, used to express the requirements, design, behavior, or other charac-
teristics of a system or component. For example, a design language or requirements speci-
fication language.” (Source: IEEE 610.12-1990)

33.2 UNDERSTANDING THE STRUCTURE 
OF GOOD REQUIREMENTS

People often say that a specification has a good set of requirements. The subjective usage of the
term “good” makes SEs cringe. “Good” for WHOM relative to WHAT “fitness-for-use” stan-
dard(s)? The User? The System Developer? If good requirements are relative to the User, WHAT
makes a “bad requirement bad?” Does “bad” mean poorly stated, open to interpretation, unachiev-
able, immeasurable, unverifiable, and untestable?

What these people are attempting to convey is: GOOD requirement statements are well defined,
explicit, and can be implemented with low risk of misinterpretation. They are well defined and
explicitly stated in a clear and concise manner that results in the same interpretation by two or more
independent readers with comparable disciplinary skills.

Understanding the Contents of a Capability Requirement

A well-defined requirement should consist of several key characteristics, depending on application.
It must explicitly express the following, as applicable:

1. The use case based operational capability to the performed.

2. The source of the action.

3. WHAT scenario or conditions for performing the action.

4. WHAT is expected as a performance-based outcome (i.e., WHAT products or services are
to be produced).

5. WHAT by-products are to be AVOIDED.

6. WHEN the capability or action is to be initiated.

7. WHO is the expected recipient(s) of the action.

8. WHAT are the expected result(s) and outcome(s).

9. HOW is the outcome to be measured and verified.

Let’s examine each of these characteristics further.

Use Case Based Operational Capability. Requirements statements should originate with use
case based operational capabilities. Lower level requirements should elaborate specific action-
based outcomes that contribute to achievement of the use case as well as any probable scenarios
anticipated.

Source of the Action. The source of the action for a capability requirement is the noun-based
object—person, place, or thing—that triggered or initiated the capability.

Operating Environment Conditions and Scenarios. Each capability requirement must be
bounded by prescribed OPERATING ENVIRONMENT scenarios that represent the threshold or
triggering events or cues that initiate or stimulate a capability’s behavioral response.
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Outcome Produced by the Capability Action. When a capability is initiated, an action must
be performed. The outcome attribute of the requirement identifies the behavioral actions—meaning
the products or services that result from the capability.

Product and/or Service Outcome. The subject of a requirement is a capability that represents
an expected response action to transform and/or process information, energy, or data, into (produce)
an outcome, product/service, or behavioral response.

Action Response Time. Time constraints between the triggering stimulus—cue or event—and
the required capability response from the system. The question is: WHAT period of performance is
permissible between the triggering event and the output response?

Recipient(s) of the Action. The intended recipient(s) of the capability’s outcome(s) must be
identified, recommended and bounded including their capability to receive the action.

Format the Action Response. The format of the action response to cooperative, benign, or
hostile interactions must be compatible, interoperable, or commensurate with the rules of engage-
ment. Consider the following example:

EXAMPLE 33.1

When two computers communicate with another, both must implement an interface protocol that includes
messages formatted in accordance with an interface control document (ICD), interface requirements specifi-
cation, or industry standard.

EXAMPLE 33.2

If an adversary commits a hostile action, the defender may respond with an action-based response commen-
surate with rules of engagement (i.e., allowable actions and measured responses).

Expected Outcome and Results of the Action. Producing a capability response is merely
a means to an end. Therefore, the requirement must also define WHAT the expected outcome or
action is to be commensurate with the behavioral response—a measured level of performance such
as magnitude or priority.

Requirement Verification. Every specified requirement must be linked to one or more Section
4.0 verification requirements—inspection, analysis, demonstration, and test.

33.3 WHEN DOES A REQUIREMENT BECOME OFFICIAL?

Our previous discussions focused on the content of well-defined requirements. A key question com-
monly asked is: WHEN is a requirement recognized as a requirement? There are two stages of
answers to the question: 1) unofficial and 2) official.

Simply identifying this information in a statement is only a prerequisite to official stakeholder
recognition and acceptance. This first stage merely establishes the statement as RELEVANT and
WORTHY of consideration as a requirement. That takes us to the next stage, official approval and
subsequent release.

Many SEs erroneously believe that simply preparing a requirement statement makes the
requirement complete. Preparing a requirement statement DOES NOT mean that the statement will

372 Chapter 33 Requirements Statement Development



pass the requirement completeness criteria discussed later in this chapter. WHY is it necessary to
test completeness? There are two key factors to consider.

First, identifying the verification method(s) forces the requirement developer to THINK about
HOW the requirement can be verified. If you can write a one- or two-sentence verification test
plan—for example, compare A to B—you MAY have a legitimate basis for the requirement. Con-
versely, if you have difficulty identifying a test plan, maybe you should consider rewriting and
rescoping the requirement statement.

Author’s Note 33.1 Engineers tend to defer identification of the verification method(s) up to
the start of the system integration, test, and evaluation (SITE) phase. This is not adequate! You
must identify the verification methods early as part of the requirements preparation process, not
only for cost estimates but also to validate the reasonableness of the requirement.

Second, identifying the verification method prematurely may force an early revision to the
baselined specification. WHY? Since most systems have multiple levels of specifications, analysis
must be performed one or more levels below the current level to better understand HOW the higher
level requirement can be verified.

Regarding the second point, an approach may be to identify a preliminary set of verification
methods when the requirements are derived. This will provide an initial completeness check on the
requirement. Then, continue the analysis to lower levels. Prior to the need to baseline the higher
level requirements, review and reconcile the preliminary verification methods at the higher level.

While the potential ramifications for premature baselining are known—such as increased costs
due to stability of decisions—human procrastination can pose an even greater risk. Whether inten-
tional or not, program schedules often become a convenient excuse for SEs to shift identification of
verification methods to the back of the priority list.

People, in general, tend to AVOID spending time on an effort unless they recognize its impor-
tance to technical management or are directed to do so. Then, the verification methods are hap-
hazardly thrown together just prior to the System Integration, Test, and Evaluation (SITE) phase.
The bottom line is: If System Developers do not identify specification verification methods up front,
you will suffer the consequences during SITE.

33.4 PREPARING THE REQUIREMENT STATEMENT

Specification developers often become consumed with attempting to state too many requirements
at once. When you develop requirements, there is actually a three-step process that you should
follow:

Step 1: Focus on the capability that is to be communicated in the requirement and its supporting
attributes.

Step 2: Focus on the syntax of the primary contents of the requirement.

Step 3: Focus on the grammar.

Let’s elaborate on each of these points.

Step 1: Identify the Key Elements of the Requirement

Earlier in this chapter we identified key attributes that describe the content of most requirements
(source of the action, etc.). For each of these attributes, identify in short notation (verb–noun form)
WHAT the requirement attributes are to communicate. Consider the example shown in Table 33.1.
Here we describe the fundamentals of a SYSTEM level requirement related to a car design.

Notice that Table 33.1 focuses on WHAT must be accomplished; grammar comes later as illus-
trated in the example that follows.
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EXAMPLE 33.3

The vehicle shall have the capability to safely and comfortably transport a driver and four passengers on-
demand to a destination 200 miles away during all weather conditions.

Step 2: Develop the Draft Requirements Statement

Humans unintentionally overcomplicate the performance and development specification require-
ments process. The formulation and development of a requirements statements involves three
aspects: 1) content, 2) syntax, and 3) grammar. One of the most common problems in requirements
statement development is that people attempt to perform all three of these aspects simultaneously.
As a result, when you focus on syntax and grammar, you may lose focus on the content. One solu-
tion to this problem is to develop primitive requirements statements.

Create Primitive Requirements Statements. Primitive requirements statements focus on
the content of the requirement. The best way to develop primitives is to use a tabular approach 
such as the one illustrated in Table 33.2. Here, we assign a unique requirement ID—SPS-136—to

Table 33.1 Example requirements attributes definition approach for a car-driver system

Requirement Statement Attribute Requirement Contents

Required use case capability Transportation

Source of the action Vehicle

Expected outcome/results of the action Safe and comfortable travel to/from a planned destination

Operating environment constraints All weather conditions, -30°F to +130°F

Action response time On-demand; immediately available

Recipient(s) of the action Driver and four passengers

Format of the action Seated

Table 33.2 Table for identifying primitive requirements

Requirement Capability Relational Operators Boundary Constraints, Notes
ID to Be Tolerances, or

Provided Conditions

SPS-136 Capability 24 • Not to exceed • 50 pounds
• Less than or equal to • 68° Fahrenheit
• Greater than or equal to • 25° Celsius
• In accordance with (IAW) • 6 g’s
• Not exceed • 6 nautical miles (NM)
• And so forth • 25 Hertz (Hz)

• 10.000 volts dc +/- 0.010
volts dc

• Sea state 3
• 12 megabytes (Mb)
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Capability 24, which represents a specific use case. The remainder of the columns focus attention
on substantive content such as types of relational operators; boundary constraints, tolerances, or
conditions; and notes.

Notice how Table 33.2 focuses on the primary content of the requirement and AVOIDS becom-
ing mired in grammar. Once the elements of the requirements are established, the next step is to
translate the contents into a syntax statement.

Develop the Syntactical Statement Structure. Step 2 translates the primitive requirement
into a text phrase as illustrated in Table 33.3.

Step 3: Refine the Requirements Statement Grammar

The third step requires the syntactical statements in Table 33.3 to be transformed into a clear and
concise grammatical statements that are easily read and understood.

33.5 IDENTIFYING THE REQUIREMENT 
VERIFICATION METHOD

One of the key elements of specification development is establishing agreement between the
Acquirer and the System Developer as to HOW to prove that the specification Section 3.X Require-
ments have been satisfied. One of the greatest potential risks in system development is for the System
Developer to prepare or conduct acceptance tests for the Acquirer and both parties DISAGREE on
the method of verification. Disagreements at acceptance testing result in significant impacts on
System Developer contract costs, schedules, and Acquirer fielding and support costs schedules.

To preclude this scenario, specifications include a Section 4.0 Qualification Provisions section
that explicitly captures the Acquirer and System Developer agreement on verification methods. The
agreement is documented as a Requirements Verification Matrix (RVM).

Table 33.3 Examples of primitive requirements using the tabular approach

Requirement Capability to be Relational Boundary Constraints, Notes
ID Provided Operators Thresholds, Tolerances,

or Conditions

SYS_1 The SYSTEM shall Rated at • 110 vac +/- 10% Assuming
operate from an a TBD
external power load
source

SYS_123 The gross weight of the Not exceed • 50 pounds
SYSTEM shall . . . 

SYS_341 The SYSTEM shall Throughout a • -10°F to +90°F
operate . . . range of • +20% to +100% humidity

SYS_426 On receipt of a In accordance with • Regulation 126 Section 3.2.1
command from the
operator, the SYSTEM
shall produce reports
formatted

SYS_525 The SYSTEM shall Exceed • +10 amps dc
sense overload
conditions that . . . 
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Author’s Note 33.2 Remember, the terms Acquirer and System Developer are used in a “role-
based” context. These terms, as used above, identify the contract level roles and relationships. They
also apply in a similar context between SYSTEM and PRODUCT, PRODUCT and SUBSYSTEM
development teams; System Developer and Subcontractors, and so on. Why? As each team flows
down requirements to lower level item development specifications, the implementer of those require-
ments must demonstrate to their Acquirer (role)—the higher level team—that the requirements have
been satisfied.

Before we address the Requirements Verification Matrix (RVM), let’s address HOW verification
methods are selected.

Referral For more information about verification methods, refer to Chapter 53 System Verifica-
tion and Validation practices.

Verification Method Selection Process

In general, SEs have four basic verification methods available to demonstrate that a system, product,
or service meets a specific requirement. These methods include INSPECTION or EXAMINATION,
ANALYSIS, DEMONSTRATION, and TEST. A fifth method, SIMILARITY, is permitted by some
organizations.

Verification method selection requires insightful forethought. Why? First, verification decisions
range from simple visual inspections to highly complex tests that include analysis. This can be very
costly and consumes valuable schedule time. Second, common sense asks WHY you would want
to go to the trouble and expense of performing a TEST when a simple visual INSPECTION is 
sufficient.

So, how do SEs select a method? A time-cost driven methodology provides a basis for the ver-
ification method of decision making as illustrated in Figure 33.1.

Verify by 
Inspection?

Verify by 
Inspection?

Inspection
Sufficient?

Inspection
Sufficient?

Verify by 
Analysis?

Verify by 
Analysis?

Verify by 
Demo?

Verify by 
Demo?

Analysis 
Sufficient?

Analysis 
Sufficient?

Demo 
Sufficient

?

Demo 
Sufficient

?

Verify by 
Similarity?

Similarity 
Sufficient?

Yes

No

Yes

No

Yes

No

Yes

No

Select
Test 

Method

Select
Test 

Method

Yes

No

Yes

No

Yes

No

Yes

No

Notes
1. Similarity may or may not be allowable as a verification method.
2. “Sufficient” is defined as adequately verifying full compliance with a specification requirement. 

Select
INSPECTION Method 

Select
INSPECTION Method 

Select
ANALYSIS Method

Select
ANALYSIS Method

Select
DEMO Method

Select
DEMO Method

1

2

3

4

5

7

8

9

10

11

12 13

14

Iterate Decision Cycle for Each 
Requirement Until All 

Requirements Have at Least One or 
More Verification Methods

Final State

Initial 
State Increasing Verification Expense

Figure 33.1 Verification Method Selection Process



Verification by SIMILARITY. Some contracts or organizations permit verification by SIMI-
LARITY. In this case a previously verified design is permitted to be reused to develop a new system
or product, provided that the design’s performance data and quality records (CM, QA, etc.) remain
valid. This means:

1. No changes have been made to the design since its official verification.

2. No safety critical problems have been encountered in fielded units.

3. Design requirements of the new system or product do not exceed the reusable component’s
“As Verified” requirements.

One of the reasons many organizations discourage verification by SIMILARITY is that it requires
INSPECTION or EXAMINATION of records, which may no longer be available. The best
approach may be to verify the requirement by INSPECTION/EXAMINATION and show that the
reused design has not changed.

Verification by INSPECTION or EXAMINATION Decision. Verification by INSPECTION
requires a questioning exercise that has two potential outcomes:

• Is INSPECTION/EXAMINATION necessary to prove that a physical entity complies with
a stated specification requirement? If the answer is YES, select INSPECTION/EXAMINA-
TION as a verification method.

• Is the INSPECTION/EXAMINATION sufficient to prove that the requirement and its asso-
ciate level of performance have been successfully accomplished? If the answer is YES,
proceed to identification of verification methods for the next requirement. If not, proceed to
the verification by ANALYSIS decision.

Verification by ANALYSIS Decision. Verification by ANALYSIS requires a questioning exer-
cise that has two potential outcomes:

• Is ANALYSIS necessary to prove that a physical entity or data collected from its formal
testing prove that it complies with a stated specification requirement? If the answer is YES,
select ANALYSIS as a verification method.

• Is ANALYSIS sufficient to prove that the requirement and its associate level of performance
have been successfully accomplished? If the answer is YES, proceed to identification of ver-
ification methods for the next requirement. If not, proceed to the verification by DEMON-
STRATION decision.

Verification by DEMONSTRATION Decision. Verification by DEMONSTRATION requires
a questioning exercise that has two potential outcomes:

• Is DEMONSTRATION necessary to prove by formal observation that a physical entity pro-
duces repeatable and predictable outcome(s) without having to record formal measurements
to prove that it complies with a stated specification requirement? If the answer is YES, select
DEMONSTRATION as a verification method.

• Is DEMONSTRATION sufficient to prove that the requirement and its associate level of per-
formance have been successfully accomplished? If the answer is YES, proceed to identifi-
cation of verification methods for the next requirement. If not, proceed to the verification by
TEST decision.

Verification by TEST Decision. If any of the preceding questions indicate that a formal test is
required to collect data to verify that the physical entity produces repeatable and predictable
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outcome(s) to prove that it complies with a stated specification requirement, then TEST must be
selected as a verification method for a specific requirement.

Given this understanding of HOW verification methods are selected, let’s proceed with HOW
the methods are documented via the RVM.

33.6 WILEY WHAT IS A REQUIREMENTS VERIFICATION
MATRIX (RVM)?

A Requirements Verification Matrix (RVM) is a tabular listing that maps each Section 3.X require-
ment to specific Section 4.X Verification Methods—namely inspection, analysis, demonstration, and
test.

RVM Example. To illustrate the structure of a RVM, let’s use a hypothetical example. Assume
that requirement 3.1.1 for Capability A states: The system shall perform Capability A, which consists
of the capabilities specified in the subparagraphs below:

• 3.1.1.1 Capability A1 . . .

• 3.1.1.2 Capability A2 . . .

• 3.1.1.3 Capability A3 . . .

• 3.1.1.4 Capability A4 . . .

Table 33.4 gives an example of an RTM entry for this requirement.
As illustrated in the table, Capability A is verified by INSPECTION that three sibling capa-

bility requirements—3.1.1.1, 3.1.1.2, 3.1.1.3, and 3.1.1.4 have been verified. Each of these sibling
capability requirements is verified as follows:

• 3.1.1.1 Capability A1 is verified using the INSPECTION method.

• 3.1.1.2 Capability A2 is verified using the INSPECTION and ANALYSIS methods.

• 3.1.1.3 Capability A3 is verified using the DEMONSTRATION method.

• 3.1.1.4 Capability A4 is verified using the INSPECTION and TEST methods.

Since Capability A’s requirement is satisfied by verification of its sibling requirements, Capability
A’s verification methods are INSPECTION that the sibling requirements have been verified.

Most SEs develop the RVM structure and progress down the list one item at a time by check-
ing the verification methods boxes. You simply cannot do this for every system application. The
identification of requirements verification methods is highly iterative and must be reconciled
between multiple levels or chains of requirements.

Table 33.4 Specification Section 4.0 Requirements Traceability Matrix (RTM) example

Specification Requirement Verification Methods
Paragraph

Inspection Analysis Demonstration Test

3.1.1 Capability A X

3.1.1.1 Capability A1 X

3.1.1.2 Capability A2 X X

3.1.1.3 Capability A3 X

3.1.1.4 Capability A4 X X
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Requirements Management Tools. Traditional specifications include a separate table for
Section 4.0 Qualification Provisions. The difficulty with this approach is that the specification
developer and readers must flip back and forth between Section 3.0 requirements and Section 4.0
verification methods. From an SE perspective, this method is very inefficient.

The best approach is to use a requirements management tool, preferably one that is based on
an object-oriented, relational database. The tool enables the verification methods to be stated in a
spreadsheet display as additional columns of the requirement. Table 33.5 illustrates this approach.
Some tools simplify this approach and use “pick lists” for each cell in one column instead of five
columns.

In the example above, note the following:

• Each requirement has its own unique identifier such as SYS_136 or 4692xxx.

• The full text of each requirement is stated.

• Each requirement can be easily related to its verification method(s).

Table 33.5 represents a view that can be obtained from an object-oriented, relational database tool.
If you have a small technical program and do not have a tool of this type, you could use a spread-
sheet to accomplish similar results.

A Word about Requirements Management Tools. Traditionally, Acquirers prefer word
processor-based documents. Why? They are easier to control as part of the contract and require skills
and software applications most stakeholders possess. The SE problem is, however, HOW do you link
requirements in a word processor document to another specification, engineering drawing, graphic,
and so on?

With today’s Web-based technologies, you will say this can be done easily with document
links. However, conventional document links do not allow you to display or printout the “thread”
of text statements that are traceable across documents. Requirements management tools provide
this unique capability. You can live without a requirements management tool. However, the tool
saves hours when verifying requirements traceability. This is why RT tools provide an advantage

Table 33.5 Requirements management tool RVM report

Requirements Requirements Statement Method of Verification
ID

N/A Inspect Analysis Demo Test

SYS_136 3.1.1 Capability A X
The system shall perform (Capability
A), which consists of the capabilities
specified in the subparagraphs below:

SYS_137 3.1.1.1 Capability A1 X X
The system shall (Capability A1) . . .

SYS_138 3.1.1.2 Capability A2 X
The system shall (Capability A2) . . .

SYS_139 3.1.1.3 Capability A3 X
The system shall (Capability A3) . . .

SYS_140 3.1.1.4 Capability A4 X
The system shall (Capability A4) . . .
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and leverage your own ability and time. You can convince yourself to believe you cannot afford
the tool. However, the capabilities and productivity of your personnel and organization will pay
dividends, especially for large, complex system development efforts.

Verification Level. We like to think that simply identifying verification methods for a
requirement is sufficient. However, some requirements may not be verifiable at every entity or CI
level. Consider the following example:

EXAMPLE 33.4

You are assigned a task to create SUBSYSTEM A Development Specification. Ideally, you would like to verify
SUBSYSTEM A as a work product. There may be cases whereby it is impractical to complete verification of
SUBSYSTEM A as a work product until it is integrated into the higher level SYSTEM. For example, it may
be impractical to stimulate one of SUBSYSTEM A’s interfaces during verification tests at the SUBSYSTEM
level. As a result, you may want to indicate in the RVM, for internal record keeping, the level of abstrac-
tion at which verification of a specific requirement will be accomplished. Table 33.6 provides a tabular 
illustration.

As illustrated in Table 33.6, requirement 3.1.1.1 will be verified at the SUBSYSTEM level. Require-
ment 3.1.1.4, which requires SUBSYSTEM A to be integrated with SUBSYSTEM B, will be ver-
ified at the SYSTEM level. Thus, the verification of requirement 3.1.1 cannot be completed until
the 3.1.1.4 TEST method is performed at SYSTEM level integration.

Table 33.6 RVM Example illustrating Verification Level for Each Requirement

Requirements Requirement Verification Verification Methods
ID Statement Level

N/A Inspect Analysis Demo Test

SYS_136 3.1.1 Capability A See subparagraphs
The system shall below
perform (Capability
A) Capability A,
which consists of the
capabilities specified
in the subparagraphs
below:

SYS_137 3.1.1.1 Capability SUBSYSTEM X X
A1 The system shall
provide (Capability
A1) . . .

� � �

SYS_140 3.1.1.4 Capability A4 SYSTEM X
The system shall
provide (Capability
A4) . . .



33.7 REQUIREMENTS DEVELOPMENT GUIDELINES

Requirements can be characterized a range of attributes. These attributes include legal, technical,
cost, priority, and schedule considerations. Let’s examine each of these briefly.

Suggestion 1: Title Each Requirement Statement

Requirements tend to lose their identities as statements within a larger document. This is particu-
larly troublesome when the need arises to rapidly search for an instance of a requirement. Make it
easy for reviewers and users of specifications to easily locate requirements. Give each requirement
a “bumper sticker” title. This provides a mechanism for capture in the specification’s table of con-
tents and makes identification easier.

Suggestion 2: Use the Word “Shall”

Requirements, when issued as part of a contract, are considered legally binding and sufficient for
procurement action when expressly stated with the word “shall.” Engineers have a REPUTATION
for expressing requirements with the words “will,” “should,” and “must.” Those terms are expres-
sions of intent, not a mandatory or required action. To facilitate specification readability, consider
boldfacing each instance of the word “shall” (e.g., shall).

Author’s Note 33.3 There is increasing evidence of less discipline in specification wording by
using words such as “will.” The general viewpoint is that the “context” of the statement of the
statement is what is important. For example, “. . . the system will perform the tasks specified below.
. . .” If you subscribe to this notion, it is critically important that you establish “up front” in the
specification HOW the term “will” is to be interpreted relative to being “mandatory.” Whatever
convention you and your organization adopt, you must be consistent throughout the specification.
The best practice is to use the word SHALL. In any case, ALWAYS seek the advice of your organi-
zation’s legal counselors before committing to a specification that contains ambiguous wording that
may be subject to legal interpretation.

Suggestion 3: References to Other Sections, 
Specifications, and Standards

Specification sections often reference other sections within the document. Typically, the specifica-
tion will state, “Refer to Section 3.4.2.6.” If you do this, consider including the title of the section
with the sectional reference. Why? The structures of specifications often change as topics are added
or deleted. When this occurs, the sections are renumbered. Thus, the original “Refer to Section
3.4.2.6.” may now reference an unrelated requirement topic. By noting the sectional title to the ref-
erence, the reviewer can easily recognize a conflict between the referencing and target sections.
The same applies to references to external standards and specifications.

Suggestion 4: References to External 
Specifications and Standards

When you reference external specifications and standards, include the title and document number.
Normally the title and document identification should be stated in Section 2.0 Referenced Docu-
ments. However, there may be instances of documents with similar titles that may be confusing. 
If this occurs, references as follows: “XYZ System Performance Specification (SPS) (Document
No. 123456).”
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Suggestion 6: Operational and Technical Capabilities and
Performance Characteristics

Operational and technical capabilities and characteristics requirements should explicitly describe
the required system capabilities and levels of performance. The DSMC Test and Evaluation Man-
agement Guide defines these terms as follows:

• Required Operational Characteristics “System parameters that are primary indicators of
the system’s capability to be employed to perform the required mission functions, and to be
supported.” (Source: DSMC T&E Mgt. Guide, Appendix B, DoD Glossary of Test Termi-
nology, p. B-17)

• Required Technical Characteristics “System parameters selected as primary indicators of
achievement of engineering goals. These need not be direct measures of, but should always
relate to the system’s capability to perform the required mission functions, and to be sup-
ported.” (Source: DSMC T&E Mgt. Guide, Appendix B, DoD Glossary of Test Terminol-
ogy, p. B-17)

Remember, OPERATIONAL and TECHNICAL characteristics should be measurable, achievable,
realistic, testable, and verifiable.

Suggestion 7: Avoid Paragraph-Based Text Requirements

Engineers default to traditional writing methods when preparing requirements statements. They
write requirements statements in paragraphs with theme sentences, compound statements, and lists.
When specifying systems, isolate requirements as singular testable requirements.

Paragraph-based declarative statements in specifications are acceptable for Section 1.0 Intro-
duction. The problem is System Developers must spend valuable time separating or parsing com-
pound requirements into SINGULAR requirements in Section 3.x. Do yourself and the System
Developer (contractor, subcontractor, etc.) a favor and generate system specifications with singu-
lar requirements statements. This saves valuable time that can be better spent on higher priority
tasks and creates a consistent format that promotes readability, understandability and verifiability.

Suggestion 8: Eliminate Compound Requirements Statements

When requirements statements specify compound requirements, allocation of the requirement
becomes confusing and verification becomes difficult. Why? If multiple requirements are specified
in a single requirements statement and they are allocated to different system entities, the challenge
is: HOW do you link which portion of a requirement statement to a specific target entity?

When the system must be verified, HOW can you check off a requirement as complete (i.e., ver-
ified) when portions remain to be verified due to missing equipment, and the like? The only alter-
native is to uniquely number each requirement within the statement. When it comes time to verify
the requirement statement, complete verification of all requirements embedded within the statement
is required to satisfy verification of the whole statement.

Suggestion 9: Eliminate the Word “ALL”

Specification writers are often consumed with the word “all.” Eliminate uses of the word “all” in
a specification! Appreciate the legal significance of stating that “. . . ALL instances of an XYZ will
be verified. . . .” Contemplate HOW large in scope the ALL universe is? Remember, ALL is one of
those limitless words, at least for practical purposes. As a specification writer, your mission is to
specify and bound the solution space as simply and as practical, not open it up for verifying every
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conceivable scenario or instance of an entity. ALL, in a limitless context, is boundless and is subject
to interpretation. Do yourself a favor and AVOID usage of ALL.

Suggestion 10: Eliminate the Term and Abbreviation “Etc.”

Et cetera is another word that we use constantly. Most engineers discover early in their careers
there will always be someone who “nit picks” about miniscule instances of science or a natural
occurrence and chastise the engineer for missing it. Thus, engineers learn to “cover all cases” by
using the term “etc.” Again, when you develop specifications, your mission is to specify and bound
the solution space. When you state, “As a minimum, the system shall consist of a, b, c, etc.,” the
Acquirer could say later, “Well, we also want a “d, e, and f.” You may reply we did not bid the
cost of including a “d, e, and f,” which may then bring a response “You agreed to the requirements
and “etc.” means we can request anything we want to.” Do yourself a favor and eliminate all
instances of etc. in specifications.

Suggestion 11: Avoid the Term “And/Or”

Specification writers often specify requirements via enumerated lists that include the term “and/or.”

EXAMPLE 33.5

For example, “. . . the system shall consist of capabilities: A, B, C, and/or D.”

Be explicit. Either the system consists of A, B, C, or D or it does not. If not, so state and bound
exactly WHAT the system is to contain. Remember, specifications must state exactly WHAT capa-
bilities are required at SYSTEM delivery and acceptance.

33.8 “TESTING” DERIVED REQUIREMENTS STATEMENTS

Many people are surprised to find that you can “test” requirements. Requirement testing takes the
form of technical compliance audits with organizational standards and conventions, such as coding
standards and graphical conventions. Modeling and simulation provides another method for testing
requirements. Execution of those models and simulations provides insights into the reasonableness
of a requirement, performance allocation, potential conflicts, and difficulty in verification.

Requirement testing also includes inspection and evaluation of each requirements statement in
accordance with pre-defined criteria.

Requirement Validation Criteria

When testing the validity of a requirement by inspection or evaluation, there are a number of cri-
teria that can be applied to determine the adequacy and sufficiency of the requirement. Table 33.7
provides an example listing of key criteria.

The criteria stated in Table 33.7, though examples, are reasonably comprehensive. You are
probably thinking how can you evaluate a specification with potentially hundreds of requirements
using these criteria.

First, seasoned SEs imprint these criteria subconsciously in their minds. With experience you
will learn to test specification requirements rapidly. Second, for large specifications, obviously
groups of SEs must be participants in the testing and analysis exercise. This further demonstrates the
criticality of training all SEs in the proper methods of requirements writing and review to ensure a
level of confidence and continuity in the results.
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Table 33.7 Requirement validation criteria

ID Criteria Criteria Question

1. Unique identity Does the requirement have its own unique identity such as a title that 
reflects the subject capability and unique tracking identifier number?

2. Singleness of Does the requirement specify and bound one and only one capability or
purpose are there compound requirements that should be broken out separately?

3. Legitimacy and Is this a legitimate requirement that reflects a capability traceable to the 
traceability User’s intended operational needs or simply a random thought that may or

may not be applicable?

4. SOW language Does this requirement include language that logically belongs within the 
avoidance Contract Statement of Work (CSOW)?

5. Appropriateness Does this requirement fall within the scope of this specification or does it
belong in another specification?

6. Hierarchical level If this requirement is within the scope of this specification, is the
requirement positioned at the right level within the requirements hierarchy?

7. User priority What is the User’s priority level for this requirement—can live without,
nice to have, desirable, or mandatory?

8. Realism Is the requirement realistic?

9. Achievability If the requirement is realistic, can it be achieved economically and at
acceptable risk with available technology?

10. Feasibility Can the requirement be implemented within reasonable need priorities 
and budgetary cost without limiting the minimum required set of
requirements?

11. Explicitness Is the requirement stated in unambiguous language—in text and graphics?

12. Readability and Is the requirement simply stated in language that is easily understood
understandability by the document’s stakeholders and ensures that any combination of 

stakeholders emerge with the same interpretation and understanding of 
WHAT is required after reading the requirement?

13. Completeness Does the requirement adequately satisfy the structural syntax criteria 
identified in an earlier section?

14. Consistency Is the requirement consistent with system terminology used:
1. Throughout the specification?
2. Among specifications within the specification tree?
3. By the Acquirer and User?

15. Terminology Does the requirement contain any terms that require scoping definitions?

16. Assumptions Does the requirement make assumptions that should be documented in 
the Notes and Assumptions section of the specification?

17. Conflicts Does this requirement conflict with another requirement?

18. Objectivity Is the requirement stated objectively and avoids subjective compliance
assessments?

19. Accuracy Is the requirement stated in language that accurately bounds the subject
capability and level of required performance?

(continued)
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33.9 REQUIREMENTS MINIMIZATION

SEs often struggle with the rhetorical question how many requirements do you need to specify a
system. There are no specific guidelines or rules; only disciplined and seasoned experience. Con-
trary to many things in life, specification quality is not measured by the QUANTITY of refinements
and features.

Frightening? Yes! But think about it! Every layer of requirements adds restrictions, complex-
ity, cost, and schedule that limit the System Developer’s flexibility and options to innovate and
achieve lower costs, schedule implementation, and risk.

How many requirements should an ideal specification have? Hypothetically, the answer could
be ONE requirement; however, a one-requirement specification has limited utility. We can never-
theless state that a properly prepared specification is one that has the minimal number of require-
ments but yet enables the User/Acquirer to procure a system that can be verified and validated to
meet their operational capability and performance needs.

How do we emerge with this idyllic specification? The answer may be found in performance
specifications. Performance specifications enable SEs to treat a SYSTEM like a box with inputs
and outputs (Figure 31.1). The intent is to scope and bound the behavior of a SYSTEM relative to
scenarios and conditions in its prescribed OPERATING ENVIRONMENT. This is accomplished
via measures of effectiveness (MOEs) and measures of suitability (MOSs) with supporting meas-
ures of performance (MOPs). By treating the system characteristics as a “performance envelope,”
we have avoided specifying how the system is to be designed.

Referral For more information regarding measures of effectiveness (MOEs), measures of suit-
ability (MOSs), and measures of performance (MOPs), refer to Chapter 34 Operational Utility, Suit-
ability, and Effectiveness practices.

There is one problem, however, with bounding the SYSTEM at the “performance envelope” level.
If you cast the performance specification in a manner that allows too much flexibility, the results may
unacceptable, especially to the Acquirer. This leaves the System Developer with the challenge or
interpretation of determining WHAT specific capabilities the SYSTEM is to provide and HOW
WELL each capability is to be provided. This can be good or bad, depending on your role as an
Acquirer or System Developer/Subcontractor.

Table 33.7 continued

ID Criteria Criteria Question

20. Precision Is the precision of the required level of performance adequate?

21. Testabability If required, can a test or series of tests be devised and instrumented 
economically with available resources— knowledge, skills, and equipment?

22. Measurability If testable, can the results be measured directly or indirectly derived by
analysis of test results?

23. Verifiability If the results of the test can be analyzed either directly or indirectly, can
the results be verified by inspection, analysis, demonstration, or test to
prove full compliance with the requirement?

24. Level of risk Does this requirement pose any significant technical, technology, cost,
schedule, or support risks?
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Since all capabilities may not be considered to be of equal importance by the User, especially
in terms of constrained budgets, the User’s priority list may be different from the System Devel-
oper’s PRIORITY list.

Author’s Note 33.4 Remember, the User is interested in optimizing capabilities and perform-
ance while minimizing technical, cost, and schedule risk. The System Developer, depending on type
of contract, is also interested in minimizing technical, cost, and schedule risk while optimizing prof-
itability. Thus, unless both parties are willing to work toward an optimal solution that represents
a win-win for both parties, conflicts can arise regarding these priority viewpoints and organiza-
tional objectives can clash.

How do we solve this dilemma? The Acquirer may be confronted with having to specify additional
requirements that more explicitly identify the key capabilities, levels of performance, as well as
priorities. The challenge then becomes: At what level does the Acquirer stop specifying require-
ments? Ultimately, the Acquirer could potentially OVERSPECIFY or UNDERSPECIFY the
system, depending on budget factors. Additionally, there may be other options for the Acquirer to
work around the problem via “decision control or approval” tasks incorporated into the Contract
Statement of Work (SOW).

So, what is the optimal number of requirements? There are no easy answers. Philosophically,
however, we may be able to describe the answer in our next topic, the optimal system requirements
concept.

Optimal System Requirements Concept

Anecdotal data suggest that a notional profile can be constructed to express the ideal quantity 
of specification requirements. To illustrate this notional concept, consider the graphic shown in
Figure 33.2.
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Figure 33.2 Specification Requirements Coverage Concept
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The figure consists of a graphical profile with three curved line segments. For discussion pur-
poses, we will identify the area under each segment as a zone. Beginning at the intersection of the
X- and Y-axes, every legitimate requirement that is identified at the top hierarchical levels increases
the adequacy of system definition toward a theoretical optimal level. We characterize this theoret-
ical point as the point of inflection in the curve’s slope.

At the point of inflection, we should have an optimal number of requirements. Hypothetically,
the quantity of requirements should be technically necessary and sufficient to specify a SYSTEM
with the desired capabilities and levels of performance. At this level the requirements are minimally
sufficient to specify and bound the User’s intended operational needs.

Beyond the point of inflection lies the Zone of Increasing Requirements Restrictions. As the
slope of the curve indicates, requirements can be added but at the expense of specification ade-
quacy and utility—over specification. Each additional requirement restricts the SE design options
and may increase technical, cost, schedule, technology, and support risk.

As the quantity of requirements continues to increase to the right, you finally reach a break-
point for Zone 3. Zone 3 represents the region where the requirements become too restrictive. Thus,
the requirements unduly restrict SE design options and severely limit feasibility of the system. Gen-
erally, when this occurs, the Acquirer discovers this problem during the draft proposal stage. To
alleviate the risk, the Acquirer may remove some requirements due to prohibitive technical, cost,
schedule, technology, and support costs and risks.

The problem described here is not unique to the Acquirer. The same problem challenges the
System Developer program organization, not just at the SYSTEM level but at multiple levels of
specifications at lower levels. Every requirement at every level has a cost to implement and a cost
to verify besides their schedule and risk implications. This impacts SE Design Process, the Com-
ponent Procurement and Development Process and the System Integration, Test, and Evaluation
(SITE) Process of the System Development Phase of the system/product life cycle.

Does this concept answer the question: What is the optimal number of specification require-
ments? No. However, it illustrates some hypothetical conditions—the points of inflection and break-
points—that should be within your mindset. The bottom line is: writing specifications requires more
thought than simply writing “random thoughts” within schedule constraints. You need to THINK
about WHAT you require and the potential ramifications on the System Developer.

Author’s Note 33.5 As a discipline, industry is consumed with metrics and comparing them with
everyone else. While there may be some rough order of magnitude (ROM) relevance, do not lose sight
that the “end game” is for the Acquirer, System Developer, and Subcontractors to respectively come
to a mutual understanding and agreement on WHAT is to be delivered and emerge with a POSITIVE
experience. Every system is different and should be evaluated on its own merits. If you make system-
to-system comparison, make sure the two systems are comparable in form, fit, and function.

Final Thoughts

The intent of the preceding discussion has been to heighten your awareness of a key theme: when
specifying requirements, strive for the optimal number of requirements that is sufficient in quan-
tity to adequately to cover the subject but few in quantity to avoid increasing costs, risks, and devel-
opment time and reducing the flexibility of equally qualified design options.

33.10 GUIDING PRINCIPLES

In summary, the preceding discussions provide the basis  to establish guiding principles that govern
requirements statement development practices.
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Principle 33.1 Every system requirement must be unique within the system, singular in purpose,
consistent with other requirements, and nonconflicting.

Principle 33.2 Every requirement must be explicitly understandable, realistic, achievable, con-
sistent, testable, measurable, and verifiable.

Principle 33.3 Every requirement must have an assigned owner who is accountable for its imple-
mentation and maintenance.

Principle 33.4 A requirement is NOT a requirement until it:

1. Is traceable to source or originating requirements via an RVM.

2. Satisfies requirements validation criteria (Table 33.7).

3. Is assigned one or more verification methods.

4. Is accepted by a consensus of its stakeholders.

5. Is approved and released for implementation.

Principle 33.5 Every requirement:

1. Has a value and priority to the User.

2. Constrains design solution options.

3. Increases risk.

4. Has a cost to implement and maintain.

33.11 SUMMARY

Our discussion of the requirements statement development practices:

• Described the key attributes that characterize a good requirement.

• Introduced a basic methodology for preparing requirements statements via a three-step approach that avoids
common problems of developing requirement content and grammar simultaneously.

• Provided a list of suggestions for developing good requirements.

• Highlighted the need to focus on singular requirements statements that meet specific criteria.

• Described how to develop a Requirements Verification Matrix (RVM).

• Discussed when a requirement should be officially recognized as a requirement.

• Described the process for selecting requirement verification methods.

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new system selection, apply your knowledge derived from this chapter’s topical
discussions. Specifically identify the following:

(a) Based on four to six use case based capabilities identified for the SYSTEM, write requirements state-
ments for each capability.

(b) For each capability requirement, derive the next level of sibling requirements that constitute what must
be completed to achieve the higher level capability.
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(c) Create a Requirements Verification Matrix (RVM), and identify the verification methods required to
prove compliance with each requirement.

(d) Pick two requirements. Using Table 33.1 as a reference, create your own table for each requirement
and append a separate column that rationalizes how the respective requirement satisfies the criteria.

ORGANIZATIONAL CENTRIC EXERCISES

1. Select a contract specification or one developed by your organization and test it using the criteria described
in this section.

2. Research your organization’s command media for guidance or direction in preparing requirements state-
ments. Document your findings.

3. Contact a contract program within your organization.

(a) What types of specification review methods were used to review specification requirements?

(b) What guidance did the program provide to specification developers regarding requirements develop-
ment guidelines or criteria?

REFERENCES



Chapter 34

Operational Utility, Suitability, 
and Effectiveness

34.1 INTRODUCTION

When you develop systems, there are four basic questions the User, Acquirer, and System Devel-
oper need to answer:

1. If we invest in the development of this system, product or service, will it have UTILITY to
the User in accomplishing their organizational missions?

2. If the system has UTILITY, will it be SUITABLE for the User’s mission application(s) and
integrate easily into their business model?

3. If the system has UTILITY and is SUITABLE for the application, will it be operationally
AVAILABLE to perform the mission when tasked?

4. If the system has UTILITY to the organization, is SUITABLE for the application, and is
AVAILABLE to perform its mission when tasked, will it be EFFECTIVE in performing
mission and accomplishing mission objectives with a required level of success?

The ultimate test of any system, product, or service is its mission and system effectiveness in per-
forming User missions and accomplishing mission objectives. Failure to perform within prescribed
OPERATING ENVIRONMENT conditions and constraints places operational, financial, and sur-
vival risks on the Users, their organizations, and the public. One of System Engineering’s greatest
challenges for SEs is being able to translate operational and system effectiveness objectives into
meaningful capability and performance requirements that developers understand and can imple-
ment. The challenge is exacerbated by a lack of formal training on this topic to help SEs under-
stand HOW to perform the practice.

This section introduces one of the most challenging areas to SE. In fact, it serves as the core
of requirements identification, analysis, allocation and flow down. As a general practice, this area
is filled with buzzwords that verbose SEs pontificate with limited knowledge, Why? Typically, the
recipients of the verbose pontification know less about the topic and do not bother to seek clarifi-
cation and understanding.

Author’s Note 34.1 Operational AVAILABILITY is part of this discussion thread. However,
since AVAILABILITY is a mathematical function of reliability and maintainability, we will defer the
AVAILABILITY discussion. The topic is a key element of the Reliability, Availability, and Main-
tainability (RAM) Practices discussion in Chapter 50 of the Decision Support Series.

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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What You Should Learn from This Chapter

1. What is a measure of effectiveness (MOE)?

2. What is a measure of suitability (MOS)?

3. What is a technical performance measure (TPM)?

4. What is a technical performance parameter (TPP)?

5. What is the relationship between MOEs, MOSs, MOPs, and TPMs?

6. Who is responsible for MOEs, MOSs, MOPs, and TPMs?

7. How do you track and control MOEs, MOSs, MOPs, and TPMs?

8. What is the relationship between TPMs and risk items?

9. When do TPMs trigger risk items?

Definitions of Key Terms

• Critical Issues “Those aspects of a system’s capability, either operational, technical, or
other, that must be questioned before a system’s overall suitability can be known. Critical
issues are of primary importance to the decision authority in reaching a decision to allow
the system to advance into the next phase of development.” (Source: DSMC, Glossary:
Defense Acquisition Acronyms and Terms)

• Critical Operational Issue (COI) “Operational effectiveness and operational suitability
issues (not parameters, objectives, or thresholds) that must be examined in operational test
and evaluation (OT&E) to determine the system’s capability to perform its mission. A COI
is normally phrased as a question that must be answered in order to properly evaluate oper-
ational effectiveness (e.g., ‘Will the system detect the threat in a combat environment at ade-
quate range to allow successful engagement?’) or operational suitability (e.g., ‘Will the
system be safe to operate in a combat environment?’).” (Source: DSMC, Glossary: Defense
Acquisition Acronyms and Terms)

• Figure of Merit (FOM) “The numerical value assigned to a measure of effectiveness,
parameter, or other figure, as a result of an analysis, synthesis, or estimating technique.”
(Source: DSMC, Glossary: Defense Acquisition Acronyms and Terms)

• Key Performance Parameters (KPPs) “Those capabilities or characteristics so significant
that failure to meet the threshold can be cause for the concept or system selected to be reeval-
uated or the program to be reassessed or terminated.” (Source: DSMC, Test and Evaluation
Management Guide, Appendix B, Glossary of Test Terminology, p. B-10)

• Technical (Performance) Parameters (TPPs) “A selected subset of the system’s technical
metrics tracked in Technical Performance Measurement (TPM). Critical technical parame-
ters relate to critical system characteristics and are identified from risk analyses and contract
specifications. Technical parameters examples (include):
1. Specification requirements.
2. Metrics associated with technical objectives and other key decision metrics used to guide

and control progressive development.
3. Design-to-cost targets.
4. Parameters identified in the acquisition program baseline or user requirements 

documentation.”
(Source: Former MIL-STD-499B DRAFT, Appendix A, Glossary, p. 41)

34.1 Introduction 391
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• Technical Performance Measurement (TPM) “The continuing verification of the degree
of anticipated and actual achievement of technical parameters. TPM is used to identify and
flag the importance of a design deficiency that might jeopardize meeting a system level
requirement that has been determined to be critical. Measured values that fall outside an
established tolerance band require proper corrective actions to be taken by management.
a. Achievement to Date Measured progress or estimate of progress plotted and compared

with the planned progress at designated milestone dates.
b. Current Estimate The value of a technical parameter that is predicted to be achieved

with existing resources by the end of contract (EOC).
c. Technical Milestone Time period when a TPM evaluation is accomplished. Evaluations

are made to support technical reviews, significant test events and cost reporting intervals.
d. Planned Value Predicted value of the technical parameter for the time of measurement

based on e planned profile.
e. Planned Value Profile Profile representing the projected time-phased demonstration of

a technical parameter requirement.
f. Tolerance Band Management alert limits placed each side of the planned profile to 

indicate the envelope or degree of variation allowed. The tolerance band represents the
projected level of estimating error.

g. Threshold The limiting acceptable value of a technical parameter; usually a contractual
performance requirement.

h. Variation Difference between the planned value of the technical parameter and the
achievement-to-date value derived from analysis, test, or demonstration.”

(Source: INCOSE Handbook, Section 12, Appendix, Glossary, p. 46–47)

Scope of Discussion

Our discussion in this chapter employs hierarchical entity relationships to address the objective
aspects—operational and system effectiveness—of system development. Though somewhat sub-
jective, similar approaches and methods can be applied to operational utility and suitability.

Based on this introduction, let’s begin our discussion with an overview of MOEs, MOSs, MOPs,
and TPM relationships.

34.2 OVERVIEW OF MOE, MOS, MOP, 
AND TPM RELATIONSHIPS

In most engineering environments, SEs are tasked to identify Technical Performance Measures
(TPMs) for their SYSTEM, PRODUCT, and SUBSYSTEM. As the SEs struggle, program man-
agement laments as to WHY such as simple task can be so difficult. There are two reasons.

First, most engineers are not trained to understand WHAT a TPM is, HOW it originates, and
WHY TPMs are important—an organizational management and training system failure. Second,
the Lead Systems Engineer (LSE) and the System Engineering and Integration Team (SEIT) that
oversee the technical program have not performed their job of linking lower level TPMs to criti-
cal MOEs and MOSs.

So, to most engineers, TPMs are bureaucratic exercises of randomly selecting requirements
that may or may not have relevance to overall system performance from their assigned develop-
ment specifications.

The terms measures of effectiveness (MOEs), measures of suitability (MOSs), measures of 
performance (MOPs), and technical performance measures (TPMs) should be integrally linked.
Unfortunately, they typically exist as unrelated information fragments in separate documents and
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may only be linked mentally by a few reviewers. Given this situation, the potential for risk abounds
in the form of overlooked or missing requirements dropped along the path of getting to the System
Performance Specification (SPS). Let’s explore this point further.

The relationships between MOEs, MOSs, MOPs, and TPMs can be very confusing. Part of the
difficulty arises from a lack of CLEAR understanding of how MOEs, MOSs, MOPs, and TPMs
originate. MOEs, MOSs, MOPS, and TPMs serve as critical benchmark metrics for deriving oper-
ational capabilities and requirements. The parameters provide traceability links with the intent of
delivering a physical system that fully complies with the Acquirer’s SPS requirements and satis-
fies the User’s validated operational needs.

Linking MOEs, MOSs, MOPs, and TPMs

Figure 34.1 depicts the entity relationships between MOEs, MOPs, MOSs, and TPMs. Observe the
partitioning of the figure into two basic parts as denoted by the vertical dashed line: the
User/Acquirer domain on the LEFT side and the System Developer domain shown on the RIGHT
side.

Author’s Note 34.2 Some Acquirers may derive the SOO from the ORD in lieu of the SRD. In
this context the SOO serves as the source or originating requirements for the SPS.

When a new system is conceived, the User formulates a high-level Statement of Objectives (SOO)
(1). Users that lack in-depth knowledge of SE and acquisition expertise may employ an Acquirer
to represent their system development technical and contract interests. The Acquirer collaborates
with the Users to understand their problem space and bound a solution space. As part of this process,
the User requirements are elaborated in an Operational Requirements Document (ORD) (2). The
ORD, which typically focuses on application of the proposed system, describes HOW the User
envisions employing the system to perform their organizational mission(s) and achieve the mission
objectives.
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The ORD (2) is oriented around a set of Operational Outcomes (6) required to achieve the
organizational mission success. Each operational outcome may consist of least one more measures
of effectiveness (MOEs) and/or at least one or more measures of suitability (MOSs). Collectively,
the MOEs and MOSs constitute what is referred to as Operational Effectiveness (7). Remember,
the focus up to this point has been on HOW the User intends to employ the system, product, or
service with MOE and MOSs as indicators of operational effectiveness and success. The challenge
for the Acquirer SEs is to translate the MOEs and MOSs into specification requirements legally
sufficient for procurement and development.

The translation of ORD MOEs (8) and MOSs (9) into performance requirements is documented
in a System Requirements Document (SRD) (3). More specifically, each ORD MOE (8) and MOS
(9) is translated into a set of requirements, each of which is bounded by SRD measures of per-
formance (MOPs) (10).

During the System Procurement Phase of the system/product life cycle, System Developer
Offerors analyze the SRD requirements. Typically, the Offerors are required to propose a System
Performance Specification (SPS) (4) that will serve as the technical basis for the system develop-
ment contract. Each Offeror reviews the SRD and its MOPs and formulates a proposed solution
consisting of the Contract Work Breakdown Structure (CWBS) (5), SPS Capability and Performance
Requirements (11), and a Multi-level System Architecture (14). SPS MOPs (12) bound each SPS
capability and are traceable to the SRD MOPs (10). The Offeror may be asked to select a list of
critical technical performance measures (TPMs) (13) to track from the list of SPS MOPs (12).

When the contract begins, the SPS requirements are analyzed, allocated, and flowed down to
multi-level development specifications that specify at least one or more the system architectural
elements (14) and their associated items or configuration items (CIs). Each development specifica-
tion consists of at least one more MOPs that are traceable back to the SPS MOPs.

During the System Development Phase of the system/project life cycle, developers plot 
analytically-based TPM predictions. The TPMs provide a basis for determine HOW WELL the
system architecture element designs will be able to achieve the development specification and SPS
requirements. TPM status is typically reviewed at each of the major technical reviews—such as
SRR and SDR. When actual TPM performance data become available, either via prototypes or
demonstrations during integration and testing, that data will be plotted.

MOE and MOP Relationships

Figure 34.2 provides an example of MOE to MOP relationships. Here an airline’s Mission Phase
is partitioned into subphases of flight. Each subphase has primary and supporting objectives to be
accomplished based on use cases. Each use case is translated into an operational capability require-
ment and referred to as a MOE. Each MOE is documented in the SPS and decomposed into MOPs
that are allocated to PRODUCTs, SUBSYSTEMs, and so forth, and then allocated and flowed down
their respective item development specifications (IDSs).

Specifying MOEs in the System 
Performance Specification (SPS)

Given the example in Figure 34.2, how do we translate the MOPs into SPS requirements? Each
phase and subphase of operation has a specific measure of effectiveness (MOE) that must be
achieved. Thus we specify a summary requirement for each MOE in the SPS paragraph 3.1, System
Phases of Operation, as illustrated in Figure 34.3.
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34.3 PLOTTING TECHNICAL PERFORMANCE 
MEASUREMENTS (TPMS)

Once the measures of performance (MOPs) for each item and configuration item (CI) are estab-
lished, the next step is to track MOP values. This is accomplished a number of ways such as num-
erical value reporting. The best practice is to plot the values over time graphically as shown in
Figure 34.4.

TPMs should be:

1. Tracked on a weekly basis by those accountable for implementation—such as by develop-
ment teams or Integrated Product Teams (IPTs).

2. Reported at least monthly.

3. Reviewed at each major technical review.

Regarding the last point, note how the development team or IPT at each major technical review
reported:

1. Here’s the level of performance we projected by analysis for TPM XYZ.

2. Here’s the level of performance we have achieved to date.

3. Here’s the level of performance we expect to achieve by the next review.

4. Here’s the corrective action plan for how we expect to align today’s level of performance
with projected performance and acceptable control limits.

Note also how the TPM values consist of analytical projections through CDR with a level of risk
associated with achievement. Between CDR and TRR the physical components become available
for system integration and test. As such, actual values are measured and become the basis for final
TPM tracking.
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Recognize that system component performance varies due to mass properties, manufacturing
tolerances, and so forth. This is why the nominal TPM value represents the mean of a Normal Dis-
tribution. The challenge for SEs is, for a given TPM value: What are the allowable upper and lower
control limits for a given entity—PRODUCT or SUBSYSTEM—that do not diminish overall system
performance? Based on the results of this decision, +3s and -3s or other applicable thresholds are
established for triggering multi-level risk items and mitigation plans. Within each +3s and -3s
threshold, design safety margins may be established. To facilitate viewing, the design margins zones
should be YELLOW; anything outside the +3s and -3s thresholds should be RED.

Author’s Note 34.3 Some requirements may only have single “. . . shall not exceed . . .” or 
“. . . shall not be less than . . .” thresholds. As such, the TPM plot should so reflect these UPPER
or LOWER control limits.

TPMs along the development path pose potential risks, especially if the development team or IPT
is unable to achieve the analytical projections. When this occurs, each TPM should be required to
have risk thresholds that trigger risk items for tracking. If the risk becomes significant, risk item
mitigation plans may be required to provide a risk profile for reducing the risk over time and bring
it in line with specification requirements. The Program’s risk management plan should definitize
this process and threshold criteria for triggering risk item for tracking and mitigation plans.

Selecting TPMs

TPMs can easily become a very time-consuming activity, especially for reporting purposes. Obvi-
ously, every MOP in a specification CANNOT be tracked. So you need to select those of critical
importance. How is this accomplished?

The Lead SE and SEIT should determine those critical SYSTEM level MOEs and MOPs that
have a major impact on achieving mission and system objectives. Then, collaborate with the respec-
tive teams to select four to six TPMs from each development specification that have traceability to
SPS level MOEs.

34.4 TPM CHALLENGES

TPM tracking involves several challenges. Let’s explore a few.

Challenge 1: Bureaucratic Metrics Tracking

TPMs have two levels of criticality. First, TPMs serve as visual indicators to alert Integrated 
Products Teams (IPTs) or developers to potential technical trouble. IPT Leads need to clearly 
understand this. Otherwise, the effort is perceived as nothing but bureaucratic metrics tracking 
performed to impress the Acquirer. Second, as a Lead SE, Project Engineer, or Technical Director,
you need early indicators that to provide a level of confidence that the system is going to per-
form as specified and designed. If not, you need to know sufficiently in advance to take corrective
action.

Challenge 2: Select TPMs Wisely

IPTs often randomly select a few TPMs to satisfy the metrics-tracking task. Selecting the “easiest
to achieve” TPMs causes you to believe your own success rhetoric. Select the most difficult, poten-
tial SHOWSTOPPER TPMs to make sure the most critical risk areas stay fully addressed through
proactive tracking.
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Challenge 3: Withholding Actual TPM Data

If a TPM becomes a risk item, IPT Leads often continue to plot analytical predictions to avoid the
realities of actual data that pose political and technical risks. Don’t play games! Your obligation
as an SE is to report factual, existing data. If you have political problems, deal with the matter in
other ways. Remember, if you are not meeting performance levels now and you choose to ignore
potentially major problems, wait until you attempt to explain those problems to technical, program,
and executive management when the cost to correct is very expensive.

Conversely, program management should recognize objective reporting as constructive behav-
ior. Avoid “punishing the messenger.” Focus on constructive techical solutions that lead to success.
Remember-designer/developer success leads to program management success.

Challenge 4: TPM “Shelf Life”

TPMs, especially lower level ones, have a shelf life. During design and early in the system inte-
gration, test, and evaluation phase (SITE), low-level TPMs are critical indicators of performance
that may affect overall system performance and effectiveness. Once a TPM requirement has been
verified, the necessity to TRACK the TPM may be pointless, unless something fails within the
system. Remember, lower level MOPs were derived from higher level MOPs. Once a lower level
MOP has been verified and its configuration item (CI) or items have been integrated into the next
higher level, which has its own TPM, you should not continue to track the MOP. There may be
exceptions; use informed judgment.

Challenge 5: TPM Reporting

Your contract should specify WHAT TPMs the Acquirer requires you to report. There may be other
TPMs that you need to track internally. Depending on the relationship and maturity of the Acquirer
organization, some System Developers open all TPMs for review. Exercise caution when doing
this. Some Acquirer organizations are more mature than others in treating the OPENNESS with
admiration.

A Word of Caution Make sure your openness about TPMs doesn’t become a basis for those
with political agendas to make major issues out of minor TPM excursions. Recognize political 
potholes!

34.5 Guiding Principles

In summary, the preceding discussions provide the basis with which to establish the guiding prin-
ciples that govern operational utility, suitability, and effectiveness practices.

Principle 34.1 Quantify each measure of effectiveness or suitability (MOE/MOS) with at least
one or more measures of performance (MOPs).

Pricipal 34.2 Select TPMs for a specific item that are key contributors and performance affecters
for the next higher level system—SYSTEM, PRODUCT, SUBSYSTEM, and so forth.

34.6 SUMMARY

As an SE you need to understand how system effectiveness is determined and decomposed into measures of
effectiveness (MOEs) and measures of suitability (MOSs), each with measures of performance (MOPs) that
are documented in various requirements documents. We addressed how TPMs are used to track planned versus
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actual MOP TPM values and the importance of thresholds for triggering risk items and associated risk miti-
gation plan (RMP).

In closing, people will often state that TPMs are too laborious to perform and track. If this is the case,
then how can you and your organization deliver a system, product, or service that meets the User’s opera-
tional needs without performing the practice?

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new system selection, apply your knowledge derived from this chapter’s topical
discussions. Specifically identify the following:

(a) Based on the system’s use cases, identify the system’s MOEs.

(b) Based on the system’s use cases, identify the system’s MOSs.

(c) For each MOE and MOS, identify derived requirements.

(d) For each requirement, identify MOPs.

(e) For TPM tracking purposes, which MOPs would you track and provide supporting rationale?

ORGANIZATIONAL CENTRIC EXERCISES

1. Research your organization’s command media.

(a) What minimum requirements does the organization impose for TPM tracking?

(b) What tools and methods are recommended for tracking TPMs?

(c) What TPM training does the organization provide and who is accountable?

2. Identify a small, a medium, and a large contract program within your organization. Interview program per-
sonnel concerning TPMs.

(a) Does the Contract Statement of Work (CSOW) require TPM tracking?

(b) What requirements does the CSOW impose on TPM reporting?

(c) How did the program select TPMs?

(d) How were TPMs linked to risk tracking?

(e) What lessons did the program learn from TPMs?
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Chapter 35

System Design Objectives

35.1 INTRODUCTION

When SEs engineer systems, the general mindset is to propose and develop solutions that solve
User solution spaces within problem spaces. The problem with this mindset is that it lacks a central
focal point that captures WHAT the User needs or seeks. For example: Is the User concerned about
Growth? Reliability? Manueverability? And so forth? If you do not understand: 1) WHAT the User
needs and 2) WHAT priorities they place on those needs, you are just going through a “check-the-
box” exercise. So, how do SEs AVOID this mindset?

This section introduces design objectives that are often key drivers in system development.
These objectives form the basis for proposal and system development activities responding to
Acquirer formal solicitations and contracts. The broad, far-reaching ramifications of technical 
decisions made in support of these objectives clearly focuses on the need to integrate subject 
matter experts (SMEs), as key members of Integrated Product Teams (IPTs), to support system
development.

Our discussions in this section identify and summarize each of these objectives. From a User’s
perspective, the system design solution exemplifies one or more of these objectives. As such, these
objectives should be highlighted as key themes in a formal request for proposal solicitations. In
response, Offerors should highlight their key features and capabilities of their proposed system
solution coupled with their experience in developing comparable solutions for other Users.

What You Should Learn from This Chapter

What are the design ramifications of the following objectives?

1. Design to value (DTV)

2. Design to cost (DTC)

3. Design for usability

4. Design for single-use/multi-use applications

5. Design for comfort

6. Design for interoperability

7. Design for transportability

8. Design for mobility

9. Design for maneuverability

10. Design for portability

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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11. Design for growth and expansion

12. Design for reliability

13. Design for availability

14. Design for producibility

15. Design for mission support

16. Design for deployment

17. Design for training

18. Design for vulnerability

19. Design for lethality

20. Design for survivability

21. Design for efficiency

22. Design for effectiveness

23. Design for reconfigurability

24. Design for integration, test, and evaluation

25. Design for verification

26. Design for maintainability

27. Design for disposal

28. Design for security and protection

29. Design for safety

Definitions of Key Terms

• Availability A measure of the degree to which an item is in an operable and committable
state at the start of a mission when the mission is called for at an unknown (random) time.
(The item’s state at start of a mission includes the combined effects of the readiness-related
system R&M (Reliability & Maintainability) parameters, but excludes mission time.)
(Source: MIL-HDBK-470A, Appendix G, Glossary, p. G-2)

• Efficiency “The degree to which a system or component performs its designated functions
with minimum consumption of resources.” (Source: IEEE 610.12-1990)

• Maintainability “The ability of an item to be retained in, or restored to, a specified condi-
tion when maintenance is performed by personnel having specified skill levels, using pre-
scribed procedures and resources, at each prescribed level of maintenance and repair.”
(Source: DoD Glossary: Defense Acquisition Acronyms and Terms)

• Portability (1) Hardware: The relative ease of moving a piece of EQUIPMENT under 
specific conditions from one location to another. (2) Software: The relative ease of moving
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a computer software configuration item (CSCI) from one type of computer platform to
another.

• Producibility “The relative ease of manufacturing an item or system. This relative ease is
governed by the characteristics and features of a design that enables economical fabrication,
assembly, inspection, and testing using available manufacturing techniques.” (Source: DoD
Glossary: Defense Acquisition Acronyms and Terms)

• Reconfigurability The ability of a system, product, or service configuration to be modified
manually or automatically to support mission objectives.

• Reliability “The ability of a system and its parts to perform its mission of a specified 
duration under specific operating conditions without failure, degradation, or demand on the
support system.” (Source: Adapted from DoD Glossary: Defense Acquisition Acronyms and
Terms)

• Serviceability “A measure of the degree to which servicing of an item will be accomplished
within a given time under specified conditions.” (Source: DoD Glossary: Defense Acquisi-
tion Acronyms and Terms)

• Simplicity “The degree to which a system or component has a design and implementation
that is straightforward and easy to understand.” (Source: IEEE 610.12-1990)

• Supportability “The degree of ease to which system design characteristics and planned
logistic resources, including the logistic support (LS) elements, allow for the meeting of
system availability and wartime utilization requirements.” (Source: DoD Glossary: Defense
Acquisition Acronyms and Terms)

• Survivability “The capability of a system and its crew, if applicable, to avoid or withstand
a hostile Man-Made, Natural, and Induced OPERATING ENVIRONMENT without suffer-
ing an abortive impairment of its ability to accomplish its designated mission.” (Adapted
from DoD Glossary: Defense Acquisition Acronyms and Terms)

• Susceptibility “The degree to which a device, equipment, or weapon system is open to
effective attack due to one or more inherent weaknesses. Susceptibility is a function of oper-
ational tactics, countermeasures, probability of enemy fielding a threat, etc. Susceptibility is
considered a subset of survivability.” (Source: DoD Glossary: Defense Acquisition Acronyms
and Terms)

• Sustainability “Sustainment includes, but is not limited to, plans and activities related to
supply, maintenance, transportation, sustaining engineering, data management, configuration
management, manpower, training, safety, and health. This work effort overlaps the Full Rate
Production and Deployment work effort of the Production and Deployment phase. See also
Logistics Support and Logistics Support Elements.” (Source: DoD Glossary: Defense Acqui-
sition Acronyms and Terms)

• System Safety “The application of engineering and management principles, criteria, and
techniques to optimize safety within the constraints of operational effectiveness, time, and
cost throughout all phases of the system life cycle.” (Source: MIL-STD-882D System Safety,
para. 3.13, p. 2)

• System Security The level of protection that characterizes a system, product, or service’s
ability to reject intrusion and access by external threats or unauthorized systems.

• Testability “The degree to which a requirement is stated in terms that permits establishment
of test criteria and performance of tests to determine whether those criteria have been met.”
(Source: IEEE 610.12-1990)
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• Transportability “The capability of materiel to be moved by towing, self-propulsion, or
carrier through any means, such as railways, highways, waterways, pipelines, oceans, and
airways. (Full consideration of available and projected transportation assets, mobility plans
and schedules, and the impact of system equipment and support items on the strategic 
mobility of operating military forces is required to achieve this capability.)” (Source: DSMC
Definition of Terms)

• Usability “The ease with which a user can learn to operate, prepare inputs for, and inter-
pret outputs of a system or component.” (Source: IEEE Std. 610.12-1990)

• Vulnerability “The characteristics of a system that cause it to suffer a definite degradation
(loss or reduction of capability to perform the designated mission) as a result of having been
subjected to a certain (defined) level of effects in an unnatural [human-made] hostile envi-
ronment. Vulnerability is considered a subset of survivability.” (Source: DoD Glossary:
Defense Acquisition Acronyms and Terms)

35.2 COMMONLY APPLIED SYSTEM DESIGN OBJECTIVES

The Introduction identified a list of objectives that influence system design decisions. The discus-
sions that follow scope the context of each objective.

Author’s Note 35.1 Two key points: First, specifications presumably document all of the
Acquirer’s key detail requirements. You can reach a point where you “can’t see the forest for the
trees,” as such immersion in the details tend to obscure WHAT is important to the User. So, once
you read a specification, talk with the User via Acquirer contracting protocol to determine the key
objectives that matter most and affect System Developer decision making. System design objectives
provide those proverbial “forest” level insights. Second, COLLABORATE with the User to prior-
itize the objectives.

Design-for-Value (DTV) Objective

Users and Acquirers with limited budgets are often challenged to obtain the most system capabil-
ities and performance for their budget. The Design-for-Value (DTV) objective is a critical issue for
these customers. How do you define DTV?

1. Determine WHAT the User needs.

2. Prioritize those needs in terms of relative importance.

3. Map those needs to the System Performance Specification (SPS) requirements.

You can identify a single solution or a variety of solutions and offer them as the basis of Cost as
an Independent Variable (CAIV). Methods such as Quality Function Deployment (QFD) can be
also used to support value-oriented decisions.

Design-to-Cost (DTC) Objective

Users expect some systems to have budgetary “per unit cost” limit especially mass-produced
systems and products. Where this is the case, the Design-to-Cost (DTC) objective becomes a crit-
ical driver in the engineering of systems. Once the DTC is established at the SYSTEM Level, design
cost constraints are allocated and flowed down through all system levels of abstraction to the PART
level. This is a highly iterative top-down/bottom-up/left-right/right-left process with refinements of
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solutions and cost allocations until all entity technical design requirements, cost constraints, and
risks are “in balance.”

Design-for-Usability Objective

Durable systems and products require a high usability. Usability, as viewed by the User, is often
vague and ambiguous. Classic descriptions include user friendly interfaces . . . , easy to use . . . ,
easy to understand . . . , easy to control . . . , easy to drive over rough terrain . . . , easy to lift . . . ,
easy to carry . . . , and so forth. From an SE perspective, it is critical that the Design-for-Usability
objective be accurately and precisely bounded in specification requirements.

Rapid prototypes may need to be developed to present to Users for usability evaluation and
constructive feedback. User decisions must then be captured as graphical displays or text require-
ments. Application examples include:

1. Special considerations for the physically challenged.

2. Special equipment for ingress and egress from a vehicle.

Design-for-Single-use/Multi-use Applications Objective

Users acquire most systems and products for multi-use applications.
Multi-use systems and products must be designed for durability and maintenance over a spec-

ified number of usage cycles. The Design-for-Multi-use Applications objective requires particular
attention in areas such as modularity and interchangeability. In contrast, single-use applications
may require a focus on design and construction.

Design-for-Comfort Objective

Vehicular systems developed for Users such as operators and passengers for travel purposes over
long periods of time require a level of comfort to minimize fatigue, boredom, and so on. As in the
Design-for-Usability objective, requirements must be explicitly identified, scoped, and bounded.
The Design-for-Comfort objective is a key driver in the development of systems such as homes,
vehicles, spacecraft, and offices.

Design-for-Interoperability Objective

Systems and products that must be interoperable with other systems and products must have a
Design-for-Interoperability objective. If the Design-for-Interoperability objective is selected, strict
interface design standards and protocols must be established and controlled.

Design-for-Transportability Objective

Vehicle systems, military troops, et al require design considerations based on a Design-for-
Transportability objective. This requires understanding WHO/WHAT is to be transported, WHAT
space and carrying capacity is required, HOW the cargo is to be secured, WHO requires WHAT
access to the cargo and WHEN, WHAT protection mechanisms are required from environmental
and human-made system threats.

Design-for-Mobility Objective

Vehicle systems and military troops are Users that require design considerations based on a Design-
for-Mobility objective. The design considerations must include HOW the system will be secured
for mobility, physically moved, HOW often, and HOW the system is to be secured when it reaches
its destination.
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Design-for-Maneuverability Objective

Systems often require the capability to navigate through their OPERATING ENVIRONMENT. This
requires steering mechanisms that enable the operators to physically or remotely move the vehicle
from one location, change orientation relative to a frame of reference, or make directional vector
headed changes.

Design-for-Portability Objective

Some systems and products must be developed with a Design-for-Portability objective. Portabil-
ity concerns two key contexts: 1) physical properties and 2) software. Portability in one context
refers to physical properties of a system or product—such as the acceptable size and weight that a
human can lift, move, or transport. Portability in a software context refers to the ability to inte-
grate and execute computer software configuration items (CSCIs) on various types of computer
systems with minimal adaption.

Design-for-Growth and Expansion Objective

Systems, products, and services often require the capability to be expanded to accommodate future
upgrades. This may require additional processing or propulsion power, flexibility to increase storage
capacity of expendables or consumables, increased data communications ports or bandwidth, or
organizational or geographical expansion.

Design-for-Reliability Objective

Every system, product, and service has an intrinsic value to Users and stakeholders in being able
to support organizational missions and objectives. Depending on the stakes and OPERATING
ENVIRONMENT, mission and system reliability relative to achieving mission success may be a
critical issue.

Design-for-Availability Objective

The first criterion for systems, products, and services success is system readiness to perform the
mission when called upon. Some systems are required to be available on demand.

Establish a Design-for-Availability objective commensurate with the available budget and
mission. This includes implementation of daily operational readiness tests (DORTs), built-in tests
(BITs), built-in test equipment (BITE), indicators, and display meters. These activities and design
considerations can provide early indications of potential problem areas and thus enable corrective
action to be taken in advance of mission needs.

Design-for-Producibility Objective

Systems and products planned for production must be producible in manner that:

1. Has acceptable risk.

2. Repeatable and predictable processes and methods.

3. Can be produced within budgets and schedules at a reasonable profit.

Engineering development first articles are often functional demonstrators that may include lesser
quality materials, improvised components, and “add-on” instrumentation to support performance
verification. Production items may not require these additional items or weight that limit perform-
ance and increase cost. A Design-for-Producibility objective often drives a search for alternative
materials and processes to reduce cost and risk and improve or maintain system performance.



Design-for-Mission Support Objective

Multi-use applications require continuing support throughout their planned lifecycle. A Design-
for-Mission Support objective ensures that appropriate design considerations are given to replen-
ishment of expendables and consumables and to corrective and preventive maintenance.

Thus, system support concepts are critical for establishing Design-for-Mission Support
requirements.

Design-for-Deployment Objective

Many systems, products, and services require a Design-for-Deployment objective to support deploy-
ment or shipment to duty station mission areas. Design considerations include: tie-down chains,
anchors, accelerometer sensor instrumentation packages, controlled environmental atmospheres,
and shock and vibration proofing. Additionally, enroute deployment constraints such as bridge
heights and maximum weights, road grades, and hazardous waste routes constraints must be fac-
tored into the decisions.

Design-for-Training Objective

Most systems and products require some form of Design-for-Training objective. Where this is 
the case, TRAINING is a critical operational issue (COI), not only for the students but also for
the instructors, general public, and environment. Additionally, scoring and debriefs of training 
sessions are important. Therefore, the Training Concept becomes a key input into system and
product requirements. In some cases systems and products are modified to include instructor 
controls.

Design-for-Vulnerability Objective

Systems that operate in hostile threat environments or can be misused or abused by the operator(s)
should have a Design-for-Vulnerability objective. This applies to buildings, safes, vehicles, com-
puters, and electrical circuits.

When a system, product, or service is anticipated to be vulnerable to OPERATING ENVI-
RONMENT threats, mission analysis and use case analysis should identify the threats, threat sce-
narios, and prioritize design capabilities to resist or minimize the effects of those threats. This area
exemplifies our discussion of generalized and specialized solutions covered in Part I, System Inter-
faces. The generalized solution acknowledges the interaction; the specialized solution incorporates
key capabilities or features to protect the system and its operators from external threats.

Design-for-Lethality Objective

Some systems such as munitions and missiles are intended to penetrate vulnerable areas and
DESTROY mechanisms that enable the targeted system to survive. The Design-for-Lethality objec-
tive focuses on the system design and material characteristics that enable a system to achieve this
objective.

Design-for-Survivability Objective

Some systems and products are required to operate in harsh, hostile environments. They must be
capable of surviving to complete the mission and as applicable, return safely. Examples include:
thermal insulation, layers of armor, elimination of single points of fallure (SPF), and so forth.
Systems such as these require a Design-for-Survivability objective.

406 Chapter 35 System Design Objectives
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Design-for-Efficiency

Some systems and products require focused consideration on efficient utilization of resources. In
these cases a Design-for-Efficiency objective must be established.

Design-for-Effectiveness

One of the key contributors to User satisfaction is a system, product, or service’s degree of 
effectiveness. Did the missile hit and destroy the target? Does the flight simulator improve pilot
effectiveness? Establish Design-for-Effectiveness objectives where the effectiveness is the key 
determinate for mission success.

Design-for-Reconfigurability

Some systems and products are designed to accommodate a variety of missions as well as a quick
turnaround between missions. Therefore, some may have to be reconfigurable within a specified
time frame.

Design-for-Integration, Test, and Evaluation Objective

Modular system and products that undergo multiple levels of integration and test require a Design-
for-Integration, Test, and Evaluation objective. Ideally, you would isolate each configuration item
(CI) and test it with actual, simulated, stimulated, or emulated interfaces. If the system or product
is to be integrated at various facilities, special interface considerations should be given to physical
constraints and equipment, and the tools available should be investigated.

Finally, EQUIPMENT-based systems and products must be designed to facilitate multi-level
system verification and validation. This requires the incorporation of temporary or permanent test
points and access ports for calibration and alignments among other things.

Design-for-Verification Objective

Once the system or product is integrated, tested, and ready to be verified, designers must consider
HOW the item will be verified. Some requirements can be physically verified; other requirements
may not. Establish a Design-for-Verification objective to ensure all data required for verification
are accessible and can be easily measured.

Design-for-Maintainability Objective

Single-use, multi-use, and multi-purpose systems require some form of Design-for-Maintainability
objective. This may include preventive maintenance, corrective maintenance, calibration, upgrades,
and refurbishment. Key design considerations include maintenance operator access and clearances
for hands, arms, tools, and equipment. Additional considerations include the availability of elec-
trical power, need for batteries, or electrical generators, external air sources for aircraft while on
the ground, and so on. These considerations emphasize the need for a Maintenance Concept to
provide a framework for deriving Design-for-Maintainability requirements.

Design-for-Disposal Objective

Systems and products that employ nuclear, biological, or chemical (NBC) materials and ultimately
wear out, become exhausted, damaged, or destroyed intentionally or by accident. In any case, the
system or product requires a Design-for-Disposal objective. This includes mechanisms for moni-
toring and removal of hazardous materials such as NBC substances or traces. For items that can
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be reclaimed and recycled, special tools and equipment—categorized as peculiar support equip-
ment (PSE)—may be required.

Design-for-Security-and-Protection Objective

Various systems and products require a Design-for-Security-and-Protection objective that limits
SYSTEM or product access to only authorized individuals or organizations. Design considerations
include layers of armor, Internet firewalls, and authorized accounts and passwords.

Design-for-Safety Objective

The application of SE requires strict adherence to laws, regulations, and engineering principles and
practices that promote the safety of system and product stakeholders—the operators, maintainers,
general public, personal property, and environment. The Design-for-Safety objective focuses on
ensuring that systems, products, and services are safe to deploy, operate, maintain, and dispose of.
This includes not only the physical product but also establishing training and instructional proce-
dures, cautionary warnings and notices, and potential consequences for violation.

Quality Function Deployment (QFD)

One method for sorting out customer needs and priority values is Quality Function Deploy-
ment (QFD). Where time permits, you are encouraged to consider and investigate QFD as part of
your analysis.

35.3 GUIDING PRINCIPLES

In summary, the preceding discussions provide the basis with which to establish the guiding prin-
ciples that govern system design objectives practices.

Principle 35.1 Every User has key Operations and Support (O&S) Phase objectives that a
SYSTEM/entity design must satisfy; collaborate with Users to understand their needs and priori-
tize them.

35.4 SUMMARY

Our discussions in this chapter highlighted the need to establish system design objectives practices to ensure
that User operational needs are met. These objectives form the basis for developing Mission Needs Statements
(MNSs), Statements of Objectives (SOOs), Operational Requirements Document (ORD), System Requirements
Documents (SRDs), and System Performance Specifications (SPS).

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new system selection, apply your knowledge derived from this chapter’s topical
discussions. A User has employed your services to recommend the driving design “to/for” objectives for
the selected system or product.

(a) What are the top three or five objectives you would recommend?

(b) How would you prioritize each objective?
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(c) Prepare a statement for a formal Request for Proposal (RFP) that expresses each objective and its 
relative priority.

ORGANIZATIONAL CENTRIC EXERCISES

1. Contact a contract program in your organization.

(a) What are the User’s objectives for the system, product, or service?

(b) How were the objectives expressed? RFP? Contract?

(c) What are the objectives?

(d) How is the program implementing the objectives?

(e) What lessons has the program learned from this exercise?
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Chapter 36

System Architecture Development

36.1 INTRODUCTION

All human-made and living systems, by definition, are composed of interacting elements. Each
element has its own unique identity, capabilities, and characteristics, integrated into a purposeful
framework specifically arranged to accomplish a function or mission. The integrated, multi-level
framework of elements and combinations of elements represent the SYSTEM’s architectural con-
figuration or simply architecture.

This chapter explores the development of system architectures. As discussed in Part I on
System Analysis Concepts, the system architecture is an aggregate abstraction consisting of four
classes of architectures: 1) a requirements architecture, 2) an operations architecture, 3) a behav-
ioral architecture, and 4) a physical architecture.

Our discussions in this chapter establish the foundation for developing a system architecture.
Since the fundamental concepts of the architectural frameworks were covered in Part I on System
Architecture Concepts, this chapter focuses attention on physical configuration unique topics.
Topics include centralized, decentralized, and distributed processing; fault tolerant architectural
design; environmental, safety, and health (ES&H) considerations, fire detection and suppression;
and security and protection.

What You Should Learn from This Chapter

1. What is a system architecture?

2. What are the key attributes of an architecture?

3. What are the primary architectural views of a system?

4. Define the semantics of architectures.

5. What is centralized control processing architecture?

6. What is decentralized control processing architecture?

7. What is distributed processing architecture?

8. What is a fault tolerant architectural design?

9. What are some architectural power system considerations?

10. What are some architectural environmental, safety, and health (ES&H) considerations?

11. What are some fire detection and suppression architectural configuration considerations?

12. What are some security and protection architectural considerations?

System Analysis, Design, and Development, by Charles S. Wasson
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Definitions of Key Terms

• Architect (System) The person, team, or organization responsible for innovating and cre-
ating a system configuration that provides the best solution to User expectations and a set
of requirements within technical, cost, schedule, technology, and support constraints.

• Architecting “The activities of defining, documenting, maintaining, improving, and 
certifying proper implementation of an architecture.” (Source: IEEE Std. 1471-2000, para.
3.3, p. 3)

• Architectural Description (AD) “A collection of products to document an architecture.”
(Source: IEEE Std. 1471-2000, para. 3.4, p. 3)

• Architecture A graphical model or representation, such as an interpretative artistic render-
ing, a technical drawing, or a sketch, of a specific view of a system that communicates the
form, fit, or function of a SYSTEM, its operational elements, and interfaces as envisioned
by its developer.

• Centralized Architecture An architecture that “uses a central location for the execution of
the transformation and control functions of a system.” (Source: Buede 2000, p. 231)

• Concerns “Those interests which pertain to the system’s development, its operation or any
other aspects that are critical or otherwise important to one or more stakeholders. Concerns
include system considerations such as performance, reliability, security, distribution, and
evolvability.” (Source: IEEE Std. 1471-2000, para. 4.1, p. 4)

• Decentralized Architecture An architecture characterized by “multiple, specific locations
at which the same or similar transformational or control functions are performed.” (Source:
Buede, 2000, p. 231)

• Open System Architecture “A logical, physical structure implemented via well defined,
widely used, publicly-maintained, non-proprietary specifications for interfaces, services, and
supporting formats to accomplish system functionality, thereby enabling the use of properly
engineered components across a wide range of systems with minimal changes.” (Source:
Former MIL-STD-499, Appendix A, Glossary, p. 37)

• Open Systems Environment (OSE) “A comprehensive set of interfaces, services and sup-
porting formats, plus aspects of interoperability of application, as specified by information
technology standards and profiles. An OSE enables information systems to be developed,
operated and maintained independent of application specific technical solutions or vendor
products.” (Source: Adapted from DSMC, Glossary: Defense Acquisition Acronyms and
Terms)

• View “A representation of a whole system from the perspective of a related set of concerns.”
(Source: IEEE Std. 1471-2000, para. 3.9, p. 3)

• Viewpoint “A specification of the conventions for constructing and using a view. A pattern
or template from which to develop individual views by establishing the purposes and audi-
ence for a view and the techniques for its creation and analysis.” (Source: IEEE Std. 1471-
2000, para. 3.10, p. 3)

36.2 WHAT IS AN ARCHITECTURE?

IEEE Std. 1471-2000 (para. 3.5, p. 3) defines an architecture as “The fundamental organization of
a system embodied in its components, their relationships to each other, and to the environment, and
the principles guiding its design and evolution.”
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Through our educational systems, most people associate architecture with beautiful classical
buildings with ornamented façades that are tracable back to the Greek and Roman antiquity. What is
missing from the educational paradigm is a universal definition that encompasses building architec-
tures, systems, products, and services. Using the IEEE definition as a backdrop, if you analyze the
educational paradigm of architecture, you soon discover that architecture represents the totality of
three elements common to systems, products, and services. These elements are form, fit, and function.

An architecture exposes key features of a system, product, or service and expressively com-
municates via interpretative artistic renderings or graphics HOW those features interrelate within
the overall framework and its OPERATING ENVIRONMENT. Note the term “exposes.” However,
just because an architectural element or object is visually exposed DOES NOT infer frequency of
usage.

System, product, or service architectures depict the summation of a system’s entities and capa-
bilities levels of abstration that support all phases of deployment, operations, and support. Some
entities may be an integral part of a system’s phases of operation 100% of the time; other entities
may be only used 1% of the time. Depending on the mission or system application, the system,
product, or service architecture can be abstracted to expose only those capabilities unique to the
mission.

System Architects

In most professional domains, the system architect is expected to possess licensed credentials,
preferably by some form of certification accorded by a state of residency. Part of this process is to
demonstrate to decision authorities that the system architect has the experience, knowledge, and
understanding of artistic, mathematical, and scientific principles to translate a User’s vision into a
system, product, or service within the constraints of performance standards, laws, and regulations
established by society.

As in the case of the educational architecture paradigm above, there is a paradigm for system
architects. Whereas most people think of architects as being individuals, teams and organizations
may be referred to as architects.

Formulating the System Architecture

System architecting requires years of experience in application-dependent knowledge and technol-
ogy. Due to the diversity of systems, product, and services, there are no specific ways to formulate
an architecture. There are guidelines that, in combination with experience, enable us to formulate
system, product, or service architectures.

In recent years the Institute of Electrical and Electronic Engineers (IEEE) issued IEEE 
Standard-1471-2000, IEEE Recommended Practice for Architectural Description of Software-
Intensive Systems. IEEE-Std-1471-2000 established as a conceptual framework for developing
architectural descriptions of software intensive systems.

IEEE 1471-2000 (para. 1.1, p. 1) defines software intensive systems as those “. . . where software
contributes essential influences to the design, construction, deployment, and evolution of the system
as a whole.” Although IEEE 1471 is a software standard, the conceptual framework presented is
equally applicable to all types of systems—electrical, electronic, mechanical, optical, and so forth.
Figure 36.1 illustrates the standard’s framework.

IEEE 1471 provides a key construct that exposes several key terms that serve as the frame-
work for formulating a system, product, or service architecture. Specifically the terms are: archi-
tectural description, viewpoints, views, and concerns.



36.2 What Is an Architecture? 413

• Architectural Description “An architectural description selects one or more viewpoints 
for use. The selection of viewpoints typically will be based on consideration of the stake-
holders to whom the AD is addressed and their concerns.” (Source: IEEE Std. 1471-2000,
para. 4.1, p. 4)

• Viewpoint “A viewpoint establishes the conventions by which a view is created, depicted
and analyzed. In this way, a view conforms to a viewpoint. The viewpoint determines the
languages (including notations, model, or product types) to be used to describe the view, and
any associated modeling methods or analysis techniques to be applied to these representa-
tions of the view. These languages and techniques are used to yield results relevant to the
concerns addressed by the viewpoint.” (Source: IEEE Std. 1471-2000, para. 4.1, p. 4)

• View “A view may consist of one or more architectural models. Each such architectural
model is developed using the methods established by its associated architectural viewpoint.
An architectural model may participate in more than one view.” (Source: IEEE Std. 1471-
2000, para. 4.1, p. 4)

• Concerns “Those interests which pertain to the system’s development, its operation or any
other aspects that are critical or otherwise important to one or more stakeholders. Concerns
include system considerations such as performance, reliability, security, distribution, and
evolvability.” (Source: IEEE Std. 1471-2000, para. 4.1, p. 4)

Attributes of an Architectural Description

An Architectural Description exposes and expresses the architecture of a system, product, or service
via standard attributes and conventions. These include:
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• Architectural Entities An architecture exposes the operational elements such as objects or
actors—which can be persons, places, things, roles, or capabilities—that comprise a
SYSTEM or entity, regardless of the level of abstraction, and interacts synergistically to
perform the entity’s mission.

• Hierarchical Level of Abstraction An architecture expresses an entity’s operational,
behavioral, and physical context within the User’s system of systems (SoS) for a given level
of abstraction (Level 0, Level 1, Level 2, etc.).

• Unique Identity Architecture expresses HOW a SYSTEM’s object or actor capabilities are
uniquely identified via reference designators.

• Interactions with its OPERATING ENVIRONMENT An architecture expresses how the
SYSTEM entity interacts and interoperates with external systems in its OPERATING ENVI-
RONMENT based on external inputs, stimuli, or cues—for example, inputs such as event-
based interrupts, raw materials, and information—as well as its SYSTEM RESPONSES—its
behavioral patterns, products, by-products, or services.

• Completeness An architecture expresses the integrated set of entities, capabilities, and inter-
actions for a specific entity required to satisfy a prescribed set of User mission use cases and
operational scenarios. This is accomplished in terms of incremental or phased capabilities
evolving from: 1) an initial operational capability (IOC) through a series of “builds” to a full
operational capability (FOC) or 2) a single grand design.

• Architectural Views An entity’s architecture is characterized by four types of views: 1) a
requirements view, 2) an operations view, 3) a behavioral view, and 4) a physical view.

Now that we have established WHAT a system architecture is and its attributes, let’s explore the
HOW the architectural description is represented.

Architectural Description Representation Methods

For most applications, system architectures are communicated via three mechanisms: 1) three-
dimensional and two-dimensional artistic renderings of buildings, 2) block diagrams, and 3) 
hierarchy trees. Most SE applications employ block diagrams such as system block diagrams
(SBDs), architecture block diagrams (ABDs), and functional block diagrams (FBDs) as the primary
mechanism for communicating a SYSTEM or entity’s architecture.

Block diagrams depict horizontal peer level and external relationships within a given system
level of abstraction. Vertical linkages to higher level parent or lower level siblings are referenced
by symbology but not shown. For example, a system entity, as a level of abstraction, may include
a symbol on or next to its box to denote lower levels exist.

In contrast, hierarchy trees enable us to depict vertical relationships that infer levels of abstrac-
tion; they do not communicate, however, direct relationships and interactions among peers. Figure
36.2 contrats the two approaches.

Architectural Description Views and Concerns

When tasked to develop the architectural description, engineers naturally gravitate to debates over
WHAT tools and methods to use. Traditionally, SEs prefer to use functional methods; software engi-
neers focus on object-oriented methods, and so forth. Instead, the focus should be on WHAT is to
be described in terms of views. Once these views are identified, then you can decide whether a
viewpoint is best described using functional, object-oriented, or some other methods. The selection
depends on WHAT architectural view best communicates the System Architect’s solution to the
User’s vision in a manner that is accepted by the User.

414 Chapter 36 System Architecture Development
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36.3 ARCHITECTURAL VIEWS OF A SYSTEM

There are numerous engineering perspectives of a system’s architecture. In general, the perspec-
tives are reflective of the views and concerns of key stakeholders of the system, product, or service
as illustrated in Figure 36.3. Your job as a system analyst or SE is to integrate these views.

Earlier we introduced the concept of the four solution domains: Requirements, Operations,
Behavioral, and Physical. Each solution domain represents a unique view of a system representing
a consensus of its stakeholders. Let’s define each view:

• Requirements Architecture View A representation of the hierarchy and traceability of an
entity’s specification requirements that bound its phases and modes of operation, capabili-
ties, characteristics, design and construction constraints, and verification methods.

• Operations Architecture View A representation of HOW the MISSION SYSTEM and
SUPPORT SYSTEM operational assets are employed—meaning deployed, operated, and
supported—by the User in their Level 0 HIGHER ORDER SYSTEM. The operational archi-
tecture may include lower level training, maintenance, and support architectures that graph-
ically represent their respective concepts.

• Logical/Functional Architecture View A representation of the logical/behavioral entity
relationships and interactions—meaning behavior, products, by-products, and services—
that express HOW the MISSION SYSTEM capabilities are envisioned to respond to 
external stimuli and cues for hypothesized scenarios within its prescribed OPERATING
ENVIRONMENT.

• Physical Architecture View A representation of HOW an entity is physically composed,
constructed, configured, and interfaced to respond to external stimuli and cues to achieve the
desired outcome-based responses.
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Figure 36.4 illustrates these relationships as elements of an overall system architecture description.
The SYSTEM architecture description (AD) consists of a multi-level requirements architecture, a
multi-level operations architecture, a multi-level logical/functional architecture, and a multi-level
physical architecture.

Architectural Responses to the Solution Space

If we translate the IEEE construct shown in Figures 36.1 with the views of a system illustrated in
Figure 36.4, Figure 36.5 results. Here, we see the architectural views as satisfying the solution
space(s) based on stakeholders, views, and concerns.

Guidepost 36.1 At this point we have established the general relationships between the four
solution domain architectures with the solution space. Now let’s explore the interdependencies of
these views further.
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Architectural View Interdependencies

The requirements, operations, behavioral, and physical architectures are highly integrated and inter-
dependent shown in Figure 36.6. Notice that the highly iterative interdependencies are depicted via
an N2 (N ¥ N matrix) diagram. When you develop the architectures, it is very important for you to
maintain traceability with the Contract Statement of Work (CSOW), Contract Work Breakdown
Structure (CWBS), Integrated Master Plan (IMP), and Integrated Master Schedule (IMS) or their
contract documents.
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Author’s Note 36.1 The point here is that architecture development encompasses more than
simply creating graphical views of the system. The architectural description serves as the corner-
stone for the CWBS, IMP, and IMS. It must also be consistent with the CSOW.

As system development progresses through lower levels of design over time, architectural
attributes such as capabilities or operations, requirements, performance budgets and safety margins,
and design and construction constraints are allocated to lower level architecture entities and flowed
down via entity item development specifications.

Referral For more information about developing specifications, refer to Chapter 31 Specifica-
tion Development Practices.

Closing Points

One of the ambiguities of SE and deficiencies of organizational training or the lack thereof occurs
when system architectures are developed. You may hear a development team member boldly pro-
claim they are going to “develop a system architecture.” The problem is listeners are thinking one
type of architecture and the doer has a “pet” architecture. As a result, the architectural work product
may or may not suit the development team’s needs.

One way to avoid this situation is to express the four domain solutions in terms of views. As
each solution is formulated as illustrated in Figure 36.6, the team has a good idea of WHAT the
deliverable architecture will depict. So, when someone boldly PROCLAIMs to be developing a
system architecture, ASK: WHICH architectural views and viewpoints do you intend to EXPRESS.

Guidepost 36.2 Given a fundamental understanding in WHAT an architecture and architec-
tural description are, we now shift our focus to key considerations that drive selection of the type
of architecture suitable for a system, product, or service application.

36.4 CENTRALIZED VERSUS DECENTRALIZED 
CONTROL ARCHITECTURES

Once a system’s interfaces are identified, most system architecture development activities begin
with HOW the system is structured for communications and decision-making. Figure 36.7 serves
as a reference for our discussion.

Chapters 8 through 12 System Architecture Concepts discussed system interactions with its
OPERATING ENVIRONMENT. The discussion highlighted various types of command and control
(C2) interactions that included open loop and closed loop systems. For the C2 mechanism, a key
question is: HOW do we efficiently and effectively implement C2? This requires a determination of
the need for a centralized versus decentralized or distributed control architectures. So, what are
these?

Centralized Control Architectures

Centralized control architectures, as illustrated on the LEFT side of Figure 36.7, consist of a single
processing mechanism. For most applications the mechanism interfaces to remote access ports or
sensors via mechanical, electronic, or optical types of devices. Consider the following examples:
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EXAMPLE 36.1

Video surveillance systems route multi-channel, real-time camera video back to a multi-screen command
center staffed with security personnel.

EXAMPLE 36.2

A power control circuit breaker panel distributes and controls power from an external service line to various
circuits throughout an office building or home.

Limitations of Centralized Control. Centralized control architectures are fine for many appli-
cations such as the examples cited above. However, they do have limitations. They are a potential
single point of failure (SPF).

As a SPF, some applications may require vast lengths of wiring to remote sensors that increase
weight. For applications such as aircraft where an SPF may be a critical risk, additional weight,
assuming it can be accommodated, translates into increased fuel consumption, increased fuel tank
capacity, and reduces payload weight.

There are several approaches to solving this problem space. Example solutions include:

1. AVOID performance degradation and provide for expansion and growth by decentraliza-
tion of processing functions.

2. REDUCE weight by deploying decision-making mechanisms at key locations and inter-
connecting the mechanisms via network-based configuration nodes.

3. AVOID risk due to potential SPFs by implementing control mechanism redundancies.
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Author’s Note 36.2 Based on the SPF discussion, we should note that the processing mecha-
nism, as illustrated at the right side of Figure 36.7, might consist of redundant processors as a
means of improving the mechanism’s reliability.

Decentralized Control Architectures

Decentralized control architectures partition key control functions and deploy them via remote pro-
cessing mechanisms that service input/output (I/O) requests as illustrated at the right side of Figure
36.7. The deployment may require:

1. Remote, dedicated processing to support a specific sensor or suite.

2. Retaining a central supervisory function to oversee each of the decentralized computing
functions.

Depending on the mission and system application, decentralized functions might reside in the same
rack at a site, be physically stationed throughout a building, or geographically separated across a
country or around the world.

The decentralized functions may be allocated to hardware or software entities or dynamically
assigned based on processing loads. As a result, overall system performance is improved but at the
expense and risk of adding more processors. Consider the following example:

EXAMPLE 36.3

An organization operates technical support centers to assist customers in implementing the organization’s prod-
ucts. In one approach, geographic sites are dedicated to addressing specific product questions. Since calls for
a specific product: 1) may not occur in a uniform distribution and 2) may have surge periods, it may be inef-
ficient and unprofitable to employ large staffs at a single site. So, a central phone system places customer calls
in a first-come–first-served queue and assigns each call to “the next available representative or technician”
that may be available in any one of several different product support sites.

For some applications, I/O processors may be identified in an architecture to off-load mundane I/O
processing tasks such as data communications, printing, or interrupts from the main processor. This
allows the supervisory processor to concentrate on higher level performance intensive tasks.

Client-Server Architectures

For system applications that require desktop or Web-based access to a central repository of infor-
mation, client-server architectures are employed. In this case a processor is dedicated to process-
ing client requests for data, retrieving the data from a central repository, and disseminating the data
to the client. Applications such as this, which include internal organizational intranets and Web-
based sites, are helpful for contract programs that need to provide access to program and contrac-
tor data to authorized Acquirer/Users, System Developers, subcontractors, and vendors.

Network Architectures

Organizations and systems often have need for personnel/entities to share and access common
repositories of information as well as e-mail. Because of the cost and risk of having to connect ded-
icated wires from a central C2 system throughout the facility, high-speed serial data communica-
tions networks are employed. Local Area Networks (LANs) are used to service clients within a
facility,  LANs for geographically separated facilities may be connected into wide area networks
(WANs). Consider the following examples:
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EXAMPLE 36.4

Commercial network systems employ Broadband, DSL, Ethernet, among other data communications. Mili-
tary aircraft on-board networks employ MIL-STD-1553/1773 data communications networks; 1553 for wire-
based applications, 1773 for fiber-optic applications.

36.5 FAULT TOLERANT ARCHITECTURES

The challenge in developing any type of system is creating a system architecture that is sufficiently
ROBUST to tolerate and cope with various types of internal and external vulnerabilities. Then,
when confronted with these conditions, the processing must be able to continue without significant
performance degradation or catastrophic failure.

Depending on system design objectives, there are numerous ways of developing fault-tolerant
architectures. Typically, a failure modes and effects analysis (FMEA) addresses potential failure
modes, system effects, single points of failure (SPF), and so on. A more comprehensive expansion
of a FMEA includes a criticality analysis (FMECA) to identify specific components that require
close attention. The FMEA/FMECA assess and recommend compensating provisions—namely
design modifications and operating procedures to mitigate failure conditions.

Referral A summary of FMEA/FMECA is provided in Chapter 50 System Reliability, Avail-
ability, and Maintainability (RAM) practices.

The FMEA/FMECA, in conjunction with the system’s mission reliability requirement and resource
budgets, influence the system architecture approach. Specification Developers are notorious for
specifying redundancy requirements without thorough analysis of the current system architecture
to determine if redundancy is a necessary and sufficient condition to satisfy mission reliability
requirements. Avoid mandating design methods in specifications that increase cost and risk without
having compelling, fact-based evidence that motivates such actions.

This brings us to a key point: key areas for developing fault tolerant systems.

Key Areas for Developing Fault Tolerant Systems

In general, design flaws and internal component faults or malfunctions can cause or lead to system
failures. Examples include:

1. Inadequate system architecture selection.

2. Lack of system stability during various OPERATING ENVIRONMENT conditions.

3. Internal component failures due to OPERATING ENVIRONMENT conditions, surges, or
long-term effects.

4. Latent defects due to improper or inadequate testing.

5. Faulty control logic.

6. Unknown modes and states.

7. Preoccupation with trivial, molecular level computation processing.

8. Poor work practices.

9. Improper operation results from abuse, misuse, or misapplication of the system or product.

10. Physical breaks in resource or data communications interfaces or supplies.

11. Lack of preventive and corrective maintenance.



12. Physical intrusion such as hacking, spamming, malicious mischief, and sabotage by unau-
thorized users and threats.

For systems in which a failure may be catastrophic, the system architecture decision making should
include design OPTION considerations such as redundancies. Again, compensating actions should
only be implemented after a determination that design reliability with a SPF is inadequate.

Guidepost 36.3 At this point we have established the commonly used types of system archi-
tectures. We now shift our focus to understanding how to improve the reliability of an architectural
implementation.

36.6 TYPES OF REDUNDANCIES

For most applications we can classify redundancies in terms of architectural configuration and com-
ponent implementation.

Architectural Configuration Redundancy

Architectural configuration redundancy consists of configuring redundant components either as
fully operational “on-line” or “off-line” devices during all or portions of mission phases. There a
three primary types of architectural redundancy: 1) operational, 2) cold or standy, and 3) k out of
n systems.

Operational Redundancy. Operational redundancy configurations employ backup items that
are activated or energized throughout the operating cycle of the system or product. All primary and
redundant elements operate simultaneously for a total of n elements. Some people refer to this as
hot or active redundancy. Consider the following example:

EXAMPLE 36.5

An aircraft may require a minimum number of engines to be operating within specified performance limits
for takeoff, cruising, or landing; independent inertial navigation systems required to continue a mission; or
tandem train locomotives for specific geographic and loading conditions.

During SYSTEM operations, redundant items can also be configured to operate concurrently
and even share the loads. If one of the redundant items fails, the other item(s) assumes the load
performed by the failed item and continues to perform the required capability(s). In most cases, the
failed component is left in place or, assuming it does not interfere or create a safety hazard until
corrective maintenance is available.

Cold or Standby Redundancy. Cold or standby redundancy consists of components that are
not energized, activated, or configured into the system until the primary item fails. If the primary
item fails, the standby item is connected automatically or manually through direct or remote oper-
ator intervention. Consider the following example:

EXAMPLE 36.6

Cold or standby redundancies include an emergency brake on an automobile, adding mass transportation vehi-
cles (trains, buses, etc.) to support surges in consumer demand, emergency backup lighting switched on during
a power failure, and backup power generation equipment.

422 Chapter 36 System Architecture Development
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k-out-of-n Systems Redundancy. This is a hybrid system whereby there are a total of n ele-
ments in the system but only k elements (k out of n) are required to operate during specific phases
of a mission. For example, a car needs four of its five tires, including spare, to be in safe operat-
ing condition to complete a trip.

You may ask: What is the difference between operational redunancy and k-out-of-n redun-
dancy. Operational redundancy assumes all components are configured into the system, can only
be turned on/off, but not easily removed during a mission such as an engine on an aircraft or gyro.
K-out-of-n redundancy factors in spares as replacements such as the car tire example.

Redundancy Implementation Approaches

Once a configuration redundancy concept is selected, the next step is to determine HOW to phys-
ically implement the concept, either by identical components or unlike components that are similar
in function.

Like Redundancy Configuration. Like redundancy is implemented with identical compo-
nents—vendor product model part numbers—that are employed in an operational or standby redun-
dancy configuration.

Unlike Redundancy Configuration. Unlike redundancy consists of components that are not
physically identical—different vendors—but provide the functionality and performance required to
perform the capability.

Both implementation approaches offer advantages and disadvantages. If the components used
for like redundancy are sensitive to certain OPERATING ENVIRONMENT characteristics, having
identical components may not be a solution. If you purposely choose unlike redundancy and the
same situation occurs, redundancy may only exist over a limited operating range if one component
has higher reliability. If components identical only in function and performance are qualified over
the full operating range, unlike redundancy may offer advantages.

Reducing Component SPF Risk

One method of reducing the component SPF risk requires operating identical or redundant com-
ponents in several types of configurations. Redundancy type examples for electronic systems
include:

• Processing redundancy

• Voted k out of n redundancy

• Data link redundancy

• Service request redundancy

Figure 36.8 provides a graphical view to support the discussions that follow.

Processing Redundancy. Returning to an earlier discussion of decentralized processing via dis-
tributed components, detection of a processor failure and dynamic reallocation of processing tasks
to an available processor enhances fault tolerance. So SUBSYSTEMs A and B both include redun-
dant processing components, A¢ and B¢.

Voted “k out of n” Component Redundancy. Some systems have redundant, peer-level
processors that employ an operational hot or active redundancy configuration. Individual processor
results Subsystems A and B are routed through a central decision-making mechanism that determines
if k out of n results agree. If k out of n results agree, transmit the results to a specific destination.



Data Link Redundancy. There is an old adage: “Systems break at their interfaces.” From an
interface reliability perspective, this adage holds true. System developers often take great pride in
creating ELEGANT system designs that employ redundant processing components. Then, they
connect the redundant components to an external interface that is a single point of failure (SPF).

One way to AVOID this problem is to employ redundant networks as shown in Figure 36.8.
Obviously, if interconnecting components such as cables are placed in a stable/static position, not
subjected to stressful OPERATING ENVIRONMENT conditions, and interfaced properly, there is
a good chance that additional independent connections are unnecessary and can be avoided.

For applications that employ satellite links or transmission lines that may be switched period-
ically, it may be necessary to employ backup links, such as land lines, as a contingency.

Service Request Redundancy. Some systems may be designed to automatically transmit mes-
sages one or more times. Using Figure 36.8 as an example, SUBSYSTEMs A and B automatically
retransmit messages to each other. Others may issue service requests to repeat messages, acknowl-
edgments, or data responses. As illustrated in Figures 15.3 and 15.4, this example is equally appli-
cable to external systems.

36.7 ERROR CORRECTION CONSIDERATIONS

Some systems employ data communication protocols that request retransmission IF errors are
detected. In general, error correction may or may not be considered an explicit redundancy method.
However, when it is employed, it provides comparable benefits.

Guidepost 36.4 The development of a system architecture requires more than simply innova-
tion and creation, it also requires other architectual considerations:
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1. Compliance with local, state, federal, and international statutes and regulations.

2. Sustainment of resources.

3. Recognition of the cause and effect the architecture has on the public and the environment.

We now shift the discussion to these considerations.

36.8 OTHER ARCHITECTURAL SELECTION CONSIDERATIONS

Developing a system architecture to provide capabilities to support all phases of the mission is only
part of what is required. The architecture must also include other key considerations. These include:

• Power source architectural considerations.

• Environmental, safety, and health (ES&H) architectural considerations.

• Fire detection and suppression architectural considerations.

• System security architectural considerations.

Power System Architectural Considerations

The preceding discussions highlight HOW to enhance the fault tolerance of the systems and prod-
ucts we build. If they are electrically powered, no matter how elegant the redundancy solution, it
only works WHEN power is applied. The loss of power involves several issues:

1. Safe storage of critical mission and system data immediately following the event to prevent
data loss.

2. Safe evacuation of personnel from facilities to prevent injury or loss of life.

3. Sustainment power to critical processes that must process to completion and place the
system in a SAFE mode.

Sustaining Operations and EQUIPMENT Resulting from Loss of Power. When a power
loss event occurs, systems require a finite amount of time to store mission and system data. To
ensure a continuation of power for a specified time, rechargeable batteries or an uninterruptible
power supply (UPS), offer potential solutions. Depending on mission and system application, alter-
native power solutions include external fuel-based generators, solar panels, fuel cells, and other
technologies.

Power Quality Considerations. Another factor that requires architectural consideration is
power quality. Power surges, brownouts, overvoltage, noise, and stability conditions wreak havoc
with some systems that require power conditioning. So, make sure these considerations are fully
addressed by the architecture within resource constraints.

Environmental, Safety, and Health (ES&H) 
Architectural Considerations

System architecting, in general, tends to focus on EQUIPMENT architectures rather than the effects
of the EQUIPMENT on the Users, public, and NATURAL ENVIRONMENT. Therefore, when
evaluating a system architecture, the system architect and others should factor in considerations for
environmental, safety, and health (ES&H).
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EXAMPLE 36.7

At a minimum, considerations of the effects of EQUIPMENT by-products on the User(s), public, and envi-
ronment should include the following considerations:

• Moisture

• Condensation

• Water

• Shock and vibration

• Atmospheric pressure

• High pressures

• Noise

• Refuse

• Spills

• Leaks

• Laser radiation

• Nuclear waste

• Ergonomics

EXAMPLE 36.8

At a minimum, safety examples include the following considerations:

• Walk space

• Hazardous conditions

• Ingress and egress

• Emergency exits

• Warning notices and cautions

• Visual and audio alarms

• Electrical shock protection

• Perimeter fencing

• Lockout tags on damaged or out-of-calibration equipment

• Doors and stairwells

• Video surveillance

• Grounding schemes

EXAMPLE 36.9

At a minimum, health examples include the following considerations:

• Toxic chemicals and fumes

• Air quality

• Ergonomics

• Noise



Fire Detection and Suppression 
Architectural Considerations

Another key architectural consideration is fire detection and suppression systems. Since personnel,
equipment, and facility safety are paramount, the system architecture should include features that
enable a rapid response when fires are detected including suppression systems that eliminate the
source of the fire following personnel evacuation.

System Security Architectural Considerations

For those systems that involve sensitive or classified data, system security should be a key archi-
tectural consideration. This includes reasonable measures for physical security, operational secu-
rity, communications security, and data security.

Final Thought

All considered effects should include both the short-term effects and the long-term effects. Com-
pensating actions for any effects may require accomplishment via one or more of the SYSTEM’s
architectural system elements—EQUIPMENT, PERSONNEL, PROCEDURAL DATA, and so
forth.

36.9 GUIDING PRINCIPLES

In summary, the preceding discussions provide the basis with which to establish the guiding prin-
ciples that govern system architecture development practices.

Principle 36.1 An architecture expresses stakeholder concerns via views that comply with 
viewpoint conventions for constructing the view.

Principle 36.2 Every SYSTEM/entity has four architectural views: requirements, operations,
behavior, and physical, each consistent with and traceable to the other.

Principle 36.3 System architectural redundancy is a design method for achieving a challenging
reliability requirement, and not a specification requirement.

Principle 36.4 An architecture represents the totality of the integrated configuration of system
capabilities required to perform its use cases and cope with use case scenarios without regard to
element frequency of usage.

Principle 36.5 Every system architecture must be compliant with its specification requirements
and applicable laws, regulations, and cultural values.

Principle 36.6 Every system architecture must factor in considerations for the environment,
safety, and health.

36.10 SUMMARY

The discussion of system architecture development practices of this chapter serve as a precursor for the
Requirements, Operations, Behavioral, and Physical Domain Solutions that follow. System architectures

36.10 Summary 427
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provide the means to communicate the key stakeholder concerns and engineering viewpoints required to
develop each SYSTEM or entity’s four solution domains—consisting of Requirements, Operations, Behav-
ioral, and Physical Domain Solutions.

During our discussions we introduced and defined the origin of the term architecture as well as other
architecture-related terms. We discussed the need to delineate the type of system architecture—operational,
behavioral, and physical—when someone boldly proclaims an intent to develop the “system’s” architecture.

Specific architecture view implementations are described in the respective Requirements Domain Solu-
tion, Operations Domain Solution, Behavioral Domain Solution, and Physical Domain Solution practices that
follow.

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new system selection, apply your knowledge derived from this chapter’s topical
discussions. Specifically identify the following:

(a) Who are the system’s stakeholders?

(b) What are their views and concerns of the system’s architecture?

(c) How would these views and viewpoint concerns be captured in the Requirements, Operations, 
Behavioral, and Physical Domain architectures?

(d) What are potential trade-off areas require consideration in formulating the architecture?

3. Identify an example of each of the types of system architectures and design options listed below:

(a) Centralized architecture

(b) Decentralized architecture

(c) Hot redundancy

(d) Standby redundancy

(e) k out of n redundancy

(f) Like redundancy

(g) Unlike redundancy

ORGANIZATION CENTRIC EXERCISES

1. Research your organizations command media.

(a) What requirements are levied on programs for development of system architectures?

(b) How are system architectures to be evaluated?

2. Contact a small, a medium, and a large contract program in your organization.

(a) What types of system architectures are used?

(b) Does the architecture include redundant elements? Were they required by contract?

(c) Are there redundant elements; what is the rationale?

(d) What compelling evidence—such as meeting reliability, availability, and maintainability (RAM) 
requirements—drove them to redundancy?

(e) Was redundancy a requirement in the SPS or development specification? Why?



Additional Reading 429

REFERENCES

Buede, Dennis M. 2000. The Engineering Design of
Systems. New York: Wiley.

Defense Systems Management College (DSMC). 2001.
Glossary: Defense Acquisition Acronyms and Terms, 10th
ed. Defense Acquisition University Press, Ft. Belvoir, VA.

IEEE 1471-2000. 2000. IEEE Recommended Practice for
Architectural Description of Software-Intensive Systems.
Institute of Electrical and Electronic Engineers (IEEE)
New York, NY.

“Systems always break at their interfaces.” (Anonymous)

ADDITIONAL READING

Leitch, R.D. 1988. BASIC Reliability Engineering Analy-
sis. Stoneham, MA: Butterworth.

Pidd, Michael. 1998. Computer Simulation in Manage-
ment Science, 4th ed. Chichester: Wiley.

Rechtin, Eberhardt. 1991. Systems Architecting: Creat-
ing and Building Complex Systems. Englewood Cliffs,
NJ: Prentice-Hall.

Rechtin, Eberhardt, and Maier, Mark W. 2000. Systems
Architecting: Creating and Building Complex System, 2nd
ed. Boca Raton, FL: CRC Press.



Chapter 37

Developing an Entity’s
Requirements Domain Solution

37.1 INTRODUCTION

The Requirements Domain Solution bounds an entity’s—SYSTEM, PRODUCT, SUBSYSTEM,
etc.—solution space within technical, technology, support, cost, and schedule constraints and risks.
The Requirements Domain Solution specifies:

1. WHAT capabilities and performance characteristics are required from the system, product,
or service.

2. WHAT levels of performance are expected—and HOW WELL.

3. System element accountability for accomplishing capability-based requirements.

4. WHEN the capability is required.

5. Under WHAT OPERATING ENVIRONMENT conditions and interactions.

6. WHAT outcomes or results are expected to satisfy the User’s operational needs and suc-
cessfully achieve the system and mission objectives.

This chapter expands on the Requirements Domain Solution description introduced in our discus-
sion of the SE Process Model in Chapter 26. Our discussion addresses the Requirements Domain
Solution: objectives, key elements, sequence in the SE Process Model work flow, development
responsibility, dependencies, development methodology, challenges, and work products.

What You Should Learn from This Chapter

1. What is the objective of the Requirements Domain Solution?

2. What are the key elements of the Requirements Domain Solution?

3. What is the relationship of the Requirements Domain Solution to the SE Process Model?

4. Explain the relationships of the Requirements Domain Solution to the Operations, Behav-
ioral, and Physical Domain Solutions?

5. What is the methodology used to develop the Requirements Domain Solution?

6. What are the steps of the methodology employed to derive the Requirements Domain 
Solution?

7. How do you develop the Requirements Domain Solution architecture?

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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8. What are the exit criteria of the Requirements Domain Solution?

9. What are some of the challenges in developing the Requirements Domain Solution?

10. What work products do the Requirements Domain Solution activities produce?

11. How is the Requirements Domain Solution is verified and validated?

Requirements Domain Solution 
Development Activity Objective(s)

The objectives of the Requirements Domain Solution development activity are to:

1. Accurately, precisely, consistently, and completely bound the solution space and identify
the required capabilities—the functions and performance, and characteristics required to
satisfy the User’s (contextual role) validated operational need(s).

2. Provide objective evidence as a work product to support entity verification and formal
acceptance.

Author’s Note 37.1 The usage of the term “contextual role” above refers to multi-level devel-
opment. For example, at the SYSTEM Level, the Acquirer and System Developer organizations
establish a contractual agreement for requirements via the System Performance Specification (SPS).
Within the System Developer’s program organization, the System Engineering and Integration Team
(SEIT) establishes item development specifications (IDS) with PRODUCT level integrated product
teams (IPTs), other development teams, or issues subcontracts to develop PRODUCTS. In this latter
context, the SEIT serves as an Acquirer (role) and the IPT, development teams, or subcontractors
serve as System Developers (role) for their respective PRODUCTS.

Key Elements of the Requirements Domain Solution

The key elements of the Requirements Domain Solution and their interrelationships include the fol-
lowing entities: problem space, solution space, operating constraints, capabilities, Mission Event
Timeline (MET), specifications, verification methods, functions, measures of performance (MOP),
critical operational/technical (COIs/CTIs) issues, and clarifications.

Requirements Domain Solution Dependencies

As discussed in earlier sections, the Requirements Domain Solution development is a multi-level,
highly iterative process that requires close collaboration and coordination with the evolving Oper-
ations, Behavioral, and Physical Domain Solutions as shown in Figure 26.3. Iterative analysis and
technical reviews are required, preferably by independent reviewers, to ensure that the SYSTEM
OF INTEREST (SOI) is properly balanced—meaning optimal—from an overall development and
life cycle perspective in terms of technical, cost, schedule, support, and risks.

Requirements Domain Solution Development Sequencing

As the initial stage of SYSTEM and entity development, the Requirements Domain Solution devel-
opment occurs ahead of the Operations, Behavioral, and Physical Domain Solutions as shown in
Figure 23.2. As the technical specification of a contract or task agreement, this solution ultimately
establishes the legal basis for determining formal contract-based acceptance of the physical system,
product, or service by the Acquirer and User.



Requirements Domain Solution Responsibility

Responsibility for the Requirements Domain Solution resides with the program’s Technical Direc-
tor or Project Engineer and is usually delegated to a Lead SE for the program. The Lead SE facil-
itates the development of the Requirements Domain Solution by ensuring that all operational and
disciplinary stakeholder interests are represented in the development and review of the System Per-
formance Specification (SPS) and each entity’s item development specifications.

Once the specification requirements baselines are approved and released, Configuration Man-
agement (CM) administers formal change management in accordance with direction from a Con-
figuration Control Board (CCB) or Software Configuration Control Board (CCB) of SYSTEM or
entity stakeholders.

37.2 DEVELOPING THE REQUIREMENTS 
SOLUTION ARCHITECTURE

The core infrastructure for design, development, and acceptance of any system, product, or service
resides in the requirements. The requirements scope and bound each entity’s operational, behav-
ioral, and physical capabilities, performance characteristics, and properties. From the first abstract
requirement describing an operational objective or need through the lowest level of system design
(nuts and bolts, code, etc.), the requirements must be linked to allow traceability back to their source
or originating requirements. This point establishes a fundamental rule of traceability that governs
the basis for formulation of a system design solution:

• Each requirement has a cost to implement within contract or task cost and schedule per-
formance measurement baseline constraints. If any requirement is not traceable back to a
source or originating requirement, either eliminate the requirement or renegotiate cost and
schedule constraints and replan the effort.

We refer to the hierarchical and horizontal requirements infrastructure as the Requirements
Architecture. In practice, the Specification Tree provides the framework for linking multi-level spec-
ification requirements.

Referral For more information about specifications, refer to Chapters 28 to 33 System Specifi-
cation Practices.

37.3 REQUIREMENTS SOLUTION 
DEVELOPMENT METHODOLOGY

The Requirement Domain Solution is developed as a key element of the SE Process Model as
shown in Figure 26.1. The highly collaborative and iterative integration of the Operations Domain
Solution with the Operations, Behavioral, and Physical Domain Solutions can be chaotic and
confusing.

We can minimize the chaos and confusion by applying an iterative methodology that enables
us to create the Requirements Domain Solution. The methodology represents one of many
approaches to developing the Requirements Domain Solution. View these steps as an example strat-
egy and tailor them to suit your own business domain and systems application.

Step 1: Understand the problem and solution space(s).

Step 2: Capture and bound entity requirements.

Step 3: Analyze and reconcile entity specification requirements.

432 Chapter 37 Developing an Entity’s Requirements Domain Solution
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Step 4: Derive and assimilate entity capabilities.

Step 5: Resolve requirements issues and clarifications.

Step 6: Verify and validate the Requirements Solution.

Step 7: Establish and maintain a Requirements Solution baseline.

Step 1: Understand the Problem and Solution Space(s)

The first step in developing the Requirements Domain Solution is to understand:

1. WHAT problem or issue the User is attempting to solve.

2. WHAT specification requirements are required to bound the solution space within technol-
ogy, cost, schedule and risk constraints.

Conduct a mission and operations analysis, field interviews with the User, analyze existing system
trouble reports, and understand the OPERATING ENVIRONMENT and its players and threats.

Step 2: Capture and Bound Entity Requirements

If an entity’s item development specification requirements are undefined, you need to capture, allo-
cate, and flow down higher level requirements to the entity. Accurately, concisely, consistently, and
completely bound the entity’s required capabilities and their associated levels of performance as
well as document operational, physical, design, and construction constraints. Work with the
requirements stakeholders to prioritize the specification requirements.

As entity requirements are captured, bound each one within the framework of the entity’s
required operational capabilities and characteristics. Does each requirement specify:

1. WHAT action is to be performed?

2. WHO/WHAT mechanism is accountable for performing the action?

3. WHEN the action is to be performed?

4. HOW WELL the action is to be performed?

5. Under WHAT operating scenarios and conditions?

6. WHAT outcome or result is expected from the action?

Finally, perform a reasonableness check on each requirement.
How do we do this? Formulate a mini-verification plan. Write a one- or two-sentence verifi-

cation strategy to validate that the requirement can be verified—that it is measurable, testable, and
realistically achievable—within allocated resource constraints—budgetary, schedule, facilities, and
test environment constraints.

Step 3: Analyze and Reconcile Entity 
Specification Requirements

As the entity’s requirements are established, analyze the requirements to ensure that you under-
stand WHAT:

1. Capabilities are required of the deliverable system, product, or service.

2. Levels of performance bound the capabilities.

3. Physical characteristics—such as size, weight, and reliability.

4. Design and construction constraints are levied on those capabilities.

5. Verification methods are required to verify achievement of each capability.
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Figure 37.1 Requirements Driven Capabilities

Since specifications sometimes contain missing, misplaced, duplicated, or conflicting requirements,
the requirements analysis should strive to discover, clarify, or resolve any deficiencies, issues, and
concerns. The work product of the exercise should be a set of specification requirements that are
necessary and sufficient to support development of the entity’s Operations, Behavioral, and Phys-
ical Domain Solutions.

Step 4: Derive and Assimilate Entity Capabilities

Ideally, the initial System Requirements Document (SRD) provided in the formal Request for Pro-
posal (RFP) solicitation, the System Performance Specification (SPS), and entity item development
specifications explicitly identify and bound the required capabilities of the proposed solution via
requirements statements. In general, there should be a one-to-one correlation between the require-
ments and the required capabilities. Best practices recommend that specification requirements state
one and only one requirement for a capability as illustrated by Figure 37.1.

Referral For more information regarding development of requirements statements, refer to
Chapter 33 Requirements Statement Development Practices.

The realities of system development, however, indicate this is not always the case. When specifi-
cation developers write requirements statements as paragraphs containing multiple sentences with
compound requirements, SEs must delineate and assimilate the required capabilities. Sometimes
this is easy; other times not.

If you are confronted with a feature-based specification written as a RANDOM set of thoughts,
you may have to derive a set of capabilities using the method shown in Figure 37.1 and link the
capabilities back to specification requirements. The physical linking can be accomplished with a
spreadsheet or preferably with an object-oriented (OO) requirements traceability tool based on a
relational database.
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Figure 37.2 Extracting FCIs from Specification Requirements

Referral For more information regarding feature-based specifications, refer to Chapter 31 Spec-
ification Development Practices.

To illustrate how this occurs, consider the table shown in Figure 37.2. The left side provides a
tabular listing of specification requirements that include a reference identifier (REQ_ID), specifi-
cation paragraph number, and requirements statement. Ideally the specification requirements are
written as singular requirements statements that specify one and only one operational or functional
capability.

We can extract individual capabilities from requirements statements containing singular and
compound requirements as shown on the right side of Figure 37.2. The capabilities are then assim-
ilated into a hierarchy of capabilities, each linked to applicable specification requirements.

Step 5: Resolve Requirements Issues and Clarifications

Multi-level decision making requires that issues at higher levels be resolved quickly.

1. Investigate the accuracy, consistency, and completeness of the set of requirements and inter-
faces to other sets of requirements.

2. Resolve any critical operational issues (COIs) or critical technical issues (CTIs).

3. Resolve any missing, misplaced, conflicting, duplicated, or compound requirements.

4. Verify that each requirement is applicable to the entity. If not, place it in the appropriate
entity’s item development specification.

5. Eliminate any irrelevant or non-valued-added requirements; clarify any ambiguous 
requirements.

6. Verify that each requirement is realistic, achievable, measurable, testable, and verifiable.
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Step 6: Verify and Validate Requirements Solution

Throughout the development of the Requirements Domain Solution, you should continuously
verify:

1. The integrity of SPS or item developmental specification requirements to User source and
contract documentation.

2. Relevance of each requirement to the entity as bounded by the contract or task scope.

3. Achievement of each requirement within technology, cost, schedule and risk constraints.

4. Whether all requirements issues and concerns have been resolved to the satisfaction of all
stakeholders.

5. Whether the evolving Operations, Behavioral, and Physical Domain Solutions are traceable
to and fully compliant with the Requirements Domain Solution.

The Requirements Domain Solution should also be validated with Users and other key stake-
holders via Technical Interchange Meetings (TIMS), interviews, technology demonstrations, rapid
prototypes, and models and simulations.

When the Requirements Domain Solution reaches maturity, technical review events such as
the System Requirements Review (SRR), Hardware Specification Review (HSR), Software Spec-
ification Review (HSR), and In-Process Reviews (IPRs) should be conducted. The events should
communicate and obtain consensus buy-in from key stakeholders, as appropriate, of the Require-
ments Domain Solution.

Referral For more information about technical reviews, refer to Chapter 54 Technical Review
Practices.

Step 7: Establish and Maintain Requirements 
Solution Baseline

Once the Requirements Domain solution is approved, establish an entity Requirements Baseline—
such as a System Requirements Baseline—for requirements allocations to lower levels, future deci-
sion making, and change control of the requirements. Incorporate each entity’s Requirements
Baseline into the evolving Developmental Configuration.

Using this methodology, let’s identify some of the Requirements Domain Solution challenges.

37.4 REQUIREMENTS DOMAIN SOLUTION CHALLENGES

When the Requirements Domain Solution is developed, there are several challenges that the User,
Acquirer, and System Developer(s) need to address. Consider the following challenges:

Challenge 1: Understanding of the Problem Space

Do we thoroughly understand and have we articulated the problem or issue—the problem space—
the User is attempting to solve?

Challenge 2: Development of the “Right” System

Do the requirements specify necessary and sufficient capabilities, performance, and characteristics
for a deliverable system, product, or service that fulfills the solution space(s)?
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Challenge 3: Stakeholder Operational Needs

If we develop the system according to these requirements, will the deliverable system, product, or
service fulfill the User’s intended operational needs—validation of achievement?

Challenge 4: Stakeholder Interest Representation

Do the requirements represent the consensus and prioritized interests of key stakeholders and life
cycle phases within resource constraints?

Challenge 5: Requirements Verifiability

Are the requirements realistic, achievable, testable, measurable, and verifiable?

Challenge 6: Fitness-for-Use Criteria

Do the requirements, as stated, satisfy “fitness-for-use” criteria required by the Operations, Behav-
ioral, and Physical Domain Solutions?

Challenge 7: Development Risks

Do the requirements, as stated, pose any unacceptable technical, technology, operational, support,
cost, and schedule risks?

Challenge 8: Contract Risks

Can the requirements, as stated, be implemented by a competent organization with a given level
of capability within the allowable cost and schedule constraints?

37.5 REQUIREMENTS DOMAIN SOLUTION WORK PRODUCTS

The Requirements Domain Solution:

1. Is characterized via a hierarchical specification tree of multi-level entity development,
process, and material specifications, System Performance Specification (SPS) as well as
User operational needs.

2. Consists of a set of derived capabilities with linkages to specification requirements.

3. Includes a Requirements Traceability Matrix (RTM) that documents requirements alloca-
tion to lower levels and vertical traceability to the SPS and User operational needs, and
horizontal traceability between requirements.

4. Is supported by working papers and tools such as analyses, models, and simulations that
document the technical and scientific basis for informed decision making.

37.6 GUIDING PRINCIPLES

In summary, the preceding discussions provide the basis with which to establish the guiding prin-
ciples that govern developing an entity’s Requirements Domain Solution practices.

Principle 37.1 The first step in developing any SYSTEM/entity solution begins with creating,
bounding, and specifying the requirements domain solution.
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Principle 37.2 Every requirement must be traceable to a source or originating requirement
and a cost to implement; untraceable requirements should be eliminated or linked to a source
requirement.

37.7 SUMMARY

Our discussion of the Requirements Domain Solution highlighted the key elements and work products of the
solution space. Remember the Requirements Domain Solution is highly collaborative and iterative with the
Operations, Behavioral, and Physical Domain Solutions. Requirements established for this solution bound 
the solution space from which the Operations, Behavioral, and Physical Solutions are developed.

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new system selection, apply your knowledge derived from this chapter’s topical
discussions. Specifically identify the following:

(a) Create a multi level system architecture hierarchy diagram.

(b) Derive the system’s specification tree from the system architecture

(c) Describe and bound what development specifications are required for the system and provide 
rationale.

ORGANIZATIONAL CENTRIC EXERCISES

1. Research your organization’s command media. What guidance is provided regarding developing of the
Requirements Domain Solution? Document and report your results.

2. Contact a contract program within your organization. Interview the lead SEs and research HOW the
program: 1) formulated its Requirements Domain Solution, 2) manages the requirements baselines, and 
3) links the Requirements Domain Solution to the Operations Domain Solution.

3. Select one of your organization’s system specifications and develop an architectural framework (hierarchy)
for the Requirements Domain Solution.

(a) How well do the requirements and capabilities map?

(b) Are there missing, misplaced, conflicting, or duplicated requirements?

(c) Test the syntax of each requirement. Does the set of requirements comply with criteria discussed later 
in Chapter 33 on requirements statement development?

(d) Identify any technical issues in the set of requirements.
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Developing an Entity’s 
Operations Domain Solution

38.1 INTRODUCTION

At this point, you should have an understanding of the Requirements Domain Solution. The next
step is to derive the entity’s Operations Domain Solution. The Operations Domain Solution focuses
on HOW the User intends to deploy, operate, and support the SYSTEM OF INTEREST (SOI)—
namely the MISSION SYSTEM and SUPPORT SYSTEM—to perform organizational missions
and achieve mission objectives.

This chapter addresses the Operations Domain Solution identified in the SE Process Model.
Our discussions address objectives, key elements, and sequence in the SE Process Model work-
flow, development responsibility, dependencies, development methodology, challenges, and work
products.

What You Should Learn from This Chapter

1. What is the objective of the Operations Domain Solution?

2. What are the key elements of the Operations Domain Solution?

3. What is the relationship of the Operations Domain Solution to the SE Process Model?

4. What is the relationship of the Operations Domain Solution with the Requirements, Behav-
ioral, and Physical Domain Solutions?

5. What is the relationship between required operational capabilities and mission operations?

6. What methodology is employed to develop the Operations Domain Solution?

7. What are the work products that represent the Operations Domain Solution?

8. How do you verify and validate the Operations Domain Solution?

Definitions of Key Terms

• Operational Architecture A model-based representation depicting HOW role-based
system elements (actors) are integrated to deliver products, by-products, or services to
achieve performance-based organizational mission objectives outcomes.

• Operational Asset A physical system, product, or service that an organization employs to
perform or support missions and achieve organizational objectives.

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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• Operations Function “Tasks, actions, and activities performed with available resources to
accomplish defined mission objectives and tasks environments planned or expected.”
(Source: Adapted from former MIL-STD-499 DRAFT, Appendix A, Glossary, A.3 Defini-
tions, p. 37)

Operations Domain Solution Development Objective

The objective of the Operations Domain Solution activity is to identify, formulate, and document
HOW the User envisions deploying, operating, supporting, and disposing of the deliverable system,
product, or service to accomplish organizational missions and successfully achieve the mission
objectives.

Key Elements of the Operations Domain Solution

The Operations Domain Solution consists of a number of key elements that require consideration
during the development of the solution. Operational elements include missions, mission objectives,
Mission Event Timeline (MET), operational assets, OPERATING ENVIRONMENT entities, use
cases, and use case scenarios.

Operations Domain Solution Dependencies

The multi-level Operations Domain Solution is highly iterative and requires close collaboration
and coordination with the development of the Requirements, Behavioral, and Physical Domain
Solutions as shown in Figure 26.3. Iterations are also required to ensure that the SYSTEM OF
INTEREST (SOI) is properly balanced—that is, optimal—from an overall development and life
cycle perspective—in terms of technical, cost, schedule, support, and risks.

Operations Domain Solution Development Sequencing

The Operations Domain Solution evolves slightly behind but concurrently with the Requirements
Domain Solution and ahead of the Behavioral and Physical Domain Solutions as shown in Figure
23.2.

Operations Domain Solution Development Responsibility

Responsibility for the Operations Domain Solution resides with the program’s Technical Director
or Project Engineer and is usually delegated to a Lead SE for the program. The Lead SE facilitates
the development of the Operations Domain Solution by ensuring that all operational and discipli-
nary stakeholder interests are represented in the operational architecture and System Concept of
Operations (ConOps).

As key elements of the Operations Domain Solution are approved and released, Configuration
Management (CM) administers formal change management in accordance with direction from a
Configuration Control Board (CCB) or Software Configuration Control Board (SCCB) of SYSTEM
or entity stakeholders.

38.2 DEVELOPING THE OPERATIONAL ARCHITECTURE

The Operations Domain Solution is structured around a framework referred to as the operational
architecture. The operational architecture identifies the entities that interact during all phases of the
mission. These entities include persons, places, roles, or things—that is, objects. The Unified Mod-
eling Language (UMLTM) refers to these as actors. Whereas Figure 17.2 symbolizes actors as ana-
lytical “stick figures,” the operational architecture typically employs “clip art” objects such as
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buildings, trucks, and computers that more closely resemble the real world. Figure 38.1 provides
an illustration of a Car-Driver System and how it communicates with other systems.

While operational architectures can be developed for any entity within a system, 
most are developed for the upper system levels of abstraction—SYSTEM, PRODUCT, or SUB-
SYSTEM—from a User’s perspective. Consider the following example:

EXAMPLE 38.1

An operational architecture of a printed circuit board in a desktop computer system may be of limited 
interest to most computer Users. In contrast, NASA’s JPL Mars Exploration Program users are very interested
in various aspects of the operational architectures for landing systems and deployment of their rovers includ-
ing HOW events during those phases may impact the designs of their EQUIPMENT.

The key elements of an operational architecture originate and are derived using the System Element
Architecture template shown in Figure 10.1. In general, the intent of the operational architecture
is to EXPOSE the actors, relationships, and interactions of the MISSION SYSTEM, SUPPORT
SYSTEM, and their OPERATING ENVIRONMENT. Typically, two or more interoperable, orga-
nizational assets—such as the MISSION SYSTEM and SUPPORT SYSTEM—are operationally
configured and integrated to conduct missions to achieve outcome-based results.

38.3 OPERATIONS DOMAIN SOLUTION 
DEVELOPMENT METHODOLOGY

The Operations Domain Solution is developed as a key element of the SE Process Model as shown
in Figure 26.1. The highly collaborative and iterative integration of the Operations Domain Solu-
tion with the Requirements, Behavioral, and Physical Domain Solutions is often very chaotic and
confusing.
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We can minimize the chaos and confusion by applying an iterative methodology that enables
us to create the Operations Domain Solution. The methodology represents one of many approaches
for developing the Operations Domain Solution. View these steps as an example and tailor them
to suit your business domain and systems applications.

Step 1: Conduct a mission analysis.

Step 2: Identify system elements and actors.

Step 3: Develop actor-based operational architecture.

Step 4: Develop system operations workflow sequences.

Step 5: Allocate mission operations to phases of operation.

Step 6: Establish the Mission Event Timeline (MET).

Step 7: Translate mission operations into system use cases and scenarios.

Step 8: Identify the system modes and states of operation.

Step 9: Derive system capabilities from use cases and scenarios.

Step 10: Develop the system Concept of Operations (ConOps).

Step 11: Resolve critical operational and technical issues (COIs/CTIs) and risks.

Step 12: Verify and validate operational solution.

Step 13: Establish and maintain the Baseline Concept Description (BCD).

Referral For additional information about the SE Process Model, refer to Chapter 26.

Step 1: Conduct a Mission Analysis

The System Architect, in collaboration with the System Engineering and Integration Team (SEIT),
begins by developing a full understanding of the System Performance Specification (SPS) opera-
tional requirements. During the formulation of the concept, the System Architect or LSE collabo-
rates with various system stakeholders to fully understand and validate their operational needs and
vision for the new system within the scope established by the contract and SPS.

Stakeholder analysis is accomplished in conjunction with a mission analysis of the Level 0
SYSTEM—the User’s SYSTEM. The purpose of the analysis is to understand HOW the User envi-
sions operating and maintaining the MISSION SYSTEM to achieve organizational objectives
within the prescribed OPERATING ENVIRONMENT. The analysis should:

1. Identify types of missions and system use cases for each type of mission.

2. Address all aspects of MISSION SYSTEM operations including pre-mission, mission, and
post-mission operations

3. Identify OPERATING ENVIRONMENT threats and most likely scenarios within each
phase and mode of operation.

Mission analysis should be conducted in conjunction with Understand and Bound the Problem and
Solutions Space step of the SE Process Model and Requirements Domain Solution methodology.
The analysis should identify any gaps between the SPS or entity’s item development specification
requirements and WHAT capabilities and characteristics are required to successfully accomplish
the mission and objectives.

If “gaps” exist between MISSION operational needs and documented requirements, confer
with the entity’s owner or program’s Technical Director. As appropriate, the program has a pro-
fessional obligation to inform the Acquirer and User regarding the gaps and provide a recommended
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course of action to resolve the “gaps” to support an informed decision by the Acquirer based on
collaborative consultation with the User.

The mission analysis should also produce a Mission Event Timeline (MET) that establishes the
time-based performance benchmark for allocating and assessing mission operations. The MET and
operations should be synchronized, modeled, and simulated for resolution of conflicts. Below the
SYSTEM level, internal timelines should be established and allocated as entity capability per-
formance budgets and margins.

Most likely and worst-case scenarios anticipated to be encountered during the pre-mission,
mission, and post-mission operations should also be identified and prioritized in terms of likelihood
or probability of occurrence. These include:

1. MISSION SYSTEM interruptions and malfunctions.

2. SUPPORT SYSTEM maintenance and supply interruptions.

3. Hostile, worst-case NATURAL and INDUCED ENVIRONMENTS.

Step 2: Identify System Element Actors

Based on the mission analysis, assimilate and identify what types of use case operational actors—
such as SUPPORT SYSTEM facilities, supply, training, and data—are required to support appli-
cation of the MISSION SYSTEM to achieve organizational missions and objectives during all
phases of operation—pre-mission, mission, and post-mission.

Step 3: Develop Actor-Based Operational Architecture

Using the actors identified above, FORMULATE an operational architecture that depicts the User’s
Level 0 SYSTEM implementation of the MISSION SYSTEM within the prescribed OPERATING
ENVIRONMENT. Tools such as N ¥ N (Refer to Figure 39.2) matrices and N2 diagrams provide
an excellent means of graphically depicting the interactions among operational assets.

Step 4: Develop System Operations Workflow Sequences

Given the operational architecture, develop an operational workflow that depicts the integrated
MISSION SYSTEM and SUPPORT SYSTEM elements sequences required to:

1. Prepare for, configure, train, and deploy for a mission.

2. Conduct the mission.

3. Recover and maintain the MISSION SYSTEM following the mission.

For this activity, functional flow block diagrams (FFBDs), entity relationship diagrams (ERDs),
and UMLTM sequence diagrams and interaction diagrams are among the methods used to describe
the overall mission workflow and operations. The Operations Domain Solution is captured as a
series of concurrent, multi-level, integrated System Element operations—such as EQUIPMENT,
PERSONNEL, and SUPPORT—that interact as a system to perform the system’s mission and
accomplish its objectives. Figures 18.1 and 18.2 serve as examples.

Author’s Note 38.1 Note that the description above represents an initial starting point. As the
Behavioral and Physical Domain Solutions evolve and mature, downstream design decisions may
force some rethinking and revision of the operations workflow. In some cases this may continue
after system deployment when Users have had an opportunity to “find a better way or approach”
to more efficiently and effectively perform mission operations. Obviously, we strive to “find a 
better way or approach” up front before we design the system, product, or service. Stakeholder
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assessments of models, simulations, prototypes, and demonstrations are excellent tools for ferret-
ing out some of these operational issues during early system development.

Step 5: Allocate Mission Operations to Phases of Operation

Based on the operational workflow sequences documented in Step 4, allocate each operation
or task to the pre-mission, mission, and post-mission phases of operation. For each phase of 
operation:

1. Identify specific mission-related objectives to be accomplished.

2. Mark the beginning of each phase of operation with a key event.

3. Identify key milestones that represent critical control, staging, or waypoints to assess
progress in accomplishing phase objectives.

Since operations and tasks may be vague, create an Operations Dictionary to document, scope,
and identify the objectives, inputs/outputs, outcomes, and excepted results of each operation.

Step 6: Establish the Mission Event Timeline (MET)

The identification of critical control, staging, or waypoints in Step 5 leads to a key question. For
a given system phase and mode of operation, what are the SYSTEM performance time constraints
that must be met to achieve the mission, phase, and mode objectives? The answer to this question
requires that we establish operational performance budgets and design safety margins derived from
the Mission Event Timeline (MET) for each entity. The MET establishes the critical staging points
where the MISSION SYSTEM and SUPPORT SYSTEM must be synchronized to:

1. Be configured, prepared, and in a state of mission readiness—or system availability—to
conduct the mission—pre-mission.

2. Conduct the mission—mission.

3. Extract mission data and prepare and deploy the system for the next mission—post-mission.

For each of the phases of operation identified in Step 6, establish the Mission Event Timeline (METs)
that depicts the sequences and timing of the phases of operation and their key milestones. Figures
16.1 and 49.2 serve as examples.

Referral For more information about performance budgets and safety margins, refer to Chapter
49 System Performance Analysis, Budgets, and Safety Margins Practices.

Step 7: Translate Mission Operations into System Use 
Cases and Scenarios

For each mission operation, identify system use cases that depict HOW the User envisions per-
forming the operation. For each use case, identify the most likely and worst-case scenarios that are
anticipated to occur. For each use case:

1. IDENTIFY the attributes discussed in Chapter 17 System Use Cases and Scenarios.

2. QUANTIFY the risk—probability of success times the consequences of failure.

3. PRIORITIZE for resource allocation.

Realistically, the expanse of potential or desired use cases is much greater than the available orga-
nizational development resources or contract value. Therefore, once the uses cases are identified,
prioritize and negotiate to “fit” within your resource constraints.

444 Chapter 38 Developing an Entity’s Operations Domain Solution



Author’s Note 38.2 The previous point MUST be accomplished during the proposal phase of
a system. Once the contract is awarded and your organization failed to reconcile the “cost to win”
with “price to win” during the proposal effort, and signed up to everything, negotiation favors the
Acquirer. Do yourself and your organization a favor, investigate these priorities during the pro-
posal phase; negotiate PRIOR TO Contract Award.

In general, it is impractical for the User, Acquirer, and System Developer to address every con-
ceivable operational scenario that could occur. However, to ignore most likely scenarios leaves the
SOI vulnerable, not only from a mission perspective but also the cost of the EQUIPMENT and
PERSONNEL safety and lives. You can, however, plan and budget for the most probable or likely
scenarios. The challenge is: How do you identify these most probable or likely scenarios?

The prioritized results should be discussed with User stakeholders and reconciled with the avail-
able budget. The most probable or likely scenarios that are determined to be within the scope of the
contract should be documented. Once the most probable or likely scenarios are identified for each
mode, link them to the system phases, modes, and use cases of operation.

Unanticipated or Unscheduled MISSION SYSTEM Events and Conditions. Depend-
ing on a SYSTEM’s mission and application use cases, systems often encounter unanticipated or
unscheduled events and conditions (scenarios, malfunctions, etc.) in their OPERATING ENVI-
RONMENT. Scenarios originate with: 1) the SOI, 2) NATURAL ENVIRONMENT, 3) INDUCED
NATURAL ENVIRONMENT, or 4) external HUMAN-MADE SYSTEMS. From a system safety,
reliability, vulnerability, and survivability perspective, the system should be designed with a degree
of robustness that enables it to tolerate, respond to, and survive these situations. You may be asking
the question: WHY should we be concerned with use case based scenarios? The answer lies in the
response: WHAT are the necessary and sufficient level of capabilities and robustness that will
enable the system solution to respond and react to the most likely scenarios and achieve its required
mission reliability?

Author’s Note 38.3 Note the operative term “robustness.” You will often hear System Devel-
opers refer to their “robust” design. But, what does it mean? In general, the term refers to the
system’s ability to cope with and tolerate internal and external failures as well as OPERATING
ENVIRONMENT threats during the conduct of its mission and still accomplish most or all mission
objectives.

If your analysis reveals that certain scenarios are not within the scope of your contract, the System
Developer has a professional and ethical obligation to inform and discuss the matter with the
Acquirer via contracting protocol. A remedy should be negotiated, as appropriate.

Referral For additional information about system phases and modes of operation refer to Chapter
19 System Phases, Modes, and States of Operation.

Step 8: Identify the System Modes and States of Operation

Abstract mission operations and their use cases into modes of operation are illustrated in Figure
19.2. For each mode of operation, identify the triggering events (scenarios, interrupts, malfunc-
tions, time-based events, etc.) that force a transition to the other modes of operation.

Author’s Note 38.4 It is very important to delineate the context of usage of modes of operation.
For the User’s Level 0 SYSTEM, phases and modes represent the operational aspects of employing
the SYSTEM OF INTEREST as an element of the Level 0 system operational architecture.
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As requirements are flowed down to the System Performance Specification (SPS), the System
Developer may create a set of modes of operation unique to each of the deliverable system, product,
or service physical configurations. The names of those modes may or may not be identically
matched to the specification.

Finally, for each mode of operation, identify the system’s operational states and conditions that are
allowable. Examples include ON/OFF, loading, accelerating, braking, and inspecting.

Step 9: Derive System Capabilities from 
Use Cases and Scenarios

For each use case and its most likely, probable, and worst case scenarios within each mode of oper-
ation, derive the hierarchical set of system capabilities. Figure 38.2 provides an example. A spread-
sheet matrix or a relational database should be used. Remember, since operational capabilities are
linked to the Requirements Domain Solution, the linking of system capabilities to modes establishes
traceability from SPS or entity item development specification (IDS) requirements to the modes of
operation. We refer to these as modal capabilities.

Step 10: Develop the System Concept of Operations (ConOps)

Using the information developed in the steps above, develop a SYSTEM Level Concept of Oper-
ations (ConOps) to document HOW the MISSION SYSTEM and SUPPORT SYSTEM are envi-
sioned to perform organizational missions. This includes developing the sequential and concurrent
mission operations workflows. Some organizations refer to this effort as the operational concept
description (OCD), baseline concept description (BCD), or simply ConOps.

At a minimum, the ConOps should address the following:
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1. System operational architecture.

2. MISSION SYSTEM actor roles, responsibilities, and authorities.

3. MISSION SYSTEM modes of operation, use cases, and use case scenarios.

4. SUPPORT SYSTEM actor roles, responsibilities, and authorities.

5. Pre-mission, mission, and post-mission operations workflows.

6. Operations Dictionary that identifies, scopes, and bounds each operation.

7. Mission Event Timeline (MET).

Referral For additional information about the ConOps, refer to Chapter 18 System Operations
Model.

Step 11: Resolve Critical Operational and 
Technical Issues and Risks

As the Operations Domain Solution evolves, the System Developer inevitably encounters various
critical operational and technical issues (COIs/CTIs), each with a level of criticality and urgency.
Each issue and risk should be resolved quickly to enable lower level decision making to proceed.
This includes:

1. Capturing in a database.

2. Linking to the respective contract work breakdown structure (CWBS) element.

3. Resolving, as appropriate, with the Acquirer and User via contracting protocol.

Step 12: Verify and Validate Operational Solution

Throughout the development of the Operations Domain Solution, the System Developer should
continuously verify and validate the integrity of the evolving solution. This is accomplished via
traceability to the Requirements Domain Solution and User source requirements. Coordinate and
collaborate with the Acquirer and User—the stakeholders—as applicable, via technical interchange
meetings (TIMS), technical reviews and the like.

As the Operations Domain Solution matures, conduct internal process reviews (IPRs) and 
technical reviews with stakeholders, prototypes, and demonstrations. Technical reviews such as 
the System Design Review (SDR), Hardware and Software Specification Reviews (HSRs/SSRs),
Preliminary Design Reviews (PDRs), and Critical Design Reviews (CDRs) provide a forum for
reviewing the Operations Domain Solution at various stages of development maturity.

Referral For additional information about the technical reviews, refer to Chapter 54 Technical
Review Practices.

Step 13: Establish and Maintain the Baseline 
Concept Description (BCD)

Once the system ConOps is approved, the document and relevant supporting documentation—the
operational architecture, modes and states of operations, and mission event timeline (MET)—are
baselined by configuration management and incorporated into the evolving developmental con-
figuration. The collection of information constitutes the Baseline Concept Description (BCD).

Author’s Note 38.5 Although the discussion above addressed the methodology in a linear step-
by-step basis, these steps are highly iterative and have implicit feedback loops to preceding steps.
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Similar iterations occur between the Operations Domain Solution and the Requirements, Behav-
ioral, and Physical Domain Solutions until the total system design matures.

38.4 OPERATIONS DOMAIN SOLUTION 
DEVELOPMENT CHALLENGES

When the Operations Domain Solution is developed, there are several challenges that the User,
Acquirer, and System Developer(s) need to address. Examples include:

Challenge 1: ConOps Acceptance

Do the stakeholders agree with the system Concept of Operations (ConOps) document?

Challenge 2: Use Case Identification and Priorities

Do the stakeholders agree with: 1) the use cases and 2) use case priorities?

Challenge 3: Most Likely or Worst-Case 
Scenarios and Conditions

Do the system phases and modes of operation reflect the anticipated OPERATING ENVIRON-
MENT application and most likely or worst-case scenarios and conditions?

Challenge 4: “Gaps” in Operational Capabilities

Based on a review of the system phases, modes, and states of operation, are there any missing capa-
bilities that have not been specified or included in the cost estimate?

Challenge 5: “Fitness-for-Use” or Acceptance Criteria

Are the capabilities allocated to system phases and modes of operation necessary and sufficient to
achieve the mission, phase, and mode of operation objectives?

Challenge 6: Performance Timeline(s)

Does the Mission Event Timeline (MET) allocated to system phases and modes of operation pass
the reasonableness test?

38.5 OPERATIONS DOMAIN SOLUTION WORK PRODUCTS

The Operations Domain Solution is documented via a series of work products that represent HOW
the User intends to deploy and employ the MISSION SYSTEM to accomplish various organiza-
tional missions and scenarios. The overall Operations Domain Solution is documented initially in
the System Concept of Operations (ConOps) document.

Author’s Note 38.6 Most people tend to limit their thinking of the Operations Domain Solu-
tion to the SYSTEM level. As requirements are allocated to lower levels by the respective entity/item
development specification owners, EACH entity will have its own unique operational concept
description (OCD) of how it will operate and support to fulfill the higher level entity’s operations.
For example, a PC board or movable part should have its own unique OCD or Theory of Opera-
tion that serves as the foundation for deriving the Behavioral and Physical Domain Solutions.
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38.6 GUIDING PRINCIPLES

In summary, the preceding discussions provide the basis to establish guiding principles that govern
development of an entity’s Operations Domain Solution.

Principle 38.1 The Operations Domain Solution is a derivative of the Requirements Domain
Solution and serves as the foundation for developing the Behavioral Domain Solution.

Principle 38.2 The Operations Domain Solution must be consistent with and traceable to the
Requirements, Behavioral, and Physical Domain Solutions.

38.7 SUMMARY

The development of the Operations Domain Solution is highly iterative with the Requirements, Behavioral,
and Physical Domain Solutions as they evolve. As the Operations Domain Solution matures, it serves as the
high-level abstraction from which the Behavioral Domain Solution is derived.

The Operations Domain Solution is:

1. Derived from the system capability and performance requirements established by the Requirements
Domain Solution.

2. Establishes the operational architecture that expresses how system elements interact.

3. Establishes the system phases and modes of operation and associated use cases.

4. Creates the Mission Event Timeline (MET).

5. Maps required operational capabilities to the system phases and modes of operation.

6. Defines the system capability operations and tasks.

7. Allocates MET performance to system capability operations and tasks.

Based on an understanding of the Operations Domain Solution practices, we are now ready to discuss the
development of the Behavioral Domain Solution practices.

NOTE

The Unified Modeling Language (UML®) is a registered trademark of the Object Management Group (OMG).

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new system selection, apply your knowledge derived from this chapter’s topical
discussions. You have been hired as a consultant by an Acquirer to make recommendations for the system
selected.

(a) Develop a system operations model that captures HOW the system is envisioned to be operated based 
on interviews with the User.

(b) Develop an outline for a ConOps to be used to describe the system operations model.

(c) Describe how the Operations Domain Solution links to its Requirements Domain Solution.
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ORGANIZATIONAL CENTRIC EXERCISES

1. Research your organization’s command media. What guidance is provided regarding development of the
Operations Domain Solution? Document and report your results.

2. Contact a contract program within your organization. Interview the Lead SEs and research HOW the
program:

(a) Formulated its Operations Domain Solution.

(b) Manages the requirements baselines.

(c) Links the Requirements Domain Solution to the Operations Domain Solution.

3. Select one of your organization’s system specifications and develop a high-level Operations Domain 
Solution.

REFERENCE

MIL-STD-499B (cancelled draft). 1994. Systems Engineering. Washington, DC: Department of Defense (DoD).

ADDITIONAL READING

DI-IPSC-81430. 1994. Operational Concept Description. DoD Data Item Description (DID). Washington, DC: Department
of Defense (DoD).
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Chapter 39

Developing an Entity’s 
Behavioral Domain Solution

39.1 INTRODUCTION

As the Operational Domain Solution evolves and matures, the next stage is to establish the entity’s
Behavioral Domain Solution. During this stage of SE design we elaborate HOW the User might
envision the system sensing, reacting to, processing inputs, and responding to stimuli and cues
internal and external to the system. We do this by identifying WHAT behavioral interactions occur
between Operational Domain Solution elements to accomplish mission objectives. This stage also
represents what may be the:

1. Most critical and neglected stage of SE design.

2. Source of many problems that do not surface until System Integration, Test, and Evalua-
tion (SITE).

When new system development is started, engineers often begin at the wrong end of the system
design solution—which is the Physical Domain Solution. They tend to prematurely focus on hard-
ware and software designs, graphical user interfaces (GUIs), data communications rates, and hard-
ware and software selection. They do this without stopping to understand:

1. HOW the system is expected to react and respond to operator and external stimuli.

2. HOW WELL the responses are to be performed.

As a design paradigm, this is a model for disaster. The design paradigm is exacerbated by inex-
perienced, egotistical decision makers who charge ahead and mandate that if you are not “cutting
metal, coding software, and soldering PC board components” the FIRST week after Contract
Award, the program is behind schedule.

Author’s Note 39.1 The design paradigm noted above can be characterized as a “hobby shop”
approach. There are well-founded instances where the paradigm may be valid—as minor modifi-
cations to existing equipment. The context of this observation relates to complex, medium- to large-
scale system development programs. Well-disciplined and experienced SEs understand the fallacies
and pitfalls of this approach and understand how to tailor the methodology to fit within program
constraints without diluting the integrity of the methodology.

The message here is do the job RIGHT “up front” for $X+ or pay $2X+ and consume 
2X+ schedule attempting to correct these premature and immature approaches to system develop-

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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ment. The decision ultimately comes down to “Are you running a hobby shop for amateurs or a
highly efficient and effective performing engineering organization?”

This chapter expands on the Behavioral Domain Solution description provided in our discus-
sion of the System Solution Domains. Our discussion addresses the components of the Behavioral
Domain Solution: objectives, key elements, sequence in the SE Process Model workflow, devel-
opment responsibility, dependencies, development methodology, challenges, and work products.

What You Should Learn from This Chapter

1. What is the objective of the Behavioral Domain Solution?

2. What are the key elements of the Behavioral Domain Solution?

3. What is the relationship of the Behavioral Domain Solution to the SE Process Model?

4. Explain the relationship of the Behavioral Domain Solution to the Requirements, Opera-
tions, and Physical Domain Solutions?

5. What is the relationship between specification requirements and capabilities?

6. What is the methodology used to develop the Behavioral Domain Solution?

7. What are the work products that represent the Behavioral Domain Solution?

8. How do you verify and validate the Behavioral Domain Solution?

Definitions of Key Terms

• Transaction “In software engineering, a data element, control element, signal, event, or
change of state that causes, triggers, or initiates an action or sequence of actions.” (Source:
IEEE 610.12-1990)

• Transaction Analysis “A software development technique in which the structure of a system
is derived from analyzing the transactions that the system is required to process.” (Source:
IEEE 610.12-1990)

Behavioral Domain Solution Objective

The objective of the Behavioral Domain Solution development activity is to conceptualize, for-
mulate, and translate the Operations Domain Solution use cases, scenarios, and capabilities into a
set of behavioral capabilities, interactions, and responses that support all phases of operation—pre-
mission, mission, and post-mission.

39.2 KEY ELEMENTS OF THE BEHAVIORAL 
DOMAIN SOLUTION

The Behavioral Domain Solution is characterized by several elements that provide the basis for
formulating system behavioral reactions and responses. These include scenarios, stimuli, capabil-
ities, resources, constraints, and responses. Capabilities are implemented by one or more system
operations that may consist of at least two or more system tasks. Each system operation and task:

1. Communicates via one or more interactions.

2. Is bounded by at least one or more performance budgets and safety margins.

Referral For more information about performance budgets and safety margins, refer to Chapter
49 System Analysis, Performance Budgets, and Safety Margins Practices.
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The Need for the Behavioral Domain Solution

You may ask: why do we need a Behavioral Domain Solution? The answer lies in understanding
HOW System Developers, as humans, approach design problems.

As humans, we have differing levels of training, knowledge, and experience. Within a design
team, some members focus on WHAT the system is required to accomplish—its behavior—while
others are focused on HOW a circuit will be designed, WHAT data exchange protocol to use, or
WHAT software operating system language is to be used—its implementation.

As an SE, you have to exhibit leadership and establish control of these wanderings and diver-
sions; otherwise, frustration, chaos, and havoc can prevail. So get the group focused on one task
at a time. First, understand WHAT the system is required to accomplish via the Behavioral Domain
Solution. Then, as the Behavioral Domain Solution gains some maturity, shift to the second task—
concurrent development of the Physical Domain Solution that addresses HOW to implement the
Behavioral Domain Solution via physical components.

Behavioral Domain Solution Dependencies

The multi-level Behavioral Domain Solution is highly iterative and requires close coordination and
collaboration with the Requirements, Operations, and Physical Domain Solutions as they as shown
in Figure 26.3. Iterations are also required to ensure that the SYSTEM OF INTEREST (SOI) is
optimally balanced from an overall development and life cycle perspective of technical, cost, sched-
ule, support, and risks.

Behavioral Domain Solution Development Sequencing

The Behavioral Domain Solution is a multi-disciplined activity lead by the entity’s Lead SE. The
Behavioral Domain Solution evolves slightly behind but concurrently with the Requirements and
Operations Domain Solutions and ahead of the Physical Domain Solution, as shown in Figure 23.2.

Behavioral Domain Solution Development Responsibility

Responsibility for the Behavioral Domain Solution resides with the program’s Technical 
Director or Project Engineer and is usually delegated to a Lead SE for the program. The Lead SE
facilitates the development of the Behavioral Domain Solution by ensuring that all operational and
disciplinary stakeholder interests are represented in the logical/functional architecture and its
description.

As key elements of the Behavioral Domain Solution are approved and released,
Configuration Management (CM) administers formal change management in accordance with direc-
tion from a Configuration Control Board (CCB) or Software Configuration Control Board (CCB)
of SYSTEM or entity stakeholders.

39.3 DEVELOPING THE BEHAVIORAL ARCHITECTURE

As the SYSTEM or entity’s operational architecture evolves and matures, the next step is to under-
stand HOW the SYSTEM and its entities—the UML® actors—interact and respond to various 
operator and external system stimuli and cues. The foundation for this understanding begins with:

1. The entities identified in the operational architecture.

2. Capabilities specified in its specification—such as System Performance Specification (SPS)
or item development specification.
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At this stage of the SYSTEM or entity’s development, the entity is simply an abstraction. As an
analytical abstraction, we refer to it as having logical or associative relationships. The challenge
here is creating a logical/functional framework that captures these relationships. We refer to it as
the logical or functional architecture.

Foundation for the Logical Architecture

The logical or functional architecture exposes the key, multi-level logical or functional capabili-
ties and interrelationships between the Operations Domain Solution elements. The logical/
functional architecture provides a framework to depict the behavioral interactions of HOW the
SYSTEM or entity responds to its OPERATING ENVIRONMENT for various missions and 
scenarios.

As the SYSTEM or entity processes inputs, it exhibits behavioral patterns and characteristics.
To accomplish the internal processing, a SYSTEM or entity provides one or more capabilities to
transform the set of inputs into behavior, products, by-products, and services. If the system is
required to interact with friendly, benign, or hostile external entities in its OPERATING ENVI-
RONMENT, additional capabilities ensure a level of interoperability with or survivability during
interactions with those entities.

Referral For more information about system interactions, refer to Chapter 15 System Interac-
tions with Its Operating Environment and Chapter 43 System Interface Analysis, Design, and
Control Practices.

As we analyze this environment, we discover there are virtual and physical system entities or actors
(UML®)—namely people, capabilities, operations, functions, events, roles, constraints, and con-
trols—that interact with each other or represent the behavior, products, by-products, or services
produced by the system. We generically classify people, capabilities, operations, functions, events,
roles, constraints, and controls as objects, entities, or actors within the SYSTEM. In general, the
actors, objects, or entities are identified as nouns—the same as persons, places, or things.

The logical/functional architecture portrays WHAT relationships and interactions are required
to contribute capabilities to enable the SYSTEM to perform its missions. Note that this character-
ization DOES NOT address HOW these objects and interactions will be physically implemented;
the Physical Domain Solution addresses HOW via its physical architecture. As the cliché goes,
function always precedes form and fit.

Logical/Functional Architecture Development Methodology

We have established that the logical/functional architecture exposes the objects, entities, or actors
that exist within a given system level of abstraction and class entity—such as PRODUCT SUB-
SYSTEM, and ASSEMBLY and their interdependency relationships. The question is: HOW do we
develop the architecture?

One approach is to employ a simple methodology that consists of the steps listed below:

Step 1: Identify logical objects or entities.

Step 2: Identify each entity’s capabilities.

Step 3: Create a logical interactions matrix.

Step 4: Create the logical/functional architecture.

Let’s elaborate further on each of these steps.

Step 1: Identify Logical Objects or Entities. The first step in developing a logical or func-
tional architecture is to simply identify the SYSTEM or entity’s required capabilities; create a list.
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Then, translate the list into a hierarchy tree similar to the one shown in Figure 39.1, which illus-
trates a Car-Driver SYSTEM.

Step 2: Identify Each Entity’s Capabilities. Once you identify the SYSTEM or entity’s key
capabilities, the next step is to establish their interrelationships. The method used depends on the
size and complexity of the SYSTEM or entity. If you attempt to start with system block diagram
SBD, the leap may be too challenging. You may discover that you are not only contending with
the relationships but also the graphics. Interconnecting lines may be criss-crossing everywhere,
making the diagram unnecessarily complex and confusing.

Step 3: Create a Logical Interactions Matrix. So, how do we model system logical/functional
and interactions? First, we need to understand which capabilities have logical associations. We can
do this by creating a matrix as shown in the upper left section of Figure 39.2. The N ¥ N or N2 matrix
allows us to link one capability to another as well as system stimuli—the inputs—and responses—
the outputs. Capability A has a logical entity relationship to Capability B, B to C, and so forth. For
large, complex systems, a summary matrix is invaluable as a foundation for the next step.

Author’s Note 39.2 Although it appears to create an extra step, the matrix serves as an impor-
tant analytical pairwise comparison method. Under the pairwise method we focus on one element
and then determine if it has entity relationships with each of the remaining elements across a row
of the matrix. The next step involves creating a graphical rendering of the logical architecture for
presentation purposes. If we had attempted to create the next step first, we would have lacked a
clean method of ensuring every interaction is considered, which is the strength of the matrix and
N2 approaches.

Step 4: Create the Logical/Functional Architecture. Once the logical interaction matrix is
established, we translate the interactions into a graphic referred to as an N2 diagram as shown 
in the lower right portion of Figure 39.2. Each of the capabilities represents a multi-level set of
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operations or tasks that perform the actions required to produce the expected outcome and levels
of performance. Both the N ¥ N and N2 methods enable us to focus on interactions without being
distracted with “packaging” the graphic.

An alternative to the N2 method is the object-oriented (OO) approach shown in Figure 39.3.
This method illustrates each capability’s name, attributes, and operations. Similar annotations could
be added to the N2 diagram shown in Figure 39.2.
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Guidepost 39.1 At this point we have introduced HOW to construct the basic logical/functional
architecture. The key here is identifying the primary capabilities of the SYSTEM or entity. HOW
we identify these elements depends on whether a system is precedented or unprecedented—thereby
avoiding unnecessarily analyses if the basic architectural elements are known.

Precedented System Logical/Functional 
Architecture Development

As discussed in Part I, most human-made systems are precedented systems. Their proven archi-
tectures and technologies improve on existing designs. Consider the following example:

EXAMPLE 39.1

As a precedented system, a car has a chassis, engine, and so forth. Although you need to avoid paradigms
that limit creative design solutions and help us to “think outside the box,” we do not have to functionally re-
derive a car’s fundamental design—create the chassis, engine, and body from a blank piece of paper. We
simply defer to a conventional vehicle architecture as an initial starting point.

Hypothetically, if you had two control groups and tasked each to create the logical architec-
ture for the same system, the graphics may and probably will be different. Is one architecture
RIGHT and the other WRONG? Generally, no. ALWAYS have multiple approaches to solving the
same class of engineering problem. We see this in commercial products such as automobiles, com-
puters, and TVs. In general, they fill similar market solution space abstractions—in this example,
transportation, steering, and the like.

Unprecedented System Logical/Functional 
Architecture Development

In contrast, unprecedented systems may require new “thinking outside the box” approaches to a
SYSTEM’s logical/functional architecture. Consider the following example:

EXAMPLE 39.2

Although the NASA had previously landed unmanned probes on the Moon, the Apollo Lunar Lander was a
first in the design of a manned lunar landing and launch craft.

EXAMPLE 39.3

NASA’s Skylab program represented a first for human habitation in a space-based laboratory environment,
particularly in performing human tasks in a weightless environment for an extended period of time.

Where unprecedented systems are the case, the development team derives the logical/functional
architecture from abstract mission or scientific objectives—namely “Do great and wonderful
science.” In these cases SEs, in collaboration with principal investigators, derive and extract
the SYSTEM’s capabilities. Some Acquirers may initiate study contracts or proof of concept
demonstration contracts, deriving SYSTEM capabilities via a series of “down select” contracting
stages.
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Modeling the Logical/Functional Architecture

Logical/functional architectures employ model-based representations via system block diagrams
(SBDs), object diagrams, among other graphical methods, to expose SYSTEM or entity embedded
elements and their relationships. However, SBDs DO NOT expose the logical sequences of data
exchanges or behavioral interactions that occur between actors or objects. Therefore, behavioral
modeling tools are employed, in combination with timelines and performance budget and safety
margin allocations, to evaluate the overall effectiveness of each candidate architecture solution.
Behavioral modeling tools include N2 diagrams, UML® interaction diagrams, functional flow block
diagrams (FFBDs), and control and data flows.

You may ask: WHY do we need to create a model of a logical/functional architecture?
Logical/functional architecture modeling and its internal capability processing are crucial for:

1. Driving out or exposing undiscovered requirements.

2. Establishing SYSTEM or entity performance budgets and margins.

3. “Load” balancing to optimize system performance.

4. Allocating and flowing down requirements to lower levels via item development 
specifications.

Referral For more information about performance budgets and safety margins, refer to Chapter
49 System Analysis, Performance Budgets, and Design Safety Margins.

Referral For more information about modeling architectures, refer to Chapter 20 Modeling
System and Support Operations Practices and Chapter 51 System Modeling and Simulation.

Final Thoughts

Logical entity relationships enable us to communicate the associations or connectivity required
between two or more logical entities based on a validated operational need. Since these are need-
based interactions, the emphasis is on:

1. WHO interacts with WHOM.

2. WHAT is to be interacted or communicated.

3. WHEN the behavioral interactions occur.

4. Under WHAT conditions.

Based on this discussion, let’s describe the basic methodology used to develop the Behavioral
Domain Solution. Tailor the methodology to fit your specific business needs.

Guidepost 39.2 At this juncture, we have described HOW to create the logical/functional archi-
tecture that serves as the framework for the Behavioral Domain Solution. We now shift our focus
to the methodology for creating the overall Behavioral Domain Solution for a SYSTEM or entity.

39.4 BEHAVIORAL DOMAIN SOLUTION 
DEVELOPMENT METHODOLOGY

The Behavioral Domain Solution is developed as a key element of the SE Process Model. The
highly collaborative and iterative convolution of the Behavioral Domain Solution with the Require-
ments, Operations, and Physical Domain Solutions is often very chaotic and confusing.
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We can minimize the chaos and confusion by applying an iterative methodology that enables
us to create the Behavioral Domain Solution. View these steps as an example strategy and tailor
them to suit your business domain and systems application.

Referral For additional information about the SE Process Model, refer to Chapter 26 SE Process
Model.

Author’s Note 39.3 The Behavioral Domain Solution is one area where there are multiple
approaches and methods for defining the solution and its work products. There seems to be no con-
sensus regarding a RIGHT approach or method; we all have our own approach or recipe.

Our discussions here are intended to focus on the strategy or methodology of Behavioral Solu-
tion Development. The takeaway from this discussion should be key insights as to HOW you might
approach developing a Behavioral Domain Solution. Then, formulate an approach that works for
you, your team, and system development application, and apply the appropriate tools to support
your methodology.

The methodology consists of the following steps:

Step 1: Establish the multi-mode logical architecture.

Step 2: Model mode-based system interactions.

Step 3: Allocate entity performance budgets and design safety margins.

Step 4: Analyze system failure modes and effects.

Step 5: Evaluate and optimize system behavioral performance.

Step 6: Resolve critical operational and technical issues (COIs/CTIs).

Step 7: Verify and validate behavioral domain solution.

Step 8: Establish and maintain the entity behavioral solution baseline.

Let’s elaborate further on each of these steps.

Step 1: Establish the Multi-Mode Logical Architecture

The first step in developing the Behavioral Domain Solution is to understand the entity relation-
ships between system capabilities. The relationships and their associated interactions provide the
basis to construct a framework referred to as the logical/functional architecture. Based on the
MISSION SYSTEM, SUPPORT SYSTEM, and OPERATING ENVIRONMENT interactions, for-
mulate a logical architecture that integrates mode-based capabilities, behavior, and interactions. If
appropriate, identify alternative logical architectures. Model, simulate, evaluate, and conduct trade-
offs of the set of architectures. Select the logical architecture that best represents the proper balance
of system performance for all modes of operation. Figure 31.2 provides a high level example of a
logical architecture that captures associative relationships between system capabilities.

Step 2: Model Mode-Based System Interactions

Using the high-level interactions as a foundation, capture the MISSION SYSTEM’s interactions
as a function of phase and mode of operation. Based on each mode’s use cases, model the behav-
ioral interactions “thread” from input to output through the system’s capabilities as shown in Figure
39.4.
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Step 3: Allocate Entity Performance Budgets 
and Safety Margins

For each phase, mode, use case, and scenario of operation, link capability interactions and per-
formance to time-constrained performance—such as the Mission Event Timeline (MET). Allocate
performance BUDGETS and design safety MARGINS to each logical entity. Include timing per-
formance allocations derived from the Mission Event Timeline (MET), as shown in Figure 39.5.
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Step 4: Analyze System Failure Modes and Effects

For those systems that are mission critical or may have the potential to damage EQUIPMENT,
PERSONNEL, the public, or the environment, conduct a Failure Modes and Effects Analysis
(FMEA). For mission critical elements that may involve hazards that are high risk, expand the
FMEA into a Failure Modes, Effect, and Criticality Analysis (FMECA). Former Mil-Std-1629A
Military Standard Procedures for Performing a Failure Modes, Effects, and Criticality Analysis
provides guidance.

Step 5: Evaluate and Optimize 
System Behavioral Performance

Evaluate and optimize Behavioral Domain Solution performance relative to the SPS or each entity’s
item development specification requirements. For each phase and mode of operation, validate that
each mode’s capabilities and performance interactions will withstand and survive the most likely
and worst case scenarios subject to technical, technology, cost, and schedule constraints.

Step 6: Resolve Critical Operational 
and Technical Risks and Issues

As the Behavioral Domain Solution evolves, identify, clarify, and resolve critical operational and
technical issues (COIs/CTIs) and risks. Link the issues and risks to the appropriate CWBS ele-
ments and specification requirements. When and where appropriate, collaborate with the Acquirer
and User to resolve the COIs/CTIs via contracting protocol.

Step 7: Verify and Validate Behavioral Domain Solution

Throughout the development of the Behavioral Domain Solution, continuously verify and validate
the completeness and integrity of the evolving solution via document reviews, technical reviews,
prototypes, technology demonstrations, and modeling and simulation. Verify that all aspects of the
Behavioral Domain Solution are traceable back to the source or originating requirements as doc-
umented in the System Requirements Document (SRD)—by way of a formal Request for Proposal
(RFP) solicitation—or in the contract, as applicable via the system’s hierarchical specification tree.

Step 8: Establish and Maintain the 
Entity Behavioral Solution Baseline

As the SYSTEM and each entity’s Behavioral Domain Solution are approved, establish a formal
baseline to serve as the basis for requirements allocation and flow down, future technical decision
making, and change control. Incorporate the Behavioral Domain Solution and its updates into the
evolving Developmental Configuration.

39.5 BEHAVIORAL DOMAIN SOLUTION 
DEVELOPMENT CHALLENGES

When the Operations Domain Solution is developed, there are several challenges that the User,
Acquirer, and System Developer(s) need to address. Examples include:

Challenge 1: Requirements traceability

Challenge 2: Stakeholder collaboration

Challenge 3: Stakeholder reviews
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Challenge 4: Critical issue risk mitigation

Challenge 5: Baseline management

Challenge 6: Realism

Challenge 7: Behavioral solution system description

Challenge 8: CWBS traceability

Let’s explore some of the key questions that represent challenge to developing the Behavioral
Domain Solution.

Challenge 1: Requirements Traceability

Is the Behavioral Domain Solution traceable to the following?

1. Requirements Domain Solution System documented in Performance Specification (SPS)
and development specifications.

2. Operations Domain Solution documented in System Concept of Operations (ConOps),
Mission Event Timelines (METs), system phases and modes of operation, etc.

3. Physical Domain Solution documented in Physical system architecture, Bills of Materials
(BOMs) etc.

Challenge 2: Stakeholder Collaboration

Did you consult and collaborate with key stakeholders in developing the Behavioral Domain 
Solution?

Challenge 3: Stakeholder Reviews

Have the key stakeholders reviewed and approved, as appropriate, portions or all of the Behavioral
Solution?

Challenge 4: Critical Issue Risk Mitigation

Have all critical operations, technical, technology, support, cost, and schedule risks been identified
and mitigated?

Challenge 5: Baseline Management

Have the Behavioral Domain Solution work products been incorporated into the evolving Allocated
Baseline of the Developmental Configuration?

Challenge 6: Realism

Can the Behavioral Solution implementation be realistically achieved with physical components
and technologies with an acceptable level of risk within the available cost and schedule constraints?

Challenge 7: Behavioral Solution System Description

Has the Behavioral Domain Solution been adequately documented in the System/Subsystem Design
Description (SSDD) or Interface Design Description (IDD) to a level of detail that permits pro-
curement or development and maintenance of the system or entity?
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Challenge 8: CWBS Traceability

Are the elements of the Behavioral Domain Solution traceable to the Contract Work Breakdown
Structure (CWBS) elements?

Behavioral Domain Solution Work Products

Key work products of the Behavioral Domain Solution consist of:

1. Interaction diagrams for multi-level system capabilities.

2. UML® sequence diagrams representing processing capabilities.

3. A logical or functional architecture—such as FFBDs and ERDs.

4. Capability performance timelines.

5. Allocations of time-based performance to operations and tasks required to implement the
capability.

39.6 GUIDING PRINCIPLES

In summary, the preceding discussions provide the basis with which to establish the guiding prin-
ciples that govern development of an entity’s Behavioral Domain Solution practices.

Principle 39.1 The Behavioral Domain Solution is a derivative of the Operations Domain Solu-
tion and provides the foundation for developing the Physical Domain Solution.

Principle 39.2 The Behavioral Domain Solution must be consistent with and traceable to the
Requirements, Operations, and Physical Domain Solutions.

39.7 SUMMARY

Our discussions of the Behavioral Domain Solution highlighted the need for and the evolution of the Behav-
ioral Domain Solution and its logical architecture. We noted the importance of the following:

1. Identify the logical entities that provide system capabilities.

2. Understand WHAT capabilities the logical entities are intended to provide.

3. Express HOW the logical entities relate and interact.

4. Link logical performance to system performance metrics.

This solution, as typical of the others, progresses to maturity over time. This is accomplished by a lot of col-
laborative iterations, interactions, and negotiations with the Requirements, Operations, and Physical Domain
Solutions.

Based on this discussion and understanding, we are now ready to address the Physical Domain Solution.

NOTE

The Unified Modeling Language (UML®) is a registered trademark of the Object Management Group (OMG).
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GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new system selection, apply your knowledge derived from this chapter’s topical
discussions. You have been hired as a consultant by an Acquirer to make recommendations for the system
selected.

(a) Identify the actors of the system’s Behavioral Domain Solution.

(b) Develop the system’s logical or functional architecture.

(c) Create a matrix to captures the logical entity relationships and interactions.

(d) Develop high-level interaction diagrams and sequence diagrams that depict actor interactions.

ORGANIZATIONAL CENTRIC EXERCISES

1. Research your organization’s command media. What guidance is provided regarding developing of the
Behavioral Domain Solution? Document and report your results.

2. Contact a contract program within your organization. Interview the lead SEs and research HOW the
program:

(a) Formulated its Behavioral Domain Solution.

(b) Documented the Behavioral Domain Solution.

(c) Links the Behavioral Domain Solution to the Requirements, Operations, and Physical Domain 
Solutions.

3. Select one of your organization’s system specifications and create a high-level Behavioral Domain 
Solution.

REFERENCES
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Chapter 40

Developing an Entity’s 
Physical Domain Solution

40.1 INTRODUCTION

Based on the preceding discussions of the Requirements Domain Solution, Operations Domain
Solution, and Behavioral Domain Solution, we have:

1. Established a SYSTEM/entity’s required operational capabilities.

2. Developed a system Concept of Operations (ConOps) describing its system phases and use
cases or modes of operation based on its System Operations Model.

3. Developed behavioral capability interactions and defined their relationships and time/
performance based interactions.

The question now is: HOW do we implement the Behavioral Domain Solution via physical com-
ponents such as PRODUCTS, SUBSYSTEMS, and ASSEMBLIES? The answer resides in the
Physical Domain Solution.

The Physical Domain Solution represents:

1. A preferred solution selected from a set of viable candidate solutions.

2. The physical implementation of the Behavioral Domain Solution in terms of PERSONNEL,
FACILTIES, EQUIPMENT, and PROCEDURAL DATA.

When operating, the Physical Domain Solution validates the correctness of engineering form, fit,
and function assumptions and decisions. Though analytical up to this point, SEs for the User,
Acquirer, and System Developer must ask the following types of system delivery questions:

1. VERIFICATION Did the System Developer inplement the SYSTEM/entity RIGHT (i.e., cor-
rectly) in compliance with its specifications and design requirements?

2. VALIDATION Did we, the Acquirer, specify and bound the RIGHT product for the User’s
operational need?

This chapter addresses the Physical Domain Solution: objectives, key elements, sequence in the SE
Process Model workflow, development responsibility, dependencies, development methodology,
challenges, and work products.

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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What You Should Learn from This Chapter

1. What is the objective of the Physical Domain Solution?

2. What are the key elements of the Physical Domain Solution?

3. What is the relationship of the Physical Domain Solution to the SE Process Model?

4. What is the relationship of the Physical Domain Solution with the Requirements, Opera-
tions, and Physical Domain Solutions?

5. What is the relationship between specification requirements and capabilities?

6. What is the methodology used to develop the Physical Domain Solution?

7. What are the work products that represent the Physical Domain Solution?

8. How is the Physical Domain Solution is verified and validated?

Definitions of Key Terms

• Component A physical entity that implements one or more logical entities and its capabil-
ities to produce SYSTEM RESPONSES.

• Physical Architecture A multi-level configuration used that identifies the physical compo-
nents of the system, how they interconnect, and contribute to produce behavior, products,
by-products, and services to fulfill the system’s mission and accomplish its objectives.

As a generic entity, an item applies to: 1) externally procured products, such as commercial off-
the-shelf (COTS) items and nondevelopmental items (NDI), and 2) internally developed systems
or products, such as configuration items (CIs) or modified COTs/NDIs.

Referral For more information about items, refer to Chapter 42 System Configuration Identifi-
cation Practices.

Author’s Note 40.1 Since most people are comfortable with the term, “component,” we use it
here as a generic representation of any physical item such as a PRODUCT, SUBSYSTEM, or
ASSEMBLY. Later, in our system configuration identification discussion, we use the term “item”
recognized by Configuration Management when referring to generic physical entities. For now,
component should be adequate.

40.2 KEY ELEMENTS OF THE PHYSICAL DOMAIN SOLUTION

The Physical Domain Solution has several key elements that provide the basis for selecting phys-
ical components. The physical system architecture is characterized by one-to-many relationships
with Standard Operating Practices and Procedures (SOPPs), physical elements, constraints, inputs,
and behavioral responses and resources.

Physical Domain Solution Development Activity Objectives

The objectives of the Physical Domain Solution development activity are to:

1. Select a physical architecture from a set of viable alterative solutions.

2. Select physical components to satisfy architecture element requirements.

3. Translate component requirements into detailed design requirements that can be used to
procure, develop, or modify the components.
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4. Optimize the performance of the preceding items to achieve an optimal balance of techni-
cal, cost, and schedule performance with acceptable risk to the stakeholders.

Based on this introduction, let’s begin our discussion with the key elements of the Physical Design
Solution.

Physical Domain Solution Dependencies

The multi-level Physical Domain Solution is highly iterative. It requires close coordination and
collaboration with the Requirements, Operations, and Behavioral Domain Solutions as they as
shown in Figure 26.3. Iterations are also required to ensure that the SYSTEM OF INTEREST (SOI)
is properly balanced (i.e., optimal) from an overall development and life cycle perspective in terms
of technical cost, schedule, support, and risks.

Physical Domain Solution Development

The Physical Domain Solution evolves slightly behind but synchronized with the Requirements,
Operations, and Behavioral Domain Solutions as shown in Figure 23.2. This solution ultimately
defines the physical system, product, or service that is to be verified and delivered in accordance
with the Terms and Conditions (Ts&Cs) of the contract and its System Performance Specification
(SPS) or an entity’s item development specification (IDS).

Physical Domain Solution Development Responsibility

The System Architect or Lead SE collaborates with the System Engineering and Integration (SEIT)
members to formulate and select the Physical Domain Solution from a set of viable candidate alter-
natives. The System Architect, via the SEIT, oversees the development of the Physical Domain
Solution and its integration with the Requirements, Operations, and the Behavioral Domain 
Solutions.

40.3 DEVELOPING THE PHYSICAL ARCHITECTURE

As the Behavioral Domain Solution and its logical/functional architecture evolve and mature, SEs
direct their attention to formulating and selecting a physical architecture. Physical architectures
represent the transition point from the abstract analytical world to the physical world. Whereas the
Behavioral Domain Solution focuses on WHAT is the SYSTEM or entity required to accomplish,
the Physical Domain Solution focuses on HOW to identify the physical configuration and entities
to implement WHAT is to be accomplished.

Formulating and Selecting Candidate Physical Architectures

In general, as discussed in Chapter 39 about the logical/functional architecture, the physical archi-
tecture is selected from a set of viable candidate architectures based on a pre-defined set of deci-
sion criteria and weights. The previous statement sounds simple; however, it may be misleading
in terms of HOW the physical architecture is selected. How so?

The reality is the physical architecture should represent the best value, acceptable risk, minimal
life cycle support costs approach to fulfilling the System Performance Specification (SPS) or entity’s
item development specification (IDS) requirements.

Developing the Product Structure Tree. The first step in developing the physical architec-
ture is to identify generic physical items that comprise the SYSTEM or entity. Create a Product
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Structure hierarchy tree such as the one shown in Figure 40.1 for a Car-Driver System. Although
SEs often generically refer to this as a hierarchy tree, the proper designation is the SYSTEM’S
Product Structure. Ultimately, the Product Structure captures the hierarchical pieces and parts of
the physical item.

When you develop the Product Structure, a good rule of thumb is to avoid having more than
six to eight components at any level of abstraction. If you have more than this number, you may
have inadvertently mixed components from different levels of abstraction. Tailor appropriately to
your own system application.

Author’s Note 40.2 Several things should be noted here.

• Figure 40.1 represents the “first pass” at a physical architecture structure, an initial start-
ing point.

• Once the make/buy/modify decisions are made, physical items from the initial hierarchical
structure may be combined or separated as peer level items on subsequent passes and shown
appropriately in the physical architecture diagram.

Developing the Physical Architecture SBD. As the Product Structure evolves, create the
physical architecture’s system block diagram (SBD). Physical items at the SYSTEM level or enti-
ties within a given level of the Product Structure are linked via physical entity interfaces to their
OPERATING ENVIRONMENT.

Linking the CWBS to the Physical Architecture

As the physical architecture evolves, develop the Contract Work Breakdown Structure (CWBS)
Mission Equipment Element to reflect the physical architecture’s levels of abstraction and physi-
cal configuration items (PCIs). Figure 40.1 illustrates a decomposition or expansion of the EQUIP-
MENT Element in terms of the physical architecture. Note that it links to and provides the
PRIMARY hierarchical structure for the CWBS Mission Equipment Element.
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Author’s Note 40.3 Observe that we noted “PRIMARY hierarchical structure.” The reason is
the CWBS also includes the (entity) Integration, Test, and Checkout Element at each Integration
Point (IP) within in the Mission Equipment hierarchy.

COTS/NDI Physical Item Realities

COTS/NDI suppliers typically develop hardware and software for marketplace needs; not your
unique program needs unless your organization is a strategically valued customer. Therefore, you
will have to investigate and evaluate potential COTS/NDI candidate hardware and software prod-
ucts and determine which one best fits your needs, assuming they do.

Since the COTS/NDI items may or may not provide the required level of functionality you
require, you may have to supplement the lack of functionality with internal development. Organi-
zations often refer to adapting COTS/NDIs to meet interface requirements as “wrappers.”

So, HOW does this affect the architecture decisions? It means that the initial physical 
architecture:

1. Product structure may have to be revised to reflect the new mix of internal develop-
ment and COTS/NDI items for a specific entity—such as PRODUCT, SUBSYSTEM, or
ASSEMBLY.

2. The entity’s architecture (SBD, ABD, FBD, object, etc.) may have to be modified to reflect
the item selections and their interfaces.

Physical Architecture Attributes

Physical architectures are more than simply solution configurations; most have to support a variety
of User needs. If we analyze the spectrum of User requirements, we identify several attributes that
warrant consideration when developing specifications. Buede (2000, p. 233), for example, identi-
fies several key attributes that include:

• Flexibility The capability of an architecture to be reconfigured to support a variety of
mission applications.

• Scalability The capability to expand processing capabilities and performance to accommo-
date a range of mission applications.

• Fault Tolerance “The capability to adjust operations when one of the hardware or software
elements fails.” (Source: Buede, 2000, p. 233)

• Open Architecture The ability to accept architectural elements based on interface standards
of modularity and interchangeability.

• Transparency An operational characteristic that enables the User to interact with the archi-
tecture without requiring knowledge of its true physical architecture.

Human–System Interface (HSI) Decision Making

Most human-made systems require humans to perform some or all of the command and control
(C2) functions. From an SE perspective this requires human-system interfaces (HSIs).

Philosophically, the intent is to optimize system performance by trading-off and allocating
required SYSTEM capabilities between the PERSONNEL and EQUIPMENT elements. In effect,
capability allocation decisions focus on optimizing overall system performance based on WHAT
HUMANS DO BEST versus WHAT EQUIPMENT-BASED SYSTEMS DO BEST. Operationally,
human operators must have the capability to manually override and control the system subject to
various safety and security constraints.
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40.4 PHYSICAL DOMAIN SOLUTION 
DEVELOPMENT METHODOLOGY

The Physical Domain Solution is developed as a key element of the SE Process. The highly collab-
orative and iterative convolution of the Physical Domain Solution with the Requirements, Opera-
tions, and Behavioral Domain Solutions is often very chaotic and confusing.

We can minimize the chaos and confusion by applying an iterative methodology that enables
us to create the Physical Domain Solution. The methodology represents one of many approaches
to developing the Physical Domain Solution. View these steps as an example and tailor them to
suit your business domain and systems application.

The methodology consists of the following steps:

Step 1: Formulate candidate physical architectures.

Step 2: Allocate capabilities and requirements to physical architecture items.

Step 3: Evaluate and select physical architecture.

Step 4: Perform make versus buy decisions.

Step 5: Identify physical architecture configuration states.

Step 6: Establish physical item performance budgets and design safety margins.

Step 7: Link physical configuration states to phases and modes of operation.

Step 8: Allocate specialty engineering requirements.

Step 9: Conduct a FMEA or a FMECA.

Step 10: Assess environmental, safety, health, and security compliance.

Step 11: Professional engineering design certification.

Step 12: Evaluate and optimize physical system performance.

Step 13: Resolve critical operational and technical risks and issues.

Step 14: Verify and validate physical solution performance.

Step 15: Establish and maintain physical solution baseline.

Step 1: Formulate Candidate Physical Architectures

When we develop systems, the intent is to minimize development and life cycle costs and meet or
exceed System Performance Specification (SPS) or item development specification requirements.
From an accounting perspective, these costs are of two types: nonrecurring (i.e., developmental)
or recurring (i.e., operational). In either case, both contribute to total ownership cost (TOC). The
User’s objective is to minimize both the recurring and the non-recurring costs. HOW the system
is physically implemented, its operational performance, and its ability to be maintained are crucial
drivers in the cost equation.

The strategy to minimize the total ownership cost (TOC) drives the need to find alternative solu-
tions or combinations of solutions. As a result, SEs should begin development of the Physical Domain
Solution by formulating a number of viable candidate architectures. Analyze the Behavioral Domain
Solution and formulate viable physical architectures that may be candidates for selection as the phys-
ical system architecture. Remember, the intent is to identify the Physical Domain Solution that pro-
vides the best balance among technical, technology, development and life cycle cost, schedule, and
support requirements and risks.

Although every system and application is unique, identify at least two to four viable candi-
dates. Formulate, analyze and construct each candidate architecture using methods such as the
matrix, N2 diagram, system block diagram (SBD), and Unified Modeling Language (UML®).
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Author’s Note 40.4 Use common sense when identifying candidate physical system architec-
tures. A good rule of thumb is to identify two to four candidate architectures or variations. Some
architectures may be top contenders; others may not. Since trade studies consume valuable
resources, perform a high-level trade study selection and identify the top two to four candidates.
Then, apply resources for an in-depth trade study on the two MOST PROMISING candidates.

Step 2: Allocate Capabilities and Requirements 
to Physical Architecture Items

Based on the behavioral interactions between SYSTEM or entity capabilities developed as part of
the Behavioral Domain Solution, allocate and link the capabilities to physical architecture items
and configuration items (CIs). Since capabilities link to requirements, linking requirements to phys-
ical items also provides a linkage to capabilities, especially with automated tools such as require-
ments management tools.

As you formulate each candidate architecture, make sure each one incorporates the logical
entity capabilities identified in the Behavioral Domain Solution. We do this by allocating the capa-
bilities to the appropriate physical architecture elements via a matrix mapping method as shown in
Figure 40.2.

Author’s Note 40.5 As a reminder, DO NOT allocate highly interdependent capabilities across
physical CI boundaries. (For more information on this topic, refer to the discussion of System Inter-
face Analysis, Design, and Control Practices in Chapter 43 and Figure 40.4).

Logically group and allocate closely coupled interactions to a single item such as a PRODUCT, a
SUBSYSTEM, or an ASSEMBLY. This avoids degrading system performance and increasing the
likelihood of technical risks due to disconnected or disrupted interfaces. Figure 40.3 illustrates how
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an N2 diagram is used to analyze capability groupings. The gray ovals represent areas of closely
coupled interactions that can and should be allocated to a single physical component. Remember,
a key objective of this exercise is to minimize the level of interaction across physical item bound-
aries as illustrated in Figure 40.4. Otherwise, we:

1. Degrade system performance.

2. Increase risk.
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3. Increase costs due to increased complexity.

4. Reduce reliability.

Make sure that closely coupled capabilities such as CSCIs are allocated to a single physical
item, not across multiple items. Figure 40.4 illustrates HOW splitting closely coupled interactions
across physical interface boundaries creates potential performance problems.

Investigate and establish standards to promote modularity, interchangeability, and interoper-
ability. Determine the type of architecture to be implemented to meet requirements—centralized
versus decentralized/distributed, client-server, and so forth.

Step 3: Evaluate and Select the Physical Architecture

Evaluate each candidate SYSTEM or entity’s physical system architecture by conducting trade
studies using:

1. Pre-defined architecture selection criteria—such as technology, performance, cost, sched-
ule, support and risk.

2. Criteria weights.

3. Models and simulations provided by decision support (refer to Chapter 51).

Prioritize results of the architecture evaluations for recommendations. Some level of OPTI-
MIZATION may be required as part of the evaluation. Based on recommendations from the trade
study, select a preferred physical architecture.

Finally, periodically stop what you are doing. Back away from being immersed in the details—
to avoid analysis paralysis—and perform a reality and reasonableness check. Ask yourself: Is the
configuration as simple as it can be? Is there any aspect we may have ignored, overlooked or dimin-
ished in level of significance? What are we not asking ourselves that later on we may wish we had?
Does the Physical Domain Solution meet the minimum requirements?

Step 4: Perform Make versus Buy Decisions

For each item within the architecture, determine the best approach for implementation. Chapter 42
on System Configuration Identification Practices presents various decision making options such as
reuse of existing components, procurement of COTS/NDI, and internal development.

Step 5: Identify Physical Architecture Configuration States

As the Physical Domain Solution matures, we may discover that the physical system architecture
implementation represents the convolution of several configurations. These configurations may
range from physical add-on payload components—such as the satellites in the Space Shuttle’s Cargo
Bay—to physical reconfiguration of the system or product’s structure—such as wings flaps and
landing gear on aircraft—during various phases and modes of operation.

In effect, the total physical system design represents the integration of these various configura-
tions into a single architecture. Thus, the architecture integrates the physical implementation of 
the capabilities required to support a specific phase or mode(s) of operations. Once completed, the
physical configuration states constitute the final part of the system phases, modes, and states of 
operation.

Author’s Note 40.6 Engineers who lack formal SE training often pick up the jargon of “phases,
modes, and states” without understanding the appropriate time to identify system operational and
physical states during the evolution of the system solution. As a result, you will hear people erro-
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neously refer to identifying the system’s physical (instead of operational) states of operation as one
of the initial steps of the SE design process. Although there may be instances where this can occur,
a behavioral FUNCTION drives the system’s physical domain’s FORM and FIT configuration.

Step 6: Establish Physical Item Performance 
Budgets and Design Safety Margins

For each capability allocated to and implemented by a physical item, allocate and assign per-
formance budgets and design safety margins to behavioral interactions—inputs, outputs, interfaces,
and so forth.

Referral For more information about performance budgets and margins, refer to Chapter 49 on
System Performance Analysis, Budgets, and Safety Margins Practices.

Step 7: Link Physical Configuration States to 
Phases and Modes of Operation

For each mode of operation, identify and link each physical system architecture configuration state
to one or more modes of operation. Thus, for a given mode of operation, configure the physical
system architecture into one or more physical states to provide the necessary and sufficient capa-
bilities to support the use cases associated with that mode.

Referral For more information about phases and modes of operation, refer to Chapter 19 on
System Phases, Modes, and States of Operation.

Step 8: Allocate Specialty Engineering Requirements

The selection of the physical architecture and its elements simply provide the framework for devel-
oping the Physical Domain Solution. Specialty engineering requirements—such as reliability, avail-
ability, and maintainability (RAM); producibility; environmental, safety, and health (ESH); human
engineering; vulnerability and survivability; and lethality—must be analyzed, allocated, and flowed
down to SYSTEM components at all levels of abstraction.

Referral For more information about RAM, refer to Chapters 47 through 52 on Decision Support
Practices.

Step 9: Conduct FMEA or FMECA

For system architectures that have mission critical components or may have the potential to damage
EQUIPMENT, PERSONNEL, the general public, or the environment, review and update the Failure
Modes and Effects Analysis (FMEA) initiated as part of the Behavioral Domain Solution. If nec-
essary, expand the FMEA into a Failure Modes, Effects, and Criticality Analysis (FMEA). Former
MIL-STD-1629A Military Standard Procedures for Performing a Failure Modes, Effects, and Crit-
icality Analysis provides guidance. Ask key questions:

1. What can go wrong with the EQUIPMENT or one of its components or interfaces?

2. How can the EQUIPMENT be misapplied, misused, or abused?

3. Is the system stable in all phases, modes, and states of operation?
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Step 10: Assess Environmental, Safety, Health, 
and Security Compliance

Review all elements of the Physical Domain Solution relative to environmental, safety, and health
(ES&H) as well as security compliance. Ensure that:

1. All EQUIPMENT components are properly marked with appropriate safety and security
notices (warnings, cautions, etc.).

2. Supporting PROCEDURAL DATA (i.e., operators and user’s manuals) are properly docu-
mented with this information.

Avoid just “reading” the documentation; investigate HOW the guidance can be misinterpreted.

Step 11: Professional Engineering Design Certification

For those design applications such as buildings, bridges, and structures that require certification by
a licensed and registered, practicing, professional engineer, employ the services of these profes-
sionals. Make sure that all aspects of the Physical Domain Solution, as well as other domain solu-
tions, are fully addressed as part of the certification review, analysis, and approval process.

Step 12: Evaluate and Optimize Physical System Performance

EVALUATE and OPTIMIZE the physical performance of the SYSTEM or entity based on criteria
established by the SPS or entity’s item development specification. As appropriate, solicit User 
inputs and participation in SE design activities that provide subjective look and feel feedback
related to system optimization efforts of operator-based EQUIPMENT element. Record and 
assess any discrepancies relative to criticality and scope of the contract or task activities and
resources.

Step 13: Resolve Critical Operational and Technical Issues
(COIs/CTIs) and Risks

As the Physical Domain Solution evolves, identify and capture critical operational and technical
issues (COIs/CTIs) and risks. Where appropriate, resolve the issues with the Acquirer and User via
contracting protocol. As appropriate, develop prototypes, mockups, and demonstrations that solicit
constructive feedback from the Users.

Step 14: Verify and Validate Physical Solution Performance

Throughout the development of the Physical Domain Solution, continually verify and validate
the completeness and integrity of the evolving solution via document reviews, technical reviews,
prototypes, technology demonstrations, and modeling and simulation.

Conduct a SYSTEM level or Entity—PRODUCT, SUBSYSTEM, and ASSEMBLY—Critical
Design Review (CDR) to assess the status, progress, maturity, and risks with the Physical Domain
Solution. Initiate corrective action as necessary.

Referral For more information about technical reviews, refer to Chapter 54 Technical Reviews.

Step 15: Establish and Maintain Physical Solution Baseline

As the SYSTEM and each entity’s Physical Domain Solution are reviewed and approved, if appli-
cable, by the Acquirer, the acceptance of CDR documentation, presentations, meeting minutes, and
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closure of action items enable establishment of a formal baseline. The baseline serves as the basis
for requirements flow down and allocation, future technical decision making, and change control.
Incorporate the Physical Domain Solution into the Developmental Configuration.

40.5 LINKING THE BEHAVIORAL AND 
PHYSICAL ARCHITECTURES

As the overall system solution matures, the behavioral (i.e., logical) and physical system architec-
tures are linked via requirements traceability. To see these links, let’s focus on the Requirements,
Behavioral, and Physical Domain Solutions. Figure 40.5 provides a graphical view using an entity
relationship diagram (ERD).

40.6 PHYSICAL DOMAIN SOLUTION CHALLENGES

When the Physical Domain Solution is developed, there are several challenges that the User,
Acquirer, and System Developer(s) need to answer. The challenges manifest themselves as ques-
tions SEs need to be able to answer.

Challenge 1: Solution Space Validation

In its physical manifestation, will the Physical Domain Solution satisfy the User’s validated
operational need?

Challenge 2: Technical Design Integrity

Are all elements of the Physical Domain Solution fully traceable back to the source System
Performance Specification (SPS) requirements?
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Challenge 3: Multi-domain Solution Agreement

Is the Physical System Solution consistent with and traceable to the Requirements, Operations, and
Behavioral Domain Solutions?

Challenge 4: Risk Identification and Mitigation

Does the Physical Domain Solution impose any unacceptable technical, technology, support, oper-
ations, cost, or schedule risks?

Challenge 5: Environment, Safety, and Health (ESH)

Does the Physical Domain Solution pose any noncompliant or unacceptable environment, safety,
and health issues and concerns to the operators or the general public?

Challenge 6: System Solution Stability

Is the Physical Domain Solution stable and controllable in all system phases, modes, and states of
operation?

Challenge 7: System Support

Is the system, product, or service supportable—in terms of maintenance, training, and logistics—
within budgetary cost, time, and resource constraints?

Challenge 8: Interfaces

For each interface, have the appropriate allocation decisions been made to ensure that interface per-
formance has been optimized based on the inherent capabilities of the interfacing components. Are
humans doing what they do best and machines doing what they do best? Do the interfaces meet
security and survivability criteria?

Challenge 9: System Optimization

Has physical system performance for all or specific modes of operation been optimized based on a
set of pre-defined set of weighted criteria supported by stakeholders?

Challenge 10: Phases and Modes of Operation

Does the Physical Domain Solution provide all of the capabilities required to support MISSION
SYSTEM operations and most likely and worst case scenarios in all planned phases and modes of
operation?

40.7 PHYSICAL DOMAIN SOLUTION WORK PRODUCTS

The Physical Domain Solution defines and documents the physical characteristics as design
requirements that will be used to procure, fabricate, assemble, code, inspect, and test the compo-
nents that will be integrated to form the system to be verified and validated.

Work products that capture the Physical Domain Solution consist of the following:

• Item development specifications (IDS)

• Performance budgets and design safety margins
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• Physical system architecture

• Interface control documents (ICDs)

• Interface design descriptions (IDDs)

• Assembly drawings

• Wiring diagrams

• Schematics

• Bill of materials (BOM)

• Program design language (PDL)

• Source code

• Software design descriptions (SDDs)

• System descriptions

• Analyses

• Trade studies

• Technical reports

• Requirements traceability matrices (RTMs)

• Prototypes

• Technical demonstrations

• Models and simulations

• Test data and results

• Timing diagrams

• Engineering change proposals (ECPs)

• Change requests (CRs)

• Test plans and procedures

• Briefings

• Conference minutes and action items

40.8 GUIDING PRINCIPLES

In summary, the preceding discussions provide the basis with which to establish the guiding prin-
ciples that govern development of an entity’s Physical Domain Solution practices.

Principle 40.1 The Physical Domain Solution represents a physical configuration of items that
implement one of more elements of the Behavioral Domain Solution allocated to the items.

Principle 40.2 The Physical Domain Solution must be consistent with and traceable to the
Requirements, Operations, and Physical Domain Solutions.

Principle 40.3 Investigate ALL Physical Design Solution documentation, especially User
guides, for ways the guides can be misinterpreted.

Principle 40.4 Increases in physical item part counts decrease system reliability; investigate
ways to reduce parts counts to improve system reliability.
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40.9 SUMMARY

We described the system solution development methodology steps used to derive the physical system archi-
tecture. The discussion described how the Behavioral Domain Solution provides the basis for:

1. Formulating candidate physical system architectures.

2. Evaluating, recommending, and selecting the physical system architectures.

3. Linking the physical architecture to the requirements, operational, and behavioral architectures.

4. Optimizing the physical system architectures.

5. Linking the physical system architectures to system phases and modes of operation.

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new system selection, apply your knowledge derived from this chapter’s topical
discussions. Specifically identify the following:

(a) The entity’s physical architecture solution.

(b) Describe how it traces to its Requirements, Operations, and Behavioral Domain Solutions.

(c) Describe the type of architecture (central, distributed, client server, etc.) best suited for this 
application?

ORGANIZATIONAL CENTRIC EXERCISES

1. Research your organization’s command media. What guidance is provided regarding development of the
Physical Domain Solution? Document and report your results.

2. Contact a contract program within your organization. Interview the lead SEs and research HOW the
program (a) formulated its Behavioral Domain Solution, (b) manages the requirements baselines, and 
(c) links to the Requirements Domain Solution, Operations Domain Solution, and Behavioral Domain 
Solution.

3. Select one of your organization’s system specifications and develop a high-level Physical Domain 
Solution.
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Chapter 41

Component Selection 
and Development

41.1 INTRODUCTION

The allocation of System Performance Specification (SPS) and item development specification
requirements to multi-level items is a highly iterative process driven by component selection deci-
sions. In general, System Developers have to answer the question: WHAT is the best value, lowest
cost, acceptable risk approach to selecting components to meet contract requirements?

1. Are there in-house, reusable components already available?

2. Do we procure commercially available components from external vendors?

3. Are there commercially available components that require only minor modifications to meet
our requirements?

4. Do we procure commercially available components from external vendors and modify them
in-house or have the vendor modify them?

5. Do we obtain components from the User as Acquirer furnished property (AFP)?

6. Do we create the component in-house as new development?

Depending on the outcome of these questions and the item’s required capabilities, the initial require-
ments may have to be reallocated to supplement capabilities of commercial components.

Our discussion in this section focuses on component selection and development practices that
drive SE decision making. After a brief discussion of options available for system development,
we introduce the concepts of commercial off-the-shelf (COTS) and nondevelopmental items
(NDIs). Next, we define a methodology that describes a decision-making method for selecting the
strategy for component development. We conclude with a summary of driving issues that influence
COTS/NDI selection.

Author’s Note 41.1 Typically the next chapter on system configuration identification should
precede component selection and development. However, configuration identification employs
terms such as COTS and NDI, which are defined in this chapter. Therefore, we consider this
chapter’s material first.

System Analysis, Design, and Development, by Charles S. Wasson
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What You Should Learn from This Chapter

1. What are the six primary approaches for developing components?

2. What is a commercial off-the-shelf (COTS) item?

3. What is a nondevelopmental item (NDI)?

4. What is Acquirer furnished property (AFP)?

5. What is the source of AFP?

6. How are COTS items procured?

7. How are NDIs procured?

8. What are the steps of the component selection methodology?

9. What are the classes of criteria to be considered when selecting components from external
vendors?

Definitions of Key Terms

• Acquirer Furnished Property (AFP) Physical assets such as equipment, data, software,
and facilities provided by the User or other organizations via the Acquirer by contract to the
System Developer for modification and/or integration into a deliverable system, product, or
service.

• Commercial Off-the-Shelf (COTS) Product “A standard product line item that is offered
for general sale to the public by a vendor and requires no unique modifications or mainte-
nance over the life cycle of the product to meet the needs of the procuring agency
(Acquirer).” (Source: Adapted from DoD/FAR and DSMC, Glossary of Terms)

• Legacy System An existing system that may or may not be operational.

• Make–Buy–Modify Decisions Technical decisions that determine whether to develop an
item or lower level item internally, procure as a COTS/NDI or subcontract item from an
external vendor, or procure an item from an external vendor and modify internally to meet
item development specification requirements.

• Nondevelopmental Item (NDI) A COTS item that has been modified or adapted (i.e., cus-
tomized or tailored) to meet procurement specification requirements for application in a spe-
cific OPERATING ENVIRONMENT.

• Out-of-the-Box Functionality Specified capabilities and levels of performance inherent to
a COTS product or NDI without additional development.

• Outsourcing A business decision to procure systems, products, or services from external
organizations based on cost avoidance resource availability, or other factors.

41.2 REDUCING SYSTEM COSTS AND RISK

One of the key objectives of SE is to minimize development and life cycle costs as well as risk.
Achievement of these objectives requires insightful strategies that include selection of components.

Most engineers enter the workforce with noble aspirations to innovate and create elegant
designs. Although this is partially true, it is also a reflection of misunderstood priorities. New design
should be a LAST resort after attempts to find existing components that meet specification require-
ments have been exhausted. So, what should the priorities be? This brings us to item design imple-
mentation options and priorities.
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Item Design Implementation Options and Priorities

The underlying philosophy of system design and development begins with a simple question: Are
there available commercial or other products or services that are more cost effective, less risky,
that will satisfy requirements allocated to a specific entity of item? Answering this question requires
exploration of at least six sequential design options that require consideration:

1. Employ Acquirer furnished property (AFP).

2. Reuse existing in-house component designs.

3. Procure commercially available vendor products.

4. Procure commercially available vendor products that can be easily modified by the vendor
to meet our requirements.

5. Procure commercially available products and modify the products in-house.

6. Develop new designs.

Author’s Note 41.2 Be advised that reuse of existing designs may present legal and contractual
issues regarding the type of funding used to develop the product, data rights, and so forth. ALWAYS
consult with your program, contracts, legal, and export control organizations for guidance in these
areas.

Based on these design options, the system design solution for any item in the system, regardless
of level of abstraction, may consist of one or a combination of these implementations. As a result
the COTS/NDI/new development composition of any design implementation depends on the 
application as illustrated in Figure 41.1. Note that design implementation ranges from all com-
mercial to all new development. So, the challenge for the System Engineering and Integration Team
(SEIT) and component selection decision makers is to determine the RIGHT combination of item
implementation options that REDUCE overall SYSTEM development and life cycle costs and risk.

41.3 COMMERCIAL PRODUCT TYPES

The preceding discussion addressed commercially available products as design implementation
options. In general, there are two basic classes of commercial products: commercial off-the-shelf
(COTS) items and nondevelopmental items (NDIs). Let’s scope each of these classes.

Solution Space 
Requirements

• xxxxxxxxxxxxxxxxx
• xxxxxxxxxxxxxxxx
• xxxxxxxxxxxxxxxxx
• xxxxxxxxxxxxxx
•
• xxxxxxxxxxxxxx

COTS/NDI/
Reuse

Solution

New 
Development

Solution

Range of Solution Alternatives

COTS/NDI/Reuse/
New Development
Hybrid Solution

COTS Solution Best Approach

New Development 
Solution

Best Approach

Figure 41.1 COTS/NDI/Reuse/New Development Application Mixes to Fill Solution Space Requirements



Commercial Off-the-Shelf (COTS) Items

COTS products represent a class of products that can be procured by the public from a vendor’s
catalog by part number. Procurement of COTS products is accomplished via a purchase order or
other procurement mechanism. Generally, vendors provide a Certificate of Compliance (CofC) ver-
ifying that the product meets its published specification requirements.

Nondevelopmental Items (NDIs)

NDIs represent COTS products that have been modified or customized to meet a set of application
requirements. Procurement of NDIs is accomplished via a purchase order that references a pro-
curement specification that specifies and bounds the capabilities and performance of the modified
COTS item. Prior to delivery, the Acquirer verifies the NDI, in the presence of Acquirer (role) wit-
nesses, typically for compliance to its procurement specification.

41.4 COMPONENT SELECTION METHODOLOGY

The selection of components to fulfill item development specification (IDS) requirements requires
a methodology that enables the item’s development team to minimize technical, cost, schedule, and
risk. In general, the selection process involves answering the questions posed during the introduc-
tion to this practice. So, HOW do we answer these questions?

One solution is to establish a basic methodology that enables selection from a range of alter-
natives. There are a number of ways the methodology can be created. The methodology described
below is one example.

COTS Selection Methodology

The methodology used to select item components can be described in an six-step, highly iterative
process as illustrated in Figure 41.2.

Step 1: Identify candidate components.
Step 1.1. Identify potential in-house reusable solutions.
Step 1.2. Assess in-house solution(s) feasibility, capabilities, and performance.
Step 1.3. Identify potential COTS/NDI product solution(s).
Step 1.4. Assess COTS/NDI solution(s) feasibility, capabilities, and performance.
Step 1.5. Investigate the feasibility of modifying COTS products in-house.

Step 2: Evaluate system impact of component approaches.
Step 3: Validate component selection approaches (repeat Step 1).
Step 4: Solicit and evaluate vendor COTS/NDI proposals.
Step 5: Select component development approach.
Step 6: Implement component selection decision.

Component Selection Summary

When the component selection and development decision-making process are complete, each item
within the multi-level hierarchy of the system architecture and the CWBS may have a combina-
tion of various types of components such as in-house, COTS, and NDI that satisfy specification
requirements allocated to the item.

Now that we have established a basic methodology, let’s examine some of the driving issues
that influence COTS/NDI selection.

41.4 Component Selection Methodology 483
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41.5 DRIVING ISSUES THAT INFLUENCE 
COTS/NDI SELECTION

COTS/NDI products may or may not be applicable to your contract application. Only you, your
organization, and the Acquirer/User, if appropriate, can make that determination. Let’s look at
examples of some of the types of questions, for your tactful edification, that you should consider
asking when selecting COTS/NDI products.

Caution Every set of Acquirer requirements, applications, COTS/NDI products, and perspectives
is unique. Consult with SMEs in your organization or employ the services of a respected, credible
consultant to assist you in formulating the list of questions and thoroughly investigate potential
COTS products solutions before you commit to a decision.

COTS Product Line Example Questions

1. What is the heritage and maturity of the COTS product line and family?

2. What is the size of the COTS product user base?

3. What organizations or industries are the primary users of the COTS product?

4. What are the current technology trends relative to the product line directions?

5. At what stage of maturity is the COTS product in its maturity cycle as well as the 
marketplace?

Identify Potential In-House 
Reusable Solutions

Assess Feasibility

Identify Potential 
COTS/NDI Solutions

Assess Feasibility

Reusable
In-House
Solution

NDI
Solution

COTS
Solution
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Modification of COTS

New 
Development

Solution

In-House COTS 
Modification

Solution

Acceptable

Unacceptable

NDI

Mod
COTS New Dev.

COTS

No

1.1

1.2

1.3

1.4

1.5

Identify Candidate 
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1

Evaluate System 
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Approaches

2

Validate Component 
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3
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COTS/NDI Vendor 
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4
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Figure 41.2 Example Component Selection Methodology



6. How long has this version of the COTS product been produced?

7. Is the COT product in alpha and beta testing? If not how long ago did this occur?

Customer Satisfaction Example Question

8. Is the vendor willing to provide a list of customer references to discuss their experiences
with the product?

9. What is the degree of customer satisfaction with current COTS product and prior versions?

10. Do customer testimonials, complaints, and applications of usage correlate?

11. Is the customer satisfaction based on using the product in the operating environment 
prescribed by the vendor?

Corporate Commitment to and Stability of the COTS Product
Example Questions

12. How long will the vendor commit on paper to: 1) producing and 2) supporting the version
the COTS product under consideration?

13. How financially stable is the vendor and parent company?

14. What is the vendor and parent company’s commitment to the COTS product line and family?

15. How STABLE is the vendor’s workforce (i.e., turnover) that develops and supports the
COTS product.

16. For future reference, who are the vendor’s SMEs and how long they have been with the
organization and COTS product?

17. What are their roles relative to the COTS product?

COTS Product Design Example Questions

18. Assuming you have some level of access to the vendor’s documentation, what is the quality
and depth of COTS product documentation?

19. What degree of verification and validation has been performed on the COTS product?

20. Was the verification and validation performed internally, or did the vendor depend on the
user community to “find the defects”?

21. Does the COTS product have documented and accessible test points, test hooks, entry/exit
points in the design? Are these available to the developers and maintainers?

22. Does the COTS product use an industry standard interface that fully complies with the
standard or just a subset of the standard? What are the compliance exceptions.

23. What liberties—meaning interpretations and assumptions—has the vendor taken with
implementing the standard?

24. Is the vendor willing to modify the COTS product interface to meet your system or
product’s interface? To what degree?

25. What systems or products does the vendor certify that the COTS product is compatible
and interoperable with?

26. What are the current known defects in the existing COTS product? Are there plans and
priorities to correct them?

27. How many known and latent defects remain in the current “new and improved” product
version?

41.5 Driving Issues That Influence COTS/NDI Selection 485
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28. How many undocumented and untested “features”—latent defects that can’t be or will not
be corrected—remain in the COTS product?

29. What detailed design information and “on call” support is available to support System
Developer integration of the COTS product into their system or product? Are there fees
required for this support?

30. Will future versions of the COTS product be forward and backward compatible with the
current version being considered?

COTS Product Production Example Questions

31. What is the quality and discipline of the COTS vendor’s quality assurance (QA) organiza-
tion as well as its configuration management system and version control, assuming it exists?

32. Are the COTS products serialized and tracked for upgrades and recalls?

COTS Product Support Example Questions

33. What degree of 24/7 support (i.e., 24 hours per day/ 7 days per week) is the vendor willing
to support the COTS product? From what country, time zone, and hours of availability;
Internet on-line support and documentation; “live” support” via 800 numbers or “read what
is on-line”?

34. What level of responsiveness to technical support is the vendor willing to provide (4 hours,
one-week, etc.)?

35. What level of accessibility to COTS product SMEs is the vendor willing to provide?

36. Does the COTS product have operations and support (O&S) and technical manuals?

37. Are O&M and technical manuals delivered with the COTS product, available freely on-
line, or do you have to purchase them? If purchase, how readily available are they?

38. Are alignment and calibration procedures and data documented and available to System
Developers?

39. Does the vendor provide field service support? How responsive? What constraints (days
of the week, holidays, hours, etc.)?

40. If you purchase the COTS/NDI product, are you required to contact the vendor to perform
field service on site to “remove and replace, align, and calibrate,” or can the System Devel-
oper perform this?

41. Who pays for field service expenses?

COTS Product Warranty Example Questions

42. Is each COTS product covered by an expressed or implied warranty? Will the vendor
provide a copy?

43. What actions or physical modifications by the Acquirer may invalidate or void the
warranty?

44. What are acceptable System Developer modifications to the COTS product that do not
void the warranty?

45. Is the vendor willing to modify the COTS product or do they recommend third parties?

46. What impact do third-party modifications have on the on warranty?



COTS Product Procurement Example Questions

47. Does the COTS product require usage licenses—software, hardware, and export control?

48. Are licenses based on a per platform basis or is a site license available subject to a
maximum number of “floating” users?

49. If a site license is available, how is the number of users restricted (simultaneous, total 
population, number of available “keys,” etc.)?

50. Are there “other bundled” products included in the COTS product or must be procured—
for a small additional cost? Do they require licenses?

51. Is there a minimum buy quantity requirement for the COTS product?

52. If there is a minimum buy, is this on a per purchase basis, cumulative over the year, or
cumulative over several years?

53. What quantities are the price break thresholds?

54. What product quality assurance processes are in place to ensure the quality of the COTS
product?

55. What certifications are the vendor willing to provide regarding the integrity of the product
and its materials?

56. Are COTS product specifications, processes, and test procedures available for review and
inspection?

Bottom Line

57. Always ask what you need to know about the product that you did not ask.

58. Finally, caveat emptor—let the buyer beware!

41.6 GUIDING PRINCIPLES

In summary, the preceding discussions provide the basis with which to establish the guiding prin-
ciples that govern practices.

Principle 41.1 System design should be a last resort option AFTER all practical efforts have
been made to identify reusable, COTS, NDI, or AFE components to meet entity requirements.

Principle 41.2 When procuring COTS/NDI, thoroughly INVESTIGATE and UNDERSTAND
the development and life cycle costs and support; otherwise, CAVEAT EMPTOR!

41.7 SUMMARY

In general, COTS/NDI solutions may be RIGHT for you and your application; in other cases, they MAY NOT
be. As an SE leading the selection process, you must make informed decisions based on:

1. The facts.

2. Trade-offs to meet requirements, minimize development and life cycle costs, and reduce risk to an
acceptable level.

3. Other User’s application experiences.
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COTS products can be very powerful tool to reducing development and life cycle costs; they can become a
problem as well. Perhaps the best way to THINK of COTS is to use a mirage analogy: make sure that WHAT
you FIND when you implement the product matches the virtual image you perceived. Whatever decision you
make, you will have to live with your action(s) and consequences. Research component selections and vendors
carefully and thoroughly, incorporate flexibility for contingency planning, and make wise choices. The bottom
line is: caveat emptor—let the buyer beware!

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

ORGANIZATIONAL CENTRIC EXERCISES

1. Research you organizational command media guidance for guidance about component selection and 
development.

(a) What guidance is stated regarding make, procure, procure, and modify decisions?

(b) What criteria are to be applied to these decisions?

(c) What guidance is provided and approval process is required for procuring COTS, NDI, and AFP
products?

2. Contact several contract programs or product lines within your organization. Investigate the following 
questions and document your findings and observations.

(a) Does the program use internal and externally supplied components?

(b) If COTS/NDI products were used, how were they selected?

(c) How were the selection decisions documented?

(d) How were COTS/NDI products procured?

(e) What lessons learned has the program learned from COTS/NDI procurement?

(f) What changes would they make next time?

3. Contact an organization that provides COTS products to the marketplace. Identify issues the COTS vendor
must resolve in selling their products to System Developers.

ADDITIONAL READING
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Chapter 42

System Configuration Identification

42.1 INTRODUCTION

Systems, as multi-level abstractions of integrated capabilities, require a structural framework and
building blocks to integrate those capabilities. We refer to the structural framework as the system’s
architecture and the building blocks as items. The challenge for SEs is to determine HOW to:

1. Conceptualize, formulate, and select the RIGHT architectural framework, especially for
large highly complex systems.

2. Partition the architecture into the respective levels of interconnected items.

SEs approach this challenge by partitioning large, complex problems into smaller, multi-level prob-
lems that can be easily managed and solved. We refer to the multi-level partitioning as hierarchi-
cal decomposition or expansion. To accomplish a decomposition of the architectural framework,
we apply requirements analysis, functional analysis, and object analysis methods and techniques
to decompose the multi-level specifications into a set of hierarchical capabilities. Each capability
is subsequently allocated to and performed by physical components we categorize as the system
elements—EQUIPMENT, PERSONNEL, and so on.

During the hierarchical decomposition, several types of make versus buy versus buy-modify
decisions are made. The challenge question is: How do we translate System Performance Specifi-
cation (SPS) capabilities of the Behavioral Domain Solution into manageable EQUIPMENT items
that can be designed, developed, procured, and the Behavioral Domain Solution and modified, and
integrated to fulfill the system’s overall capability?

This chapter describes HOW elements of a system’s architectural configuration are identified
and designated for configuration tracking. Our discussions begin with establishing the configura-
tion management semantics and explain why these terms are often confusing. We explore HOW
architectural items are selected from external vendor commercial off-the-shelf (COTS) items or non-
developmental items (NDIs), or Acquirer furnished property (AFP), or they can be developed in-
house from legacy designs or new development. We provide illustrations of how items are assigned
to development teams. We conclude with a discussion of configuration baselines—when they are
established—and contrast SE and configuration management (CM) viewpoints of each one.

What You Should Learn from This Chapter

1. What is a system or product configuration?

2. What is the Developmental Configuration?

3. What is an item?

System Analysis, Design, and Development, by Charles S. Wasson
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4. What is a configuration item (CI)?

5. What is the relationship between items and CIs?

6. Who is responsible for identifying CIs?

7. How are CIs selected?

8. How do CIs relate to the specification tree?

9. How do COTS items and NDIs relate to items and CIs?

10. What is a baseline?

11. What is meant by configuration effectivity?

12. What is the relationship between baselines and the Developmental Configuration?

13. Describe the evolution of the Developmental Configuration and its baselines.

14. What is a line replaceable unit (LRU)?

15. What are mission-specific and infrastructure CIs?

16. What is the “As Specified” Configuration, and when is it established?

17. What is the “As Designed” Configuration, and when is it established?

18. What is the “As Built” Configuration and when is it established?

19. What is the “As Verified” Configuration, and when is it established?

20. What is the “As Validated” Configuration, and when is it established?

21. What is the “As Maintained” Configuration, and when is it established?

22. What is the “As Produced” Configuration, and when is it established?

Definitions of Key Terms

• Allocated Baseline “The initially approved documentation describing a configuration item’s
(CI) functional and interface characteristics that are allocated from those of a higher level
CI; interface requirements with other CIs; design restraints; and verification required to
demonstrate the achievement of specified functional and interface characteristics. Allocated
baseline consists of the development specifications that define functional requirements for
each CI.” (Source: DSMC, Glossary: Defense Acquisition Acronyms and Terms)

• Baseline A collection of configuration-controlled, specification and design requirements
documentation for a configuration item (CI) or set of CIs that represents the current,
approved, and released design.

• Baseline Management “In configuration management, the application of technical and
administrative direction to designate the documents and changes to those documents that for-
mally identify and establish baselines at specific times during the life cycle of a configura-
tion item.” (Source: IEEE 610.12-1990)

• Computer Software Configuration Item (CSCI) “An aggregation of software that satis-
fies an end use function and is designated for separate configuration management by the
acquirer. CSCIs are selected based on trade-offs among software function, size, host or target
computers, developer, support concept, plans for reuse, criticality, interface considerations,
need to be separately documented and controlled, and other factors.” (Source: Former MIL-
STD-498, p. 5)

• Configuration “(1) The performance, functional, and physical attributes of an 
existing or planned product, or a combination of products. (2) One of a series of sequen-
tially created variations of a product.” (Source: ANSI/EIA 649-19116, Sec. 3, p. 3)
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• Configuration Item (CI) “An aggregation of hardware, firmware, computer software, or
any of their discrete portions, which satisfies an end use function and is designated by the
(Acquirer) for separate configuration management. Configuration items may vary widely in
complexity, size, and type. Any item required for logistic support and designated for sepa-
rate procurement is a CI.” (Source: Adapted from DSMC Glossary: Defense Acquisition
Acronyms and Terms)

• Configuration Management “A management process for establishing and maintaining con-
sistency of a product’s performance, functional, and physical attributes with its requirements,
design and operational information throughout its life.” (Source: ANSI-EIA-649-1998, p. 4)

• Effectivity “A designation defining the product range (e.g., serial, lot numbers, model,
dates) or event at which a change to a specific product is to be (or has been) effected or to
which a variance applies.” (Source: ANSI-EIA-649-1998, p. 4)

• Hardware Configuration Item (HWCI) “An aggregation of hardware that satisfies an end
use function and is designated for separate configuration management by the Acquirer.”
(Source: Adapted from former MIL-STD-498, p. 5)

• Item Any physical component of a system such as a PRODUCT, SUBSYSTEM, ASSEM-
BLY, SUBASSEMBLY, or PART.

• Line Replaceable Unit (LRU) “A unit designed to be removed upon failure from a larger
entity (product or item) in the operational environment, normally at the organizational level.”
(Source: MIL-HDBK-470A, Appendix G, Glossary, p. G-8)

• Logical Configuration Item (LCI) An optional designation assigned to a specific 
capability.

• Physical Configuration Item (PCI) An item that represents the physical instance of a con-
figuration item (CI). Each item is assigned a part number and may be serialized.

• Product Structure Refer to definition provided in Chapter 9 System Levels of Abstraction
and Semantics.

• Requirements Baseline “Documentation describing a system’s/segments functional char-
acteristics and the verification required to demonstrate the achievement of those specified
functional characteristics. The system or segment specification establishes the functional
baseline” (Source: DSMC Glossary: Defense Acquisition Acronyms and Terms)

• Variance, Deviation, Waiver, Departure “A specific written authorization to depart from
a particular requirement(s) of a product’s current approved configuration documentation for
a specific number of units or a specified time period. (A variance differs from an engineer-
ing change in that an approved engineering change requires corresponding revision of the
product’s current approved configuration documentation, whereas a variance does not.)”
(Source: ANSI/EIA-649-1998, Section 3.0, Definitions, p. 6)

Items—Building Blocks of Systems

Large, complex systems are developed by groups of people working as Integrated Product Teams
(IPTs) or development teams with assigned roles and responsibilities for producing various system
products. Depending on the size and complexity of the system or item being developed, teams are
assigned tasks such as specifying, designing, developing, integrating, and verifying various com-
ponents within the system. This presents some significant challenges:

1. How do you partition the architecture of the EQUIPMENT element into multiple levels and
instances of manageable physical items?
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2. How can people establish semantics that enable them to communicate with others about
the types of items they are developing or procuring from external vendors?

3. How can people communicate about the evolution of system components that go through
various stages from abstract system specification entities into physical components used to
build the system?

The solution resides in integrated building blocks referred to as items, configuration items (CIs),
hardware configuration items (HWCIs), and software configuration items (CSCIs). Each of these
building blocks represents semantics used to identify abstract entities within a system and their evo-
lution from SPS to deliverables.

42.2 UNDERSTANDING CONFIGURATION 
IDENTIFICATION SEMANTICS

Configuration identification knowledge for most SEs typically comes from informal exposure via
verbal discussions in meetings, on-the-job-training (OJT), and observation over many years. Most
engineers have little or no training in the principles of configuration management; most are self-
taught through observation and knowledge of general CM standards. By these means they feel able
to proclaim themselves to be configuration experts.

These rudimentary skills provide basic insights about system architectural configuration deci-
sions. However, meanings and applications of the terms are often convoluted. Instead of seeking
insightful guidance from competent CM personnel, technical leads exercise their authority, make
decisions, and blunder down the road of regrets, while CM and others expend endless energy 
contending with the consequences of these decisions. So, to minimize the confusion, let’s begin 
by informally introducing key terms. Figure 42.1 depicts entity relationships to support our 
discussions.
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Component Origins

Every entity within a SYSTEM, regardless of level of abstraction is referred to as an ITEM. If you
analyze most systems, you will discover that items originate from at least six different methods:

1. Procured from a vendor’s catalog.

2. Procured from a vendor’s catalog and customized/adapted in-house.

3. Customized or modified versions of items found in a vendor’s catalog.

4. Developed in-house by human intellect or procured as components or raw materials from
suppliers.

5. Developed in-house from customizations of existing, legacy designs.

6. Provided by the Acquirer in accordance with the terms and conditions (Ts&Cs) of the system
development contract and integrated into the SYSTEM design.

Observe two types of themes above. First, items are procured externally, and second, items are
developed internally.

Externally Acquired or Procured Components

As introduced in Chapter 41, items procured from a vendor’s catalog are referred to as commer-
cial off-the-shelf (COTS) items. COTS items customized or modified for a specific application are
referred to as nondevelopmental items (NDIs). Acquirer provided items are referred to as Acquirer
furnished property (AFP).

Author’s Note 42.1 When the System Developer receives contract-based AFP from the User
via the Acquirer, each item must be recorded, tracked, and controlled in accordance with the terms
and conditions (Ts&Cs) of the contract. Planned modifications to AFP typically require authori-
zation by the Acquirer’s Contracting Officer (ACO). Make sure the Ts&Cs clearly delineate WHO
is accountable for:

1. Providing AFP documentation.

2. AFP failures while in the possession of the System Developer.

Configuration Items (CIs)

When a System Developer decides to develop a MAJOR item such as a PRODUCT, SUBSYS-
TEM, or ASSEMBLY in-house, the program designates the item as a configuration item (CI). CIs
require a specification that specifies and bounds the CI’s capabilities and performance.

A CI, as a major item, integrates lower level components that may consist of: AFP, COTS
items, NDIs, and two other types developed by the System Developer in-house:

• Hardware configuration items (HWCIs)

• Computer software configuration items (CSCIs)

HWCIs and CSCIs

HWCIs are major hardware items and CSCIs are major software applications designated for con-
figuration control.

• As CIs, HWCIs and CSCIs may include COTS items, NDIs, internally developed or legacy
items, or combinations of these.
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• Each HWCI is specified via requirements documented in an HWCI Requirements Specifica-
tion (HRS).

• Each CSCI is specified via requirements docuemented in a CSCI Software Requirements
Specification (SRS).

Firmware

Some processor-based applications such as single board computers (SBC) employ software encoded
into an integrated circuit (IC) referred to as firmware. Firmware ICs, which are nonvolatile memory
device types, may be implemented with single-use, read only, and reprogrammable devices.
Firmware represents a hybrid instance of an item that evolves from a CSCI into an HWCI, as illus-
trated in Figure 42.2.

Initially, the software program executed by the SBC is developed as a CSCI software appli-
cation and debugged on laboratory prototype SBC hardware, using emulators and other devices.
When the software application reaches maturity and is ready for final integration, the CSCI’s code
is electronically programmed into the firmware IC device. Once programmed, the firmware IC is:

1. Designated as an HWCI.

2. Assigned a part number, serial number, and version.

Both the CSCI and HWCI are controlled in accordance with the CM procedures.

Guidepost 42.1 The preceding discussions introduced the semantics of configuration identifi-
cation. Some of these semantics apply to ANY level of abstraction. You should recall from our dis-
cussion in Chapter 9 System Levels of Abstraction and Semantics that one organization’s
SUBSYSTEM might be another organization’s SYSTEM. Our follow-on discussions illustrate WHY
the referential nature of configuration identification semantics when applied to levels of abstrac-
tion result in confusion.

Configuration Semantics Synthesis

To understand how configuration identification semantics relate to multi-level system architectures,
Figures 42.1 and 42.3 depict the entity relationships. Table 42.1 provides a listing of entity rela-
tionship rules that govern the implementation of this graphic.
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Table 42.1 Configuration semantics rules

Rule Title Configuration Identification and Development Rule

42.1 Items Every entity within a system, regardless of level of abstraction, is referred to as
an item.

42.2 Configuration Designate major items selected for internal development and configuration
items control.

42.3 Configuration Items may originate from several types of sources:
items 1. Replicated from existing, internally developed component designs.

2. Acquired as COTS, NDI, or AFP.
3. Acquired as COTS, NDI, or AFP and modified in-house.
4. Developed as new designs such as an HWCI(s) or CSCI(s).

42.4 CI A CI’s composition may consist of one or more COTS products, NDIs, HWCIs,
composition CSCIs, AFPs, or combinations thereof.

42.5 CI Develop a performance or development specification for each item designated as a
specifications CI.

42.6 HWCIs and Develop an HWCI Requirements Specification (HRS) for each HWCI; Develop a
CSCIs CSCI Software Requirements Specification (SRS) for each CSCI.

42.7 CI solution Develop a Requirements Domain, Operations Domain, Behavioral Domain, and
set Physical Domain Solutions for each CI, HWCI, and CSCI.

42.8 CSCIs The product structure of each CSCI consists of at least two or more CSCs that
consist of at least two or more CSUs.

42.9 CI ownership Assign accountability for the design, development, and integration and
verification for each CI, HWCI, and CSCI to an individual or IPT.



Guidepost 42.2 At this juncture we have established the context and composition of CIs. The
question is: HOW do we determine which items should be designated as CIs. This brings us to our
next topic on the selection of configuration items.

Selection of Configuration Items (CIs)

The preceding discussions established that CIs are MAJOR items developed in-house. While this
is an important criterion, CIs often require additional considerations. The best approach for select-
ing CIs is to simply establish a set of selection criteria. Then, perform a reasonableness check to
ensure that the selection:

1. Is logical.

2. Provides the proper visibility for technical, cost, and schedule tracking.

3. Exposes development activities at a level that can be used for assessing risk.

Some organizations establish specific criteria for selecting CIs that go beyond simply deciding to
develop an item internally. These decisions should be made in collaboration with a program’s con-
figuration manager, a subject matter expert (SME) in this domain.

The selection of configuration items often varies from one organization or business domain to
another. To standardize thinking about selecting CIs, MIL-STD-483A (cancelled) offers the fol-
lowing guidance in selecting CIs:

1. Is it a critical high risk, and/or a safety item?

2. Is it readily identifiable with respect to size, shape, and weight (hardware)?

3. Is it newly developed?

4. Does it incorporate new technologies?

5. Does it have an interface with hardware or software developed under another contract?

6. With respect to form, fit, or function, does it interface with other configuration items whose
configuration is controlled by other entities?

7. Is there a requirement to know the exact configuration and status of changes to it during
its life cycle?

(Source: Former MIL-STD-483A, para. 170.9, pp. 118–119)

Configuration Item (CI) Boundaries

Contrary to some beliefs, items and CIs SHOULD NOT be partitioned across physical device
boundaries; this is a violation of good design practice as noted in our earlier discussion of Figure
40.4. In general, CIs:

1. Are bounded by a development specification, HWCI Requirements Specification (HRS) or
CSCI Requirements Specification (SRS).

2. Reside within the boundaries of a physical item—such as SYSTEM, SUBSYSTEM,
ASSEMBLY, or SUBASSEMBLY as a computer system, printed circuit board, software
application, and so forth.

3. Must be verified against their respective HRS or SRS.

To illustrate this point, consider the hypothetical example below:
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EXAMPLE 42.1

As an example of an INCORRECT approach, an organization has a contract to develop a word processor soft-
ware application. Using the INCORRECT approach, the software CSCI would have CSCs implemented across
physical items:

1. A desktop computer (HWCI)

2. The printer (HWCI)

3. Other (HWCIs) on a network

So, if CIs, HWCIs, and CSCIs require stand-alone performance or development specifications to
specify and bound an integrated item that is SELF-CONTAINED within a physical item, How do
we test the software, as an item, when it resides across several HWCIs (boundaries)?

Remember, CIs are tested and verified as standalone test articles—as a black box with inputs
and outputs—with all the necessary functionality self-contained. Adhering to the boundary con-
straints specified above, there is an expectation that the CSCI will be tested on a single HWCI
device such as a desktop computer. Obviously, this is not achievable since the CSCI’s CSCs are
implemented in several HWCI devices (desktop computer, printer, network, etc.) across the system.
The CORRECT approach requires a CSCI on each device.

Configuration Identification Responsibility

Configuration identification, as an informed, multi-discipline, decision-making process, requires
collaboration with those stakeholders. Contrary to what many people believe, it IS NOT a decision
by ONE individual exercising their discretionary authority in a vacuum without inputs from the
key decision stakeholders. As the multi-level entity architectures evolve, the Configuration Manager
(CM) / Software Configuration Manager (SCM), Lead SE, and other SEs collaborate to select the
CORRECT approach for identifying items and CIs that will endure the test of time and AVOID the
junk heap of POOR decisions.

Guidepost 42.3 At this point we have established the basic set of configuration identification
semantics and how they are applied to multi-level system architectures. These discussions high-
lighted the need during internal development to prepare a development specification for each CI,
HWCI, and CSCI. For the first article on Developmental Configurations, this is a straightforward
process. Two key questions:

1. HOW are these specifications maintained for production systems that evolve over time as
new capabilities and refinements are added to established designs?

2. How do these impacts affect systems or products that are already fielded that may require
RETROFITTING?

This brings us to our next topic, configuration effectivity.

Configuration Effectivity

Production systems may evolve over several years as newer technologies, capabilities, and improve-
ments are incorporated into the evolutionary system design solution. As such, the physical config-
uration changes. So the question becomes: HOW do we delineate the changes in configuration to
a given CI, HWCI, or CSCI? Configuration management addresses these configurations via a
concept referred to as configuration effectivity.
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Every CI, HWCI, and CSCI is labeled with a unique identifier that delineates it from all others.
This occurs at two levels: 1) model number and 2) serial numbers. So, when physical configura-
tions change over the years, some organizations simply reference the effectivity beginning with
Serial Number (S/N) XXX; others append a “dash number” to the model number—such as Model
123456-1—to indicate a specific version. Most organizations today affix barcode labels to CIs,
HWCIs, and CSCIs to facilitate automated version or configuration tracking.

Versioning provides the System Developer a couple of options. It allows evolutionary track-
ing of a product line over its life span, and it provides a means to account for special customiza-
tions delivered to an Acquirer. In lieu of model numbers and versioning, some vendor’s employ
contract numbers and serial numbers to designate items.

You may ask: Why is this important to SE?

Effectivity-Based Specifications

During the development of a system or product, multi-discipline SEs prepare item development
specifications (IDSs) for PRODUCTS, SUBSYSTEMS, HWCIs, and CSCIs that form the Devel-
opmental Configuration. Although cost is a key constraint, most first article systems or products
MAY NOT represent the most cost-effective solution due to schedule and other constraints. First
articles are simply a solution that meets specification requirements. Typically, each deliverable is
assigned contract/model numbers and serial numbers.

If a system is planned for production, Product Engineering initiates efforts to reduce the recur-
ring per unit cost via design improvements, component and material selection and procurement,
manufacturing methods, and so forth. Ultimately, the improvements culminate in a revised item
development specification with effectivity beginning with S/N XXX forward.

Once production starts, CIs, HWCIs, and CSCIs evolve over time. Whereas during the origi-
nal system development, revisions to the Developmental Configuration specifications were issued
when changes occurred. So, when production item changes occur, you have to revise the specifi-
cation level and the effectivity.

When this occurs, the program has two choices: create a new specification unique to a 
configuration, or designate model and serial number effectivity on the cover page and annotate
specification requirements unique to the effectivity within the document.

42.3 ALIGNING ITEMS AND CIs WITH 
THE SPECIFICATION TREE

Once CIs are identified, the key question is: HOW do you communicate their location within the
system’s product structure? The answer is: CIs should be explicitly identified in the specification
tree based on derivation from the system architecture as shown in Figure 42.4.

Here, the SEIT analyzes the System Performance Specification (SPS) requirements to create
the SYSTEM level architecture, as shown in the lower left corner of the graphic. The architecture
consists of PRODUCTs A and B. PRODUCT B, which consists of ITEMs B_1 through B_3, will
be developed internally, and is designated as a CI.

As the system architecture evolves, the specification tree evolves, as shown on the right side
of the graphic. Based on the designation of CIs and items, item development specifications are
identified.

• PRODUCT A has its own PRODUCT A development specification.

• PRODUCT B, as a CI, has its own unique PRODUCT B development specification that
includes requirements for ITEMs B_1 through B_3.
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• ITEM B_3 is designated as a CI for development and, as such, is required to have its own
unique ITEM B_3 development specification.

42.4 ASSIGNING OWNERSHIP OF ITEMS AND CIs

As the specification tree evolves, CI development ACCOUNTABILITY should be assigned to
owners such as development teams or Integrated Product Teams (IPTs). Figure 42.5 provides an
illustrative example. Note how the system architecture decomposes along product structure lines.
This is a key point, especially the operative word “product.”

For programs that establish Integrated Product Teams (IPTs), each IPT focuses on “product”
development and collaborates with interfacing IPTs developing items that interface to their assigned
product. For example, IPT 1 collaborates with IPT 2 on mutual interface design issues.

Accountability for developing ONE product is assigned to ONE and only one IPT. Depending
on the size, complexity, and risk of the multi-level items, an IPT may be assigned accountability
for one or more products as illustrated in Figure 42.5. Accountability for developing PRODUCTs
A and B, which have a moderate degree of complexity and risk, is assigned to IPT 1. In contrast,
accountability for PRODUCT C is assigned to IPT 2 due to its complexity and risk. This brings us
to a final point.

Programs often get into trouble because SEs develop the IPT organizational structure first and
then leave the IPTs to identify the architectural configuration with limited, if any, oversight by the
SEIT. In this example, PRODUCTs A and B, by virtue of accountability by IPT 1 would be bundled
together, regardless of the lack of physical interfaces and be idenitified as a PRODUCT or SUB-
SYSTEM. Then, the IPT will attempt to develop a development specification for the conglomeration.

In many cases PRODUCTs A and B are unrelated, thereby indicating NO interfaces. Yet, the
IPT will be required to verify both PRODUCTs together as a “black box.” Avoid and correct these
system configuration identification decisions. Often these decisions are made by local “heroes” with
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an ounce of knowledge about system architecture development and IPT implementation yet wield
authority and create programmatic situations that severely impact contract performance.

42.5 RECOGNIZING TYPES OF 
ARCHITECTURAL ITEM BOUNDARIES

The Industrial Revolution introduced new concepts for standardizing and reproducing modular and
interchangeable components via predictable methods in order to leverage the benefits of economies
of scale. Our discussions on SYSTEM, PRODUCT, SUBSYSTEM, ASSEMBLY, SUBASSEM-
BLY, and PART levels of abstraction expound on these themes.

The concept of modularity can easily lead to the SE mindset that all items and CIs are con-
structed as modular plug and play boxes. The System of Systems (SOS) approach further reinforces
the mindset of “box” CIs integrated into a higher level system. However, there are systems whereby
INTEGRATION occurs ACROSS the traditional “box” boundaries.

In general, systems often consist of two classes of PRODUCTs/SUBSYSTEMs:

1. Mission specific PRODUCTs/SUBSYSTEMS.

2. Infrastructure PRODUCTs/SUBSYSTEMS that transcend the mission-specific SUBSYS-
TEM boundaries.

Figure 42.6 illustrates this type of architecture. Consider the following example:

EXAMPLE 42.2

Office building systems, as MISSION SYSTEMs, consist of well-defined architectural “box” boundaries. Hier-
archically, we could refer to the individual floors of office buildings as SUBSYSTEM level CIs. However,
what about the plumbing and electrical, heating, ventilation, and air conditioning (HVAC) system CIs that 
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TRANSCEND all of the floors and office boundaries? We can declare the floors and offices as mission-based
SUBSYSTEMS. Infrastructure SUBSYSTEMS such as HVAC systems, would plumbing, electrical, and other
such systems, transcend each floor.

Systems such as aircraft and automobiles, exhibit similar configurations. Fuel systems and electri-
cal systems, for example, traverse the entire structure.

Relevance to SE

Now you are probably asking: WHY IS this relevant to SE? After all, this is simply a means of cre-
ating a SYSTEM architecture. The importance of this point is estimating the cost of a system during
the System Procurement Phase. SEs must:

1. Recognize the existence of mission-specific and cross-cutting infrastructure systems.

2. Appreciate the need to establish a consensus on system configuration boundaries and delin-
eate WHAT IS/IS NOT included within each mission-specific and infrastructure boundary
via a CWBS Dictionary that scopes the contents.

The focal point for organizing cost estimating efforts, establishing work performance benchmarks,
and measuring planned versus actual work progress is the Contract Work Breakdown Structure
(CWBS). As we have reiterated numerous times, the CWBS, especially its Mission Equipment
Element, should be derived from the SYSTEM’s architecture. Unfortunately, most organizations
do just the reverse. They haphazardly create the CWBS and then try to contort the system archi-
tecture to match the flawed CWBS!

Returning to our office building example, HOW do you estimate costs on the basis of:

1. Hierarchical categories of rooms with embedded plumbing, electrical, HVAC, and struc-
tural components?
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2. Hierarchical mission-specific rooms and separate infrastructure structural, electrical, plumb-
ing, and HVAC systems?

For systems such as buildings, homes, and aircraft, the CWBS Dictionary scopes infrastructure
systems such as structural, electrical, plumbing, HVAC, and communications as separately cost ac-
countable CWBS elements. This is driven by that fact that for electrical, plumbing, HVAC, network,
and audio-visual communications elements, there are contractors who specialize in these areas.

Contemplate what would happen if we structured the CWBS to merge home construction
mission-specific and infrastructure SUBSYSTEMs. The foyer, living room, kitchen, and bedroom
SUBSYSTEMs would include internal electrical, mechanical, and plumbing elements. By this
approach, from a verification perspective, each of these SUBSYSTEMS would be individually
inspected and verified. Now imagine what would happen if you called the building inspectors to
“inspect and verify” the HVAC, electrical, and structural elements of the Dining Room SUBSYS-
TEM and called them back a week later to verify the same elements of the Family Room SUB-
SYSTEM. The approach is FLAWED!

The bottom line is: decompose your system into a hierarchy of logical/behavioral and physi-
cal elements that can be specified, developed, procured, integrated, and verified with minimal sets
of interdependencies. Recognize that some PRODUCTs/SUBSYSTEMs are mission-specific;
others are infrastructure SUBSYSTEMs that transcend mission-specific SUBSYSTEMS. Structure
the CWBS to accommodate not only the SYSTEM architecture but also cost estimating and con-
tracting efforts.

Additionally, this approach enables separate specifications for infrastructure CIs that can be
easily subcontracted out to vendors who specialize in those areas. If the infrastructure entities 
were embedded within a mission-specific CI, SEs would have to partition out requirements for 
infrastructure entities and create separate procurement specifications. The extra work is simply
unnecessary.

42.6 MULTIPLE INSTANCES OF CI IMPLEMENTATION

Although we tend to think that every item in a system is unique, systems and products often have
multiple instances of a single CI throughout the system. One of the roles of SE and the SEIT is to
reduce development cost, schedule, and risk. You do this by investigating the evolving system
design solution and searching for opportunities to STANDARDIZE components and interfaces. The
bottom line is: AVOID REINVENTING THE WHEEL by creating specialized CI designs that can
be satisified by one common CI design.

42.7 CONFIGURATION BASELINES

System development, as evidenced by previous discussions, requires translation of abstract System
Performance Specification (SPS) requirements into a physical solution. The translation decomposes
or expands abstract complexity into more manageable lower levels of detail. Ultimately, a detailed
design matures to a point whereby design requirements such as drawings and software design are
sufficient in detail to support procurement, fabrication, and coding of all items in the SYSTEM.

Lower levels of design decisions, as refinements of higher level decisions, are totally depend-
ent on maturing stability of the higher level design decisions. Otherwise, the entire solution evolves
into multi-level chaos. So, as higher level decisions stabilize, it is important to capture and control
the state of the evolving solution referred to as the Developmental Configuration.
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The Developmental Configuration

The Developmental Configuration is characterized by a series of configuration “snapshots” that
capture the evolving system design’s solution at various stages of maturity. Each configuration
enables SEs to maintain intellectual control of the evolving and maturing system design’s solution
by controlling changes to the configuration. Therefore, the scope of the Development Configura-
tion spans the time period from Contract Award until a system is committed to production.

From an SE perspective, there are six types of configuration classifications as listed below that
represent a level of maturity at various stages of development.

Stage 1: “As Specified” Configuration

Stage 2: “As Allocated” Configuration

Stage 3: “As Designed” Configuration

Stage 4: “As Built” Configuration

Stage 5: “As Verified” Configuration

Stage 6: “As Validated” Configuration

Stage 7: “As Maintained” Configuration

Stage 8: “As Produced” Configuration

Let’s briefly synopsize each of these SE configurations.

• “As Specified” Configuration Represents the state of the SPS and lower level specifica-
tions as captured and maintained via the System Requirements Baseline.

• “As Allocated” Configuration Represents the allocation of requirements from the System
Requirements Baseline specifications to items.

• “As Built” Configuration Represents the state of the Developmental Configuration for first
articles at any level of abstraction prior to formal verification. Generally, the “As Built” Con-
figuration employs serial number effectivity configuration control methods to match the phys-
ical system to its “As Designed” Configuration.

• “As Designed” Configuration Represents the current, approved Developmental Configu-
ration baseline derived from the “As Specified” Configuration or System Requirements Base-
line. The “As Designed” Configuration is initially captured at the System Design Review
(SDR) and maintained to incorporate any change modifications to the baseline.

• “As Verified” Configuration Represents the state of the physical SYSTEM at completion
of its formal System Verification Review (SVR) in which the “As Specified,” “As Designed,”
and “As Built” Configurations mutually agree with each other and comply with specification
requirements.

• “As Validated” Configuration Represents the state of the physical system as VALIDATED
by the User, or an Independent Test Agengy (ITA) representing the user, during the 
Operational Test and Evaluation (OT&E) under prescribed field operating environments and
conditions.

• “As Maintained” Configuration Represents the state of the physical system configuration
that is currently operated and maintained by the User in the field. From an SE and a con-
figuration management perspective, the FAILURE to keep the “As Maintained” Configura-
tion documentation current is a MAJOR RISK area, especially for developmental systems
planned for production.
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• “As Produced” Configuration Represents the state of the Production Baseline used to man-
ufacture the system or product in production quantities.

Author’s Note 42.2 The “As Maintained” Configuration is a crucial point for SE. It documents
the configuration of the fielded operational system(s). It is not uncommon for the User to become
LAX due to the lack of initiative or budgets in maintaining the “As Maintained” Configuration doc-
umentation. The result is a physical system or product that DOES NOT identically match its con-
figuration documentation, which is a MAJOR risk factor for the System Developer.

Developmental Configuration Staging or Control Points

As the Developmental Configuration evolves through a series of design and development stages,
it is important to establish agreement among the Acquirer, User, and System Developer about the
evolving and maturing system design solution. Depending on the type of contract and WHAT pro-
visions each party has in the decision-making process, we do this via staging or control points.

Staging or control points, which consist of major technical review events, are intended to rep-
resent stages of maturity of the evolving system design solution as it advances into lower levels of
abstraction or detail over time. We do this via a series of Configuration Baselines.

From a configuration management perspective, there are four configuration baselines:

• System Requirements or Functional Baseline

• Allocated Baseline

• Product Baseline

• Production Baseline

Note that our discussions identified two perspectives of the evolving and maturing Develop-
mental Configuration: 1) an SE configuration perspective and 2) a configuration management per-
spective. Despite the semantics both sets correlate as illustrated in Table 42.2.

42.8 GUIDING PRINCIPLES

In summary, the preceding discussions provide the basis with which to establish the guiding prin-
ciples that govern system configuration identification practices.

Principle 42.1 Every component in a SYSTEM is an item. Some are designated as configura-
tion items (CIs) for internal development; others as commercial off-the-shelf (COTS) items or 
nondevelopmental items (NDIs) for external procurement.

Principle 42.2 Development of a configuration item (CI) should only occur when all other
COTS/NDI alternatives have proved to be impractical, not cost effective, or noncompliant with
technical, cost and schedule requirements.

Principle 42.3 Every SYSTEM/Entity has seven SE design configurations—As Specified, As
Designed, As Built, As Verified, As Validated, As Maintained, and As Produced—that must be
current and consistent.

Principle 42.4 Every SYSTEM has three primary Developmental Configuration Baselines: 1) a
System Requirements or Functional Baseline, 2) a Allocated Baseline, and 3) a Product Baseline.
Systems in production have a Production Baseline.
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Principle 42.5 As a contract element, the Acquirer owns and controls the System Performance
Specification (SPS); the System Developer maintains the SPS in accordance with the contract direc-
tion authorized and provided by the Acquirer Contracting Officer (ACO).

42.9 SUMMARY

During system configuration identification discussions, we addressed how various elements of the EQUIP-
MENT system element are designated via a set of semantic terms. These are the terms that SEs use as a
common language to communicate. The intent is to enable the recipient to understand the context of each
application.

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new system selection, apply your knowledge derived from this chapter’s topical
discussions. Specifically identify the following:

(a) Based on an analysis of the multi-level system architecture, which items would you designate as 
configuration items?

(b) Which items might be procured as COTS or NDIs?
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Table 42.2 Correlating SE configuration and CM baseline perspectives

Staging or Control Point SE Configuration CM Baselines
Perspective

System Requirements Review (SRR) As Specified (system) System Entity Requirements
or Functional Baseline

System Design Review (SDR) As Allocated Allocated Baseline
As Designed
(system/subsystem)

Hardware Specification Review (HSR) As Specified (HWCIs)

Software Specification Review (SSR) As Specified (CSCIs)

Preliminary Design Review (PDR) As Designed (HWCIs/CSCIs)

Critical Design Review (PDR) As Designed

Completion of Component As Built
Procurement and Development

Test Readiness Reviews (TRRs) As Verified (components)

System Verification Review (SVR) As Verified (system) Product Baseline

Formal Qualification Review (FQR) As Validated (system)

Pre-Production Readiness Review (PPRR) As Maintained

Production Readiness Review (PRR) As Produced Production Baseline



ORGANIZATIONAL CENTRIC EXERCISES

1. Research your organization’s command media. Identify what requirements are levied by the organization
on programs regarding CIs, HWCIs, CSCIs, COTS, and NDIs?

2. Contact an internal contract program. Inquire as to how items, CIs, HWCIs, CSCIs, COTS, and NDIs are
implemented in the program.

(a) Does the contract specify criteria for selecting CIs?

(b) Correlate CIs, HWCIs, and CSCIs with the specification tree.

(c) Report your findings and observations.

3. For the contract program noted above, investigate how firmware is developed, managed, and 
controlled.

4. Research Internet sites for instances of how other organizations specify and control CIs, HWCIs, CSCIs,
COTS, NDIs, and firmware.
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Chapter 43

System Interface Analysis, 
Design, and Control

43.1 INTRODUCTION

The identification, design, and control of system interfaces are key activities for system architec-
ture development. The capability of the SYSTEM and item interfaces to cooperatively or defen-
sively interact and interoperate with external systems within the context of their OPERATING
ENVIRONMENT often determines mission survival and success.

Our discussion expands that of Chapter 12, System Interfaces, into HOW SEs translate abstract
interface requirements into specification requirements. Based on those requirements, analytical, sci-
entific, engineering, and management principles enable SEs to design the interface. The foundation
for interface design builds on our discussions of Chapter 8 The Architecture of Systems and Chapter
21 System Operational Capability Derivation and Allocation.

We continue our discussion of generalized and specialized interfaces, define an interface design
methodology, investigate system ownership and control, address the need for standardization, and
define how interfaces are documented. We conclude with a discussion of the challenges and issues
in defining the system interfaces.

What You Should Learn from This Chapter

1. How are interfaces identified for and within a SYSTEM?

2. How do you analyze interface interactions?

3. How is the System Capability Construct applied to interface design?

4. What is the methodology for designing interfaces?

5. Who owns and controls SYSTEM and item interfaces at various levels of abstraction?

6. What is an Interface Requirements Specification (IRS)?

7. What is an Interface Control Document (ICD)?

8. What is an Interface Design Description (IDD)?

9. How do you decide to develop and IRS, ICD, and/or IDD?

10. What is an Interface Control Working Group (ICWG)?

11. Who chairs the ICWG?

12. What are some rules for analyzing, designing, and controlling SYSTEM or entity 
interfaces?

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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Definitions of Key Terms

• Compatibility Refer to the definition provided in Chapter 15 System Interactions with Its
Operating Environment.

• Coupling “The manner and degree of interdependence between software modules. Types
include common-environment coupling, content coupling, control coupling, data coupling,
hybrid coupling, and pathological coupling.” (Source: IEEE 610.12-1990)

• Interface Control Refer to the definition provided in Chapter 12 System Interfaces.

• Interface Ownership The assignment of accountability to an individual, team, or organi-
zation regarding the definition, specification, development, control, operation, and support
of an interface.

• Line Replaceable Unit (LRU) Refer to definition in Chapter 42 on System Configuration
Identification Practices.

43.2 IDENTIFYING AND ANALYZING 
INTERFACE INTERACTIONS

Once logical entity relationships between the SYSTEM and external systems or between internal
items are identified, the next step is to analyze and bound the interactions. In Chapter 12, System
Interfaces, we noted that physical interfaces can be characterized as mechanical, electrical, optical,
acoustical, environmental, chemical, biological, and nuclear. The question is: How do we specify
and bound the operational and physical characteristics of the interface. Let’s answer each part of
this question separately.

Specifying and Bounding Interface Operational Characteristics

Interface operational characteristics are derived using UML® sequence diagrams as illustrated in
Figure 17.3. These diagrams, coupled with a Mission Event Timeline (MET), provide analytical
insights into HOW the interfacing entities interact and interoperate.

Specifying and Bounding Interface Physical Characteristics

Analysis of interacting systems requires investigation of a variety of classes of interactions. For
most systems the classes of interfaces include:

• Electrical

• Mechanical

• Optical

• Chemical

• Biological

• Acoustical

• Human

• Mass Properties
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One of the challenges of physical interface analysis is that SEs and analysts become intrigued and
immersed by a specific class of interaction and tend to overlook or ignore other classes that may
become SHOWSTOPPERS. One method of analyzing interfaces employs a matrix approach as
illustrated in Figure 43.1.

Author’s Note 43.1 The matrix provides a framework for illustrating the thought processes
required to understand all of the performance effecters that influence design considerations. Based
on these thought processes, your job as a system analyst or SE is to determine which one(s) of the
effecters warrants consideration for specific SYSTEM applications.

The matrix maps interactions between a MISSION SYSTEM interface classes (rows) and the
OPERATING ENVIRONMENT interface classes (columns). Since both domains of system ele-
ments have comparable classes of interfaces, SEs divide each domain into the various categories.
Note also that the OPERATING ENVIRONMENT includes the NATURAL, INDUCED and
HUMAN-MADE SYSTEMS elements. To facilitate the analysis, we assign a unique identifier to
each interaction (row-column intersection).

Thus, for each interaction, at least one or more specification requirements are written to specify
and bound the interaction and the expected outcome and performance of each interaction. To illus-
trate this point, consider the following example:

EXAMPLE 43.1

In an environmentally controlled laboratory environment, electrical (class) interactions—such as electro-
magnetic radiation (EMI) and noise—are likely to occur and may have an effect on the test articles or 
instrumentation. In contrast, chemical (class) interactions—such as salt spray—do not occur naturally in a 
laboratory.
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Practical Realities

In theory, this approach seems logical; however, is it practical to develop an analysis such as this
within contract or task resource and time constraints? The answer depends on your situation. In
general, most seasoned SEs subconsciously imprint this analytical method into memory based on
personal experience. The challenge is assimilating all relevant interactions from memory without
overlooking any condition.

If your contract or task is resource and time limited, you might consider using a 
template such as this as a quick checklist to identify the most likely or probable interactions. In
sharp contrast, some SYSTEMS may have inherent safety risks with potential consequences for
human health and safety, property, the environment, or survival of the enterprise. You and your
organization must weight the cost to perform and merits of this analytical task versus the legal,
financial, and other consequences of IGNORING ALL likely interface interactions in practical
terms.

Guidepost 43.1 Based on the preceding discussion, we have identified and characterized the
attributes of interface interactions. The question is: WHAT inherent SYSTEM or entity interface
capabilities and levels of performance are required to successfully:

1. Be compatible or interoperable with the external SYSTEMS or entities.

2. Avoid threat vulnerabilities related to these interactions?

This brings us to our next topic, understanding system interface design solutions.

43.3 GENERALIZED VERSUS SPECIALIZED 
INTERFACE DESIGN SOLUTIONS

Physical interface solutions occur at two levels: 1) as generalized solutions and 2) as specialized
solutions. Generalized solutions represent a “first-pass” physical implementation that appears “on
the surface” to be adequate for most applications. There may be special circumstances that require
further interface design refinements or robustness; we refer to these specialized solutions. Let’s
explore each of these further.

Generalized Interface Solutions

Generalized interface solutions represent the analytical world whereby that analyst identifies a
logical entity relationship, association, or potential relationship between two entities such as a
MISSION SYSTEM and its OPERATING ENVIRONMENT. Consider the following example:

EXAMPLE 43.2

Analytically, a car has a potential logical entity relationship with other vehicles, trees, and people in its OPER-
ATING ENVIRONMENT. The recognition of this association is an acknowledgement that:

1. A physical relationship exists between the entities.

2. Further interface analysis must determine the level of significance and outcomes of the interactions to the
MISSION SYSTEM and, if necessary, on the interfacing entity—its vulnerability and survivability.
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Specialized Interface Solutions

Once a determination is made that a logical entity relationship exists between entities, the associ-
ations are analyzed to determine their effects on the interface and subsequently the MISSION
SYSTEM. Let’s return to the preceding car example.

EXAMPLE 43.3

Engineers determined many years ago that vehicles require front and rear bumpers. After many years of acci-
dents and federal mandates, automobile manufacturers upgraded bumper designs to include shock absorbers
that reduce the effects of impact with other vehicles and objects. Although the new bumpers solved one
problem, vehicle occupants continued to have the risk of injuries due to head-on crashes. Subsequently, seat
belts were added to vehicles. Although seat belts reduced injuries and saved lives, vehicle occupants contin-
ued to suffer life-threatening injuries. So, car designs incorporated air bag systems into the driver’s side of
the vehicle. Later air bags were added to protect the front seat passenger. Today additional specialized solu-
tions are being added to incorporate side impact air bags. New evidence indicates emergency medical serv-
ices (EMS) personnel have the potential risk of injury from air bag deployment while attending to accident
victims trapped in the wreck. So, specialized solutions to operational needs continue to evolve.

This example illustrates HOW a generalized solution representing a logical entity relationship
evolves into specialized solutions via physical design implementations.

Guidepost 43.2 Based on an understanding of generalized and specialized interfaces, we shift
our attention to HOW an interface is implemented.

43.4 APPLYING THE SYSTEM CAPABILITY 
CONSTRUCT TO INTERFACES

As a prerequisite to our discussion here, revisit the key points noted in Chapter 22 The Anatomy
of System Capability. Figure 22.1 serves as a guide for our discussion.

The System Capability Construct provides a framework to describe HOW a system capability
such as an interface is:

1. Initiated.

2. Performs its mission—resulting in a product, service, or action.

3. Configures itself for repetitive cycle or dormancy until initiated again.

In performing these actions, an interface capability assesses health and readiness status, makes a
determination of degraded performance or failure conditions, reports those conditions, and attempts
to recover from those conditions.

43.5 INTERFACE DESIGN METHODOLOGY

Key elements of interface design practices can be summarized as a five-step methodology that fits
most applications. The steps are:

Step 1: Identify the SOI–OPERATING ENVIRONMENT relationships.

Step 2: Develop the SYSTEM or item architecture.

Step 3: Characterize the logical entity relationships of the architecture.
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Step 4: Characterize the operational interface use cases.

Step 5: Characterize the physical interface characteristics.

Let’s address each of the steps of the methodology.

Step 1: Identify the SOI–OPERATING 
ENVIRONMENT Relationships

The initial step of the methodology is to identify those entities within the User’s OPERATING
ENVIRONMENT that represent the interfaces relevant to the SYSTEM OF INTEREST (SOI).

Step 2: Develop the SYSTEM or Item Architecture

Construct the SYSTEM or entity architecture to depict its logical (associative) and/or physical rela-
tionships with external systems.

Step 3: Characterize the Logical Entity 
Relationships of the Architecture

Based on the SYSTEM or entity architecture or validated User needs analysis, characterize the
logical entity relationships between internal and external entities—such as HUMAN-MADE
SYSTEMS and the OPERATING ENVIRONMENT. In general, this step formally describes the
interface.

Step 4: Characterize the Operational 
Interface Use Cases

For each SYSTEM level or entity interface, identify the key operational characteristics of the 
interface.

1. WHO are the interface stakeholders?

2. WHAT is to be exchanged across the interface—content, forces, and directional flow?

3. WHEN and HOW frequently is the interface to be employed—continuous or intermittent
connectivity?

4. WHERE is the interface to be employed?

5. HOW will the interface be controlled, security and privacy methods?

6. Under WHAT conditions is the interface to be employed?

Step 5: Characterize the Physical Interface Characteristics

Using the operational interface attributes as the basis, identify the key operational and physical
characteristics of the interface. For data communications interfaces, interface attributes include
connectors, pin-outs, wiring diagrams, grounding and shielding, protocol, timing and synchroniza-
tion, data formats, handshakes, addressing, encryption, and standards as noted in Table 43.1.

Step 6: Develop and Document the Interface Design Solution

As the operational, logical, and physical attributes of the interface are identified and 
characterized, capture the results in an Interface Control Document (ICD) or Interface Design
Description (IDD). Document the design rationale, trade-offs, and so forth.
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43.6 SPECIFYING AND BOUNDING SYSTEM 
INTERFACE REQUIREMENTS

Before we address specifying and bounding interface requirements, let’s establish WHERE and
HOW interface requirements are documented. Interface requirements are typically specified in the
System Interfaces section of a System Performance Specification (SPS) or item development spec-
ification; typically, Section 3.X. In some cases, software interface requirements may be specified
in an interface requirements specification (IRS).
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Table 43.1 Interface attributes and descriptions

ID Attribute Attribute Description

43.1 Physical Characterize the interface in terms of its electrical, mechanical, optical, chemical,
Interface Type or environmental attributes.

43.2 Operational Identify the interface modes and states of operation such as STANDBY, POWER
States and OFF, stowed, and disconnected.
Modes

43.3 Directionality Determine the directionality of the interface for various modes of operation.
Some interfaces are unidirectional, bi-directional, etc.

43.4 Interface Investigate any protocol requirements to implement a specific protocol for
Protocol sending and receiving messages such as Identification Friend or Foe (IFF) and

standards.

43.5 Frequency of Determine the frequency of usage such as statistical distributions of usage during
Usage hours of operation, peak periods; asynchronous and synchronous

communications, etc.

43.6 Reserve Depending on the frequency of usage, some interfaces may require memory 
Capacity storage to accommodate message buffering prior to transmission or after receipt

of messages. Electrical power and mechanical systems require similar analogies
to serve as design safety margins to sustain performance.

43.7 Strength Some data system interfaces separated by long distances impose minimum
electrical,  mechanical, or optical strength requirements such as amplitude,
power, and pressure that require drivers to sustain signal strength.

43.8 Specialty Depending on technical risk, investigate interface specialty-engineering
Requirements requirements that include reliability, availability, maintainability, vulnerability,

survivability, etc.

43.9 Technology For some systems, characterize the interface technology such as laser, sensor,
data communications, chemical, and radiation.

43.10 Training Due to the nature of some interfaces, identify special training for operators and
maintainers.

43.11 Cost Assess WHAT level of capability you can provide within budgetary cost and
schedule constraints.

43.12 Risk Identify the level of risk associated with operating the interface including
probability of occurrence and consequences of failure.



The Interface Specification

What is an IRS? DoD Data Item Description (DID) DI-IPSC-81434 states “The Interface
Requirements Specification (IRS) specifies the requirements imposed on one or more systems, sub-
systems, Hardware Configuration Items (HWCIs), Computer Software Configuration Items (CSCIs),
manual operations, or other system components to achieve one or more interfaces among these
entities. An IRS can cover any number of interfaces. . . . The IRS can be used to supplement the
System/Subsystem Specification (SSS) . . . and Software Requirements Specification (SRS) . . . as the
basis for design and qualification testing of systems and CSCIs.” [Source: DoD Data Item Descrip-
tion (DID) DI-IPSC-81434, p. 1]

People ask: If the interface requirements are stated in the SPS or item development specifica-
tion, WHY do you need a separate interface specification? The answer has two contexts:

1. Interfaces external to the SYSTEM.

2. Interfaces internal to a SYSTEM.

Ideally, interface requirements for a SYSTEM should be documented in a single requirements
specification, preferably the SPS, or a lower level item development specification (IDS) for a con-
figuration item (CI). The answer to the question depends on:

1. WHAT your contract requires.

2. Other factors related to protecting System Developer sensitive data such as contract spec-
ifications, intellectual property, proprietary data, and security.

Contract Requirements for an Interface Specification

ALWAYS investigate and READ the Request for Proposal (RFP) and its Contract Data Require-
ments List (CDRL) regarding interface specification requirements, if any. If there are no IRS CDRL
items, incorporate interface requirements into the SPS or item development specification, depend-
ing on application. This avoids:

1. The necessity and expense of maintaining and verifying two separate documents—SPS/IDS
and an interface specification—with common boilerplate.

2. Coordinating separate document reviews and approvals.

From a system perspective, you want to VERIFY the system as an entity using one specification
with:

• One set of acceptance test procedures (ATPs).

• One Requirements Verification Matrix (RVM).

• One set of ATP data.

Simultaneously verifying requirements stated in TWO separate specifications compounds the tasks,
paperwork, and coordination. You may respond that you could have two specifications and a single
set of ATPs and ATP results. This is true, but you still have to account for HOW you can TRACK
these separate/combined results. This leads to WHY not specify all SYSTEM or entity interface
requirements in one document unless there is a compelling need to isolate the requirements in a
separate document. Keep it simple!

Is an IRS Necessary for Internal Development? No. In fact a common problem of many
programs is having ill-informed decision makers declaring in their proposal they will develop “an
IRS for EVERY external and internal interface.” This is naive, expensive, and unnecessary.
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There are, however, reasons—such as volume of requirements, data security classification, and
procurement reasons—for a separate IRS. By default, define the interface requirements in the SPS
or item development specification. Then, if there are compelling reasons to isolate the total set of
interface requirements, then and only then consider creating a separate IRS.

Is an IRS Necessary for External Development? An IRS can be helpful in contracting rela-
tionships with User organizations and subcontractors. In this case the IRS expresses a willingness
to abide by a set of ground rule requirements that represent a consensus of the interfacing stake-
holders. Ultimately, the IRS requirements evolve into interface solutions documented in hardware
ICDs and/or software IDDs.

Standard IRS Templates. The DoD employs data item descriptions (DIDs) to communicate
deliverable data requirements. DID DI-IPSC-81434 addresses hardware configuration items
(HWCIs) and computer software configuration items (CSCIs) for software intensive systems.

Guidepost 43.3 Given an understanding of HOW we specify and bound interface requirements,
we shift our focus to Interface Ownership and Control.

43.7 INTERFACE OWNERSHIP AND CONTROL

Unlike system elements or entities that are assigned to individuals or development teams—such as
Integrated Product Teams (IPTs)—HOW do you partition or share ownership of the interface?
There are a couple of ways to assign ownership:

1. Ad hoc approach.

2. Structured analysis approach.

Ad Hoc Approach to Interface Ownership

Technical directors and project engineers often approach interface ownership by tasking the two
interfacing parties to “work it out on their own.” Depending on the situation and personalities, this
approach works in some cases; in other cases, it is very ineffective.

Several potential PROBLEMS can arise with this approach.

1. Conflicts occur when the interfacing parties are unable or unwilling to agree on HOW to
implement the interface.

2. One personality dominates the other, thereby creating a technical, cost, or schedule sub-
optimization that favors of the dominating party.

If this chaos or dominance continues, the dominating party may suboptimize the SYSTEM. There
is, however, a better approach to interface ownership and control that resolves the problems created
by the ad hoc ownership approach.

Structured Interface Ownership and Control

To avoid the problems of the ad hoc approach, assign interface ownership and control to the indi-
vidual or development team accountable for the System Performance Specification (SPS) or item
development specification and the associated architecture. The interfacing parties are elements
WITHIN the architecture.

Some systems have external interfaces that require both technical and programmatic
solutions between organizations. This brings us to our next topic, Interface Control Working Groups
(ICWGs).
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Interface Control Working Groups (ICWGs)

Once the stakeholders agree on the requirements and implementation of an interface, HOW do they
exercise control over changes to an interface? Some organizations establish an Interface Control
Working Group (ICWG) that functions as a Configuration Control Board (CCB) or makes recom-
mendations to a CCB. Generally, ICWGs are typically established for external system interfaces
that involve the User community and external systems. Depending on the size of the contract, the
ICWG and CCB may consist of the same stakeholders. In other cases the ICWG may consist of
technical representatives from User and/or contractor organizations.

As an organizational element, the ICWG defines the operational, behavioral/logical, and phys-
ical characteristics of the interface and documents them in a hardware ICD or a software IDD.
Interface stakeholders review the ICD or IDD and make recommendations to submit to the next
higher level team as the interface owner for approval and release.

When approved, the ICWG chairperson requests the program’s Configuration Manager to base-
line interface documentation such as an IRS and formally release it for usage. After baselining, if
subsequent changes are required, the ICWG reviews the changes and recommends approval to the
program’s Configuration Control Board (CCB).

43.8 INTERFACE DESIGN DOCUMENTATION

Interface designs are documented via a number of methods such as system block diagrams (SBDs);
entity relationship diagrams (ERDs); schematic, wiring, and timing diagrams; tables; and descrip-
tions. For large systems, this may consist of hundreds of pages of documents that must be indi-
vidually controlled. HOW can this be accomplished reasonably?

SEs use several types of documents to capture and control interface technical descriptions.
These documents include:

1. Interface Control Documents (ICDs) for HARDWARE interfaces.

2. Interface Design Descriptions (IDDs) for SOFTWARE interfaces.

For small programs the System/Segment Design Description (SSDD) or Software Design Descrip-
tion (SDD) may suffice to document interface definitions rather than having separate ICDs/IDDs.
These documents serve as a single location for finding interface design details. Use the appropri-
ate document that enables you to reduce cost and help the developers by MINIMIZING the total
number of documents requiring configuration control.

Interface Design Descriptions (IDDs)

For software applications document interfaces in an Interface Design Description (IDD). This
approach is often used for software CSCIs where there is a need to isolate CSCI specific interface
design descriptions as a separate document.

Interface Control Documents (ICDs)

The most common approach for documenting interfaces is via an Interface Control Document
(ICD). As a general rule, an ICD documents hardware interfaces. An ICD:

1. Ranges in length from a single- or multi-page document, such as a control drawing or a
computer listing, to a volume of details.

2. Serves as a detailed design solution response to SPS, item development specification, or
IRS requirements.
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3. Documents the electrical, mechanical, or optical characteristics of the interface.

4. Includes operational descriptions, schematic wiring diagrams, assembly drawings, and con-
nector detail drawing including pin outs.

5. Employs standard graphical symbols that may be dictated by contract or established as
industry standards.

When all interface stakeholders agree with the contents of the ICDs, the documents are approved,
baselined, placed under configuration control, and released for formal decision making. ICDs are
controlled by a Configuration Control Board (CCB) or delegated to an ICWG.

Interface Control Document (ICD) Outline

ICDs often developed in free form unless the contract or organization specifies a specific format.
There are numerous ways to structure an ICD, depending on the application. Perhaps the most
important aspects of the outline can be derived from the traditional specification outline such as:

• Section 1.0 Introduction

• Section 2.0 Referenced Documents

• Section 3.0 Requirements

Beyond this basic structure, attention should be focused on Section 3.0 Requirements, which
addresses the physical characteristics of interfaces such as mechanical, electrical, and optical.

How Many ICDs/IDDs?

One of the early challenges in identifying interfaces is determining how many ICDs/IDDs are
required. For each item, regardless of level of abstraction, consider the following options illustrated
in Figure 43.2:
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• Option A Do we create a single ICD that defines all of PRODUCT A interfaces?

• Option B Do we create individual ICDs for each PRODUCT A internal interface—such as
A1–A2 ICD, A2–A3 ICD, or A1–A3 ICD?

There are several ways to answer these questions.
First, each document you create increases costs to maintain. As a general rule, AVOID creat-

ing separate ICDs/IDDs unless:

• The amount of information becomes unwieldy—because of large page counts.

• There is a need to isolate details due to intellectual property, proprietary data, and security
reasons—to limit authorized access to a specific interface based on a NEED TO KNOW
justification.

At the PRODUCT level and below, start with a single ICD for all interfaces internal to the
item. You may ask: Why not external interfaces? There are two reasons: First, interfaces external
to an item are owned and controlled by the next higher-level team as part of their architecture for
which the item of interest is an element. The SEIT owns and controls PRODUCT A’s external inter-
faces. Second, publishing an item’s interfaces in a single document is convenient for the reader,
assuming that the document is not large.

Why Stand-alone ICDs and IDDs?

The preceding ICD discussion opens up a new question: WHY do you need separate ICDs and
IDDs for each interface?

First, there are no rules that say you cannot have a single interface document that covers BOTH
hardware ICD and software IDD details. Potential readers can rationalize the need to have all details
about a single interface in one document without having to research or retrieve several documents.

In general, you would expect the COST of producing and maintaining one document should
be less than maintaining two documents two documents. However, distributing changes to all stake-
holder approvers, regardless of whether they are affected by the changes, can be unwieldy and
costly.

What do the ICD/IDD users say?

• Software engineers and programmers are not interested in reading through pages of electri-
cal schematics, wiring diagrams, and mechanical drawings.

• Hardware engineers are not interested in reading through tabular listings of software data.

So, in answer to the question:

1. Identify all of an item’s internal interfaces.

2. Collaborate with the stakeholders, preferably as an Integrated Product Team (IPT).

3. Address the utility of standalone versus integrated ICDs and IDDs.

4. If a decision is made that the item requires hardware and software interfaces, decide if all
hardware or software interfaces should be documented in a one or several ICDs/IDDs.

Guidepost 43.4 Our focus up to this point has been on individual interfaces. This leaves the
potential for every interface to be unique which increases cost and risk. We now shift our focus to
minimizing these two factors via Interface Standardization.
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43.9 INTERFACE STANDARDIZATION

Interface design, as is the case with any form of SYSTEM design, focuses on meeting the speci-
fied requirements while minimizing cost, schedule, technical, technology, and support risks. Every
time you embark on designing a new interface solution, you must be prepared to mitigate the risks
of an unproven interface.

One way of reducing the impacts of these risks is to employ design solutions that are already
proven. Additionally, any technology solution you choose may be subject to becoming obsolete in
a short period of time. In sharp contrast, consumer products in the marketplace, especially com-
puters, demand that SYSTEMs be designed to accept technology upgrades to maintain system capa-
bilities and performance without requiring completely new systems.

One of the ways industry addresses this marketplace need is with standard interfaces that
promote line replaceable unit (LRU) modularity, interchangeability, flexibility, and maintainabil-
ity. What does this mean?

A computer contains printed circuit boards (LRUs) that interface via connectors with a stan-
dard bus structure implemented on a motherboard (LRU). As new processor technologies or other
capabilities are introduced, the User replaces a PC board (LRU) with a newer one with identical
or greater capability. Thus, interface standards provide an opportunity to leverage new technolo-
gies and capabilities while keeping costs and risk low.

Guidepost 43.5 Based on the preceding discussions, we are ready to investigate some of the
challenges and issues in analyzing, designing, and controlling interfaces.

43.10 INTERFACE DEFINITION AND CONTROL CHALLENGES

Interface definition, design, development, operations, and support activities often face challenges
that are common across many systems. Let’s identify and discuss some of these key challenges.

Challenge 1: Lack of external interface commitments

Challenge 2: Lack of interface ownership and control

Challenge 3: Identification and vulnerability of threat interfaces

Challenge 4: Human and environmental safety and health risks

Challenge 5: Lack of compatibility and interoperability

Challenge 6: Lack of interface availability

Challenge 7: Lack of interface reliability

Challenge 8: Lack of interface maintainability

Challenge 9: Interface vulnerability to external threats

Challenge 10: Mitigating interface integrity compromises and failures

Challenge 11: External electrical power—availability, quality, and backup

Challenge 12: Analog and digital signal grounding and shielding

Challenge 13: Interface electromagnetic emissions

Challenge 1: Lack of External Interface Commitments

Contracts are awarded every day whereby the Acquirer states in the System Performance Specifi-
cation (SPS) “the system shall provide the capability to interface with External System XYZ.” On
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investigation, the Acquirer may not have agreement or commitment from the owner(s) of external
system XYZ to allow the SYSTEM OF INTEREST (SOI) to connect. This is normally the
Acquirer’s responsibility and should have been worked out prior to release of the formal solicita-
tion. Ironically, the Acquirer levies responsibility for “working the commitment” on the System
Developer, who signed up to the terms and conditions (Ts&Cs) of the contract.

In some cases this approach may be is preferable, especially if the System Developers has:

1. The expertise, capabilities, and resources.

2. Established relationships with the interfacing parties.

Therefore, it may be acceptable to contract with the System Developer to perform this task. The
critical issue occurs when external system XYZ’s owner organization is also part of the Acquirer’s
organization. Thoroughly investigate WHAT agreements and commitments have been made by the
Acquirer or User with external system owners to integrate the system at delivery BEFORE the con-
tract is signed.

Challenge 2: Interface Ownership and Control

Each system interface must be assigned an owner(s)—be it an individual, organization, or Inter-
face Control Working Group (ICWG). Those accountable MUST control interface definition,
design; development; system integration, test, and evaluation (SITE); system operation and main-
tenance; or disposal. As the accountable owner, the individual or organization is responsible for
reviewing and approving changes to the interface design baseline as well as provide oversight of
SYSTEM operations, maintenance, and training.

Challenge 3: Identification and 
Vulnerability of Threat Interfaces

System interface design is based on a pre-conceived set of known interfaces. The reality is some
operational system interfaces—such as military systems or networks—are vulnerable to external
threats and attacks. These systems must contend with the unknowns and the unknown—unknowns.
Acquirers and System Developers must work with the Users and their supporting organizations to
thoroughly:

1. Understand and anticipate a system’s threats.

2. Define HOW the SYSTEM interfaces will cope with those threats.

Challenge 4: Human and Environmental 
Safety and Health Risks

Any type of operational system may pose potential threats to the safety, health, and welfare of
humans, property or the environment. When designing system interfaces, thoroughly analyze poten-
tial scenarios—such as exhaust emissions, toxic chemicals, and leaking fluids—that may lead to
health and safety risks and require remediation to an acceptable level.

Challenge 5: Lack of Compatibility and Interoperability

Assuming each interface is known to exist and has an accountable owner, the SYSTEM or entity
interface must be compatible and interoperable with its OPERATING ENVIRONMENT system
elements operationally, behaviorally, and physically.
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Challenge 6: Lack of Interface Availability

Interface availability is a critical issue in two key contexts: internally and externally. Internally
each interface must be available—the state of readiness—when activated to perform its intended
mission. If external systems or their interfaces fail, you must consider HOW your SYSTEM will
respond or adapt to the failure and derive MISSION RESOURCES Element data from contingency
sources.

Referral For more information about availability, refer to Chapter 50 on Reliability, Availabil-
ity, and Maintainability Practices.

Challenge 7: Lack of Interface Reliability

If an interface capability is available when required, the question is: Can the interface reliably
perform its intended mission to the level of performance required by the SYSTEM or entity(s) spec-
ification? Each interface must be designed with a level of reliability that will ensure accomplish-
ment of mission tasks and sustainment of that capability throughout the mission. Supporting topics
include interface fault tolerance and redundancy.

Referral For more information about reliability, refer to Chapter 50.

Challenge 8: Lack of Interface Maintainability

To minimize downtime between SYSTEM missions you must ensure that the interfaces are main-
tainable with a specified level of skills and tools commensurate with the mission phase of opera-
tion—pre-mission, mission, and post-mission.

Referral For more information about maintainability, refer to Chapter 50.

Challenge 9: Interface Vulnerability to External Threats

After a SYSTEM is deployed, the owner(s) must continuously monitor the performance of the
mechanisms and processes used to operate the interface. Additionally, the owners must also assess
the susceptibility and vulnerability of the interface to evolving or potential threats in the SYSTEM’s
OPERATING ENVIRONMENT. Where appropriate, specialized solutions may be implemented.

Challenge 10: Mitigating Interface Integrity 
Compromises and Failures

The integrity of an interface is dependent on HOW WELL its design mitigates compromises and
failures via specialized interfaces. Interface security mechanisms include examples such as: lock-
able access plates, safety chains, retractable wheels, bulkheads, filters, shields, deflectors, cable
hooks on aircraft, safety nets, safety rails, drogue chutes, parachutes, pressure relief valves, emer-
gency cutoff valves, and emergency power down.

Challenge 11: External Electrical Power—Availability, 
Quality, and Backup

Engineers often focus on the “fun stuff” of internal design of their SYSTEM of INTEREST—the
SYSTEM, PRODUCT, SUBSYSTEM, and so forth. They procrastinate on researching external
interfaces such as electrical power sources, their attributes, and quality. In general, they assume
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that 110 vac or +28 vdc electrical power will “always be available and all we have to do is plug
our device in.” Given these examples of power types, engineers often overlook the subtleties such
as 50Hz versus 60Hz versus 400Hz as well as tolerances placed on the magnitudes and frequen-
cies. Power factors are also a consideration. Finally, a key question is: Will the power source be
continuous or have periodic operational hours, blackouts, etc., during peak hours of operation?

DO NOT ASSUME that the external system will ALWAYS be available WHEN you need it
until you have thoroughly investigated and analyzed the interface. Additionally, establish a docu-
mented agreement that represents a commitment by the power source’s owner to allocate power
budget resources and allow your system to be integrated with the power source(s). The same is true
for power quality and filtration.

Finally, assess the need for:

1. Backup power to avoid data loss during a mission.

2. Alert notification that electrical power has been lost to initiate power down actions to 
minimize data loss or damage to equipment.

Challenge 12: Analog and Digital Signal 
Grounding and Shielding

Analog and digital grounding and shielding interfaces have similarities to the electrical power issue
noted above—such as procrastination in performing the analysis, depth of analysis, and resource
commitments. Typically, only a single power ground is available from the external source. This is
particularly problematic when your SYSTEM must collect measurement data or transmit data 
relative to power ground that is corrupted with switching noise or ground loops. Thoroughly 
investigate:

1. WHAT types of external grounding systems are available.

2. HOW the external system implements power and signal ground.

3. WHAT other systems experienced and discovered when interfacing to this source.

Challenge 13: Interface Electromagnetic Emissions

Electronic power and signal interfaces often emit electromagnetic signals that may couple to 
other data sensitive devices or are tracked by external surveillance systems. Most engineers tend
to think of signal shielding and grounding from a cabling perspective. However, signal shielding
and grounding also applies to signal sources contained within mechanical enclosures as well as
facilities.

43.11 GUIDING PRINCIPLES

In summary, the preceding discussions provide the basis with which to establish the guiding prin-
ciples that govern system interface analysis, design, and control practices.

Principle 43.1 Specifications for and interfaces between systems and items are owned and con-
trolled by the organization accountable for the architecture that depicts the items.

Principle 43.2 Document the operational, physical, and data requirements of every interface
within an entity’s specification; create a separate software IRS only if there are compelling reasons.

Principle 43.3 ICDs document hardware interfaces; IDDs document software interfaces.
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43.12 SUMMARY

During our discussion of system interface analysis, design, and control we:

1. Described HOW interfaces are identified and documented in an IRS, ICD, and IDD.

2. Established a methodology for identifying and defining system interfaces.

3. Discussed HOW ICWGs control system interfaces.

4. Provided common examples of interface standards.

5. Identified common challenges and issues in interface definition and control.

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new system selection, apply your knowledge derived from this section’s topical dis-
cussions. Using the system architecture previously developed in Part I, assume you are required to prepare
a Technical Management Plan (TMP) that describes how you intend to manage interfaces:

(a) Prepare a description of guidance you want to convey in the TMP that describes HOW interfaces will 
be identified, owned, and controlled.

(b) Identify how interfaces are to be documented in terms of IRSs, ICDs, and IDDs. Describe what will 
be documented in each document.

ORGANIZATIONAL CENTRIC EXERCISES

1. Research your organization’s command media.

(a) What minimum requirements does the media impose on interface identification, ownership, and control.

(b) Are programs required to use a standard IRS, ICD, or IDD outline?

(c) What is the structure of the organization’s IRS, ICD, or IDD?

(d) Who controls the IRS, ICD, or IDD outlines on each contract program?

2. Contact a small, a medium, and a large program in your organization.

(a) What IRS, ICD, or IDD requirements did their Contract Data Requirements List (CDRL) impose on 
the program?

(b) Did the contract specify an outline format?

(c) If not, what type of outline was used on each type of document?

(d) How is interface ownership and control established?

(e) What new lessons learned did program personnel discover that they would avoid on the next program?
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Chapter 44

Human–System Integration

44.1 INTRODUCTION

Human-made systems, products, and services inevitably require some form of human interaction
and control throughout all phases of operation. As technologies advance and deployment, opera-
tions, and support costs increase, we continually strive to automate systems to minimize the number
of human interactions to improve productivity, efficiency, effectiveness, and reduce costs.

For most organizations, the focus of contracts is typically on producing EQUIPMENT Element
systems and products. Given that focus, the PERSONNEL Element, which deploys, operates, and
supports the EQUIPMENT Element, is often given token “lip service” when requirements are allo-
cated from the System Performance Specification (SPS). Yet, the EQUIPMENT Element, as a non-
living object, is totally dependent on the PERSONNEL Element to: 1) prepare the system for a
mission, 2) conduct the mission, and 3) perform postmission actions. When the PERSONNEL
Element is addressed, there is often an imbalance between PERSONNEL performance and EQUIP-
MENT performance.

This chapter explores a system’s PERSONNEL–EQUIPMENT interactions that influence
development of a system, product, or service. As an overview, our discussions begin with the System
Operations Model introduced in Chapter 18. The model’s operations and tasks provide a frame-
work for addressing a simple question: WHICH tasks are best performed by the EQUIPMENT,
PERSONNEL, or combinations of the two? Since PERSONNEL requirements are allocated to oper-
ators and maintainers on a TASK basis, we introduce attributes of tasks that must be investigated
and specified. Typically, this requires analyses and trade studies of Human-In-the-Loop (HITL)
interactions to understand human performance relative to overall system or product performance.

Notice The information provided herein is intended to heighten a basic SE AWARENESS of
factors that influence human–system interface design. ALWAYS employ the services of a competent,
highly qualified Human Factors Engineer to perform human–system interface design.

What You Should Learn from This Chapter

1. What is anthropometry?

2. What are haptics?

3. What are ergonomics?

4. What are the classes of human–system interfaces?

5. What types of input/output (I/O) devices are available for human–system interfaces?

6. What are the key attributes of human tasks?

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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7. What is Human Factors Engineering (HFE)?

8. What are the seven elements of Human–System Integration (HSI)?

9. What are areas of concern related to each HSI element?

10. What are the five types of human factors?

11. What are the common types of human characteristics associated with human factors?

12. What are the key analytical techniques for analyzing human–system interfaces?

13. What are the key areas of interest related to HFE and their areas of concern?

Definitions of Key Terms

• Anthropometry “The scientific measurement and collection of data about human physical
characteristics and the application (engineering anthropometry) of these data to the design
and evaluation of systems, equipment, and facilities.” (Source: MIL-HDBK-1908B, Defini-
tions, para. 3.0, p. 6)

• Anthropometrics “Quantitative descriptions and measurements of the physical body vari-
ations in people. These are useful in human factors design.” (Source: MIL-HDBK-470A,
Appendix G: Glossary, p. G-2)

• Ergonomics The multi-disciplinary science concerned with the study of work and how to
apply knowledge of human capabilities, performance, and limitations to workplace design
via human-system interfaces and interactions.

• Haptic “Refers to all the physical sensors that provide a sense of touch at the skin level and
force feedback information from muscles and joints.” (Source: DoD 5000.59-M Modeling
and Simulation [M&S] Glossary, Part II, Glossary-A, Item 241, p. 117)

• Haptics “The design of clothing or exoskeletons that not only sense motions of body parts
(e.g., fingers) but also provide tactile and force feedback for haptic perception of a virtual
world.” (Source: DoD 5000.59-M Modeling and Simulation [M&S] Glossary, Part II, 
Glossary-A, Item 242, p. 117)

• Human Factors “A body of scientific facts about human characteristics. The term covers
all biomedical and psychosocial considerations; it includes, but is not limited to, principles
and applications in the areas of human engineering, personnel selection, training, life support,
job performance aids, and human performance evaluation.” (Source: MIL-HDBK-1908B,
Definitions, para. 3.0, p. 17)

• Human Performance “A measure of human functions and action in a specified environ-
ment, reflecting the ability of actual users and maintainers to meet the system’s performance
standards, including reliability and maintainability, under the conditions in which the system
will be employed.” (Source: MIL-HDBK-1908B, Definitions, para. 3.0, p. 18)

• Man-Man Interface (MMI) “The actions, reactions, and interactions between humans and
other system components. This also applies to a multistation, multiperson configuration or
system. Term also defines the properties of the hardware, software or equipment which 
constitute conditions for interactions.” (Source: MIL-HDBK-1908B, Definitions, para. 3.0,
p. 21)

• Safety Critical “A term applied to any condition, event, operation, process, or item whose
proper recognition, control, performance, or tolerance is essential to safe system operation
and support (e.g., safety critical function, safety critical path, or safety critical component).”
(Source: MIL-STD-882D, para. A.3.2.10, p. 9)
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• Task Analysis “A systematic method used to develop a time-oriented description of 
personnel-equipment/software interactions brought about by an operator, controller or main-
tainer in accomplishing a unit of work with a system or item of equipment. It shows the
sequential and simultaneous manual and intellectual activities of personnel operating, main-
taining or controlling equipment, in addition to sequential operation of the equipment. It is
a part of system engineering analysis where system engineering is required.” (Source: MIL-
HDBK-1908B, Definitions, para. 3.0, pp. 31–32)

• User-Computer Interface (UCI) “The modes by which the human user and the computer
communicate information and by which control is commanded, including areas such as:
information presentation, displays, displayed information, formats and data elements;
command modes and languages; input devices and techniques; dialog, interaction and trans-
action modes; timing and pacing of operations; feedback, error diagnosis, prompting,
queuing and job performance aiding; and decision aiding.” (Source: MIL-HDBK-1908B,
Definitions, para. 3.0, p. 34)

44.2 APPROACH TO HSI

Our approach to this section is to provide an awareness of the types of technical decisions SEs
need to understand concerning the development of systems that require human-in-the-loop (HITL)
interations with a system. Since Human Factors Engineering (HFE) is a specialty engineering dis-
cipline, we approach HSI from an SE perspective as illustrated in Figure 44.1. Specifically, our
topics of discussion include:

• Human interface classes

• Human factors

• Human System Integration (HSI) Elements

• HSI issue areas

• Task attributes
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44.3 HUMAN–SYSTEM INTERFACES

Chapters 18 through 20 System Operations Concepts introduced the System Operations Model. The
model provides an initial framework for defining HOW a system’s pre-mission, mission, and post-
mission phases of operation might be constructed. The framework consists of serial and concur-
rent operations and tasks to be performed to accomplish OBJECTIVES established for each phase
of operation.

The System Operations Model framework presents a challenge: WHICH individual or combi-
nations of System Elements—such as EQUIPMENT or PERSONNEL—should be allocated require-
ments for performing the OPERATIONS and TASKS? On the surface, this sounds simple. However,
further investigation REVEALS new questions that must be answered first:

1. WHAT capabilities and levels of performance can the EQUIPMENT Element provide with
current technologies and resource constraints such as cost and schedule?

2. WHAT skills and levels of performance do members of the PERSONNEL Element currently
possess or can be trained to perform?

3. WHAT level of risk are we willing to accept in the PERSONNEL and EQUIPMENT
elements.

We can ultimately condense these questions into: WHAT types of operations and tasks can the
EQUIPMENT Element and PERSONNEL Element or combinations of the two perform best? To
answer these questions, we need to identify the key strengths of PERSONNEL and EQUIPMENT
performance.

Key Strengths of Human Performance

Humans excel in a number of skills and mental strengths when contrasted with EQUIPMENT. In
general, human performance exceeds EQUIPMENT performance in the following areas:

1. Value-based judgments and decisions

2. Priority selections

3. Resource allocations—over time

4. Impromptu tasks

5. Creative, nonrepetitive tasks

6. Sensitivity to painful conditions

7. Human communications

8. Smell and touch

9. Adaptive behavior

Author’s Note 44.1 Numbered items in the list above and below are for reference purposes
and SHOULD NOT be interpreted as rank ordered list.

Key Strengths of EQUIPMENT Performance

In contrast, EQUIPMENT, when designed correctly from a User’s perspective, excels in other areas
when compared with humans. In general, EQUIPMENT performance exceeds human performance
in the following areas:

1. Processing, storing, and retrieving vast amounts of data.

2. Computing complex algorithms and trends in a short period of time.



3. Transmitting and receiving large amounts of error-free data under time constraints.

4. Artificially controlling human performance under prescribed safety conditions—aircraft
performance.

5. Sensing and analyzing microscopic scale variations in electrical, mechanical, optical, envi-
ronmental, and chemical conditions.

6. High-speed, noncreative, repetitive tasks—such as mass production.

7. Controlling high-risk operations that pose safety and health threats to humans and the envi-
ronment—such as steel mill, handling hazardous and toxic materials.

8. Leveraging human physical capabilities.

9. Measuring parameters—such as time, mass, and material composition.

Guidepost 44.1 Given this comparison of strengths, how do SEs determine the appropriate
allocation and mix of performance-based operations and tasks to the EQUIPMENT and PER-
SONNEL elements? First, let’s identify the types of human–system interfaces that provide the basis
for decision making.

Human Interface Classes

The FAA’s National Airspace System-SE Manual Table 4.8–9 identifies eight classes of human 
interfaces:

1. Functional interfaces

2. Information interfaces

3. Environmental interfaces

4. Operational interfaces

5. Organizational interfaces

6. Cooperation interfaces

7. Cognitive interfaces

8. Physical interfaces

Table 44.1 provides a description of each of these classes, performance dimension, and perform-
ance objectives.

Guidepost 44.2 Given these classes of interfaces, SEs need to understand HOW these inter-
faces affect various human performance characteristics. So, we need to identify human factors that
are affected by human–system interactions.

Human Factors

HSI requires consideration of several human characteristics that influence SYSTEM and EQUIP-
MENT element design. Human Factors Engineering (HFE) identifies five key factors concerning
human characteristics that have an impact on PERSONNEL–EQUIPMENT interactions that lead
to system design considerations:

1. Anthropometric factors

2. Sensory factors

3. Cognitive factors
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Table 44.1 FAA perspective on classes of human interfaces

ID Human Interface Class/Scope Performance Dimension Performance Objective

44.1 Functional Interfaces Task performance Ability to perform tasks
For operations and maintenance— within time and accuracy
role of the human versus automation; constraints
functions and tasks; manning levels; 
skills and training

44.2 Information Interfaces Information handling/ Ability to identify, obtain,
Information media, electronic or processing integrate, understand,
hardcopy; information characteristics, performance interpret, apply, and
and the information itself disseminate information

44.3 Environmental Interfaces Performance under Ability to perform under
Physical, psychological, and tactical environmental stress adverse environmental stress,
environments including heat and cold,

vibration, clothing,
illumination, reduced
visibility, weather,
constrained time, and
psychological stress

44.4 Operational Interfaces Sustained Ability to maintain
Procedures, job aids, embedded or performance performance over time
organic training, and on-line help

44.5 Organizational Interfaces Job performance Ability to perform jobs, tasks,
Job design, policies, lines of and functions within the
authority, management structure, and management and
organizational infrastructure organizational structure

44.6 Cooperation Interfaces Team performance Ability to collectively achieve
Communications, interpersonal mission objectives
relations, team performance

44.7 Cognitive Interfaces Cognitive Ability to perform cognitive
Cognitive aspects of human computer performance operations (e.g., problem-
interfaces (HCI), situational awareness, solving, decision making,
decision making, information information integration,
integration, short-term memory situational awareness)

44.8 Physical Interfaces Operations and Ability to perform operations
Physical aspects of the system with maintenance and maintenance at
which the human interacts (e.g., HCI, performance workstations and work sites,
controls and displays, workstations, and in facilities using
and facilities) controls, displays,

equipment, and tools

Source: National Airspace System-System Engineering Manual, Section 4.8.3.3, Table 4.8–9.



530 Chapter 44 Human–System Integration

4. Psychological factors

5. Physiological factors.

To better understand the scope each of these factors, Table 44.2 lists general human characteristics
related to each of these factors.

PERSONNEL–EQUIPMENT Trade-Offs

When specification requirements are written, avoid specifying operational tasks to be performed
by PERSONNEL unless there are compelling reasons supported by analysis or trade studies. As
the SE Process Model executes through multiple levels of system design, trade-offs are made with
Decision Support Practices (Chapters 50–52). Decision support is tasked to determine the best mix
of PERSONNEL versus EQUIPMENT tasks. This may require analyses, prototypes, and simula-
tions to ensure that overall SYSTEM performance is optimal.

Author’s Note 44.2 Since SYSTEM operations involve human operator and external interac-
tions that are variable and have a degree of uncertainty, we use the term optimal versus optimum.
Given these uncertainties, seldom will overall SYSTEM performance be optimum.

Table 44.2 Common human characteristics associated with human
factors

Human Factors Human Characteristics

Anthropometric factors • Human physical dimensions
• Body posture
• Repetitive motion
• Physical interface

Sensory factors • Hearing
• Vision
• Touch
• Balance

Cognitive factors • Mental ability
• Skills
• Decision making
• Training requirements

Psychological factors • Human needs
• Attitudes
• Expectations
• Motivations

Physiological factors • Human reactions to environments
• Strength (lifts, grip, carrying, etc.)
• Endurance

Source: DoD Human Factors Engineering Critical Process Assessment Tool
(CPAT), Table 1, p. 7.
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PERSONNEL–EQUIPMENT Interactions

Once the initial allocations are made, the next question is HOW will the PERSONNEL and EQUIP-
MENT Elements interact with each other to accomplish interface objectives. We refer to these PER-
SONNEL interactions as input/output (I/O) operations that include:

1. Audio-visual stimuli and cues.

2. Tactile cues—such as touch and vibratory cues.

3. Physical products and services—such as hardcopies and data files.

As this information is collected and processed, the EQUIPMENT Element produces various pre-
programmed cues that, at a minimum, include:

1. Prompts to the operator(s) to react to a question or make a decision.

2. General health status.

3. Problem reporting.

4. Progress reporting in performing a task.

Since audio, visual, and vibratory cues are an integral part of human–system interfaces; let’s scope
what we mean by each term.

Auditory Cues. Audio cues consist of any type of warnings, cautions, and alerts that notify the
operator of specific EQUIPMENT health and status conditions. Various tonal frequencies as well
as sequences and patterns of tones are employed to symbolize SYSTEM conditions. Auditory cues
are often employed to alert system operators, especially when they are not attentive or observing
the visual cues.

Visual Cues. Visual cues consist of any optical warnings, cautions, or normal indications or mes-
sages to inform operators and maintainers of the current SYSTEM conditions, status, or health.

Vibratory Cues. Where auditory or visual cues are not desirable or preferable, vibratory cues
may be employed to alert SYSTEM operators. Vibratory cues consist of devices that employ
electromechanical mechanisms that vibrate on command. Examples include silenced cell phones
and pagers.

Guidepost 44.3 Given an understanding of types of human–system interaction cues, HOW are
these cues communicated? This brings us to our next topic, system command and control (C2) devices.

SYSTEM Command and Control (C2) Devices

PERSONNEL require mechanisms to command and control (C2) SYSTEM operations and per-
formance. We refer to these mechanisms as I/O devices. Let’s identify some of the various types
of I/O devices that serve as candidate solutions for human–system interations.

Data Entry Devices. Data entry devices consist of electromechanical-optical mechanisms, such
as keyboards or touch panels that enable SYSTEM operators and maintainers to enter alphanumeric
information.

Pointing Control Devices. Pointing control devices consist of mechanisms, such as a computer-
based trackball, eyeball trackers, or mouse to enable SYSTEM operators and maintainers to point,
manipulate, or maneuver data such as “drag and drop.”
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Mechanical Control Devices. Mechanical control I/O devices include mechanical tools that
enable operators to calibrate, align, control, or adjust the SYSTEM configuration, operation, and
performance.

Electronic Control Devices. Electronic control I/O devices consist of electronic or electro-
mechanical mechanisms, such as remote controls, toggle or rotary switches, dials, and touch screen
displays, configured to communicate operator controlled pointing position or displacement to spe-
cific data items.

Translational Displacement Control Devices. Translational displacement control devices
such as joysticks and track balls employ electronics that transform or translate mechanical move-
ments—by angular displacement, stress, or compression—into electronic signals that are used to
control systems.

Sensory I/O Devices. Sensory I/O devices consist of mechanisms that sense the presence,
degree, proximity, and strength of human interaction.

Audio I/O Devices. Audio input devices consist of electro-mechanical mechanisms that trans-
late sound waves into inputs that are compatible with and recognized by the system—such as speech
recognition. Audio output devices consist of electromechanical mechanisms—such as speakers and
headphones—that communicate tones or messages to the system operator(s).

Generalized and Specialized I/O Solutions

In Chapter 12, System Interfaces, we introduced the concept of generalized and specialized inter-
faces. We apply the same approach to human–system interfaces.

PERSONNEL–EQUIPMENT interactions begin with a simple acknowledgement that a logical
entity relationship or association exists between two interacting systems, a generalized solution.
As the System Developer analyzes the interface and its requirements, candidate solutions are inves-
tigated—as specialized solutions. Consider the following example:

EXAMPLE 44.1

A System Developer has a contract to design a system that requires an operator to enter data. Thus, we have
a logical association between the PERSONNEL and EQUIPMENT Elements—a generalized solution. As a
generalized solution we have not specified HOW the operator inputs data into the system. The development
team responsible for providing the interface explores several viable candidate solutions that include standard
keyboards, touch screen displays, and so forth. Subsequently, the team selects a standard keyboard for the
application—a specialized solution. However, further analysis reveals that the keyboard may be susceptible
to dirt, dust, rain, and snow. So, the team decides to go with a ruggedized keyboard—which is, another level
of specialized solution—capable of surviving in the system’s OPERATING ENVIRONMENT.

Guidepost 44.4 At this juncture we have introduced some of the fundamentals of PERSON-
NEL–EQUIPMENT interfaces. We now shift our focus to designing system interfaces that integrate
PERSONNEL–EQUIPMENT interactions. This brings us to our next topic, Human System Inte-
gration (HSI).
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44.4 HUMAN SYSTEM INTEGRATION (HSI) ELEMENTS

Human Systems Integration (HSI) in system design requires consideration of several elements.
Since human factors are critical operational and technical issues, especially in aerospace and
defense systems design, a significant amount of the knowledge we have today originates from those
industries.

MIL-HDBK-46855A (para. 5.1.2.1 HSI Elements) identifies seven HSI elements that consist
of:

1. Human factors engineering (HFE)

2. Manpower

3. Personnel

4. Training

5. Safety

6. Health hazards

7. Human survivability

Each of these HSI elements includes various areas of concern that provide a basis for further inves-
tigation. Table 44.3 provides a listing of example areas of concern that require SE attention.

44.5 HUMAN FACTORS ENGINEERING (HFE)

Human–system interactions encompass more than simply checking to see if the EQUIPMENT and
PERSONNEL Elements are assigned the RIGHT mix of tasks. There are other dimensions of the
interaction that require consideration by a specialty discipline referred to as Human Factors Engi-
neering (HFE).

When human interactions are a key element of system operations, technical decisions have to
be made regarding the man–machine interface (MMI) between the PERSONNEL and EQUIP-
MENT System Elements. Depending on the system applications, these decisions often involve 
a single philosophy. Reiterating previous themes: for a given set of operating conditions and 
constraints:

Table 44.3 HSI element areas of concern

HSI element Example Areas of Concern

Human factors 1. Unnecessarily stringent selection criteria for physical and mental capabilities.
engineering (HFE) 2. Compatibility of design with anthropometric and biomedical criteria

3. Workload situational awareness, and human performance reliability
4. Human–system interface
5. Implications of mission and system performance requirements on human

operator, maintainer, supporter.
6. Effects of design on skill, knowledge, and aptitudes requirements
7. Design driven human performance, reliability, effectiveness, efficiency, and

safety performance requirements
8. Simplicity of operation, maintenance, and support
9. Costs of design-driven human error, inefficiency, or ineffectiveness

(continued)
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Table 44.3 continued

HSI element Example Areas of Concern

Manpower 1. Manpower requirements
2. Deployment considerations
3. Team and organizational structure
4. Operating strength
5. Manning concepts
6. Manpower policies

Personnel 1. Personnel selection and classification
2. Demographics
3. Accession rates
4. Attrition rates
5. Career progression and retention rates
6. Promotion flow
7. Personnel training and pipeline
8. Qualified personnel where and when needed
9. Projected user population/recruiting

10. Cognitive, physical, and educational profiles

Training 1. Training concepts and strategy
2. Training tasks and training development methods
3. Media, equipment, and facilities
4. Simulation
5. Operational tempo
6. Training system suitability, effectiveness, efficiency, and costs
7. Concurrency of system with trainers

Safety 1. Safety of design and procedures under deployed conditions
2. Human error
3. Total system reliability and fault reduction
4. Total system risk reduction

Health hazards 1. Health hazards induced by systems, environment, or task requirements
2. Areas of special interest include (but not limited to):

a. Acoustics
b. Biological and chemical substances
c. Radiation
d. Oxygen deficiency and air pressure
e. Temperature extremes
f. Shock and vibration
g. Laser protection

Human survivability 1. Threat environment
2. Identification friend or foe
3. Potential damage to crew compartment and personnel
4. Camouflage/concealment
5. Protective equipment
6. Medical injury
7. Fatigue and stress

Source: MIL-HDBK-46855A, Table 1: HSI Elements and the Areas of Concern for Each, p. 20.
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1. Compared to EQUIPMENT, what tasks can the PERSONNEL element perform best?

2. Compared to PERSONNEL, what tasks can the EQUIPMENT element—such as machines—
perform best?

3. What controls should be allocated for humans to perform versus EQUIPMENT—for exam-
ples, automated versus manual controls?

4. What work task ergonomic factors should be considered in human-system interface 
designs.

5. What are the performance effects of human-system interactions and outputs—such as
PRODUCTS, BY-PRODUCTS, and SERVICES—on the environment, safety, and health of
SUPPORT SYSTEMs and the general public?

Answers to these questions require specialty skills referred to as Human Factors Engineering (HFE).
DOD 5000.2-R (Section C5.2.3.5.9.1) describes HFE as “established to develop effective
human–machine interfaces, and minimize or eliminate system characteristics that require extensive
cognitive, physical, or sensory skills; require excessive training or workload for intensive tasks; or
result in frequent or critical errors or safety/health hazards.”

This leads to the question: WHAT do HFEs investigate? The answer resides in understanding
our next topic, HFE analyses.

HFE Analyses

HFE performs various analyses such as manpower, personnel, training, and safety/health hazards
to ensure that System Performance Specification (SPS) requirements are met. Human Factors (HF)
engineers employ various tools and methods to perform operational sequence evaluations, timeline
and task analyses, and error analyses.

Since these decisions have an impact on the SPS and item development specification require-
ments, HFE should be an integral part of system and specification development activities begin-
ning during the proposal phase. Failure to do so may have a major impact on contract technical,
cost, and schedule delivery performance as well as severe consequences if catastrophic failures
occur after deployment of the system, product, or service.

The DoD Human Factors Engineering Critical Process Assessment Tool (CPAT) (Section 1.1.3)
identifies three analytical HFE techniques for application to human–system interface design deci-
sion making:

• Operational Sequence Evaluations “[D]escribe the flow of information and processes
from mission initiation through mission completion. The results of these evaluations are then
used to determine how decision–action sequences should be supported by the human–system
interfaces.”

• Task Analysis “[T]he study of task and activity flows and human characteristics that 
may be anticipated in a particular task. Task analysis is used to detect design risks associ-
ated with human capabilities, such as skill levels and skill types. Task analysis also provides
data for man–machine trade-off studies. The results of a task analysis allow the system
designer to make informed decisions about the optimal mix of automation and manual
tasking.”

• Error Analysis “[I]s used to identify possible system failure modes. Error analysis is often
conducted as part of human–machine trade-off studies to reveal and reduce (or eliminate)
human error during operation and maintenance of the system. The error analysis results even-
tually are integrated into reliability failure analyses to determine the system level effects of
any failures.”



Tests and Demonstrations “[A]re often necessary to identify mission critical operations and main-
tenance tasks, validate the results of the human factors related analyses, and verify that human
factors design requirements have been met. These tests and demonstrations are used to identify
mission critical operations and maintenance tasks. Therefore, they should be completed at the ear-
liest time possible in the design development process.”

Subjects of Concern to HFE

From a system design perspective, the scope Human Factors Engineering (HFE) applies knowl-
edge of human characteristics and methods to ensure human performance is accorded proper con-
sideration while achieving overall system performance. To do this, MIL-HDBK-46855A (Table II,
p. 26) identifies nine system design subjects of concern to HFE:

1. Human perceptual/performance characteristics

2. Display and control design

3. Design of equipment, vehicles, and other systems

4. Workplace, crew station, and facilities design

5. Automation and human–machine integration

6. Environmental conditions

7. Work design

8. Health and safety

9. System evaluation

Each area of interest consists of a set of concerns that require particular attention by HFEs. Table
44.4 provides a summary listing.

44.6 HSI ISSUE AREAS

As evidenced by the preceding discussions, when human–system interfaces are designed, there are
a number of design considerations that, if not properly addressed, can become issues areas. The
FAA’s National Airspace System-System Engineering Manual, for example, identifies 23 issue areas
and associated concerns. Table 44.5 provides a listing of these areas and provides a brief descrip-
tion of design considerations for each issue area.

HFE Prototypes and Demonstrations

One of the best approaches to support HFE design decision-making is to simply prototype design
areas that may have a moderate to high level of risk. Spiral development provides a good strategy
for refining human–system interfaces with Users via rapid prototyping to drive out key require-
ments. Rapid prototyping includes cardboard model mockups, sample displays, and so forth.

What does prototyping accomplish? The DoD Human Factors Engineering CPAT (Section
1.1.3) offers several reasons. “Operator/maintainer interfaces should be prototyped to:

1. Develop or improve display/software and hardware interfaces.

2. Achieve a design that results in the required effectiveness of human performance during system
operation and maintenance.

3. Develop a design that makes economical demands upon personnel resources, skills, 
training and costs.”

536 Chapter 44 Human–System Integration
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Table 44.4 MIL-HDBK-46855 perspective on HFE subjects of concern

Item Area of Interest HFE Subjects of Concern

44.1 Human 1. Anatomy and physiology
Perceptual/ 2. Anthropometry and biomechanics
Performance 3. Sensory processes in vision, hearing, and other senses
Characteristics 4. Spatial awareness and perceptual organization

5. Attention, workload, and situational awareness
6. Learning and memory
7. Decision making and problem solving
8. Perceptual motor skills and motion analysis
9. Complex control processes

10. Performance speed and reliability
11. Language
12. Stress, fatigue, and other psychological and physiological states
13. Individual differences

44.2 Display and 1. Input devices and controls
Control Design 2. Grouping and arrangement controls

3. Process control and system operation
4. Control/display integration
5. Visual displays
6. Audio, tactile, motion, and mixed-modality displays
7. Information presentation and communication
8. Human–computer interfaces

44.3 Design of 1. Portable systems and equipment
Equipment, 2. Remote handling equipment
Vehicles, and 3. Command and control systems
Other Systems 4. Equipment labeling

5. Ground vehicles
6. Marine craft
7. Aircraft and aerospace vehicles
8. Manpower and crew size requirements
9. Maintainability

10. Reliability
11. Usability

44.4 Workplace, 1. Console and workstation dimensions and layout
Crew Station, 2. General workplace and building design
and Facilities 3. Design of non-work (service) facilities
Design 4. Design of multi-building environments

5. Design of self-contained working/living environments

44.5 Automation 1. Allocation of functions between human and machine
and Human- 2. Automation of human tasks
Machine 3. Aiding of operators, maintainers, and teams
Integration 4. Artificial intelligence

5. Virtual environments
6. Robotics

44.6 Environmental 1. Illumination
Conditions 2. Noise

3. Vibration
4. Acceleration/deceleration

(continued)
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Table 44.4 continued

Item Area of Interest HFE Subjects of Concern

5. Whole-body velocity (motion)
6. Temperature extremes and humidity
7. Micro-gravity
8. Underwater conditions
9. Restrictive environments

10. Time-zone shifts

44.7 Work Design 1. Task description, task analysis, and task allocation
2. Job skills, structure, and organization
3. Crew coordination and crew resource management
4. Work duration, shift work, and sustained and continuous operations
5. Job attitudes, job satisfaction, and morale
6. Personnel selection and evaluation
7. Training, instructional manuals, and job support

44.8 Health and 1. Health hazard assessment
Safety 2. Risk perception and risk management

3. Biological, chemical, radiation, and other hazards
4. Occupational safety and health
5. Alarms, warnings, and alerts
6. Preventive education and training
7. Protective clothing and personal equipment
8. Life support, ejection, escape, survival equipment

44.9 System 1. Modeling and simulation
Evaluation 2. Mock-ups, prototypes, and models

3. Mannequins and fitting trials
4. Information flow and processing
5. Systems analysis
6. Reliability, failure, and error analysis
7. Operational effectiveness training
8. Usability testing

Source: MIL-HDBK-46855A, Table II, Subjects of Concern to HE, pp. 26–27.

Guidepost 44.5 At this juncture we have introduced primary information used to design the
EQUIPMENT Element hardware and software items. We now shift our emphasis to the PERSON-
NEL Element. Obviously, we cannot engineer a system’s human operator. However, we can iden-
tify specific mission tasks assigned to the system operators and maintainers and train them to
perform those tasks in a safe, orderly, and proficient manner.

44.7 HUMAN–SYSTEM TASKING

Interactions between humans and systems involve three types of System Element requirements allo-
cations: EQUIPMENT Element, PERSONNEL Element, and PROCEDURAL DATA Element.

• EQUIPMENT Element requirements specify the capability to:
1. Display or output data to system operators and external interfaces.
2. Accept input data from system operators to control system behavior and sustain 

performance.
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Table 44.5 FAA perspective on HSI issue areas

Item Issue Area Description

44.1 Allocation of System design reflecting assignment of those roles/functions/tasks for which
Function the human performs better, or assignment to the equipment that it performs

better while maintaining the human’s awareness of the operational situation.

44.2 Anthropometrics System design accommodation of personnel (e.g., from the 1st through the
and 99th percentile levels of human physical characteristics) represented in the
Biomechanics user population.

44.3 Communications System design considerations to enhance required user communication and
and Teamwork teamwork.

44.4 Computer– Standardization of CHI to access and use common functions employing
Human similar and effective user dialogues, interfaces, and procedures.
Interface (CHI)

44.5 Displays and Design and arrangement of displays and controls to be consistent with the
Controls operator’s and maintainer’s natural sequence of operational actions and

provide easily understandable supporting information.

44.6 Documentation Preparation of user documentation and technical manuals in a suitable
format of information presentation, at the appropriate reading level, easily 
accessible, and with the required degree of technical sophistication and
clarity.

44.7 Environment Accommodation of environmental factors (including extremes) to which
equipment is to be subjected and the effects of environmental factors on
human–system performance.

44.8 Functional Use of a human-centered design process to achieve usability objectives and
Design and compatibility of equipment design with operation and maintenance concepts
Operational and legacy systems.
Suitability

44.9 Human Error Examination of unsafe acts, contextual conditions, and supervisory and 
organization influences as causal factors contributing to degradation in
human performance, and consideration of error tolerance, resistance, and 
recovery in system operation.

44.10 Information Enhancement of operator and maintainer performance through use of 
Presentation effective and consistent labels, symbols, colors, terms, acronyms,

abbreviations, formats, and data fields.

44.11 Information Availability of information needed by the operator and maintainer for a 
Requirements specific task when it is needed and in the appropriate sequence.

44.12 Input/Output Design of input and output devices and methods that support performing a
Devices task quickly and accurately, especially critical tasks.

44.13 Knowledge, Measurement of the knowledge, skills, and abilities required to perform 
Skills and job-related tasks. Necessary to determine appropriate selection requirements
Abilities (KSA) for operators.

44.14 Procedures Design of operational and maintenance procedures for simplicity and 
consistency with the desired human–system interface functions.

44.15 Safety and Reduction/prevention of operator and maintainer exposure to safety and
Health health hazards.

(continued)
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Table 44.5 continued

Item Issue Area Description

44.16 Situation Consideration of the ability to detect, understand, and project the current and
Awareness future operational situations.

44.17 Skills and Tools Considerations to minimize the need for unique operator or maintainer skills,
abilities, or characteristics.

44.18 Staffing Accommodation of constraints and opportunities on staffing levels and
organizational structures.

44.19 Subjective The operator’s or maintainer’s perceived effort involved in managing the
Workload operational situation.

44.20 Task Load Objective determination of the numbers and types of tasks that an operator
performs.

44.21 Training Consideration of the acquisition and decay of operator and maintainer skills
in the system design and capability to train users easily, and design of the
training regimen to result in effective training.

44.22 Visual/Auditory Design of visual and auditory alerts (including error messages) to invoke the
Alerts necessary operator and maintainer response to adverse and emergency

situations.

44.23 Workspace Adequacy of workspace for personnel and their tools and equipment, and
sufficient space for movements and actions they perform during operational 
and maintenance tasks under normal, adverse, and emergency conditions.

Source: FAA’s National Airspace System System Engineering Manual, Section 4.8.3.3, Table 4.8–10.

• PERSONNEL Element requirements specify tasks that deploy, operate, and support the
system to:
1. Monitor system information and outputs.
2. Interpret system operations and health conditions.
3. Control system behavior and performance.
4. Perform corrective action to mitigate risk to the operators, EQUIPMENT, public, and the

environment.

• PROCEDURAL DATA Element requirements instruct the operators or maintainers in HOW
to:
1. Safely and effectively deploy, operate, and maintain the system.
2. Proceed in normal and emergency operations.
3. Perform corrective actions or remediate the effects of system failures should an emer-

gency occur.
4. Understand system capability and performance limitations.

Since system operator and maintainer requirements are task-based actions, let’s define the attrib-
utes of a task.

Defining Task Attributes

As you analyze most tasks, you will discover that they share a common set of attributes. These
attributes enable human factors specialists to understand the mission and scenario conditions that
bound the human–system interactions. MIL-STD-1908B identifies six attributes of a task:
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1. Mission

2. Function

3. Job

4. Duty

5. Task

6. Subtask

Table 44.6 defines each of these attributes.

44.8 GUIDING PRINCIPLES

In summary, the preceding discussions provide the basis with which to establish the guiding prin-
ciples that govern human–system interfaces practices.

Principle 44.1 Optimal HSI design requires balancing requirements allocation in two areas:

1. WHAT the PERSONNEL Element does best.

2. WHAT the EQUIPMENT Element does best.

Principle 44.2 When designing HSIs, structure layouts and display information based on use
case prioritized operator/practitioner needs, skill levels, and frequency of usage priorities.

Principle 44.3 AVOID operator decision-making data overloads: keep interface information
simple and intuitive.

Table 44.6 MIL-STD-1908B definitions of task attributes

Item Task Attribute Definition

44.1 Mission What the system is supposed to accomplish (e.g., mission).

44.2 Scenario/ Categories of factors or constraints under which the system will be expected to
Conditions operate and be maintained (e.g., day/night, all weather, all terrain operation).

44.3 Function A broad category of activity performed by a system (e.g., transportation).

44.4 Job The combination of all human performance required for operation and 
maintenance of one personnel position in a system (e.g., driver).

44.5 Duty A set of operationally related tasks within a given job (e.g., driving, system
servicing, communicating, target detection, self-protection, and operator
maintenance).

44.6 Task A composite of related activities (perceptions, decisions, and responses) performed
for an immediate purpose, written in operator/maintainer language (e.g., change a 
tire).

44.7 Subtask An activity (perceptions, decisions and responses) that fulfills a portion of the 
immediate purpose within the task (e.g., remove lug nuts).

44.8 Task Element The smallest logically and reasonably definable unit of behavior required in 
completing a task or subtask, e.g., apply counterclockwise torque to the lug nuts
with a lug wrench.

Source: MIL-HDBK-1908B, Task Analysis Definition para. 3.0, p. 32.
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Principle 44.4 When presenting information, AVOID presentation of trivial data unless the oper-
ator(s) has CONSCIOUSLY requested it, assuming existence of the information is known.

Principle 44.5 When training PERSONNEL to operate a SYSTEM, employ the EDEV
approach:

1. Explanation.

2. Demonstration.

3. Experimentation.

4. Verification.

Principle 44.6 Interface simplicity rules!

44.9 SUMMARY

As an overview discussion of human–system interfaces, we investigated the key SE considerations for allo-
cating EQUIPMENT and PERSONNEL requirements based on the premise of WHAT the system can perform
best versus WHAT humans perform best—the Human-in-the-Loop (HITL) system.

Our initial discussions focused on understanding human–system interactions. We discussed types of
human–system interfaces—audio, visual, and vibratory—and provided examples of command and control (C2)
I/O devices used in Human-in-the-Loop (HITL) systems.

Based on an understanding of human–system interactions, we shifted our focus to the design aspect of
Human System Integration (HSI). We identified key elements of HSI and their respective areas of concern
that require Human Factors Engineering (HFE). We illustrated how HFE categorizes human characteristics
into human factors that impact human–system performance.

We concluded our discussion PERSONNEL tasks and identified their attributes.

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new system selection, apply your knowledge derived from this chapter’s topical
discussions. Specifically identify the following:

(a) What types of I/O devices are employed as human–system interfaces?

(b) Identify examples of the types of factors listed below from Table 44.2 that should be considered in the 
system’s design:

1. Anthropometric design factors

2. Sensory design factors

3. Cognitive design factors

4. Psychological design factors

5. Physiological design factors

(c) Identify examples of human-system tasks that represent decisions the System Developer may have 
made regarding EQUIPMENT element versus PERSONNEL Element decision-making allocations.

ORGANIZATIONAL CENTRIC EXERCISES

1. Research your organization’s command media for guidance and direction in implementing the
human–system interface practices from an SE perspective.
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(a) What requirements are levied on SE responsibilities for HF/HFE?

(b) What overall process is required and how do SEs contribute?

(c) What SE work products and quality records are required?

(d) What verification and validation activities are required?

2. Contact two contract programs within your organization.

(a) What human factors requirements were levied on the system design?

(b) Who are the Users/Operators of the system?

(c) What critical human–system interface decisions were made?

(d) What PERSONNEL Element requirements were levied on the system operators?

(e) What task analysis was performed and linked to specification requirements and system capabilities?
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Chapter 45

Engineering Standards, Frames of
Reference, and Conventions

45.1 INTRODUCTION

As the system architecture evolves, interactions between the system and its OPERATING ENVI-
RONMENT and internal elements such as SUBSYSTEMS must be compatible and interoperable.
This requires that both sides of the interface adhere to standards. For some systems, the interface
may require new development; in other cases, legacy interfaces may already exist, thereby estab-
lishing the baseline for compliance for new development.

Whichever is the case, SEs that engineer these interactions for new system, products, or serv-
ices must be synchronized in thought, process, and methods, and share a common system design
perspective for accomplishing the interface. The mechanism for ensuring a common perspective
resides in the establishment of engineering standards, frames of reference, and conventions.

Many systems have been developed that failed system integration or their missions due to
simple, human errors in communicating and interpreting the mechanical, electrical, chemical,
optical, software, and information that apply to both sides of the interface.

This chapter addresses the need for SEs to establish engineering standards, frames of refer-
ence, and conventions “up front” as one of the cornerstones of system design. Our discussion
explores each of these topical areas and provides examples to illustrate the importance of syn-
chronizing design mindsets to a common, shared viewpoint for designing compatible and inter-
operable interfaces.

What You Should Learn from This Chapter

1. What is an engineering standard?

2. What is a convention?

3. Why do we need engineering standards?

4. What are the key subject matter categories of engineering standards?

5. What are some types of standards?

6. What are some types of conventions?

7. What are some common standards and conventions issues?

8. Who establishes engineering standards?

9. What are local standards and conventions?

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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10. What are some examples of local standards and conventions?

11. How is the degree of compliance with engineering standards verified?

Definitions of Key Terms

• Compliance The act of adhering to the letter of a requirement without exception.

• Conformance The act of adapting or customizing organizational work products, processes,
and methods to meet the spirit and intent of a required action or objective.

• Convention A method established by external or internal standards for conveying how engi-
neers are to interpret system or entity configurations, orientations, directions, or actions.

• Coordinate System A two- or three-dimensional axis frame of reference used to establish
system configuration and orientation conventions, support physical analysis, and facilitate
mathematical computations.

• Dimension A physical property inherent to an object that is independent of the system of
measure used to quantify its magnitude.

• Open Standards “Widely accepted and supported standards set by recognized standards
organizations or the market place. These standards support interoperability, portability, and
scalability and are equally available to the general public at no cost or with a moderate license
fee.” (Source: Adapted from DSMC—Glossary: Defense Acquisition Acronyms and of
Terms)

• Standard “A document that establishes engineering and technical requirements for products,
processes, procedures, practices, and methods that have been decreed by authority or adopted
by consensus.” (Source: ANSI/EIA 632-1999, Processes for Engineering a System, p. 67)

• Technical Standard “A common and repeated use of rules, conditions, guidelines or 
characteristics for products or related processes and production methods. It includes the 
definition of terms, classification of components, delineation of procedures, specification of
dimensions, materials, performance, designs, or operations. It includes measurement of
quality and quantity as well as a description of fit and measurements.” (Source: NASA SOW
NPG 5600.2B)

45.2 ENGINEERING STANDARDS

Engineering standards provide a mechanism for organizations and industries to:

1. Establish consensus performance requirements for development of systems, products, and
services.

2. Audit compliance of those deliverable work products.

3. Provide a framework for targeting improvements related to performance and safety.

Standards evolve from lessons learned, best practices, and methods within an organization and
across industry domains. They:

1. Ensure product compatibility and interoperability and avoid the consequences of lessons
learned.

2. Ensure consistency, uniformity, precision, and accuracy in materials, processes, and weights
and measures.

3. Promote modularity, interchangeability, compatibility, and interoperability.
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4. Ensure safety to the general public and environment.

5. Promote ethical business relationships.

Where a standard is employed as the basis for evaluating work related performance, the term PER-
FORMANCE STANDARD is employed.

Standard Normative and Informative Clauses

In general, standards express performance requirements via clauses. Standards clauses generally
fall into two types of clauses: normative clauses and informative clauses.

• Normative clauses or requirements express mandatory criteria for compliance with the stan-
dard and include the word “shall” to indicate required performance.

• Informative clauses express information for voluntary compliance or to provide
guidance/clarification for implementing the normative requirements.

Local organization engineering standards should clearly delineate normative and informative
clauses.

Engineering Standards Authorities

National and international organizations establish standards. To posture themselves for this posi-
tion, they must be recognized and respected within a given industry or business domain as the
authoritative proponent or issuer of standard practices. Consult your contract, industry, and engi-
neering discipline for specific standards that may be applicable to your business and contract.

Dimensional Properties and Systems of Units

Standards express two types of information that serve as the frame of reference for measurements:
dimensional properties and systems of units.

• Dimensional properties represent inherent physical properties of an object such as mass,
length, width, weight.

• Systems of units are standards of measure that form the basis for measuring the magnitudes
of an object’s dimensional properties.

Guidepost 45.1 At this point we have established WHAT a standard is and WHAT it expresses.
Now let’s shift our attention to understanding WHAT types of information they communicate.

Standards Subject Matter

Standards are employed to express performance requirements for a variety of applications such 
as documentation, processes, methods, materials, interfaces, frames of reference, weights and 
measures, domain transformations, demonstrations, and conventions. Of these items, engineering
weights and measures, conventions, and frames of reference require specific emphasis, especially
in creating consistency across a contract program.

45.3 ENGINEERING STANDARDS FOR 
WEIGHTS AND MEASURES

Perhaps the most fundamental concept of engineering is establishing a system of weights and meas-
ures. Technical expressions that describe the form, fit, and function of a system, product, or service
are totally dependent on usage of standard units for weights and measures.

546 Chapter 45 Engineering Standards, Frames of Reference, and Conventions
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One of the most fundamental examples of establishing weights and measures is simply select-
ing and applying a system of units. There are two primary standard systems of units in use today:

1. International System of Units (SI).

2. British Engineering System (BES).

Let’s contrast each of these systems.

International System of Units (SI)

The International System of Units (SI) was approved by the 11th General Conference on Weights
and Measures (CGPM) in 1960. The CGPM adopted the SI designation from the French Le Système
International d’Unites. The SI, which is sometimes referred to as the metric or mks for meter–
kilogram–second system, is based on seven base units that are determined to be independent. Table
45.1 provides a listing of these base units.

British Engineering System (BES)

The British Engineering System (BES) consists of five base units listed in Table 45.2.

Scientific Notation

In addition to defining the system of units for measurement, we need to express the magnitudes
associated with those units in a manner that is easy to read. We do this with scientific notation as
illustrated in Table 45.3.

Data Accuracy and Precision

When data are measured or computed, it is critical for a program to establish a policy for data accu-
racy and precision. In addition to establishing mathematical models, transformations, and conver-

Table 45.1 Base units of the International System of Units (SI)

Base Quantity Name Symbol

Length meter m
Mass kilogram kg
Time second s
Electric current ampere A
Thermodynamic pressure kelvin K
Amount of substance mole mol
Luminous intensity candela cd

Source: Taylor, The International System of Units. Table 1, p. 9, 2001.

Table 45.2 Base units of the British Engineering System (BES)

Base Quantity Name Symbol

Length foot ft
Force pound lb
Time second s
Temperature degree fahrenheit °F
Luminous intensity candle
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sions, the integrity of the chain of computations is totally dependent on the accuracy of the data
that feed each one.

You should recall our earlier discussions of the “supply chain” (Figure 13.3). Humans, as devel-
opers of systems, have two roles as a MISSION SYSTEM and a SUPPORT SYSTEM. As a
MISSION SYSTEM, we perform a SUPPORT SYSTEM role to the next person or organization
performing their MISSION SYSTEM role.

To illustrate the importance of data precision, consider a simple definition of the mathemati-
cal symbol, pi. Are two digits of precision—namely 3.14—necessary and sufficient criteria for
downstream computations? Four digits? Eight digits? You have to decide and establish the stan-
dard for the program.

Closing Point

As the technical lead for a program, SEs need to establish a program consensus regarding a stan-
dard system of units for expressing physical quantities. This requires three actions:

1. Establish unit conversion tables via project memorandums or reference to a standard.

2. Thoroughly scrutinize interface compatibilities and interoperability throughout the System
Development Phase, especially at reviews.

3. DEMAND professional discipline and compliance.

45.4 COORDINATE SYSTEMS

The engineering of systems and products often require that an observer’s frame of reference be
established for characterizing the engineering mechanics and dynamics of the system as a body rel-
ative to other systems. Basic concepts for observer frames of reference have their origins in physics.
So, what is a frame of reference?

A frame of reference is expressed as a three-dimensional axis system with the origin located
at a designated point on or within a MISSION SYSTEM. The orientation or perspective of the 3-
axis coordinate system depends on an observer’s eye point location when viewing the MISSION
SYSTEM. This brings up two key questions:

1. How are integrated EQUIPMENT Element component displacements and relationships
characterized in terms of a 3-axis frame of reference?

2. How do we express movements relative to the observer’s X-, Y-, or Z-axes?

Table 45.3 Scientific notation symbology

Power Prefix Notation

10-9 nano n
10-6 micro m
10-3 milli m
10-2 centi c
10-1 deci d
103 kilo k
106 mega M
109 giga G
1012 tetra T



The answer to the first question resides in establishing a coordinate reference system. The second
question requires establishing a convention for application to the coordinate system. First, let’s con-
sider what is meant by convention.

Frame of Reference Conventions

A convention is a designation of orientation used to describe actions observed relative to the
observer’s frame of reference. The point of origin for the frame of reference resides at the observer’s
eye point.

Conventions enable SEs to express relationships relative to the observer using the observer’s
frame of reference such as:

1. Spatial position of an object relative to an observer’s eye point positioned at the origin of
a 3-axis frame of reference.

2. Direction of movement relative to observer’s eye point.

3. Translational movements relative to each axis of the observer’s frame of reference.

The Right-Hand Rule Convention

The Right-Hand Rule states that if you configure your right hand so that the thumb points UPWARD
to represent the direction of an axis and the fingers are coiled about the axis, the direction of the
fingers about the axis symbolizes a CLOCKWISE rotation in the direction of the thumb that is
POSITIVE. A COUNTERCLOCKWISE direction is considered NEGATIVE.

The Right-Handed Cartesian Coordinate System

Building on the Right-Hand Rule, we can create two-dimensional and three-dimensional Cartesian
coordinate systems to support system design needs. The challenge comes in establishing a con-
vention that enables us to:

1. Communicate the configuration of the axes to each other relative to the observer’s frame
of reference.

2. Express relative motion about the principal axes of the frame of reference.

Establishing an Observer’s Frame of Reference Coordinate System. The preceding dis-
cussions established the need to define a coordinate system as an observer’s frame of reference to
facilitate communications, characterize free-body movements, orientation, calibration, and align-
ment. Figure 45.1 provides an illustration. This system enables us to establish an observer’s eye
point viewing position at the origin of a 3-axis coordinate system.

1. The X-axis represents the observer’s direction of observation relative to the eye point.

2. The Z-axis points UPWARD from the observer’s eye point as the origin.

3. The Y-axis extends to the LEFT of the observer’s eye point and is orthogonal to the X- and
Z-axes.

Table 45.4 provides examples of conventions employed to characterize these actions.
This description simply establishes HOW the observer expresses observations about objects

within the viewing space relative to the frame of reference. The question is: HOW does the observer
express motion about those axes? This brings us to our next topic, establishing YAW, PITCH, and
ROLL conventions.

45.4 Coordinate Systems 549
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Table 45.4 Examples of conventions applied to a 3-axis observer’s frame of reference

Item Observation Directional Conventions

45.1 Object spatial position relative the observer’s Left, right, up, down
frame of reference

45.2 Direction of movement relative to observer’s Forward, backward, left, right, upward, and
frame of reference downward

45.3 Translational movements about the observer’s Rotations about an axis employing the Right-Hand
3-axis frame of reference Rule—e.g., yaw, pitch, and roll

YAW, PITCH, and ROLL Conventions. We can express translational motion about a 3-axis
system by using the illustrations shown in Figure 45.2. Since the axes are different, we need to
establish terms that enable us to differentiate motion. These terms are PITCH, YAW, and ROLL.
For applications in which a frame of reference is allowed to rotate freely in any direction, we refer
to it as a free body axis system. Table 45.5 lists descriptions of PITCH, YAW, and ROLL conven-
tions applied a free body axis system.

Guidepost 45.2 Our discussions up to this point provide generic descriptions of coordinate
systems. Now let’s explore some actual systems that implement these coordinate systems.

World Coordinate System (WCS)

Systems, such as land surveying, aircraft, and military troops, track their geospatial positions based
on displacement of the origin of the MISSION SYSTEM relative to an Earth-based coordinate
system. To do this, they establish a 3-axis frame of reference using the Earth’s center as the origin.
We refer to this system as the World Coordinate System (WCS) as illustrated in Figure 45.3.
Whereas navigators employed magnetic compasses and sextants to determine geographic position
with some level of accuracy, we navigate using the Global Positioning System (GPS) satellites
located in Earth orbit.

For the WCS:

+Y

+Z

+X
Forward

Direction of 
Observation

Observer’s
Eyepoint

Figure 45.1 Right-Handed Cartesian Coordinate System as an Observer’s Frame of Reference
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1. The Z-axis extends from the center of the Earth (origin) through the North Pole.

2. The X-axis extends from the Earth’s center (origin) through the Prime Meridian at the
equator.

3. Finally, the Y-axis extends from the origin through 90 degrees East at the equator.

Engineering computations and simulations employ models that require certain assumptions about
the Earth’s characteristics such as Earth Centered, Earth Fixed (ECEF); Earth Centered Rotating
(ECR); and Earth Centered Inertial (ECI) models.

X

Y

Z

PITCH
Axis of Rotation

Plane of 
Rotation

ROLL
Axis of Rotation

X

Y

Z

Plane of 
Rotation

X

Y

Z

YAW
Axis of 

Rotation

Plane of 
Rotation

ROLL
Angle Convention

(Y rotates about X toward Z)

PITCH
Angle Convention

(Z rotates about Y toward  X)
YAW

Angle Convention
(X rotates about Z toward Y)

Figure 45.2 6 Degree of Freedom (DOF) Roll, Pitch, & Yaw Conventions

Table 45.5 ROLL, PITCH, and YAW conventions for a right-handed, body-axis, cartesian coordinate
system relative to the origin

Parameter Convention Action Observeda

ROLL Positive (+) ROLL Clockwise angular rotation about the longitudinal X-axis (i.e.,
along  the direction of forward travel) in which the Y-axis rotates
toward the Z-axis

Negative (-) ROLL Counterclockwise angular rotation about the X-axis (Z into Y)

PITCH Positive (+) PITCH Clockwise angular rotation about the Y-axis in which the Z-axis
rotates toward the X-axis

Negative (-) PITCH Counterclockwise angular rotation about the Y-axis (X into Z)

YAW Positive (+) YAW Clockwise angular rotation about the Z-axis in which the X-axis
rotates toward the Y-axis

Negative (-) YAW Counterclockwise angular rotation about the Z-axis (Y into X)

aAs viewed by an observer with their eye point located at the origin of a right-handed coordinate system.
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Y1

Z1

X1

y2

x2

z2

Rotation

Figure 45.4 Frame of Reference Based Coordinate System

The WCS enables us to reference a specific point on the surface of the Earth. But, HOW do
air-based systems such as aircraft and spacecraft relate to the WCS? Obviously, these systems
employ on-board GPS technology. However, the systems are free bodies that are in motion rela-
tive to another body, the Earth, which is also in motion. HOW do we express their heading and
rotational velocities and accelerations relative to their frame of reference?

Free Body Dynamics Relative to a Fixed Body

Complex systems often require dynamic characterizations of a free body relative to another body
that is assumed to be fixed as illustrated in Figure 45.4. Where this is the case, select the coordi-
nate system(s) to be applied to each body axis system. For this illustration, we establish an X1, Y1,
Z1 coordinate system to represent the Earth’s frame of reference and an X2, Y2, Z2 coordinate system
to represent the orientation of a free body in space relative to the Earth.

+Y

+Z

+X

Axis of 
Rotation +

Prime Meridian
(Greenwich)

90 Degrees 
East

Equator

North Pole

Figure 45.3 World Coordinate System (WCS) Application of the Right Hand Rule Rotation Convention
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Six Degree of Freedom (6 DOF) Models. A free body in space has a relative position within
the base frame of reference. Within that space its travels in any direction can be translated into
motion relative to the X-, Y-, or Z-axes. It can also freely rotate about the axes of its own frame of
reference. As such, we label this type of system as having six degrees of freedom (6 DOF).

State Vectors. The 6 DOF discussion also provides the basis for the concept of state vectors.
State vectors enable us to express the relative heading, velocities, and accelerations about the axes
of a free body in space.

Applications of Coordinate Systems and Conventions to
Engineering Mechanics

The preceding discussions illustrate the basic concept of standard right-handed Cartesian coordi-
nate system as illustrated at the left side of Figure 45.5. For many applications this convention is
acceptable. However, from an engineering mechanics perspective, the establishment of the posi-
tive Z-axis pointing upward means that analysis of gravity-based loading effects result in negative
Z components.

For systems with this challenge, we can facilitate computation by rotating the 3-axis system
so that the positive Z-axis points downward toward the center of the Earth. To illustrate this appli-
cation, consider NASA’s Space Shuttle example shown at the right side of Figure 45.6. Here the
X-axis represents the forward direction of travel; the Y-axis extends from the center of gravity (CG)
through the right wing.

Now consider the added complexity in which the Shuttle maneuvers in orbit to fly UPSIDE
DOWN and BACKWARD during most of its mission to.

1. Minimize the thermal and radiation effects of the sun by turning the vehicle’s belly toward
the Sun and using the heat tiles as a solar shield.

Y

X

Z

Conventional
Right-Handed Coordinate

(Z-Axis Up)

X

Y

Z

Gravitational Loading Effects 
Result in NEGATIVE Quantities

Gravitational Loading Effects 
Result in POSITIVE Quantities

Rotated
Right-Handed Coordinate

(Z-Axis Down)

Figure 45.5 Engineering Statics and Mechanics Conventions
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Figure 45.6 Space Shuttle Coordinate System Application

Source: http://liftoff.msfc.nasa.gov/academy/rocket_sci/shuttle/coord/orb_body.html

2. Minimize the impact areas of orbital debris and meteorites that may cross its path that could
damage tiles on the vehicle’s nose or leading edges of the wings.

3. Shield Cargo Bay equipment from impacts that could damage dangerous or fragile 
instruments.

4. Minimize the energy required to deploy payloads.

5. Slow the vehicle for reentry by firing small nozzles, which are located on the rear of the
vehicle, in the direction of forward travel.

Guidepost 45.3 The preceding discussions relate to a free body operating as a MISSION
SYSTEM relative to another free body. Now let’s shift our attention to focus on the MISSION
SYSTEM as an integrated set of components that must interface as an integrated framework. This
leads to the next question: How do we reference a system consisting of multiple components that
are integrated to form the free body system?

Dimensional Reference Coordinate Systems

One of the challenges in the engineering of systems is expressing the relative position and orien-
tation of physically integrated components within the system. The objective is to ensure they inter-
operate in form, fit, and function and individually do not interfere with each other unintentionally,
or have a negative impact on the performance of the system, its operators, and its facilities or
mission objectives.

This challenge requires positioning integrated components in a virtual frame of reference or
structure and attaching them at integration points (IPs) or nodes to ensure interoperability. Then,
identifying additional attachment points such as lift points that enable external systems to lift or
move the integrated system. This requires establishing a dimensional coordinate system.

NASA’s Space Shuttle coordinate system shown in Figure 45.7 provides an excellent example
of a dimensional coordinate system. Here, the Orbiter Vehicle (OV), External Tank (ET), and Solid
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Rocket Boosters (SRBs) each have their own respective frame of reference coordinate systems.
These systems are then referenced relative to an integrated vehicle coordinate system with the origin
designated as X–, Y–, Z–. This figure illustrates two key decision areas for SEs regarding dimen-
sional reference coordinate systems.

First, note in this figure HOW the principal X-axis extends through the rear of the vehicle.
Any point along this axis is considered positive by convention. Systems such as aircraft establish
dimensional benchmarks or “stations” along the fuselage as a means of referencing component
locations. Using a positive X-axis convention extending through the rear of the aircraft eliminates
the need for negative values for dimensions or “stations.”

Second, note the location of the origin in front of the ET nose. Aircraft designers select these
virtual origins for a variety of engineering based rationale. One rationale, for example, includes
accommodating free space forward of the nose for additional components that may be added later.
In this case, a component attached to the nose would remain within the positive X-axis space. Other
placement considerations include movements about the center of gravity (CG) and center of 
rotation.

Third, compare and contrast the coordinate system in Figure 45.6 with the one in Figure 45.7.
This illustrates that a given system design may employ common frames of reference but different
orientations, each intended to support specific needs. Figure 45.6 facilitates engineering mechan-
ics computations for system modeling; Figure 45.7 facilitates dimensional space coordinate refer-
ence systems for product engineers and designers.

Angular Displacement Reference Systems

Some systems employ common components in left-hand and right-hand orientations that require
the need for a convention. Referring to Figure 45.7, how can the SRBs be uniquely identified? NASA
designates each one as illustrated in Figure 45.8.

Figure 45.7 Space Shuttle Coordinate System and Dimensions

Source: Report of the PRESIDENTIAL COMMISSION on the Space Shuttle Challenger Accident Figure 1:
Shuttle Coordinate Systems and Dimensions (http://history.nasa.gov/rogersrep/v3o378a.htm)

Subscripts
T = External Tank
B = Solid Rocket Booster
0 = Orbiter
S = Shuttle System
FRL = Fuselage Reference Line

Frame of Reference
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Figure 45.8 Angular Coordinate System for Solid Rocket Boosters/Motors

Source: Report of the PRESIDENTIAL COMMISSION on the Space Shuttle Challenger Accident Figure 26: Challenger
Report http://history.nasa.gov/rogersrep/vlp69.htm

In this figure the observer’s eye point origin is positioned to the rear of the Shuttle vehicle
looking forward along the X-axis in the vehicle’s forward direction of travel. Relative to the
observer’s frame of reference, the SRB on the left is designated as LEFT and the other as RIGHT.

Now observe that the LEFT and RIGHT SRBs each employ an angular displacement system to
reference specific locations about their principal axis. Note the location of the respective 0°/360° ref-
erence marks when the SRBs are attached and integrated on opposite sides. Configuration orienta-
tion diagrams such as this are developed by SEs in collaboration with subject matter experts (SMEs)
and are critical to design decision making.

45.5 OTHER EXAMPLES OF ORIENTATION CONVENTIONS

Briefly, other examples of engineering conventions include the following:

• When viewing some integrated circuit (IC) devices with the notch at the top and pins on the
left and right sides, Pin 1 is located in the upper left corner; the remaining pins are num-
bered counterclockwise from Pin 1 with the last ID assigned to the pin in the upper right
corner. If a notch is not present, Pin 1 is noted by a small dot printed on the device or
impressed into the body of the chip next to the Pin 1 location.
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• Doors are designated as left-hand or right-hand as viewed by an observer. When an observer
approaches a door, right-handed doors have the knob on the RIGHT side, open toward the
observer, and swing to their LEFT; left-handed doors have the knob on the LEFT side, open
toward the observer, and swing to their RIGHT. Special considerations may have to be given
to “inswing” or “outswing”.

• Mission Event Timelines (METs) include events that must be referenced to a common point of
reference in time. Thus designations such as T0, T1, T2, etc., or t0, t1, t2, etc., are established.

The bottom line is: SEs must analyze their systems to identify areas that may require conventions
for identification and interfacing components to avoid confusion and safety issues.

45.6 STANDARD ATMOSPHERES

Systems and products interact with other external systems in their OPERATING ENVIRONMENT
under a variety of NATURAL and INDUCED ENVIRONMENT conditions. As part of the problem
space and solution space definitions, SEs and others have to make ASSUMPTIONS that charac-
terize and bound OPERATING ENVIRONMENT conditions.

Adding to the complexity of these assumptions is the fact that NATURAL ENVIRONMENT
conditions vary throughout the day, month, year, and world. So, how to we standardize to support
informed OPERATING ENVIRONMENT decision making? The answer resides in creating the Stan-
dard Atmosphere.

Scientists express the Standard Atmosphere via models that describe the interrelationships
among air temperature, density, and pressure as a function of time of day, month, and geographi-
cal region location. Figure 45.9 serves as an example.

P
ressure

P
ressure

Tem
perature

Tem
perature

Figure 45.9 Graphical plot of Standard Atmosphere—Altitude, Pressure, and Temperature

Source: Climate Research Division, Scripps Institution of Oceanography, University of California, San Diego,
CA based on Smithsonian Meteorological Tables, 6E, Smithsonian Institution, Washington, DC, 1966
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Standard atmosphere models and tables for geographical locations are available from govern-
ment organizations such as the US National Oceanographic and Atmospheric Administration
(NOAA), and National Aeronautics and Space Administration (NASA).

45.7 APPLYING ENGINEERING STANDARDS 
AND CONVENTIONS TO PROGRAMS

As a lead on a contract development effort program, SEs must ensure that all applicable standards
and conventions used on the program are well documented and explicitly communicated and well
understood by all program personnel. So, how are these documented?

Standards and conventions are documented via specifications, plans, design documents, Inter-
face Requirements Specifications (IRS), Interface Control Documents (ICD), and so forth. To under-
stand some of the types of information that have to be communicated across these interfaces to
achieve interoperability, consider the following examples:

EXAMPLE 45.1

• Weights and measures

• Coordinate system frame of reference

• Computational precision and accuracy

• Base number systems

• Units of conversion

• Calibration standards

• Engineering standards sources

• Documentation guidelines, standards, and conventions

• Data communications standards

Finally, establish an official list of program acronyms and definitions of key terms. Some people
refer to this as “languaging” the program. Although this simple task seems trivial, it will save many
hours of personnel thrashing about, each with different views of the terms. People need to share a
common mindset of terminology.

45.8 ENGINEERING STANDARDS AND 
CONVENTIONS LESSONS LEARNED

Engineering standards and conventions involve a number of application and implementation lessons
learned. Let’s explore some of the more common lessons learned.

Lesson Learned 1: Tailoring Organizational Standards

Organizational standards are established to accommodate a wide variety of system applications.
Since every system is different, the standards must include tailoring instructions guidance for apply-
ing the standard to a program.

Lesson Learned 2: Organizational Standards 
as Contract Requirements

When organizational standards are unavailable to Offerors for a formal Request for Proposal (RFP)
solicitation or contract, the Acquirer must ensure that each Offeror is provided a copy or access to
a copy during normal business hours.
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Lesson Learned 3: Program Standards 
and Conventions Document

A common problem related to standards implementation is failure to define the standards to be used
in developing system or item interfaces, coordinate transformations, and software coding. There-
fore, SEs should establish, baseline, and release an Engineering Standards and Conventions doc-
ument for application on each program.

Lesson Learned 4: Conflicts between Standards

Occasionally, conflicts occur within and between engineering standards. Standards organizations
work to ensure that conflicts are avoided. If, as an Acquirer, you mandate that a system, product,
or service meet specific standards, make sure specification requirements do not conflict.

Lesson Learned 5: Scope of Requirements

From an SE perspective, standards are often written for broader application to a variety of busi-
ness domains. As an SE, your role is collaborate with subject matter experts (SMEs) to ensure that
the explicit provisions of the standard that are applicable to a contract or system development effort
are identified by paragraph number. This avoids confusion and unnecessary verification expenses
ferreting out WHAT IS and IS NOT applicable.

Lesson Learned 6: Application of Standards Use

When proposing or developing new systems, Acquirer SEs should ensure that all standards refer-
enced in procurement packages or specifications are the most current, approved, released version
of the document. Likewise, System Developer SEs, via contract protocols, should request the
Acquirer to CLARIFY broad references such as “ANSI-STD-XXXX shall apply” via specific
requirements such as “ANSI-STD-XXXX- (version) para. x.x.x shall apply.”

Lesson Learned 7: Assumptions About Conventions

One of the challenges SEs face is making assumptions about performance boundary conditions and
conventions. Inevitably, people assume everyone understands to use the XYZ convention. ALWAYS
document the conventions in project memorandums to be used; leave nothing to chance! Every
technical review should include a technical description of conventions such as a graphic, where
applicable, that ensures consistency and completeness of SE design activities.

Lesson Learned 8: Coordinate System Transformations

Our discussions included a focus on designating a coordinate system for a free body such as an air
vehicle. Aircraft, especially military aircraft, serve as a platform for other payload systems such as
sensors and missile systems. Just because the aircraft might use a right-handed Cartesian coordi-
nate system with the Z-axis pointing downward does not mean interfacing components will also.

If a payload is developed for a specific aircraft, it makes sense to establish compatible co-
ordinate systems. However, what happens if a decision is made to add a payload to an air vehicle
that uses a different coordinate system. You have a challenge.

Where the coordinate systems of interfacing systems are different, developers perform coor-
dinate transformations from one system to another. This requires additional processing resources
and consumes valuable time: you may not have a choice. In any case, ALWAYS create a simple
diagram that illustrates the coordinate systems used and standardize across the program WHAT
methods will be employed to perform the coordinate transformations. Establish which interfacing
system is required to perform the coordinate transformation in the respective specification.



Lesson Learned 9: Standard Terminology

Successful system design and development requires that everyone on the program have a common
vision and mindset and communicate in a language that is consistent and mutually understood by
everyone. This requires establishing terminology and acronyms for universal application through-
out all documentation.

Suggestions to establish standard terminologies are usually met with disparaging remarks about
how terms are intuitively obvious are to smart people. Then, when the program encounters major
team-based work scope issues or interpretations caused by failures in application of terminology,
everyone suddenly has one of those “why didn’t we think of this sooner” responses. How do you
avoid this?

The System Engineering and Integration Team (SEIT) must:

1. Establish and be the “keeper” of standard terms, definitions, and acronyms.

2. Make the list readily accessible via on-line network drives or Web sites.

3. Communicate updates to everyone on the program.

4. Ensure compliance across all documentation.

45.9 GUIDING PRINCIPLES

In summary, the preceding discussions provide the basis with which to establish the guiding prin-
ciples that govern engineering standards and conventions practices.

Principle 45.1 Engineering standards and conventions are crucial for decision making, com-
munications, and documentation. Neglect them and they will become high risk; nurture them and
they will guide your path toward success.

Principle 45.2 Each interface should be specified in one and only one official document that is
baselined and controlled by the interface owner.

45.10 SUMMARY

Our discussions of engineering standards, frames of reference, and conventions highlighted the need to estab-
lish corporate, national, and international standards for guiding the system development effort. We introduced
the meanings of normative and informative clauses and how they were to be implemented.

We also highlighted the need to establish interface standards and conventions such as inertial frames of
reference, English (BES) versus metrics (SI) systems, and coding guidelines to guide development work.

You may say, “Look, we do not develop free body air vehicles. Why should we bother with considera-
tions with coordinate systems?” The examples discussed above were used to illustrate some of the complex-
ities of coordinate systems. Similar concepts are employed for designing and using numerical control
machines, aligning sensors and optical devices, land surveying, and so forth.

• Each program must establish and communicate a set of conventions for application to system config-
uration and interface applications, engineering design processes and methods, and work products.

• Each program must conduct periodic assessments of engineering standards compliance and review
engineering standards and conventions compliance as a key element of all technical reviews.
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GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter question identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new system selection, apply your knowledge derived from this section’s topical dis-
cussions. Specifically identify the following:

(a) What frame of reference would you apply to the MISSION SYSTEM?

(b) What conventions are applicable to this system?

(c) What are some examples of standards that are applicable to the development of this system or product?

ORGANIZATIONAL CENTRIC EXERCISES

1. Investigate several contract programs within your organization.

(a) Identify the engineering standards and conventions required by contract and others used voluntarily.

(b) Identify what types of physical measurement systems are used.

(c) If the system or product employs navigational systems or dimensional frame of reference, define the 
system that is used.

(d) Report your findings and observations.

2. Research the library or Internet for examples of other frame of reference systems that are used and iden-
tify the MISSION SYSTEM where used.

3. For Item 2 above, identify historical instances where the lack of engineering standards and conventions or
the misapplication contributed to system or product failures.
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Chapter 46

System Design and 
Development Documentation

46.1 INTRODUCTION

When a program is proposed and implemented, there are several key questions SEs need to be able
to answer.

1. What is the minimum level of documentation required to design and develop a system?

2. What documentation is required to be delivered and when?

3. What other nondeliverable documentation do we need to produce?

4. What level of formality and detail are required?

5. WHAT design data are required to perform the job, WHO owns it, WHAT are the risks in
obtaining it, and if we get it, is it accurate, valid, and under CM control?

These questions have answers that range from simple to very challenging, especially for docu-
mentation owned by other organizations.

This section explores the types of documentation produced for most system design and devel-
opment programs. Our discussions introduce key contracting terms such as CDRLs, DAL, and DCL
and describe each one and its relationship to the overall system development contract. We identify
four types of document classifications such as plans, specifications, design, and test documentation
and provide a graphical schedule of their release points.

The discussions provide commonly used rules for developing SE and development documen-
tation. We emphasize the importance and criticality of assessing documentation for export control
of sensitive data and technology. Our final discussion topic identifies several types of documenta-
tion issues SEs need to be prepared to address.

What You Should Learn from This Chapter

1. What is a Contract Data Requirements List (CDRL)?

2. What is the nominal sequencing and release of SE documentation?

3. What is a Subcontract Data Requirements List (SDRL)?

4. What is a Data Item Description (DID)?

5. What is a Data Accession List (DAL)?

6. What is a Data Criteria List (DCL)?

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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7. What are product data?

8. What are product description data?

9. What are product design data?

10. What are product support data?

11. What is the difference between approved data and released data?

12. What mechanisms are used to officially release SE documentation?

13. How should data exchanges between organizations be performed?

14. Why is it important to be sensitive to Export Control?

Definitions of Key Terms

• Authorized Access A formal approval issued by an Acquirer or program organization sig-
nifying that an internal or external individual or organization with a NEED TO KNOW is
authorized for limited access rights to specific types of data for a constrained period of time
subject to handling and control procedures established by the contract or program.

• Contract Data Requirements List (CDRL) An attachment to a contract that identifies a
list of documents to be delivered under the Terms and Conditions (Ts&Cs) of the contract.
Each CDRL item should reference delivery instructions including: 1) when the documents
are to be delivered; 2) outline, format, and media to be used; 3) to whom and in what quan-
tities; 4) level of maturity such as outline, draft, and final; 5) requirements for corrective
action; and 6) approvals.

• Data Accession List (DAL) “An index of data that may be available for request.” (Source:
DID DI-MGMT-81453, para. 3.1)

• Design Criteria List (DCL) A listing of design data that characterize the capabilities and
performance of an external system or entity that serves as an interfacing element or model
for emulation or simulation.

• Engineering Release Record “A record used to release configuration documentation.”
(Source: MIL-STD-973 [Canceled] Configuration Management, para. 3.38)

• Released Data “(1) Data that has been released after review and internal approvals. (2) Data
that has been provided to others outside the originating group or team for use (as opposed
to for comment).” (Source: ANSI/EIA 649-1998, para. 3.0, p. 6)

• Subcontract Data Requirements List (SDRL) A listing of data deliverables required by a
subcontract. See CDRL above.

• Technical Data “Technical data is recorded information (regardless of the form or method
of recording) of a scientific or technical nature (including computer software documentation)
relating to supplies procured by an agency. Technical data does not include computer soft-
ware or financial, administrative, cost or pricing, or management data or other information
incidental to contract administration. . . .” (Source: Former MIL-STD-973 [Canceled], Con-
figuration Management, para. 3.87)

• Technical Data Package “A technical description that is adequate to support acquisition of
an item, including engineering, production, and logistic support. The technical description
defines the design configuration and procedures required to ensure adequacy of item perform-
ance. It consists of all applicable technical data, such as engineering drawings, associated lists,
product and process specifications and standards, performance requirements, quality assurance
provisions, and packaging details.” (Source: MIL-HBDK-59B [Canceled], p. 57)
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• Working Data “Data that have not been reviewed or released; any data that are currently
controlled solely by the originator including new versions of data that were released, sub-
mitted, or approved.” (Source: ANSI/EIA-649-1998, para. 3.0 Definitions, p. 7)

Quality System and Engineering Data Records

System development, as an incremental decision-making process, requires that technical specifica-
tions, plans, design documentation, test procedures, and test results be documented for deliverables
and decision making, and be archived for historical purposes. The integrity of the documentation
data require verification and validation reviews to ensure accuracy, preciseness, consistency, and
completeness.

For ISO 9001-based Quality Systems, each step of the documentation process produces data
records that serve as objective evidence to demonstrate that you accomplished WHAT you planned
to do. When you plan your technical program, plan for, create, and capture data records.

Based on this introduction, let’s begin with a high-level perspective on documentation pro-
duced by a program.

46.2 SYSTEM DESIGN AND DEVELOPMENT DATA

System data consists of five basic types:

1. Contract deliverable data.

2. Subcontract, vendor, supplier required data.

3. Operation and support data.

4. Working data.

5. Local command media required data.

6. Personal engineering data records.

Let’s explore each of these further.

Contract Deliverable Data

The Acquirer of a SYSTEM levies documentation requirements on a System Developer via Terms
and Conditions (Ts&Cs) of the contract. Organizations issue contracts containing a Contract Data
Requirements List (CDRL) which identify specific documents to be delivered throughout the 
contract.

CDRL Items. CDRL item numbers specify deliver instructions on a CDRL item form. Each CDRL
Item form identifies the CDRL item number, documentation formats, and conditions for submittal,
submittal dates, and distribution lists.

Data Item Descriptions (DIDs). Most contracts require CDRLs to be delivered in a specific
format. The DoD, for example, employs Data Item Descriptions (DIDs) that provide preparation
instructions regarding the deliverable document’s outline and contents.

Subcontractor, Vendor, and Supplier Data

Acquirers (role) levy data requirements on contractors via the contract. These data apply to:

1. Configuration items (CIs) and items such as commercial off-the-shelf (COTS) items and
nondevelopmental items (NDIs) procured under subcontract.
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2. Certificates of Compliance (C of C) for purchased items.

3. Design and management reporting data to support SE design activities.

Subcontracts include a Subcontract Data Requirements List (SDRL) that identifies the set of data
deliverables. In some cases, the System Developer may flow down CDRL requirements via the
SDRL to subcontractors or extract specific CDRL requirements and incorporate into SDRLS to
provide inputs to support System Developer CDRL documents.

Vendor and supplier deliverables and data are often procured as part of a purchase order, for
example. The order may require the vendor to supply a Certificate of Compliance (C of C) certi-
fying that the delivered item meets or exceeds the vendor or supplier’s product specification 
requirements.

Operations and Support (O&S) Data

Operations and support data consist of the data required to operate and maintain the system,
product, or service. Examples include technical manuals and Standard Operating Practices and
Procedures (SOPPs). O&S data for a system may be delivered as part of the System Developer’s
contract, support contract, or developed internally by the User.

Working Data

Working data represent data such as analyses, trade studies, modeling and simulation results, test
data, technical decisions and rationale generated during the course of designing and developing the
system. Unless these data are explicitly identified as CDRL items under the Ts&Cs of the contract,
they are for internal usage by the System Developer’s personnel.

Occasionally the Acquirer may request the opportunity to view these data on the System Devel-
oper’s premises with the understanding they are not deliverables. This is accommodated via the
Data Accession List (DAL) discussed later.

Local Command Media Data Requirements

Another type of system development data are work products required by local command media—
the policies, processes, and procedures. Data required by local command media may include plans,
briefings, drawings, wiring lists, analyses, reports, models, and simulations. Unless specified by the
CDRL or SDRL, these data are considered to be non-deliverables.

You may ask: If a document is not required by contract, WHY consume resources producing
it? In general, the answer is organizations that possess levels of capability in SE know and under-
stand that specific data—such as plans, specifications, and test procedures—are crucial for success,
regardless of CDRL or SDRL data requirements. CDRL and SDRL data requirements may be inad-
vertently overlooked during the formal solicitation process or, as is often the case, the Acquirer
decides not to procure the data. If you determine that specific data items are missing during the
formal Request for Proposal (RFP) solicitation process, confer with the proposal leader regarding
how to address the missing items.

Personal Engineering Data Records

The final type of SE data includes personal data records as part of their normal tasking. Personal
data records should be maintained in an engineering notebook or computer-based analogy. Personal
data include plans, schedules, analyses, sketches, reports, meeting minutes, action items, tests con-
ducted, and test results. These data types are summarized in technical reports and progress and
status reports.
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46.3 DESIGN CRITERIA LIST (DCL) AND 
DATA ACCESSION LIST (DAL)

Contracts and subcontracts often require two types of documentation as part of the CDRL or SDRL
deliveries:

1. Data Accession List (DAL)

2. Design Criteria List (DCL)

Let’s describe each of these documents.

Data Accession List (DAL)

The development of most systems and products involves two types of documentation: deliverable
data and nondeliverable data. An Acquirer (role) specifies and negotiates the documentation to be
delivered as part of the contract delivery work products. During the course of the contract, the
System Developer or subcontractor may produce additional documentation that is not part of the
contract but may be needed later by the Acquirer or User.

Where this is the case, Acquirer (role) contracts often require the System Developer (role) to
prepare and maintain a Data Accession List (DAL) that lists all documentation produced under the
contract for deliverables and nondeliverables. This enables the Acquirer to determine if additional
data are available for procurement to support system maintenance. If so, the Acquirer may negoti-
ate with the contractor or subcontractor and modify the original contract to procure that data.

Each contract or subcontract should include a requirement for a System Developer to provide
a Data Accession List (DAL) as a CDRL/SDRL item to identify all CDRL and nondeliverable
documentation produced under the contract for review and an opportunity to procure the data at a
later date.

Design Criteria List (DCL)

Systems, products, and services are often required to be integrated into HIGHER ORDER systems.
For physical systems, interoperable interfaces or models are CRUCIAL. For simulations and emula-
tions, each model must provide the precise form, fit, and function of the simulated or emulated device.

In each of these cases, the physical system, model, simulation, or emulation must comply with
specific design criteria. Source data authentication, verification, and validation are critical to ensure
the integrity of the SE decision-making efforts.

How do you identify the design data that will be required to support the SE design effort? The
process of procuring this data begins with a Design Criteria List (DCL). The DCL is developed
and evolves to identify specific design documents required to support the system development
effort. Generally, SEs and Integrated Product Teams (IPTs) are responsible for submitting a detailed
list of items and attributes—such as title, document ID—to the Data Manager for acquisition. On
receipt, the Data Manager:

1. Forwards the documents to Configuration Management for processing and archival storage.

2. NOTIFIES the design data requestors regarding RECEIPT of the documents.

Each contract or subcontract should require publication of a Design Criteria List (DCL) by the
System Developer identifying specific documentation sources.

Guidepost 46.1 This concludes our overview on types of contract and subcontract SE data.
Let’s shift our focus to SE and Development Documentation Sequencing.



46.4 SE AND DEVELOPMENT 
DOCUMENTATION SEQUENCING

One of the challenges for SEs is determining WHEN various documents should be prepared,
reviewed, approved, baselined, and released. Although every contract and program requirements
vary by Acquirer, there are some general schedules that can be used to prepare SE and develop-
ment documentation. In general, we can categorize most SE documentation into four classes:

• Planning documentation

• Specification documentation

• System design documentation

• Test documentation

Planning Documentation

Figure 46.1 illustrates a basic schedule as general guidance for preparing and releasing various
types of technical plans. These documents include:

1. Key technical management plans (TMPs) such as hardware development plans, software
development plans, configuration and data management plans, and risk management plans.

2. Supporting technical plans such as system safety plans, manufacturing plans, and system
support plans.

3. Test plans such as system integration, test, and verification plans and hardware and soft-
ware test plans.
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1

Allocated
Baseline 

Key Technical Management Plans (System, HDP, SDP, CM & DM, et al)Key Technical Management Plans (System, HDP, SDP, CM & DM, et al)

Reviewed, 
Approved, & 

Baselined

Negotiated

System 
Procurement Phase

SE Design Segment

Submitted Revisions, Deviations, & Waivers via Formal Contract Modifications

Component Procurement 
& Development Segment

System Integration, 
Test, & Eval. Segment

Supporting Technical Plans (System Safety, Manufacturing, Support, et al plans)Supporting Technical Plans (System Safety, Manufacturing, Support, et al plans)

Reviewed, 
Approved, & 

BaselinedSubmitted Revisions via formal Change Management Procedures

Optional

RFP

Test Plans (SITV, Hardware, Software, etc.)Test Plans (SITV, Hardware, Software, etc.)

Reviewed, 
Approved, & 

Baselined Revisions via formal Change Management Procedures

Deployment
Segment

RFP

CA Contract Award
CDR Critical Design Review
C.O. Checkout
CMP Configuration Management Plan
CMP Data Management Plan 
FCA Functional Configuration Audit

HDP Hardware Development Plan
HSR Hardware Specification Review 
Install Installation
PCA Physical Configuration Audit
PDR Preliminary Design Review 
RFP Request for Proposal

SDP Software Development Plan
SDR System Design Review
SITV System Integration, Test, & Verification 
SSR Software Specification Review 
SVT System Verification Test
TRR Test Readiness Review

Where:

System Development Phase

System Requirements 
Baseline 

Product
Baseline 

Contract
Award SRR SDR PDR CDR

HSR
/SSR SVT

FCA/ 
PCA

SVR Accept
.

TRRs

Install & C.O.RFP
Release VAL

Figure 46.1 Planning Documentation Development
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Revisions, Deviations, & Waivers via Formal Contract Modifications

Revisions via formal Change Management Procedures

Revisions via formal Change Management Procedures

Allocated
Baseline 

System Performance Specification (SPS)System Performance Specification (SPS)

Reviewed, 
Approved, & 

Baselined

Negotiated

System 
Procurement Phase

SE Design Segment

Submitted

Component Procurement 
& Development Segment

System Integration, 
Test, & Eval. Segment

PRODUCT/SUBSYSTEM SpecificationsPRODUCT/SUBSYSTEM Specifications

Reviewed, 
Approved, & 

BaselinedSubmitted

Optional

RFP

HWCI/CSCI Requirements Specifications (HRS/SRS)HWCI/CSCI Requirements Specifications (HRS/SRS)

Reviewed, 
Approved, & 

Baselined

Deployment
Segment

RFP

CA Contract Award
CDR Critical Design Review
C.O. Checkout
FCA Functional Configuration Audit
HSR Hardware Specification Review

Install Installation
PCA Physical Configuration Audit
PDR Preliminary Design Review 
RFP Request for Proposal
SDR System Design Review

SSR Software Specification Review 
SVT System Verification Test
TRR Test Readiness Review

Where:

System Development Phase

System Requirements 
Baseline 

Product
Baseline 

Contract
Award SRR SDR PDR CDR

HSR
/SSR SVT Accept

.
TRRs

Install & C.O.RFP
Release VAL

FCA/ 
PCA

SVR

Figure 46.2 Specification Documentation Development

Specification Documentation

Figure 46.2 illustrates a basic schedule as general guidance for preparing and releasing various
types of specifications. These documents include:

1. System Performance Specification (SPS)

2. PRODUCT/SUBSYSTEM Development Specifications

3. HWCI/CSCI Requirements Specifications (HRS/SRS)

System Design Documentation

Figure 46.3 illustrates a basic schedule as general guidance for preparing and releasing various
types of technical documentation. These documents include:

1. Concept of Operations (ConOps)

2. System/Segment Design Description (SSDD)

3. Interface Control Documents (ICDs) and drawings for hardware items

4. Interface Design Description (IDD) for software items

5. Software Design Description (SDD)

6. Database Design Description (DBDD)

Test Documentation

Figure 46.4 illustrates a basic schedule as general guidance for preparing and releasing test docu-
mentation. These documents include various levels of test procedures and test quality records.
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3

Allocated
Baseline 

Reviewed, 
Approved, & 

Baselined

System 
Procurement Phase

SE Design Segment

Contract
Award SRR SDR PDR

Component Procurement 
& Development Segment

CDR

System Integration, 
Test, & Eval. Segment

Revisions via Formal  Change Management Procedures

HSR
/SSR SVT Accept

.
TRRs

Install & C.O.

Deployment
Segment

RFP
Release

System Development Phase

VAL

System Requirements 
Baseline 

Product
Baseline 

Preliminary

Draft 
Submitted

Preliminary

Reviewed, 
Approved, & 

Baselined
Draft 

Submitted

Revisions via Formal  Change Management Procedures

Reviewed, 
Approved, & 

Baselined

Preliminary

Draft Submitted

Revisions via Formal  Change Management Procedures

Initiated

Initiated

Initiated

System/Segment Design Description (SSDD)System/Segment Design Description (SSDD)

Design Descriptions
• Interface Control Documents (ICDs)
• Interface Design Descriptions (IDDs)
• Software Design Descriptions (SDDs)

• Database Design Descriptions (DBDDs)

Design Descriptions
• Interface Control Documents (ICDs)
• Interface Design Descriptions (IDDs)
• Software Design Descriptions (SDDs)

• Database Design Descriptions (DBDDs)

Concept of Operations (ConOps)Concept of Operations (ConOps)

FCA/ 
PCA

SVR

Figure 46.3 System Design Documentation Development

Allocated
Baseline 

System 
Procurement Phase

SE Design Segment

Contract
Award SRR SDR PDR

Component Procurement 
& Development Segment

CDR

System Integration, 
Test, & Eval. Segment

HSR
/SSR SVT Accept

.
TRRs

Install & C.O.

Deployment
Segment

RFP
Release

System Development Phase

VAL

System 
Requirements 

Baseline 

Product
Baseline 

Reviewed, 
Approved, &   

Baselined

Draft Reviewed Revisions via Formal Change 
Management ProceduresInitiated

Prelim. Test ProceduresTest Procedures

CA Contract Award
CDR Critical Design Review
C.O. Checkout
FCA Functional Configuration Audit
HSR Hardware Specification Review

Install Installation
PCA Physical Configuration Audit
PDR Preliminary Design Review 
RFP Request for Proposal
SDR System Design Review

SSR Software Specification Review 
SVT System Verification Test
TRR Test Readiness Review

Where:

FCA/ 
PCA

SVR

Figure 46.4 Test Procedures Documentation Development

46.5 DOCUMENTATION LEVELS OF FORMALITY

Most people despise preparing documentation. The general viewpoint is documentation is non-
value-added bureaucracy. Engineers, in particular, rationalize that if they had wanted to specialize
in documentation, they would have pursued it as a course of study in college. This viewpoint is
contradictory to an engineering development environment that is so dependent on documented data
maturity for decision making.
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SE development documentation involves two key decisions:

1. WHAT must be documented?

2. To WHAT DEGREE do you document the details?

The previous discussions addressed WHAT you should document. Let’s explore the second point
further.

Level of Details

If you ask engineers to prepare a document, they lament about having an impossible task, regard-
less of timeframe to complete. The knowledge and maturity of a professional is reflected in the
individual’s ability to sift rapidly through a large amount of data, identify the key points, and artic-
ulate the results in summary form. In general, if a manager allows you one hour, both parties must
recognize that at the end the hour, you get the one-hour version of the report. Eight hours gets the
manager the eight-hour version—an elaboration of details to key points expressed in the one-hour
version.

When you document plans, specifications, and reports, there are key points relevant to the
subject that must be reflected in the document outline. These points, in turn, require various levels
of details. The key points are:

1. Engineers need to learn to identify WHAT information (i.e., major points) is required to be
communicated.

2. Apply common sense to scale the level of detail to fit the available time and resources.

Key Point If you have addressed the critical points, anything else should be just supporting
detail. The ability to scale these levels of detail and still address the key points depends on per-
sonal knowledge, experience and seasoned maturity.

Guidepost 46.2 The preceding discussions highlight some of the key SE documentation con-
cepts. Our last topic addresses some of the issues related to release of SE documentation to author-
ized recipients and the media used to do so.

46.6 EXPORT CONTROL OF SENSITIVE DATA 
AND TECHNOLOGY

Today the Internet provides a mechanism for immediate data communications and access between
organizations in-country as well as internationally. As a result, the Internet offers tremendous oppor-
tunities for contract programs to exploit the technology by establishing Web sites that enable author-
ized organizations and individuals who are geographically dispersed to post and access technical
program information. This environment, when uncontrolled, however, adds new dimensions and
threats to information access.

People often confuse EXPORT CONTROL information with security classification systems.
Although both are certainly interrelated, EXPORT CONTROL information may be sensitive but
unclassified. Classified data handling and procedures are yet another issue.

Export Control of Technology

Many people erroneously believe that a technology or information export to a foreign national,
organization, or country occurs when that information is physically transferred outside the country.



The fact is technology transfer also occurs in-country with foreign nationals, whether direct or via
the Internet. Technology transfer is governed in the United States by EXPORT CONTROL laws
and regulations such as the International Traffic and Arms Regulations (ITAR). So, what does this
mean to SE?

If you:

1. Post EXPORT CONTROL technology or information to an uncontrolled Web site.

2. E-mail the information via the Internet.

3. Simply give that information to foreign nationals, organizations, or governments without
being licensed and taking reasonable measures to restrict access to only authorized users,
you have violated the US ITARS governance.

Warning! ALWAYS consult with your organization’s EXPORT CONTROL Officer and secu-
rity, legal, and contracts organizations before initiating an action that may violate EXPORT
CONTROL or security regulations and procedures.

The US government and other countries have explicit laws and regulations that govern the
EXPORT of technology and data to foreign nationals, organizations, and countries. The laws carry
severe penalties for noncompliance.

46.7 SYSTEM DOCUMENTATION ISSUES

System documentation has a number of issues that SEs must address. Here are several issues that
commonly challenge many programs:

Issue 1: Data validation and authentication

Issue 2: Posting acquirer and vendor documentation

Issue 3: Proprietary data and nondisclosure agreements

Issue 4: Vendor-owned data

Issue 5: Electronic signatures

Issue 1: Data Validation and Authentication

Since SE technical decision making is predicated on data integrity, the challenge is determining if
external and internal data are valid and authentic. This includes DCL items for models and simu-
lations, interfaces, and test data. Additionally, production contracts may require using SE docu-
mentation created by the original vendor. So, how do you determine the validity and authenticity
of the data?

Data validity and authenticity require rigorous investigation, by inspection, sampled testing,
Functional Configuration Audit (FCA), or Physical Configuration Audit (PCA). Data integrity is
particularly troublesome when the original System Developer delivered the Product Baseline and
transferred CM control to the User via the Acquirer. The challenge is: Does the “As Maintained”
system or product reflect the “As Designed, Built, Verified, and Validated” SE configurations?

Issue 2: Posting Acquirer and Vendor Documentation

Many engineers erroneously believe that they can arbitrarily copy and post Acquirer and vendor
documentation on a program Web site. Although Acquirer solicitation and other data may be posted
for public access, DO NOT copy this material and POST it unless your organization has prior
written authorization from the Acquirer or Vendor. Posting creates configuration management
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control, proprietary, data concurrency, and copyright issues. If you need to provide program per-
sonnel access to this data, simply provide links from the program Web site to the Acquirer or vendor
Web site, assuming they approve. This avoids ownership, proprietary, concurrency, copyright, and
other issues.

Issue 3: Proprietary Data and Non-Disclosure Agreements

Finally, before any EXCHANGES of data can occur between any organization and the Acquirer,
User, subcontractors, and vendors, execute Proprietary Data Agreements and/or Nondisclosure
Agreements between the parties.

Referral ALWAYS consult with the Program Director and/or Technical Director as well as the
contracts, legal, and EXPORT CONTROL organizations for the proper procedures for:

1. Communicating and exchanging data with external organizations.

2. Establishing proprietary data agreements and/or nondisclosure agreements.

Issue 4: Vendor-Owned Data

When Acquirers procure a system, they are often willing to trade off documentation funds for
system capabilities, especially when they have limited budgets. Later, if they decide to procure
system upgrades that are dependent on these data, they shift the burden and risk of obtaining the
data to the System Developer. If the original developer and new System Developer are competi-
tors, this creates a very challenging problem for programs and SEs have to solve it.

The challenge is one of cost and schedule. Programs inevitably underestimate the amount of
resources required to acquire documentation owned by other organizations. Thoroughly investigate
these issues during the proposal phase and establish data exchange agreements, terms, and condi-
tions prior to Contract Award. As an Acquirer, if you wait until after Contract Award, guess WHO
is in the POWER position to control the negotiation? The supplier is and you can rest assured the
procrastination will cost you significantly!

Issue 5: Electronic Signatures

When implementing an integrated data environment IDE, one of the key issues is establishing a
secure method for SE documentation reviewers to electronically approve the documents. This
requires that “electronic signature” standards, methods, and tools be established to ensure that only
authorized approvers can review and release documentation for implementation.

46.8 GUIDING PRINCIPLES

In summary, the preceding discussions provide the basis with which to establish the guiding prin-
ciples that govern system engineering and development documentation practices.

Principle 46.1 Establish information protection guidelines; train personnel to implement them.

Principle 46.2 Every document cover and interior page must be marked in accordance with
program guidance including authorized recipients.
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46.9 SUMMARY

This concludes our overview discussion of System Engineering and Development Documentation Practices.
The checklists we described are examples of types of SE documentation that help Acquirer and System Devel-
oper roles develop their systems, products, and services.

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new system selection, apply your knowledge derived from this chapter’s topical
discussions. Specifically identify the following:

(a) If you were the Acquirer of the system, what types of CDRL documents would require for the system 
design and development effort and why?

(b) Rank-order SE design and development documentation in terms of significance to the program.

ORGANIZATIONAL CENTRIC EXERCISES

1. Research your organization’s command media.

(a) What types of program documentation do the command media require for programs of all sizes?

(b) What does the command media say about the level of detail and formality?

(c) What process is to be used to approve and release the documents?

2. Contact a small, a medium, and a large organization.

(a) What types of deliverable documentation does each of the contracts require?

(b) When are these documents to be delivered?

(c) Are there document outline requirements? If not, what does your organization provide in terms of 
standard outlines?

(d) Interview program personnel. What deliverable documents were valuable? Which ones were not?

(e) Create a timeline indicating when the contract requires delivery of the documents? Include major 
technical review events (Contract Award, SRR, SDR, etc.).

(f) Do any of the contracts have export control requirements?
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Analytical Decision Support

47.1 INTRODUCTION

Earlier we defined “engineering” as the application of mathematical and scientific principles. We
then expanded the scope of this definition for SE to include the application of analytical principles.
While you can debate for hours the implicit nature and relationship of “analysis” to applying math-
ematical and scientific principles, we expanded the scope of the definition and elevated the analyti-
cal aspects to address the hierarchical organization, decomposition, and bounding practices of SE.

The realities are that SEs must be capable of analyzing:

1. The User’s OPERATING ENVIRONMENT, its constituent opportunity space, problem
space, and solution space elements, and relevance to specific SYSTEM missions and 
applications.

2. A SYSTEM OF INTEREST (SOI), its capabilities, and performance.

3. Interactions between the SOI and its prescribed OPERATING ENVIRONMENT.

This chapter introduces analytical decision support practices. Our discussions provide insights
into the analytical decision-making environment, factors affecting the decision-making process,
technical reporting of analytical results, and its challenges and issues.

What You Should Learn from This Chapter

1. What is analytical decision support?

2. What are the attributes of a technical decision?

3. What is the SEs role in technical decision making?

4. What is system performance evaluation and analysis?

5. What types of engineering analyses are performed?

6. How are engineering analyses documented?

7. What format should be used for documenting engineering analyses?

8. What are SE design and development rules for analytical decision making?

Definitions of Key Terms

• Analysis A structured investigation or examination using a proven methodology.

• Analysis Paralysis A condition whereby an analyst becomes preoccupied or immersed in the
details of an analysis while failing to recognize the marginal utility of continual investigation.

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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• Effectiveness Analysis “An analytical approach used to determine how well a system per-
forms in its intended utilization environment.” (Source: Kossiakoff and Sweet, System Engi-
neering, p. 448)

• Sanity Check “An approximate calculation or estimation for comparison with a result
obtained from a more complete and complex process. The differences in value should be rel-
atively small; if not, the results of the original process are suspect and further analysis is
required.” (Source: Kossiakoff and Sweet, System Engineering, p. 453)

• Suboptimization The preferential emphasis on the performance of a lower level entity at
the expense of overall system performance.

• System Optimization The act of adjusting the performance of individual elements of a
system to peak the maximum performance that can be achieved by the integrated set for a
given set of boundary conditions and constraints.

47.2 WHAT IS ANALYTICAL DECISION SUPPORT?

Before we begin our discussions of analytical decision support practices, we need to first under-
stand the context and anatomy of a technical decision. Decision support is a technical services
response to a contract or task commitment to gather, analyze, clarify, investigate, recommend, and
present fact-based, objective evidence. This enables decision makers to SELECT a proper (best)
course of action from a set of viable alternatives bounded by specific constraints—cost, schedule,
technical, technology, and support—and acceptable level of risk.

Analytical Decision Support Objective

The primary objective of analytical decision support is to respond to tasking or the need for tech-
nical analysis, demonstration, and data collection recommendations to support informed SE Process
Model decision making.

Expected Outcome of Analytical Decision Support

Decision support work products are identified by task objectives. Work products and quality records
include analyses, trade study reports (TSRs), and performance data. In support of these work prod-
ucts, decision support develops operational prototypes and proof of concept or technology demon-
strations, models and simulations, and mock-ups to provide data for supporting the analysis.

From a technical decision making perspective, decisions are substantiated by the facts of the
formal work products such as analyses and TSRs provided to the decision maker. The reality is that
the decision may have subconsciously been made by the decision maker long BEFORE the deliv-
ery of the formal work products for approval. This brings us to our next topic, attributes of tech-
nical decisions.

47.3 ATTRIBUTES OF A TECHNICAL DECISION

Every decision has several attributes you need to understand to be able to properly respond to the
task. The attributes you should understand are:

1. WHAT is the central issue or problem to be addressed?

2. WHAT is the scope of the task to be performed?

3. WHAT are the boundary constraints for the solution set?
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4. What is the degree of flexibility in the constraints?

5. Is the timing of the decision crucial?

6. WHO is the user of the decision?

7. HOW will the decision be used?

8. WHAT criteria are to be used in making the decision?

9. WHAT assumptions must be made to accomplish the decision?

10. WHAT accuracy and precision is required for the decision?

11. HOW is the decision is to be documented and delivered?

Scope the Problem to be Solved

Decisions represent approval of solutions intended to lead to actionable tasks that will resolve a
critical operational or technical or issue (COI/CTI). The analyst begins with understanding what:

1. Problem is to be solved.

2. Question is to be answered.

3. Issue is to be resolved.

Therefore, begin with a CLEAR and SUCCINCT problem statement.

Referral For more information about writing problem statements, refer to Chapter 14 on Under-
standing The Problem, Opportunity, and Solution Spaces concept.

If you are tasked to solve a technical problem and are not provided a documented tasking 
statement, discuss it with the decision authority. Active listening enables analysts to verify their
understanding of the tasking. Add corrections based on the discussion and return a courtesy 
copy to the decision maker. Then, when briefing the status of the task, ALWAYS include a restate-
ment of the task so ALL reviewers have a clear understanding of the analysis you were tasked to
perform.

Decision Boundary Condition Constraints and Flexibility

Technical decisions are bounded by cost, schedule, technology, and support constraints. In turn, the
constraints must be reconciled with an acceptable level of risk. Constraints sometimes are also
flexible. Talk with the decision maker and assess the amount of flexibility in the constraint. Docu-
ment the constraints and acceptable level of risk as part of the task statement.

Criticality of Timing of the Decision

Timing of decisions is CRUCIAL, not only from the perspective of the decision maker but also
that of the SE supporting the decision making. Be sensitive to the decision authority’s schedule and
the prevailing environment when the recommendations are presented. If the schedule is impracti-
cal, discuss it with the decision maker including level of risk.

Understand How the Decision Will Be Used and by Whom

Decisions often require approvals by multiple levels of organizational and customer stakeholder
decision makers. Avoid wasted effort trying to solve the wrong problem. Tactfully validate the deci-
sion problem statement by consensus of the stakeholders.



Document the Criteria for Decision Making

Once the problem statement is documented and the boundary constraints for the decision are estab-
lished, identify the threshold criteria that will be used to assess the success of the decision results.
Obtain stakeholder concurrence with the decision criteria. Make corrections as necessary to clarify
the criteria to avoid misinterpretation when the decision is presented for approval. If the decision
criteria are not documented “up front,” you may be subjected to the discretion of the decision maker
to determine when the task is complete.

Identify the Accuracy and Precision of the Analysis

Every technical decision involves data that have a level of accuracy and precision. Determine “up
front” what accuracy and precision will be required to support analytical results, and make sure
these are clearly communicated and understood by everyone participating. One of the worst things
analysts can do is discover after the fact that they need four-digit decimal data precision when they
only measured and recorded two-digit data. Some data collection exercises may not be repeatable
or practical. THINK and PLAN ahead: similar rules should be established for rounding data.

Author’s Note 47.1 As a reminder, two-digit precision data that require multiplication DO NOT
yield four-digit precision results; the best you can have is two-digit result due to the source data
precision.

Identify How the Decision Is to Be Delivered

Decisions need a point of closure or delivery. Identify what form and media the decision is to be
delivered: as a document, presentation, or both. In any case, make sure that your response is doc-
umented for the record via a cover letter or e-mail.

47.4 TYPES OF ENGINEERING ANALYSES

Engineering analyses cover a spectrum of disciplinary and specialty skills. The challenge for SEs
is to understand:

1. WHAT analyses may be required.

2. At WHAT level of detail.

3. WHAT tools are best suited for various analytical applications.

4. WHAT level of formality is required for documenting the results.

To illustrate a few of the many analyses that might be conducted, here’s a sample list.

• Mission operations and task analysis

• Environmental analysis

• Fault tree analysis (FTA)

• Finite element analysis (FEA)

• Mechanical analysis

• Electromagnetic interference (EMI)/electromagnetic countermeasures (EMC) analysis

• Optical analysis

• Reliability, availability, and maintainability (RAM) analysis

• Stress analysis

47.4 Types of Engineering Analyses 577
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• Survivability analysis

• Vulnerability analysis

• Thermal analysis

• Timing analysis

• System latency analysis

• Life cycle cost analysis

Guidepost 47.1 The application of various types of engineering analyses should focus on pro-
viding objective, fact-based data that support informed technical decision making. These results at
all levels aggregate into overall system performance that forms the basis of our next topic, system
performance evaluation and analysis.

47.5 SYSTEM PERFORMANCE EVALUATION AND ANALYSIS

System performance evaluation and analysis is the investigation, study, and operational analysis of
actual or predicted system performance relative to planned or required performance as documented
in performance or item development specifications. The analysis process requires the planning, con-
figuration, data collection, and post data analysis to thoroughly understand a system’s performance.

System Performance Analysis Tools and Methods

System performance evaluation and analysis employs a number of decision aid tools and methods
to collect data to support the analysis. These include models, simulations, prototypes, interviews,
surveys, and test markets.

Optimizing System Performance

System components at every level of abstraction inherently have statistical variations in physical
characteristics, reliability, and performance. Systems that involve humans involve statistical vari-
ability in knowledge and skill levels, and thus involve an element of uncertainty. The challenge
question for SEs is: WHAT combination of system configurations, conditions, human-machine tasks,
and associated levels of performance optimize system performance?

System optimization is a term relative to the stakeholder. Optimization criteria reflect the appro-
priate balance of cost, schedule, technical, technology, and support performance or combination
thereof.

Author’s Note 47.2 We should note here that optimization is for the total system. Avoid a con-
dition referred to as suboptimization unless there is a compelling reason.

Suboptimization

Suboptimization is a condition that exists when one element of a system—the PRODUCT, SUB-
SYSTEM, ASSEMBLY, SUBASSEMBLY, or PART level—is optimized at the expense of overall
system performance. During System Integration, Test, and Evaluation (SITE), system items at each
level of abstraction may be optimized. Theoretically, if the item is designed correctly, optimal per-
formance occurs at the planned midpoint of any adjustment ranges.

The underlying design philosophy here is that if the system is properly designed and compo-
nent statistical variations are validated, only minor adjustments may be required for an output to
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be centered about some hypothetical mean value. If the variations have not been taken into account
or design modifications have been made, the output may be “off-set” from the mean value but
within its operating range when “optimized.” Thus, at higher levels of integration, this off-nominal
condition may impact overall system performance, especially if further adjustments beyond the
components adjustment range are required.

The Danger of Analysis Paralysis

Analyses serve as a powerful tool for understanding, predicting, and communicating system per-
formance. Analyses, however, cost money and consume valuable resources. The challenge ques-
tion for SEs to consider is, How GOOD is good enough? At what level or point in time does an
analysis meet minimal sufficiency criteria to be considered valid for decision making? Since engi-
neers, by nature, tend to immerse themselves in analytics, we sometimes suffer from a condition
referred to as “analysis paralysis.” So, what is analysis paralysis?

Analysis paralysis is a condition where an analyst becomes preoccupied or immersed in the
details of an analysis while failing to recognize the marginal utility of continual investigation. So,
HOW do SEs deal with this condition?

First, you need to learn to recognize the signs of this condition in yourself as well as others.
Although the condition varies with everyone, some are more prone than others. Second, aside from
personality characteristics, the condition may be a response mechanism to the work environment,
especially from paranoid, control freak managers who suffer from the condition themselves.

47.6 ENGINEERING ANALYSIS REPORTS

As a discipline requiring integrity in analytical, mathematical, and scientific data and computations
to support downstream or lower level decision making, engineering documentation is often sloppy
at best or simply nonexistent. One of the hallmarks of a professional discipline is an expectation
to document recommendations supported by factual, objective evidence derived empirically or by
observation.

Data that contribute to informed SE decisions are characterized by the assumptions, boundary
conditions, and constraints surrounding the data collection. While most engineers competently con-
sider relevant factors affecting a decision, the tendency is to avoid recording the results; they view
paperwork as unnecessary, bureaucratic documentation that does not add value directly to the deliv-
erable product. As a result, a professional, high-value analysis ends in mediocrity due to the analyst
lacking personal initiative to perform the task correctly.

To better appreciate the professional discipline required to document analyses properly, con-
sider a hypothetical visit to a physician:

EXAMPLE 47.1

You visit a medical doctor for a condition that requires several treatment appointments at three-month 
intervals for a year. The doctor performs a high-value diagnosis and prescribes the treatments but fails to
record the medication and actions performed at each treatment event. At each subsequent treatment you and
the doctor have to reconstruct to the best of everyone’s knowledge the assumptions, dosages, and actions per-
formed. Aside from the medical and legal implications, can you imagine the frustration, foggy memories, and
“guesstimates” associated with these interactions. Engineering, as a professional discipline, is no different.
Subsequent decision making is highly dependent on the documented assumptions and constraints of previous
decisions.



The difference between mediocrity and high-quality professional results may be only a few minutes
to simply document critical considerations that yielded the analytical result and recommendations
presented. For SEs, this information should be recorded in an engineering laboratory notebook or
on-line in a network-based journal.

47.7 ENGINEERING REPORT FORMAT

Where practical and appropriate, engineering analyses should be documented in formal technical
reports. Contract or organizational command media sometimes specify the format of these reports.
If you are expected to formally report the results of an analysis and do not have specific format
requirements, consider the example outline below.

EXAMPLE 47.2

The following is an example of an outline that could be used to document a technical report.

1.0. INTRODUCTION

The introduction establishes the context and basis for the analysis. Opening statements identify the document,
its context and usage in the program, as well as the program this analysis is being performed to support.

1.1. Purpose
1.2. Scope
1.3. Objectives
1.4. Analyst/Team Members
1.5. Acronyms and Abbreviations
1.6. Definitions of Key Terms

2.0. REFERENCED DOCUMENTS

This section lists the documents referenced in other sections of the document. Note the operative title “Ref-
erenced Documents” as opposed to “Applicable Documents.”

3.0. EXECUTIVE SUMMARY

Summarize the results of the analysis such as findings, observations, conclusions, and recommendations: tell
them the bottom line “up front.” Then, if the reader desires to read about the details concerning HOW you
arrived at those results, they can do so in subsequent sections.

4.0. CONDUCT OF THE ANALYSIS

Informed decision making is heavily dependent on objective, fact based data. As such, the conditions under
which the analysis is performed must be established as a means of providing credibility for the results. Sub-
sections include:

4.1. Background
4.2. Assumptions
4.3. Methodology
4.4. Data Collection
4.5. Analytical Tools and Methods
4.6. Versions and Configurations
4.7. Statistical Analysis (if applicable)
4.8. Analysis Results
4.9. Observations
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4.10. Precision and Accuracy
4.11. Graphical Plots
4.12. Sources

5.0. FINDINGS, OBSERVATIONS, AND CONCLUSIONS

As with any scientific study, it is important for the analyst to communicate:

• WHAT they found.

• WHAT they observed.

• WHAT conclusions they derived from the findings and observations. Subsections include:

5.1. Findings
5.2. Observations
5.3. Conclusions

6.0. RECOMMENDATIONS

Based on the analyst’s findings, observations, and conclusions, Section 6.0 provides a set of prioritized rec-
ommendations to decision makers concerning the objectives established by the analysis tasking.

APPENDICES

Appendices provide areas to present supporting documentation collected during the analysis or that illustrates
how the author(s) arrived at their findings, conclusions, and recommendations.

Decision Documentation Formality

There are numerous ways to address the need to balance document decision making with time,
resource, and formality constraints. Approaches to document critical decisions range from a single
page of informal, handwritten notes to highly formal documents. Establish disciplinary standards
for yourself and your organization related to documenting decisions. Then, scale the documenta-
tion formality according to task constraints. Regardless of the approach used, the documentation
should CAPTURE the key attributes of a decision in sufficient detail to enable “downstream” under-
standing of the factors that resulted in the decision.

The credibility and integrity of an analysis often depends on who collected and analyzed the
data. Analysis report appendixes provide a means of organizing and preserving any supporting
vendor, test, simulation, or other data used by the analyst(s) to support the results. This is particu-
larly important if, at a later date, conditions that served as the basis for the initial analysis task
change, thereby creating a need to revisit the original analysis. Because of the changing conditions,
some data may have to be regenerated; some may not. For those data that have not changed, the
appendices minimize work on the new task analysis by avoiding the need to recollect or regener-
ate the data.

47.8 ANALYSIS LESSONS LEARNED

Once the performance analysis tasking and boundary conditions are established, the next step is to
conduct the analysis. Let’s explore some lessons learned you should consider in preparing to
conduct the analysis.

Lesson 1: Establish a Decision Development Methodology

Decision paths tend to veer off-course midway through the decision development process. Estab-
lish a decision making methodology “up front” to serve as a roadmap for keeping the effort on
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track. When you establish the methodology “up front,” you have the visibility of clear, unbiased
THINKING unemcumbered by the adventures along the decision path. If you and your team are
convinced you have a good methodology, that plan will serve as a compass heading. This is not to
say that some conditions may warrant a change in methodology. Avoid changes unless there is a
compelling reason to change.

Lesson 2: Acquire Analysis Resources

As with any task, success is partially driven by simply having the RIGHT resources in place when
they are required. This includes:

1. Subject matter experts (SMEs)

2. Analytical tools

3. Access to personnel who may have relevant information concerning the analysis area

4. Analytical tools

5. Data that describe operating conditions and observations relevant to the analysis, and so
forth.

Lesson 3: Document Assumptions and Caveats

Every decision involves some level of assumptions and/or caveats. Document the assumptions in
a clear, concise manner. Make sure that the CAVEATS are documented on the same page as the
decision (footnotes, etc.) or recommendations. If the decision recommendations are copied or
removed from the document, the caveats will ALWAYS be in place. Otherwise, people may inten-
tionally or unintentionally apply the decision or recommendations out of context.

Lesson 4: Date the Decision Documentation

Every page of a decision document should marked indicating the document title, revision level,
date, page number, and classification level, if applicable. Using this approach, the reader can always
determine if the version they possess is current. Additionally, if a single page is copied, the source
is readily identifiable. Most people fail to perform this simple task. When multiple versions of a
report, especially drafts, are distributed without dates, the de facto version is determined by
WHERE the document is within a stack on someone’s desk.

Lesson 5: State the Facts as Objective Evidence

Technical reports must be based on the latest, factual information from credible and reliable
sources. Conjecture, hearsay, and personal opinions should be avoided. If requested, qualified opin-
ions can be presented informally with the delivery of the report.

Lesson 6: Cite Only Credible and Reliable Sources

Technical decisions often leverage and expand on existing knowledge and research, published or
verbal. If you use this information to support findings and conclusions, explicitly cite the source(s)
in explicit detail. Avoid vague references such as “read the [author’s] report” documented in an
obscure publication published 10 years ago that may be inaccessible or only available to the
author(s). If these sources are unavailable, quote passages with permission of the owner.
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Lesson 7: REFERENCE Documents versus 
APPLICABLE Documents

Analyses often reference other documents and employ the terms APPLICABLE DOCUMENTS or
REFERENCED DOCUMENTS. People unknowingly interchange the terms. Using conventional
outline structures, Section 2.0 should be titled REFERENCED DOCUMENTS and list all sources
cited in the text. Other source or related reading material relevant to the subject matter is cited in
an ADDITIONAL READING section provided in the appendix.

Lesson 8: Cite Referenced Documents

When citing referenced documents, include the date and version containing data that serve as inputs
to the decision. People often believe that if they reference a document by title they have satisfied
analysis criteria. Technical decision making is only as good as the credibility and integrity of its
sources of objective, fact-based information. Source documents may be revised over time. Do your-
self and your team a favor: make sure that you clearly and concisely document the critical attrib-
utes of source documentation.

Lesson 9: Conduct SME Peer Reviews

Technical decisions are sometimes dead on arrival (DOA) due to poor assumptions, flawed deci-
sion criteria, and bad research. Plan for success by conducting an informal peer review by trusted
and qualified colleagues—the subject matter experts (SMEs)—of the evolving decision document.
Listen to their challenges and concerns. Are they highlighting critical operational and technical
issues (COIs/CTIs) that remain to be resolved, or overlooked variables and solutions that are
obscured by the analysis or research? We refer to this as “posturing for success” before the 
presentation.

Lesson 10: Prepare Findings, Conclusions, 
and Recommendations

There are a number of reasons as to WHY an analysis is conducted. In one case the technical deci-
sion maker may not possess current technical expertise or the ability to internalize and assimilate
data for a complex problem. So they seek out those who do posses this capability such as consult-
ants or organizations. In general, the analyst wants to know WHAT the subject matter experts
(SMEs) who are closest to the problems, issues, and technology suggest as recommenda-
tions regarding the decision. Therefore, analyses should include findings, recommendations, and
recommendations.

Based on the results of the analysis, the decision maker can choose to:

1. Ponder the findings and conclusions from their own perspective.

2. Accept or reject the recommendations as a means of arriving at an informed decision.

In any case, they need to know WHAT the subject matter experts (SMEs) have to offer regarding
the decision.

47.9 GUIDING PRINCIPLES

In summary, the preceding discussions provide the basis with which to establish the guiding prin-
ciples that govern analytical decision support practices.



Principle 47.1 Analysis results are only as VALID as their underlying assumptions, models, and
methodology. Validate and preserve their integrity.

47.10 SUMMARY

Our discussion of analysis decision support provided data and recommendations to support the SE Process
Model at all levels of abstraction. As an introductory discussion, analytical decision support employs various
tools addressed in the sections that follow:

• Statistical influences on SE decision making

• System performance analysis, budgets, and safety margins

• System reliability, availability, and maintainability

• System modeling and simulation

• Trade studies: analysis of alternatives

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new system selection, apply your knowledge derived from this chapter’s topical
discussions. If you were the project engineer or Lead SE:

(a) What types of engineering analyses would you recommend?

(b) How would you collect data to support those analyses?

(c) Select one of the analyses. Write a simple analysis task statement based on the attributes of a 
technical decision discussed at the beginning of this section.

ORGANIZATIONAL CENTRIC EXERCISES

1. Research your organization’s command media for guidance and direction concerning the implementation
of analytical decision support practices.

(a) What requirements are levied on programs and SEs concerning the conduct of analyses?

(b) Does the organization have a standard methodology for conducting an analysis? If so, report your 
findings.

(c) Does the organization have a standard format for documenting analyses? If so, report your findings.

2. Contact small, medium and large contract programs within your organization.

(a) What analyses were performed on the program?

(b) How were the analyses documented?

(c) How was the analysis task communicated? Did the analysis report describe the objectives and scope 
of the analysis?

(d) What level of formality—engineering notebook, informal report, or formal report—did technical 
decision makers levy on the analysis?

(e) Were the analyses conducted without constraints or were they conducted to justify a predetermined 
decision?

(f) What challenges or issues did the analysts encounter during the conduct of the analysis?

(g) Based on the program’s lessons learned, what recommendations do they offer as guidance for 
conducting analyses on future programs?

584 Chapter 47 Analytical Decision Support
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3. Select two analysis reports from different contract programs.

(a) What is your assessment of each report?

(b) Did the program apply the right level of formality in documenting the analysis?
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Chapter 48

Statistical Influences 
on System Design

48.1 INTRODUCTION

For many engineers, system design evolves around abstract phrases such as “bound environmen-
tal data” and “receive data.” The challenge is: HOW do you quantify and bound the conditions for
a specific parameter? Then, how does an SE determine conditions such as:

1. Acceptable signal and noise (S/N) ratios?

2. Computational errors in processing the data?

3. Time variations required to process system data?

The reality is that the hypothetical boundary condition problems engineers studied in college aren’t
so ideal. Additionally, when a system or product is developed, multiple copies may produce varying
degrees of responses to a set of controlled inputs. So, how do SEs deal with the challenges of these
uncertainties?

Systems and products have varying degrees of stability, performance, and uncertainty that are
influenced by their unique form, fit, and function performance characteristics. Depending on the
price the User is willing to pay, we can improve and match material characteristics and processes
used to produce the SE systems and products. If we analyze a system’s or product’s performance
characteristics over a controlled range of inputs and conditions, we can statistically state the vari-
ance in terms of standard deviation.

This chapter provides an introductory overview of how statistical methods can be applied to
system design to improve capability performance. As a prerequisite to this discussion, you should
have basic familiarity with statistical methods and their applications.

What You Should Learn from This Chapter

1. How do you characterize random variations in system inputs sufficiently to bound the range?

2. How do SEs establish criteria for acceptable system inputs and outputs?

3. What is a design range?

4. How are upper and lower tolerance limits established for a design range?

5. How do SEs establish criteria for CAUTION and WARNING indicators?

6. What development methods can be employed to improve our understanding of the vari-
ability of engineering input data?

System Analysis, Design, and Development, by Charles S. Wasson
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7. What is circular error probability (CEP)?

8. What is meant by the degree of correlation?

Definitions of Key Terms

• Circular Error Probability (CEP) The Gaussian probability density function (normal dis-
tribution) referenced to a central point with concentric rings representing the standard devi-
ations of data dispersion.

• Cumulative Error A measure of the total cumulative errors inherent within and created by
a system or product when processing statistically variant inputs to produce a standard output
or outcome.

• Logarithmic Distribution (Lognormal) An asymmetrical, graphical plot of the Poisson
probability density function depicting the dispersion and frequency of independent data
occurrences about a mean that is skewed from a median of the data distribution.

• Normal Distribution A graphical plot of the Gaussian probability density function depict-
ing the symmetrical dispersion and frequency of independent data occurrences about a central
mean.

• Variance (Statistical) “A measure of the degree of spread among a set of values; a measure
of the tendency of individual values to vary from the mean value. It is computed by subtract-
ing the mean value from each value, squaring each of these differences, summing these results,
and dividing this sum by the number of values in order to obtain the arithmetic mean of these
squares.” (Source: DSMC T&E Mgt. Guide, DoD Glossary of Test Terminology, p. B-21)

48.2 UNDERSTANDING THE VARIABILITY 
OF THE ENGINEERING DATA

In an ideal world, engineering data are precisely linear or identically match predictive values with
zero error margins. In the real world, however, variations in mass properties and characteristics;
attenuation, propagation, and transmission delays; and  human responses are among the uncertain-
ties that must be accounted for in engineering calculations. In general, the data are dispersed about
the mean of the frequency distribution.

Normal and Logarithmic Probability Density Functions

Statistically, we characterize the range dispersions about a central mean in terms of normal 
(Gaussian) and logarithmic (Poisson) frequency distributions as shown in Figure 48.1.

Normal and logarithmic frequency distributions can be used to mathematically characterize
and bound engineering data related to statistical process control (SPC); queuing or waiting line
theory for customer service and message traffic; production lines; maintenance and repair, pressure
containment; temperature/humidity ranges; and so on.

Applying Statistical Distributions to Systems

In Chapter 3 What Is A System we characterized a system as having desirable and undesirable
inputs and producing desirable outputs. The system can also produce undesirable outputs—be they
electromagnetic, optical, chemical, thermal, or mechanical—that make the system vulnerable to
adversaries or create self-induced feedback that degrades system performance. The challenge for
SEs is bounding:
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1. The range of desirable or acceptable inputs and conditions from undesirable or unaccept-
able inputs.

2. The range of desirable or acceptable outputs and conditions from undesirable or unac-
ceptable outputs.

Recall Figure 3.2 of our discussion of system entity concepts where we illustrate the challenge in
SE Design decision making relative to acceptable and unacceptable inputs and outputs.

Design Input/Output Range Acceptability. Statistically we can bound and characterize the
range of acceptable inputs and outputs using the frequency distributions. As a simple example,
Figure 48.2 illustrates an example of a Normal Distribution that we can employ to characterize
input/output variability.

In this illustration we employ a Normal Distribution with a central mean. Depending on bound-
ing conditions imposed by the system application, SEs determine the acceptable design range that
includes upper and lower limits relative to the mean.

Range of Acceptable System Performance. During normal system operations, system or
product capabilities perform within an acceptable (Normal) Design Range. The challenge for 
SEs is determining WHAT the thresholds for alerting system operators and maintainers 
WHEN system performance is OFF nominal and begins to pose a risk or threat to the operators,
EQUIPMENT, public, or environment. To better understand this point, let’s examine it using 
Figure 48.2.

In the figure we have a Normal Distribution about a central mean and characterized by four
types of operating ranges:

• DESIGN Range The range of engineering parameter values for a specific capability and con-
ditions that bound the ACCEPTABLE upper and lower tolerance limits.

• NORMAL Operating Range The range of acceptable engineering parameter values for a
specific capability within the design range that clearly indicates capability performance under
a given set of conditions is operating as expected and does not pose a risk or threat to the oper-
ators, EQUIPMENT, general public, or environment.

• CAUTIONARY Range The range of engineering parameter values for a specific capabil-
ity that clearly indicates capability performance under a given set of conditions is beyond or

Normal Distribution
(Gaussian)

Logarithmic Distribution
(Poisson)

Mean/Median

Mean

-• +• -• +•

Median

Figure 48.1 Basic Types of Statistical Frequency Distributions
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OUTSIDE the Normal Operating Range and potentially poses a risk or threat to the opera-
tors, EQUIPMENT, general public, or environment.

• WARNING Range The range of engineering parameter values for a specific capability and
conditions that clearly poses a high level of risk or a threat to the operators, EQUIPMENT,
public, or environment with catastrophic consequences.

This presents several decision-making challenges for SEs:

1. What is the acceptable Design Range that includes upper and lower Caution Ranges?

2. WHAT are the UPPER and LOWER limits and conditions of the acceptable Normal
Operating Range?

3. WHAT are the thresholds and conditions for the WARNING Range?

4. WHAT upper and lower Design Safety Margins and conditions must be established for the
system relative to the Normal Operating Range, Caution Range, and Warning Range?

These questions, which are application dependent, are typically difficult to answer. Also keep in
mind that this graphic reflects a single measure of performance (MOP) for one system entity at a
specific level of abstraction. The significance of this decision is exacerbated by the need to allo-
cate the design range to lower level entities, which also have comparable performance distribu-
tions, ranges, and safety margins. Obviously, this poses a number of risks. For large, complex
systems, HOW do we deal with this challenge?

There are several approaches for supporting the design thresholds and conditions.
First, you can model and simulate the system and employ Monte Carlo techniques to assess

the most likely or probable outcomes for a given set of use case scenarios. Second, you can lever-
age modeling and simulation results and develop a prototype of the system for further analysis and

Normal
Operating Range

Design Nominal (Mean)

Design Lower 
Limit (LL)

Design Upper 
Limit (UL)

Design Range

Cautionary Range

Warning Range

Lower Tolerance Upper Tolerance

? ?

Lower Design 
Safety Margin
(Application 
Dependent)

Upper  Design 
Safety Margin
(Application 
Dependent)

Figure 48.2 Application Dependent Normalized Range of Acceptable Operating Condition Limits
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evaluation. Third, you can employ spiral development to evolve a set of requirements over a set of
sequential prototypes.

Now let’s shift our focus to understanding how statistical methods apply to system 
development.

48.3 STATISTICAL METHOD APPLICATIONS 
TO SYSTEM DEVELOPMENT

Statistical methods are employed throughout the System Development Phase by various disciplines.
For SEs, statistical challenges occur in two key areas:

1. Bounding specification requirements.

2. Verifying specification requirements.

Statistical Challenges in Writing Specification Requirements

During specification requirements development, Acquirer SEs are challenged to specify the accept-
able and unacceptable ranges of inputs and outputs for performance-based specifications. Consider
the following example:

EXAMPLE 48.1

Under specified operating conditions, the Sensor System shall have a probability of detection of 0.XX over a
(magnitude) spectral frequency range.

Once the contract is awarded, System Developer SEs are challenged to determine, allocate, and
flow down system performance budgets and safety margins requirements derived from higher level
requirements such as in the example above. The challenge is analyzing the example above to derive
requirements for PRODUCT, SUBSYSTEM, ASSEMBLY, and other levels. Consider the follow-
ing example.

EXAMPLE 48.2

The (name) output shall have a ±3s worst-case error of 0.XX for Input Parameter A distributions between
0.000vdc to 10.000vdc.

Statistical Challenges in Verifying Specification Requirements

Now let’s suppose that an SE’s mission is to verify the requirement stated in Example 48.2. For
simplicity, let’s assume that the sampled end points of Input data are 0.000vdc and 10.000vdc with
a couple of points in between. We collect data measurements as a function of Input Data and plot
them. Panel A of Figure 48.3 might be representative of thess data.

Applying statistical methods, we determine the trend line and ±3s boundary conditions based
on the requirement. Panels C and D of Figure 48.3 could represent these data. Then we super-
impose the trend line and ±3s boundaries and verify that all system performance data are within
the acceptable range indicating the system passed (Panel D).
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48.4 UNDERSTANDING TEST DATA DISPERSION

The preceding discussion focuses on design decisions. Let’s explore how system analysts and SEs
statistically deal with test data that may be used as an input into SE design decision making or ver-
ifying that a System Performance Specification (SPS) or item development specification require-
ments has been achieved.

Suppose that we conduct a test to measure system or entity performance over a range of input
data as shown in Panel A of Figure 48.3. As illustrated, we have a number of data points that have
a positive slope. This graphic has two important aspects:

1. Upward sloping trend of data

2. A dispersion of data along the trend line.

In this example, if we performed a Least Squares mathematical fit of the data, we could establish
the slope and intercepts of the trend line using a simple y = mx + b construct.

Using the trend line as a central mean for the data set as a function of Input Data (X-axis), we
find that the corresponding Y data points are dispersed about the mean as illustrated in Panel C.
Based on the standard deviation of the data set, we could say that there is 0.9973 probability that
a given data point lies within the ±3s about the mean. Thus, Panel D depicts the results of pro-
jecting the ±3s lines along the trend line.

48.5 CUMULATIVE SYSTEM PERFORMANCE EFFECTS

Our discussions to this point focus on statistical distributions relative to a specific capability param-
eter. The question is: HOW do these errors propagate throughout the system? There are several
factors that contribute to the error propagation:
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1. OPERATING ENVIRONMENT influences on system component properties.

2. Timing variations.

3. Computational precision and accuracy.

4. Drift or aliasing errors as a function of time.

From a total system perspective, we refer to this concept as cumulative error. Figure 48.4 provides
an example.

Let’s assume we have a simple system that computes the difference between two parameters
A and B. If we examine the characteristics of parameters A and B, we find that each parameter has
different data dispersions about its predicted mean.

Ultimately, if we intend to compute the difference between parameter A and parameter B, both
parameters have to be scaled relative to some normalized value. Otherwise, we get an “apples and
oranges” comparison. So, we scale each input and make any correctional offset adjustments. This
simply solves the functional aspect of the computation. Now, what about errors originating from
the source values about a nominal mean plus all intervening scaling operations? The answer is:
SEs have to account for the cumulative error distributions related to errors and dispersions. Once
the system is developed, integrated, and tested, SYSTEM Level optimization is used to correct for
any errors and dispersions.

48.6 CIRCULAR ERROR PROBABILITY (CEP)

The preceding discussion focused on analyzing and allocating system performance within the
system. The ultimate test for SE decision making comes from the actual field results. The question
is: How do cumulative error probabilities impact overall operational and system effectiveness?
Perhaps the best way to answer this question is a “bull’s-eye target” analogy using Figure 48.5.
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Our discussions up to this point have focused on the dispersion of data along linear trend lines
with a central mean. There are system applications whereby data are dispersed about a central point
such as the “bull’s eye” illustrated in Figure 48.5. In these cases the ±1s, ±2s, and ±3s points lie
on concentric circles aligned about a central mean located at the bull’s eye. Applications of this
type are generally target based such as munitions, firearms, and financial plans. Consider the fol-
lowing example:

EXAMPLE 48.3

Suppose that you conduct an evaluation of two competing rifle systems, System A and System B. We will
assume statistical sampling methods are employed to determine a statistically valid sample size. Specification
requirements state that 95% of the shots must be contained within circle with a diameter of X inches centered
at the bull’s eye.

Each system is placed in a test fixture and calibrated. When environmental conditions are accept-
able, expert marksmen “live fire” the required number of rounds from each rifle. Marksmen 
are unaware of the manufacturer of each rifle. Miss distance firing results are shown in Panels A
and B.

Using the theoretical crosshair as the origin, you superimpose the concentric lines about the
bull’s eye representing the ±1s, ±2s, and ±3s points as illustrated in the center of the graphic.
Panels C and D depict the results with miss distance as the deciding factor, System B is superior.

In this simple, ideal example we focused exclusively on system effectiveness, not cost effec-
tiveness, which includes system effectiveness. The challenge is: things are not always ideal and
rifles are not identical in cost. What do you do? The solution lies in the Cost as an Independent
Variable (CAIV) and trade study utility function concepts discussed earlier in Figure 6.1. What is
the utility function of the field performance test results relative to cost and other factors?
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Figure 48.5 Circular Error Probability Example
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If System A costs one-half as much as System B, does the increased performance of System
B substantiate the cost? You may decide that the ±3s point is the minimum threshold requirement
for system acceptability. Thus, from a CAIV perspective, System A meets the specification thresh-
old requirement and costs one-half as much, yielding the best value.

You can continue this analysis further by evaluating the utility of hitting the target on the first
shot for a given set of time constraints, and so forth.

48.7 DATA CORRELATION

Engineering often requires developing mathematical algorithms that model best-fit approximations
to real world data set characterizations. Data are collected to validate that a system produces high-
quality data within predictable values. We refer to the degree of “fit” of the actual data to the stan-
dard or approximation as data correlation.

Data correlation is a measure of the degree to which actual data regress toward a central mean
of predicted values. When actual values match predicted values, data correlation is 1.0. Thus, as
data set variances diverge away from the mean trend line, the degree of correlation represented by
r, the correlation coefficient, diminishes toward zero. To illustrate the concept of data correlation
and convergence, Figure 48.6 provides examples.

Positive and Negative Correlation

Data correlation is characterized as positive or negative depending on the SLOPE of the line rep-
resenting the mean of the data set over a range of input values. Panel A of Figure 48.6 represents
a positive (slope) correlation; Panel B represents a negative (slope) correlation. This brings us to
our next point, convergence or regression toward the mean.
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Regression toward Convergence

Since engineering data are subject to variations in physical characteristics, actual data do not always
perfectly match the predicted values. In an ideal situation we could state that the data correlate
over a bounded range IF all of the values of the data set are perfectly aligned on the mean trend
line as illustrated in Panels A and B of Figure 48.6.

In reality, data are typically dispersed along the trend line representing the mean values. Thus,
we refer to the convergence or data variance toward the mean as the degree of correlation. As data
sets regress toward a central mean, the data variance or correlation increases toward r = +1 or 
-1 as illustrated in Panels D and E. Data variances that decrease toward r = 0 indicate decreasing
convergence or low correlation. Therefore, we characterize the relationship between data parame-
ters as positive or negative data variance convergence or correlation.

48.8 SUMMARY

Our discussions of statistical influences on system design practices were predicated on a basic understanding
of statistical methods and provided a high-level overview of key statistical concepts that influence SE design
decisions.

We highlighted the importance of using statistical methods to define acceptable or desirable design ranges
for input and output data. We also addressed the importance of establishing boundary conditions for NORMAL
operating ranges, CAUTIONARY ranges, WARNING ranges, as well as establishing safety margins. Using
the basic concepts as a foundation, we addressed the concept of cumulative errors, circular error probabili-
ties (CEP), and data correlation. We also addressed the need to bound acceptable or desirable system outputs
that include products, by-products, and services.

Statistical data variances have significant influence on SE technical decisions such as system perform-
ance, budgets, and safety margins and operational and system effectiveness. What is important is that SEs:

1. Learn to recognize and appreciate engineering input/output data variances

2. Know WHEN and HOW to apply statistical methods to understand SYSTEM interactions with its
OPERATING ENVIRONMENT.

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new system, selection, apply your knowledge derived from this chapter’s topical
discussions. Specifically identify the following:

(a) What inputs of the system can be represented by statistical distributions?

(b) How would you translate those inputs into a set of input requirements?

(c) Based on processing of those inputs, do errors accumulate and, if so, what is the impact?

(d) How would you specify requirements to minimize the impacts of errors?

ORGANIZATIONAL CENTRIC EXERCISES

1. Contact a technical program in your organization. Research how the program SEs accommodated statisti-
cal variability for the following:

(a) Acceptable data input and output ranges for system processing

(b) External data and timing variability
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2. For systems that require performance monitoring equipment such as gages, meters, audible warnings, 
and flashing lights, research how SEs determined threshold values for activating the notifications or 
indications.
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Chapter 49

System Performance Analysis,
Budgets, and Safety Margins

49.1 INTRODUCTION

System effectiveness manifests itself via the cumulative performance results of the integrated set of
System Elements at a specific instance in time. That performance ultimately determines mission
and system objectives success—in some cases, survival.

When SEs allocate system performance, there is a tendency to think of those requirements as
static parameters—for example, “shall be +12.3 ± 0.10vdc.” Aside from status switch settings or
configuration parameters, seldom are parameters static or steady state.

From an SE perspective, SEs partition and organize requirements via a hierarchical framework.
Take the example of static weight. We have a budget of 100 pounds to allocate equally to three
components. Static parameters make the SE requirements allocation task a lot easier. This is not
the case for many system requirements. How do we establish values for system inputs that are
subject to variations such as environmental conditions, time of day, time of year, signal properties,
human error and other variables?

System requirement parameters are often characterized by statistical value distributions—such
as Normal (Gaussian), Binomial, and LogNormal (Poisson)—with frequencies and tendencies about
a mean value. Using our static requirements example above, we can state that the voltage must be
constrained to a range of +12.20vdc (-3s) to +12.40 vdc (+3s) with a mean of +12.30vdc for a
prescribed set of operating conditions.

On the surface, this sounds very simple and straightforward. The challenge is: How did SEs
decide:

1. That the mean value needed to be +12.30 vdc?

2. That the variations could not exceed 0.10 vdc?

This simple example illustrates one of the most challenging and perplexing aspects of System Engi-
neering—allocating dynamic parameters.

Many times SEs simply do not have any precedent data. For example, consider human attempts
to build bridges, develop and fly an aircraft, launch rockets and missiles, and land on the Moon
and Mars. Analysis with a lot of trial and error data collection and observation may be all you
have to establish initial estimates of these parameters.

There are a number of ways one can determine these values. Examples include:

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.

597



1. Educated guesses based on seasoned experience.

2. Theoretical and empirical trial and error analysis.

3. Modeling and simulation with increasing fidelity.

4. Prototyping demonstrations.

The challenge is being able to identify a reliable, low-risk, level of confidence method of deter-
mining values for statistically variant parameters.

This chapter describes how we allocate System Performance Specification (SPS) requirements
to lower levels. We explore how functional and nonfunctional performance are analyzed and allo-
cated. This requires building on previous practices such as statistical influences on system design
discussed in the preceding chapter. We introduce the concepts of decomposing cycle time based
performances into queue, process, and transport times. Finally, we conclude by illustrating how
performance budgets and safety margins enable us to achieve SPS performance requirements.

What You Should Learn from This Chapter

1. What is system performance analysis?

2. What is a cycle time?

3. What is a queue time?

4. What is a transport time?

5. What is a processing time?

6. What is a performance budget?

7. How do you establish performance budgets?

8. What is a safety margin?

Definitions of Key Terms

• “Design-to” MOP A targeted mean value bounded by minimum and/or maximum thresh-
old values levied on a system capability performance parameter to constrain decision 
making.

• Performance Budget Allocation A minimum, maximum, or min-max constraint that repre-
sents the absolute thresholds that bound a capability or performance characteristic.

• Processing Time The statistical mean time and tolerance that statistically characterizes the
time interval between an input stimulus or cue event and the completion of processing of
the input(s).

• Queue Time The statistical mean time and tolerance that characterizes the time interval
between the arrival of an input for processing and the point where processing begins.

• Safety Margin A portion of an assigned capability or physical characteristic measure of
performance (MOP) that is restricted from casual usage to cover instances in which the bud-
geted performance exceeds its allocated MOP.

• System Latency The time differential between a stimulus or cue events and a system
response event. Some people refer to this as the responsivity of the system for a specific
parameter.

• Transport Time The statistical mean time and tolerance that characterizes the time inter-
val between transmission of an output and its receipt at the next processing task.

598 Chapter 49 System Performance Analysis, Budgets, and Safety Margins



49.2 PERFORMANCE “DESIGN-TO” 
BUDGETS AND SAFETY MARGINS

Every functional capability or physical characteristic of a system or item must be bounded by per-
formance constraints. This is very important in top-down/bottom-up/horizontal design whereby
system functional capabilities are decomposed, allocated, and flowed down into multiple levels of
design detail.

Achieving Measures of Performance (MOPs)

The mechanism for decomposing system performance into subsequent levels of detail is referred
to as performance budgets and margins. In general, performance budgets and margins allow SEs
to impose performance constraints on functional capabilities that include a margin of safety. Philo-
sophically, if overall system performance must be controlled, so should the contributing entities at
multiple levels of abstraction.

Performance constraints are further partitioned into: 1) “design-to” measures of performance
(MOPs) and 2) performance safety margins.

Design-to MOPs

Design-to MOPs serve as the key mechanism for allocating, flowing down, and communicating
performance constraints to lower levels system items. The actual allocation process is accom-
plished by a number of methods ranging from equitable shares to specific allocations based on arbi-
trary and discretionary decisions or decisions supported by design support analyses and trade
studies.

Safety Margins

Safety margins accomplish two things. First, they provide a means to accommodate variations in
tolerances, accuracies, and latencies in system responses plus errors in human judgment. Second,
they provide a reserve for decision makers to trade off misappropriated performance inequities as
a means of optimizing overall system performance.

Performance safety margins serve as contingency reserves to compensate for component vari-
ations or to accommodate worst-case scenarios that:

1. Could have been underestimated.

2. Potentially create safety risks and hazards.

3. Result from human errors in computational precision and accuracy.

4. Are due to physical variations in materials properties and components

5. Result from the “unknowns.”

Every engineering discipline employs rules of thumb and guidelines for accommodating safety
margins. Typically, safety margins might vary from 5% to 200% on average, depending on the
application and risk.

There are limitations to the practicality of safety margins in terms of: 1) cost–benefits, 2) prob-
ability or likelihood of occurrence, 3) alternative actions, and 4) reasonable measures, among other
things. In some cases, the implicit cost of increasing safety margin MOPs above a practical level can
be offset by taking appropriate system or product safety precautions, safeguards, markings, and pro-
cedures that reduce the probability of occurrence.
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Warning! ALWAYS seek guidance from your program and technical management, disciplinary
standards and practices, or local organization engineering command media to establish a consen-
sus about safety margins for your program. When these are established prior to the Contract Award,
document the authoritative basis for the selection and disseminate to all personnel or incorporate
into program command media—as project memoranda or plans.

Safety margins, as the name implies, involve technical decision making to prevent potential
safety hazards from occurring. Any potential safety hazards carry safety, financial, and legal lia-
bilities. Establish safety margins that safeguard the SYSTEM and its operators, general public,
property, and the environment. 

Applying Design-to MOPs and Safety Margins

Figure 49.1 illustrates how Design-To MOPs and safety margins are established. In this figure the
measures of performance (MOPs) for system capabilities and physical characteristics are given 
in generic terms or units. Note that the units can represent time, electrical power, mass properties,
and so on.

Author’s Note 49.1 The example in Figure 49.1 shows the basic method of allocating per-
formance budgets and safety margins. In reality, this highly iterative, time-consuming process often
requires analyses, trade studies, modeling, simulation, prototyping, and negotiations to balance
and optimize overall system performance.

Let’s assume the SPS specifies that Capability A have a performance constraint of 100 units. System
designers decide to establish a 10% safety margin at all levels of the design. Therefore, they estab-
lish a Design-To MOP of 90 units and a safety margin of 10 units. The Design-To MOP of 90 units
is allocated as follows: Capability A_1 is allocated an MOP of 40 units, Capability A_2 is allo-
cated an MOP of 30 units, and Capability A_3 is allocated an MOP of 20 units.
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Focusing on Capability A_2, the MOP of 30 units is partitioned into a Design-To MOP of 27
units and a safety margin MOP of 3 units. The resultant Design-To MOP of 27 units is then allo-
cated to Capability A_21 and Capability A_22 in similar manner, and so forth.

Some SEs argue that once you establish the initial 10 unit safety margin MOP at the Capabil-
ity A level, there is no need to establish design safety margins at lower levels of the capability—
(capability A_3 safety margin, etc.). Observe how the second level has allocated an additional 10
units of margin to the Capability A-1, A-2, and A-3 budgets above and beyond the 10 units at the
Capability A level. They emphasize that as long as all subordinate level capabilities meet their
Design-To MOP performance budgets, the 10 unit MOP safety margin adequately covers situations
where lower level performance exceeds allocated budgets.

They continue that imposing safety margins at lower levels unnecessarily CONSTRAINS crit-
ical resources and increases system cost due to the need for higher performance equipment. For
some nonsafety critical, non–real-time performance applications, this may be true; every system
and application is unique.

As an initial starting point, ALWAYS begin with multi-level safety margins. If you encounter
difficulties meeting lower level performance allocation constraints, you should weigh options, ben-
efits, costs, and risks. Since system item performance inevitably requires adjustment for optimiza-
tion, ALWAYS establish design safety margins at every level and for every system item to ensure
flexibility in the integrated performance in achieving SPS requirements. Once all levels of design
are defined, rebalance the hierarchical structure of performance budgets and design safety margins
as needed.

To illustrate how we might implement time-based performance budgets and margins alloca-
tions, let’s explore another example.

EXAMPLE 49.1

To illustrate this concept, refer to Figure 49.2. The left side of the graphic portrays a hierarchical decompo-
sition of a Capability A. The SPS requires that Capability A complete processing within a specified period of
time such as 200 milliseconds. System designers designate the initiation of Capability A as Event 1 and its
completion as Event 2. A Mission Event Timeline (MET) depicting the two event constraints is shown in the
top portion of the graphic. System Designers partition the Capability A time interval constraint into a Design-
To MOP and a safety margin MOP. The Design-To MOP constraint is designated as Event 1.4.

Author’s Note 49.2 Initially MET Event 1.4 may not have this label. We have simply applied the
Event 1.4 label to provide a degree of sequential consistency across the MET (1.1, 1.2, 1.3, etc.).
Events 1.2 and 1.3 are actually established by lower level allocations for Capabilities A_1 and A_2.

As shown at the left side, the Capability A requirement is analyzed and decomposed into Capabil-
ity A_1 and Capability A_2 requirements. Thus, the Design-To MOP for Capability A is partitioned
into a Capability A_1 time constraint and a Capability A_2 time constraint as MOPs. Likewise,
Capability A_1 and Capability A_2 are decomposed into lower level requirements, each with its
respective Design-To MOP and safety margin. The process continues to successively lower levels
of system items.

Reconciling Performance Budget Allocations and Safety Margins. As design teams
apply Design-To MOP allocations, what happens if there are critical performance issues with the
initial allocations? Let’s assume that Capability A_22 in Figure 49.2 was initially allocated 12
units. An initial analysis of Capability A_22 indicates that 13 units are required. What should an
SE do?
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Capability A_22 owner confers with the higher level Capability A_2 and peer level Capabil-
ity A_21 owners. During the discussions the Capability A_21 owner indicates that Capability A_21
was allocated 15 units but only requires 14 units, which includes a safety margin. The group reaches
a consensus to reallocate an MOP of 14 units to Capability A_21 and an MOP of 13 units to Capa-
bility A_22.

Final Thoughts about Performance Budgets and Margins. The process of allocating per-
formance budgets and safety margins is a top-down/bottom-up/left-right/right-left negotiation
process. Within human decision-making terms, the intent is to reconcile the inequities as a means
of achieving and optimizing overall system performance. Without negotiation and reconciliation,
you get a condition referred to as suboptimization of a single item, thereby degrading overall system
performance.

Performance Budget and Safety Margin Ownership

A key question is: WHO owns performance budgets and safety margins? In general, the owner of
the specification that contains the capabilities and physical characteristics that are allocated as per-
formance budget MOPs and safety margins is the owner.

How are Performance Budgets and Margins Documented?

Performance budgets and safety margins are documented a number of ways, depending on program
size, resources, and tools.

First, requirements allocations should be documented in a decision database or spreadsheet
controlled by the Lead SE or System Engineering and Integration Team (SEIT). Requirements man-
agement tools based on relational databases provide a convenient mechanism to record the alloca-
tions. Second, as performance allocations, they should be formally documented and controlled as
specific requirements flowed down to lower level specifications.
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A relational database requirements management tools allow you to:

1. Document the allocation.

2. Flow the allocation down to lower level specifications with traceability linkages back to the
higher level parent performance constraint.

49.3 ANALYZING SYSTEM PERFORMANCE

The preceding discussion introduced the basic concepts of performance budgets and design safety
margins. Implementations of these Design-To MOPs are discussed in engineering textbooks such
as electronics engineering and mechanical engineering. However, from an SE perspective, inte-
grated electrical, mechanical, or optical systems have performance variations interfacing with
similar EQUIPMENT and PERSONNEL within larger structural systems. The interactions among
these systems and levels of abstractions require in-depth analysis to determine acceptable limits
for performance variability. At all levels of abstraction, capabilities are typically event and/or task
driven—that is, an external or time-based stimulus or cue activates or initiates a capability to action.

Understanding System Performance and Tasking

Overall, system performance represents the integrated performance of the System Elements—such
as EQUIPMENT, PERSONNEL, and MISSION RESOURCES—that provide system capabilities,
operations, and processes. As integrated elements, if the performance of any of these mission crit-
ical items—(PRODUCTS, SUBSYSTEMS, etc.) is degraded, so is the overall system perform-
ance, depending on the robustness of the system design. Robust designs often employ redundant
hardware and/or software design implementations to minimize the effects of system performance
degradation on achieving the mission and its objectives.

Referral For more information about redundant systems, refer to Chapter 50 on Reliability, Avail-
ability, and Maintainability (RAM) Practices and also Chapter 36 on System Architecture Devel-
opment Practices.

From a systems perspective, SYSTEM capabilities, operations, and executable processes are
response mechanisms to “tasking” assigned and initiated by peer or HIGHER ORDER Systems
with authority. Thus, SYSTEM “tasking” requires the integrated set of sequential and concurrent
capabilities to accomplish a desired performance-based outcome or result.

To illustrate the TASKING of capabilities, consider the simple graphic shown in Figure 49.3.
Note the chain of sequential tasks, Tasks A through n. Each task has a finite duration bounded by
a set of Mission Event Timeline (MET) performance parameters. The time period marked by the
start of one task until the start of another is referred to as the throughput or cycle time. The cycle
time parameter brings up an interesting point, especially in establishing a convention for decision
making.

Establishing Cycle Time Conventions

When you establish cycle times, you need to define a convention that will be used consistently
throughout your analyses. There are a couple of approaches as shown in Figure 49.4 Convention
A defines cycle time as beginning with the START of Task A and the START of Task B. In con-
trast, Convention B defines cycle time as starting at the END of Task A and completing at the start
of Task B. You can use either method. For discussion purposes, we will use Convention A.
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Referral For more information about conventions, refer to Chapter 45 on Engineering Standards,
Frames of Reference, and Conventions Practices.

49.4 OPERATIONAL TASKING OF A SYSTEM CAPABILITY

Most tasks, whether performed by human operators or EQUIPMENT, involve three phases:

1. Pre-Mission Preparation or configuration/reconfiguration.

2. Mission Performance of the task.

3. Post-mission Delivery of the required results and any residual housecleaning in prepara-
tion for the next tasks.
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Communications intensive systems such as humans, computers, et al have a similar pattern that
typically includes QUEUES—or waiting line theory. We illustrate this pattern in Figure 49.5.

In the illustration, a typical task provides three capabilities: 1) queue new arrivals, 2) perform
processing, and 3) output results. Since new arrivals may overwhelm the processing function, queue
new arrivals establish a buffer or holding area for first in–first out (FIFO) processing or some other
priority processing algorithm.

Each of these capabilities is marked by its own cycle time: tQueue = Queue Time, tProcess = Pro-
cessing Time, and tTransport = Transport Time. Figure 49.6 illustrates how we might decompose each
of these capabilities into lower level time constraints for establishing budgets and safety margins.

Guidepost 49.1 At this point we have identified and partitioned task performance into three
phases: queue time, processing time, and transport time. Philosophically, this partitioning enables
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us to decompose allocated task performance times into smaller, more manageable pieces. Beyond
this point, however, tasks analysis becomes more complicated due to timing uncertainties. This
brings us to our next topic, understanding statistical characteristics of tasking.

49.5 UNDERSTANDING STATISTICAL 
CHARACTERISTICS OF TASKING

All tasks involve some level of performance uncertainty. The level of uncertainty is created by the
inherent reliability of the System Elements—PERSONNEL, MISSION RESOURCES, and so forth.
In general, task performance and its uncertainty can be characterized with statistics using normal
(Gaussian) (Normal), Binomial, and LogNormal (Poisson) frequency distributions. Based on meas-
ured performance over a large number of samples, we can assign a PROBABILITY that task or
capability performance will complete processing within a minimum amount of time and should not
exceed a specified amount of time. To see how this relates to system performance and allocated
performance budgets and margins, refer to Figure 49.7.

Let’s suppose a task that is initiated at Event 1 and must be completed by Event 2. We refer
to this time as tAllocation. To ensure a margin of safety as a contingency and for growth, we establish
a performance safety margin, tMargin. This leaves a remaining time, tExec, as the maximum budgeted
performance.

Using the lower portion of the graphic, suppose that we perform an analysis and determine
that the task, represented by the gray rectangular box, is expected to have a mean finish time, tMean.
We also determine with a level of probability that task completion may vary about the mean by
±3s designated as early finish and late finish. Therefore, we equate the latest finish to the maximum
budgeted performance, tBudget. This means that once initiated at Event 1, the task must complete 
and deliver the output or results to the next task no later than tBudget. Based on the projected distri-

606 Chapter 49 System Performance Analysis, Budgets, and Safety Margins

Task Execution
Performance

Task A Time Allocation

Mean (mA)
Finish

-3s +3s

tMean

tBudget

Event 1

tMin.

Maximum Budgeted Performance
Design
Margin

Event 2
tAllocation

tMargin

Early
Finish

Late
Finish

Queue
Time

Processing Time
Transport

Time

tExec tMargin

Task 
Initiation

Task 
Completion

Figure 49.7 Task Timeline Elements



bution, we also expect the task to be completed no sooner than the -3s point—the early finish
point.

If we translate this analysis into the Requirements Domain Solution, we generate a require-
ments statement that captures the capability and its associated performance allocation. Let’s suppose
that Capability B requires that Capability A complete processing and transmit data within 250 mil-
liseconds AFTER Event 1 occurs. Consider the following example of a specification requirement
statement.

EXAMPLE 49.2

“When event 1 occurs, (Capability A) shall process the incoming data and transmit the results to (Capabil-
ity B) within 250 milliseconds.”

Now let’s suppose that Capability B requires receipt of the data within a window of time between
240 milliseconds and 260 milliseconds. The requirement might read as follows:

EXAMPLE 49.3

“When event 1 occurs, (Capability A) shall process the incoming data and transmit the results to (Capabil-
ity B) within 250 ± 10 milliseconds.”

Guidepost 49.2 Our discussion emphasizes how overall system task performance can vary. To
understand how this variation occurs, let’s take it one step further and discuss it relative to the key
task phases.

49.6 APPLYING STATISTICS TO MULTI-TASK 
SYSTEM PERFORMANCE

Our previous discussion focused on the performance of a single capability. If the statistical vari-
ations for a single capability are aggregated for a multi-level system, we can easily see how this
impacts overall system performance. We can illustrate this by the example shown in Figure 49.8.

Let’s assume we have an overall task called Perform Task A. The purpose of Task A is to
perform a computation using variable inputs, I1 and I2, and produce a computed value as an output.
The key point of our discussion here is to illustrate time-based statistical variances to complete
processing.

EXAMPLE 49.4

Let’s assume that Task A consists of two subtasks, Subtask A1 and Subtask A2. Subtask A1 enters inputs I1 and
I2. Each input, I1 and I2, has values that vary about a mean.

When Subtask A1 is initiated, it produces a response within tA1Mean that varies from tA1Min to tA1Max.
The output of Subtask A1 serves as an input to Subtask A2. Subtask A2 produces a response within
tA2Mean that may occur as early as tA2Min or as late as tA2Max.

If we investigate the overall performance of Task A, we find that Task A is computed within
tCompute as indicated by the central mean. The overall Task A performance is determined by the sta-
tistical variance of the summation of Subtask A1 and Subtask A2 processing times.
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Guidepost 49.3 We have seen how statistical variations in inputs and processing affect system
performance from a timing perspective. Similar methods are applied to the statistical variations of
inputs 1 and 2 as independent variables over a range of values. The point of our discussion is to
heighten your awareness of these variances. THINK about and CONSIDER statistical variability
when allocating performance budgets and margins as well as analyzing data produced by the
system to determine compliance with requirements.

Referral For more information about statistical variability, refer to Chapter 48 on Statistical Influ-
ences on System Design Practices.

Given this understanding, let’s return to a previous discussion about applying statistical variations
to phases of a task.

49.7 APPLYING STATISTICAL VARIATIONS 
TO INTRA-TASK PHASES

In our earlier discussion of task phases—consisting of queue time, capability performance time,
and transport time—we identified the various time segments within each phase. Let’s examine how
statistical influences affect those phases. Figure 49.9 serves as the focal point for our discussion.

The central part of the figure represents an overall task and its respective queue time, pro-
cessing time, and transport time phases. Below each phase is a statistical representation of the exe-
cution time. The top portion of the chart illustrates the aggregate performance of the overall task
execution.
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How does this relate to SE? If a given capability or task is supposed to be completed within
the allocated cycle time and you are designing a system—with queues, computational devices, and
transmission lines—you need to factor in these times as performance budgets and safety margins
to flow down to lower levels.

Applying Statistics to Overall System Performance

Our discussions to this point focused on the task and multi-tasking level. The ultimate challenge
for SEs is: HOW will the overall system perform? Figure 49.10 illustrates the effects of statistical
variability of the System Element Architecture and its OPERATING ENVIRONMENT.

49.8 MATHEMATICAL APPROXIMATION ALTERNATIVE

Our conceptual discussions of statistical system performance analysis were intended to highlight
key considerations for establishing and allocating performance budgets and margins and analyz-
ing data for system performance tuning. Most people do not have the time to perform the statisti-
cal analyses. For some applications, this may be acceptable and you should use the method
appropriate for your application. There is an alternative method you might want to consider using,
however.

Scheduling techniques such as the Program Evaluation and Review Technique (PERT) employ
approximations that serve as analogs to a Gaussian (normal) distribution. The formula stated below
is used:

(49.1)

where

Expected or mean time a b c=
+ +t t t4

6
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Do SEs Actually Perform This Type of Analysis?

Our discussion here highlights the theoretical viewpoint of task analysis. A question people often
ask is: Do people actually go to this level of detail? In general, the answer is yes, especially in
manufacturing and scheduling environments. In those environments statistical process control
(SPC) is used to minimize process and material variations in the production of parts, and this trans-
lates into cost reduction.

Modeling and Simulation

If you develop a model of a system whereby each of the capabilities, operations, processes, and
tasks is represented by a series of sequential and concurrent elements or feedback loops, you can
apply statistics to the processing time associated with each of those elements. By analyzing how
each of the input variables varies over value ranges bounded on the ±3s points, you can determine
the overall system performance relative to a mean.

Guidepost 49.4 Our discussions highlighted some basic task-oriented methods that support a
variety of systems engineering activities. These methods can be applied to Mission Event Timelines
(METs), system capabilities and performance as a means of determining overall system perform-
ance. Through decomposition and allocation of overall requirements, developers can establish the
appropriate performance budgets and safety margins for lower level system entities.



49.9 REAL-TIME CONTROL AND FRAME-BASED SYSTEMS

Some systems operate as real-time, closed loop, feedback systems. Others are multi-tasking
whereby they have to serve multiple processing tasks on a priority basis. Let’s explore each of these
types further.

Real-Time, Closed Loop Feedback Systems

Electronic, mechanical, and electromechanical systems include real-time, closed loop, feedback
systems that condition or process input data and produce an output, which is sampled and summed
with the input as negative feedback. Rather than feedback impulse functions to the input, filters
may be required to dampen the system response. Otherwise, the system might overcompensate and
go unstable while attempting to regain control. The challenge for SEs is determining and allocat-
ing performance for the optimal feedback responses to ensure system stability.

Frame-Based System Performance

Electronic systems often employ software to accomplish CYCLICAL data processing tasks using
combinations of OPEN and CLOSED loop cycles. Systems of these types are referred to as frame-
based systems.

Frame-based systems perform accomplish multi-task processing via time-based blocks of time
such as 30 Hertz (Hz) or 60Hz. Within each block, processing of multiple CONCURRENT tasks
is accomplished by allocating a portion of each frame to a specific task, depending on priorities.
For these cases, apply performance analysis to determine the appropriate mix of concurrent task
processing times.

Author’s Note 49.3 One approach to frame-based system task scheduling is rate monotonic
analysis (RMA). Research this topic further if frame-based systems apply to your business domain.

49.10 SYSTEM PERFORMANCE OPTIMIZATION

System performance analysis provides a valuable tool for modeling and prediction the intended
interactions of the SYSTEM in its OPERATING ENVIRONMENT. Underlying assumptions are
validated when the SYSTEM is powered up and operated. The challenge for SEs becomes one of
optimizing overall system performance to compensate for the variability of the embedded PROD-
UCTS, SUBSYSTEMS, ASSEMBLIES, SUBASSEMBLIES, and PARTS.

Minimum Conditions for System Optimization

When the system enters the System Integration, Test, and Evaluation (SITE) Phase, deficiencies
often consume most of the SE’s time. The challenge is getting the system to a state of equilibrium
that can best be described as nominal and acceptable as defined by the System Performance Spec-
ification (SPS).

Once the system is in a state of nominal operation with no outstanding deficiencies, there may
be a need to tweak performance to achieve optimum performance. Let’s reiterate the last point: you
must correct all major deficiencies BEFORE you can attempt to optimize system performance in
a specific area. Exceptions include minor items that are not system performance effecters. Consider
the following example:
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EXAMPLE 49.5

Suppose that you are developing a fuel-efficient vehicle and are attempting to optimize road performance via
a test track. If the fuel flow has a deficiency, can you optimize overall system performance? Absolutely not!
Does having a taillight out impact fuel efficiency performance? No, its not a contributing element to fuel flow.
It may, however, impact safety.

Pareto-Based Performance Improvements

There are a number of ways to optimize system performance, some of which can be very time-con-
suming. For many systems, however, there is limited time to optimize performance prior to deliv-
ery, simply because the system development schedule has been consumed with correcting system
deficiencies.

When you investigate options for WHERE to focus system performance optimization efforts,
one approach employs the Pareto 80/20 rule. Under the 80/20 rule, 80% of system performance is
attributable to 20% of the processing tasks. If you accept this analogy, the key is to identify the
20% processes and focus performance analysis efforts on maximizing or minimizing their impact.
So, employ diagnostic tools to understand HOW each item is performing as well as interface laten-
cies between items via networks, and so forth.

Today electronic instrumentation devices and software are available to track processing tasks
that consume system resources and performance. Plan from the beginning of system development
HOW these devices and software can be employed to identify and prioritize system processing task
performance and optimize it.

System performance optimization begins on day 1 after Contract Award via:

1. System performance requirements allocations.

2. Plans for “test points” to monitor performance after the system has been fully integrated.

49.11 SYSTEM ANALYSIS REPORTING

As a disciplined professional, document the results of each an analysis. For engineering tasks that
involve simple assessments, ALWAYS document the results, even informally, in an engineering
notebook. For tasks that require a more formal, structured approach, you may be expected to deliver
a formal report. A common question many SEs have is: HOW do you structure an analytical report?

First, you should consult your contract for specific requirements. If the contract does not require
a specific a structure, consult your local command media. If your command media does not provide
guidance, consider using the outline provided in Chapter 47 on Analytical Decision Support 
Practices.

49.12 GUIDING PRINCIPLES

In summary, the preceding discussions provide the basis with which to establish the guiding prin-
ciples that govern system performance analysis, budgets, and safety margins practices.

Principle 49.1 Every SYSTEM/entity design must have performance budgets and margins that
bound capabilities and provide a margin of safety to accommodate uncertainty in material, com-
ponent, and operational performance.
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Principle 49.2 Every measure of performance (MOP) has an element of development risk. Mit-
igate the risk by establishing one or more boundary condition thresholds to trigger risk mitigation
actions.

Principle 49.3 When planning task processing, at a minimum, include considerations for queue
time, processing time, and transport time in all computations.

Principle 49.4 System performance for a specific capability should only be optimized when all
performance effecters are operating normally within their specification tolerances.

49.13 SUMMARY

Our discussions of system performance analysis, budgets, and margins practices provided an overview of key
SE design considerations. We described the basic process and methods for:

1. Allocating measures of performance (MOPs) to lower levels

2. Investigating task-based processing relative to statistical variability

3. Publishing analysis results in a report using a recommended outline.

We also offered an approach for estimating task processing time durations and introduced the concept of rate
monotonic analysis (RMA) for frame-based processing.

Finally, we showed from an SE perspective the performance variability of System Elements that must be
factored into performance allocations.

• Each SPS or item specification measure of performance (MOP) should be partitioned into a “design-
to” MOP and a safety margin MOP.

• Each program must provide guidance for establishing safety margins for all system elements.

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new system selection, apply your knowledge derived from this chapter’s topical
discussions. Select an element of the system. Specifically identify the following:

(a) If you had been the developer of the system, what guidance would you have provided for perform-
ance allocations, budgets, and safety margins? Give examples.

(b) What types of budgets and margins would you recommend?

ORGANIZATIONAL CENTRIC EXERCISES

1. Contact an in-house program that designs real time software intensive systems for laboratory environments.
Interview SE personnel regarding the following questions and prepare a report on your findings and 
observations.

(a) How were the system tasking, task performance, and EQUIPMENT sized, timed, and optimized?

(b) How did the program document this information?

(c) Is rate monotonic analysis (RMA) applicable to this program and how is it applied?

2. Contact an in-house program that designs real time products for deployment in external environments—
such as missiles or monitoring stations. Interview SE personnel regarding the following questions and
prepare a report on your findings and observations.
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(a) How were the system tasking, task performance, and EQUIPMENT sized, timed, and optimize.

(b) How did the program document this information?

(c) Is RMA applicable to this program and how is it applied?

3. Search the Internet for papers on rate monotonic analysis (RMA). Develop a conceptual report on how
you would apply RMA to the following types of systems or products or others of your choosing. Include
responses to inputs and output results.

(a) Automobile engine controller

(b) Multi-tasking computer system

4. Contact a small, medium, and a large contract program within you organization.

(a) What guidance did they establish for design safety margins? Provide examples.

(b) How were design-to parameters and safety margins allocated, documented, and tracked? Provide 
examples.

(c) How was the guidance communicated to developer?
(d) Were technical performance measures (TPMs) required?
(e) How did the program link TPMs and performance budgets and safety margins?

ADDITIONAL READING
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Chapter 50

Reliability, Availability, 
and Maintainability

50.1 INTRODUCTION

The purpose of any system is to accomplish the intended User’s missions and objectives as bounded
by a prescribed OPERATING ENVIRONMENT. The focus of any mission is on successful com-
pletion of the objectives efficiently and effectively with minimal or no safety risk to its system’s
operators, the system, general public, and the environment.

What does it take to accomplish these objectives? Three key system requirements emerge.

• The system has to be immediately available on-demand when the User wants to conduct
their missions.

• The system must be reliable and dependable to complete the mission safely.

• The system must be capable of being maintained and achieve turnaround requirements that
support its operational readiness—or availability—to conduct new missions.

We refer to the three requirements as: 1) availability, 2) reliability, and 3) maintainability 
respectively.

As an SE you may be expected to:

1. Lead efforts to specify (Acquirer role), analyze and allocate (System Developer) RAM
requirements for the System Performance Specification (SPS) and item development 
specifications.

2. Integrate engineering specialty disciplines into the RAM specification and analysis 
decision-making process.

3. Ensure those engineering specialties are integrated into the multi-level SYSTEM and item
SE design and development activities.

What You Should Learn from This Chapter

1. What is RAM?

2. Why are reliability, availability, and maintainability addressed as a set?

3. Who is accountable for RAM?

4. What is reliability?

5. How is reliability determined?

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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6. What is availability?

7. How is availability determined?

8. What is maintainability?

9. How is maintainability determined?

10. What is the RAM trade space?

11. How do you improve availability?

12. How do you improve reliability?

13. How do you improve maintainability?

14. When is RAM addressed in a program?

Definitions of Key Terms

• Compensating Provision “Actions that are available or can be taken by an operator to
negate or mitigate the effect of a failure on a system.” (Source: MIL-STD-1629A [canceled],
para. 3.1.3)

• Corrective Maintenance “All actions performed as a result of failure, to restore an item to
a specified condition. Corrective maintenance can include any or all of the following steps:
Localization, Isolation, Disassembly, Interchange, Reassembly, Alignment and Checkout.
(Source: MIL-HDBK-470A, Appendix G, glossary, p. G-3)

• Delay Time That element of downtime during which no maintenance is being accomplished
on the item because of either supply or administrative delay.” (Source: MIL-HDBK-470A,
Appendix G, Glossary, p. G-3)

• End Effect “The consequence(s) a failure mode has on the operation, function, or status of
the highest indenture level.” (Source: MIL-STD-1629A [canceled], para. 3.1.13.3)

• Failure “The event, or inoperable state, in which any item or part of an item does not, or
would not, perform as previously specified.” (Source: MIL-HDBK-470A, Appendix G)

• Failure Cause “The physical or chemical processes, design defects, quality defects, part
misapplication, or other processes which are the basic reason for failure or which initiate the
physical process by which deterioration proceeds to failure.” (Source: MIL-STD-1629A
[canceled], para. 3.1.12)

• Failure Effect “The consequence(s) a failure mode has on the operation, function, or status
of an item. Failure effects are typically classified as Local, Next Higher Level, and End
Effect.” (Source: MIL-HDBK-470A, Appendix G)

• Failure Mode and Effects Analysis (FMEA) “A procedure by which each potential failure
mode in a product (system) is analyzed to determine the results or effects thereof on the
product and to classify each potential failure mode according to its severity or risk proba-
bility number.” (Source: MIL-HDBK-470A, Appendix G)

• Latent Defects Fault characteristics in an item’s physical implementation due to design
errors and flaws, component and material properties, imperfections, abnormalities, or impu-
rities; poor work process and method practices due to poor quality assurance or lack of 
training.

• Maintainability Refer to the definition provided in Chapter 35 on System To/For Design 
Objectives.

• Reliability Refer to the definition provided in Chapter 35 on System Design To/For 
Objectives.
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50.2 APPROACH TO THIS CHAPTER

RAM is a specialty engineering skill. Due to the SERIOUSNESS of safety, legal, financial, and
political consequences resulting from the lack of application or misapplication of the specialty,
QUALIFIED, COMPETENT, professional reliability engineers and maintainability engineers must
perform RAM. With qualified credentials, these engineers are subject matter experts (SMEs) who
understand and know HOW TO:

1. Apply RAM methodologies

2. Interpret the results and their subtleties for informed decision making.

Because competencies and experience are required to understand which formulas to apply as well
as the risk of misapplication, you are hereby advised to employ the services of a CERTIFIED pro-
fessional RAM SME with a PROVEN track record, either on your staff or as a consultant. DO
NOT attempt to apply these practices unless you are properly TRAINED and CERTIFIED.

Your job, as an SE is to develop a working knowledge of the basic RAM concepts to enable
you to:

1. Know WHEN to employ these services.

2. Gain a level of confidence in the individual(s) performing RAM.

3. Understand how to apply the results provided by the SMEs.

Our discussion is NOT intended to be an all-encompassing discourse on RAM. The intent is to
introduce you to RAM concepts that provide a foundation for understanding and conversing about
the subject matter.

So, rather than repeat what other authors have published in detail, we will approach RAM from
an SE task perspective. As such, SEs need to understand two aspects of RAM: its fundamentals
and its implementation. For detailed RAM specifics, research the following sources or later 
editions:

• Patrick D. T. O’Connor, Practical Reliability Engineering (Wiley, 3rd edition, 1992).

• Benjamin S. Blanchard and Wolter J. Fabrycky, System Engineering and Analysis, second
edition (Wiley, 1990).

A prerequisite to RAM is a basic knowledge of mathematical frequency distributions and their
application as best-fit characteristic models. Specifically, RAM employs these distributions to
model component failure rates that can be integrated at higher levels to provide an estimate of
overall system RAM.

Frequency Distribution Modeling

There are numerous mathematical models with characteristic curves and parameters that enable us
to model a specific component, item, or system. Example distributions include normal, lognormal,
binomial, exponential, and Weibull, distributions. For discussion purposes, there are three stand-
ard types of distributions that provide a best fit for most reliability applications: 1) normal or 
Gaussian distribution, 2) lognormal distribution, and 3) negative exponential distribution. Figure
50.1 illustrates the characteristic profiles of these distributions.

Let’s begin our discussion of RAM with the system reliability.
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50.3 SYSTEM RELIABILITY

What is system reliability? Reliability is defined as the probability of successfully completing a
bounded mission with specified objectives within a specific operating duration for a prescribed set
of OPERATING ENVIRONMENT conditions, use cases, and scenarios without a failure. This
leads to the question: WHAT constitutes a failure?

What Constitutes a Failure?

MIL-HDBK-470A (Appendix G, p. G-5) defines a failure as “an event, or inoperable state, in which
any item or part of an item does not, or would not, perform as previously specified.” Taking a literal
interpretation of this definition, a lightbulb in a car’s trunk that becomes inoperable during the
course of a day trip—the mission—qualifies as a failure. However, a trunk light failure at night
may be important, especially if the driver has to retrieve a tire jack, tools, and space tire to replace
a flat or damaged tire.

A failure is determined by:

1. Criteria that establish the criticality of system components to achieving the mission.

2. What degree of performance degradation is allowable and still meet performance standards.

We refer to these components as mission critical items. Consider the following example:

EXAMPLE 50.1

A car should have four tires and a spare in a qualified condition prior to its driver leaving on a trip. During
travel if a flat occurs, the mission can continue, though with some level of elevated risk due to having to use
the spare until the tire is repaired. Tires on a car irrefutably are mission critical items. The significance of a
tire failure event depends on criteria such as the condition of the tires prior to the trip, trip distance of 1 mile
or 1000 miles, and the circumstances required for emergency applications.
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Reliability Philosophy Precepts

Reliability is founded on a multi-faceted philosophy that includes the following precepts:

1. Every EQUIPMENT element has a probability of success that is determined by its pre-
mission operational health status, mission duration, and prescribed set of OPERATING
ENVIRONMENT conditions, uses cases, and scenarios.

2. Systems have an inherent failure rate at delivery due to latent defects from design errors
and flaws, component/material properties, and workmanship processes and methods.

3. The characterization and modeling of component RAM can be approximated with various
mathematical distributions.

4. With proper attention, latent defects within a specific system are eliminated via corrective
maintenance actions over time when identified.

5. By eliminating potential fail points, the system failure rate decreases, thereby improving
the reliability, assuming the system is deployed, operated, and supported according to the
System Developer’s instructions.

6. At some point during a mission or useful service life of a SYSTEM, failure rates begin to
increase due to the combinational and cumulative effects of component failure rates result-
ing from physical interactions and mass property degradation due to operating and envi-
ronmental stresses.

7. These effects are minimized and the component’s useful service life extended via a proac-
tive program of system training, proper use, handling, and timely preventive and corrective
maintenance actions at specified operating intervals.

To better understand these precepts, let’s explore the service life profile of a fielded system.

System Service Life Profiles

Humans and human-made systems exhibit service life profiles characterized by a level of infant
mortality early followed by a growth and stability and finally aging. Textbook discussions on reli-
ability often introduce the concept of service life profiles via a model referred to as the Bathtub
Curve. Conceptually, the Bath Tub Curve represents a plot of failure rates over the active service
life of the equipment. The name is derived from the characteristic Bathtub Curve hazard rate profile
as illustrated in Figure 50.2. We will delineate hazard rate versus failure rate later.

The Bathtub Curve consists of three distinct service life profile regions: 1) a period of decreas-
ing hazard rates, 2) a period of stabilized hazard rates characterized by random failures, and 3) a
period of increasing hazard rates. Each of these periods is characterized by different types of expo-
nential distributions. 

The three service life profile regions are often referred to by a variety of names. The period of
decreasing failures is also referred to as the Infant Mortality, Burn-In, and Early Failure Period.
The period of stabilized failures is often referred to as the Useful Service Life period. The period
of increasing failures is sometimes referred to as the Wearout Period.

The Bathtub Curve is actually a paradigm, a model for thinking. Unfortunately, like most par-
adigms, the Bathtub has become ingrained as a “one size” mindset that it applies universally to all
systems and components. This is a fallacy! Most experts agree that field data, though limited, suggest
that the failure rate profiles vary significantly by component type. This is illustrated in Figure 50.2
by the dashed lines in the Period of Decreasing Failures and the Period of Increasing Failures.

Smith [1992] notes the origin of the Bathtub Curve dates back to the 1940’s and 1950’s with
the embryonic stages of reliability engineering. Early attempts to characterize failure rates of elec-
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tronic components lead to the formulation of the Bathtub Curve. Examples of these components
included vacuum tube and early semiconductor technologies that exhibited high failure rates.

Many subject matter experts (SMEs) question the validity of the Bathtub Curve in today’s
world. Due to the higher component reliabilities available today, most systems become obsolete
and are replaced or disposed of long before their useful service life profile reaches the Period of
Increasing Failure. Most computers will last for many years or decades. Yet, newer technologies
drive the need to upgrade or replace computers every 2–3 years.

Smith [1992] observes that the Bathtub Curve may provide an appropriate profile for a few
components. However, the Bathtub Curve has been ASSUMED to be applicable to more components
than is supported by actual field data measurements. Large, statistically valid sample sizes are
required to establish age-reliability characteristics of components. Often, large populations of data
are difficult to obtain due to their proprietary nature, assuming they exist. Nelson [1990] also notes
that the Bathtub Curve only represents a small percentage of his experiences. 

Anecdotal evidence suggests that most reliability work in the US is based on the Period of 
Stabilized Failure, primarily due to the simplicity of dealing with the constant hazard rate from
negative exponential distributions. Although any decreasing or increasing exponential distribution
can be used to model the three failure rate regions, the Weibull distribution typically provides more
flexibility in accurately shaping the characteristic profile.

Based on these observations, the validity of the Bathtub Curve may better serve as an instruc-
tional tool for describing “curve fitting” than as “one size fits all” paradigm for every type of elec-
tronic equipment. 

Low Rate and Mass Production Systems. The discussion of the decreasing failure period
of the Bathtub Curve does provide some key insights, especially in terms of systems planned for
production. Figure 50.3 might represent the initial failure rate period for a first article system and
set of OPERATING ENVIRONMENT conditions. For example, assume the instantaneous failure
rate or hazard rate at POWER ON is f0, which represents the mean of a statistically valid sample
of first article systems. During the System Design Segment, f0 is strictly an analytical estimate. 
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Once we have a statistically valid sampling of first article systems, we can validate the distri-
bution with actual field data. By correcting latent defects such as design errors and flaws, compo-
nent material defects, and workmanship process and method problems for a specific serial number
system, its failure rate should decrease thereby improving its reliability. The strategy is to posture
the system design and manufacturing processes for a Low Rate Initial Production (LRIP) failure
rate near f2, not f0.

From an infant mortality perspective, Figure 50.3 also illustrates the effects of a diminishing
failure rate resulting from a component “burn-in.” Based on this premise, some organizations estab-
lish a “burn-in” strategy to specific components for a prescribed number of hours prior to assem-
bly to reduce infant mortality. 

System/Component Mortality

Traditionally, complex systems were viewed as having a failure rate that decreased with time based
on the frequency distribution of initial failures. These failures were referred to as infant mortality
due to weak components. Therefore, the Decreasing Failure Period (DFP) was viewed as a burn-
in period to eliminate these failures.

If the failure rate diminishes initially during the defect elimination phase, why not subject the
system/component to an operational burn-in period at the factory? Some System Developer or Pro-
duction organizations do this. They know that mission critical components must achieve a speci-
fied level of reliability and perform a burn-in. Some organizations driven by profitability may tend
to rebuff this extra burn-in as follows:

1. Unnecessary due to the higher reliability of today’s components.

2. Consumes investment resources with no immediate return.
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3. Drives up the cost such that the product will no longer be competitive.

4. Performed by consumers (i.e., if the item “breaks” consumers will bring it back as 
“defective”).

Characterizing the Failure Rate Profiles

The Bathtub Curve provides a graphical concept for R&M engineers to characterize each of the
three failure regions with mathematical models. Initially, analytical models are developed to char-
acterize a component, item, or system’s reliability profile. Data from existing systems or prototypes
may be used to collect data for validating the models. When the system is fielded, actual data should
be available to validate the models.

The Reliability Function

The cornerstone of reliability is success over a specified mission duration and prescribed operating
conditions. The degree of success, in turn, is dependent on the degree of failure, which is pro-
babilistic and can be characterized and estimated statistically.

Using probability theory, we can state that the probability of mission success, PSuccess, is a func-
tion of the probability of failure, PFailure as a function of elapsed time. Since the probability density
function (PDF) is a normalized to 1.0, we can mathematically express this relationship as a func-
tion of time as:

(50.1)

If the degree of success represents the reliability of an entity at a specific point in time for a pre-
scribed set of OPERATING ENVIRONMENT conditions, we equate:

(50.2)

Failures, as random time and condition-based functions, can occur throughout a mission. An item’s
probability of failure, PFailure(t), or mission UNRELIABILITY, is the represented by its cumulative

P t R tSuccess Reliability,( ) ∫ ( )

P t P tSuccess Failure1.0( ) = - ( )

622 Chapter 50 Reliability, Availability, and Maintainability

Original System 
Decreasing Failure 

Period (DFP)

Legacy
System/Component 

Failure Rate 
Increases Due to 
Stress, Friction, 

Aging

Failure 
Rate
(l)

Time

1

Original Fielded 
System Failure 

Curve

t1 t2 tnt0

Item Major 
Maintenance

Item Major 
Maintenance

2

3

Useful Service Life Extensions

l1

l3

l4

l2

Original System 
Stabilized Failure 

Period (SFP)

Upgrade #1 Decreasing 
Failure Period (DFP)

Upgrade #2 Decreasing 
Failure Period (DFP)

Original System Increasing Failure Period (SFP)

Figure 50.4 Mechanical Equipment Service Life Extension



failure probability density function (PDF), F(t) at a specific point in time. Therefore, we can express
Reliability (t) as follows:

(50.3)

We can state that R(t) represents the probability that the system or entity will SURVIVE a planned
mission of a specific duration under a prescribed set of operating conditions and elapsed time since
the start of the mission without failure. We refer to this bounded condition as the system or entity’s
reliability, which is also referred to as the Survival Function.

Using Eq. 50.3, we can express reliability, R(t), over the time interval from t0, the installation
time, to t1, the current time, in terms of the Cumulative PDF, F(t), as shown in Eq. 50.4.

(50.4)

Since the total area under the density function is 1.0, we can rewrite Eq. 50.4 over the time inter-
val from t1 to t• as:

(50.5)

(50.6)

The Hazard Rate

Our discussion up to this point characterizes the reliability of a system in SURVIVING from t0 to
the current time, t1. Given that the system has survived to t1, the question is: what rate of failure
can be expected in the next Dt time as Dt Æ 0. We refer to the rate of change over this time incre-
ment as the hazard rate, h(t); some refer to it as the instantaneous failure rate. Figure 50.5 Panel
A, which represents a NEGATIVE exponential failure density distribution for a system of compo-
nent, illustrates the t1 + Dt time increment. Based on this discussion, we define the hazard rate as
follows:

R t e t( ) = -l
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• Hazard Rate—the conditional probability density that the system or entity will continue to
perform its mission within specification limits without failure through the next time incre-
ment t1 + Dt.

Since a hazard represents a condition that has a likelihood of occurrence, probability theory is used
to characterize the f(t) and R(t) relationship over the next time increment. For systems or entities
that can be characterized using the Exponential Failure Law (EFL), we can express the hazard rate,
h(t), in terms of its failure density, f(t), and Reliability, R(t), for a specific point in time. For NEG-
ATIVE exponential distributions, h(t) can be expressed as shown in Eq. 50.7:

(50.7)

Referral For information concerning the derivation of the Hazard Function, refer to Billinton
and Allan pp. 126–129.

Eq. 50.7, which appears to be a typical time variant equation, offers a unique proportionality
that is CONSTANT over time. Let’s explore this point further.

For negative exponential failure density distributions:

(50.8)

Substituting f(t) from Eq. 50.8 and R(t) from Eq. 50.6 into Eq. 50.7 yields Eq. 50.9

(50.9)

The result shown in Eq. 50.9 illustrates that the hazard rate, h(t), for systems or components exhibit-
ing a NEGATIVE exponential distribution, is a CONSTANT as illustrated in Figure 50.5 Panel B.

This point characterizes the Period of Stabilized Failures in Figure 50.2 representing the Useful
Service Life of a system or component. Most reliability computations, for analytical simplicity and
convenience, are based on a system or entity with negative exponential characteristics operating in
this period.

Author’s Note 50.2 Remember—the Periods of Decreasing Failure, Stabilized Failure, and
Increasing Failure are INDEPENDENT and characterized by DIFFERENT failure rate distribu-
tions. Observe that the Y-axis in Figure 50.2 is labeled Hazard Rate, NOT Failure Rate. These are
different computations.

Understanding Mean Time Between Failures (MTBF)

To better understand SYSTEM failure concepts, we shift our attention to the base element of reli-
ability, PART level or component reliability. Figure 50.6 illustrates key points of our discussion.

Failure Frequency Distributions. Beginning with graph A, suppose we test the life span of 50
lightbulbs in a controlled laboratory environment with a specified set of OPERATING ENVI-
RONMENT conditions. We allow the lightbulbs to burn continuously until they fail. Thus, at the
time of failure we record a failure event and the elapsed operating hours from the time the lights
were powered ON until failure.

When we complete testing of all lightbulbs, we plot the results and observe a Normal or Gauss-
ian distribution provides a best-fit characterization. We compute the mean of the distribution, m.
Reviewing the plot we observe that over the population of 50 light bulbs for a given set of OPER-
ATING ENVIRONMENT conditions, we had our first bulb failure, a single instance, at t1 indicat-
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ing a failure rate of l1. The last failure, a single instance, occurs at tn indicating a failure rate 
of ln. Based on this analysis, we appropriately label the mean, m, as the Mean Time To Failure
(MTTF).

So, what is the point of this discussion? It provides insights about an entity’s failure frequency
distribution. So, if we are asked, how many failures can we expect at tx, we can point to Figure
50.5 at time tx and observe that based on a sample testing of 50 lightbulbs, a specific number of
failures can be expected to fail. In this regard, we refer to this as the instantaneous failure rate at
time, tx. Now suppose that we are asked WHAT percentage of the lightbulbs can be expected to
fail by tx. This brings us to our next topic, the probability density function (PDF) of cumulative
failure.

Cumulative Failure Probability Density Function (PDF). Beginning with t1 when the first
bulb fails, we plot the cumulative failures over time until all have failed by tn. Since the area under
the Normal Distribution curve is normalized to 1.0, we can exploit the characteristic profile to derive
probabilities. As a result, we plot the cumulative probability density function of the frequency dis-
tribution as illustrated in Panel B of Figure 50.6. Thus, we can say that at tm, there is a probability
of 0.50 that 25 lightbulbs can be expected to fail between t = 0 and that instant in time.

MTBF, TTF, and MTTR Relationships. Engineers often interchange terms that have subtle but
important differences. Such is the case with two reliability terms, Mean-Time-Between Failures
(MTBF) and Mean-Time-To-Failure (MTTF).

MTTF, as the name implies, encompasses the elapsed time duration for an item from installa-
tion until failure. Once the item fails, there is a Mean-Time-To-Repair, (MTTR) to perform a 
corrective action. In contrast, MTBF is the summation of MTTF and MTTR as indicated in 
Eq. 50.10:
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(50.10)

The mean failure rate, m, is the reciprocal of MTTF:

(50.11)

Since MTTF >> MTTR, we can say that:

MTBF @ MTTF

Therefore:

(50.12)

Modeling Reliability Configurations

Given a basic understanding in entity reliability, we now shift our attention to modeling configu-
rations of entity reliabilities. Three basic constructs enable us to compute the reliability of net-
worked entities. These constructs are: 1) series, 2) parallel, and 3) series parallel. Let’s explore
each of these individually.

Series Network Configuration Reliability. The first reliability network construct is a series
network configuration. This configuration consists of two or more entities connected in SERIES as
shown in Panel A of Figure 50.7. Mathematically, we express this relationship as follows:

(50.13)

where

RSeries = overall reliability of the series network configuration

R1 = reliability of Item 1

R2 = reliability of Item 2

. . .

Rn = reliability of Item n

Substituting Eq. (50.6) into Eq. (50.13) using a NEGATIVE exponential distribution:

(50.14)

where:

ln = unique failure rate of the nth item

t = NOMINAL operating cycle duration

Parallel Network Configuration Reliability. The second reliability network construct is
based on a set entities connected in parallel as illustrated in Panel B of Figure 50.7. We refer to
this construct as a Parallel Reliability Network and express this relationship as follows:

(50.15)R R R R RParallel = ( ) + ( ) - ( )( )1 2 1 2 for one out of two redundancies

R e n t
Series = - + +( )( )l l l l1 2 3 K

R R R R RnSeries = ( )( )( ) ( )1 2 3 K

m @
1
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1
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MTBF MTTF MTTR= +
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where:

RParallel = overall reliability of the parallel network configuration

R1 = reliability of component 1

R2 = reliability of component 2

Equation (50.15) can become unwieldy. However, we can simplify the equation by restructuring it
in the form noted below:

(50.16)

Observe that each (1 - R) term represents the respective item’s unreliability.
While each additional entity interjects an additional component subject to failure, the parallel

network configuration increases the overall reliability of the system to successfully complete its
mission.

To illustrate this point further, consider the illustrations shown in Panels A to C of Figure 50.8.
Note how the addition of redundant entities with identical reliabilities increases the overall 
reliability.

Series-Parallel Network Configuration Reliability. The third reliability network con-
struct is configured with a combination of series-parallel branches as shown in Figure 50.9. We
refer to this construct as a Series-Parallel Network. Computation of the reliability is a multi-step
process:

Compute the reliability of PRODUCT A.

Step 1: Compute the reliability for the series network containing Subsystems A1 and A3.

Step 2: Compute the reliability for the series network containing Subsystems A2 and A4.

Step 3: Compute the reliability for PRODUCT A using the parallel network construct composed 
of the results from Step 1 (Subsystems A1–A3) and Step 2 (Subsystems A2–A4).

R R R R nnParallel = - -( ) -( ) -( )[ ]1 1 1 11 2 K for one out of redundancies
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Compute the reliability of PRODUCT C.

Step 4: Compute the reliability for the parallel network containing Subsystems C1 and C2.

Step 5: Compute the reliability of the parallel network consisting of Subsystems C1 and C2 
combination in parallel with C3.

Compute the reliability of the SYSTEM.

Step 6: Compute the reliability for the SYSTEM using the product of reliability series
composed of PRODUCT A (Step 3), PRODUCT B, and PRODUCT C (Step 5).
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Author’s Note 50.3 As illustrated by the series configuration, every item added to a system
increases the system’s probability of experiencing a failure (proportional to the failure rate). Adding
redundant items increases the number of items and thus requires more repairs. However, insight-
ful use of redundant items may substantially INCREASE the likelihood of a successful mission.
However, increased maintenance is likely due to the added hardware.

Reliability Predictions or Estimates?

Based on the preceding discussions, reliability is usually approached with a series of characteris-
tic equations. This often leaves the casual observer with the misperception that reliability is an exact
science. In fact, reliability is heavily based on probability theory. It employs statistical methods and
techniques based on approximations and assumptions about a population of system entities. As a
result, you will hear people comment about PREDICTING the reliability of a system. So, if relia-
bility theory is based on assumptions, observations, approximations, and probabilities, do you
PREDICT or ESTIMATE the reliability of a system?

If the basis for computation is approximations, the best you can expect to achieve is an esti-
mate, not a prediction. The estimate represents the probability of a component, item, or system
completing its mission based on a prescribed set of OPERATING ENVIRONMENT conditions and
assumptions about system dynamics, statistics, knowledge, experience, and field data.

Since we tend to associate predictions with mythical wizards, soothsayers, and crystal balls,
our discussions in this chapter will employ the term estimate. Combined with seasoned experience
of a qualified R&M engineer, estimates can be as cost effective and accurate as in-depth analyses
that require assumptions and consume extensive resources without necessarily improving the
reliability of the product. Reliability estimates, coupled with “worst case” analyses, can be very
effective.

Expressing Reliability Estimates

The preceding discussion brings us to a key question: HOW do you express the reliability of your
system? If you ask a system designer, they might respond 0.91. There is a fundamental problem
with this response. Remember, reliability is more than simply picking a number. Reliability esti-
mates require four key elements:

1. Probability of successfully completing a defined mission.

2. Bounded mission duration.

3. Elapsed operating time since the start of the mission.

4. Prescribed set of OPERATING ENVIRONMENT conditions.

Therefore, when you simply respond that your system reliability is 0.91, you have failed to condi-
tionally constrain the parameter in terms of the other three qualifying elements.

Reliability can be specified in several ways. The most common approach is to express relia-
bility as a percentage. Consider the following example:

EXAMPLE 50.2

Electronics reliability can be stated as a not-to-exceed failure rate, typically as number/percentage of failures
per hour or failures per million hours, in a given environment.

The problem of specifying in these rate terms is that redundancies, which can improve overall
mission reliability, increase the potential rate of failure by adding to the parts count. When speci-
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fied as a percentage, redundancies can easily be calculated that show the mission reliability
improvement.

Reliabilities are sometimes stated in terms of a Mean Time Between Failure (MTBF). However,
instantaneous failure rates change with each hour of operation and operating condition. The MTBF
is the reciprocal of the failure rate ONLY when using a NEGATIVE exponential distribution! In
general, the negative exponential distribution applies ONLY to systems that have all exponentially
distributed components, such as electronics, with NO redundancies. In keeping with the true defi-
nition of reliability and its four elements, it is strongly suggested that reliability be expressed as a
PERCENTAGE instead of MTBF for highly complex systems. The same applies to PRODUCT
and SUBSYSTEM allocation. Additionally, reliability engineers suggest avoiding the specification
of reliability below the Subsystem Level. This may unnecessarily constrain the solution set that
might otherwise improve overall reliability and reduce cost. Exceptions include externally procured
components based on proper reliability allocations.

Guidepost 50.1 Our discussions to this point focus on the reliability of systems to accomplish
their missions of a specified duration and set of OPERATING ENVIRONMENT conditions. Each
mission assumes that the system will begin operating at a given level of capability, performance,
and physical condition. If properly operated and maintained in accordance with the prescribed
PROCEDURAL DATA instructions, the User can expect a useful service life of XX hours, years,
and so forth. Under these assumptions the system can expect a nominal failure rate that varies over
the service life profile. So, how is the nominal failure rate achieved? This brings us to our next dis-
cussion topic, maintainability.

50.4 SYSTEM MAINTAINABILITY

When systems fail, they impact the revenue stream or could adversely affect the operator and public.
Corrective actions are required immediately to return the system to normal active service. The effi-
ciency and effectiveness of these actions centers on the system’s maintainability. Maintainability
is a measure of a system, product, or service’s capability to be returned from a failed state to a
functioning state within time limits established by a performance standard.

Maintainability must be an integral part of the SE Design segment beginning with Contract
Award. The starting point begins with formulation of the maintenance concept, our next topic.

The Importance of the Maintainability Concept

The cornerstone for planning system maintainability resides in the maintenance concept. The main-
tenance concept often begins as a basic strategy addressed conceptually in the system Concept of
Operations (ConOps) document.

The ConOps document provides an initial starting point for documenting the maintenance
concept unless there is a compelling need for a stand-alone document. As a conceptual strategy,
the ConOps documents the WHO, WHAT, WHEN, WHERE, and HOW the system, product, or
service will be maintained. For example, maintenance on complex systems may be performed by:
1) the User, 2) an internal support organization, 3) contractors, or 4) a combination of these.

Subsequently, a System Operations and Support (O&S) Plan or Integrated Support Plan (ISP)
may be required or prepared to document the maintenance concept implementation details such as
types of maintenance and levels of maintenance.

Types of Maintenance

Once a system is deployed to the field, there are two basic types of maintenance that are performed:
preventive maintenance and corrective maintenance.
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Preventive Maintenance. Preventive Maintenance refers to scheduled, periodic, maintenance
actions performed on the system or product in accordance with the manufacturer’s instructions.
Note the operative term scheduled. The intent is to perform proactive maintenance in risk areas
BEFORE they start to have an impact or result in degraded system performance as illustrated in
Figure 50.5.

EXAMPLE 50.3

Automobile manufacturers recommend that you change oil at 3,000 mile or greater intervals.

In general, routine system maintenance elements include fluids, lubricants, and filters and other
maintenance actions such as calibrations and alignments performed at intervals. Components,
referred to as line replaceable units (LRUs), are replaced at longer intervals. In these cases, cor-
rective maintenance actions may also be required in conjunction with the preventive maintenance.

EXAMPLE 50.4

Some automobile manufacturers recommend that you replace the engine timing chain at 90,000 mile inter-
vals for specific types of cars to avoid a serious engine malfunction.

Because of the expense of repairs and unnecessary preventive maintenance, some complex systems
include condition-based maintenance (CBM) systems. These systems monitor and analyze the
status and health of engine fluids, such as motor oils, to determine the level of metal filings and
other conditions that may indicate premature wear or potential failure condition. CBM systems are
critical for systems such as aircraft engines applications.

Corrective Maintenance. Corrective maintenance is referred to as unscheduled maintenance.
It represents those maintenance actions required to restore the system or product performance back
to the manufacturer’s performance specifications after failure. In general, corrective maintenance
includes removal and replacement (R&R) of LRUs, recalibration, and realignment.

Levels of Maintenance

Organizations often employ a three-level maintenance model: 1) organizational maintenance, 2)
intermediate maintenance, and 3) factory maintenance.

Field or Organizational Level Maintenance. Field or organizational level maintenance con-
sists of preventive and corrective maintenance actions performed in the field by the User or their
support organization. At a MINIMUM these actions entail removal and replacement (R&R) of an
item with a new or repaired item. In some instances, the item may be repaired at this level with
common support equipment (CSE) tools. The support organization may be internal to the User’s
organization or contractor support referred to as contract logistics support (CLS).

Intermediate Maintenance. Intermediate maintenance consists of corrective maintenance
actions that require removal of an item by the User or CLS personnel and return to a central repair
facility that may have specialized peculiar support equipment (PSE) to accomplish the maintenance
action. When the repaired item is returned to the field, User or CLS personnel reinstall, checkout,
and verify the item’s operation.

50.4 System Maintainability 631



Factory Maintenance. Factory maintenance actions require that an item be sent by the central
repair facility back to the factory that has the specialized PSE and expertise required to determine
the cause of failure. This may include site visits back to the User to interview personnel, review
records, and inspect other items that may provide insights into the circumstances and operating
conditions leading to the required maintenance action.

50.5 FAILURE REPORTING, ANALYSIS, AND 
CORRECTIVE ACTION SYSTEM (FRACAS)

When a component, item, or system is developed, Reliability and Maintainability Engineers employ
SE designs and Engineering Bills of Materials (EBOMs) and vendor/manufacturer data to construct
reliability and maintainability models to estimate system performance. These models provide
insights related to the premature wear, thermal stress, adequacy of periodic inspections, and per-
formance metrics tracking. These data provide early indications of wear out that may lead to failure.
Once the component, item, or system is fielded, actual field data should be used to further refine
and validate the models. So, how can these data be obtained and tracked?

The solution resides in a Failure Reporting, Analysis, and Corrective Action System
(FRACAS). MIL-HDBK-470A (para. 4.5.1.1, p. 4–58) describes FRACAS as “a closed-loop data
reporting system for the purpose of systematically recording, analyzing, and resolving equipment
reliability AND maintainability problems and failures.”

Depending on the organizational plans for the system, the FRACAS provides a history of main-
tenance ACTIONS for each component and replacements with new components. This enables the
organization to continue to cost effectively extend the useful service life and employment of the asset.

Author’s Note 50.4 When you review FRACAS data, make sure that you understand the context
of the failure. Depending on the discipline instilled in maintenance personnel, errors such as order-
ing the incorrect part number and installing the incorrect part may sometimes be recorded as a
failure initiating yet another maintenance action. In addition FRACAS as a maintainability task
may not include maintenance time tracking.

Maintainability Computations

Organizationally, the subject of maintainability often receives “lip service” and usually falls second
in priority to reliability. Yet, operational support costs, which include maintenance, account for
approximately 70% of system life cycle costs, especially for complex systems. As a result, post
deployment support costs and their contributory factors should be a MAJOR concern EARLY
in the SE Design Segment. The primary system design factors that contribute to support costs are:
1) reliability, which impacts the frequency of maintenance, and 2) maintainability, which impacts
the amount of time required to perform preventive and corrective maintenance.

Once a system is fielded, the User must live with the consequences of SE design decision-
making and its accountability or the lack thereof for the reliability and maintainability factors. Addi-
tionally, these considerations manifest themselves in another factor, availability, which represents
the level of operational readiness of a system to perform its mission on demand for a given set of
operating conditions. If unavailable, the system: 1) is NOT generating revenue and 2) even worse,
is costing the organization funds for repairs.

Engineering textbooks often approach maintainability with equation-itis. Equation-itis, like
analysis paralysis, is a condition created by a preoccupation with equations WITHOUT under-
standing the operational challenges Users have to address and the base assumptions to be estab-
lished that lead to the need for equations. Maintainability is a classic topical example. To illustrate
WHY we need to understand User challenges, let’s briefly explore a SUPPORT SYSTEM scenario.
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A system is either: 1) operating—performing a mission or supporting training, 2) in storage,
3) awaiting maintenance, 4) being maintained, or 5) awaiting return to active service. System main-
tenance is categorically referred to as Maintenance Down Time (MDT). Every hour spent in MDT
equates to $$ of lost revenue as in the case of commercial systems such as production machinery,
airlines, and so forth. To ensure that the enterprise can sustain schedules, extra systems may be pro-
cured, leased, rented, and so forth to maintain continuity of operations while one system is being
maintained.

When a system failure occurs, you need a system of spare parts on-site along with skilled main-
tenance technicians who can perform the repair with the least amount of MDT. Therefore, you need
some insight concerning: 1) the quantity of spare parts required for a given type of failure, 2) the
quantity maintenance technicians required “full time” and “part time”, 3) the quantity of mainte-
nance workstations, if applicable, 4) the types and quantities of test equipment, 5) system and parts
storage space allocations, 6) ordering systems, 7) logistical support systems, and so forth. This chal-
lenge is compounded by seasonal usage factors for some systems. All of this translates into $COST.
To minimize the cost of maintaining an inventory of spare parts, many organizations arrange strate-
gic partnerships or tier level suppliers to provide parts Just in Time (JIT), when required.

How do we minimize the cost of maintenance in the SE Design Segment? We can: 1) incorpo-
rate a Built-In Test (BIT) capability into major items to detect Line Replaceable Unit (LRU) fail-
ures, 2) perform corrective maintenance on mission critical items during a preventive maintenance
cycle BEFORE they fail, 3) promote standardization and interchangeability of LRUs, 4) provide
easy access, quick removal and installation of LRUs, and so forth. For example, some complex,
mission critical systems are designed for condition-based maintenance (CBM).

As an Acquirer representing the User’s contract and technical interests, your job as an SE may
be to prepare System Performance Specification (SPS) requirements for mission reliability (MTBF),
maintainability (MTTR), and operational availability (Ao) discussed in a later section. As a System
Developer SE, you may be confronted with analyzing, allocating, and flowing these requirements
down to configuration items and their LRUs. For example, how do you design the system for a 
30-minute MTTR?

To answer this question, maintainability engineers employ a series of equations and analysis
data to support informed SE Design. The strategy is that if we know the quantity of fielded systems
and the state of maintenance of each system, failure rate data for system LRUs, and the prescribed
preventive maintenance schedule, we can ESTIMATE the parameters of the SUPPORT SYSTEM
such as quantities of spare parts, maintenance technicians and levels of training, work stations,
ordering systems, and so forth. 

The intent of the computation discussion that follows is to provide you with a general working
knowledge of the maintainability terminology, metrics, and their interrelationships, not “plug and
chug” equations. Given a working knowledge, you should be better prepared to communicate with
maintainability engineers and understand the specification requirements they respond to as well as
review the work products they produce in response to contract requirements.

Maintenance Down Time (MDT). When a system fails, Users want to know: how long the
system will be out of service—DOWNTIME. In the commercial world, system downtime means an
interruption to the revenue stream. In the military and medical fields, downtime can mean the dif-
ference in life or death situations. 

The answer to the question resides in an Organizational Level metric referred to as Maintenance
Down Time (MDT). MDT is a function of three key elements: 1) Mean Active Maintenance Time,
2) Logistic Delay Time, and 3) Administrative Delay Time. Eq. 50.17 illustrates the computation.

(50.17)MDT M LDT ADT= + +
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Where:

M— = Mean Active Maintenance Time (Eq. 50.22)

LDT = Logistics Delay Time

ADT = Administrative Delay Time

The three MDT elements have two perspectives: System Developer versus Users. 

• System Developers influence the Mean Active Maintenance Time (M—) via the System Design
process and should be familiar with the LDT and ADT of the User’s support system.
However, the System Developer DOES NOT have control over LDT and ADT; those are
typically User responsibility functions.

• Users EXERCISE degrees of control over the M—, LDT, and ADT, depending on their orga-
nizational and political authority.

We will see these subtleties emerge during our discussion of system availability. On the topic of
availability, many of the maintenance parameters are key elements of availability equations.

Logistics Delay Time (LDT). Logistics Delay Time (LDT) is the actual time required to perform
actions that support a corrective maintenance. Examples include: 1) research for replacement or
equivalent parts, 2) procurement and tracking of parts orders, 3) delivery of parts from the sup-
plier, 4) receiving inspection of parts, 5) routing to maintenance technician, 6) reordering of incor-
rect parts, and so forth. LDT is sometimes expressed in terms of Mean Logistics Delay Time, M—LD.

Administrative Delay Time (ADT). Administrative Delay Time (ADT) consists of actual time
spent on activities such as staffing the maintenance organization; training personnel; vacation,
holiday, and sick leave; and so forth. ADT is sometimes expressed in terms of Mean Administra-
tive Delay Time, M—AD.

Preventive Maintenance (PM) Time. SEs often have to answer: how much time is required
to perform preventive maintenance actions on the system? The solution resides in an Organizational
level metric referred to a Preventive Maintenance (PM) Time. PM time represents the actual time
required to perform routine maintenance such as inspections and replacement of fluids, filters, belts,
and so forth.

The preventive maintenance time for a specific type of maintenance action is represented by
Mpt. M

—
pt, which represents the mean time for all preventive maintenance actions within the system,

is computed as shown in Eq. 50.18.

(50.18)

Where:

M—pt = Mean Preventive Maintenance Time

Mpt(i) = Time required to perform the ith preventive maintenance action

i = Sequential identifier for a specific type of preventive maintenance action 

fpt(i) = Frequency of the ith preventive maintenance action 
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Mean Corrective Maintenance Time ( M
—

ct). The Mean Corrective Maintenance Time (M—ct),
which is equivalent to Mean Time to Repair (MTTR), represents the actual time required at the
Organizational Level to perform a repair action on a system to replace a failed or damaged LRU.
MTTR, for example, is usually expressed in hours or fractions thereof. What does the repair action
include? It includes the time required to: 

1. Isolate the fault to a Line Replaceable Unit (LRU).

2. Quickly and easily replace the LRU.

3. Retest to assure that the total system is functioning at a specified or acceptable perform-
ance levels.

The corrective maintenance time for a specific type of corrective maintenance action is represented
by Mct. M

—
ct, which represents the mean for all corrective maintenance actions within the system, is

computed as shown in Eq 50.19.

(50.19)

Where:

M—ct = Mean Corrective Maintenance Time

Mct(i) = Time required to perform the ith corrective maintenance action

i = Sequential identifier for a specific type of corrective maintenance action 

l(i) = Frequency of the ith corrective maintenance action

A plot of the frequency of corrective maintenance actions is often assumed to follow a 
LogNormal Distribution as illustrated in Figure 50.1. That is, a few of the failures can be isolated
and repaired rather quickly. Most of the corrective actions will require longer time periods and
center about the median of the frequency distribution. The remainder of the corrective actions may
be few in number but require a considerable number of hours to correct.

Failure Rate or Corrective Maintenance Frequency (l). The Corrective Maintenance Fre-
quency is represented by l and is computed as shown in Eq. 50.20.

(50.20)

Where:

MTTF = Mean Time To Failure

From Eq. 50.12, l, which is referred to as the failure rate, is approximately equivalent to the MTBF. 

Repair Rate. Some systems track the repair rate, m, which is computed as illustrated in 50.21

(50.21)

Where:

M—ct = Mean Corrective Maintenance Time (Eq. 50.19)
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Mean Active Maintenance Time (M
—

). As the system design evolves, SEs need to know: what
is the mean time to accomplish a preventive maintenance action or a corrective maintenance
action? The solution resides in an Organizational Level metric referred to as the Mean Active Main-
tenance Time (M—). Eq. 50.22 illustrates the computation.

(50.22)

Where:

M— = Mean Active Maintenance Time 

M—pt = Mean Preventive Maintenance Time (Eq. 50.18)

fpt = Frequency of Preventive Maintenance 

M—ct = Mean Corrective Maintenance Time (Eq. 50.19)

l = Failure rate or frequency of corrective maintenance (Eq. 50.20)

Mean Time Between Maintenance (MTBM). Mean Time Between Maintenance (MTBM) is
the mean operating interval since the last maintenance action. MTBM is expressed in terms of
elapsed operating hours for a specific set of operating conditions for the system based on the mean
of all preventive (M—pt) and corrective (M—ct) maintenance actions. MTBM is computed as shown in
Eq. 50.23.

(50.23)

Where:

MTBM = Mean Time Between Maintenance

M—pt = Mean Preventive Maintenance time (Eq. 50.18)

M—ct = Mean Corrective Maintenance Time (Eq. 50.19)

Sources of Maintainability Data. The validity of maintenance computations is dependent on
having good data sets derived from actual designs and field data. Potential sources of maintain-
ability data include:

• Historical data from similar items

• Item design and/or manufacturing data

• Data recorded during item demonstration

• Field maintenance repair reports or FRACAS data.

Guidepost 50.2 At this juncture we have addressed a few of the fundamentals of system relia-
bility and maintainability. The critical question is: Will the system be operationally available 
to conduct its missions when tasked? You can have a system that is reliable and well maintained
but be unavailable when needed to conduct missions. This leads us to our next topic, system 
availability.
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50.6 SYSTEM AVAILABILITY

Availability focuses on a SYSTEM’s state of readiness to perform missions WHEN tasked. This
requires two criteria:

1. Operational readiness in terms of completion of preventive and corrective maintenance
actions within a specified timeframe.

2. The ability to reliably start and operate.

Therefore, a SYSTEM’S availability is a function of its design reliability and its maintainability.
Availability can drive the System Developer in a decision-making circle as they attempt to

balance maintainability and reliability objectives. Consider the two cases at opposite extremes:

• SYSTEM A is a highly reliable SYSTEM. During development the Acquirer had a choice:
improve reliability or improve maintainability. The Acquirer chooses to focus design
resources on reliability. The rationale is: “If the system is highly reliable, we don’t need a
lot of repairs, and therefore won’t need a large maintenance organization.” So, when the
system does need maintenance, it requires weeks for corrective maintenance actions due to
the difficulty in accessing maintenance repair areas. Clearly, the highly reliable SYSTEM is
unavailable for missions for long periods of time when maintenance is required.

• SYSTEM B has less reliability because the Acquirer had to make a choice similar to that for
SYSTEM Aabove. The Acquirer reduces the reliability requirement and focuses on IMPROV-
ING the maintainability. The rationale is: “We have an outstanding maintenance organization
that can repair anything.” As a result, SYSTEM B fails continuously and is prone to numer-
ous corrective maintenance actions, thereby making it unavailable to perform most missions.

The point of this discussion is: system design and development must include a practical availabil-
ity requirement that enables the achievement of a balance between a system’s reliability and main-
tainability and still meet mission and organizational objectives. Close collaboration between the
Acquirer and User is important during the System Procurement Phase and with the System Devel-
oper after Contract Award.

There are three types of availability: 1) operational availability (Ao), 2) achieved availability
(Aa), and 3) inherent availability (Ai). Let’s explore each of these concepts briefly.

Operational Availability (Ao)

Operational availability, which is symbolized by Ao, represents the probability that the system will
operate in accordance with its specified performance and prescribed operating environment con-
ditions when tasked to perform its mission. Ao includes maintenance delays and other factors inde-
pendent of its design. An item’s operational availability, Ao, is expressed mathematically as follows:

(50.24)

where:

Ao = Operational Availability

MDT = Maintenance Downtime (Eq. 50.17)

MTBM = Mean Time Between Maintenance (Eq. 50.23)

Observe that the MDT parameter includes both preventive (scheduled) and corrective (unsched-
uled) maintence times.

Ao
MTBM

MTBM MDT
=

+
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Achieved Availability (Aa)

System Developers typically have no control over the User’s support system factors such as LDT
and ADT. So, achieved availability (Aa) represents the level of availability under the control of the
System Developer as constrained by the System Performance Specification (SPS).

An item’s Achieved Availability, Aa, is the ratio of the Mean Time Between Maintenance
(MTBM) to the summation of MTBM and Mean Active Maintenance Time (M– ):

(50.25)

where:

Aa = Achieved Availability

M– = Mean Active Maintenance Time (Eq. 50.22)

MTBM = Mean time Between Maintenance (Eq. 50.23)

Inherent Availability (Ai)

Finally, the third type of availability is inherent availability, Ai. Inherent availability assumes that
the system operates within its specified performance limits and prescribed operating environment
conditions with an ideal support system that performs only corrective maintence actions, M—ct. Pre-
ventive maintenance actions, LDT, and ADT are excluded. An item’s inherent availability, Ai, is
the ratio of the Mean Time Between Failure (MTBF) to the summation of MTBF and Mean Cor-
rective Maintenance Time (M—ct). Ai is defined as follows:

(50.26)

where:

Ai = Inherent Availability

M–ct = Mean Corrective Maintenance Time or MTTR (Eq. 50.19)

MTBF = Mean Time Between Failure

Note the switch from MTBM used to compute Ao and Aa to MTBF for Ai.
The FAA s National Airspace System-Systems Engineering Manual (2003, para. 4.8.2.1.1.3)

notes two key points about Inherent Availability.

• First, “This availability is based solely on the MTBF and MTTR characteristics of the system
or constituent piece and the level of redundancy, if any, provided. For systems or constituent
pieces employing redundant elements, perfect recovery is assumed. Downtime occurs only
if multiple failures within a common timeframe result in outages of the system or one or more
of its pieces to the extent that the need for redundant resources exceed the level of redun-
dancy provided. Inherent availability represents the maximum availability that the system or
constituent piece is theoretically capable of achieving . . . if automatic recovery is 100
percent effective.”

• Secondly, inherent availability “does not include the effects of scheduled downtime, short-
ages of spares, unavailability of service personnel, or poorly trained service personnel.”

Final Thoughts

In summary, we have briefly defined each of the three types of availability. From a contractual
System Performance Specification (SPS) perspective, Ao obviously has a major significance to the
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User versus Aa and Ai. So, how does a System Developer deal with the LDT and ADT factors for
which they have no control?

First, the contract should delineate Acquirer and User accountability for supplying LDT and
ADT data and/or assumptions. Second, the SE should consider creating a Logistical Support Inte-
grated Product Team (IPT) that includes the LDT and ADT stakeholders to supply the data and par-
ticipate in making recommendations via the formal contract protocol.

Assuming the IPT performs as expected, these stakeholders must assume accountability for
their contributions to achieving the overall success of the system and verification of the appropri-
ate SPS requirements. Blanchard (SE Management, p. 121) observes that there is limited value in
constraining the design of EQUIPMENT to achieve a 30 minute M–ct if the supply system requires
three months on average, consisting of LDT + ADT, to RESPOND with parts. Ao is certainly not
achieved in this manner.

Guidepost 50.3 The preceding discussions addressed some of the fundamentals of RAM. Given
this foundation, we shift our attention to applying RAM to system design.

50.7 APPLYING RAM TO SYSTEM DESIGN

The application of RAM to system design is one of the most challenging of the SE discipline. The
challenge comes in scoping, estimating, and quantifying minimum parameter performance to meet
User operational mission and system service life needs while balancing those needs with available
User budgets and schedules.

One of the ways of meeting this challenge is to establish a RAM strategy. The strategy, which
includes both Acquirer and System Developer role-based tasks, should be documented in the
program’s Technical Management Plan (TMP). At a minimum, RAM tasks include the following:

Task 1: Establish User mission RAM requirements.

Task 2: Analyze and allocate RAM requirements.

Task 3: Model system RAM performance.

Task 4: Review RAM modeling results.

Task 5: Implement compensating provision actions.

Task 6: Implement a parts program (optional).

Task 7: Improve EQUIPMENT characteristic profiles.

Each of these tasks iterates with others from Contract Award through system delivery and acceptance.

Task 1: Establish User Mission RAM Requirements

The objective of Task 1 is to develop or contract the development of objective, quantifiable
performance-based RAM requirements necessary and sufficient for procurement or development
actions. This requires mission analysis of the item or system within its prescribed OPERATING
ENVIRONMENT use cases and scenarios.

The challenge for the Acquirer (role) is to collaborate with the User to understand and
objectively:

1. Specify the minimum, quantifiable, and affordable mission reliability that satisfies budget
and schedule constraints.

2. Allocate the appropriate RAM requirements to the various System Elements.

Accomplishment of these two objectives is a highly iterative and time-consuming process.
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When specifying RAM, SEs and Reliability and Maintainability (R&M) Engineers have to
answer a challenging question: WHAT level of RAM is the minimum required for a system or product
to accomplish a mission of a specified duration in a prescribed OPERATING ENVIRONMENT?
This is the hard part for SEs and R&Ms that often requires extensive analysis, modeling, simula-
tion, and collaboration with Users—the operators and maintainers.

Every system has its own unique applications, system mission use cases and scenarios, mission
objectives, priorities, and values to the Users. So, the answer to this question resides in high-level
SE concepts that must be quantitatively translated into objective capability and performance
requirements.

Create the Initial Reliability and Availability Starting Points. As an initial starting point,
you must identify a system reliability number that expresses the probability of mission success
required of the item. You also need to select an availability number based on the criticality of the
SYSTEM to support the mission. Finally, you need a maintenance concept that describes the phi-
losophy of maintenance.

Author’s Note 50.5 For this first step most people are reluctant to pick a reasonable number.
From an engineering perspective, you need an initial starting point and that is ALL it is. Unfortu-
nately, there are those who criticize these efforts without recognizing that it may not be the “end
game” reliability number; it is only a starting point . . . Nothing more, and nothing less.

Establish Development Objectives and Constraints. One of the key User objectives is to
minimize system or product life cycle cost. Inevitably, there are trade-offs at high levels between
system development costs and support costs. Depending on the type of system, 60% to 70% of the
recurring life cycle costs of many systems occur in the System Operations and Support Phase
(O&S). Most of these costs are incurred by system corrective and preventive maintenance. (Refer
to DSMC, Acquisition Logistics Guide, Fig. 13-1, p. 13–6, and Fig. 20-2, p. 20–3.). So, you may
have to make trade-off decisions for every dollar you spend on design reliability. WHAT is the cost
avoidance in maintenance and support costs? Let’s explore this point further.

Using the illustrative example of Figure 50.10, let’s increase the design reliability of a system
or product—its system development cost. We should then expect a corresponding decrease in the
system maintenance costs. If we sum the nonrecurring system development cost and system main-
tenance costs over the range of reliability, we emerge with a bowl-shaped curve representing total
life cycle cost, or more appropriately the total ownership cost (TOC). Ideally, there is a Target Reli-
ability Objective, RA, and a Target LC Cost Objective, CA, that represent the minimum TOC (A)
for the User. These objectives, in combination with the core RAM criterion of identifying the reli-
ability level, should form the basis for specifying RAM requirements.

Philosophically, the TOC minimization approach assumes that the User, by virtue of resources,
has the flexibility to select the optimal level of reliability. However, as is typically the case, the
User has limited resources for how much reliability they can afford “up front” as system develop-
ment costs. Depending on the operational need(s) and level of urgency to procure the system, they
may be confronted with selecting a more affordable reliability, RB, based on system development
cost limitations that result in a higher than planned system maintenance cost (MAINTB) and a higher
TOCB.

For innovative organizations, this presents both an opportunity and a challenge. For organiza-
tions that do not perform SE from the standpoint of analysis of alternative (AoA) solutions and
jump to a point solution, this may be a missed business opportunity. During the AoA activity new
approaches may be discovered that enables the User to minimize TOC within the constraints of
system development costs.
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Task 2: Analyze and Allocate RAM Requirements

When potential Offerors receive the RAM requirements via a formal Request for Proposal (RFP)
solicitation, conduct analyses to fully understand WHAT is required to satisfy the system or item’s
specification requirements. Therefore, the objective of Task 2 is to analyze RAM requirements spec-
ified in the RFP System Requirements Document (SRD) or contract System Performance Specifi-
cation (SPS) requirements and allocate RAM requirements to PRODUCTs, SUBSYSTEMs, and so
forth.

From an SE perspective, accomplishment of the mission requires that the MISSION SYSTEM
and SUPPORT SYSTEM operate at a level of RAM sufficient for successful completion of the
mission. Recall that a system, by definition, includes MISSION SYSTEM and SUPPORT SYSTEM
elements: PERSONNEL, EQUIPMENT, PROCEDURAL DATA, MISSION RESOURCES,
FACILITIES, and SYSTEM RESPONSES. Therefore, the overall mission reliability must be allo-
cated to each of these system elements and subelements. On allocation, this requires the following
considerations:

• PERSONNEL Element considerations include RAM related to human system interfaces,
human factors and performance, training, and skills.

• EQUIPMENT Element considerations include SYSTEM, PRODUCT, SUBSYSTEM,
ASSEMBLY, SUBASSEMBLY level RAM related to HARDWARE and SOFTWARE
design and development.

• PROCEDURAL DATA Element considerations include RAM of organizational Standard
Operating Procedures and Practices (SOPPs) and EQUIPMENT operating procedures
required to safely conduct system missions, operate the EQUIPMENT, and return.

• MISSION RESOURCES Element considerations include RAM related to the timely deliv-
ery and quality of mission data, expendables, and consumables required to perform the
mission and sustain mission operations.
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• FACILITIES Element (SUPPORT SYSTEM) considerations include RAM related to
MISSION SYSTEM interfaces, environmental conditions that impact storage “shelf life” and
maintenance.

• SYSTEM RESPONSES Element considerations include products, by-products, and services
RAM related to:
1. The timely delivery of system outputs to accomplish mission objectives and Mission

Event Timelines (METs).
2. “Fitness-for-use” quality requirements.
3. Compliance to standards.

The resulting RAM allocations to the System Elements and subelements provide the basis for pro-
curement of contractor PERSONNEL services or training of internal PERSONNEL, EQUIPMENT,
FACILITIES, MISSION RESOURCES, and PROCEDURAL DATA. Our discussion in the remain-
der of this chapter will focus on the EQUIPMENT element RAM.

If a system is being developed using several item/configuration item (CI) suppliers, then it will
be necessary to ALLOCATE a proportion of the total system reliability to each SUBSYSTEM. This
enables each supplier to understand WHAT their allocated contribution to reliability is.

Since the final SYSTEM Level reliability will be the multiplicative product of all item reliabil-
ities, individual components generally require a higher reliability requirement than the total system.
However, there is chance of misallocating and specifying requirements too high for some items,
resulting in substantial additional costs to the program. As a general rule, avoid allocating BELOW
the highest possible levels of abstraction—the SUBSYSTEM—unless there is a requirement to do
so, due to the potential added program costs.

Task 3: Model System RAM Performance

Once the initial RAM performance allocations are made to items, Task 3 determines if the design
solution for each item meets or exceeds the allocated RAM requirements. The objective of Task 3
is to employ the simplest, most cost-effective modeling method to determine an item’s compliance
with the RAM requirement. If conditions require it, higher fidelity models may be required.

Develop Quick Look Reliability Models. Due to the need to make assumptions about con-
figurations and component/item failure rates, the first step is to create a simple model of the item’s
RAM. Typically, component failure rate data and quantities are derived from each item’s Engi-
neering Bill of Materials (EBOM) and entered into a spreadsheet to arrive at a “ballpark” estimate.
This is referred to as a parts count estimate. The estimate either does or does not meet the minimum
RAM allocation requirements threshold. If the model is insufficient, more complex mathematical
models that employ curve fitting reflecting the applications are employed.

The parts count estimate employs average stresses and environments. The preferred data
source is actual test data collected from a statistically valid sample of test articles and ultimately
system population test and operations data from your system. However, time and cost constraints
usually prevents or limits accumulation of sufficient data to be of value, especially early in the
program where FMEA is most economically effective. In most cases data can be extracted from
handbooks such as

1. MIL-HDBK-217 Reliability Prediction Of Electronic Equipment.

2. NPRD-95 Non-Electronic Parts Reliability Data (NPRD).

MIL-HDBK-217 provides a knowledgebase of reliability information such as general failure rates
for various types of electronic components, quality factors, and environmental factors, temperature
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derating curves. Later in the development when the circuit parameters are defined, a stress level
factor can be applied using actual design values to refine the estimate.

Employ Physical Models as the Basis for Reliability Estimates. On initial inspection,
reliability modeling may appear to be a simple and straightforward procedure. SEs are tempted to
employ functional models of the system as the basis for estimating reliability. However, recognize
that the system functional model may not be an accurate reliability model. A model of the physi-
cal system provides the most accurate representation; the fidelity of the model depends on the
application.

A functional model of the system is necessary and serves as the basis for the reliability model.
However, in most cases the two models will NOT be identical. In simple cases, the functional model
may be adequate and actually serve as the initial reliability model. The reliability model never-
theless must account for any system redundancies, and any peculiarities such as component design
and properties that might have impact on completion of the mission. Functional models MAY NOT
sufficiently reveal this.

Model Architectural Configuration Reliability. Reliability computations for any SYSTEM
or entity are predicated on its physical architecture configuration at various levels of abstraction.
At any level of abstraction, the SYSTEM/entity can be characterized by one of three types of con-
structs that are representative of various architectural network configurations: 1) series, 2) paral-
lel, and 3) series-parallel.

Perform a FMEA/FMECA. Simply constructing reliability network models of system architec-
tural elements provides some indication of system reliability. However, component failure effects
range from nonthreatening to catastrophic. As a result, SEs need to understand HOW and in WHAT
ways a system fails and WHAT the potential ramifications of that failure are to completing the
mission.

Human-made systems should undergo safety analysis to assess the risks and potential adverse
impacts to the system, general public, and the environment. The safety analysis involves conduct-
ing a failure modes and effects analysis (FMEA). The purpose of the FMEA is to understand HOW
a system or product and its components might fail because of misapplication, misuse, or abuse by
operators or Users, poor design, or a single point of failure.

One method for understanding HOW and in WHAT ways a system may fail is to create fault
trees. Figure 50.11 provides an example of a simple remote controlled television system fault tree.
Through FMEA, SEs employ compensating provisions such as redesign and procedural changes
that enable cost-effective ways to mitigate the risks of failure mode effects.

For systems that require high levels of reliability such as spacecraft and medical equipment,
the FMEA may be expanded to include a criticality analysis of specific component reliability and
their effects. We refer to this as a failure modes, effects, and criticality analysis (FMECA).

The FMEA should recommend cost effective, corrective action solutions referred to as com-
pensating provisions to the system elements—including PERSONNEL (skills/training), EQUIP-
MENT (design), and PROCEDURAL DATA (usage). The FMEA assesses design documentation
such as functional block diagrams (FBDs), assembly drawings, schematics, Engineering Bill of
Materials (EBOM), and fault trees to identify and prioritize areas that may be prone to failure and
their associated level of impacts on the system.

Identify Reliability Critical Items (RCIs). The FMEA and FMECA should analytically iden-
tify reliability critical items (RCIs) that require specification, selection, and oversight. Consider the
following example:
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EXAMPLE 50.5

Failures in gyroscopes and accelerometers in flight control systems for aircraft and sensors can result in major
accuracy, safety, and political risks. Therefore, these components may be designated as RCIs.

RCI solutions include singling out these components, specifying higher reliability components, or
implementing redundancy with LESS reliability components. Redundancy, however, compounds
the system reliability and increases expense and maintenance because of increased parts counts.

Some systems require special considerations such as electrostatic discharge (ESD) during man-
ufacture and testing to preclude premature failures due to poor procedures. Additionally, systems
that go into storage for extended periods of time prior to usage may have components with a limited
shelf life. Therefore, factor ESD and shelf life considerations into reliability estimates and design
requirements.

Perform an Electronic Parts/Circuits Tolerance Analysis. Some systems may require
investigation using tolerance analysis sometimes referred to as worst-case analysis. Electronic
parts/circuits components are derated and assigned their maximum tolerance values that will have
maximum effect on circuit output. The system is then evaluated to assure that it can still function
under these extreme conditions. The analysis is then evaluated again at the other extreme end of
the maximum tolerance values to assure that the system can still function. Since most of today’s
products are digital and have high reliabilities, the marginal utility of this analysis should be
assessed on a program needs basis.

Eliminate Single-Point Failures in Mission Critical Items. Since failures in mission criti-
cal items can force an aborted mission, SEs and R&Ms often specify higher levels of reliability
that drive up system costs. Yet, they ignore interfaces to the item that are also single points of failure
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(SPFs) and may have a higher probability of failure. When searching for SPFs, investigate not only
at the component reliability but also its interface implementation reliability.

Improve System Reliability through Redundancy. Mission critical systems often have
stringent reliability requirements that are very expensive to achieve. Additionally, the possibility of
a SPF may be too risky from a safety point of view. One approach to developing solutions to these
types of challenges is through system design redundancy. In some cases elements with lesser reli-
abilities and costs can be combined to achieve higher performance reliability requirements but at
the expense of increased parts counts and maintenance.

Author’s Note 50.6 Customers and specifications often mandate redundancy, without deter-
mining if there is a compelling need. Remember, redundancy is a design method option exercised
to achieve a system reliability requirement or to eliminate a single point of failure of a mission crit-
ical item. Avoid specifying redundancy, which drives up costs, without first determining IF the
current design solution is insufficient to meet the reliability requirements.

Architectural Redundancy versus Component Redundancy. SEs sometimes convince
themselves they have designed in system redundancy by simply adding redundant components.
This may be a false perception. There is a difference between creating redundant components and
design implementation redundancy. To see this, refer to Figure 50.12.

In the figure, we have a simple system that includes Item 1 and Item 1 Backup. Panel A shows
the design implementation redundancy in signal flow by way of separate, independent interfaces to
Item 1 and Item 1 Backup from a single input stimulus or excitation. The same is true with the output
interface. Architecturally, if either interface fails and both Item 1 and Item 1 Backup are working
properly, an output response is produced. Thus, we can avoid a single point of failure (SPF).

In contrast, Panel B includes redundant elements Item 1 and Item 1 Backup. Here, there is a
SINGLE interface entry to Item 1 and Item 1 Backup. Therefore, the interface becomes a single
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point of failure such that IF it fails, Item 1 and Item 1 Backup are both useless as redundant archi-
tectural elements despite their redundant architectural elements.

Task 4: Review RAM Modeling Results

As the RAM models evolve, reviews should be conducted with the System Engineering and Inte-
gration Team (SEIT). The primary objective of the review is to perform a sanity check of the system
RAM model results to:

1. Validate assumptions.

2. Identify failures modes and effects.

3. Characterize component reliabilities.

4. Identify compensating provisions for trade-offs and implementation.

Evaluation of the system RAM results and recommendations should be performed by competent,
qualified SMEs.

Review Reliability Estimates. Reliability estimates should be evaluated at each major design
review. As is typically the case, subject matter experts (SMEs) are seldom available to scrutinize
reliability estimates, nor are any of the other attendees inclined to listen to debates over reliability
prediction approaches. Because of the criticality of this topic, conduct a review of the reliability
data and approaches PRIOR TO major program reviews. Then, report a summary of the results at
the review.

Identify Compensating Provision Actions. As part of the review, compensating provisions
should be identified to mitigate any risks related to achieving RAM requirements. Each compen-
sating provision should be assigned a unique action item and tracked to closure.

Allocate RAM Resources Based on Risk. For some programs, there may only be a limited
number of resources for reliability tasks. How might you deal with this? First, you should investi-
gate further funding resources. Second, you may have to allocate those resources based on relia-
bility estimates of the system that may have the highest risk.

How do you identify CANDIDATE risk items? The risk items might include: 1) newly devel-
oped items, 2) new technologies, 3) mission critical items, 4) critical interfaces, 5) thermal areas,
6) power conditioning, 7) pressurization systems, and 8) toxic failures.

Task 5: Implement Compensating Provision Actions

Once decisions are made concerning the RAM recommendations, the objective of Task 5 is to
implement the FMEA/FMECA compensating provisions. These actions may require:

1. Trade-off and reallocation of RAM performance requirements at the SYSTEM, PRODUCT,
SUBSYSTEM, ASSEMBLY, SUBASSEMBLY or PART levels.

2. Redesign of items.

3. Renegotiation of the contract/subcontract/task.

Task 6: Implement a Parts Program

Some aerospace and defense systems establish standards to ensure that quality components are
used. Where this is the case, a parts program may be created to establish part specifications and
standards and to screen incoming parts for compliance. Parts programs are very costly to imple-
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ment and maintain. An alternative to a parts program may be to identify and manage reliability
critical items (RCIs).

Task 7: Improve EQUIPMENT Characteristic Profiles

A common question SEs must face is: HOW do we minimize the number of initial failures and
prolong life expectancy of useful service regions? You can:

1. Increase the reliability by using lower failure rate components, which increases system
development cost.

2. Conduct environmental stress screening (ESS) selection of incoming components.

3. Improve system design practices.

4. Improve quality assurance/control to drive out inherent errors and latent defects prior to
fielding.

The last point reinforces the need for a robust testing program for new system or product designs.
The bottom line is: increase the useful service life by engineering the job correctly beginning with
the proposal and certainly at Contract Award.

Concluding Point

RAM engineers CANNOT and SHOULD NOT perform these tasks in a vacuum. As specialty engi-
neers, they provide critical decision support to the system developers in the “engineering of
systems.” Your job, as an SE, is to make sure a collaborative engineering environment exists with
frequent reviews and communications between R&M engineers and Integrated Product Teams
(IPTs). Assuming they are implemented properly, IPTs can provide such an environment.

50.8 RAM CHALLENGES

Implementation of RAM practices poses a number of challenges. Let’s explore some of the key
challenges.

Challenge 1: Defining and Classifying Failures

Despite all the complexities of curve fitting and creating mathematical equations to model RAM,
one of the most sensitive issues is simply WHAT constitutes a failure. Does it mean loss of a crit-
ical mission function? Your task, as an SE, is to develop a consensus definition of a failure that is
shared by Acquirer and System Developer teams.

Challenge 2: Failure to Document Assumptions 
and Data Sources

The validity of any engineering data typically requires:

1. Making assumptions about the mission/SYSTEM use cases and scenarios and OPERAT-
ING ENVIRONMENT conditions.

2. Identifying credible data sources.

3. Documenting any assumptions or observations.

Yet, few organizations ingrain this discipline in their engineers. Then, when the time comes to
make critical informed decisions, the decision process is left in a quandary as to whether the R&M
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Engineer DID or DID NOT consider all relevant factors. Time exacerbates the problem. Therefore,
train engineers in your organization to document assumptions and data sources as part of a RAM
analysis.

Challenge 3: Validating RAM Models

RAM analyses, assuming they are performed properly, are only as good as the models employed
to generate data for the analyses. George E.P. Box (1979, p. 202) once remarked “All models are
wrong but some are useful.” From the beginning of a program, strive to validate the models used
to generate decision-making data with actual vendor or field data.

Challenge 4: The Criticality of Scoping System Availability

Today, the government and private sectors are moving toward a contracting for services environ-
ment in which a contractor provides systems and services on a fee-per-service basis. For example,
contracts will often state that the EQUIPMENT and services must be operationally available from
8 a.m. to 5 p.m. Monday through Friday and at other times under specified conditions. The Acquirer
pays a fee for mission time—for system use within those time frames.

Here is something for a System Developer/Services Provider to consider. Depending on the
size and complexity of the EQUIPMENT and services rendered, some missions MAY NOT require
specific pieces of EQUIPMENT to be operationally available simultaneously. Should the Services
Provider be penalized? What about holiday occurrences between Monday and Friday?

The challenge in developing the contract is to thoroughly understand all of the use cases and
scenarios that may become major showstoppers for progress payments in performance of the con-
tract and clarifying HOW all parties will accommodate them. Think SMARTLY before signing con-
tracts that have system availability requirements.

Challenge 5: Quantifying the RAM of Software

We live in an Information Age where seemingly all systems, especially complex systems, are soft-
ware intensive. Despite RAM curve fitting and the mathematical equations discussed, HOW do you
measure and model the RAM of software? Unlike hardware components that can be tested in con-
trolled laboratory conditions and maintained via repairs, HOW do you model the RAM of software?

This is perhaps one of the most perplexing areas of engineering. What about the RAM of soft-
ware used in basic computer applications versus mission critical software for the International
Space Station (ISS), Space Shuttle, passenger aircraft, and medical equipment? There are no easy
or simple answers.

One solution may be to employ the services of independent verification and validation (IV&V)
contractors. IV&V contractors perform services to review and test software designs for purposes
of identifying and eliminating design flaws, coding errors, and product defects—and their services
can be very costly, especially from a system development perspective. Depending on the legal and
financial ramifications of system abuse or misuse, the return on investment (ROI) for IV&V activ-
ities may be cost effective. Contact SMEs in your industry to gain insights into how to specify soft-
ware RAM.

50.9 GUIDING PRINCIPLES

In summary, the preceding discussions provide the basis to establish several guiding principles to
govern Reliability, Availability, and Maintainability practices.
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Principle 50.1 Express reliability in terms of its four key elements:

1. A probability of successfully completing a defined mission.

2. A bounded mission duration.

3. Elapsed operating time since the start of the mission.

4. A prescribed set of OPERATING ENVIRONMENT conditions. 

Avoid using MTBF as the reliability requirement without bounding these conditions.

Principle 50.2 Components have service life profiles that may exhibit regions of decreasing,
stable, and increasing failure rates, each with differing failure rate distributions.

Principle 50.3 Only systems or components that are characterized by negative exponential dis-
tributions have a constant hazard rate (Period of Stabilized Failures).

Principle 50.4 Avoid RAM analysis paralysis; couple RAM analysis with “worst case” analysis.

50.10 SUMMARY

Our discussion of RAM practices is intended to provide a basic understanding that will enable you to 
communicate with reliability engineers, logisticians, and others. There are several key points you should
remember:

• RAM practices apply model-based mathematical and scientific principles to estimate reliability, avail-
ability, and maintainability to support SE design decision making.

• RAM estimates are only as valid as the assumptions and inputs used to generate the data from vali-
dated models.

• RAM models require best-fit selection to provide an estimate of probability related to mission, system,
and item success.

• RAM practices involve art, science, and sound judgment: art from the standpoint of empirical knowl-
edge, wisdom, and experience gleaned over an entire career, science from the application of mathe-
matical and scientific principles, and sound judgment from being able to know and understand the
difference between the art and the science.

• ALWAYS entrust the RAM estimates to a qualified, professional, Reliability and Maintainability
(R&M) Engineer recognized as a subject matter expert (SME), either as a staff member or as a cred-
ible consultant with integrity. Remember, RAM involves critical areas that involve ethical, legal, and
safety issues and their associated ramifications.

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

ORGANIZATIONAL CENTRIC EXERCISES

1. Research your organization’s command media to learn what processes and methods are to be employed
when conducting RAM practices. Report your findings.

2. Contact several contract programs within your organization and research the requirements for RAM. Inter-
view program personnel to determine the following:
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(a) How did they allocate and document the requirements allocations to system elements?

(b) What lessons did the development team learn?

(c) How would they advise approaching RAM on future programs?

(d) What sources of RAM data and models did they use to develop RAM predictions?

(e) What type of FRACAS system did the User have in place?

(f ) Did the development team use this information?

(g) How was availability computed for the system?
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Chapter 51

System Modeling and Simulation

51.1 INTRODUCTION

Analytically, System Engineering requires several types of technical decision-making activities:

1. Mission Analysis Understanding the User’s problem space to identify and bound a solu-
tion space that provides operational utility, suitability, availability, and effectiveness.

2. Architecture Development Hierarchical organization, decomposition, and bounding of
operational problem space complexity into manageable levels of solutions spaces, each with
a bounded set of requirements.

3. Requirements Allocation Informed appropriation and assignment of capabilities and
quantifiable performance to each of the solution spaces.

4. System Optimization The evaluation and refinement of system performance to maximize
efficiency and effectiveness in achieving solution space mission objectives.

Depending on the size and complexity of the system, most of these decisions require tools to facil-
itate the decision making. Because of the complex interacting parameters of the SYSTEM OF
INTEREST (SOI) and its OPERATING ENVIRONMENT, humans are often unable of internalize
solutions on a personal level. For this reason engineers as a group tend to employ and exploit deci-
sion aids such as models and simulations to gain insights into the system interactions for a pre-
scribed set of operating scenarios and conditions. Assimilation and synthesis of this knowledge and
interdependencies via models and simulations enable SEs to collectively make these decisions.

This chapter provides an introductory overview of how SEs employ models and simulations
to implement the SE Process Model. Our discussions are not intended to instruct you in model or
simulation development; numerous textbooks are available on this topic. Instead, we focus on the
application of models and simulations to facilitate SE decision making.

We begin our discussion with an introduction to the fundamentals of models and 
simulations. We identify various types of models, define model fidelity, address the need to certify
models, and describe the integration of models into a simulation. Then, we explore HOW SEs
employ models and simulations to support technical decisions involving architecture evaluations,
performance requirement allocations, and validating the performance.

What You Should Learn from This Section

1. What is a model?

2. What are the various types of models?

3. How are models employed in SE decision making?

System Analysis, Design, and Development, by Charles S. Wasson
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4. What is a simulation?

5. How are simulations employed in SE decision making?

6. What is a mock-up?

7. What is a prototype?

8. What is a testbed?

9. How is a testbed employed in SE decision making?

Definitions of Key Terms

• Accreditation “The formal certification that a model or simulation is acceptable for use for
a specific purpose. Accreditation is conferred by the organization best positioned to make
the judgment that the model or simulation in question is acceptable. That organization may
be an operational user, the program office, or a contractor, depending upon the purposes
intended.” (DSMC SE Fundamentals, Section 13.4 Verification, Validation, and Accredita-
tion; p. 120)

• Certified Model A formal designation by an officially recognized decision authority for val-
idating the products and performance of a model.

• Deterministic Model “A model in which the results are determined through known rela-
tionships among the states and events, and in which a given input will always produce the
same output; for example, a model depicting a known chemical reaction. Contrast with: sto-
chastic model. (DIS Glossary of M&S Terms, and IEEE STD 610.3, (references (b) and (c))”
(Source: DoD 5000.59-M Modeling and Simulation (M&S) Glossary, Part II, item 153, 
p. 102)

• Event “A change of object attribute value, an interaction between objects, an instantiation
of a new object, or a deletion of an existing object that is associated with a particular point
on the federation time axis. Each event contains a time stamp indicating when it is said to
occur. (High Level Architecture Glossary, (reference (m)).” (Source: DoD 5000.59-M Mod-
eling and Simulation (M&S) Glossary, Part II, item 193, p. 107)

• Fidelity “The accuracy of the representation when compared to the real world. (DoD Pub-
lication 5000.59-P, (reference (g)).” (Source: DoD 5000.59-M Modeling and Simulation
(M&S) Glossary, Part II, item 218, p. 112)

• Initial Condition “The values assumed by the variables in a system, model, or simulation
at the beginning of some specified duration of time. Contrast with: boundary condition; final
condition. (DIS Glossary of M&S Terms, (reference (b)).” (Source: DoD 5000.59-M Mod-
eling and Simulation (M&S) Glossary, Part II, item 270, p. 123)

• Initial State “The values assumed by the state variables of a system, component, or simu-
lation at the beginning of some specified duration of time. Contrast with: final state. (DIS
Glossary of M&S Terms, (reference (b)).” (Source: DoD 5000.59-M Modeling and Simula-
tion (M&S) Glossary, Part II, item 271, p. 123)

• Model A virtual or physical representation of an entity for purposes of presenting, study-
ing, and analyzing its characteristics such as appearance, behavior, or performance for a pre-
scribed set of OPERATING ENVIRONMENT conditions and scenarios.

• Model-Test-Model “An integrated approach to using models and simulations in support of
pre-test analysis and planning; conducting the actual test and collecting data; and post-test
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analysis of test results along with further validation of the models using the test data.” (Source:
DoD 5000.59-M Modeling and Simulation (M&S) Glossary, Part II, item 342, p. 137)

• Monte Carlo Algorithm “A statistical procedure that determines the occurrence of pro-
babilistic events or values of probabilistic variables for deterministic models; e.g., making a
random draw. (DSMC 1993–94 Military Research Fellows Report, (reference (k)).” (Source:
DoD 5000.59-M Modeling and Simulation (M&S) Glossary, Part II, item 345, p. 138)

• Monte Carlo Method “In modeling and simulation, any method that employs Monte Carlo
simulation to determine estimates for unknown values in a deterministic problem. (DIS 
Glossary of M&S Terms, and IEEE STD 610.3, (references (b) and (c)).” (Source: DoD
5000.59-M Modeling and Simulation (M&S) Glossary, Part II, item 346, p. 138)

• Simulation Time “A simulation’s internal representation of time. Simulation time may
accumulate faster, slower, or at the same pace as sidereal time. (DIS Glossary of M&S Terms,
and IEEE STD 610.3, (references (b) and (c)).” (Source: DoD 5000.59-M Modeling and Sim-
ulation (M&S) Glossary, Part II, item 473, p. 159)

• Stimulate “To provide input to a system in order to observe or evaluate the system’s
response.” (Source: DSMC Simulation Based Acquisition: A New Approach—Dec. 1998)

• Stimulation “The use of simulations to provide an external stimulus to a system or sub-
system.” (Source: DSMC Simulation Based Acquisition: A New Approach—Dec. 1998)

• Stochastic Process “Any process dealing with events that develop in time or cannot be
described precisely, except in terms of probability theory. (DSMC 1993–94 Military
Research Fellows Report, (reference (k)).” (Source: DoD 5000.59-M Modeling and Simu-
lation (M&S) Glossary, Part II, item 493, p. 161)

• Validated Model An analytical model whose outputs and performance characteristics iden-
tically or closely match the products and performance of the physical system or device.

• Validation (Model) “The process of determining the manner and degree to which a model
is an accurate representation of the real world from the perspective of the intended uses of
the model, and of establishing the level of confidence that should be placed on this assess-
ment.” (DSMC SE Fundamentals, Section 13.4 Verification, Validation, and Accreditation;
p. 120.)

• Verification (Model) “The process of determining that a model implementation accurately
represents the developer’s conceptual description and specifications that the model was
designed to.” (DSMC SE Fundamentals, Section 13.4 Verification, Validation, and Accred-
itation; p. 120.)

51.2 TECHNICAL DECISION-MAKING AIDS

SE decision making related to system performance allocations, performance budgets and safety
margins, and design requires decision support to ensure that informed, fact-based recommendations
are made. Ideally, we would prefer to have an exact representation of the system you are analyz-
ing. In reality, exact representations do not exist until the system or product is designed, developed,
verified, and validated.

There are, however, some decision aids SE can employ to provide degrees of representations
of a system or product to facilitate technical decision making. These include models, prototypes,
and mock-ups. The purpose of the decision aids is to create a representation of a system on a small,
low-cost scale that can provide empirical form, fit, or function data to support design decision
making on a much larger scale.
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51.3 MODELS

Models generally are of two varieties: deterministic and stochastic.

Deterministic Models

Deterministic models are structured on known relationships that produce predictable, repeatable
results. Consider the following example:

EXAMPLE 51.1

Each work period an employee receives a paycheck based on a formula that computes their gross salary—
hours worked times hourly rate less any distributions for insurance, taxes, charitable contributions, and so
forth.

Stochastic Models

Whereas deterministic models are based on precise relationships, stochastic models are structured
using probability theory to process a set of random event occurrences. In general, stochastic models
are constructed using data from statistically valid samples of a population that enable us to infer
or estimate results about the population as a whole. Consider the following theoretical example:

EXAMPLE 51.2

A manufacturer produces 0.95 inch spacer parts in which three of the parts are assembled onto an axle. The
axle is then installed into a constrained space of a larger ASSEMBLY. If we produced several thousand parts,
we might discover the individual spacers randomly vary in size from 0.90 to 1.0 inch; no two parts are exactly
the same. So, what must the dimension of the constrained space be to accommodate dimensional variations
of each spacer? We construct a stochastic model that randomly selects dimensions for each of three spacers
within their allowable ranges. Then, it computes the integrated set of dimensions to estimate the mean of a
typical stacked configuration. Based on the results, a dimension of the constrained space is selected that factors
in any additional considerations such degrees of looseness, if applicable.

The example above illustrates theoretically how a stochastic model could be employed. SEs often
use a worst-case analysis in lieu of developing a model. For some applications this may be accept-
able. However, suppose a worst-case analysis results in too much slack between the spools? What
the SEs need to know is: For randomly selected parts assembled into the configuration, based on
frequency distributions of part dimensions and their standard deviations, WHAT is the estimated
mean of any configuration?

In summary, stochastic models enable us to estimate or draw inferences about system per-
formance for highly complex situations. These situations involve random, uncontrollable events or
inputs that have a frequency of occurrence under prescribed conditions. Based on the frequency
distributions of sampled data, we can apply statistical methods that infer a most probable outcome
for a specific set of conditions. Examples include environmental conditions and events, human reac-
tions to publicity, and pharmaceutical drug medications.

Model Development

Analytical methods require a frame of reference to represent the characteristics of an entity. For
most systems, a model is created using an observer’s frame of reference, such as the right-handed
coordinate system.
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Analytically, model development is similar to system development. SE model developers should
fully understand the problem space a model’s solution space is intended to satisfy. Based on this
understanding, design methodology requires that we first survey or research the marketplace to see
if the model(s) we require has already been developed and is available. If available, we need to
determine if it has necessary and sufficient technical detail to support our system or entity appli-
cation. Conventional design wisdom (Principle 41.1) says that new models should only be devel-
oped after you have exhausted all other alternatives to locate an existing model.

Model Validation

Models are only as valid as the quality of its behavioral and physical performance characteristics
to replicate the real world entity. We refer to the quality of a model in terms of its fidelity—meaning
its degree of realism. So, the challenge for SEs is: Even if we develop a model of a system or
product, HOW do we gain a level of confidence that the model is valid and accurately and pre-
cisely represents the physical instance of an item and its interactions with a simulated real world
OPERATING ENVIRONMENT?

In general, when developing models, we attempt to represent physical reality with simulated
or scaled reality. Our goal is to try to achieve convergence of the two within the practicality or
resource constraints. So, HOW do we achieve convergence? We do this by collecting empirical
data from actual physical systems, prototypes, or field tests. Then, we validate the model by 
comparing the actual field data with the simulated behavioral and physical characteristics. 
Finally, we refine the model until its results closely match those of the actual system. This leads to
the question: HOW do we get field data to validate a model for a system or product we are 
developing?

There are a number ways of obtaining field data. We can:

1. Collect data using controlled laboratory experiments subjected to OPERATING ENVI-
RONMENT conditions and scenarios.

2. Install a similar component on a fielded system and collect measurement data for OPER-
ATING ENVIRONMENT conditions and scenarios.

3. Instrument a field platform such as an aircraft with transducers and sensors to collect 
OPERATING ENVIRONMENT data.

Regardless of the method we use, a model is calibrated, adjusted, and refined until it is validated
as an accurate and precise representation of the physical system or device. The model is then placed
under formal configuration control. Finally, we may decide to have an independent decision author-
ity or subject matter expert (SME) to certify the model, which brings us to our next topic.

Model Certification

The creation of a model is one thing; creating a valid model and getting it certified is yet another.
Remember, SE technical decision making must be founded in objective, fact-based data that accu-
rately represent real world situations and conditions. The same applies with models. So, what is
certification?

IEEE 610.12–1990 defines certification as “A written guarantee that a system or component
complies with its specified requirements and is acceptable for operational use. For example, a
written authorization that a computer system is secure and is permitted to operate in a defined envi-
ronment.” For many applications an independent authority validates a model by authenticating that
model results identically match those obtained from measurements of an actual system operating
under a specified set of OPERATING ENVIRONMENT conditions.
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In general, one SE can demonstrate to a colleague, their manager, or a Quality Assurance (QA)
representative that the data match. Certification comes later when a recognized decision authority
within industry or governmental organization reviews the data validation results and officially issues
a Letter of Certification declaring the model to be certified for use in specific applications and 
conditions.

Do you need certified models? This depends on you’re the program’s needs. Certification:

1. Is expensive establish and maintain.

2. Has an intrinsic value to the creator and marketplace.

Some models are used one time; others are used repeatedly and refined over several years. Since
engineering decisions must be based on the integrity of data, models are generally validated but
not necessarily certified.

Understanding Model Characteristics

Models are generally developed to satisfy specific needs of the analyst. Although models may
appear to match two different analysis needs, they may not satisfy the requirements. Consider the
following example:

EXAMPLE 51.3

Let’s suppose Analyst A requires a sensor model to investigate a technical issue. Analyst A develops a func-
tional model of Sensor XYZ to meet their needs of understanding the behavioral responses to external stimuli.
Later, Analyst B in another organization researches the marketplace and learns that Analyst A has already
developed a sensor model that may be available. However, Analyst B soon learns that the model describes the
functional behavior of Sensor XYZ whereas Analyst B is interested in the physical model of Sensor XYZ. As
a result, Analyst B either creates their own physical model of Sensor XYZ or translates the functional domain
model into the physical domain.

Understanding Model Fidelity

One of the challenges of modeling and simulation is determining the type of model you need.
Ideally, you would want a perfect model readily available so that you could provide simple inputs
and conduct WHAT IF games with reliable results.

Due to the complexities and practicalities of modeling, among which are cost and schedule
constraints, models are estimates or approximations of reality—termed levels of fidelity. For
example, is a first-order approximation sufficient? Second-order? Third-order? etc. The question
we have to answer is: WHAT minimum level of fidelity do we need for a specific area of investi-
gation? Consider the following examples:

EXAMPLE 51.4

Hypothetically, a mechanical gear system has a transfer function that can be described mathematically as 
y = 0.1x where x = input and y = output. You may find a simple analytical math model may be sufficient for
some applications. In other applications the area of analytical investigation might require a physical model 
of each component within the gear train, including the frictional losses due to the loading effects on axle 
bearings.
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EXAMPLE 51.5

Let’s assume you are developing an aircraft simulator. The key questions are:

1. Are computer-generated graphic displays of cockpit instruments with simulated moving
needle instruments and touch screen switches sufficient, or do you need the actual working
hardware used in the real cockpit to conduct training?

2. What level of fidelity in the instruments do you need to provide pilot trainees with the “look
and feel” of flying the actual aircraft?

3. Is a static cockpit platform sufficient for training, or do you need a three-axis motion sim-
ulator to provide the level of fidelity in realistic training?

The point of these examples is: SEs, in collaboration with analysts, the Acquirer, and Users, 
must be able to determine WHAT levels of fidelity are required and then be able to specify it. In
the case of simulator training systems, various levels of fidelity may be acceptable. Where this 
is the case, create a matrix to specify the level of fidelity required for each physical item and 
include scoping definitions of each level of fidelity. To illustrate this point, consider the following
example:

EXAMPLE 51.6

The level of fidelity required for some switches may indicate computer-generated images are sufficient. Touch
screen displays that enable switch activation by touch may be acceptable to create the effects of flipping
switches.

EXAMPLE 51.7

In other instances hand controls, brake pedals, and other mechanisms may require actual working devices that
provide the tactile look and feel of devices of the actual system.

Specifying Model Fidelity

Understanding model fidelity is often a challenge. One of the objectives of modeling and simula-
tion is being able to realistically model the real world. In the case of training simulators that require
visual representations of the environment inside and outside the simulated vehicle, what level of
fidelity in the terrain and trees and cultural features such as roads, bridges, and buildings is neces-
sary and sufficient for training purposes?

• Are computer-generated images with synthetic texture sufficient for landscapes?

• Do you require photographic images with computer-generated texture?

The answer to these questions depends on trade-offs between resources available and the positive
or negative impacts to training. Increasing the level of fidelity typically requires significantly more
resources—such as data storage or computer processing performance. Concepts such as cost as an
independent variable (CAIV) enable Acquirer decision makers to assess WHAT level of CAPA-
BILITY can be achieved at WHAT cost.
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51.4 SYSTEM SIMULATION

Models serve as “building block” representations or approximations of physical reality. When we
integrate these models into an executable framework that enables us stimulate interactions and
behavioral responses under controlled conditions, we create a simulation of a SYSTEM OF INTER-
EST (SOI).

As analytical models, simulations enable us to conduct WHAT IF exercises with each model
or system. In this context the intent is for SEs to understand the functional or physical behavior
and interactions of the system for a given set of OPERATING ENVIRONMENT scenarios and
conditions.

Guidepost 51.1 The preceding discussions provide the foundation for understanding models
and simulations. We now shift our focus to understanding HOW SEs employ models and simula-
tions to support analytical decision making as well as create deliverable products for Users.

51.5 APPLICATION EXAMPLES OF 
MODELING AND SIMULATION

Modeling and simulation (M&S) are applied in a variety of ways by SEs to support technical deci-
sion making. SEs employ models and simulations for several types of applications:

Application 1: Simulation-based architecture selection

Application 2: Simulation-based architectural performance allocations

Application 3: Simulation-based acquisition (SBA)

Application 4: Test environment stimuli

Application 5: Simulation-based failure investigations

Application 6: Simulation based training

Application 7: Test bed environments for technical decision support

To better understand HOW SEs employ models and simulations, let’s describe each type of 
application.

Application 1: Simulation-Based Architecture Selection

When you engineer systems, you should have a range of alternatives available to support informed
selection of the best candidate to meet a set of prescribed OPERATING ENVIRONMENT sce-
narios and conditions. In practical terms, you cannot afford to develop every candidate architec-
ture just to study it for purposes of selecting the best one. We can construct, however, models and
simulations that represent functional or physical architectural configurations. To illustrate, consider
the following example using Figure 51.1.

EXAMPLE 51.8

Let’s suppose we have identified several promising Candidate Architectures 1 through n as illustrated on the
left side of the diagram. We conduct a trade study analysis of alternatives (AoA) and determine that the com-
plexities of selecting the RIGHT architecture for a given system application requires employment of models
and simulations. Thus, we create Simulation 1 through Simulation n to provide the analytical basis for select-
ing the preferred architectural configuration.
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We exercise the simulations over a variety of OPERATING ENVIRONMENT scenarios and con-
ditions. Results are analyzed and compiled and documented in an Architecture Trade Study. The
Architecture Trade Study rank orders the results as part of its recommendations. Based on a review
of the Architecture Trade Study, SEs select an architecture. Once the architecture is selected, the
simulation serves as the framework for evaluation and refining each simulated architectural entity
at lower levels of abstraction.

Application 2: Simulation-Based Architectural 
Performance Allocations

Modeling and simulation are also employed to perform simulation-based performance allocations
as illustrated in Figure 51.2. Consider the following example:

EXAMPLE 51.9

Suppose that Requirement A describes and bounds Capability A. Our initial analysis derives three subordinate
capabilities, A1 through A3, that are specified and bounded by Requirements A1 through A3: The challenge
is: How do SEs allocate Capability A’s performance to Capabilities A1 through A3?

Let’s assume that basic analysis provides us with an initial set of performance allocations that is “in the
ballpark.” However, the interactions among entities are complex and require modeling and simulation to
support performance allocation decision making. We construct a model of the Capability A’s architecture to
investigate the performance relationships and interactions of Entities A1 through A3.

Next, we construct the Capability A simulation consisting of models, A1 through A3, representing
subordinate Capabilities A1 through A3. Each supporting capability, A1 through A3, is modeled using the
System Entity Capability Construct shown in Figure 22.1. The simulation is exercised for a variety of stimuli,
cues, or excitations using Monte Carlo methods to understand the behavior of the interactions over a range of
operating environment scenarios and conditions. The results of the interactions are captured in the system
behavioral response characteristics.
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After several iterations to optimize the interactions, SEs arrive at a final set of performance allocations
that become the basis for requirements specifications for capability A. Is this perfect? No! Remember, this is
a human approximation or estimate. Due to variations in physical components and the OPERATING ENVI-
RONMENT, the final simulations may still have to be calibrated, aligned, and tweaked for field operations
based on actual field data. However, we initiated this process to reduce the complexity of the solution space
into more manageable pieces. Thus, we arrived at a very close approximation to support requirements’ allo-
cations without having to go to the expense of developing the actual working hardware and software.

Application 3: Simulation-Based Acquisition (SBA)

Traditionally, when an Acquirer acquired a system or product, they had to wait until the System
Developer delivered the final system for Operational Test and Evaluation (OT&E) or final accept-
ance. During OT&E the User or an Independent Test Agency (ITA) conducts field exercises to eval-
uate system or product performance under actual OPERATING ENVIRONMENT conditions.
Theoretically there should be no surprises. Why?

1. The System Performance Specification (SPS) perfectly described and bounded the well-
defined solution space.

2. The System Developer created the ideal physical solution that perfectly complies with the
SPS.

In REALITY every system design solution has compromises due to the constraints imposed.
Acquirers and User(s) of a system need a level of confidence “up front” that the system will perform
as intended. Why? The cost of developing large complex systems, for example, and ensuring that
they meet User validated operational needs is challenging.

One method for improving the chances of delivery success is simulation-based acquisition
(SBA). What is SBA? In general, when the Acquirer releases a formal Request for Proposal (RFP)
solicitation for a system or product, a requirement is included for each Offeror to deliver a working
simulation model along with their technical proposal. The RFP stipulates criteria for meeting a 
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prescribed set of functionality, interface and performance requirements. To illustrate how SBA is
applied, refer to Figure 51.3.

EXAMPLE 51.10

Let’s suppose a User has an existing system and decides there is a need to replace a SUBSYSTEM such as a
propulsion system. Additionally, an Existing System Simulation is presently used to investigate system per-
formance issues.

The User selects an Acquirer to procure the SUBSYSTEM replacement. The Acquirer releases an RFP
to a qualified set of Offerors, competitors A through n. In response to RFP requirements, each Offeror 
delivers a simulation of their proposed system or product to support the evaluation of their technical proposal.

On delivery, the Acquirer Source Selection Team evaluates each technical proposal using predefined
proposal evaluation criteria. The Team also integrates the SUBSYSTEM simulation into the Existing System
Simulation for further technical evaluation.

During source selection, the offeror’s technical proposals and simulations are evaluated. Results of the
evaluations are documented in a Product Acquisition Trade Study. The TSR provides a set of Acquisition Rec-
ommendations to the Source Selection Team (SST), which in turn makes Acquisition Recommendations to a
Source Selection Decision Authority (SSDA).

Application 4: Test Environment Stimuli

System Integration, Test, and Evaluation (SITE) can be a very expensive element of system devel-
opment, not only from its labor intensiveness but also the creation of the test environment inter-
faces to the unit under test (UUT). There are several approaches SEs can employ to test a UUT.
The usual system integration, test, and evaluation (SITE) options include: 1) stimulation, 2) emu-
lation, and 3) simulation. The simulations in this context are designed to reproduce external system
interfaces to the (UUT). Refer to Figure 51.4.
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Application 5: Simulation-Based Failure Investigations

Large complex systems often require simulations that enable decision makers to explore dif-
ferent aspects of performance in employing the system or product in a prescribed OPERATING
ENVIRONMENT.

Occasionally, these systems encounter an unanticipated failure mode that requires in-depth
investigation. The question for SEs is: What set of system/operator actions or conditions and 
use case scenarios contributed to the failure? Was the root cause due to: 1) latent defects, design
flaws, or errors, 2) reliability of components, 3) operational fatigue, 4) lack of proper mainte-
nance, 5) misuse, abuse, or misapplication of the system from its intended application, or 6) an
anomaly?

Due to safety and other issues, it may be advantageous to explore the root cause of the
FAILURE using the existing simulation. The challenge for SEs is being able to:

1. Construct the chain of events leading to the failure.

2. Reliably replicate the problem on a predictable basis.

A decision could be made to use the simulation to explore the probable cause of the failure mode.
Figure 51.5 illustrates how you might investigate the cause of failure.

Let’s assume that a System Failure Report (1) documents the OPERATING ENVIRONMENT
scenarios and conditions leading to a failure event. It includes a maintenance history record among
the documents. Members of the failure analysis team extract the Operating Conditions and Data
(2) from the report and incorporate actual data and into the Existing System Simulation (3). SEs
perform analyses using Validated Field Data (4)—among which are the instrument data and a 
metallurgical analysis of components/residues—and they derive additional inputs and make valid
assumptions as necessary.
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The failure analysis team explores all possible actions and rules out probable causes using
Monte Carlo simulations and other methods. As with any failure mode investigation, the approach
is based on the premise that all scenarios and conditions are suspect until they are ruled out by a
process of fact-based elimination. Simulation Results (7) serve as inputs to a Failure Modes and
Effects Analysis (FMEA) (8) that compares the results the scenarios and conditions identified in
the System Failure Report (1). If the results are not predictable (9), the SEs continue to Refine the
Model/Operations (10) until they are successful in duplicating the root cause on a predictable basis.

Application 6: Simulation-Based Training

Although simulations are used as analytical tools for technical decision making, they are also used
to train system operators. Simulators are commonly used for air and ground vehicle training. Figure
51.6 provides an illustrative example.

For these applications, simulators are developed as deliverable instructional training devices
to provide the look and feel of actual systems such as aircraft. As instructional training devices,
these systems support all phases of training including:1) briefing, 2) mission training, and 3) post-
mission debriefing. From an SE perspective, these systems provide a Human-in-the Loop (HITL)
training environment that includes:

1. Briefing Stations (3) support trainee briefs concerning the planned missions and mission
scenarios.

2. Instructor/Operator Stations (IOS) (5) control the training scenario and environment.

3. Target System Simulation (1) simulates the physical system the trainee is being trained to
operate.

4. Visual Systems (8) generate and display (9) (10) simulated OPERATING 
ENVIRONMENTS.

5. Databases (7) support visual system environments.

6. Debrief Stations (3) provide an instructional replay of the training mission and results.
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Training Simulator Implementation. In general, there are several types of training 
simulators:

• Fixed Platform Simulators Provide static implementation and use only visual system
motion and cues to represent dynamic motion of the trainee.

• Motion System Simulators Employ one-, two-, or three-axis six-degree-of-freedom (6
DOF) motion platforms to provide an enhanced realism to a simulated training session.

One of the challenges of training simulation development is the cost related to hardware and soft-
ware. Technology advances sometimes outpace the time required to develop and delivery new
systems. Additionally, the capability to create an immersive training environment that transcends
the synthetic and physical worlds is challenging.

One approach to these challenges is to develop a virtual reality simulator. What is a virtual
reality simulation?

• Virtual Reality Simulation The employment of physical elements such as helmet visors
and sensory gloves to psychologically immerse a subject in an audio, visual, and haptic feed-
back environment that creates the perception and sensation of physical reality.

Application 7: Test Bed Environments for 
Technical Decision Support

When we develop systems, we need early feedback on the downstream impacts of technical deci-
sions. While methods such as breadboards, brassboards, rapid prototyping, and technical demon-
strations enable us to reduce risk, the reality is that the effects of these decisions may not be known
until the System Integration, Test, and Evaluation (SITE) Phase. Even worse, the cost to correct
any design flaws or errors in these decisions or physical implementations increases significantly as
a function of time after Contract Award.

664 Chapter 51 System Modeling and Simulation

Instructor/
Operator

Station (IOS)

Instructor/
Operator

Station (IOS)

Physical System 
Interface Device(s)

• Trainee Station(s)
• Operator Station(s)

Physical System 
Interface Device(s)

• Trainee Station(s)
• Operator Station(s)

InstructorInstructor
SYSTEM OF 
INTEREST

(SOI)
Simulation

SYSTEM OF 
INTEREST

(SOI)
Simulation

Trainee(s)Trainee(s)

Brief/ 
Debrief

Station(s)

Brief/ 
Debrief

Station(s)

Image 
Generation 

System

Image 
Generation 

System

Visual
Projection 

System

Visual
Projection 

System

Simulated 
Imagery

Visual Imagery and Cues

Trainee Responses

System
Responses/

Haptic Feedback

Simulation
Parameters & 

Control
Simulation Inputs 

& Control

Simulation
Stimuli & 
Responses

Instruction and Communications

Playback
Scenarios

Simulation 
Databases

Visual Database

Other
Databases

Visual
Data Visual Data

Projected 
Images

1

2

3

4 5

6

7

8 9

10

Physical 
Motion 
Devices

Figure 51.6 Simulation-Based Training



From an engineering perspective, it would be desirable to evolve and mature models, or pro-
totypes of a laboratory “working system,” directly into the deliverable system. An approach such
as this provides continuity of:

1. The evolving system design solution and its element interfaces.

2. Verification of those elements.

The question is: HOW can we implement this approach?
One method is to create a test bed. So, WHAT is a Test Bed and WHY do you need one?

Test Bed Development Environments. A test bed is an architectural framework and ENVI-
RONMENT that allows simulated, emulated, or physical components to be integrated as “working”
representations of a physical SYSTEM or configuration item (CI) and be replaced by actual com-
ponents as they become available. IEEE 610.12 (1990) describes a test bed as “An environment
containing the hardware, instrumentation, simulators, software tools, and other support elements
needed to conduct a test.”

Test beds may reside in environmentally controlled laboratories and facilities, or they may be
implemented on mobile platforms such as aircraft, ships, and ground vehicles. In general, a test
bed serves as a mechanism that enables the virtual world of modeling and simulation to transition
to the physical world over time.

Test Bed Implementation. A test bed is implemented with a central framework that integrates
the system elements and controls the interactions as illustrated in Figure 51.7. Here, we have a Test
Bed Executive Backbone (1) framework that consists of Interface Adapters (2), (5), (10) that serve
as interfaces to simulated or actual physical elements, PRODUCTS A through C.

During the early stages of system development, PRODUCTS A, B, and C are MODELED and
incorporated into simulations: Simulation A (4); Simulations B1 (7), B2 (9), B3 (8); and Simulation
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C (12). The objective is to investigate critical operational or technical issues (COIs/CTIs) and facil-
itate technical decision making. These initial simulations may be of LOW to MEDIUM fidelity. As
the system design solution evolves, HIGHER fidelity models may be developed to replace the lower
fidelity models, depending on specific requirements.

As PRODUCTS A, B, and C or their subelements are physically implemented as prototypes,
breadboards, brassboards, and the like, the physical entities may replace simulations A through C
as plug-and-play modules. Consider the following example:

EXAMPLE 51.11

During the development of PRODUCT B, SUBSYSTEMS B1 through B3 may be implemented as Simula-
tion B1, B2, and B3. At some point in time SUBSYSTEM B2 is physically prototyped in the laboratory. Once
the SUBSYSTEM B2 physical prototype reaches an acceptable level of maturity, Simulation B2 is removed
and replaced by the SUBSYSTEM B2 prototype. Later, when the SUBSYSTEM B2 developer delivers the
verified physical item, the SUBSYSTEM B2 prototype is replaced with the deliverable item.

In summary, a test bed provides a controlled framework with interface “stubs” that enable devel-
opers to integrate—“plug-and-play”—functional models, simulations, or emulations. As physical
hardware (HWCI) and software configuration items (CSCIs) are verified, they replace the models,
simulations, or emulations. Thus, over time the test bed evolves from an initial set of functional
and physical models and simulation representations to a fully integrated and verified system.

Reasons That Drive the Need for a Test Bed. Throughout the System Development and the
Operation and Support (O&S) phases of the system/product life cycle, SEs are confronted with
several challenges that drive the need for using a test bed. Throughout this decision-making process,
a mechanism is required that enables SEs to incrementally build a level of confidence in the evolv-
ing system architecture and design solution as well as to support field upgrades after deployment.

Under conventional system development, breadboards, brassboards, rapid prototypes, and tech-
nology demonstrations are used to investigate COIs/CTIs. Data collected from these decision aids
are translated into design requirements—as mechanical drawings, electrical assembly drawings and
schematics, and software design, for example.

The translation process is prone to human errors; however, integrated tool environments min-
imize the human translation errors but often suffer from format compatibility problems. Due to dis-
continuities in the design and component development workflow, the success of these decisions
and implementation may not be known until the System Integration, Test, and Evaluation (SITE)
Phase.

So, how can a test bed overcome these problems? There are several reasons why test beds can
facilitate system development.

Reason 1: Performance allocation–based decision making. When we engineer and develop
systems, recursive application of the SE Process Model requires informed, fact-based
decision making at each level of abstraction using the most current data available.
Models and simulations provide a means to investigate and analyze performance and
system responses to OPERATING ENVIRONMENT scenarios for a given set of
WHAT IF assumptions. The challenge is that models and simulations are ONLY as
GOOD as the algorithmic representations used and validated based on actual field
data measurements.

Reason 2: Prototype development expense. Working prototypes and demonstrations provide
mechanisms to investigate a system’s behavior and performance. However, full pro-
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totypes for some systems may be too risky due to the MATURITY of the technology
involved and expense, schedule, and security issues. The question is: Do you have
incur the expense of creating a prototype of an entire system just to study a part of it?
Consider the following example:

EXAMPLE 51.12

To study an aerodynamic problem, you may not need to physically build an entire aircraft. Model a “piece”
of the problem for a given set of boundary conditions.

Reason 3: System component delivery problems. Despite insightful planning, programs often
encounter late vendor deliveries. When this occurs SITE activities may severely
impact contract schedules unless you have a good risk mitigation plan in place. SITE
activities may become bottlenecked until a critical component is delivered. Risk mit-
igation activities might include some form of representation—simulation, emulation,
or stimulation—of the missing component to enable SITE to continue to avoid inter-
rupting the overall program schedule.

Reason 4: New technologies. Technology drives many decisions. The challenge SEs must answer
is:

1. Is a technology as mature as its literature suggests.

2. Is this the RIGHT technology for this User’s application and longer term needs.

3. Can the technology be seamlessly integrated with the other system components with minimal
schedule impact.

So a test bed enables the integration, analysis, and evaluation of new technologies without expos-
ing an existing system to unnecessary risk. For example, new engines for aircraft.

Reason 5: Post deployment field support. Some contracts require field support for a specific
time frame following system delivery during the System Operations and Support
(O&S) Phase. If the Users are planning a series of upgrades via builds, they have a
choice:

1. Bear the cost of operating and maintaining a test article(s) of a fielded system for assess-
ing incremental upgrades to a fielded configuration.

2. Maintain a test bed that allows the evaluation of configuration upgrades.

Depending on the type of system and its complexity, test beds can provide a lower cost solution.

Synthesizing the Challenges. In general, a test bed provides for plug-and-play simulations of
a configuration items (CIs) or the actual physical component. Test beds are also useful for work
arounds because they can minimize SITE schedule problems. They can be used to:

• Integrate early versions of an architectural configuration that is populated with simulated
model representations (functional, physical, etc.) of configuration items (CIs).

• Establish a plug-and-play working test environment with prototype system components
before an entire system is developed.

• Evaluate systems or configuration items (CIs) to be represented by simulated or emulated
models that can be replaced by higher fidelity models and ultimately by the actual physical
configuration item (PCI).
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• Apply various technologies and alternative architectural and design solutions for configu-
ration items (CIs).

• Assess incremental capability and performance upgrades to system field configurations.

Evolution of the Test Bed. Test beds evolve in a number of different ways. Test beds may be
operated and maintained until the final deliverable system completes SITE. At that point actual
systems serve as the basis for incremental or evolutionary development. Every system is different.
So assess the cost–benefits of maintaining the test bed. All or portions of the test bed may be 
dismantled, depending on the development needs as well as the utility and expense of maintenance.

For some large complex systems, it may be impractical to conduct WHAT IF experiments on
the ACTUAL systems in enclosed facilities due to:

1. Physical space requirements.

2. Environmental considerations.

3. Geographically dispersed development organizations.

In these cases it may be practical to keep a test bed intact. This, in combination with the capabil-
ities of high-speed Internet access, may allow geographically dispersed development organizations
to conduct work with a test bed without having to be physically colocated with the actual system.

51.6 MODELING AND SIMULATION 
CHALLENGES AND ISSUES

Although modeling and simulation offer great opportunities for SEs to exploit technology to under-
stand the problem and solution spaces, there are also a number of challenges and issues. Let’s
explore some of these.

Challenge 1: Failure to Record Assumptions and Scenarios

Modeling and simulation requires establishing a base set of assumptions, scenarios, and operating
conditions. Reporting modeling and simulation results without recording and noting this informa-
tion in technical reports and briefings diminishes the integrity and credibility of the results.

Challenge 2: Improper Application of the Model

Before applying a model to a specific type of decision support task, the intended application of the
model should be verified. There may be instances where models do not exist for the application.
You may even be confronted with a model that has only a degree of relevance to the application.
If this happens, you should take the relevancy into account and apply the results cautiously. The
best approach may be to adapt the current model.

Challenge 3: Poor Understanding of 
Model Deficiencies and Flaws

Models and simulations generally evolve because an organization has an operational need to satisfy
or resolve. Where the need to resolve critical operational or technical issues (COIs/CTIs) is imme-
diate, the investigator may only model a segment of an application or “piece of the problem.” Other
Users with different needs may want to modify the model to satisfy their own “segment” needs.
Before long, the model will evolve through a series of undocumented “patches,” and then docu-
mentation accuracy and configuration control become critical issues.
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To a potential user, such a model may have risks due to potential deficiencies or shortcomings
relative to the User’s application. Additionally, undiscovered design flaws and errors may exist
because parts of the model have not been exercised. Beware of this problem. Thoroughly investi-
gate the model before selecting it for usage. Locate the originator of the model, assuming they can
be located or are available. ASK the developers WHAT you should know about the model’s per-
formance, deficiencies, and flaws that may be untested and undocumented.

Challenge 4: Model Portability

Models tend to get passed around, patched, and adapted. As a result, configuration and version
control becomes a critical issue. Maintenance and configuration management of models and sim-
ulations and their associated documentation is very expensive. Unless an organization has a need
to use a model for the long term, the item may go onto a shelf. While the physics and logic of the
model may remain constant over time, the execution of the model on newer computer platforms
may be questionable. This often necessitates migration of the model to a new computer system at
a significant cost.

Challenge 5: Poor Model and Simulation Documentation

Models tend to be developed for specific rather than general applications. Since models and sim-
ulations are often nondeliverable items, documentation tends to get low priority and is often inad-
equate. Management decision making often follows a “do we put $1.00 into making the M&S better
or do we place $1.00 into documenting the product” mindset. Unless the simulation is a deliver-
able, the view is that it is only for internal use and so minimal documentation is the strategy.

Challenge 6: Failure to Understand Model Fidelity

Every model and simulation has a level of fidelity that characterizes its performance and quality.
Understand what level of fidelity you need, investigate the level of fidelity of the candidate model,
and make a determination of utility of the model to meet your needs.

Challenge 7: Undocumented Features

Models or simulations developed as laboratory tools typically are not documented with the level
of discipline and scrutiny of formal deliverables. For this reason a model or simulation may include
undocumented “features” that the developer forgot to record because of the available time, budgets
cuts, and the like. Therefore, you may think that you can easily reuse the model but discover that
it contains problem areas. A worst-case scenario is believing and planning to use a model only to
discover deficiencies when you are “too far down the stream” to pursue an alternative course of
action.

51.7 GUIDING PRINCIPLES

In summary, the preceding discussions provide the basis with which to establish the guiding prin-
ciples that govern modeling and simulation practices.

Principle 51.1 Model fidelity resides in the User’s mind. HIGH fidelity to one person may be
MEDIUM fidelity to a second person and LOW fidelity to a third person.

Principle 51.2 “All models are wrong but some are useful.” [George E.P. Box (1979) p. 202]
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51.8 SUMMARY

In our discussion of modeling and simulation practices we identified, defined, and addressed various types of
models and simulations. We also addressed the implementation of test beds as evolutionary “bridges” that
enable the virtual world of modeling and simulation to evolve to the physical world.

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new system selection, apply your knowledge derived from this chapter’s topical
discussions. If you were the Acquirer of the system:

(a) Are there critical operational and technical issues (COIs/CTIs) that drive the need to employ models
and simulations to support system development? Identify the issues.

(b) What elements of the system require modeling and simulation?

(c) Would a test bed facilitate development of this system? HOW?

(d) What requirements would you levy on a contractor in terms of documenting a model or simulation?

(e) What strategy would you validate the model or simulation?

(f) Could the models be employed as part of the deliverables operational system?

(g) What types of system upgrades do you envision for the evolution of this system? How would a test
bed facilitate evaluation of these upgrades?

ORGANIZATIONAL CENTRIC EXERCISES

1. Research your organization’s command media concerning modeling and simulation practices.

(a) What requirements and guidance are provided?

(b) What requirements are imposed on documenting models and simulations?

2. How are models and simulations employed in your line of business and programs?

3. Contact small, medium, and large contract programs within your organization.

(a) How do they employ models and simulations in their technical decision-making processes?

(b) What types of models do they use?

(c) How did the program employ models and simulations (in architectural studies, performance alloca-
tions, etc.)?

(d) What experiences have they had in external model documentation or developing documentation for
models developed internally?

(e) What lessons learned in the employment and application of models and simulations do they suggest?

(f) Do the programs employ test beds or use test beds of other external organizations?

(g) Did the contract require delivery of any models or simulations used as contract line items (CLINs)? If
so, what Contract Data Requirements List (CDRL) items were required, and when?
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Chapter 52

Trade Study Analysis 
of Alternatives

52.1 INTRODUCTION

The engineering and development of systems requires SEs to identify and work through a large
range of critical operational and technical issues (COIs/CTIs). These issues range from the minis-
cule to the complex, requiring in-depth analyses supported by models, simulations, and prototypes.
Adding to the complexity, many of these decisions are interrelated. How can SEs effectively work
through these issues and keep the program on schedule?

This section answers this question with a discussion of trade study analysis of Alternatives
(AoA). We:

1. Explore WHAT a trade study is and how it relates to a trade space.

2. Introduce a methodology for conducting a trade study.

3. Define the format for a Trade Study Report (TSR).

4. Suggest recommendations for presenting trade study results.

5. Investigate challenges, issues, and risks related to performing trade studies.

We conclude with a discussion of trade study issues that SEs need to be prepared to address.

What You Should Learn from This Chapter

1. What is a trade study?

2. What are the attributes of a trade study?

3. How are trade studies conducted?

4. Who is responsible for conducting trade studies?

5. When are trade studies conducted?

6. Why do you need to do trade studies?

7. What is a trade space?

8. What methodology is used to perform a trade study?

9. How do you select trade study decision factors/criteria and weights?

10. What is a utility function?

11. What is a sensitivity analysis?

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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12. What is the work product of a trade study?

13. How do you document, report, and present trade study results?

14. What are some of the issues and risks in conducting a trade study?

Definitions of Key Terms

• Conclusion A reasoned opinion derived from a preponderance of fact-based findings and
other objective evidence.

• Decision Criteria Attributes of a decision factor. For example, if a decision factor is main-
tainability, decision criteria might include component modularity, interchangeability, acces-
sibility, and test points.

• Decision Factor A key attribute of a system, as viewed by Users or stakeholders, that has
a major influence on or contribution to a requirement, capability, critical operational, or
technical issue (COI/CTI) being evaluated. Examples include elements of technical per-
formance, cost, schedule, technology, and support.

• Finding A commonsense observation supported by in-depth analysis and distillation of facts
and other objective data. One or more findings support a conclusion.

• Recommendation A logically reasoned plan or course of action to achieve a specific
outcome or results based on a set of conclusions.

• Sensitivity Analysis “A procedure for testing the robustness of the results of trade-off analy-
sis by examining the effect of varying assigned values of the decision criteria on the result
of the analysis.” (Source: Kossiakoff and Sweet, System Engineering, p. 453)

• Trade Space An area of evaluation or interest bounded by a prescribed set of boundary
constraints that serve to scope the set of acceptable candidate alternatives, options, or choices
for further trade study investigation and analysis.

• Trade Study “An objective evaluation of alternative requirements, architectures, design
approaches, or solutions using identical ground rules and criteria.” (Source: former 
MIL-STD-499)

• Trade Study Report (TSR) A document prepared by an individual or team that captures
and presents key considerations—such as objectives, candidate options, and methodology—
used to recommend a prioritized set of options or course of action to resolve a critical oper-
ational or technical issue.

• Utility Function A linear or nonlinear characteristic profile or value scale that represents
the level of importance different stakeholders place on a system or entity attribute or capa-
bility relative to constraints established by a specification.

• Utility Space An area of interest bounded by minimum and/or maximum performance cri-
teria established by a specification or analysis and a degree of utility within the performance
range.

• Viable Alternative A candidate approach that is qualified for consideration based on its
technical, cost, schedule, support, and risk level merits relative to decision boundary 
conditions.

Trade Study Semantics

Marketers express a variety of terms to Acquirers and Users that communicate lofty goals that SEs
aspire to achieve. Terms include best solution, optimal solution, preferred solution, solution of
choice, ideal solution, and so on. Rhetorically speaking:



• HOW do we structure a course of action to know when we have achieved a “best solution”?

• WHAT is a “preferred” solution? Preferred by WHOM?

These questions emphasize the importance of structuring a course of action that enables us to arrive
at a consensus of what these terms mean. The mechanism for accomplishing this course of action
is a trade study, which is an analysis of alternatives (AoA).

To better understand HOW trade studies establish a course of action to achieve lofty goals,
let’s begin by establishing the objectives of a trade study:

52.2 TRADE STUDY OBJECTIVES

The objectives of a trade study are to:

1. INVESTIGATE a critical operational or technical issue (COI/CTI).

2. IDENTIFY VIABLE candidate solutions.

3. EXPLORE the fact-based MERITS of candidate solutions relative to decision criteria
derived from stakeholder requirements—via the contract, Statement of Objectives (SOO),
specification requirements, user interviews, cost, or schedules.

4. PRIORITIZE solution recommendations.

In general, COIs/CTIs are often too complex for most humans to internalize all of the technical
details on a personal level. Adding to the complexity are the interdependencies among the
COIs/CTIs. Proper analysis requires assimilation and synthesis of large complex data sets to arrive
at a preferred approach that has relative value or merit to the stakeholders such as Users, Acquirer,
and System Developer. The solution to this challenge is to conduct a trade study that consists of a
structured analysis of alternatives (AoA).

Typical Trade Study Decision Areas

The hierarchical decomposition of a system into entities at multiple levels of abstraction and selec-
tion of physical components requires a multitude of technical and programmatic decisions. Many
of these decisions are driven by the system design-to/for objectives and resource constraints.

Referral For more information about system development objectives, refer to Chapter 35 on
System Design To/For Objectives.

If we analyze the sequences of many technical decisions, categories of trade study areas emerge
across numerous system, product, or service domains. Although every system, product, or service
is unique and has to be evaluated on its own merits, most system decisions can be characterized
using Figure 52.1. Specifically, the large vertical box in the center of the graphic depicts the top-
down chain of decisions common to most entities regardless of system level of abstraction.

Beginning at the top of the center box, the decision sequences include:

• Architecture trades

• Interface trades including human-machine interfaces

• Hardware/software (HW/SW) trades

• Commercial off-the-shelf (COTS)/nondevelopmental item (NDI)/new development trades

• HW/SW component composition trades

• HW/SW process and methods trades

• HW/SW integration and verification trades

674 Chapter 52 Trade Study Analysis of Alternatives
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This chain of decisions applies to entities at every system level of abstraction—from SYSTEM, to
PRODUCT, to SUBSYSTEM, and so forth, as illustrated by the left facing arrows. SEs employ
decision aids to support these decisions, such as analyses, prototypes, mock-ups, models, simula-
tions, technology demonstrations, vendor data, and their own experience, as illustrated by the box
shown at the right-hand side. The question is: HOW are the sequences of decisions accomplished?

Trade Studies Address Critical Operational/
Technical Issues (COIs/CTIs)

The sequence of trade study decisions represents a basic “line of questioning” intended to facili-
tate the SE design solution of each entity.

1. What type of architectural approach enables the USER to best leverage the required system,
product, or service capabilities and levels of performance?

2. Given an architecture decision, what is the best approach to establish low risk, interoper-
able interfaces or interfaces to minimize susceptibility or vulnerability to external system
threats?

3. How should we implement the architecture, interfaces, capabilities, and levels of perform-
ance? Equipment? Hardware? Software? Humans? Or a combination of these?

4. What development approach represents a solution that minimizes cost, schedule, and 
technical risk? COTS? NDI? Acquirer furnished equipment (AFE)? New development? 
A combination of COTS, NDI, AFE, and new development?

5. Given the development approach, what should the composition of the HWCI or CSCI be in
terms of hardware components or software languages, as applicable?

6. For each HWCI, CSCI, or HWCI/CSCI component, what processes and methods should be
employed to design and develop the entity?

7. Once the HWCI, CSCI, or HWCI/CSCI components are developed, how should they be inte-
grated and verified to demonstrate full compliance?
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Figure 52.1 Typical Trade Study Decision Sequences



We answer these questions through a series of technical decisions. A trade study, as an analysis of
alternatives (AoA), provides a basis for comparative evaluation of available options based on a
predefined set of decision criteria.

52.3 SEQUENCING TRADE STUDY DECISION DEPENDENCIES

Technical programs usually have a number of COIs/CTIs that must be resolved to enable progres-
sion to the next decision in the chain of decisions. If we analyze the sequences of these issues, we
discover that the process of decision making resembles a tree structure over time. Thus, the branches
of the structure represent decision dependencies as illustrated in Figure 52.2.

During the proposal phase of a program, the proposal team conducts preliminary trade studies
to rough out key design decisions and issues that require more detailed attention after Contract
Award (CA). These studies enable us to understand the COI or CTI to be resolved after CA. Addi-
tionally, thorough studies provide a level of confidence in the cost estimate, schedule, and risk—
leading to an understanding of the problem and solution spaces.

Author’s Note 52.1 Depending on the type of program/contract, a trade study tree is often
helpful to demonstrate to a customer that you have a logical decision path toward a timely system
design solution.

52.4 SYSTEM ARCHITECTURAL ELEMENT TRADE STUDIES

Once an entity’s problem and solution space(s) are understood, one of the first tasks a team has to
perform is to select an architecture. Let’s suppose you are leading a team to develop a new type of
vehicle. What are the technical decisions that have to be made? We establish a hierarchy of vehicle
architecture elements as illustrated in Figure 52.3.
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Each of these elements involves a series of technical decisions that form the basis for subse-
quent, lower level decisions. Additionally decisions made in one element as part of the SE process
may have an impact on one or more other elements. Consider the following example:

EXAMPLE 52.1

Cargo/payload constraints influence decision factors and criterion used in the Propulsion System trades—
involving technology and power; vehicle frame trades—involving size, strength, and materials; wheel system
trades—involving type and braking; and other areas as well.

52.5 UNDERSTANDING THE PRESCRIBED TRADE SPACE

Despite the appearance that trade study efforts have the freedom to explore and evaluate options,
there are often limiting constraints. These constraints bound the area of study, investigation, or
interest. In effect the bounded area scopes what is referred to as the trade space.

The Trade Space

We illustrate the basic trade space by the diagram in Figure 52.4. Let’s assume that the System
Performance Specification (SPS) identifies specific measures of performance (MOPs) that can be
aggregated into a minimum acceptable level of performance—by a figure of merit (FOM)—as noted
by the vertical gray line. Marketing analyses or the Acquirer’s proposal requirements indicate there
is a per unit cost ceiling as illustrated by the horizontal line. If we focus on the area bounded by
the minimum acceptable performance (vertical line), per unit cost ceiling (horizontal line), and
cost–performance curve, the bounded area represents the trade space.

Now suppose that we conduct a trade study to evaluate candidate Solutions 1, 2, 3, and 4. We
construct the cost–performance curve. To ensure a level of objectivity, we normalize the per unit
cost ceiling to the Acquirer maximum requirement. We plot cost and relative performance of each
of the candidate Solutions 1, 2, 3, and 4 on the cost–performance curve.

By inspection and comparison of plotted cost and technical performance relative to required
performance:
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• Solutions 1 and 4 fall outside the trade space.

• Solution 1 is cost compliant but technically noncompliant.

• Solution 4 is technically compliant but cost noncompliant.

When this occurs, the Trade Study Report (TSR) documents that Solutions 1 and 4 were consid-
ered and determined by analysis to be noncompliant with the trade space decision criteria and were
eliminated from consideration.

Following elimination of Solutions 1 and 4, Solutions 2 and 3 undergo further analysis to thor-
oughly evaluate and score other considerations such as organizational risk.

Optimal Solution Selection

The previous discussion illustrates the basic concept of a two-dimensional trade space. A trade
space, however, is multidimensional. For this reason it is more aptly described as a multidimen-
sional trade volume that encompasses technical, life cycle cost, schedule, support, and risk deci-
sion factors.

We can illustrate the trade volume using the graphic shown in Figure 52.5. To keep the diagram
simple, we constrain our discussion to a three-dimensional model representing the convolution of
technical, cost, and schedule factors. Let’s explore each dimension represented by the trade volume.

• Performance–Schedule Trade Space The graphic in the upper left-hand corner of the
diagram represents the performance vs. schedule trade space. Identifier 1 marks the location
of the selected performance versus schedule solution.

• Performance–Cost Trade Space The graphic in the upper right-hand corner includes 
represents the performance–cost trade space. Identifier 2 marks the location of the selected
performance versus cost solution.

• Cost–Schedule Trade Space The graphic in the lower right-hand corner of the diagram rep-
resents the Cost–Schedule trade space. Identifier 3 marks the location of the selected cost
versus schedule solution.
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If we convolve these trade spaces and their boundary constraints into a three-dimensional model,
the cube in the center of the diagram results.

The optimal solution selected is represented by the intersection of orthogonal lines in their
respective planes. Conceptually, the optimal solution would lie on a curve that represents the con-
volution of the performance–schedule, performance–cost, and cost–schedule curves. Since each
plane includes a restricted trade space, the integration of these planes into a three-dimensional
model results in a trade space volume.

52.6 THE TRADE STUDY PROCESS

Trade studies consist of highly iterative steps to analyze the issues to be resolved into a set pri-
oritized recommendations. Figure 52.6 represents a basic Trade Study Process and its process steps.
Let’s briefly examine the process through each of its steps.

Process Step 1: Define the trade study objective(s).

Process Step 2: Identify decision stakeholders.

Process Step 3: Identify trade study individual or team.

Process Step 4: Define the trade study decision factors/criteria.

Process Step 5: Charter the trade study team.

Process Step 6: Review the Trade Study Report (TSR)

Process Step 7: Select the preferred approach.

Process Step 8: Document the decision.
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Guidepost 52.1 Our discussion has identified the overall Trade Study Process. Now let’s focus
our attention on understanding the basic methodology that will be employed to conduct the trade
study.

52.7 ESTABLISHING THE TRADE STUDY METHODOLOGY

Objective technical and scientific investigations require a methodology for making decisions. The
methodology facilitates the development of strategy, course of action, or “roadmap” of the planned
technical approach to investigate, analyze, and evaluate the candidate solution approaches or
options. Methodologies, especially proven ones, keep the study effort on track and prevent unnec-
essary excursions that consume resources and yield no productive results.

There are numerous ways of establishing the trade study methodology. Figure 52.7 provides
an illustrative example:

Step 1: Understand the problem statement.

Step 2: Define the evaluation decision factors and criteria.

Step 3: Weight decision factors and criteria.

Step 4: Prepare utility function profiles.

Step 5: Identify candidate solutions.

Step 6: Analyze, evaluate, and score the candidate options.

Step 7: Perform sensitivity analysis.

Step 8: Prepare the Trade Study Report (TSR).

Step 9: Conduct peer/subject matter expert (SME) reviews.

Step 10: Present the TSR for approval.
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Guidepost 52.2 At this point we have established the basic trade study methodology. On the
surface the methodology is straightforward. However, HOW do we evaluate alternatives that have
degrees of utility to the stakeholder? This brings us to a special topic, trade study functions.

52.8 TRADE STUDY UTILITY FUNCTIONS

When scoring some decision factors and criteria, the natural tendency is to do so on a linear scale
such as 1–5 or 1–10. This method assumes that the User’s value scale is linear; in many cases it
is nonlinear. In fact, some candidate options data have levels of utility. One way of addressing this
issue is to employ utility functions.

Understanding the Utility Function and Space

The trade space allows us to sort out acceptable solutions that fall within the boundary constraints
of the trade space. Note we used the term acceptable as in the context of satisfying a minimum/
maximum threshold. The reality is some solutions are, by a figure of merit (FOM), better than
others. We need a means to express the degree of utility mathematically. Figure 52.8 provides exam-
ples of HOW Users might establish utility function profiles. To see this point better, consider the
following example:

EXAMPLE 52.4

A User requires a vehicle with a minimum speed within a mission area of 50 miles per hour (mph) under spec-
ified operating environment conditions. Mission analysis, as validated by the User, indicates that 64.0mph is
the maximum speed required. Thus, we can state that the minimum utility to the User is 50mph and the
maximum utility is 64.0mph.



Assigning the Relative Utility Value Range. Since utility represents the value profile a User
places on an attribute, we assign the minimum utility a value of 0.0 to represent the minimum per-
formance requirement—which is 50mph. We assign a utility value of 1.0 to represent the maximum
requirement—which is 64.0mph. The net result is the establishment of the utility space as indi-
cated by the shaded area in Figure 52.9.
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Source: Adapted from NASA System Engineering “Toolbox” for Design-Oriented Engineers, Figure 2-1 “Example
utility functions”; p. 2-7.
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Determining Candidate Solution Utility. Once the utility range and space are established,
the relative utility of candidate options can be evaluated. Suppose that we have four candidate
vehicle solutions—1, 2, 3, and 4—to consider.

• Vehicle 1 has a minimum speed of 48mph.

• Vehicle 2’s minimum speed is 50mph—the threshold specification requirement.

• Vehicle 3’s minimum speed is 57mph.

• Vehicle 4’s minimum speed is 65mph.

So we assign to each vehicle the following utility values relative to the minimum specification
requirement:

1. Vehicle 1 = unacceptable and noncompliant

2. Vehicle 2 at 50mph = utility value of 0, the minimum threshold

3. Vehicle 3 at 57mph = utility value of 0.5

4. Vehicle 4 = exceeds the maximum threshold and therefore has a utility value of 1.0.

This approach creates several issues:
First, if Vehicle 1 has a minimum speed of 48mph, does this mean that it has a utility value

of <0.0 (i.e., disutility) or 0? The answer is no, because we assigned 0.0 to be the minimum spec-
ification requirement of 50mph which vehicle 2 meets.

Second, if Vehicle 4 exceeds the maximum speed requirement, do we assign it a utility value
of 1.0+ (i.e., >1.0), or do we maximized its utility at 1.0? The answer depends on whether vehicle
4 already exists or will be developed. You generally are not paid to overdevelop a system beyond
its required capabilities—in this case, 64mph.

Third, if we apply the utility value to the trade study scoring criteria (decision factor ¥ weight
¥ utility value), HOW do we deal with a system such as Vehicle 4 that has a utility value of 0.0
but meets the minimum specification requirement?

Utility Value Correction Approach 1

In the preceding example we started with good intentions—to find value-based decision factors via
utility functions—but have created another problem. How do we solve it? There are a couple of
solutions to correct this situation.

One approach is to simply establish a utility value of 1.0 to represent the minimum specifica-
tion requirement. This presents an issue. In the example Vehicle 1 has a minimum speed of 48mph
under specified operating conditions. If a utility value of 1.0 represents the minimum performance
requirement, Vehicle 1 will have a utility value of -0.2.

Simply applying this utility value infers acceptance as a viable option and allows it to con-
tinue to be evaluated in a trade study evaluation matrix. Our intention is to eliminate noncompli-
ant solutions—which is to remove Vehicle 1 from consideration. Thus, if a solution is unacceptable,
it should have a utility value of 0.0. This brings us to Approach 2.

Utility Value Correction Approach 2

Another utility correction approach that overcomes the problems of Correction Approach 1 involves
a hybrid digital and an analog solution. Rather than IMMERSING ourselves in the mathematical
concepts, let’s simply THINK about what we are attempting to accomplish.

The reality is that either a candidate option satisfies a minimum/maximum require-
ment or it doesn’t. The result is digital: 1 = meets requirement, and 0 = does not meet requirement.



This then leads to the question: If an option meets the requirement, how well does it meet the require-
ment—meaning an analog result? We can state that more concisely as:

Utility value = Digital utility + Analog utility (52.3)

where:

Digital utility (DU) = 1 or 0

Analog utility (AU) = 0.0 to 1.0 (variable scale)

In summary, should you use utility functions in your trade studies? The decision depends on
a case-by-case basis. In general, the preceding discussion simply provides a means of refining and
delineating the degree of utility for specific capabilities relative to a User’s mission application.

52.9 SENSITIVITY ANALYSIS

Although trade studies are intended to yield THE best answer that stands out for a given set of
decision criteria, many times they do not. Often the data for competing alternatives are clustered
together. How do you decluster the data to resolve this dilemma?

Theoretically, we perform a sensitivity analysis of the data. The sensitivity analysis enables us
to vary any one decision factor weight by some quantity such as 10% to observe the effects on the
decision. However, this may or may not decluster the data. So, let’s take another approach.

Better Sensitivity Analysis Approach

A better approach to differentiating clustered trade study data resides in selection of the decision
factors and criteria. When we initially identified decision factors/criteria with the stakeholders,
chances are there was a board range of factors. To keep things simple, assume we arbitrarily selected
6 criteria from a set of 10. Weight each criterion. As a result, the competing solutions became 
clustered.

The next logical step is to factor in the n + 1 criterion and renormalize the weights based on
earlier ranking. Then, you continue to factor in additional criteria until the data decluster. Recog-
nize that if the n + 1 has a relative weight of 1%, it may not significantly influence the results. This
leaves two options:

Option A: Make a judgmental decision and pick a solution.

Option B: Establish a ground rule that the initial selection of decision criteria should not con-
stitute more than 90% or 95% of the total points and scale the list to 100%. This effec-
tively leaves 5% to 10% for the n + 1 or higher terms that may have a level of
significance on the outcome. As each new item is added back, rescale the weights rel-
ative to their initial weights within the total set.

52.10 TRADE STUDY REPORTS (TSRs)

On completion of the trade study analysis, the next challenge is being able to articulate the results
in the Trade Study Report (TSR). The TSR serves as a quality record that documents accomplish-
ment of the chartered or assigned task.

Why Document the Trade Study?

A common question is WHY document a trade study? There are several reasons:
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First, your Contract Data Requirements List (CDRL) or organization command media may
require that you to document trade studies.

Second, trade studies formally document key decision criteria, assumptions, and constraints
of the trade study environment for posterity. Since SE, as a highly iterative process, requires deci-
sion making based on given conditions and constraints, those same conditions and constraints can
change quickly or over time. Therefore, you or others could have to revisit previous trade study
decisions to investigate HOW the changing conditions or constraints could have impacted the deci-
sion or course of action such that corrective actions should be initiated.

Third, as a professional, document key decisions and rationale as a matter of disciplinary 
practice.

Trade Study Documentation Formality

Trade studies are documented at various levels of formality. The level of formality ranges from
simply recording the considerations and deliberations in a SE’s engineering notebook to formally
approved and published reports intended for wide distribution. ALWAYS check your contract, local
organization command media, and/or program’s Technical Management Plan (TMP) for explicit
direction concerning the level of formality required. At a minimum, document the key facts of the
trade study in a personal engineering notebook.

Preparing the TSR

There are numerous ways of preparing the TSR. First and foremost, ALWAYS consult your con-
tract or organizational command media for guidance. If there are no specific outline requirements,
consider using or tailoring the outline provided below:

1.0 INTRODUCTION

1.1 Scope

1.2 Authority

1.3 Trade Study Team Members

1.4 Acronyms and Abbreviations

1.5 Definitions of Key Terms

2.0 APPLICBLE DOCUMENTS

2.1 Acquirer (role) Documents

2.2 System Developer (role) Documents

2.3 Vendor Documents

3.0 EXECUTIVE SUMMARY

3.1 Trade Study Objective(s)

3.2 Trade Study Purpose

3.3 Trade Space Boundaries

3.4 Findings

3.5 Conclusions

3.6 Recommendations

3.7 Other Viewpoints

3.8 Selection Risks and Impacts
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4.0 TRADE STUDY METHODOLOGY

4.1 Step 1

4.2 Step 2

4.z Step z

5.0 DECISION CRITERIA, FACTORS, AND WEIGHTS

5.1 Selection of Decision Factors and Criteria

5.2 Selection of Weights for Decision Factors or Criteria

7.0 EVALUTION AND ANALYSIS OF ALTERNATIVES

7.1 Option A

7.2 Option B

7.x Option x

8.0 FINDINGS AND CONCLUSIONS (optional)

9.0 RECOMMENDATIONS (optional)

APPENDIXES SUPPORTING DATA

A Data Item 1

B Data Item 2

Warning: Proprietary, Copyrighted, and Export Controlled Information Most vendor
literature is copyrighted or deemed proprietary. So avoid reproducing and/or posting any copy-
righted information unless you have the expressed, written permission from the owner/vendor to
reproduce and distribute the material. ALWAYS establish proprietary data exchange agreements
before accepting any proprietary vendor data.

As stated previously, some vendor data may be EXPORT controlled and subject to the US Inter-
national Traffic and Arms Regulations (ITAR). So ALWAYS consult with your program, Contracts,
legal, and Export Control organizations before disseminating technical information that may be
subject to this constraint.

Proof Check the TSR Prior to Delivery

Some Trade Study Teams develop powerful and compelling trade studies only to have the effort
falter due to poor writing and communications skills. When the TSR is prepared, thoroughly edit
it to ensure completeness and consistency. Perform a spell check on the document. Then, have peers
review the document to see that it is self-explanatory, consistent, and does not contain errors. Make
sure the deliverable TSR reflects the professionalism, effort, and quality of effort contributed to the
trade study.

Presenting the Trade Study Results

Once team members prepare and approve the Trade Study Report (TSR), present the trade study
results. There are a number of approaches for presenting TSR results. The approaches generally
include delivery of the TSR as a document, briefings, or combination.

..
.

..
.

..
.
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Trade Study Report (TSR) Submittal. For review, approval, and implementation, deliver the
TSR directly to the chartering decision authority that commissioned the study. The TSR should
always include a cover letter prepared by the Trade Study Team lead and reviewed for concurrence
by the team.

TSRs can be delivered via the mail or by personal contact. It is advisable that the Trade Study
Team lead or team, if applicable, personally deliver the TSR to the decision authority. This pro-
vides an opportunity to briefly discuss the contents and recommendations.

During the meeting the decision authority may solicit team recommendations for 
disseminating the TSR to stakeholders. If a meeting forum is selected to present a TSR briefing,
the date, time, and location should be coordinated through notification to the stakeholders and Trade
Study Team members.

Advance Review of the Trade Study Report. The Trade Study decision authority—such as
the Technical Director, Project Engineer, or System Engineering and Integration Team (SEIT)—
may request an advance review of the TSR by stakeholders prior to the TSR presentation and 
discussion. If a decision is expected at the meeting, advance review of the TSR enables the 
stakeholders to come prepared to:

1. Address any open questions or concerns

2. Make a decision concerning the recommendations.

TSR Briefings. TSR briefings to stakeholders can be helpful or a hindrance. They are helpful if
additional clarification is required. Conversely, if the presenter does a poor job with presentation,
the level of confidence in the TSR may be questioned. Therefore, BE PREPARED.

52.11 TRADE STUDY RISK AREAS

Trade studies, like most decisions, have a number of risk areas: let’s explore a few examples.

Risk Area 1: Test Article Data Collection Failures

When test articles are on loan for technical evaluation, failures may occur and PRECLUDE com-
pletion of data collection within the allowable time frame. Because of the limited time for the trade
study, replacement of the test article(s) may not be practical or feasible. Plan for contingencies
and mitigate their risks!

Risk Area 2: Poor or Incorrect Assumptions

Formulation of candidate solutions often requires a set of dependencies and assumptions—such as
availability of funding or technology. Stakeholders often challenge trade study results because poor
or incorrect assumptions were made by the trade study team. Where appropriate and necessary,
discuss and validate assumptions with the decision authority to preclude consuming resources
developing a decision that was flawed due to poor or incorrect assumptions from the start.

Risk Area 3: Data Validity

Technical decision making must be accomplished with the latest most complete, accurate, and
precise data available. Authenticate the currency, accuracy, and precision of all data as well as
vendor commitment to stand behind the integrity of the data.
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Risk Area 4: Selection Criteria Relevancy

Occasionally selection criteria that have little or no contribution to the selection focus and objec-
tive get onto the list of Decision Factors or Criteria. Scrutinize the validity of factors and selec-
tion criteria. Document the supporting rationale.

Risk Area 5: Overlooked Selection Criteria

Sometimes there are critical operational or technical issues (COIs/CTIs) attributes that do not make
the Selection Criteria List. Selection criteria checks and balances should include verification of
traceability of selection criteria to the COIs/CTIs to be resolved.

Risk Area 6: Failure to Get the User “Buy In”

Contrary to popular opinion, customer satisfaction does not begin at delivery of the system. The
process begins at Contract Award. Toward this end, keep the User involved as much as practical
in the technical decision-making process to provide the foundation for positive delivery satisfac-
tion. When high-level trade studies are performed that have an impact on system capabilities, inter-
faces, and performance, solicit User validation of Selection Decision Factors and Criteria and their
respective weights. Give the User some level of ownership of the system/product, starting at Con-
tract Award.

Risk Area 7: Unproven or Invalid Methodology

Trade study success begins with a strong, robust strategy and methodology that will withstand pro-
fessional scrutiny. Flaws in the methodology influence and reduce the integrity and effectiveness
of the trade study. Solicit peer reviews by trusted colleagues to ensure that the trade study begins
on the RIGHT track and yields results that will withstand professional scrutiny by the organiza-
tion, Acquirer, User, and professional community, as applicable.

Risk 8: Scaling the Trade Study Task Activities to 
Resource Constraints

As with most SE tasks, you may not always have an adequate amount of time to perform trade
studies. Yet, the results are expected to be professionally and competently accomplished.

Whatever time frame you have available, assuming it is reasonable and practical, the key
results and findings, in general, need to be comparable whether you have one day or one week. If
you have one day, the decision authority gets a one-day trade study and data; one month gets a
month’s level of analysis and data. So, HOW do you deal with the time constraints? The level of
detail, research, analysis, and reporting may have to be scaled to the available time.

52.12 TRADE STUDY SUGGESTIONS

Although trade studies are intended to resolve critical operational or technical (COI/CTI) issues,
one of their ironies is they sometimes create their own set of issues related to scope, context,
conduct, and reporting. Here are a few suggestions to consider based on issues common to many
trade studies:

Suggestion 1: Select the right methodology.

Suggestion 2: Adhere to the methodology.

Suggestion 3: Select the right decision factors, criteria, and weights.
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Suggestion 4: Avoid predetermined trade study decisions.

Suggestion 5: Establish acceptable data collection methods.

Suggestion 6: Ensure data source integrity and credibility.

Suggestion 7: Reconcile inter-COI/CTI dependencies.

Suggestion 8: Accept/reject trade study report recommendations.

Suggestion 9: Document the trade study decision.

Suggestion 10: Create trade study report credibility and integrity.

Suggestion 11: Respect trade study dissenting technical opinions.

Suggestion 12: Maintain trade study reports.

Concluding Point

The perception of clear-cut options available for selection is sometimes deceiving. The reality is
none of the options may be acceptable. There may even be instances where the trade study may
lead to yet another option that is based on combinations of the options considered or options not
considered. Remember, the trade study process is NOT intended to answer: Is it A, B, or C. The
objective is to determine the best solution given a set of prescribed decision criteria. That includes
other options that may not have been identified prior to the start of the trade study.

52.13 GUIDING PRINCIPLES

In summary, the preceding discussions provide the basis with which to establish the guiding prin-
ciples that govern trade study practices.

Principle 52.1 An undocumented trade study is nothing more than personal opinion.

Principle 52.2 Trade studies are only as valid as their task constraints and underlying assump-
tions, methodology, and data collection. Document and preserve the integrity of each.

Principle 52.3 A trade study team without a methodology is prone to wander aimlessly.

Principle 52.4 Analyses investigate a specific condition, state, circumstances, or “cause-and-
effect” relationships; trade studies analyze alternatives and propose prioritized recommendations.

Principle 52.5 (Wasson’s Task Significance Principle) The amount of time allowed for task per-
formance and completion is often inversely proportional to the task’s level of significance to the
deliverable system, User, Acquirer, or organization.

52.14 SUMMARY

During our discussion of trade study practices, we defined what a trade study is, discussed why trade studies
are important and should be documented, and outlined the basic trade study process and methodology. We
also addressed methods for documenting and presenting the TSR results.
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GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new system, selection, apply your knowledge derived from this chapter’s topical
discussions. Specifically identify the following:

(a) Critical operational and technical issues (COIs/CTIs) that had to be resolved.

(b) Based on your own needs, what decision factors and criteria would you establish for each COI/CTI?
How would you weight them?

ORGANIZATIONAL CENTRIC EXERCISES

1. Your management has decided to procure a specific computer for an application and wants you to develop
a trade study justifying the selection and present the results to corporate headquarters. How would you
approach the situation?

2. Contact two or three contract programs within you organization. Interview the Technical Director or Project
Engineer and SEs regarding what approaches were used to perform trade studies. Identify the following
for each program, report and discuss your findings with peers:

(a) What methodology steps were used?

(b) How were decision criteria determined?

(c) How were decision criteria weights established?

(d) How many candidates were evaluated?

(e) Was a detailed analysis performed on each candidate or only on the final set of candidates?

(f) What type of sensitivity analysis was employed to decluster candidates, if applicable?

(g) What lessons did the program learn from the trade studies? What worked/didn’t work?
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Chapter 53

System Verification and Validation

53.1 INTRODUCTION

For most non–research and development (R&D) programs, there are two options to engineering
and developing systems:

• Option 1 Employ the hobbyist approach based on the BUILD, TEST, FIX paradigm “until
we get it right” philosophy.

• Option 2 Do the job RIGHT the first time.

Stockholders, corporations, and Acquirers, among many others, want to know “up front” that their
money is going to be applied efficiently and effectively within cost and schedule constraints. From
the corporation’s perspective, this means winning contracts, surviving, growing its business,
increasing shareholder value, and achieving a return on the investment (ROI).

In a highly competitive marketplace, organizations wrestle over every contract to answer many
key questions. Consider the following examples:

1. How do we assess and maintain the technical integrity of the evolving system design 
solution?

2. How do we avoid expensive “fixes” and “retrofits” in the field after system delivery due to
latent defects?

3. How can we reduce the cost of maintenance due to correct latent defects?

4. How do we institute controls to protect our investment in the system development through
reduction of defects and errors?

5. How can we reduce development cost, schedule, technical, technology, and support risks?

6. How do we validate that the specified system will meet the User’s intended operational
needs?

So, HOW do SEs get system development RIGHT the first time while satisfying these questions?
You institute a series of ongoing verification and validation activities throughout the System Devel-
opment Phase. These activities are deployed at staging or control points—the major milestones and
reviews. Why is this necessary? To ensure that the evolving Developmental Configuration pro-
gresses toward maturity with an acceptable level of risk to the stakeholders and is compliant with
the System Performance Specification (SPS), contract cost and schedule constraints, and ultimately
satisfies the User’s validated operational needs.

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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Definitions of Key Terms

• Analysis (Verification Method) “Use of analytical data or simulations under defined condi-
tions to show theoretical compliance. Used where testing to realistic conditions cannot be
achieved or is not cost-effective.” (Source: INCOSE SE Handbook Version 2.0, July 2000,
para. 4.5.18 Verification Analysis, p. 275)

• Certification “Refers to verification against legal and/or industrial standards by an outside
authority without direction to that authority as to how the requirements are to be verified.
Typically used in commercial programs. For example, this method is used for CE certifica-
tion in Europe, and UL certification in the US and Canada. Note that any requirement with
a verification method of “certification” is eventually assigned one or more of the four veri-
fication methods (inspection, analysis, demonstration, or test).” (Source: INCOSE SE Hand-
book Version 2.0, July 2000, para. 4.5.18 Verification Analysis, p. 275)

• Classification of Defects “The enumeration of possible defects of the unit or product, clas-
sified according to their seriousness. Defects will normally be grouped into the classes of
critical, major or minor: however, they may be grouped into other classes, or into subclasses
within these classes.” (Source: Former MIL-STD-973, para. 3.7)

• Deficiency “1. Operational need minus existing and planned capability. The degree of inabil-
ity to successfully accomplish one or more mission tasks or functions required to accom-
plish a mission or its objectives. Deficiencies might arise from changing mission objectives,
opposing threat systems, changes in the environment, obsolescence, or depreciation in
current military assets. 2. In contract management—any part of a proposal that fails to satisfy
the government’s requirements.” (Source: DSMC Defense Acquisition Acronyms and Terms,
10th edition, 2001.)

Deficiencies consist of two types:
1. “Conditions or characteristics in any item which are not in accordance with the item’s

current approved configuration documentation.” (Source: Former MIL-STD-973 para.
3.28)

2. “Inadequate (or erroneous) item configuration documentation, which has resulted, or may
result, in units of the item that do not meet the requirements for the item.” (Source: Former
MIL-STD-973 para. 3.28)

• Demonstration (Verification Method) “A qualitative exhibition of functional performance,
usually accomplished with no or minimal instrumentation.” (Source: INCOSE SE Handbook
Version 2.0, July 2000, para. 4.5.18 Verification Analysis, p. 275)

• Deviation Refer to the definition in Chapter 28 on System Specification Practices.

• Discrepancy A statement highlighting the variance between what exists and minimum
requirements for standard process, documentation, or practice performance compliance.

• Independent Verification and Validation (IV&V) “Verification and validation performed
by an organization that is technically, managerially, and financially independent of the devel-
opment organization.” (Source: IEEE 610.12-1990 Standard Glossary of Software Engi-
neering Terminology)

• Inspection (Verification Method) “Visual examination of the item (hardware and software)
and associated descriptive documentation which compares appropriate characteristics with
predetermined standards to determine conformance to requirements without the use of
special laboratory equipment or procedures.” (Source: Adapted from DSMC Glossary:
Defense Acquisition Acronyms and Terms)
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• Similarity (Verification Method) The process of demonstrating, by traceability to source
documentation, that a previously developed and verified SE design or item applied to a new
program complies with the same requirements thereby eliminating the need for design level
reverification.

• Test (Verification Method) The act of executing a formal or informal scripted procedure,
measuring and recording the data and observations, and comparing to expected results for
purposes of evaluating a system’s response to a specified stimuli in a prescribed environ-
ment with a set of constraints and initial conditions.

• Validation The act of assessing the requirements, design, and development of a work
product to assure that it will meet the User’s operational needs and expectations at delivery.

• Verification “The process of evaluating a system or component to determine whether the
products of a given development phase satisfy the conditions imposed at the start of that
phase. Formal proof of program correctness.” (Source: IEEE 610.12-1990 Standard Glos-
sary of Software Engineering Terminology)

• Verification and Validation (V&V) “The process of determining whether the requirements
for a system or component are complete and correct, the products of each development phase
fulfill the requirements or conditions imposed by the previous phase, and the final system or
component complies with specified requirements.” (Source: IEEE 610.12-1990 Standard
Glossary of Software Engineering Terminology)

• Waiver Refer to the definition in Chapter 28 on System Specification Practices.

53.2 SYSTEM VERIFICATION AND VALIDATION OVERVIEW

Verification and validation are intended to satisfy some very critical program needs and questions
that serve as the basis for V&V objectives as illustrated in Table 53.1.

Based on this introduction, let’s begin our first discussion topic by correcting the V&V myth.

Correcting the V&V Myth

The first thing you should understand is that V&V activities are performed throughout the
system/product life cycle. V&V activities begin at Contract Award and follow through contract
delivery system acceptance at the end of the System Development Phase.

Many people erroneously believe that V&V activities are only performed at the end of a
program as part of system acceptance. Although formal V&V activities include acceptance tests
and field trials, System Developers initiate V&V activities at the time of Contract Award and con-
tinue throughout all segments of the System Development Phase as shown in Figure 24.3. V&V is
performed at all system levels of abstraction and on each entity within a level.

Under ISO 9000, technical plans state how multi-disciplined system engineering and devel-
opment are to be accomplished, tasks to be performed, schedule, and work products to be produced.
V & V activities employ these work products at various stages of completion to assess compliance
of the evolving system design solution to technical plans, tasks, and specifications.

53.3 SYSTEM VERIFICATION PRACTICES

Verification encompasses all of the System Development Phase activities from Contract Award
through system acceptance. This includes Developmental Test and Evaluation (DT&E) activities
such as technology validation, manufacturing process proofing, quality assurance and acceptance,
as well as the Operational Test and Evaluation (OT&E).
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Importance of System Verification

System verification provides incremental, OBJECTIVE evidence that the evolving, multi-level
system design solution, as captured by the Developmental Configuration, is progressing to matu-
rity. COMPLIANCE verification, in turn, provides a level of confidence in meeting the planned
capabilities and levels of performance.

Verification Tasks, Actions, and Activities

Verification tasks and actions, which apply to all facets of system development, include: 1) analy-
ses, 2) design, 3) technical reviews, 4) procurement, 5) modeling and simulation, 6) technology
demonstrations, 7) tests, 8) deployment, 9) operations, 10) support, and 11) disposal. Verification
tasks enable technical programs to evaluate: risk assessments; people, product, and process capa-
bilities; compliance with requirements; proof of concept, and so forth.

53.4 WHAT DO PROGRAMS VERIFY?

Most engineers use the term verify casually and interchangeably with validation without under-
standing the scope of its context. The key question is: WHAT is being verified? The answer resides
in the System Development Phase segments of the system/product life cycle.

The key segments of the System Development Phase are illustrated in Figure 24.3 and include
System Engineering Design, Component Procurement and Development, System Integration and
Test, System Verification, Operational Test and Evaluation (OT&E), and Authentication of System
Baselines. Let’s investigate WHAT is being verified during the System Development Phase of the
system/product life cycle.
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Table 53.1 V&V solutions to program challenges

Challenge Program Challenge V&V Objective

1 How do we preserve the technical Conduct periodic Requirements Traceability Audits 
integrity of the evolving system design (RTAs).
solution?

2 How do we avoid expensive “fixes” Identify and correct deficiencies and defects 
and “retrofits” in the field after “early” to avoid increased “downstream”
system delivery? development and operational costs and risks.

3 How do we ensure the specified Coordinate and communicate with the User to 
system will meet the User’s validated ensure that expected system outcomes, 
operational needs? requirements, and assumptions are valid.

4 How can we reduce technical, Institute crosschecks of analyses, trade studies,
technology, and support risks? demonstrations, models, and simulation results.

5 How do we protect our investment Conduct technical reviews and audits. Require 
in the system development? periodic risk assessments. Conduct proof of 

concept or technology demonstrations



System Design Segment Verification

During the SE Design Segment, multiple levels of the SE design solution are verified—via document
reviews, technical reviews, prototypes and technology demonstrations, models and simulations, and
requirements traceability—for compliance with the contract and specification requirements.

Component Procurement and Development 
Segment Verification

Component procurement and development verification occurs in two forms:

1. Receiving inspection of external vendor products such as components and raw materials
based on procurement “fitness-for-use” criteria.

2. Internally produced or modified components.

Externally procured components and materials undergo receiving inspection verification that the
item(s) comply with the procurement specifications. The verification may be accomplished by:

1. Random samples selected for analysis and test.

2. Inspection of Certificates of Certification (CofCs) certified by the vendor’s quality assur-
ance organization.

3. By 100% testing of each component.

Internally developed or modified components are subjected to INSPECTION, ANALYSIS,
DEMONSTRATION, or TEST to verify that each component fully complies with its design require-
ments—technical drawings, and so forth.

In all cases, component or material deficiencies such as design flaws and substandard 
work quality are recorded as discrepancy reports (DRs) and dispositioned for corrective action, as
appropriate.

System Integration, Test, and Evaluation (SITE) 
Segment Verification

During the System Integration, Test, and Evaluation (SITE) segment, each integrated system entity
is verified for compliance to its respective performance or item development specification using
pre-approved test procedures. If noncompliances are identified, a DR is documented and disposi-
tioned for corrective action.

Operational Test and Evaluation (OT&E) Segment Verification

The Operational Test & Evaluation (OT&E) segment focuses on validating that the User’s docu-
mented operational needs, as stated in the Operational Requirements Document (ORD), have been
met. However, system verification occurs during this segment to ensure that all system elements
are in a state of readiness to perform system validation.

Authenticate System Baselines Segment Verification

When a system completes its System Verification Test (SVT) and Operational Test and Evaluation
(OT&E), performance results from the As Built, As Verified, and As Validated system configura-
tions are verified via a functional configuration audit (FCA) and a physical configuration audit
(PCA), as applicable. The results of the FCA and PCA are formally authenticated in a System Ver-
ification Review (SVR).
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53.5 MULTI-LEVEL APPLICATION OF VERIFICATION

Verification is performed at all levels of the system and every item within each level. This includes
SYSTEM, PRODUCT, SUBSYSTEM, ASSEMBLY, SUBASSEMBLY, and PART levels.

If a commercial off-the-shelf (COTS) item, a nondevelopmental item (NDI), or a configura-
tion item (CI) is procured according to design requirements—such as procurement specifications,
control drawings, or vendor product specifications—you must verify, via some form of objective
evidence or quality record, that the item fully complies with its requirements.

For internal and subcontracted configuration item (CI) development efforts, formal acceptance
test procedures (ATPs) must be successfully completed, witnessed, and documented. COTS/NDI
items generally include a Certificate of Compliance (CofC) from the vendor unless prior arrange-
ments have been made.

System Verification Responsibilitys

System verification is performed formally and informally every day on every task for both internal
and external customers. You should recall our discussion in Figure 13.3 about the internal and
external customer “supply chains.” So, WHO is responsible for verification? Anyone who produces
a work product regardless of whether the “customer is internal or external in the workflow process.”

Informal Verification Responsibilities. From the moment a new contract is signed until the
system is delivered to the field, every task:

1. Accepts outputs from at least one or more predecessor tasks.

2. Performs value-added processing in accordance with established standards and practices.

3. Delivers the resulting work product to meet the needs and expectations of the next “down-
stream” task.

As each task is performed, the accountable individual or team verifies that:

1. The task inputs comply with “fitness-for-use” criteria.

2. Their personal work products meet specific requirements.

Therefore, verification activities incrementally build integrity into the value chain to ultimately
deliver physical components and work products that comply with organizational and contract
requirements.

Formal Verification Responsibilities. We noted in our Introduction to system V&V that ver-
ification activities occur throughout the system/product life cycle at strategic staging or control
points. System Development Phase critical staging or control points are documented in the 
Integrated Master Plan (IMP) as events, accomplishments that support events, and criteria that
support accomplishments. These include major technical reviews, technology demonstrations, 
document reviews, component inspections, and multi-level system acceptance tests. Each of 
these events is assigned to a responsible individual or IPT for completion accountability including
V&V.

Verification Control Points

Verification is performed at various staging or control points in the System Development Process.
These control points, which are both work product and contract event based, include document
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reviews, technical reviews, modeling and simulation, and prototyping and technology demonstra-
tions. Let’s explore each of these briefly.

Document Reviews. Document reviews serve as one of the earliest opportunities for verifica-
tion tasks. Reviewers assess the completeness, consistency, and traceability of documentation rel-
ative to source requirements, risk, soundness of strategy, logic, and engineering approach. Work
product examples include plans, specifications, Concept of Operation (ConOps), analyses and trade
studies.

Technical Reviews. Technical reviews are conducted informally and formally. Reviews, which
typically include the Acquirer and User, provide a forum to address, resolve, and verify any criti-
cal operational or technical issue (COI/CTI) resolution relative to contract requirements and 
direction.

Referral For more information about technical reviews, refer to Chapter 54 on Technical Review
Practices.

Models and Simulations. During the early phases of the program, candidate architectures are
evaluated for performance trade-offs, requirements allocation decisions are made, and system
timing is determined. Models and simulations provide early verification insight into critical oper-
ational and technical issues (COIs/CTIs), and reveal some unknowns as well as how the proposed
system solution may perform in a simulated operating environment.

Referral For more information about System Modeling and Simulation Practices, refer to
Chapter 51.

Prototypes and Technology Demonstrations. Critical operational and technical issues
(COIs/CTIs) that cannot be resolved via models and simulations can often be investigated using
prototypes and demonstrations as a risk reduction method of how a proposed solution might
perform. Work product examples include test flights and test beds. During these demonstrations,
the System Developer and Users should verify and validate system performance and risk prior to
committing to a larger scale program.

Requirements Traceability. Developing a system with integrity requires that each system com-
ponent at every system level of abstraction is interoperable and traceable back to a set of source
requirements. Developers employ tools such as spreadsheets or requirements management tools to 
document traceability links.

Referral For more information about requirements traceability, refer to Chapter 31 on Require-
ments Derivation, Allocation, Flow Down, and Traceability Practices.

53.6 VERIFICATION METHODS

The process of verifying multi-level SE design compliance to the System Performance Specifica-
tion (SPS) or item development specification (IDS) requires standard verification methods that are
well defined and understood. Verification includes five commonly recognized methods: 1) INSPEC-
TION, 2) ANALYSIS, 3) DEMONSTRATION, 4) TEST, and 5) CERTIFICATION. A sixth
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method, SIMILARITY, is permitted as a verification method in some business domains. The NASA
SE Handbook (para. 6.6.1, p. 118) further suggests two additional verification methods: SIMU-
LATION and VALIDATION OF RECORDS.

Let’s explore each of these types of verification methods.

Verification by TEST

Test is used as a verification method to prove by measurement and results that a system or product
complies with its specification or design requirements. Testing employs a prescribed set of OPER-
ATING ENVIRONMENT conditions using test procedures approved by the Acquirer (role). Testing
occurs in two forms: functional testing and environmental testing.

Testing can be very expensive and should only be used if inspection, analysis, and demon-
stration do not individually or collectively provide the objective evidence required to prove 
compliance.

Verification by ANALYSIS

Specific aspects of system performance that call for verification by ANALYSIS are documented in
a formal technical report. In general, these analyses are placed under configuration control.

Verification by DEMONSTRATION

Verification by DEMONSTRATION is typically performed without instrumentation. The system
or product is presented in various facets of operation for witnesses to OBSERVE and document
the results. DEMONSTRATION is often used in field-based applications and operational scenar-
ios involving, reliability, maintainability, human engineering, and final on-site acceptance follow-
ing formal verification.

Verification by SIMILARITY

The NASA SE Handbook (para. 6.6.1, p. 119) describes verification by SIMILARITY as: “[T]he
process of assessing by review of prior acceptance data or hardware configuration and applica-
tions that the article is similar or identical in design and manufacturing process to another article
that has previously been qualified to equivalent or more stringent specifications.”

Author’s Note 53.1 Remember, there are two contexts of system development: design verifica-
tion and product verification. “Design verification” is a rigorous process that proves an SE design
meets specification and design requirements. You ONLY verify a design once, unless you make
changes to the As Designed, As Verified, and As Validated Product Baseline. Once the design is
committed to production, “product verification”—physical realization of the design—is applied to
prove that the physical instance of a product—the model and serial number—performs intended
capabilities without errors or defects. Therefore, verification by similarity requires that you present
quality records of the design verification previously accomplished.

Verification by INSPECTION

The NASA SE Handbook (para. 6.6.1, p. 119) defines verification by INSPECTION as the
“[P]hysical evaluation of equipment and/or documentation to verify design features. Inspection is
used to verify construction features, workmanship, and physical dimensions and condition (such
as cleanliness, surface finish, and locking hardware).” Some organization use verification by
EXAMINATION instead of INSPECTION.
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Verification by Simulation

The NASA SE Handbook (para. 6.6.1, p. 119) states verification by SIMULATION is “[E]mployed
when analytical methods may be impractical and physical EQUIPMENT System Element hardware
and software have not been produced to provide actual data.”

Verification by Validation of Records

The NASA SE Handbook (para. 6.6.1, p. 119) defines verification by VALIDATION of RECORDS
as “[T]he process of using manufacturing records at end-item acceptance to verify construction
features and processes for flight hardware.”

Verification Method Cost Factors

In general, the cost to perform these verification methods varies significantly. Relative costs by ver-
ification method are:

• Inspection (low cost)

• Similarity (low cost)

• Analysis (low to moderate cost)

• Demonstration (moderate cost)

• Test (moderate to high cost)

• Certification (moderate to high cost)

When proposing a new system, you should strive to identify the method with the lowest cost and
risk that will provide compelling, objective evidence that a requirement has been satisfactorily
accomplished. If you have a requirement that you can verify by ANALYSIS (low to moderate cost),
WHY would you want to commit to TEST (moderate to high cost) as the verification method and
drive up your proposal price and potentially risk losing the contract?

Referral For additional information about selection of specification requirements verification
methods, refer to Chapter 33 on Requirements Statement Development Practices.

53.7 SYSTEM VALIDATION PRACTICES

Whereas system verification asks if we built the work product RIGHT, system validation answers
the Acquirer question “Did we acquire the RIGHT system to meet the User’s validated operational
needs?”

Validation Methods

Validation is performed with a number of methods such as User interviews, prototyping, demon-
stration, qualification tests, test markets, and field trials. In general, validation consists of any
method that enables the System Developer of a system, product, or service to establish a level of
confidence that the evolving work product satisfies the User’s documented operational need(s).

Author’s Note 53.2 Note the use of the term “documented”; this is very good practice. People
tend to change their minds about WHAT they said or intended to say. To avoid any misinterpreta-
tion by either party, document the mutual understanding of User needs, including what criterion
represent mission success at acceptance.
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Importance System Validation Responsibility

Validation employs User feedback mechanisms to keep the activities that produce work products
focused on the key factors critical to User satisfaction.

The scope of validation encompasses more than a User function. Remember, the System Per-
formance Specification (SPS) provides a basis to decompose a high-level problem space into lower
levels of solution spaces, even within the System Developer’s program organization. In this context
the User (role) is the higher level team assigned the PRODUCT, SUBSYSTEM, ASSEMBLY, and
SUBASSEMBLY problem space. As the lower level solution space “designs” evolve, higher level
users must validate that the evolving item will satisfy needs.

EXAMPLE 53.1

A Control Station Integrated Product Team (IPT), which is assigned implementation responsibility for the
Control Station Performance Specification, has a problem space to resolve. The problem space is decomposed
into several solution spaces. Requirements for Computer Software Configuration Item (CSCI) 1 are allocated
and documented in the CSCI 1’s Software Requirements Specification and assigned to the CSCI 1’s IPT. As
CSCI 1’s design is formulated, the IPT employs iterative rapid prototyping methods to generate sample oper-
ator displays and transitions for evaluation and feedback (i.e., validation). The Control Station IPT invites the
Users, via Acquirer contract protocol, to participate in a demonstration to review and provide feedback as val-
idation that the evolving display designs and transitions satisfy the User’s needs. Results of the demonstra-
tion are documented as a quality record and used to support developer decision making.

Validation Responsibility

Everyone on the program on every task performs validation by making sure that each work product
or stage of a work product’s completion meets the expected needs of each task and customer in the
supply chain.

EXAMPLE 53.2

An SE is tasked to produce an analysis. The SE performs validation by talking with the task source to:

1. Fully understand the critical operational or technical issue (COI/CTI) to be resolved.

2. Scope areas for investigation, objectives, and constraints.

3. Understand how the results are to be documented to ensure the work product will meet the task source’s
needs.

Validation continues after the work product (PRODUCT, SUBSYSTEM, etc.) is delivered until the
User’s intended operational need is satisfied.

53.8 SYSTEM PERFORMANCE VERIFICATION 
AND VALIDATION

Our discussion of system verification and validation up to this point has focused on the process
and mechanisms of V&V implementation. Here, we explore some approaches that focus on system
performance verification and validation. These approaches include:

• Acceptance tests

• Technical demonstrations
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• Qualification tests

• System verification tests (SVTs)

• Field trails and test markets

Acceptance Tests

Acceptance tests are formal tests that establish the technical and legal criteria for acceptance 
of the system or product by the Acquirer for the User based on compliance with specification
requirements. Compliance results provide a prerequisite for the Acquirer to formally accept the
system.

In general, acceptance tests are conducted with a set of formally approved and released accept-
ance test procedures (ATPs) that have been agreed to by the Acquirer and User as applicable, and
by the System Developer. System level acceptance tests:

1. Are derived from the System Performance Specification (SPS) Section 3.0 Requirements.

2. Apply verification methods identified in the Section 4.0 Qualification Provisions to verify
accomplishment of each Section 3.0 Requirement(s).

For some programs, the term acceptance test (AT) is synonymous with the System Verifica-
tion Test (SVT). In other cases, an AT may utilize a subset of the SVT ATPs after system installa-
tion at a User site as a final verification prior to formal system acceptance. Acceptance tests, as a
generic term, are also used by IPTs to demonstrate entity compliance to a higher level team such
as a System Engineering and Integration Team (SEIT).

Acceptance tests may be procedure-based or scenario-based.

Procedure-Based ATPs. Procedure-based ATPs provide detailed, scripted instructions. Test
operators are required to follow prescribed scripts to establish a specific test configuration, switch
positions, and inputs to stimulate or enter into the system. Each test procedure identifies the expected
results for verification against specification requirements.

Scenario-Based ATPs. Scenario-based ATPs provide general guidance in the form of opera-
tional scenarios. Detail actions such as switch settings and configuring the software required to
operate the system are left to the system/test operator. ATP data sheets generally include a field for
recording the actual measurements and observations. Relevant witnesses from the System Devel-
oper, Acquirer, and User organizations to the System Developer and Quality Assurance (QA) rep-
resentatives authenticate the ATP results as quality records.

Technical Demonstrations

Technical demonstrations are sometimes performed as part of the Developmental Test and Eval-
uation (DT&E) procedures through the use of prototypes, technology demonstrations, and proof of
concept demonstrations. These activities provide an excellent opportunity to assess and evaluate
system performance and obtain more insight into system requirements and their refinements. The
results of technology demonstrations sometimes ARE NOT the actual test articles but the set of
requirements and data derived from the technical demonstration.

System Verification Test (SVT)

System Verification Tests (SVTs) are formal tests performed on systems and products at a 
designated facility and witnessed by the Acquirer and System Developer QA. A User representa-
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tive(s) is typically invited by the Acquirer to participate. The purpose of the SVT is to prove that
the system or product fully complies with and meets its System Performance Specification (SPS)
requirements.

In preparation for the SVT, formal acceptance test procedures (ATPs) are developed, reviewed,
and approved. Prior to the SVT, a test readiness review (TRR) may be conducted to determine the
state of readiness of the test article(s) and supporting test environment—including EQUIPMENT,
FACILITIES, and PERSONNEL Elements as well as processes, methods, and tools used prior to
the test.

Referral For more information about the test readiness review and system verification tests, refer
to Chapter 54 on Technical Review Practices.

Qualification Tests

When a system completes its formal SVT, system validation may be performed as a qualification
test, depending on contract requirements. Qualification tests, or Formal Qualification Tests (FQTs),
consist of two types:

1. Tests conducted under actual or realistic field conditions to demonstrate that the system
design and its development (components, workmanship, etc.) meet contract requirements.

2. Scenario-driven tests conducted by an Independent Test Agency (ITA) for the User organ-
ization as part of the Operational Test and Evaluation (OT&E) activity.

During the OT&E qualification test, the System Developer is normally precluded from participat-
ing in the test. Generally, the System Developer is kept informed about the evolving results of
OT&E. Qualification tests should be conducted by the User personnel to assess not only the system
(e.g., EQUIPMENT Element performance) but also overall Human Systems Integration (HSI)
effectiveness. Environmental or qualification tests are often followed by a Formal Qualification
Review (FQR), which assesses the results of the qualification tests.

EXAMPLE 53.3

Qualification tests subject system and component test article(s) to HARSH environmental test conditions in
a NATURAL ENVIRONMENT or controlled laboratory or field test environments. Conditions may include
shock, vibration, electromagnetic interference (EMI), temperature, humidity, and salt spray to qualify the
design for its intended application (in space, air, sea, land, etc.).

Field Trails and Test Markets

Commercial System Developers conduct formal system, product, and service verification testing
via field trials in the marketplace. Systems, products, and services evolve through a series of design
iterations based on feedback from Users in field trials or test markets. Ultimately, marketplace
supply and demand determine the public’s response in terms of system ACCEPTABILITY.

53.9 INDEPENDENT VERIFICATION AND VALIDATION (IV&V)

Due to technical issues such as risk, interoperability, safety, and health related to large complex,
expensive systems, government organizations such as DoD and NASA may issue IV&V contracts
to assess the work of System Developers during the System Development Phase. In this context,
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the IV&V contractor provides an independent assessment to the Acquirer that the provisions of the
system development contract are being implemented properly. A key objective is to ensure that
systems or products will have acceptable risk and proper considerations for the safety and health
of the system operators and the general public.

Need for Independence

Potential hardware and software design flaws, deficiencies, or errors are sometimes missed due to
limited personnel availability and skills, incorrect requirements, or changes in hardware or soft-
ware platforms. Critical flaws can result in cost overruns, or even catastrophic failure that poses
safety risks to the public and the NATURAL ENVIRONMENT. An independent observer can be
an important ally to the Acquirer in preventing these problems.

Degree of Independence

A common question is: How “independent” must an IV&V organization be? IEEE 610-1990
describes an IV&V organization as “technically, managerially, and financially independent of the
development organization.”

Benefits of IV&V

People often ask, “Why should we go to the expense of performing IV&V, either by contract or by
internal assessments? What’s the return on investment (ROI)?” There are several reasons; some are
objective and others subjective. In general, IV&V:

1. Improves system or product safety.

2. Provides increased visibility into the System Development Process.

3. Identifies nonessential requirements and design features.

4. Assesses compliance between specification and performance.

5. Identifies potential risks areas.

6. Reduces the quantity of latent defects such as design flaws, errors, defective materials or
components, and workmanship problems.

7. Reduces development, operations, and support costs.

When performed constructively and competently, IV&V can be of benefit to both the Acquirer and
the System Developer. Depending on the role assigned by the Acquirer to the IV&V contractor,
adding another player into the System Development Process may require the System Developer to
plan for and obtain supplemental resources. The challenge for the System Developer may be dealing
in an environment whereby the Acquirer believes the IV&V contractor is not “earning their keep”
unless they FIND a lot of microscopic deficiencies, even if the work products are more than ade-
quate technically, professionally, and contractually.

EXAMPLE 53.4

As an example, software is playing an increasing role in day to day. For each NASA mission or project to
execute successfully, it is imperative that the software operates safely and within its designed parameters.
Failure of a single piece of mission critical software within a NASA mission can potentially result in loss of
life, dollars, and/or data. IV&V serves as a mechanism to underscore the importance of software safety and
helps ensure safe and successful NASA missions.
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53.10 COMMON SYSTEM V&V CHALLENGES AND ISSUES

System verification and validation, in general, involve a number of issues that SEs must be pre-
pared to address. Let’s examine a few of the challenges and issues.

Challenge 1: Acquirer need for V&V.

Challenge 2: Establishing the scope of V&V activities.

Challenge 3: Developing confidence in the evolving work product.

Challenge 4: System developer need for V&V.

Challenge 5: V&V impacts on cost and schedule.

Challenge 6: Degree of V&V team independence.

Challenge 7: Incorporation of IV&V findings and recommendations.

Challenge 8: Program personnel V&V skills and knowledge levels.

Challenge 9: Model and simulation certification.

Challenge 10: Verified systems that fail system validation.

Challenge 1: Acquirer Need for V&V

From an Acquirer’s perspective, you need a technical basis to determine if the deliverable system
and all other aspects of the contract are progressing in accordance with the performance standards
established by the contract. V&V activities provide a mechanism to the degree funding constraints
allow. The questions is: Do you allocate funding for V&V or target those funds to adding more
system capabilities?

Large, complex systems require disciplined approaches to ensuring that the system or product
will satisfy its requirements. Accomplishment of this objective is achieveable without performing
V&V during Developmental Test and Evaluation (DT&E) and Operational Test and Evaluation
(OT&E). The question is: Depending on the system application, are you willing to assume the risk
of not performing V&V?

Challenge 2: Establishing the Scope of V&V

The scope, breadth, and depth of the V&V effort are often critical issues. Since cost CONSTRAINS
the extent of V&V, do you:

• Perform V&V at high levels across the whole program?

• Focus V&V resources in specific areas that may be high risk? In any case, the program
should make an assessment on a case-by-case basis.

Contracts typically specify some form of V&V activities such as technical reviews and acceptance
tests to demonstrate accomplishment of the SPS requirements. IV&V may be a different matter. If
IV&V is not required, here’s the challenge: Are you prepared to deal with the consequences from
the lack of V&V such as the cost-to-correct latent defects and design flaws. The answer requires
consideration of the size and complexity of system development and operational risks.

Challenge 3: Developing Confidence in 
the Evolving Work Product

As an Acquirer or System Developer, you must establish a system of checks and balances through-
out the System Development Phase to build a level of confidence that the evolving Developmental
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Configuration will satisfy the System Performance Specification (SPS) requirements and the User’s
validated operational needs.

Challenge 4: System Developer Need for V&V

From a System Developer’s perspective, whether or not the contract requires V&V activities, you
need a mechanism to demonstrate satisfactory achievement of the SPS requirements, accomplish-
ment and closure of the contract requirements, and so forth. If V&V activities are not part of the
contract, consider conducting some level of internal V&V activities.

Challenge 5: V&V Impacts on Cost and Schedule

Cost and schedule impacts are the critical issues in V&V implementation. If the V&V activity has
been planned and scheduled into the Master Program Schedule (MPS), Integrated Master Plan
(IMP), and Integrated Master Schedule (IMS), cost and schedule impacts should not necessarily be
a problem, assuming they were properly estimated, allocated, and managed.

The challenge here is to overcome perceptions that V&V, or its results, typically place pro-
grams behind schedule. Conducting a V&V activity, which is often viewed by SE Design Team
members as unnecessary and non–value added, identifies potential risk areas that can become
ROOT CAUSES for late program delivery. This translates into increased costs, impacts contract
performance incentives, and subsequently impacts profit, depending on the type of contract.

Challenge 6: Degree of V&V Team Independence

One of the critical issues in V&V is WHO performs the V&V activity. Ideally, an independent ver-
ification and validation (IV&V) organization or contractor performs V&V. If this is impractical, an
in-house team independent of the program may be a candidate to perform verification, depending
on the application. The Acquirer, however, may offer a few comments about the credibility of this
effort because of a potential organizational conflict of interest.

The criticality of team independence is driven by the fact that an IPT is too close to the evolv-
ing Developmental Configuration and may not be objective. You could say that the IPT has a con-
flict of interest (COI); designers SHOULD NOT evaluate their own work. Capable personnel from
other IPTs can provide a comparable V&V function though the degree of independence organiza-
tionally may still be questionable. But, it may your only choice.

Challenge 7: Incorporation of IV&V 
Findings and Recommendations

If we assume the V&V activity produces substantive and meaningful results, consideration should
be given to implementing the findings and recommendations. If you are going to spend the money,
you should be prepared to seriously consider implementing the results. The underlying assumption
here is that the IV&V findings are within the scope of your contract. If not, the System Developer
should discuss and negotiate the issue with the Acquirer.

Granted, there are sometimes circumstances where the V&V Audit Team may not have knowl-
edge of all the factors affecting a decision. So, the team should investigate and discuss question-
able areas with the SEIT or IPT to validate any evidence that may lead to a finding. Likewise, the
IPT should ensure that the V&V Audit Team has all the information they require to make well-
founded assessments.
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Challenge 8: Program Personnel V&V Skills and 
Knowledge Levels

One of the issues with V&V is that program personnel may lack common skills, experience, and
insights into conducting V&V activities. As an SE, you need to be the “leveling” agent and make
sure everyone is trained and skilled in V&V practices, especially from a decision-making per-
spective. The realities are you have to devise a way to build in a minimum set of V&V activities
to ensure that the system meets the minimizing costs requirements and remains competitive. Good
practices consist of establishing key V&V objectives, soliciting proposed solutions, and selecting
a preferred approach.

Author’s Note 53.3 A worst-case program scenario becomes reality when executives with
limited experience exploit their position and authority by making command decisions that jeop-
ardize program success. Examples are shortcutting or eliminating the review process to save
dollars, eliminating critical documents, and configuration management and quality assurance.
Executives who perceive themselves, by virtue of power and authority, as subject matter experts
(SMEs) don’t necessarily place their careers on the line by doing this. They ALWAYS have a way
of finding scapegoats in the technical ranks to place blame for poor contract performance result-
ing from their innovative cost-cutting shortcuts. Then, continue to be promoted to higher positions
because of their “outstanding” leadership.

Challenge 9: Model and Simulation Certification

Development of credible models and simulations may require verification by SMEs or SME 
organizations. Certification brings a level of accountability for maintaining and controlling the
models and simulations in the form of expenses, distribution, licensing, proprietary issues, and 
documentation.

Referral For more information about modeling and simulation, refer to Chapter 51 on System
Modeling and Simulation Practices.

Challenge 10: Verified Systems That Fail System Validation

One of the most critical points of SE is the integrity of the “value chain” from the identification
and validation of User operational needs through system delivery. You can incorrectly:

1. And inaccurately identify, bound, and specify the problem space(s) and the solution
space(s).

2. Prepare the Operational Requirements Document (ORD), RFP System Requirements Doc-
ument (SRD), System Performance Specifications (SPS), item development specifications
(IDS), and design specification requirements.

3. Select the wrong COTS/NDI products.

Errors, omissions, and defects in the ORD to SRD to SPS decision-making process can result in a
system that fully complies with its SPS but fails to meet the User-validated operational needs doc-
umented in the ORD. Therefore, system specification, design, and development process decisions
and integrity are critical issues to the User, Acquirer, and System Developer.
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53.11 IS V&V A HELP OR HINDRANCE?

People typically view V&V activities as unnecessary tasks that consume critical skills, cost, and
schedule resources and do not produce a new product. Contrary to this shortsighted mindset, V&V
activities result in a higher quality product and AVOID costly rework. In the end the program direc-
tors, technical directors, project engineers, SEs, and others who are accountable for technical
program performance and customer acceptance must live with the consequences of their decisions.

Some people apply V&V and view it as a pathway leading to success; others view it as an
unnecessary hindrance. Program performance tends to correlate with these two perspectives. The
bottom line is: invest in correcting design flaws, errors, discrepancies, and deficiencies “up front”
OR pay significantly more at higher levels of integration.

If you are serious about your reputation and career, you should ensure that some form of checks
and balances are in place to verify that the system development effort will produce systems, prod-
ucts, and services that comply with contract requirements. V&V activities provide a means to
accomplish this. Does V&V guarantee success? Absolutely not! Like most human activities, the
quality of the V&V effort is only as good as the people who perform the work, methods and tools
used, and the resources allocated to the activity.

53.12 GUIDING PRINCIPLES

In summary, the preceding discussions provide the basis with which to establish the guiding prin-
ciples that govern system verification and validation practices.

Principle 53.1 Verification assesses compliance by asking the question: Did we develop the work
product RIGHT—in accordance with specification, design, or task requirements?

Principle 53.2 Validation asks the question: Did we acquire the RIGHT work product to satisfy
the User’s intended operational need?

Principle 53.3 To avoid or minimize legal issues, ALWAYS perform system verification, prefer-
ably with an Acquirer representative as a witness.

Principle 53.4 ALWAYS have an Independent Test Agency (ITA) or organization perform val-
idation System Developers have a conflict of interest.

Principle 53.5 Every SYSTEM/entity failure during system verification and validation has a
cost. Explicitly document Acquirer and System Developer cost accountability before the contract
is signed.

53.13 SUMMARY

During our discussion of system V&V practices, we defined V&V; its objectives; HOW, WHEN, and WHERE
V&V is accomplished; who is accountable; and methods for conducting V&V activities. In support of this
overview, chapter 54 on Technical Review practices address specific verification activities that support key
decision control points.

We described the various verification methods: 1) inspection, 2) analysis, 3) demonstration, 4) test, 5)
certification, and 6) similarity, if permissible. Each of the verification methods is supported by verification
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activities such as design reviews, prototypes, and audits. We also discussed independent verification and val-
idation (IV&V) concepts, their implementation, and their benefits.

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new system selection, apply your knowledge derived from this chapter’s topical
discussions. Specifically identify the following:

(a) How would you approach verification and validation for the system, product, or service?

(b) Do you believe there is a need for IV&V. Provide your rationale?

(c) What aspects of the design and development must be verified by inspection, analysis, demonstration,
and test?

ORGANIZATIONAL CENTRIC EXERCISES

1. Research your organization’s command media for guidance and direction for performing verification and
validation (V&V) activities.

(a) Identify specific requirements for V&V.

(b) When are V&V activities to be performed?

(c) How are V&V results to be documented, briefed, and implemented?

(d) Is IV&V required?

2. Contact a small, a medium, and a large contract program within your organization.

(a) Do their respective contracts require any V&V activities?

(b) How are the results to be documented?

(c) Does the contract include an IV&V contractor?

(d) What lessons learned from previous programs has the contract program learned, and how are the results
being implemented?

3. For your business domain, which verification methods are typically required for most contracts or tasks?
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Chapter 54

Technical Reviews

54.1 INTRODUCTION

Successful system development requires periodic assessments of the status, progress, maturity, and
risk of the evolving system design solution at critical staging or control points. These critical
staging or control points serve as gating mechanisms and are intended to answer the following
questions:

1. Is there agreement between the key stakeholders—the User, Acquirer, System Developer—
concerning the requirements for the system, product, or service? Do the stakeholders share
a common understanding and interpretation of the requirements? Have all requirements
issues been resolved? Are the requirements in balance with the planned technical, technol-
ogy cost, and schedule constraints and risks?

2. Does the System Developer have a SYSTEM level design solution selected from a set of
viable candidate solutions that represent the best balance of technical technology, cost,
schedule, and support performance and risks?

3. Have System Performance Specification (SPS) requirements been allocated via multi-level
item development specifications to PRODUCTs, SUBSYSTEMs, hardware configuration
items (HWCIs), computer software configuration items (CSCIs), and so forth?

4. Do we have a multi-level, preliminary design solution that is sufficient to commit to detailed
design with minimal risk in terms of meeting technical, cost, and schedule performance
requirements?

5. Do we have a multi-level, detailed design solution that is sufficient to commit to component
procurement and development with minimal risk in terms of meeting technical, cost, and
schedule performance requirements?

6. Are the procured and developed components ready for system integration, test, and evalu-
ation (SITE) verification and validation?

7. Is the system or product ready to undergo formal system verification and acceptance by the
Acquirer, as the User’s contractual and technical?

8. Does the system meet the User’s validated operational needs—its operational utility, suit-
ability, and effectiveness?

As the questions above evolve with the system development, technical reviews enable the Acquirer
to verify that the evolving Developmental Configuration complies with specification requirements
and is progressing with acceptable risk toward delivery on-schedule and within budget.

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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What You Should Learn from This Chapter

1. What is a technical review?

2. Why should you conduct a technical review?

3. Who is responsible for conducting technical reviews?

4. How are technical reviews documented?

5. What is the relationship between a technical review and contract phase?

6. What is an Integrated Baseline Review (IBR) and what is it intended to accomplish?

7. What is a System Requirements Review (SRR) and what is it intended to accomplish?

8. What is a System Design Review (SDR) and what is it intended to accomplish?

9. What is a Hardware Specification Review (HSR) and Software Specification Review (SSR)
and what is it intended to accomplish?

10. What is a Software Specification Review (SSR) and what is it intended to accomplish?

11. What is a Preliminary Design Review (PDR) and what is it intended to accomplish?

12. What is a Critical Design Review (CDR) and what is it intended to accomplish?

13. What is a Test Readiness Review (TRR) and what is it intended to accomplish?

14. What is a Production Readiness Review (PRR) and what is it intended to accomplish?

Definitions of Key Terms

• Conference Minutes A quality record that serves as a written summary of a formal program
event and documents the attendees, agenda, discussion topics, decisions, actions items, and
handouts.

• Critical Design Review (CDR) A major technical program event conducted by a System
Developer with the Acquirer and User to assess the progress, status, maturity, plans, and risks
of each configuration item’s (CI) detailed design solution. The event serves as a critical
staging point for authorizing and committing resources for the Component Procurement and
Development Segment of the System Development Phase.

• Hardware/Software Specification Review (SSR) An assessment of each unique HWCI 
or CSCI requirements specifications to determine their adequacy to authorize preliminary
hardware design or preliminary software design and commit resources to support those 
activities.

• In-Process Review (IPR) An interim or incremental assessment of a document or design
solution during its development to provide “early” stakeholder feedback for purposes of
ensuring that the work product is progressing to maturity with acceptable risk within cost,
schedule, and technical constraints. IPRs may be conducted internally or with the external
participants and should result in a documented set of conference minutes.

• Peer Review A formal or informal review of an SE’s or IPT’s work products by knowl-
edgeable subject matter experts (SMEs).

• Preliminary Design Review (PDR) A major technical program event conducted by a
System Developer with the Acquirer and User to review a SYSTEM’s HWCI or CSCI
designs with intent to authorize and commit resources to detailed design.

• Production Readiness Review (PRR) “A formal assessment by system stakeholders to
authenticate the current Product Baseline and the readiness of the Technical Data Package
(TDP) for production.” (Source: Former MIL-STD-1521)
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• Ready-to-Ship Review (RTSR) A formal assessment by system stakeholders to determine
the readiness of the system to be disassembled and shipped to a User’s designated location.

• System Design Review (SDR) An assessment of the evolving system design solution to
evaluate the completeness and maturity of the system architecture and its interfaces, identi-
fication of PRODUCTS/SUBSYSTEMS, allocation of SPS requirements to PRODUCTS/
SUBSYSTEMS, and risks.

• System Requirements Review (SRR) An assessment of the conciseness, completeness,
accuracy, reasonableness, and risk of the System Performance Specification (SPS) require-
ments to permit the development of a system with an intent to AVOID misinterpretations,
inconsistencies, and errors, especially during system verification, validation, and acceptance.

• System Verification Review (SVR) A formal assessment by system stakeholders to authen-
ticate the results of the functional configuration audit (FCA) and physical configuration audits
(PCA) relative to System Performance Specification (SPS) requirements and verification
methods.

• Technical Reviews A series of system engineering activities by which the technical progress
on a project is assessed relative to its technical or contractual requirements. The reviews are
conducted at logical transition points in the development effort to identify and correct prob-
lems resulting from the work completed thus far before the problems can disrupt or delay
the technical progress. The reviews provide a method for the contractor and the Acquirer to
determine that the development of a configuration item and its documentation have met con-
tract requirements. (Source: Adapted from Former MIL-STD-973, para. 3.89)

• Test Readiness Review (TRR) An assessment of the maturity of all aspects of a multi-
item/configuration item (CI) to determine: 1) its state of readiness to proceed with testing
with a critical focus on environmental, safety, and health (ES&H) concerns and 2) author-
ize initiation of the tests.

54.2 TECHNICAL REVIEWS OVERVIEW

System development is highly dependent on progressive, efficient, technical decision making
throughout the System Development Phase that involve the Acquirer and User. The timing of con-
structive technical assessment and feedback by stakeholders at critical control or staging points
enables the System Development Team to evolve the system design solution to maturity. The mech-
anism for staging these assessments and making key technical decisions consist of a series of tech-
nical reviews.

Technical Review Objective

The objective of a technical review is to enable key stakeholders to assess the evolving 
system design solution at critical staging or control points to determine the progress, status,
maturity, integrity, plans, and risk as a condition of a SYSTEM, configuration item (CI), or non-
developmental item (NDI) for committing resources for the next segment or phase of program 
activities.

Categories of Technical Reviews

Technical reviews consist of major reviews conducted formally and internal reviews that tend to
be less formal. In general, the major reviews are typically required by contract and involve the
Acquirer and User stakeholder representatives as participants.



Formal Contract Technical Reviews

Contract reviews, which are referred to as program events, are formally conducted in accordance
with the terms and conditions (Ts&Cs) of the contract. Generally, the contract identifies the reviews
to be conducted and specifies guidance for preparing, conducting, and completing the review. In
addition to the contract guidance that defines HOW the reviews are to be conducted, there is also
a protocol associated with providing directions and guidance during the review, attendees to be
invited and by whom, and so forth.

Traditional Contract Technical Reviews

Years ago contracts used technical reviews as a limited, but important, window for the customer
(Acquirer) to look into the contractor’s operations and assess HOW WELL the effort was pro-
gressing. Depending on contract size, complexity, and priority, the customer assigned an on-site
representative at the contractor’s facility. This individual’s task was to monitor day-to-day opera-
tions and communicate to the “home organization” views on HOW WELL the contractor efforts
were progressing. In general, the reviews enable customer project managers to ask themselves
“Does the System Developer’s design solution review materials correlate with the progress depicted
in prior phone conversations with the contractor—‘glowing’contractor status and progress reports,
and so forth?”

Several weeks prior to a technical review, the System Developer prepared large documenta-
tion packages for distribution to the customer and User for review. During this review the contents
of the documentation package were discussed over a period of several days in agonizing detail. As
a result, technical reviews consumed large amounts of time, were costly, and provided “feedback”
too late, which caused rework and impacted customer schedules. These issues, in conjunction with
escalating contract costs and process inefficiencies, prompted the need for better status information
faster and cost of rework by the US government under Acquisition Reform policies in the early
1990s.

Acquisition Reform and Integrated Process and 
Product Development (IPPD)

The need for acquisition reform, streamlining, process improvement, and reduced rework influ-
enced a move toward Integrated Process and Product Development (IPPD) environments. IPPD
environments, which include Acquirer as an integral part of the “team,” provide on-site access to
the details and nuances of the product development effort.

As a result of the Acquisition Reform initiatives in the DoD, for example, the technical reviews
paradigm began to shift. Whereas technical reviews consumed several days agonizing over docu-
mentation details, the paradigm shifted to simply spending a few hours resolving critical opera-
tional and technical issue (COI/CTI) decisions. Why? If the User and Acquirer are participants in
the IPPD team processes, either on-site or virtually, they should be intimately familiar with the
design details. The only agenda topics remaining focused on resolution of issues between the
acquirer and System Developer.

Finally, another aspect was the shift from date-driven to event-driven contract reviews.

Date-Driven versus Event-Driven Reviews

Technical reviews, specified by contract, are of two types: date driven or event driven.

• Date-driven reviews MANDATE that a review to be conducted X days after Contract Award
(ACA)—at a specific calendar date.
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• Event-driven reviews are conducted when the development efforts reach specific maturity
levels, usually within a general time frame. The time frame may be specified as “within XX
days/months After Contract Award (ACA).

Guidepost 54.1 Given this historical background to today’s technical reviews, we now shift our
focus to investigating the general conduct of technical reviews.

54.3 TECHNICAL REVIEWS—GENERAL

Technical reviews are accomplished in accordance with the terms of the contract, subcontract, or
associated agreements. Every contract should specify the WHO, WHAT, WHEN, WHERE, HOW,
and WHY technical and programmatic reviews are to be accomplished. If not, DO NOT sign until
all of the terms and conditions (Ts&Cs) of the technical reviews are clearly delineated, mutually
understood, and agreed to by all parties.

Technical reviews are more than simply forums to make nice and orderly presentations. The
reviews are an opportunity to brief the Acquirer and User “for the record” on WHAT progress has
been made in maturing the system design solution since the last review. Reviews provide an oppor-
tunity for the Acquirer to validate what is documented in the monthly contract progress reports.

Checks and Balances Benefits

Technical reviews provide checks and balances for the System Developer, Acquirer, and User with
inherent benefits for all. For the Acquirer and User, technical reviews provide the opportunity to:

1. Assess progress, maturity, and risks of the product development efforts.

2. Factor the results into Acquirer delivery schedules.

3. Express preferences and priorities.

4. Provide legal technical direction for the contract, depending on type.

For the System Developer or Service Provider, the technical reviews provide the opportunity to:

1. Clearly demonstrate product development maturity and progress.

2. Address and resolve critical operational and technical issues (COIs/CTIs).

3. Assess Acquirer priorities.

4. Obtain Acquirer agreement, if appropriate for the type of contract, to baseline system doc-
umentation to scope and bound future discussion and scoping of technical direction.

Type of Contract

In general, the type of contract determines HOW a review is accomplished and the degree of influ-
ence or approval the customer has over the information presented. In the case of firm, fixed price
(FFPs) contracts, the System Developer conducts technical reviews to inform the Acquirer and
User about progress to date, current status, and risks.

Depending on the type of the contract, the Acquirer may be limited in the degree to which they
can approve/reject the System Developer’s solution without contract modification. In contrast, cost
plus fixed fee (CPFF) contracts typically enable the Acquirer to exert a large amount of control
over the contractor’s decision making and make adjustments in cost and schedule to accommodate
changes in the contract’s technical direction.
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As is ALWAYS the case, understand your contract’s T&Cs, and consult with your organiza-
tion’s Program Management Team, contracts, and legal organizations for specific guidance and
expertise in these areas.

Review Entry Criteria

Contracts often establish entry and exit criteria for reviews. Because of space restrictions entry 
criteria are not shown for the review descriptions that follow. Entry criteria should be derived based
on the checklist items. Refer to Tables 54.1 through 54.10.

Standard Review Work Products and Quality Records

The preceding discussions highlighted WHAT is to be accomplished at reviews. In a decision-
making event it is important to document the review materials and results for historical and refer-
ence purposes. The following is a list of example work products and quality records that, at a
minimum, should be produced for each of the major technical reviews.

EXAMPLE 54.1

• Conference agenda

• Attendees list

• Presentation materials

• Handouts (analyses, trade studies, modeling and simulation results, etc.)

• Conference notes

• Conference minutes

• Action items CLOSED/OPEN

• Other supporting documentation, as required

54.4 CONTRACT REVIEW REQUIREMENTS

Major technical reviews are conducted by the System Developer as a contract event in accordance
with the Master Program Schedule (MPS), Integrated Master Plan (IMP), or Integrated Master
Schedule (IMS), as appropriate.

Technical Reviews Location

Technical reviews are conducted at locations specified in accordance with the terms and conditions
(Ts&Cs) of the contract. Generally, the reviews are performed at the item’s System Developer’s
facility due to close proximity to the documentation and actual hardware and software for 
demonstrations.

Author’s Note 54.1 Remember, “item” in the context above represents a SYSTEM, PRODUCT,
SUBSYSTEM, and so forth. For example, if a subcontractor is developing a SUBSYSTEM, reviews
are conducted at the subcontractor’s facility and include invitations to the prime System Develop-
ment contractor, who may elect to invite their customer, the Acquirer. Under contract protocols the
Acquirer ALWAYS invites the User unless prior arrangements have been made with the System
Developer.
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Orchestrating the Review

Major technical reviews are often referred to as conferences. Each conference consists of three
phases of activities to ensure successful completion of the review: Pre-conference, Conference, and
Postconference.

• Preconference Phase activities include coordination between the System Developer and
Acquirer to set the date, time, and location of the review, as well as to set the agenda, invi-
tees, special facility access, and arrangements such as security, parking, and protocols.

• Conference Phase activities include conducting the conference in accordance with the
planned agenda, classification level, rules of conduct/engagement, recording of conference
notes, and action items.

• Postconference Phase activities include resolving conference action items, preparing and
approving the conference minutes, incorporating corrections into documentation, and estab-
lishing baselines, where applicable.

Contract Review Completion Exit Criteria

Some contracts require completion of technical events, such as reviews, as a prerequisite for obtain-
ing contract progress payments. Exit criteria are employed to explicitly identify WHAT must be
accomplished as a contract condition for Acquirer acceptance.

Some formal solicitations such as Request for Proposals (RFPs) require identification of exit
criteria as a requirement. Where this is the case, the Offeror’s proposal may become part of the
contract. If contract progress payments to the System Developer are linked to program events, such
as reviews, make sure that exit criteria are explicitly stated in language that DOES NOT require
interpretation when time comes to contractually CLOSE the review and pay the contractor.

A Word of Caution

Review entry and exit criteria may appear simple on initial inspection. However, they can easily
become MAJOR SHOWSTOPPERS due to misinterpretation(s), especially where contract progress
payments are “on the line.”

When you state that the software design is complete, be very explicit as to WHAT you mean
by “software design complete.” It bears emphasizing that the Acquirer interprets “software design
complete” as EVERYTHING. THINK about these statements. Recognize the scope of your intent
BEFORE you write them into a proposal and sign a contract, especially if progress payments are
at risk. This includes the Integrated Master Plan (IMP) and associated dictionaries. Why? Simply
stated, if you DO NOT follow the contract words, you don’t get PAID! And guess who negotiated
the contract words? Your organization did!

Posting and Distribution of Technical Review Materials

Today’s contracting environment often involves contractor teams across the country and around
globe to integrate their efforts via collaborative development and review environments. For tech-
nical reviews, World Wide Web (WWW) based reviews provide opportunities to perform IPRs
without the expense of travel or disruption of work. However, keep in mind that this media also
presents major data security issues related to proprietary data, copyright law, security classifica-
tion, and export control.

Warning! The US International Traffic and Arms Regulations (ITAR) govern the EXPORT of
critical technologies and data by any media including the Internet. ALWAYS refer to your Legal
and Contracts organizations as well as the EXPORT CONTROL Officer for guidance in these areas.
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Technical Review Contract Direction

The conduct of contract technical reviews is often viewed as a causal event. Beware! Despite the
suave coolness of the System Developer’s “we’re glad you are here” and Acquirer’s “we’re glad
to be here” rhetoric, the activity carries some very SERIOUS political and legal implications that
demand your full attention and awareness.

Remember, ONLY the Acquirer’s Contracting Officer (ACO) is officially authorized to provide
contract direction to the System Developer regarding the technical review. The Acquirer’s Program
Manager provides the program and technical guidance to the ACO. As a result, you will often hear
an Acquirer Program Manager make introductory remarks at the beginning of the review and begin
with a disclaimer: “We are here to listen . . . anything we say or ask does not infer or should 
be construed as technical direction . . . only the Contracting Officer can provide contractual 
direction.”

Technical Issue Resolution

One of the greatest challenges of technical reviews is making sure all SHOWSTOPPER critical
operational and technical issues (COIs/CTIs) are resolved to the mutual satisfaction of the Acquirer
and System Developer organizations.

COIs/CTIs often have far-reaching impacts that range from achieving the mission objectives
to simply printing out a report. COIs impact one of more of the integrated set of System Elements—
EQUIPMENT, PERSONNEL, FACILITIES, and so forth. COI impacts span the spectrum from
System Performance Specification (SPS) requirements to PART level design requirements, and vice
versa. Therefore, it is imperative that these issues be recognized and resolved at the technical
reviews to avoid schedule impacts.

Programs often refuse to acknowledge or publicize COIs/CTIs. Ironically, these issues are often
ignored until the program finally has to confront them. Humans have a natural propensity to pretend
and believe that problems—such as COIs/CTIs—will simply “just go away.”

Sometimes this happens; however, in most cases this is a panacea. Although there are rea-
sonable and practical bounds to issue resolution, sooner or later you will learn to confront these
issues “early on.” Historically, you either pay the price now or pay an even GREATER price farther
downstream to resolve an outstanding issue, assuming the set of potential solutions are viable at
that point in time in terms of cost and schedule performance.

The realities are Users, Acquirers, and System Developers procrastinate on resolving critical
operational and technical issues. Organizations spend millions of dollars every year publicizing
how they have cut back expenses by reducing the number of pencils and paper people use. Yet,
these expenses are often insignificant when compared to the dollars wasted procrastinating to
resolve critical technical issues and inefficiencies. There ARE NO easy solutions or “quick fixes”
other than to say that all parties—Users, Acquirers, System Developers, subcontractors among
these—collectively need to do a better job confronting these challenges. So, how does resolution
of critical operational or technical issues (COIs/CTIs) relate to technical reviews?

Technical reviews, in a generic sense, provide the forum for time constrained “open technical
debate” to resolve any outstanding or lingering critical technical issues. Granted, some people
“debate” just to hear themselves talk. The context here is an environment in which the participants
remove their organizational “hats and badges” and focus all energies on alternative paths to bring
an issue to consensual closure to the mutual satisfaction of all parties. Tough to do? You bet! Are
there alternatives? Yes, there is the “programmatic approach” whereby the program managers for
the Acquirer or System Developer may dictate a solution to meet schedule. This is not a desired
path technically or programmatically. If you don’t like the “programmatic direction approach,”
ENSURE the “technical approach” works.
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Obviously, you do not want to consume valuable time and resources in a technical review
“debating” COIs and CTIs, unless they surface unexpectedly from the unknown. If COIs/CTIs are
known prior to a review, special arrangements should be made before a review to schedule some
form of “working group” meeting of all parties. The session must be constrained with the under-
standing that group must bring the issue to closure and present the recommendations at the major
review.

Final Point

One of the most overlooked aspects of technical reviews is the psychology of managing customer
PERCEPTIONS. From a System Developer’s perspective, the reviews are opportunities to manage
customer expectations. Likewise, Acquirers and Users formulate perceptions during the review as
well as throughout contract performance. Perceptions of System Developer contract performance
influence future interactions, whether it be future business, follow-on business, or negotiable items
of the contract. While the primary focus on a technical review is the current contract or task, the
User and Acquirer may be subconsciously asking themselves, “Do we want to do business with this
System Developer again?”

Although not discussed openly, the reviews enable Acquirers to validate levels of confidence
in their mind that they made the RIGHT choice in selecting your organization to perform on this
contract as opposed to your competition. Remember, successful contract performance reflects on
Acquirers and HOW their customers, the User and executive management, view your organization.

54.5 MAJOR TECHNICAL REVIEWS

Technical review agendas consist of two types of discussion topics:

1. Programmatic topics

2. Technical topics unique to the type of review

In general, more than 90% of the review time should be devoted to technical agenda items.

Standard Technical Review Items

Standard technical review topics include the following examples:

EXAMPLE 54.2

• Review updates to technical plans, approaches, or procedures.

• Review risk mitigation plans and approaches.

• Review of current schedule status and progress.

• Review Contract Data Requirements List (CDRL) item status.

• Review Contract Line Item Number (CLIN) status.

• Review results of the requirements traceability audit (RTA).

• Provide authority, if applicable to the contract, to proceed and commit resources to the next system devel-
opment segment—the preliminary design, detailed design, and so forth.

These topics serve as standard agenda topics for every review and are presented in summary form
as part of the introductory remarks. In addition to the standard review topics, review unique topics
are provided in the discussions of each review that follow.
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Common Types of Technical Reviews

Common types of major SYSTEM level technical reviews include:

• Integrated Baseline Review (IBR)

• System Requirements Review (SRR)

• System Design Review (SDR)

• Software Specification Reviews (SSRs)

• Hardware Specification Reviews (HSRs)

• Preliminary Design Review (PDR)

• Critical Design Review (CDR)

• Test Readiness Reviews (TRRs)

• System Verification Review (SVR)

• Production Readiness Review (PRR)

The sequencing of these reviews is illustrated in Figure 54.1.

Author’s Note 54.2 For programs that employ the “Waterfall” development strategy, these
reviews occur only once. For other types of development strategies—such as the Incremental or
Spiral Model—these reviews may be repeated for each instance and iteration of the system or
product development cycle.

Referral For more information concerning development strategies, please refer to Chapter 24 on
System Development Workflow Strategy Practices.

Each of the SYSTEM level technical reviews is supported by PRODUCT, SUBSYSTEM, and
ASSEMBLY level assessments that culminate in a baseline for each item or configuration item (CI).
Because of the expense of travel, some reviews may be conducted virtually via audio teleconfer-
ences, video teleconferences (VTCs), or on site, depending on item maturity. In some instances,

54.5 Major Technical Reviews 719

Contract Award (CA)

System Requirements Review (SRR)

System Design Review (SDR)

HW/SW Specification Reviews

Preliminary Design Review (PDR)

Critical Design Review (CDR)

Test Readiness Reviews (TRRs)

System Verification Test (SVT)

Functional Configuration Audit (FCA)

Physical Configuration Audit (PCA)

System Verification Review (SVR)

Ready-to-Ship Review (RTSR)

CA SDR SSR PDR CDR

RTAs

Requirements Traccability Audits (RTAs)

TRRs SVT 
FCA PCA

SVR
RTSR

SRR
HSR/

SE Design Segment

Component
Procurement &

Development
Segment

System Integration, Test, &
Evaluation (SITE) Segment

Authenticate
System Baselines

Segment

System
Deployment

Segment
(Optional)

Operational Test &
Evaluation (OT&E)

Segment
(Optional)

System Development Phase

Figure 54.1 Technical Review Sequencing



720 Chapter 54 Technical Reviews

several PRODUCT, SUBYSTEM, or ASSEMBLY level reviews may be conducted sequentially
during the same time frame at a location, typically the System Developer’s facility. Consider the
following example:

EXAMPLE 54.3

Successful completion of SUBSYSTEM CDRs serve as entry criteria to a system level CDR, which then deter-
mines if the system design is mature enough to proceed with the Component Procurement and Development
Segment of the System Development Phase.

Integrated Baseline Review (IBR)

The Integrated Baseline Review (IBR) is typically the first review conducted for a program. The
objective of an IBR is “to conduct a joint review by Acquirer and contractor program managers
and their technical staff personnel, following Contract Award, to confirm that:

1. The contractor’s Performance Measurement Baseline (PMB)—technical requirements and
cost/schedule constraints—covers the entire scope of work.

2. The work is realistically and accurately scheduled, that the proper amount and mix of
resources have been assigned to tasks.

3. Proper objective indicators have been selected for measurement of task accomplishment.”
(Source: Adapted from the BMDO 5004-H IBR Glossary)

The IBR consists of an integrated assessment of all key contract technical, cost, and schedule ele-
ments. As such, the IBR seeks to assess:

1. WHAT work is to be performed—for example, Contract Statement of Work (CSOW), Con-
tract Work Breakdown Structure (CWBS), Integrated Master Plan (IMP), System Perfor-
mance Specification (SPS), Contract Data Requirements List (CDRL), Contract Line Item
Numbers (CLINs), and organizational command media.

2. WHEN the work is to be performed—for example, Master Program Schedule (MPS) and
Integrated Master Schedule (IMS).

3. WHO is accountable for performing the work—for example, program organization and IPT
charters.

4. HOW the work will be resourced and controlled—for example, control accounts and work
packages linked to the Contract Work Breakdown Statement (CWBS).

The primary IBR objectives are accomplished by completion of supporting objectives or exit
criteria. Table 54.1 provides an example listing of these supporting objectives/exit criteria and
expected decisions.

On successful completion of the IBR, control accounts and work packages are activated, and
work is initiated for the SE Design Segment of the System Development Phase.

System Requirements Review (SRR)

The System Requirements Review (SRR) is typically the first opportunity for technical represen-
tatives from the User, Acquirer, and System Developer organizations to get together in a common
forum to review, interpret, clarify, and correct, if appropriate, the system requirements.

The primary objectives of the SRR are to:
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1. Review, clarify, correct, and baseline the set of SPS requirements to ensure a common inter-
pretation and understanding among decision makers.

2. Establish the System Requirements Baseline.

The primary SRR objectives are accomplished by completion of supporting objectives or exit
criteria. Table 54.2 provides an example listing of these supporting objectives/exit criteria and
expected decisions.

System Design Review (SDR)

The System Design Review (SDR) follows the SRR and is conducted in accordance with the Ts&Cs
of the contract CSOW, SDR entry criteria, and program schedule. Following the SRR, the System
Developer matures the system design solution derived from the System Requirements Baseline. At
a minimum, the solution includes development and maturation of the system architecture, system
interface requirements, Concept of Operations (ConOps), and preliminary allocations of SPS
requirements to the PRODUCT or SUBSYSTEM levels of abstraction.

The primary objective of the SDR is to establish the SYSTEM level design solution and Allo-
cated Baseline as part of the evolving Developmental Configuration. The primary SDR objective
is accomplished by completion of supporting objectives or exit criteria. Table 54.3 provides a listing
of these supporting objectives/exit criteria and expected decisions.

On successful completion of the SDR, emphasis shifts to formulating and maturing HWCI
unique and CSCI unique requirements specifications (HRS/SRS).

Table 54.1 Example IBR supporting objectives/exit criteria and expected decisions

Item Example IBR Objectives/Exit Criteria Decision Expected

1 Assess the adequacy, completeness, consistency, and risk of the • Action item(s) or
System Performance Specification (SPS). • Concurrence/approval

2 Assess the adequacy, completeness, consistency, and risk of the • Action item(s) or
contract and program schedule elements: • Concurrence/approval
• Master Program Schedule (MPS)
• Integrated Master Plan (IMP)
• Integrated Master Schedule (IMS)

3 Assess the adequacy, completeness, consistency, and risk of the • Action item(s) or
contract and program cost elements: • Concurrence/approval
• Contract Statement of Work (CSOW)
• Contract Work Breakdown Structure (CWBS)
• Contract Data Requirements List (CDRL) items
• Contract Line Item Numbers (CLINs)
• Control accounts
• Work packages

4 Establish the Performance Measurement Baseline (PMB): • Action item(s) or
• Technical performance baseline elements • Concurrence/approval
• Schedule performance baseline elements
• Cost performance baseline elements
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Table 54.2 Example SRR supporting objectives/exit criteria and expected decisions

Item Example SRR Objectives/Exit Criteria Decision Expected

1 Verify that the User’s problem space and solution(s) space(s) are • Action item(s) or
properly UNDERSTOOD and BOUNDED—as what IS/IS NOT • Concurrence/approval
part of the solution space.

2 Verify that the requirements completely, consistently, accurately, • Action item(s) or
and concisely articulate and bound the User’s solution space(s) for • Concurrence/approval
the SYSTEM in a manner that AVOIDS misinterpretation by
multiple reviewers.

3 Verify that any ambiguous, overlapping, incomplete, inconsistent, • Action item(s) or
or unbounded requirements are ELIMINATED. • Concurrence/approval

4 Evaluate the quality—as bounded, measurable, testable, and • Action item(s) or
verifiable—of the requirements in terms of required capabilities and • Concurrence/approval
performance.

5 Determine if all stakeholder requirements have been adequately • Action item(s) or
addressed subject to contract cost schedule constraints. • Concurrence/approval

6 Verify that each SPS Section 3.X requirement has at least one or • Action item(s) or
more Section 4.X verification methods. • Concurrence/approval

7 Verify that the Section 4.0 Qualification Provision verification • Action item(s) or
methods represent the least cost, schedule, and technical risk • Concurrence/approval
approach to proving each requirement’s compliance?

8 Where appropriate, obtain consensus for System Performance • Action item(s) or
Specification (SPS) requirements, interpretations and clarifications, • Concurrence/approval
modifications, etc. subject to Acquirer’s Contracting Officer (ACO)
approval.

9 Where applicable, obtain authorization to establish the System • Action item(s) or
Requirements Baseline. • Concurrence/approval

Hardware/Software Specification Reviews (HSRs/SSRs)

Once the PRODUCT or SUBSYSTEM Level requirements allocations have been established as
the Allocated Baseline at the PDR, the architectures for PRODUCT or SUBSYSTEM level solu-
tions are developed and matured. Each solution evolves from analyses of allocated requirements.

Trade studies are conducted to select a preferred PRODUCT or SUBSYSTEM architecture
consisting of items, HWCIs, and CSCIs from a set of viable candidate solutions. PRODUCT or
SUBSYSTEM development specification requirements are next allocated to the items, HWCIs, and
CSCIs, as applicable. HWCI and CSCI allocated and derived requirements are documented respec-
tively in HWCI unique PRELIMINARY Hardware Requirements Specifications (HRSs) and CSCI
unique PRELIMINARY Software Requirements Specifications (SRSs). The culmination of this
activity results is an HSR or SSR, as applicable.

In addition to the standard review items, the primary objective of the HSR/SSR is to establish
an HWCI’s or CSCI’s requirements specification (HRS/SRS) baseline for its Developmental Con-
figuration to provide a basis for peer level and lower level decision making. The primary HSR/SSR
objective is accomplished by completion of supporting objectives or exit criteria. Table 54.4 pro-
vides an example listing of these supporting objectives/exit criteria and expected decisions.
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On successful completion of each HSR and SSR for their respective HWCI or CSCI, empha-
sis shifts to formulating and maturing the PRELIMINARY SYSTEM design. This includes devel-
opment of HWCI and CSCI level designs that respond to their respective HRS and SRS.

Preliminary Design Review (PDR)

The Preliminary Design Review (PDR) represents the fourth major technical review in the design
of a SYSTEM, PRODUCT, SUBSYSTEM, ASSEMBLY, and so forth. The review is conducted 
as a program event to assess the adequacy, completeness, and risk of the evolving system design
solution down to the HWCI and CSCI design levels.

Following the HSR/SSR, the architectural solution of each HWCI and CSCI evolves. Analy-
ses and trade studies are performed to select a preferred HWCI or CSCI architecture that repre-
sents the best solution as determined by a set of pre-defined evaluation criteria. As each HWCI and
CSCI solution reaches a level of maturity, a PDR is conducted for each one and culminates in a
SYSTEM Level PDR.

In addition to the standard review objectives, the primary objective of the PDR is to review
and concur/approve the PRELIMINARY SYSTEM/item design solution down to HWCI/CSCI
architecture levels. The primary PDR objective is accomplished by completion of supporting objec-
tives or exit criteria. Table 54.5 provides an example listing of these supporting objectives/exit cri-
teria and expected decisions.

On successful completion of the PDR, emphasis shifts to formulating and maturing HWCI-
unique and CSCI-unique detailed designs for presentation at the Critical Design Review (CDR).

Table 54.3 Example SDR supporting objectives/exit criteria and decisions expected

Item Example SDR Objectives/Exit Criteria Decision Expected

1 Assess the progress, status, maturity, and risk of the SYSTEM • Action item(s) or
level design solution—architecture, interfaces, etc. • Concurrence/approval

2 Review the preliminary Concept of Operations (ConOps). • Action item(s) or
• Concurrence/approval

3 Review Mission Event Timeline (MET) allocations. • Action item(s) or
• Concurrence/approval

4 Review and approve, if appropriate, SPS requirements allocations • Action item(s) or
to PRODUCTs or SUBSYSTEMS and other components. • Concurrence/approval

5 Review any supporting analyses and trade studies relevant to • Action item(s) or
SDR decision making. • Concurrence/approval

6 Review preliminary PRODUCT or SUBSYSTEM level item • Action item(s) or
development specifications. • Concurrence/approval

7 Resolve any critical operational or technical issues (COIs/CTIs) • Mutual resolution
related to system capabilities, performance, interfaces, safety, and • Closure
design criteria—the data.

8 Review the system life cycle cost analysis. • Action item(s) or
• Concurrence/approval

9 Establish the Allocated Baseline plus any corrective actions • Action item(s) or
required as criteria for acceptance. • Concurrence/approval



724 Chapter 54 Technical Reviews

Critical Design Review (CDR)

The Critical Design Review (CDR) is the fifth major technical review in the design of a SYSTEM,
PRODUCT, SUBSYSTEM, ASSEMBLY, and so forth. The review is conducted as a program event
to assess the adequacy, completeness, and risk of the evolving system design solution down to the
HWCI, ASSEMBLY, and PART levels and CSCI computer software component (CSC) and unit
(CSU) levels.

In addition to the standard review objectives, the primary objectives of the system level CDR
are to:

Table 54.4 Example HSR/SSR objectives/exit criteria and decisions expected

Item Example HSR/SSR Objectives/Exit Criteria Decision Expected

1 Assess the adequacy and completeness of requirements allocations • Action items or
and traceability of an HWCI or CSCI to its higher level item • Concurrence/approval
development specification.

2 Resolve any critical operational or technical issues (COIs/CTIs) • Action items or
related to HWCI or CSCI capabilities, performance, interfaces, and • Concurrence/approval
design criteria—the data.

3 Establish the criteria and corrective actions required to baseline the • Action items or
HWCI or CSCI requirements. • Concurrence/approval

4 Review each HWCI/CSCI, including use cases, inputs, processing • Action items or
capabilities, and outputs. • Concurrence/approval

5 Review HWCI/CSCI performance requirements, including those for • Action items or
execution time, storage requirements, and similar constraints. • Concurrence/approval

6 Review control flow and data flow interactions between each of the • Action items or
hardware and software capabilities that comprise the HWCI/CSCI. • Concurrence/approval

7 Review interface requirements between the HWCI/CSCI and all • Action items or
other configuration items both internal and external to the • Concurrence/approval
HWCI/CSCI.

8 Review qualification or verification requirements that identify • Action items or
applicable levels and methods of testing for the software • Concurrence/approval
requirements that comprise the HWCI/CSCI.

9 Review any special delivery requirements for the HWCI/CSCI. • Action items or
• Concurrence/approval

10 Review quality factor requirements: correctness, reliability, • Action items or
efficiency, integrity, usability, maintainability, testability, flexibility, • Concurrence/approval
portability, reusability, safety and interoperability.

11 Review mission requirements of the system and its associated • Action items or
operational and support environments related to the HWCI/CSCI. • Concurrence/approval

12 Review HWCI/CSCI functions and characteristics within the overall • Action items or
system. • Concurrence/approval

13 Identify any HSR/SSR corrective actions required to establish the • Action items or
HWCI/CSCI Requirements baseline. • Concurrence/approval
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Table 54.5 Example PDR objectives/exit criteria and expected decisions

Item Example PDR Objectives/Exit Criteria Decision Expected

1 Briefly review any updates to the SYSTEM level architecture. None

2 Briefly review any updates to the PRODUCT or SUBSYSTEM None
architecture.

3 Review HWCI design solutions: • Action items or
• HWCI requirements allocations • Concurrence/approval
• HWCI specification requirements and traceability
• HWCI use cases
• HWCI theory of operations
• HWCI architecture
• HWCI support of system phases, modes, and states of operation
• HWCI performance budgets and margins
• HWCI technical performance measures (TPMs)
• HWCI analyses and trade studies
• HWCI-to-HWCI interoperability
• HWCI critical technical issues (CTIs)
• HWCI critical technology issues
• HWCI-to-CSCI(s) integration

4 Review CSCI design solutions. • Action items or
• CSCI requirements allocations • Concurrence/approval
• CSCI specification requirements and traceability
• CSCI use cases
• CSCI theory of operations
• CSCI architecture
• CSCI support of SYSTEM level phases, modes, and states of

operation
• CSCI analyses and trade studies
• CSCI performance budgets and margins
• CSCI-to-CSCI interoperability
• CSCI-to-HWCI integration
• CSCI critical technical issues (CTIs)
• CSCI critical technology issues

5 Review specialty engineering considerations such as: • Action items or
• Human factors engineering (HFE) • Concurrence/approval
• Logistics
• Reliability
• Availability
• Maintainability
• Supportability
• Producibility
• Environmental
• Training
• Vulnerability
• Safety
• Survivability
• Susceptibility

6 Review hardware/software/operator integration issues • Action items or
• Concurrence/approval



726 Chapter 54 Technical Reviews

1. Review and concur/approve the SYSTEM/CI design solution.

2. Make a decision to authorize and commit resources to the Component Procurement and
Development Segment of the System Development Phase.

The primary CDR objectives are accomplished by completion of supporting objectives or exit cri-
teria. Table 54.6 provides an example listing of these supporting objectives/exit criteria and
expected decisions.

On successful completion of the CDR, emphasis shifts to procurement and development of
physical components that implement the detailed design requirements. This includes new 
development and acquisition of commercial off-the-shelf (COTS) and nondevelopmental items
(NDIs).

Table 54.6 Example CDR objectives/exit criteria and expected decisions

Item Example CDR Objectives/Exit Criteria Decision Expected

1 Determine if the detailed design satisfies the performance and • Action items or
engineering requirements specified in an item’s development • Concurrence/approval
specification.

2 Assess the detailed design compatibility and interoperability internal to • Action items or
the item and externally to other system elements: • Concurrence/approval
• EQUIPMENT (hardware and software)
• FACILITIES
• PERSONNEL
• MISSION RESOURCES
• PROCEDURAL DATA
• SYSTEM RESPONSES—behavior, products, by-products, or

services.

3 Assess item compliance with allocated technical performance budgets • Action items or
and safety margins. • Concurrence/approval

4 Assess specialty engineering considerations such as: • Action items or
• Reliability, availability, and maintainability (RAM) • Concurrence/approval
• Producibility
• Logistics
• Survivability
• Vulnerability
• Producibility
• Survivability
• Safety
• Environmental
• Susceptibility
• Human factors engineering (HFE)

5 Assess any detailed analyses, trade studies, modeling and simulation, • Action items or
or demonstration results that support decision making. • Concurrence/approval

6 Assess the adequacy of verification test plans for each “item.” • Action items or
• Concurrence/approval

7 Review preliminary test procedures. • Action items or
• Concurrence/approval

8 Freeze the Developmental Configuration. • Action items or
• Concurrence/approval
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Author’s Note 54.3 The timing of the CDR may be incompatible with long lead item procure-
ment required to meet contract deliveries. Where this is the case, the System Developer may have
to assume a risk by procuring long lead items early recognizing the Acquirer has not approved the
CDR design.

Test Readiness Reviews (TRRs)

At each level of abstraction—PART, SUBASSEMBLY, ASSEMBLY, or SUBSYSTEM—some
systems require Test Readiness Reviews (TRRs) to be conducted. TRRs range from major program
events for large complex systems to simple team coordination meetings among development team
members.

The primary objectives of a TRR are to:

1. Assess the readiness and risks of the test article, environment, and team to conduct a test
or series of tests.

2. Ensure that all test roles are identified, assigned to personnel, and allocated responsibilities.

3. Authorize initiation of test activities.

The primary TRR objectives are accomplished by completion of supporting objectives or exit cri-
teria. Table 54.7 provides an example listing of these supporting objectives/exit criteria and
expected decisions.

On successful completion of a TRR, an authority to proceed with specific tests is granted.

Table 54.7 Example TRR objectives/exit criteria and expected decisions

Item Example TRR Objectives/Exit Criteria Decision Expected

1 Assess the readiness of the test article to undergo testing— • Action item(s) or
destructive or nondestructive. • Concurrence/approval

2 Coordinate and assess the readiness of all test article interfaces • Action item(s) or
and resources. • Concurrence/approval

3 Verify test plans and procedures are approved and communicated. • Action item(s) or
• Concurrence/approval

4 Identify and resolve all critical technical, test, statutory, and • Action item(s) or
regulatory issues are resolved. • Concurrence/approval

5 Assess the readiness of the test environment to support the test.

6 Verify all safety, health, and environmental concerns are resolved • Action item(s) or
and adequate EMERGENCY processes, services, and equipment • Concurrence/approval
are in place to support all aspects of the test.

7 Verify all lower level Discrepancy Report (DR) corrective actions • Action item(s) or
have been completed and verified for HWCIs and CSCIs. • Concurrence/approval

8 Verify that the “As Built” test article identically matches its “As • Action item(s) or
Designed” documentation. • Concurrence/approval

9 Coordinate responsibilities for test conduct, measurement, and • Action item(s) or
reporting • Concurrence/approval

10 Designate range safety officers (RSOs) and security personnel, at • Action item(s) or
appropriate. • Concurrence/approval

11 Obtain authority-to-proceed with specific tests. • Action item(s) or
• Concurrence/approval
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System Verification Review (SVR)

When system verification testing is completed, a System Verification Review (SVR) is conducted.
The primary objectives of the SVR are:

1. Authenticate the results of System Verification Test (SVT), including the FCA and PCA
results.

2. Establish the Product Baseline. Accomplishment of the primary SVR objectives is supported
by secondary objectives and exit criteria that culminate in key decisions. Table 54.8 pro-
vides example objectives/exit criteria and expected decisions.

The primary SVR objectives are accomplished by completion of supporting objectives or exit cri-
teria. Table 54.8 provides an example listing of these supporting objectives/exit criteria and
expected decisions.

On successful completion of the SVR, the workflow progresses to a Ready-to-Ship Review
(RTSR) decision.

Ready to Ship Review (RTSR)

Following the SVR, a Ready to Ship Review (RTSR) is conducted. The primary objective of the
RTSR is to determine the system’s state of readiness for disassembly and deployment to the des-
ignated delivery site.

The primary RTSR objectives are accomplished by completion of supporting objectives or exit
criteria. Table 54.9 provides an example listing of these supporting objectives/exit criteria and
expected decisions.

On successful completion of the RTSR, the system is disassembled, packaged, crated, and
shipped to the designated deployment or job site in accordance with the contract or direction from
the ACO.

Production Readiness Review (PRR)

For systems planned for production, a Production Readiness Review (PRR) is conducted shortly
after production contract award. The primary objectives of the PRR are to:

Table 54.8 Example SVR objectives/exit criteria and expected decisions

Objective Example SVR Objective/Exit Criteria Decision Expected

1 Audit and certify the results of the Functional Configuration • Action item(s) or
Audit (FCA). • Concurrence/approval

2 Audit and certify the results of the Physical Configuration Audit • Action item(s) or
(PCA). • Concurrence/approval

3 Identify any outstanding inconsistencies, latent defects such as • Action item(s) or
design errors, deficiencies, and flaws. • Concurrence/approval

4 Verify that all approved engineering change proposals (ECPs) • Action item(s) or
and discrepancy reports (DRs) have been incorporated and • Concurrence/approval
verified.

5 Authorization to establish the Product Baseline for the As • Action item(s) or
Specified, As Designed, As Built, and “As Verified” configurations. • Concurrence/approval
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1. Authenticate the production baseline configuration.

2. Make a production “go-ahead” decision to commit to Low-Rate Initial Production (LRIP)
or Full-Scale Production (FSP).

Author’s Note 54.4 A critical issue for any production contract concerns the currency of the
“As-Maintained” configuration documentation. That is, does the documentation identically match
the fielded system configuration(s)? This question MUST be resolved before committing to 
production.

The primary TRR objectives are accomplished by completion of supporting objectives or exit 
criteria. Table 54.10 provides a listing of these supporting objectives/exit criteria and expected 
decisions.

On successful completion of the PRR, emphasis shifts to Low-Rate Initial Production (LRIP).
Subsequent PRRs address readiness for full-scale production (FSP).

54.6 IN-PROCESS REVIEWS (IPRs)

In-Process Reviews (IPRs), which represent another class of technical reviews, occur in two forms:

1. As a System Developer’s internal assessment of its evolving work products.

2. As an Acquirer’s readiness assessment for conducting a major technical review for a 
contract.

Let’s describe each of these types.

Table 54.9 Example RTSR objectives/exit criteria and expected decisions

Item Example RTSR Objectives/Exit Criteria Decision Expected

1 Verify that all compliance test data have been collected, documented, • Action item(s) or
and certified. • Concurrence/approval

2 Verify that all cabling and equipment items are inventoried and • Action item(s) or
properly identified. • Concurrence/approval

3 Verify that anything related to the configuration installation is • Action item(s) or
documented. • Concurrence/approval

4 Assess verification data completeness prior to system • Action item(s) or
disassembly, packing, and shipping. • Concurrence/approval

5 Assess storage or deployment site facility readiness to accept • Action item(s) or
system delivery for installation and integration: • Concurrence/approval
• Environmental conditions
• Interfaces
• “Gate keeper” decision authority approvals

6 Verify coordination of enroute system transportation support • Action item(s) or
including: • Concurrence/approval
• Licenses and permits
• Route selection
• Security
• Resources
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System Developer IPRs

System Developer personnel conduct IPRs for their evolving work products with internal stake-
holders. IPRs review plans, specifications, designs, and test procedures. Where program organiza-
tions are based on Integrated Product Teams (IPTs), the Acquirer and User may have standing
invitations to participate in the reviews.

Although IPRs can be formal, they tend to be less structured and informal. Regardless of the
level of formality, IPRs should be documented via conference minutes and action item assignments.

Contract IPRs

Major technical reviews can be very costly, especially if conducted prematurely. Some contracts
require the System Developer to conduct a Contract IPR as a readiness assessment for conducting
the formal technical review. Contract IPRs are conducted 30 to 60 days prior to a major technical
review to assess the readiness to “go ahead” with SDR, PDR, CDR, and so forth.

54.7 GUIDING PRINCIPLES

In summary, the preceding discussions provide the basis with which to establish the guiding prin-
ciples that govern technical review practices.

Principle 54.1 (Under contract protocol) Only the Acquirer’s Contracting Officer (ACO) is 
officially authorized to issue technical direction to the System Developer in response to technical
review comments, conference minutes, action items, contract modifications, and acceptance of 
contract documents.

Principle 54.2 Conduct technical reviews at critical control or staging points in system design
maturity; no sooner, no later.

Principle 54.3 In most contract environments, interpret Acquirer personnel comments as 
personal opinion, NOT formal contract technical direction.

Table 54.10 Example PRR review objectives/exit criteria and decisions expected

Item Example PRR Objectives/Exit Criteria Decision Expected

1 Authenticate the integrity, adequacy, and completeness of the current • Action item(s) or
Product Baseline and place it under configuration control. • Concurrence/approval

2 Verify that design improvements—the approved engineering change • Action item(s) or
proposals (ECPs)—to facilitate production have been incorporated, • Concurrence/approval
verified, and validated.

3 Resolve any vendor, production, materials, or process issues. • Action item(s) or
• Concurrence/approval

4 Make a production “go-ahead” decision and determine the scope of • Action item(s) or
production. • Concurrence/approval

5 Establish the production baseline. • Action item(s) or
• Concurrence/approval
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Principle 54.4 (Under contract protocol) System Developers invite the Acquirer to program
events; the Acquirer extends invitations to the User unless the Acquirer has made other arrange-
ments with the System Developer.

Principle 54.5 Technical reviews assess the status, progress, maturity, compliance, and risk of
the evolving system design solution in meeting its contract and specification requirements.

Principle 54.6 Technical review agendas, attendees, discussions, decisions, and action items are
documented via conference minutes, and reviewed, approved, and released via contract protocol.

Principle 54.7 Contract clauses are sometimes open to multiple interpretations by different
organizations. THINK smartly about and AVOID ambiguous contract technical review entry and
exit criteria language.

Principle 54.8 Conference minutes document attendees, agenda, discussion topics, meeting, and
action items. Perform the task well and obtain Acquirer/User acceptance via the ACO.

54.8 SUMMARY

In our discussion of technical reviews we introduced the various types of reviews and their occurrence as crit-
ical control or staging points in a system’s development. For each review we identified the key objectives and
referenced checklists for conducting the review. We also highlighted the importance of conducting maturity-
based event reviews for each stage of development. Finally, we provided guiding principles to consider when
conducting the review.

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

ORGANIZATION CENTRIC EXERCISES

1. Research your organization’s command media.

(a) What requirements and guidance is established for conducting formal technical reviews?

(b) What guidance is provided concerning In-Process Reviews (IPRs)?

(c) What requirements are levied for documenting the review conference minutes and action items?

(d) What requirements are levied for disciplinary participants in the reviews?

2. Contact several contract programs in your organization ranging in size from small to large.

(a) What type of contract—firm-fixed price (FFP) or cost plus incentive fee (CPIF)—does the program
have?

(b) Based on contract type, what degree of approvals or concurrence does the Acquirer have oversight of
technical review decisions and baselines?

(c) What technical review requirements are imposed by the contract?

(d) How do the reviews differ from those specified in this section?

(e) Where were the technical review requirements specified?

(f) How are results of the reviews to be documented?

(g) What criteria are established as entry and exit criteria for the reviews?
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(h) Are PDRs, CDRs, and TRRs at the PRODUCT, SUBSYSTEM, and other levels sequenced relative to
the SYSTEM level PDRs, CDRs, and TRRs?

3. Contact an organization that develops commercial products.

(a) Research how the organization conducts commercial technical reviews.

(b) Develop a mapping between the two types of approaches to technical reviews.

(c) Contrast the two approaches and document your views about the advantages and disadvantages of
each?
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Chapter 55

System Integration, 
Test, and Evaluation

55.1 INTRODUCTION

As each system component completes the Component Procurement and Development Segment of
the System Development Process, it is ready for System Integration, Test, and Evaluation (SITE).
Planning for SITE begins during the SE Design Segment and continues through system delivery
and acceptance.

This chapter introduces SITE practices for implementing the right side of the V-Model illus-
trated in Figure 25.5. Our discussions address WHAT SITE is and HOW it is conducted. We begin
with a discussion of the fundamentals of SITE. Next, we explore HOW SITE planning is performed
and describe the test organization.

Given a basic understanding of SITE, we introduce key tasks that capture HOW developers
incrementally test and verify compliance of multi-level test articles in accordance with their per-
formance or development specifications. We also explore some of the challenges of test data col-
lection and management. We conclude with a discussion of common integration and test issues.

What You Should Learn in This Chapter

1. What is system integration, test, and evaluation (SITE)?

2. When is SITE conducted?

3. What is the relationship of SITE to DT&E and OT&E?

4. What is SITE the expected to accomplish SITE?

5. What are the work products of SITE?

6. What are the roles and responsibilities for SITE accountability?

7. What are the types of test plans?

8. What is a Test and Evaluation Master Plan (TEMP)?

9. Who owns and prepares the TEMP?

10. What is a System Integration and Verification Plan (SIVP)?

11. Who owns and prepares the SIVP?

12. Differentiate the contexts of the TEMP versus the SIVP.

13. What is a Test and Evaluation Working Group (TEWG)?
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14. Why do you need test logs?

15. What is regression testing?

16. What is a discrepancy report (DR)?

17. When is a DR prepared?

18. How to prioritize SITE activities and record SITE deficiencies and issues?

19. What are Test Readiness Reviews (TRRs)?

20. What are the SITE phases and supporting tasks for an item?

21. What are SITE observations, defects, deficiencies, and anomalies?

22. How do you prepare verification test reports (TRs)?

23. What is the importance of approving and archiving test data?

24. How do you certify test data?

25. What are some common SITE challenges and issues?

SITE discussions employ several terms that require definitions. Let’s begin by defining these 
terms.

Definitions of Key Terms

• Acceptance Testing “Formal testing conducted to determine whether or not a system sat-
isfies its acceptance criteria and to enable the customer to determine whether or not to accept
the system.” (Source: IEEE 610.12-1990)

• Acceptance Test Procedures (ATPs) Formal procedures that verify the successful achieve-
ment of one or more specification requirements in accordance with the verification method(s)
stated for the requirement(s).

• Alpha Testing “System testing performed at the developer’s site, often by employees of the
customer.” (Source: Kossiakoff and Sweet, System Engineering, p. 445)

• Anomaly An unexplainable event or observation that cannot be replicated based on current
knowledge or facts.

• Automatic Test Equipment (ATE) “Equipment that is designed to automatically conduct
analysis of functional or static parameters and to evaluate the degree of UUT (Unit Under
Test) performance degradation; and may be used to perform fault isolation of UUT mal-
functions. The decision making, control, or evaluative functions are conducted with
minimum reliance on human intervention and usually done under computer control.”
(Source: MIL-HDBK-470A, Appendix G—Glossary, p. G-2)

• Beta Testing “System testing performed at a customer’s site without the developer’s pres-
ence, and reported to the developer.” (Source: Kossiakoff and Sweet, System Engineering,
p. 445)
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• Destructive Tests Tests that result in stressing a test article to failure beyond repair via
destruction or loss. Destructive tests usually destroy, damage, or impair a test article’s form,
structure, capabilities, or performance beyond refurbishment at a practical and economically
feasible level.

• Formal Testing “Testing conducted in accordance with test plans and procedures that have
been reviewed and approved by a customer, user, or designated level of management.”
(Source: IEEE 610.12-1990 Standard Glossary of Software Engineering Terminology)

• Nondestructive Tests Tests that subject a test article to a prescribed set of input conditions
and operating environment to demonstrate compliance to requirements. Nondestructive tests
do not destroy, damage, or impair a test article’s appearance, form, structure, capabilities, or
performance other than minor refurbishment.

EXAMPLE 55.1

Nondestructive tests include qualification tests concerning temperature, humidity, shock, vibration, and so
forth.

• Qualification Test “Simulates defined operational environmental conditions with a pre-
determined safety factor, the results indicating whether a given design can perform its func-
tion within the simulated operational environment of a system.” (Source: DSMC Simulation
Based Acquisition: A New Approach, Dec. 1998)

• Regression Testing “A selected set of previously conducted tests after a system change to
reconfirm their validity.” (Source: Kossiakoff and Sweet, System Engineering, p. 452)

• Test The act of subjecting, measuring, and evaluating a SYSTEM or entity’s responses to
a prescribed and controlled set of OPERATING ENVIRONMENT conditions, verification
methods, and stimuli and comparing the results to a set of specified capability and perform-
ance requirements.

• Test and Evaluation (T&E) The informal or semiformal act of evaluating the behavioral
response and reaction time performance of a system entity within a prescribed OPERATING
ENVIRONMENT to a controlled set of stimuli for purposes of assessing entity functional-
ity and eliminate defects. T&E establishes that an article is free of latent defects or defi-
ciencies, as allowed, and is ready for formal verification. T&E should include a “dry run”
of the formal verification acceptance test procedures (ATPs) prior to formal verification.
T&E activities are generally informal contractor activities and may or may not be observed
by the Acquirer.

• Test and Evaluation Working Group (TEWG) A team consisting of User, Acquirer,
System Developer, Subcontractor, and vendor personnel stakeholders formed to plan, co-
ordinate, implement, monitor, analyze, and evaluate test results.

• Test Article An initial unit of a SYSTEM or PRODUCT or one randomly extracted from
a production lot to be used for conducting nondestructive or destructive tests.

• Test Case One instance of a series of use case scenario-based tests that employ combina-
tions of test inputs and conditions to verify an item’s ability to ACCEPT/REJECT ranges of
inputs, perform value-added processing and to produce only ACCEPTABLE performance-
based outcomes or results.

• Test Configuration A controlled architectural framework capable of representing an item’s
OPERATING ENVIRONMENT conditions—NATURAL, INDUCED, or HUMAN-MADE

55.1 Introduction 735



SYSTEMS—via simulation, stimulation, or emulation to verify that the test article satisfies
a specific requirement or set of requirements.

• Test Coverage “The degree to which a given test or set of tests addresses all specified
requirements for a given system or component.” (Source: IEEE 610.12-1990)

• Test Criteria “Standards by which test results and outcome are judged.” (Source: DSMC,
Test & Evaluation Management Guide, Appendix B—Glossary of Test Terminology)

• Test Environment The set of System Elements (EQUIPMENT, PERSONNEL, 
FACILITIES, PROCEDURAL DATA, MISSION RESOURCES, simulated NATURAL and
INDUCED ENVIRONMENTs, etc.) configured to represent a test article’s OPERATING
ENVIRONMENT conditions.

• Test and Measurement Equipment “The peculiar or unique testing and measurement
equipment which allows an operator or maintenance function to evaluate operational condi-
tions of a system or equipment by performing specific diagnostics, screening or quality assur-
ance effort at an organizational, intermediate, or depot level of equipment support.” (Source:
MIL-HDBK-881, Appendix H, para. H.3.6.1)

EXAMPLE 55.2

Examples include: “. . . test measurement and diagnostic equipment, precision measuring equipment, auto-
matic test equipment, manual test equipment, automatic test systems, test program sets, appropriate intercon-
nect devices, automated load modules, taps, and related software, firmware and support hardware (power
supply equipment, etc.) used at all levels of maintenance.” (Source: MIL-HDBK-881, Appendix H, para.
H.3.6.1)

• Test Incident Report “A document that describes an event that occurred during testing
which requires further investigation.” (Source: IEEE 610.12-1990)

• Test Instrumentation “Test instrumentation is scientific, automated data processing equip-
ment (ADPE), or technical equipment used to measure, sense, record, transmit, process or
display data during tests, evaluations or examination of materiel, training concepts or tacti-
cal doctrine. Audio-visual is included as instrumentation when used to support Acquirer
testing.” (Source: Adapted from DSMC, Test & Evaluation Management Guide, Appendix
B, Glossary of Test Terminology)

• Test Range An indoor or outdoor FACILITY that provides a safe and secure area for eval-
uating a SYSTEM or entity’s capabilities and performance under near NATURAL ENVI-
RONMENT or simulated conditions.

• Test Repeatability “An attribute of a test, indicating that the same results are produced each
time the test is conducted.” (Source: IEEE 610.12-1990)

• Test Resources “A collective term that encompasses all elements necessary to plan, conduct
and collect/analyze data from a test event or program.” (Source: DSMC, Glossary: Defense
Acquisition Acronyms and Terms)

• Testing “The process of operating a system or component under specified conditions,
observing or recording the results, and making an evaluation of some aspect of the system
or component.” (Source: IEEE 610.12-1990)

• Transient Error An “Error that occurs once, or at unpredictable intervals.” (Source: IEEE
610.12-1990)
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55.2 SITE FUNDAMENTALS

To better understand the SITE tasks discussed in this section, let’s introduce some of the funda-
mentals of that provide the foundation for SITE.

What Is SITE?

System integration, test, and evaluation (SITE) is the sequential, bottoms-up process of:

1. Incremtially interfacing previously verified system items and configuration items (CIs)—
consisting of PARTS, SUBASSEMBLIES, ASSEMBLIES, SUBSYSTEMS and PROD-
UCTS—at Integration Points (IPs), beginning with the lowest level.

2. Conducting functional and qualification tests of the integrated test article to verify all capa-
bilities comply with specification and design requirements.

3. Evaluating the test results for compliance and optimizing test article performance.

Completion of SITE at each Integration Point (IP) is marked by a formal verification test, which
may or may not be performed formal acceptance test procedures (ATPs). On completion of each
test, we conduct compliance assessments based on performance or development specification ver-
ification requirements and methods. Each test proves the test article’s capability to perform over
the prescribed operating range of inputs and environmental conditions. For some programs, lower
level SITE verification tests may be semiformal, informal, and unwitnessed. In other cases, the
tests:

1. Are formal.

2. Employ approved acceptance test procedures (ATPs) derived from specification require-
ments and verification methods.

3. Are witnessed by all stakeholders including the Acquirer and User.

Depending on the contract, the Acquirer and User, at the request of the Acquirer, are invited to
“witness” the SITE and verification activities.

Author’s Note 55.1 As a reminder, the System Developer is accountable for notifying the
Acquirer regarding SITE in accordance with the terms and conditions of the contract. Under con-
ventional contracting protocol, the Acquirer notifies the User unless the Acquirer has made special
arrangements with the System Developer. Conversely, when the Acquirer and User have open invi-
tations to observe and witness SITE activities, as a professional courtesy to the System Developer,
the Acquirer should inform the System Developer’s Program Director in advance WHO, HOW
MANY people, and WHAT organization(s) will participate.

SITE Objective

The objective of SITE is to subject a test article of a SYSTEM, item, or configuration item (CI)
to a range of test cases, input stimuli and/or cues, and conditions representative of a prescribed
OPERATING ENVIRONMENT so that the achievement of each capability requirement and its per-
formance can be verified.

Engineers often have misperceptions of WHAT is to be accomplished by SITE. The ERRO-
NEOUS view is that a system or entity is subjected to a set of conditions bounded by minimum/
maximum performance requirement thresholds. The fallacy in this view is: HOW does the item
perform when subjected to conditions BEYOND these limits? Obviously, you could test an item
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beyond its physical limits such as environmental conditions, electrical overload, or shorts, but what
about improper data formats, magnitudes that are under/over range? If the item is designed prop-
erly, it should accommodate these conditions without failure.

The objective should be to exercise and assess the item’s capability to cope with acceptable
and unacceptable input conditions. Likewise, for those input conditions, produce only acceptable
SYSTEM RESPONSES such as behavior, products, by-products, and services.

SITE Conduct Sequencing

SITE, which is part of Developmental Test and Evaluation (DT&E), is conducted following the
Component Procurement and Development Segment of the System Development Phase as illus-
trated in Figure 55.1. Throughout the SITE Segment, the System Developer conducts Test Readi-
ness Reviews (TRRs) as entry criteria for various tests. SITE activities culminate in a System
Verification Review (SVR).

What Do SITE Activities Prove?

We can create nice words about SITE such as verify compliance with specification requirements,
but WHAT do SITE activities really accomplish. In very simple terms, SITE answers five key 
questions:

1. Can the SYSTEM/entity design interoperate with external systems in its OPERATING
ENVIRONMENT?

2. Does the SYSTEM/entity predictably and responsively function as planned?

3. Can the SYSTEM/entity materials and components survive the stresses of the prescribed
OPERATING ENVIRONMENT conditions for the duration of the mission/operating cycle
limits?

4. Is the quality of workmanship and construction sufficient to ensure the integrity of compo-
nent interfaces?

5. As applicable, can the SYSTEM/entity be easily maintained?
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Engineering Model, First Article, Test Article, 
and Unit-Under-Test (UUT) Semantics

SITE terminology includes terms such as engineering model, first article, test article, and unit under
test (UUT). Let’s explore each term briefly.

Engineering Model(s). An engineering model, which may or may not be a contract deliverable,
serves as an initial prototype. The model is used in collecting data to validate system models and 
simulations or in demonstrating technologies or proofs of concept. From a spiral development
perspective, one or more engineering models may be developed in iterative sequences as risk
mitigation devices over a period of time to identify requirements from which the Developmental
Configuration design will be used to produce the initial First Article(s).

First Article(s). By the term first article we mean the initial units of the approved Developmen-
tal Configuration that are available for verification testing and subsequent delivery in accordance
with the terms and conditions (Ts&Cs) of the contract. The term is sometimes a misnomer since
several first articles may be produced from the Developmental Configuration. Collectively, the set
of devices are referred to as first articles. Each initial set of first articles is subjected to various
nondestructive and destructive tests. On successful completion of system verification testing of the
first article(s), the resulting Developmental Configuration is used to establish the Product Baseline.

Test Article and UUTs. The term test article is actually a generic term that represents any item
used for test purposes. So, a first-article system progressing through its development is referred to
as a test article during SITE and as a unit under test (UUT) when integrated into the test configu-
ration for verification testing. Production articles may be test articles in the sense that only func-
tional tests are performed.

Key Elements of SITE

Planning and implementation of SITE requires an understanding of its key elements—the PER-
SONNEL, EQUIPMENT, FACILITIES, and other system elements—and HOW to orchestrate these
elements during the test. We represent these System Elements via the system block diagram (SBD)
shown in Figure 55.2.

The test article serves as the SYSTEM OF INTEREST (SOI) for SITE. Surrounding the test
article is the test environment, which consists of the test operator, test procedures, test log, test
equipment and tools, controlled test environment and design documentation, all contained within
the test facility.

Author’s Note 55.2 Note how the Controlled Test Environment is abstracted as an entity rather
than shown as surrounding the test article. Analytically, both methods are acceptable. Abstracting
the Controlled Operating Environment as a box with interfaces explicitly reminds you of the need
to identify and specify the interfaces. If we encompassed the test article within the Controlled Oper-
ating Environment (i.e., a box within a box), the interface relationships would be less explicit and
more difficult to identify.

Guiding Philosophy of SITE

The guiding philosophy of SITE can be summarized in a few words: KEEP IT SIMPLE! Simplic-
ity means establish an item compliant with its specification and then incrementally integrate other
items one at a time.
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People often have the erroneous viewpoint that they can lash all PRODUCTs/SUBSYSTEMs
into a gigantic test configuration and begin testing! If you do this, you may and probably will be
confronted with n items, each with scores of UNPROVEN capabilities interacting simultaneously!
If something does not work properly, HOW will you ever sort out WHAT is causing the problem?
You will soon discover that you need to disassemble everything and start with a simple proven and
verified item, integrate another item with it, and incrementally build a system. Remember, SITE
root wisdom says integrate one unproven and unverified item at a time! At least you will know
WHEN the problem entered the test article configuration and thereby can simplify trouble shoot-
ing and fault isolation. For that item, disable as many capabilities as you can and incrementally
test and enable one new capability at a time.

Preparing Items for SITE

During the SE Design Segment of the System Development Phase, we partitioned and decomposed
the solution space into successively lower levels of detail down to the PART level item. During
Component Procurement and Development, each item is procured/fabricated, coded, assembled,
and tested. Incrementally, we subject the item to inspections and verification to ensure that it com-
plies with its design requirements—drawings, source codes, and so forth. Since each item serves
as a “building block” for constructing or assembling the SYSTEM, item verification evaluates its
form, fit, and function.

Once you understand the importance of the form, fit, function at the PART level, SITE is simply
testing the form, fit, and function of physical items at higher levels of Integration Points (IPs) as a
functioning system with a given set of capabilities. System integration is actually a verification
exercise whereby: 1) components are integrated, 2) interfaces are verified, and 3) interoperability
is demonstrated or tested.
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Types of Testing

When organizations discuss SITE activities, you will often hear terms such as functional, environ-
mental/qualification, destructive, and nondestructive testing. Let’s clarify the context of each of
these terms.

Functional and Environmental/Qualification Testing. In general, SITE activities perform
two categories of testing: functional testing and environmental/qualification testing.

• Functional testing simply means that the components, when interconnected and integrated,
perform actions and interoperate as planned with no errors under ambient conditions.

• Environmental/qualification testing is the next higher level and focuses on HOW WELL the
item performs in its PRESCRIBED OPERATING ENVIRONMENT conditions. Qualifica-
tion testing includes tests performed as part of Developmental Test and Evaluation (DT&E)
verification activities and, if applicable, during Operational Test and Evaluation (OT&E) 
validation activities. Environmental/qualification testing involves environmental condi-
tions such as temperature, humidity, shock, vibration, and Electromagnetic Interference
(EMI).

Nondestructive and Destructive Testing. During functional and environmental/qualification
testing, test articles may be subjected to a wide range of tests that may destroy, blemish, or alter
the test article’s appearance, structural integrity, capability, or performance. We refer to these as
destructive tests. In contrast, nondestructive tests may not harm the item, which may be refurbished
for delivery, assuming it is permissible by contract and safety practices.

During the System Production Phase of a program, production sample test articles may be ran-
domly selected for a test program to assess the quality of materials, workquality, system capabili-
ties and performance, shelf-life degradation, and so forth.

Author’s Note 55.3 ALWAYS consult your contract and program, contracts, and legal organ-
izations for guidance concerning test article delivery, recovery, or refurbishment.

Creating the Test Article’s OPERATING ENVIRONMENT

When we perform SITE, we subject the test article to scenarios and conditions that represent 
its OPERATING ENVIRONMENT. This requires creating the HIGHER ORDER SYSTEMS 
and PHYSICAL ENVIRONMENT Elements, among these HUMAN-MADE SYSTEMS, the
INDUCED ENVIRONMENT, and the NATURAL ENVIRONMENT. How do we do this?

There are several options for creating the OPERATING ENVIRONMENT as illustrated in
Figure 51.5. We can simulate, stimulate or emulate entities within the environment or employ com-
binations of these options.

• Simulate To create a virtual model interface that represents the performance-based behav-
ioral responses and characteristics of an external entity.

• Stimulate To create an interface using actual EQUIPMENT or a test set that has identical
physical performance characteristics of the external entity.

• Emulate To create an interface that identically mimics the actual operations, processing
sequences, and performance characteristics of an external system entity.

In each of these cases, the objective is to create an interface that is so representative or realistic of
the external system that the test article is unable to discern its difference from reality.

55.2 SITE Fundamentals 741



SITE Conduct Procedures

Two types of procedures govern SITE conduct: standard operating practices and procedures
(SOPPs) and acceptance test procedures (ATPs).

Standard Operating Practices and Procedures (SOPPs). Standard operating practices and
procedures (SOPPs) are organizational command media that apply to test conduct in test facilities
and ranges. SOPPs focus on the safe and proper handling of EQUIPMENT, human and environ-
mental safety, laboratory/test range procedures, security procedures, emergency procedures, as well
as the prevention of hazards.

Acceptance Test Procedures (ATPs). Acceptance test procedures are derived from each
Section 3.0 System Performance Specification (SPS) or item developmental specification (IDS)
requirement using the prescribed Section 4.0 Verification Methods. Since a key objective is to min-
imize test costs, some Section 3.0 requirements may be verified simultaneously with a single test.
ATPs should reflect this approach and note the requirements being verified.

Who Performs Tests?

Questions often emerge regarding WHO should perform the PART, SUBASSEMBLY, ASSEM-
BLY, SUBSYSTEM, PRODUCT, and SYSTEM level tests. This question has two aspects: testing
personal work products and qualifying test personnel.

Testing Personal Work Products. Testing ranges from informal to highly formal. As a matter
of practice, system designers SHOULD NOT test their own designs, provided that someone else
is capable. The underlying philosophy of this principle is that it this represents a potential conflict
of interest in objectively checking off your own work. In most organizations SE designers develop
and perform informal testing of their work products, typically with peer level review scrutiny. Some
organizations create independent test teams and assign them to perform testing at all levels of inte-
gration. Some contracts employ IV&V teams to perform testing, especially of software.

Qualifying Test Personnel. Testing requires knowledge, discipline, observational skills, adher-
ence to safety practices, integrity, accuracy, and precision in reporting test results. In general, CON-
TRACT testing is not for amateurs; it requires training and experience, and often certification.
Therefore, organizations should establish in-house command media policies that only testers who
have been trained and certified for a defined period of time perform tests.

Simultaneous Testing of Multiple Requirements

Testing can rapidly become very expensive and consume valuable schedule resources. Remember,
you only employ TEST where INSPECTION, ANALYSIS, and DEMONSTRATION verification
methods are insufficient to demonstrate full compliance with a requirement.

There are ways to efficiently and effectively perform TESTs to reduce costs and schedule. Some
people believe that you conduct one test for each requirement. In general, analyze a performance or
development specification to identify dependencies and sets of requirements that can be tested simul-
taneously where TEST is the required verification method.

What Is Regression Testing?

SITE can be very expensive. As a result, you want to minimize the amount of rework and retest.
The question is: WHEN you discover a latent defect, design flaw, deficiency, or error that requires
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corrective action, WHAT tests impacted by the failure must be repeated before you can resume
testing at the test sequence where the failure occurred? The answer resides in regression testing.

During regression testing only those aspects of the component design that have been impacted
by a corrective action are re-verified. Form, fit, and function checks of the UUT that were suc-
cessfully completed and not affected by any corrective actions are not re-verified.

Discrepancy Reports (DRs)

Inevitably, discrepancies will appear between actual test data and bounded expected results spec-
ified in the SPS or item development specification. We refer to the occurrence of a discrepancy as
a test event.

When test events such as failures occur, a Discrepancy Report (DR) is recorded. The Test Direc-
tor should define WHAT constitutes a test event in the SIVP and event criteria for recording a DR.

At a minimum, DRs document:

1. The test event, date, time.

2. Conditions and prior sequence of steps preceding a test event.

3. Test article identification.

4. Test configuration.

5. Reference documents and versions.

6. Specific document item requirement and expected results.

7. Results observed and recorded.

8. DR author and witnesses or observers.

9. Degree of significance requiring a level of urgency for corrective action.

DRs have levels of significance that affect the test schedule. They involve safety issues, data
integrity issues, isolated tests that may not affect other tests, and cosmetic blemishes in the test
article. As standard practice, establish a priority system to facilitate disposition of DRs. An example
is provided in Table 55.1.
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Table 55.1 Example test event DR classification system

Priority Event Description

1 Emergency condition All testing must be TERMINATED IMMEDIATELY due to
imminent DANGER to the Test Operators, test articles, or test
facility.

2 Test component or Testing must be HALTED until a corrective action is performed.
configuration failure Corrective action may require redesign or replacement of a failed

component.

3 Test failure Testing can continue if the failure does not diminish the integrity 
of remaining tests; however, the test article requires corrective 
action reverification prior to integration at the next higher level.

4 Cosmetic blemish Testing is permitted to continue, but corrective, action must be 
performed prior to system acceptance.



SITE Work Products

SITE work products that serve as objective evidence for a single item, regardless of level of abstrac-
tion, include:

1. A set of dated and signed entries in the Test Log that identify and describe:
a. Test Team—the name of the responsible engineering team and lead.
b. Test Article—what “parent” test article was integrated from what version of lower level

test articles.
c. Test(s) conducted.
d. Test results—where recorded and stored.
e. Problems, conditions, or anomalies—encountered and identified.

2. Discrepancy report (DR).

3. Hardware trouble reports (HTRs) documented and logged.

4. Software change requests (CRs) documented and logged.

5. State of readiness of the test article for scheduling formal verification.

Guidepost 55.1 This completes our overview of SITE fundamentals. We now shift our attention
to planning for SITE.

55.3 PLANNING FOR SITE

SITE success begins with insightful planning to identify the test objectives; roles; responsibilities,
and authorities; tasking, resources, facilities; and schedule. Testing, in general, involves two types
of test plans:

1. The Test and Evaluation Master Plan (TEMP).

2. The System Integration and Verification Plan (SIVP).

The Test and Evaluation Master Plan (TEMP)

In general, the TEMP is a User’s document that expresses HOW the User or an Independent Test
Agency (ITA) representing the User’s interests plans to validate the system, product, or service.
From a User’s perspective, development of a new system raises critical operational and technical
issues (COIs/CTIs) that may become SHOWSTOPPERS to validating satisfaction of an organiza-
tion’s operational need. So, the scope of the TEMP covers the Operational Test and Evaluation
(OT&E) period and establishes objectives to verify resolution of COIs/CTIs.

The TEMP is structured to answer a basic question: Does the system, product, or services, as
delivered, satisfy the User’s validated operational needs—in terms of problem space and solution
space? Answering this question requires formulation of a set of scenario-driven test objectives—
namely use cases and scenarios.

The System Integration and Verification Plan (SIVP)

The SIVP is written by the System Developer and expresses their approach for integrating and
testing the SYSTEM or PRODUCT. The scope of the SIVP, which is contract dependent, covers
the Developmental Test and Evaluation (DT&E) period from Contract Award through the formal
System Verification Test (SVT), typically at the System Developer’s facility.
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The SIVP identifies objectives, organizational roles and responsibilities, tasks, resource
requirements, strategy for sequencing testing activities, and schedules. Depending on contract
requirements, the SIVP may include delivery, installation, and checkout at a User’s designated job
site.

Developing the System Integration and Test Strategy

The strength of a system integration and test program requires “up front” THINKING to ensure
that the vertical integration occurs just in time (JIT) in the proper sequences. Therefore, the first
step is to establish a strong system integration and test strategy.

One method is to construct a System Integration and Test Concept graphically or by means of
an integration decision tree. The test concept should reflect:

1. WHAT component integration dependencies are critical?

2. WHO is responsible and accountable for the integration?

3. WHEN and in WHAT sequence they will be integrated?

4. WHERE is the integration to be performed?

5. HOW the components will be integrated?

The SITE process may require a single facility such as a laboratory or multiple facilities within the
same geographic area, or integration across various geographical locations.

Destructive Test Sequence Planning

During the final stages of SITE Developmental Test and Evaluation (DT&E), several test articles
may be required. The challenge for SEs is: HOW and in WHAT sequence do we conduct non-
destructive tests to collect data to verify design compliance prior to conducting destructive test 
that may destroy or damage the test article? THINK through these sequences carefully.

Guidepost 55.2 Once the site plans are in place, the next step requires establishing the test
organization.

55.4 ESTABLISHING THE TEST ORGANIZATION

One of the first steps following approval of the SIVP is establishing the test organization and assign-
ment of roles, responsibilities, and authorities. Key roles include Test Director, Lab Manager, Tester,
Test Safety Officer or Range Safety Officer (RSO), Quality Assurance (QA), Security Representa-
tive, and Acquirer/User Test Representative.

Test Director Role

The Test Director is a member of the System Developer’s program and serves as the key decision
authority for testing. Since SITE activities involve interpretation of specification statement lan-
guage and the need to access test ports and test points to collect data for test article compliance
verification, the Test Director role should be assigned EARLY and be a key participant in System
Design Segment reviews. At a minimum, the primary Test Director responsibilities are:

1. Develop and implement the SIVP.

2. Chair the Test and Evaluation Working Group (TEWG), if applicable.

55.4 Establishing the Test Organization 745



3. Plan, coordinate, and synchronize test team task assignments, resources, and 
communications.

4. Exercise authoritative control of the test configuration and environment.

5. Identify, assess, and mitigate test risks.

6. Review and approve test conduct rules and test procedures.

7. Account for personnel environmental, safety, and health (ES&H).

8. Train test personnel.

9. Prioritize and disposition of discrepancy reports (DRs).

10. Verify DR corrective actions.

11. Accomplish contract test requirements.

12. Preserve test data and results.

13. Conduct failure investigations.

14. Coordinate with Acquirer/User test personnel regarding disposition of DRs and test issues.

Lab Manager Role

The Lab Manager is a member of the System Developer’s program and supports the Test Director.
At a minimum, the primary Lab Manager responsibilities are:

1. Implement the test configuration and environment.

2. Acquire of test tools and equipment.

3. Create the laboratory notebook.

4. Support test operator training.

Test Safety Officer or Range Safety Officer Role

Since testing often involves unproven designs and test configurations, safety is a very critical issue,
not only for test personnel but also for the test article and facilities. Therefore, every program should
designate a Safety Officer.

In general, there are two types of test safety officers: SITE Test Officer and Range Safety
Officer (RSO).

• The Test Safety Officer is a member of the System Developer’s organization and supports
the Test Director and Lab Manager.

• The Range Safety Officer is a member of a test range.

In some cases, Range Safety Officers (RSOs) have authority to destruct test articles should they
become unstable and uncontrollable during a test or mission and pose a threat to personnel, facil-
ities, and/or the public.

Tester Role

As a general rule, system, product, or service developers should not test their own designs; it is
simply a conflict of interest. However, at lower levels of abstraction, programs often lack the
resources to adequately train testers. So, System Developers often perform their own informal
testing. For some contracts Independent Verification and Validation (IV&V) Teams, internal or
external to the program or organization, may perform the testing.
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Regardless of WHO performs the tester role, test operators must be trained in HOW to safely
perform the test, record and document results, and deal with anomalies. Some organizations for-
mally train personnel and refer to them as certified test operators (CTOs).

Quality Assurance (QA) Representative

At a minimum, the System Developer’s Quality Assurance Representative (QAR) is responsible for
ensuring compliance with contract requirements, organizational and program command media, the
SIVP, and ATPs for software-intensive system development efforts, a Software Quality Assurance
(SQA) representative is assigned to the program.

Security Representative

At a minimum, the System Developer’s Security Representative, if applicable, is responsible for
the assuring compliance with contract security requirements, organizational and program command
media, the programs security plan and ATPs.

Acquirer Test Representative

Throughout SITE, test issues surface that require an Acquirer decision. Additionally, some 
Acquirers represent several organizations, many with conflicting opinions. This presents a challenge
for System Developers. One solution is for the Acquirer Program Manager to designate an indi-
vidual to serve as an on-site representative at the System Developer’s facility and provide a single
voice representing all Acquirer viewpoints. Primary responsibilities are to:

1. Serve as THE single point of contact for ALL Acquirer and User technical interests and 
communications.

2. Work with the Test Director to resolve any critical operational or technical test issues
(COIs/CTIs) that affect Acquirer-User interests.

3. Where applicable by contract, collaborate with the Test Director to assign priorities to dis-
crepancy reports (DRs).

4. Where appropriate, review and coordinate approval of acceptance test procedures (ATPs).

5. Where appropriate, provide a single set of ATP comments that represent a consensus of the
Acquirer-User organizations.

6. Witness and approve ATP results.

55.5 DEVELOPING ATPs

In general, ATPs provide the scripts to verify compliance with SPS or item development specifica-
tion requirements. In Chapters 13 through 17 System Mission Concepts, we discussed that an SPS
or item’s development specification (IDS) is derived from use cases and scenarios based on HOW
the User envisions using the system, product, or service. In general, the ATPs script HOW TO
demonstrate that the SYSTEM or item provides a specified set of capabilities for a given phase and
mode of operation. To a test strategy, we create test cases that verify these capabilities as shown
in Table 55.2.

Types of ATPs

ATPs are generally of two types: procedure-based and scenario-based (ATs).
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Procedure-Based ATPs. Procedure-based ATPs are highly detailed test procedures that describe
test configurations, environmental controls, test input switchology, expected results and behavior,
among other details, with prescribed script of sequences and approvals. Consider the example
shown in Table 55.3 for a secure Web site log-on test by an authorized user.

Scenario-Based ATPs. Scenario-based ATPs are generally performed during system validation
either in a controlled facility or in a prescribed field environment. Since system validation is
intended to evaluate a system’s capabilities to meet a User’s validated operational needs, those
needs are often scenario based.

Scenario-based ATPs employ objectives or missions as key drivers for the test. Thus, the ATP
tends to involve very high level statements that describe the operational mission scenario to be
accomplished, objective(s), expected outcome(s), and performance. In general, scenario-based
ATPs defer to the Test Operator to determine which sequences of “switches and buttons” to use
based on operational familiarity with the test article.
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Table 55.2 Derivation of test cases

Phase of Mode of Use Cases Use Case Required Test Cases
Operation Operation (UCs) Scenarios Operational (TCs)

Capability

Pre-mission phase Mode 1 UC 1.0 ROC 1.0 TC 1.0

Scenario 1.1 ROC 1.1 TC 1._

. . . TC 1._

Scenario 1.n ROC 1.n TC 1._

. . . TC 1._

Mode 2 UC 2.0 ROC 2.0 TC 2.0

Scenario 2.1 ROC 2.1 TC 2._

. . . TC 2._

Scenario 2.n ROC 2.n TC 2._

. . . TC 2._

UC 3.0 ROC 3.0 TC 3.0

Scenario 3.1 ROC 3.1 TC 3._

. . . TC 3._

Scenario 3.n ROC 3.n TC 3._

. . . TC 3._

Mission phase (Modes) (Fill-in) (Fill-in) (Fill-in) (Fill-in)

Post-mission phase (Modes) (Fill-in) (Fill-in) (Fill-in) (Fill-in)

Note: A variety of TCs are used to test the SYSTEM/entity’s inputs/outputs over acceptable and unacceptable ranges.



55.6 PERFORMING SITE TASKS

SITE, as with any system, consists of three phases: pre-testing phase, testing phase, and a post-
testing phase. Each phase consists of a series of tasks for integrating, testing, evaluating, and ver-
ifying the design of an item’s or configuration item (CI). Remember, every system is unique. The
discussions that follow represent generic test tasks that apply to every level of abstraction. These
tasks are highly interactive and may cycle numerous times, especially in the testing phase.

Task 1.0: Perform Pre-test Activities

• Task 1.1 Configure the test environment.

• Task 1.2 Prepare and instrument the test article(s) for SITE.

• Task 1.3 Integrate the test article into the test environment.

• Task 1.4 Perform a test readiness inspection and assessment.

Task 2.0: Test and Evaluate Test Article Performance

• Task 2.1 Perform informal testing.

• Task 2.2 Evaluate informal test results.

• Task 2.3 Optimize design and test article performance.

• Task 2.4 Prepare test article for formal verification testing.

• Task 2.5 Perform a “dry run” test to check out ATP.
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Table 55.3 Example procedure-based acceptance test (AT) form

Test Test Operator Expected Measured, Pass/Fail Operator QA
Step Action to be Results Displayed, Results Initials

Performed or Observed and Date
Results

Step 1 Using the left Web browser is Web site appears Pass JD QA
mouse button, launched to 4/18/XX 205
click on the Web selected Web KW 4/18/XX

site link. site.

Step 2 Using the left Logon access As expected Pass JD QA
mouse button, click dialogue box 4/18/XX 205
on the “Logon” opens up. KW 4/18/XX

button.

Step 3 Position the cursor Fixed cursor As expected Pass JD QA
within the User blinks in field. 4/18/XX 205
Name field of the KW 4/18/XX

dialogue box.

Step 4 Enter user ID (max. Field displayed. User ID entered Pass JD QA
of 10 characters) 4/18/XX 205
and click SUBMIT KW 4/18/XX



Task 3.0: Verify Test Article Performance Compliance

• Task 3.1 Conduct a test readiness review (TRR).

• Task 3.2 Formally verify the test article.

Task 4.0: Perform Post-test Follow-up Actions

• Task 4.1 Prepare item verification test reports (VTRs).

• Task 4.2 Archive test data.

• Task 4.3 Implement all DR corrective actions.

• Task 4.4 Refurbish/recondition test article(s) for delivery, if permissible.

Resolving Discrepancy Reports (DRs)

When a test failure occurs and a discrepancy report (DR) is documented, a determination has to be
made as to the significance of the problem on the test article and test plan as well as isolation of
the problem source. While the general tendency is to focus on the test article due to its unproven
design, the source of the problem can originate from any one of the test environment elements
shown in Figure 55.2 such as a test operator or  test procedure error; test configuration or test envi-
ronment problem, or combinations of these. From these contributing elements we can construct 
a fault isolation tree such as the one shown in Figure 55.3. Our purpose during an investigation
such as this is to assume everything is suspect and logically rule out elements by a process of 
elimination.

Once the DR and the conditions surrounding the failure are understood, our first decision is to
determine if the problem originated external or internal to the test facility, as applicable. For those
problems originating within the facility, decide if this is a test operator, test article, test configura-
tion, Test environment, or test measurement problem. 

Since the test procedure is the orchestration mechanism, start with it and its test configuration.
Is the test configuration correct? Was the test environment controlled at all times without any dis-
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continuities? Did the operator perform the steps correctly in the proper sequence without bypass-
ing any? Is the test procedure flawed? Does it contain errors? Was a dry run conducted with the
test procedure prior to verify its logic and steps? If so, the test article may be suspect.

Whereas people tend to rush to judgment and take corrective action, VALIDATE the problem
source by reconstructing the test configuration, operating conditions, sequence of events, test pro-
cedures, and observations as documented in the test log, DR, and test personnel interviews. 

If the problem originated with the test article, retrace the development of the item in reverse
order to its system development workflow. Was the item built correctly per its design requirements?
Was it properly inspected and verified? If so, was there a problem due to component, material,
process, or workmanship defect(s) or in the verification of the item? If so, determine if the test
article will have to be reworked, scrapped, reprocured, or retested. If not, the design or specifica-
tion may be suspect.

Audit the design. Is it fully compliant with its specification? Does the design have an inherent
flaw? Were there errors in translating specification requirements into the design documentation?
Was the specification requirement misinterpreted? If so, redesign to correct the flaw or error will
have to be performed. If not, since the specification establishes the compliance thresholds for 
verification testing, you may have to consider: 1) revising the specification and 2) reallocating 
performance budgets and margins. Based on your findings, recommend, obtain approval, and 
implement the corrective actions. Then, perform regression testing based on the where the last val-
idate test unaffected by the failure was completed.

55.7 COMMON INTEGRATION AND TEST 
CHALLENGES AND ISSUES

SITE practices often involve a number of challenges and issues for SEs. Let’s explore some of the
more common ones.

Challenge 1: SITE Data Integrity

Deficiencies in establishing the test environment, poor test assumptions, improperly trained and
skilled test operators, and an uncontrollable test environment compromise the integrity of engi-
neering test results. Ensuring the integrity of test data and results is crucial for downstream deci-
sion making involving formal acceptance, certification, and accreditation of the system.

Warning! Purposeful actions to DISTORT or MISREPRESENT test data are a violation of pro-
fessional and business ethics. Such acts are subject to SERIOUS criminal penalties that are pun-
ishable under federal or other statutes or regulations.

Challenge 2: Biased or Aliased SITE Data Measurements

When instrumentation such as measuring devices are connected or “piggybacked” to “test points”,
the resulting impact can bias or alias test data and/or degrade system performance. Test data capture
should be not degrade system performance. Thoroughly analyze the impact of potential effects of
test device bias or alias on system performance BEFORE instrumenting a test article. Investigate
to see if some data may be derived implicitly from other data. Decide:

1. How critical the data is needed.

2. If there are alternative data collection mechanism or methods.

3. Whether the data “value” to be gained is worth the technical, cost, and schedule risk.
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Challenge 3: Preserving and Archiving Test Data

The end technical goal of SITE and system verification is to establish that a system, product, or
service fully complies with its System Performance Specification (SPS). The validity and integrity
of the compliance decision resides in the formal acceptance test procedure (ATP) results used to
record objective evidence. Therefore, ALL test data recorded during a formal ATP must be pre-
served by archiving in a permanent, safe, secure, and limited access facility. Witnessed or authen-
ticated test data may be required to support:

1. A functional configuration audit (FCA) and a physical configuration audit (PCA) prior to
system delivery and formal acceptance by the Acquirer for the User.

2. Analyses of system failures or problems in the field.

3. Legal claims.

Most contracts have requirements and organizations have policies that govern the storage and reten-
tion of contract data, typically several years after the completion of a contract.

Challenge 4: Test Data Authentication

When formal test data are recorded, the validity of the data should be authenticated, depending on
end usage. Authentication occurs in a number of ways. Generally, the authentication is performed
by an Independent Test Agency (ITA) or individual within the Quality Assurance (QA) organiza-
tion that is trained and authorized to authenticate test data in accordance with prescribed policies
and procedures. Authentication may also be required by higher level bonded, external organiza-
tions. At a minimum, authentication criteria include a witnessed affirmation of the following:

1. Test article and test environment configuration

2. Test operator qualifications and methods

3. Test assumptions and operating conditions

4. Test events and occurrences

5. Accomplishment of expected results

6. Pass/fail decision

7. Test discrepancies

Challenge 5: Dealing with One Test Article and 
Multiple Integrators and Testers

Because of the expense of developing large complex systems, multiple integrators may be required
to work sequentially in shifts to meet development schedules. This potentially presents problems
when integrators on the next shift waste time uninstalling undocumented “patches” to a build from a
previous shift. Therefore, each SITE work shift should begin with a joint coordination meeting of
persons going off shift and coming on shift. The purpose of the meeting is to make sure everyone com-
municates and understands the current configuration “build” that transpired during the previous shift.

Challenge 6: Deviations and Waivers

When a system or item fails to meet its performance, development, and/or design requirements, the
item is tagged as noncompliant. For hardware, a nonconformance report (NCR) documents the dis-
crepancy and dispositions it for corrective action by a Material Review Board (MRB). For soft-
ware, a software developer submits a Software Change Request (SCR) to a Software Configuration
Control Board (SCCB) for approval. Noncompliances are sometimes resolved by issuing a devia-
tion or waiver, rework, or scrap without requiring a CCB action.
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Challenge 7: Equipment and Tool Calibration and Certification

The credibility and integrity of a V&V effort is often dependent on:

1. Facilities and equipment to establish a controlled environment for system modeling, simu-
lation, and testing.

2. Tools used to make precision adjustments in system/product functions and outputs.

3. Tools used to measure and record the system’s environment, inputs, and outputs.

4. Tools used to analyze the system responses based on I/O data.

All of these factors:

1. Require calibration or certification to standards for weights, measures, and conversion
factors.

2. Must be traceable to national/international standards.

Therefore, avoid rework and make sure that V&V activities have technical credibility and integrity.
Begin with a firm foundation by ensuring that all calibration and certification is traceable to source
standards.

Challenge 8: Insufficient Time Allocations for SITE

Perhaps one of the most SERIOUS challenges is making time allocations for SITE activities due
to poor program planning and implementation. When organizations bid on system development
contracts, executives bid an aggressive schedule based on some clever strategy to win the contract.
This occurs despite the fact the organization may have had a long-standing history of poor contract
performance such as cost/schedule overruns.

Technically, the more testing you perform, the more latent defects you can discover due to
design deficiencies, flaws, or errors. While every system is different, on average, you should spend
at least 40% of the schedule performing SITE. Most contract programs get behind schedule and
compress that 40% into 10%. As a result, they rush SITE activities and inadequately test the system
to “check the box” for completing schedule tasks.

There are four primary reasons for this:

1. Bidding aggressive, unrealistic schedules to win the contract.

2. Allowing the program to get off schedule, beginning with Contract Award, due to a lack of
understanding of the problem and solution spaces or poor data delivery performance by
external organizations.

3. Rushing immature designs into component procurement and development and finishing
them during SITE.

4. Compressing component procurement and development to “check the box” and boldly
PROCLAIM that SITE was entered “on time.”

5. Assigning program management that understands meeting schedules and making profits but
DOES NOT have a clue about the magnitude of the technical problem to be solved nor
HOW TO orchestrate successful contract implementation and completion.

Challenge 9: Discrepancy Reporting Obstacles to SITE

One of the challenges of site is staying on schedule while dealing with test discrepancies. Estab-
lish a DR priority system to delineate those DRs from those that do not affect personal or equip-
ment safety and do not jeopardize higher level test results. Establish go/no-go DR criteria to proceed
to the next level of SITE.
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Challenge 10: DR Implementation Priorities

Humans, by nature, like to work on “fun” things and the easy tasks. So, when DR corrective actions
must be implemented, developers tend to work on those DRs that give them instant credit for com-
pletion. As a result, the challenging DRs get pushed to the bottom of the stack. Then, progress
report metrics proudly proclaim the large quantity of DR corrective actions completed. In an earned
value sense, you have a condition in which 50% of the DRs are completed the first month. Sounds
great! Lots of productivity! Wrong! What we have is 50% of the quantity of DRs representing only
10% of the required work to be performed have been completed. Therefore, program technical man-
agement, who also contribute to this decision making, need to do the following:

1. Prioritize and schedule DRs for implementation.

2. Allocate resources based on those priorities.

3. Measure earned value progress based on relative importance or value of DRs.

In this manner, you tackle the hard problems first. Executive management and the Acquirer need
to understand and commit their full support to the approach as “the RIGHT thing to do!” As stake-
holders, they need to be participants in the prioritization process.

Challenge 11: Paragraph versus Singular Requirements

In addition to the SE Design Process challenges, the consequences of paragraph-based specifica-
tion requirements arise during SITE. The realities of using a test to demonstrate several dependent
or related requirements scattered in paragraphs throughout a specification can create many prob-
lems. THINK SMARTLY “up front” when specifications are written and create singular require-
ments statements that can be easily checked off as completed.

Referral For more information about singular requirements statements, refer to Chapter 33 on
Requirements Statement Development Practices.

Challenge 12: Credit for Requirements Verified

The issue of paragraph versus singular requirements also presents challenges during verification.
The challenge is paragraph-based requirements cannot be checked off as verified until ALL of the
requirements in the paragraph have been verified. Otherwise, say the paragraph has 10 embedded
requirements and you have completed nine. Guess WHAT! You are stuck without a verification
check mark until the tenth requirement is verified. Create singular requirement statements!

Challenge 13: Refurbishing/Reconditioning Test Articles

System Verification Test (SVT) articles, especially expensive ones, may be acceptable for deliv-
ery under specified contract conditions—such as after refurbishment and touch-up. Establish accept-
ance criteria BEFORE the contact is signed concerning HOW SVT articles will be dispositioned
AFTER the completion of system testing. Consult your contract and your program, legal, or con-
tracts organization for guidance in this area.

Challenge 14: Calibration and Alignment of Test Equipment

Testing is very expensive and resource intensive. When the SVT is conducted, most programs are
already behind schedule. During SITE, if it is determined that a test article is misaligned or your
test equipment is out of calibration, you have test data integrity issues to resolve.
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Do yourself a favor. Make sure ALL test equipment and tools are certified to be calibrated and
aligned BEFORE you conduct formal tests. Since calibration certifications have expiration dates,
plan ahead and have a contingency plan to replace test equipment items with calibration due to
expire during the SITE. Tag all equipment and tools with expired calibration notices that are highly
visible; lock up the expired equipment until calibrated.

Challenge 15: Test “Hooks”

Test hooks provide a means to capture data measurements such as test points, and software data
measurements. Plan for these “hooks” during the SE Design Segment and make sure they do not
bias or alias the accuracy of hardware measurements or degrade software performance. Identify
and visibly tag each one for test reporting and easy removal later. Then, when test article verifica-
tion is completed, make sure all test hooks are removed, unless they are required for higher level
integration tests.

Challenge 16: Anomalies

Anomalies can and do occur during formal SITE. Make sure that test operator personnel and equip-
ment properly log the occurrence and configuration and event SEQUENCES when anomalies occur
to serve as a basis to initiate your investigation.

Anomalies are particularly troublesome on large complex systems. Sometimes you can isolate
anomalies by luck; other times they are elusive, so you find them later by accident. In any case,
when anomalies occur, record the sequence of events and conditions preceding the event. What
appears to be an anomaly as a single event may have patterns of recurrences over time. Tracking
anomaly records over time may provide clues that are traceable to a specific root or probable 
cause.

Challenge 17: Technical Conflict and Issue Resolution

Technical conflicts and issues can and do arise during formal SITE between the Acquirer’s Test
Representative and the System Developer, particularly over interpretations of readings or data. First,
make sure that the test procedures are explicitly stated in a manner that avoids multiple interpreta-
tions. Where test areas may be questionable, the TEWG should establish prior to or during the Test
Requirements Review (TRR) HOW conflicts will be managed. Establish a conflict and issue reso-
lution process between the Acquirer (role) and System Developer (role) prior to formal testing.
Document it in the System Integration and Verification Plan (SIVP).

Challenge 18: Creating the Real World Scenarios

During SITE planning, there is a tendency to “check-off” individual requirements via individual
tests during verification. From a requirements compliance perspective, this has to be accomplished.
However, verifying each requirement as a discrete test may not be desirable. There are two reasons:
1) cost and 2) real world.

First, just because a specification has separately stated requirements does not mean that you
cannot conduct a single test that verifies a multiple number of requirements to minimize costs. This
assumes the test is representative of system usage rather than a random combination of unrelated
capabilities.

Secondly, most systems consist of multiple capabilities operating simultaneously. In some
cases, interactions between capabilities may conflict. This can be a problem, especially if you dis-
cover later after individual specification requirement tests that indicated the system is compliant
with the requirements. This point emphasizes the need for use case and scenario based tests and
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test cases to exercise and stress combinations of system/entity capabilities to expose potential inter-
action conflicts while verifying one or more specification requirements.

55.8 GUIDING PRINCIPLES

In summary, the preceding discussions provide the basis with which to establish the guiding prin-
ciples that govern SITE practices.

Principle 5.1 Every Acquirer must have one Test Representative who serves as THE single voice
of authority representing the Acquirer-User community concerning SITE decisions.

Principle 5.2 Specification compliance requires presentation of work products as objective evi-
dence of satisfactory accomplishment of each requirement. Apply the rule: if it isn’t documented,
it didn’t occur.

Principle 5.3 (Under contract protocol) System Developers invite Acquirer representatives to
observe and/or witness a TEST; Acquirers extend invitations to Users unless prior arrangements
with the System Developer have been made.

Principle 5.4 Every discrepancy has a level of significance and importance to the System Devel-
oper and Acquirer. Develop a consensus of priorities and allocate resources accordingly.

55.9 SUMMARY

Our discussion of SITE as one of the verification and validation (V&V) practices explored the key activities
of Developmental Test and Evaluation (DT&E) under controlled laboratory conditions. Work products and
quality records from these activities provide the contractual foundation for determining if a system or product
fully complies with its System Performance Specification (SPS). Data collected during SITE enables SEs to:

1. Develop confidence in the integrity of the Developmental Configuration.

2. Support the functional configuration audit (FCA) and physical configuration audit (PCA).

3. Answer the key verification question: Did we build the system or product RIGHT—meaning in com-
pliance with the SPS?

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new system selection, apply your knowledge derived from this chapter’s topical
discussions. Specifically identify the following:

(a) Describe the primary test configurations for testing the system.

(b) Given the size and complexity of the system, recommend a test organization and provide rationale for
the role-based selections.

(c) If you were the Acquirer of this system, would you require procedure-based ATPs or scenario-based
ATPs? Provide supporting rationale.

(d) What special considerations are required for testing this system—such as OPERATING ENVIRON-
MENT, tools, and equipment?
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(e) Identify the basic integration and test strategy of steps you would specify in the SIVP.

(f) What types of DRs do you believe would require the Acquirer’s Test Representative to review and
approve? Provide examples.

ORGANIZATIONAL CENTRIC EXERCISES

1. Research your organization’s command media for SITE policies and procedures.

(a) Identify the command media requirements by source:

1. Test planning

2. Test procedures

3. Test operator training

4. Equipment alignment and calibration

5. Test results reporting format and approvals

(b) Document your findings and report your results.

2. Contact two or three contract programs within your organization.

(a) What type of test plan, test procedures, and reporting requirements—such as the Contract Data 
Requirements List (CDRL)—are established by contract?

(b) Does the Acquirer have approval of the test plan and procedures?

(c) When are the test plan and procedures due for review and approval?

1. How is the program implementing: 1) test logs and 2) test discrepancies (TDs), including TD track-
ing, emergency approvals, and TD corrective actions?

2. Are TDs classified in terms of corrective action urgency? If so, what levels and criteria are used?

3. Are all TDs required to be resolved prior to system delivery?

4. What testing does the contract require during site installation for system acceptance?
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Chapter 56

System Deployment

56.1 INTRODUCTION

Most systems, products, or services require deployment or distribution by their System Developer
or supplier to a User’s designated field site. During the deployment, the system may be subjected
to numerous types of OPERATING ENVIRONMENT threats and conditions such as temperature,
humidity, shock, vibration, electromagnetic interference (EMI), electrostatic discharge (ESD), salt
spray, wind, rail, sleet, and snow.

System deployment involves more than physically deploying the system or product. The
system, at a minimum and as applicable, may also require:

1. Storage in and/or interface with temporary, interim, or permanent warehouse or support
facilities.

2. Assembly, installation, and integration into the User’s Level 0/Tier 0 system.

3. Support training of operators and maintainers.

4. Calibration and alignment.

5. Reverification.

To accommodate these challenges, system designs and components must be sufficiently robust to
survive in these conditions, either in an operational or nonoperational state. For a system design
to accommodate these challenges, the System Performance Specification (SPS) must define and
bound the required operational capabilities and performance to SATISFY these conditions.

This chapter is intended to enhance your awareness of key considerations that must be fac-
tored into specifying system, product, or service requirements. During our discussion we will inves-
tigate the key concepts of system transportation, and operational site activation.

What You Should Learn from This Chapter

1. What is the objective of system deployment?

2. What is site development?

3. What types of considerations go into developing a site for a system?

4. What is operational site activation?

5. Compare and contrast system deployment versus system distribution.

6. What is a site survey?

7. Who conducts site surveys?
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8. How should you approach conducting a site survey?

9. How should a site survey be conducted?

10. What are some considerations that need to go into specifying systems for deployment?

11. What is system installation and checkout?

12. What are some methods to mitigate risk during system deployment?

13. Why is environmental, safety, and health (ES&H) a critical issue during system 
deployment?

14. What are some common system deployment issues?

Definitions of Key Terms

• Deployment The assignment, tasking, and physical relocation of a system, product, or
service to a new active duty station for purposes of conducting organizational missions.

• Disposal (Waste) “The discharge, deposit, injection, dumping, spilling, leaking, or placing
of any solid waste or hazardous waste into or on any land or water. The act is such that the
solid waste or hazardous waste, or any constituent there of, may enter the environment or
be emitted into the air or discharged into any waters, including ground water (40 CFR section
260.10).” (Source: AR 200-1 Glossary, p. 37)

• Operational Site Activation “The real estate, construction, conversion, utilities, and equip-
ment to provide all facilities required to house, service, and launch prime mission equipment
at the organizational and intermediate level.” (Source: MIL-HDBK-881, Section H.3.8)

• Site Installation The process of unpacking, erecting, assembling, aligning, and calibrating
a system and installing it into a facility, if applicable.

• Site Selection The process of identifying candidate sites to serve as the location for a system
deployment and making the final selection that balances operational needs with environ-
mental, historical, cultural, political, and religious constraints or customs.

• Site Survey A pre-arranged tour of a potential deployment site to understand the physical
context and terrain; natural, historical, political, and cultural environments; and issues related
to developing it to accommodate a system.

Objectives of System Deployment

The objective of system deployment is to safely and securely relocate or reposition a system or
product from one field site to another using the most efficient methods available with the lowest
acceptable technical, operational, cost, and schedule impacts and risk.

To accomplish a deployment for most mobile systems, we decompose this objective into
several supporting objectives:

1. Prepare the system for shipment, including disassembly, inventory, packaging of compo-
nents, and crating.

2. Coordinate the land, sea, air, or space based transportation.

3. Transport the device to the new location.

4. Store or install the system or product at the new site.

5. Install, erect, assemble, align, calibrate, checkout, and verify capabilities and performance.
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System Deployment Contexts

System deployment has three contexts:

1. First Article(s) Deployment The relocation of first article systems to a test location range
during the System Development Phase to perform operational test and evaluation (OT&E)
activities.

2. Production Distribution Deployment The relocation of production systems via distribution
systems to User sites or consumer accessible sites.

3. Physical System Redeployment The relocation of the physical deployed system during the
System Operations and Support Phase (O&S) of the System/Product Life Cycle.

First Article Deployment. First article(s) deployment tends to be a very intensive exercise. Due
to the cost of some systems, limited quantity, and length of time required to build a system with
long lead time items, system deployment requires very close scrutiny. Time and/or resources may
prohibit building another system, especially if it is inadvertently destroyed or damaged beyond
repair during deployment.

First article deployment for commercial systems typically includes a lot of promotional fanfare
and publicity. Referred to as a rollout, this event represents a key milestone toward the physical 
realization of the end deliverable system, product, or service. Depending on the system, first article
deployment may involve moving a first article system test facilities or test ranges for completion of
Developmental Test and Evaluation (DT&E) or initiation of Operational Test and Evaluation
(OT&E).

System Certification Some systems require certification before they are permitted to be
deployed for the System Operations and Support (O&S) phase. Examples are commercial aircraft
airworthiness certification, sea trials for ships and submarines, weights and measures for busi-
nesses, calibration of test instrumentation, and so forth.

Since the certification process can take several months or years, perform advance planning
early to avoid any showstopper events that adversely impact program costs and schedules.

Production Distribution System Deployment. Once the system or product is verified and
validated, it is ready for the System Production Phase to be initiated. Production engineering efforts
focus on the reduction of nonrecurring engineering cost and risk to the system, product, or service.
This includes innovating packaging and delivery solutions to deploy large or mass quantities via
distribution systems to the Users.

Whereas first article deployment tends to focus on protecting the engineering model or proto-
type system or product while in transit, these distribution systems have to efficiently move multi-
ple packages via pallets and other instruments. Therefore, the System Developer must factor in
design features that facilitate production and logistical distribution of systems and products, such
as tracking bar coding and packaging for environmental conditions.

56.2 SE ROLES AND RESPONSIBILITIES 
DURING DEPLOYMENT

The major SEs activities related to system deployment occur during the System Procurement Phase
and early SE Design Segment of the System Development Phase prior to the System Requirements
Review (SRR). These activities include mission and system analysis, establishing site selection cri-
teria, conducting site surveys, conducting trade-offs, deriving system requirements, and identify-
ing system design and construction constraints.
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During system deployment, the level of SE support varies depending on the situation. In
general, some systems do not require any SE support. This is because appropriate risk mitigation
plans (RMPs) are already in place. SEs should be available on call to immediately respond to any
emergency or crisis situation. If possible, SEs should actively participate in the deployment and
oversee some or all of the support operations.

Applying SE to Deployment

One of the preferred ways to identify SE requirements for deployment applications is to use a
system block diagram (SBD). The SBD depicts the System Elements (EQUIPMENT, PERSON-
NEL, etc.) and their interfaces during the System Deployment Phase. Specific system engineering
considerations include physical interfaces between the system being deployed and its transporta-
tion system as well as the OPERATING ENVIRONMENT encountered during the deployment.

System Deployment Interfaces

System deployment requires mechanical interfaces and measurement devices between the trans-
portation device or container and the SYSTEM being deployed. This includes electronic tempera-
ture, humidity, shock, and vibration sensors to assess the health and status of the deployed SYSTEM
and record worst case transients.

OPERATING ENVIRONMENT interfaces establish the conditions of the transfer of the system
during the deployment. These may involve shock and vibration, temperature, humidity, wind
conditions, and toxic or hazardous materials. Additional special considerations may include 
environmentally controlled transport containers to maintain or protect against cooling, heating, or
humidity.

Each of these interfaces represents potential types of requirements for the System Performance
Specifications (SPS). These requirements must be identified during the System Procurement Phase
of the System/Product Life Cycle of a program to ensure that the SE design of the deployed system
fully accommodates these considerations.

Author’s Note 56.1 Unless there are compelling reasons, the System Developer does not need
to be instructed in HOW to deploy the system for delivery or during the System Operations and
Support (O&S) Phase. Instead, the required operational interface capabilities and performance
should be bounded to allow the System Developer the flexibility to select the optimal mix of deploy-
ment method(s).

Deployment Modes of Transportation Selection

Transportation by land, sea, air, space or combinations of these options is the way most systems,
products, and services get from Point A to Point B. Each mode of transportation should be inves-
tigated in a trade study analysis of alternative modes that includes cost, schedule, efficiency, and
timing considerations.

56.3 SELECTION AND DEVELOPMENT OF 
OPERATIONAL LOCATION

Preparations for system or product deployment to a field site require that the location be selected,
developed, and activated. On delivery of the system, the site must be operationally ready to accept
the system or product for system installation and integration into a higher level system (i.e., Level
0/Tier 0).
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Development of the deployment site to support the system depends on the mission. Some
systems require temporary storage until they are ready to be moved to a permanent location. Others
require assembly, installation, and integration into a higher level system without disruption to exist-
ing facility operations. Some facilities provide high bays with cranes to accommodate system
assembly, installation, and integration. Other facilities may require you to provide your own rental
or leased equipment such as cranes and transport vehicles.

Whatever the plan is for the facility, SEs are tasked to select, develop, and activate the field
site. These activities include site surveys, site selection, site requirements derivation, facility engi-
neering or site planning, site preparation, and system deployment safety and security.

Special Site Selection Considerations

In our discussion of the OPERATING ENVIRONMENT architecture in Chapter 11, we noted that
external HUMAN-MADE SYSTEMS include historical, ethnic, and cultural systems that must be
considered and preserved when deploying a system. The same is true for NATURAL ENVIRON-
MENT ecosystems such as wetlands, rivers, and habitat.

The Need for Site Surveys

On-site surveys reveal significant information about doorways sizes, blocked entrances, entrance
corridors with hairpin switchbacks, considerations of 60Hz versus 50Hz versus 400Hz electrical
power, 110vac versus 230vac, and so on, that drive SPS requirements. So, research and carry facil-
ity documentation with you. Visually observe the facility and measure it, if required, and validate
the currency of the documentation.

Author’s Note 56.2 Site surveys are crucial for validating User documentation for decision
making and observing obstacles. Organizational source documentation of fielded MISSION
SYSTEMS and SUPPORT SYSTEMS tends to be lax; drawings are often out of date and do not
reflect current configurations of EQUIPMENT and FACILITIES. ALWAYS make it a point to visit
the location of the deployment, preferably AFTER a thorough review of site documentation. If
impractical, you had better have an innovative, cost plus fixed fee (CPFF) contract or another con-
tract that provides the flexibility to cover your costs at the Acquirer-User’s expense for the
UNKNOWN risks.

Given this backdrop, let’s address how site surveys are planned and conducted.

Planning and Conducting Site Surveys

Site surveys provide a key opportunity for a Site Survey Team to observe how the User envisions
operating and maintaining a system, product, or service. Many sites may not be developed or pos-
tured to accommodate a new system. However, legacy systems typically exist that are comparable
and provide an invaluable opportunity to explore the site and determine design options. These
options may pertain to constrained spaces that limit hands-on access, height restrictions, crawl
spaces, lighting, environmental control, communications, and so on. For system upgrades, the Site
Survey Team can explore various options for installation.

Site surveys are also valuable means of learning about the environmental and operational chal-
lenges. Generally, the site surveys consist of a preparatory phase during which NATURAL ENVI-
RONMENT information about geographical, geologic, and regional life characteristics are collected
and analyzed to properly understand the potential environmental issues.

Site surveys are more than surveying the landscape; the landscape includes environmental, his-
torical, and cultural artifacts and sensitivities. As such, site survey activities include developing a list
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of critical operational technical issues (COIs/CTIs) to be resolved. For existing facilities, the site
surveys also provide insights concerning the physical state of the existing facility, as well as
COIs/CTIs related to modifying the building or integrating the new system while minimizing inter-
ruptions to the organization’s workflow.

Site Survey Decision Criteria. Site selection often involves conducting a trade study. This
requires identifying and weighting decision criteria based on the User values and priorities. Col-
laborate with the User via the Acquirer contract protocol to establish the decision criteria. Each cri-
terion requires identifying HOW and from WHOM the data will be collected while on site or as
follow-up data requests via the Acquirer.

Decision criteria include two types of data: quantitative and qualitative.

• Quantitative For example, the facility operates on 220vac, 3-phase, 60Hz power.

• Qualitative For example, WHAT problems you encountered with the existing system that
you would like to AVOID when installing, operating, and supporting the new system.

Obviously, we prefer all data to be quantitative. However, qualitative data may express HOW the
User truly feels about an existing system or the agony of installing it. Therefore, structure open-
ended questions in a manner that encourages the User to provide elaborate answers—such as, given
Options A or B, WHICH would you prefer and WHY?

Site Survey Data Collection. When identifying the list of site data to be collected, prioritize
questions to accommodate time restrictions for site personnel interviews. There is a tendency to
prepare site survey forms, send them out for responses, and then analyze the data. While this can
be helpful in some cases, potential respondents today do not have time to fill out surveys.

One method for gaining advance information may come from alternative sources such satel-
lite or aerial photos, assuming they are current, and teleconferences with the site personnel. So,
when conducting teleconferences, ask open-ended and clarification questions that encourage the
participants to answer freely rather than asking closed-ended questions that draw yes or no answers.

Site Survey Advance Coordination. One of the most fundamental rules of site surveys is
advance coordination via Acquirer contract protocol. Security clearances, transportation, use of
cameras and tape recorders, if permitted, are useful forms of documentation.

Author’s Note 56.3 ALWAYS confer with site officials prior to the visit as to what media are
permitted on site for data collection and any data approvals required before leaving. Some organ-
izations require data requests to be submitted during the visit with subsequent internal approvals
and delivery following the visit.

Conducting the Site Visit. During the site visit, observe and ask about everything related to
the system or product’s deployment, installation, integration, operation, and support including
processes and procedures. LEAVE NOTHING TO CHANCE! Before you leave, request some time
to assemble your team and reconcile notes. THINK about WHAT you saw and DIDN’T see that you
EXPECTED or would have EXPECTED to see and WHY NOT. If necessary, follow up on these
questions before you leave the site.

Selecting the Deployment Site

System deployment sites vary as a function of system mission. Consider the following examples:
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EXAMPLE 56.1

A computer system for an organization may have a limited number of deployment sites within an office build-
ing, even within the room of the existing computer system being replaced.

EXAMPLE 56.2

The NASA Surveyor and Apollo programs had to select landing sites on the Moon.

EXAMPLE 56.3

A business may require immediate access to a multi-modal facility that provides land, sea, and air 
transportation.

EXAMPLE 56.4

An astronomical observatory may require a remote, unpopulated location far from the effects of atmospheric
haze and scattering of city lights.

EXAMPLE 56.5

Nuclear power plants require water resources—a MISSION RESOURCES Element—for cooling towers.

Site selection requires establishing boundary constraints that impact site selection. These include
environmental threats to wildlife habitat, drinking water aquifers, preservation of historical and cul-
tural sites, and political and religious sensitivities.

Site FACILITY Engineering Planning and Development

Successful system deployment at operational sites begins with the Site Activation Concept. The
basic idea is to identify HOW and WHERE the User considers deploying the SYSTEM at the site,
either permanently or temporarily.

In the Introduction of this book, we stated that system success BEGINS with successful
ENDINGS. This requires deriving all the hierarchical tasks and activities that contribute to achiev-
ing success before any insightful planning, preparation, and enroute coordination of events, accom-
plishments, and criteria identified in the Integrated Master Plan (IMP) can take place. Such is
particularly the case for facility engineering.

Modifying Existing Facilities. Preparation for operational site activation begins with estab-
lishing the FACILITY interface requirements to accommodate the new system. The mechanism for
identifying and specifying these requirements is the facility interface specification (FIS). The FIS
specifies and bounds the boundary envelope conditions, capabilities and performance requirements
to ensure that all facility interfaces are capable, compatible, and interoperable with the new
SYSTEM.

Developing the Operational Site Activation Plan. The operation site activation plan
describes the organization, roles and responsibilities, tasks, resources, and schedule required to



develop and activate a new facility or to modify an existing facility. One of the key objectives of
the plan is to describe HOW the system will be installed, aligned, calibrated, and integrated, as
applicable, into higher level systems without interrupting normal operations, if relevant.

Site Development Planning Approvals. Approval of operational site activation plans some-
times requires several months or even years. At issue are things such as statutory and regulatory
compliance, environmental impact considerations, and presence of historical artifacts. As an SE,
AVOID the notion that all you have to do is simply write the plan and have it approved in a few
days. When you prepare the plan, employ the services of a subject matter expert (SME) to make
sure that all key tasks in activities are properly identified and comply with federal, state, and local
statutes, regulations, and ordinances. Identify:

1. WHO are the key decision makers?

2. WHAT types of documentation are required to successfully complete the exercise?

3. WHEN must documentation be submitted for approval?

4. WHERE and to WHOM should documentation approval requests be submitted?

5. HOW long is the typical documentation approval cycle?

Other key considerations include zoning restrictions, permits or licenses, certifications, deviations,
and waivers.

Site Preparation and Development

Site preparation includes all those activities required before the site can be developed to accept the
deployed system. This may include grading the land, building temporary bridges, and installating
primary power utility, sewer and drain lines.

Site Inspections. When the site has been prepared, the next step is to conduct site inspections.
Site inspections may consist of on-site compliance assessments:

1. By the stakeholders to ensure that everything is in place to accept the new system.

2. By local and Acquirer representative authorities to verify compliance to statutory and 
regulatory constraints.

Author’s Note 56.4 Site inspections sometimes involve closed mindedness that has to be rec-
ognized and reconciled. As humans, we typically enter into site inspections from the perspective of
viewing WHAT is currently in place. This is true especially for compliance checks. The critical
issue, however, may be determining WHAT is NOT in place or compliant.

Remember, local authorities verify whether site capabilities comply with local and statutory
requirements. They do not, however, make a determination as to whether the site has ALL of the
capabilities and people required to successfully support your system once it is be deployed. This
is the SE’s job! Therefore, make sure that all System Elements to be deployed are in place. Incor-
porate these requirements to the facility interface specification (FIS).

Enroute Modifications. Some system deployment efforts require temporary modifications to
enroute roads and bridges, utility power poles and lines, signal light relocation, traffic rerouting,
and road load bearing. Consider the following example:
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EXAMPLE 56.6

An existing home is to be physically relocated elsewhere within a town. In preparation for the move, coordi-
nation is required to temporarily move utility lines and reroute traffic. In addition to the necessary permits and
licenses, law enforcement officers will need to redirect traffic and utility crews will need to reinstate utility
lines, including telephone, power, and signal lights cables.

System Deployment Safety and Security. The deployment of a new system from one loca-
tion to another should be performed as expeditiously, efficiently, and effectively as practical. The
intent is to safely and securely transport the system with minimal impact to it, the public, and the
environment. Safety and security planning considerations include protecting the system to be
deployed, the personnel who perform the deployment, and the support equipment.

System engineering requirement considerations should include modularity of the equipment.
This means the removal of computer hard drives containing sensitive data that require special han-
dling and protection. The same is true with hazardous materials such as flammable liquids, toxic
chemicals, explosives, munitions, and ordinances. In these cases special equipment and tools may
be needed to ensure their safe and secure transport by courier or by security teams. Additionally,
environmental, safety, and health (ESH) Material Safety Data Sheets (MSDS) should accompany
the deployment.

56.4 ENVIRONMENTAL CONSIDERATIONS 
DURING DEPLOYMENT

Environmental concerns have a major impact on all facets of system analysis, design, and devel-
opment as well as on all phases of the system/product life cycle.

Statutory and Regulatory Requirements

Statutory and regulatory requirements concerning environmental protection and transportation of
hazardous materials (HAZMAT) are mandated by local, state, federal, and international organiza-
tions. These regulations are intended to protect the cultural, historical, religious, and political envi-
ronment and the public. SEs have significant challenges in ensuring that new systems and products
are properly specified, developed, deployed, operated, supported, and fully comply with statutory
and regulatory requirements. Consider the following example:

EXAMPLE 56.7

The US National Environmental Policy Act (NEPA) of 1969 and Environmental Protection Agency (EPA) 
establishes requirements on system deployment, operations, and support that impact the natural environment.
In many cases System Developers, Acquirers, and Users are required to submit advance documentation such as
Environmental Impact Statements (EIS) and other types of documents for approval prior to implementation.

Author’s Note 56.5 ALWAYS consult the provisions of your contract as well as with your con-
tracts; legal; and environmental, safety, and health (ESH) organizations for guidance in comply-
ing with the appropriate statutory and regulatory environmental requirements.

Environmental Mitigation Plans

Despite meticulous planning, environmental emergencies can and do occur during the deployment
of a system. Develop risk mitigation plans and coordinate resources along the transportation route
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to clean up and remediate any environmental spills or catastrophes. Transportation vehicles,
systems, and shipping containers should fully comply with all applicable federal and state statutory
regulatory laws for labeling and handling. Organizations such as the Environmental Protection
Agency (EPA), et al may require submittal of environmental documentation for certain types of
programs. Investigate how the US National Environmental Policy Act (NEPA) and other legislation
applies to your system’s development and deployment.

Environmental Safety and Health (ES&H)

Environmental safety and health (ES&H) is a critical issue during system development and deploy-
ment. The objective is to safely and securely relocate a SYSTEM without impacting the system’s
capabilities and performance or endangering the health of the public or NATURAL ENVIRON-
MENT, nor that of the deployment team. ALWAYS investigate the requirements to ensure that the
ES&H concerns are properly addressed in the design of the equipment as well as the means of
transportation. ISO 14000 serves as the international standard used to assess and certify organiza-
tional environmental management processes and procedures.

Occupational Safety and Health Administration (OSHA) 29 CFR 1910 is the occupational
safety and health standard in the US.

Environmental Reclamation

Environmental resources are extremely fragile. Today, great effort is being made to preserve the
natural environment for future generations to enjoy. Therefore, during the transport of a system to
a new job site, the risk of spills and emissions into the atmosphere should be minimized and miti-
gated to a level acceptable by law or eliminated.

56.5 SYSTEM INSTALLATION, 
INTEGRATION, AND CHECKOUT

Once the field site is prepared to accept the system, the next step is to install, integrate, and check
out the system if the system’s mission is at this facility. This requires conducting various levels of
system installation and checkout tests.

Installation and Checkout Plan Activities

Installation and checkout activities cover a sequence of activities, organizational roles and respon-
sibilities, and tasks before the newly deployed system can be located at a specific job site. SYSTEM
requirements that are unique to on-site system installation and integration must be identified 
by analysis and incorporated into the System Performance Specification (SPS) PRIOR TO the 
Contract Award.

User Training

When a new system is ready to be deployed, a key task is to train Users to deploy, install, and
check out the system. Generally, a system development contract will require the System Developer
to train Users PRIOR TO disassembly for deployment from the System Developer’s or system inte-
gration facility. The training sessions should prepare Users to safely and properly operate and to
support Operational Test and Evaluation (OT&E) during the final portions of the System Devel-
opment Phase.



768 Chapter 56 System Deployment

“Shadow” Operations

Installation and checkout of new systems may require integration into higher level systems. The
integration may involve the new system as an additional element or as a replacement for an exist-
ing or legacy system. Whichever is the case, system integration often involves critical operational
and technical issues (COIs/CTIs), especially from the standpoint of interoperability and security.

Depending on the criticality of the system, some Acquirers and Users require the new system
to operate in a “shadow” mode to validate system responses to external stimuli while the existing
system remains in place as the primary operating element. Upon completion of the evaluation,
assessment, and certification, the new system may be brought “on line” as an Initial Operational
Capability (IOC). Incremental capabilities may be added until Full Operational Capability (FOC)
is achieved. To illustrate the criticality and importance of this type of deployment and integration,
consider the following example:

EXAMPLE 56.8

Financial organizations such as banks depend on highly integrated, audited, certified systems that validate the
integrity of the overall system. Consider the magnitude and significance of decisions related to integrating
either new or replacement software systems to ensure interoperability without degrading system performance
or compromising the integrity of the system or its security.

56.6 SYSTEM DEPLOYMENT 
ENGINEERING CONSIDERATIONS

System deployment engineering requires SEs to consider two key areas of system deployment:

• Operational transport considerations

• Environmental considerations

Table 56.1 provides system design areas for assessment.
Systems such as construction equipment cranes, bulldozers, the Space Shuttle, and military

equipment are designed for multiple redeployments. In most cases the system is loaded onto a trans-
port vehicle such as truck, aircraft, train, or ship.

Once loaded, the primary restrictions for travel include compatible tiedowns, load weights,
size limitations, bridge underpass height, and shock/vibration suppression. Some systems may
require shipping in specialized containers that are environmentally controlled for temperature,
humidity, and protection from salt spray. How do engineers accommodate these restrictions and
AVOID surprises at deployment?

The deployment engineering solution requires a structured analysis approach based on the
System Operations Model discussed in Chapter 18. Perform operational and task analysis by
sequencing the chain of events required to move the system from Point A to Point B. This includes
cost, performance, and risk trade-offs for competing land, sea, and air modes of transportation and
transport mechanisms such as truck, aircraft, ship, and train.

Once the modes of transportation issues are resolved, develop system interface diagrams for
each phase of deployment. Specify and bound system requirements and incorporate them into the
System Performance Specification (SPS) or system design.

Guidepost 56.1 Our discussion has focused on deploying a MISSION SYSTEM and designing
it to be compatible with an existing system performing a SUPPORT SYSTEM role. Now, let’s switch
the context and consider WHAT mission capabilities a SUPPORT SYSTEM requires.



Support Equipment

System design involves more than creating interfaces between a MISSION SYSTEM and its
SUPPORT SYSTEM. Support equipment such as tools, sensors, and diagnostic equipment is often
required to establish the interfaces for travel. Remember, support equipment includes:

1. Common Support Equipment (CSE) includes hammers, screwdrivers, and other hand tools
that are applicable to most systems.

2. Peculiar Support Equipment (PSE) includes specialty tools and devices that are unique to
a specific system.

56.7 COMMON SYSTEM DEPLOYMENT CHALLENGES

Depending on the risks associated with the system, deployment route, and site, deployment activ-
ities generate a lot of excitement and challenges. Let’s investigate a few.

Challenge 1: Risk Mitigation Planning

When systems or products are deployed, the natural tendency is to assume you have selected the
best approach for deployment. However, political conditions in foreign countries, such as labor
strikes, can disrupt system deployment and force you to reconsider alternative methods. Develop
risk mitigation plans that accommodate all or the most likely scenarios.

Challenge 2: Conduct a Mock Deployment

For large, complex systems and that require special handling considerations, a mock deployment
exercise may be appropriate. A mock deployment involves some form of prototype or model having
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Table 56.1 System deployment engineering considerations

System Deployment Consideration System Design

Operational transport considerations • Tie downs, hold downs, and safety chains
• Lift points
• Land grades
• Emergency stopping
• Auxiliary power
• Vehicle markings
• Mock dry runs with simulated equipment
• System security
• Maintenance
• Bridge, highway, and street load restrictions
• Bridge and power line height restrictions.

Environmental considerations • Shock and vibration
• Saltwater and spray
• Temperature and humidity control
• Electrical fields and discharges (grounding)
• Flying debris
• Altitude and atmospheric pressure changes
• Environmental instrumentation
• Hazardous materials
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Table 56.2 System deployment design and development rules

ID Title System Deployment Design and Development Rule

56.1 System deployment Bound and specify the set of system deployment requirements and
requirements constraints for every system, product, or service in the System
and constraints Performance Specification (SPS).

56.2 Deployment When planning deployment of a system or product, at a minimum, consider
conditions the following factors:

1. Deployment routes
2. System safety
3. System security
4. Logistical support operations
5. Training
6. Licenses, certifications, and permits
7. System/product stowage and protection during shipment
8. Environmental conditions (weather and road, etc.)

56.3 Deployment For systems or products that require facility interfaces, specify and bound
facilities interface requirements via a facility interface specification (FIS) or

equivalent.

56.4 Site activation Prepare a site activation plan for every system, product, or service for
review and approval by the User and support facility.

56.5 System design When developing a system, product, or service factor, at a minimum, factor
in considerations to protect a system during deployment operations and
conditions to minimize the effects of physical harm such as appearance,
form, fit, or function.

56.6 Deployment Verify that a system, product, or service design is compatible and
interfaces interoperable, if necessary, with the deployment mechanism used to deploy

the system to its designated field site.

56.7 Stakeholder When planning deployment of a system or product, include considerations
decision-making by those stakeholder organizations that permit system deployment through
participation their jurisdictions—bridge heights above roads and weights permitted;

barge, truck, aircraft payload restrictions; hazardous material passage 
through public areas, and aircraft landing constraints.

comparable form, fit, and weight to the actual system being fictionally transported to an approved
site. The exercise debugs the deployment process and facilitates identification of unanticipated 
scenarios and events for the processes, methods, and tasks of deployment.

Challenge 3: Stakeholders Participation in Decision Making

System deployment often involves large numbers of geographically dispersed stakeholders. There-
fore, stakeholders should be actively involved in the decision-making process, from the early plan-
ning stage but subject to contract type limitations. So, what happens if you do not include these
stakeholders?

Depending on the situation, a stakeholder could become a SHOWSTOPPER and significantly
impact system deployment schedules and costs. Do yourself and your organization a favor. Under-
stand the deployment, site selection and development, and system installation and integration 
decision-making chain. This is key to ensuring success when the time comes to deploy the system.
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AVOID a “downstream” SHOWSTOPPER situation simply because you and your organization
chose to IGNORE some odd suggestions and views during the System Development Phase.

Challenge 4: System Security During Deployment

Some systems require a purposeful deployment using low profile or visibility methods to minimize
publicity, depending on the sensitivity and security of the situation.

Challenge 5: Shock and Vibration

Professional systems and products such as instruments can be very sensitive to shock and vibra-
tion. Plan ahead for these critical design factors. Make sure that the system in a stand-alone mode
is adequately designed to offset any shock or vibration conditions that occur during deployment.
This includes establishing appropriate design safety margins. If appropriate, the SPS should specify
shock and vibration requirements.

Challenge 6: Hazardous Material (HAZMAT) Spillage

When transporting EQUIPMENT systems and products that contain various fluids, hazardous mate-
rial (HAZMAT) spillage is always a major concern, particularly for wildlife estuaries, rivers, and
streams, but also underground water acquifers. Perform insightful ES&H planning and coordina-
tion to ensure that SUPPORT SYSTEMS—such as PERSONNEL, PROCEDURAL DATA, and
EQUIPMENT—are readily available to enable the SUPPORT SYSTEM to rapidly respond to a
hazardous event.

Challenge 7: Workforce Expertise Availability

Service contracts are often bid on the assumption of employing local resources to perform system
operations, support, and maintenance. DO NOT ASSUME ANYTHING. Unless you are certain
that these resources are dependable and will commit to the contract, you may be at risk. ALWAYS
have a contingency plan!

56.8 GUIDING PRINCIPLES

In summary, the preceding discussions provide the basis with which to establish the guiding prin-
ciples that govern system deployment practices.

Principle 56.1 Specify and bound a system’s deployment mode(s) of transportation, distribu-
tion methods, and constraints; otherwise, the system’s form, fit, and function may be incompatible
with its deployment delivery system.

Principle 56.2 Site survey data quality begins with advance coordination and insightful plan-
ning. Obtain what you need on the first trip; you may not be permitted for a second visit.

56.9 SUMMARY

During our discussion of system deployment, we highlighted the importance for SEs to thoroughly understand
all of the system deployment issues and ensure that requirements are properly addressed in the contract and
System Performance Specifications (SPS). When the system is being deployed, SEs should be involved to
ensure that the system interfaces to the appropriate means of transportation and facilities.
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GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new system selection, apply your knowledge derived from this chapter’s topical
discussions. Specifically identify the following:

3. Research the following topics and investigate how the system was deployed—packaging, handling, ship-
ping, and transportation (PHS&T)—during integration and on system delivery to its field site:

(a) International Space Station (ISS)

(b) Hubble Space Telescope (HST)

(c) Construction crane

(d) Portable electronic device

ORGANIZATIONAL EXERCISES

1. Research your organizational command media for guidance concerning system deployment 
operations.

(a) What requirements are imposed on system deployment requirements and design considerations?

(b) What work products or quality records are required?

2. Contact several contract programs within your organization.

(a) What system deployment requirements are stated in the contract and System Performance 
Specification (SPS)?

(b) What capabilities and features are incorporated into the system design to comply with these 
requirements?

(c) Does the program have a system deployment plan? If so, what types of routes, means of transporta-
tion, licenses, and permits are planned?

(d) Did the program have requirements for measurement of deployment conditions—such as shock, 
vibration, temperature, and humidity?

(e) How were countermeasures to temperature, humidity, shock, vibration, ESD, and salt spray 
accommodated in the design or packaging?
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Chapter 57

System Operations and Support

57.1 INTRODUCTION

As the preceding chapters have illustrated, the engineering of systems is not complete when the
Acquirer formally accepts a new system for the User. In terms of SE level of effort to support the
development of the system, product, or service this is true; however, the system performance
assessment activities continue throughout the system’s active duty service. Thus, when the system
acceptance is complete, the System Operations and Support (O&S) phase begins. Depending on
the type of system, product, or service, SE technical and analytical expertise may be required to
monitor, track, and analyze system performance in the field.

Our discussion of system performance returns to where we started, to the System Element
Architecture that forms the basis for HOW a system, product, or service is intended to operate.
Since the SYSTEM OF INTEREST (SOI) is composed of one or more MISSION SYSTEMS that
are supported by one or more SUPPORT SYSTEMS, we will approach the discussion from those
two perspectives.

Our discussions explore system performance related to the MISSION SYSTEM and the
SUPPORT SYSTEM. This includes:

1. Elimination of latent defects such as design flaws, errors, or safety issues.

2. Identification and removal of defective materials or components.

3. Optimization of system performance.

These activities also represent the BEGINNING of collecting requirements for:

1. Procuring follow-on systems, products, or services.

2. Upgrading capabilities of the existing system.

3. Refining current system performance.

Author’s Note 57.1 This chapter has a twofold purpose. First, it provides the basis for assess-
ing the operational utility, suitability, availability, and effectiveness of new systems to ensure that
they integrate and achieve levels of performance that satisfy organizational mission and system
application objectives. Second, as we saw in Chapter 7 in our discussion of the System/Product
Life Cycle, gaps evolve in a system, product, or service’s capability to meet organizational objec-
tives or external threats. In this chapter we learn about legacy and new system performance and
need for developing operational capability requirements for the next generation of system, product,
or service.

System Analysis, Design, and Development, by Charles S. Wasson
Copyright © 2006 by John Wiley & Sons, Inc.
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What You Should Learn from This Chapter

1. What are the primary objectives for system operation and support (O&S)?

2. What are key areas for monitoring and analyzing SYSTEM level performance?

3. What are key questions for assessing system element performance?

4. What are common methods for assessing SYSTEM and element performance?

5. What are the key SE focus areas for current system performance?

6. What are the key SE focus areas for planning next generation systems?

Definitions of Key Terms

• Equipment, Powered Ground (PGE) “An assembly of mechanical components including
an internal combustion engine or motor, gas turbine, or steam turbine engine mounted as a
single unit on an integral base or chassis. Equipment may pump gases, liquids, or solids; or
produce compressed, cooled, refrigerated or heater air; or generate electricity and oxygen.
Examples of this equipment: portable cleaners, filters, hydraulic test stands, pumps and
welders, air compressors, air conditioners. Term applies primarily to aeronautical systems.”
(Source: MIL-HDBK-1908, Definitions, para. 3.0, p. 20)

• Field Maintenance “That maintenance authorized and performed by designated mainte-
nance activities in direct support of using organizations. It is normally limited to replace-
ment of unserviceable parts, subassemblies, or assemblies.” (Source: MIL-HDBK-1908,
Definitions, para. 3.0, p. 15)

• Human Performance “A measure of human functions and action in a specified environment,
reflecting the ability of actual users and maintainers to meet the system’s performance stan-
dards, including reliability and maintainability, under the conditions in which the system will
be employed.” (Source: MIL-HDBK-1908, Definitions, para. 3.0, p. 18)

• Line Replaceable Unit (LRU) Refer to definition in Chapter 42 on System Configuration
Identification Practices.

• Logistic Support Analysis (LSA) “The selective application of scientific and engineering
efforts undertaken during the acquisition process, as part of the system engineering and
design processes to assist in complying with supportability and other Integrated Logistics
Support (ILS) objectives. ILS is a management process to facilitate development and inte-
gration of logistics support elements to acquire, field and support a system. These elements
include: design, maintenance planning, manpower and personnel, supply support, support
equipment, training, packaging and handling, transport, standardization and interoperabil-
ity.” (Source: MIL-HDBK-1908, Definitions, para. 3.0, p. 20)

• Maintenance “All actions necessary for retaining material in (or restoring it to) a service-
able condition. Maintenance includes servicing, repair, modification, modernization, over-
haul, inspection, condition determination, corrosion control, and initial provisioning of
support items.” (Source: MIL-HDBK-1908, Definitions, para. 3.0, p. 21)

• Problem Report A formal document of a problem with or failure of MISSION SYSTEM
or SUPPORT SYSTEM hardware—such as the EQUIPMENT System Element.

• Provisioning “The process of determining and acquiring the range and quantity (depth) of
spares and repair parts, and support and test equipment required to operate and maintain 
an end item of material for an initial period of service. Usually refers to first outfitting of a
ship, unit, or system.” (Source: DSMC, Glossary of Defense Acquisition Acronyms and
Terms)
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• Repair “A procedure which reduces but does not completely eliminate a nonconformance
resulting from production, and which has been reviewed and concurred in by the Material
Review Board (MRB) and approved for use by the Acquirer. The purpose of repair is to reduce
the effect of the nonconformance. Repair is distinguished from rework in that the characteris-
tic after repair still does not completely conform to the applicable specifications, drawings or
contract requirements.” (Source: Adapted from Former MIL-STD-480, Section 3.1, Defini-
tions, para. 3.1.58, p. 13)

• Repairability “The probability that a failed system will be restored to operable condition
within a specified active repair time.” (Source: DSMC, Glossary of Defense Acquisition
Acronyms and Terms)

• Repairable Item “An item of a durable nature which has been determined by the applica-
tion of engineering, economic, and other factors to be the type of item feasible for restora-
tion to a serviceable condition through regular repair procedures.” (Source: DSMC, Glossary
of Defense Acquisition Acronyms and Terms)

• Replacement Item “An item which is replaceable with another item, but which may differ
physically from the original item in that the installation of the replacement item requires
operations such as drilling, reaming, cutting, filing, shimming, etc., in addition to the normal
application and methods of attachment.” (Source: Former MIL-STD-480, Section 3.1, Def-
initions, para. 3.1.45.2, p. 11)

• Support Equipment “All equipment required to perform the support function, except that
which is an integral part of the mission equipment. SE includes tools, test equipment, auto-
matic test equipment (ATE) (when the ATE is accomplishing a support function), organiza-
tional, intermediate, and related computer programs and software. It does not include any of
the equipment required to perform mission operations functions.” (Source: MIL-HDBK-
1908, Definitions, para. 3.0, p. 30)

• Common Support Equipment (CSE) Refer to Chapter 10 on SYSTEM OF INTEREST
Architecture.

• Peculiar Support Equipment (PSE) Refer to Chapter 10 on SYSTEM OF INTEREST
Architecture.

• Test, Measurement, and Diagnostic Equipment (TMDE) Refer Chapter 10 on SYSTEM
OF INTEREST Architecture.

• Turn Around Time “Time required to return an item to use between missions or after
removed from use.” (Source: DSMC, Glossary of Defense Acquisition Acronyms and Terms)

57.2 SYSTEM ENGINEERING OPERATIONS 
and SUPPORT (O&S) OBJECTIVES

Once a system is fielded, SEs should continue to be a vital element of the program. Specifically,
system performance, efficiency, and effectiveness should be monitored continuously. This requires
SE expertise to address the following objectives:

1. Monitor and analyze the OPERATIONAL UTILITY, SUITABILITY, AVAILABILITY, and
EFFECTIVENESS of system applications, capabilities, performance, and the service life of
the newly deployed system—including products and services—relative to its intended
mission(s) in its OPERATING ENVIRONMENT.

2. Identify and CORRECT latent defects—such as design flaws and errors, faulty or defective
components, and system deficiencies.
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3. Maintain AWARENESS of the “gap”—in the problem space—that evolves over time
between this existing system, product, or service and comparable competitor and adversar-
ial capabilities.

4. Accumulate and evolve requirements for a new system or capability or upgrade to the exist-
ing system to fill the solution space(s) and eliminate the problem space.

5. Propose interim operational solutions—plans and tactics—to fill the “gap” until a replace-
ment capability is established.

6. Maintain system configuration baselines.

7. Maintain MISSION SYSTEM and SUPPORT SYSTEM concurrency.

Let’s explore each of these objectives further.

57.3 MONITOR AND ANALYZE SYSTEM PERFORMANCE

When new systems or capabilities are conceived, SEs are challenged to translate the operational
needs that prompted the development into Requirements, Operations, Logical, and Physical Domain
Solutions. System Developers apply system verification practices to answer the question: Are we
building the system RIGHT—in compliance with the specification requirements? Acquirers or Users,
or their Independent Test Agency (ITA), apply System Validation Practices to answer the question:
Did we procure the RIGHT system?

System specification and development activities represent the best efforts of humans to trans-
late, quantify, and achieve technical and operational expectations and thresholds derived from
abstract visions. The ultimate question for Users to answer is: Given our organizational objectives
and budgetary constraints, did we procure the RIGHT system, product, or service to fulfill our
needs?

This question may appear to conflict with the validation purpose of Operational Test and Eval-
uation (OT&E). OT&E is intended to provide Acquirer and User pre-system delivery and accept-
ance answers to this question. However, OT&E activities have a finite length—of days, weeks, or
months—under tightly controlled and monitored conditions representing or simulating the actual
OPERATING ENVIRONMENT.

The challenge for the ITA is to avoid aliasing the answers due to the controlled environment.
The underlying question is: Will Users perform differently if they know they are being observed
and monitored versus on their own? The true answer resides with the User after the system, product,
or service has “stood the test of time.” Consider the following example:

EXAMPLE 57.1

During the course of normal operations in the respective OPERATING ENVIRONMENTS, construction, agri-
cultural, military, medical, and other types of EQUIPMENT are subjected to various levels of use, misapplica-
tion, misuse, abuse, maintenance, or the lack thereof. During system development, time and resource constraints
limit contract-based OT&E of these systems. Typically, a full OT&E of these systems is impractical and limited
to a representative sampling of most probable or likely use cases and scenarios over a few weeks or months. In
contrast, commercial product test marketing of some systems, products, or services over a period of time with
large sample sizes may provide better insights as to whether the Users love or loathe a product.

Ultimately, the User is the SOLE entity that can answer four key questions that formed the basis
for our System Design and Development Practices:
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1. Does the system add value to the User and provide the RIGHT capabilities to accomplish
the User’s organizational missions and objectives—OPERATIONAL UTILITY?

2. Does the system integrate and interoperate successfully within the User’s “system of
systems”—OPERATIONAL SUITABILITY?

3. Is the system operationally available when called upon by the User to successfully perform
its missions—OPERATIONAL AVAILABILITY?

4. How well does the system support User missions as exemplified in achievement of mission
objectives—OPERATIONAL EFFECTIVENESS?

Answers to these questions require monitoring system performance. If your mission as an SE is to
MONITOR overall system performance, how would you approach this task?

The answer resides in WHERE we began with the System Element Architecture template shown
in Figure 10.1. The template serves as a simplistic starting point model of the SYSTEM. Since the
model represents the integrated set of capabilities required to achieve organizational mission objec-
tives, we allocate SPS requirements to each of the system elements—EQUIPMENT, PERSONNEL,
FACILTIES, and so forth. Given this analytical framework, SEs need to ask two questions:

1. HOW WELL is the interated System Element Architecture Model performing—system oper-
ational performance?

2. Physically, HOW WELL is each System Element and their set of physical components per-
forming—system element performance?

Let’s explore each of these points further.

SYSTEM Operational Performance Monitoring

Real-time system performance monitoring should occur throughout the pre-mission, mission, and
postmission phases of operation as paced by the Mission Event Timeline (MET). Depending on the
system and mission application, the achievement of system objectives, in combination with the
MET, provides the BASIS for operational system performance evaluation.

In general, answering HOW WELL the SYSTEM is performing depends on:

1. WHO you interview—the stakeholders.

2. WHAT their objectives are.

Consider the following example from the perspectives of the System Owner and the System 
Developer:

EXAMPLE 57.2

From the SYSTEM Owner’s perspective, example questions might include:

1. Are we achieving mission objectives?

2. Are we meeting our projected financial cost of ownership targets?

3. Are our maintenance costs in line with projections?

4. Is the per unit cost at or below what we projected?

From the User’s perspective, example questions might include:

1. Is the system achieving its performance contribution thresholds established by the SPS?

2. Are there capability and performance areas that need to be improved?
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3. Is the SYSTEM responsive to our mission needs?

4. Does the SYSTEM exhibit any instabilities, latent defects, or deficiencies that require corrective action?

Author’s Note 57.2 Note the first item, SPS “performance contribution thresholds.” Users
often complain that a system does not “live up to their expectations.” Several key questions:

1. Were those “expectations” documented as requirements in the SPS?

2. Did the Acquirer, as the user’s contract and technical representative, VERIFY and ACCEPT
the SYSTEM as meeting the SPS requirements?

3. Using system acceptance as a point of reference, have User expectations changed?

Remember, aside from  normal performance degradation from use, misuse, misapplication, lack of
proper maintenance, and OPERATING ENVIRONMENT threats, a SYSTEM, as an inanimate
object, does not change. People and organizations do. So, if the system IS NOT meeting User expec-
tations, is it the SYSTEM or the operators/organization?

These are a few of the types of SYSTEM level questions to investigate. Once you have a good
understanding of critical SYSTEM performance areas, the next question is: WHAT System Elements
are primary and secondary performance effecters that drive these results.

System Element Performance Monitoring

Based on SYSTEM operational performance results, the key question for SEs to answer is: what
are the System Element contributions. System Element performance areas include:

1. EQUIPMENT element

2. PERSONNEL element

3. MISSION RESOURCES element

4. PROCEDURAL DATA element

5. SYSTEM RESPONSES element—behavior, products, by-products, and services

6. SUPPORT SYSTEM element
(a) Decision support operations
(b) System maintenance operations
(c) Manpower and personnel operations
(d) Supply support operations
(e) Training and training support operations
(f) Technical data operations
(g) Computer resources support operations
(h) Facilities operations
(i) Packaging, handling, storage, and transportation (PHST) operations
( j) Publications support operations

Each of these System Element areas maps to the integrated set of physical architecture components
that contribute to System Element and overall performance.

Guidepost 57.1 At this juncture we have established WHAT needs to be monitored. We now
shift our focus to HOW system performance monitoring is accomplished.
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57.4 PERFORMANCE MONITORING METHODS

The System Element performance monitoring presents several challenges.
First, User/Maintainer organization SEs are accountable for answering these questions. If 

they do not have SEs on staff, they may task support contractors to collect data and make 
recommendations.

Second, Offeror organizations intending to successfully propose next-generation systems
or upgrades to legacy systems have to GET SMART in system performance areas and critical
operational and technical issues, (COIs/CTIs) in a very short period of time. As a general rule,
Offerors track and demonstrate performance in these areas over several years before they qualify
themselves as competent suppliers. The competitive advantage resides with the incumbent con-
tractor unless the User decides to change. Often your chances of success are diminished if you wait
to start answering these questions when the DRAFT Request for Proposal (RFP) solicitation is
released; it is simply impractical.

So, for those organizations that prepare for and posture themselves for success, how do they
obtain the data? Basic data collection methods include, if accessible:

1. Personal interviews with User and maintainer personnel.

2. Postmission data analysis—such as problem reports (PRs), mission debriefings, and post-
action reports.

3. Visual inspections—such as on-site surveys and SYSTEM checkout lists.

4. Analysis of preventive and corrective maintenance records—such as a Failure Reporting
and Corrective Action System (FRACAS), if available.

5. Observation of SYSTEM and PERSONNEL in action.

Although these methods look good on paper, they are ONLY as GOOD as the “corporate memo-
ries” of the User and maintainer organizations. Data retention following a mission drops signifi-
cantly over several hours and days. Reality tends to become embellished over time. So, every event
during the pre-mission, mission, and postmission phases of operation becomes a critical staging
point for after action and follow-up reporting. This requires three actions:

1. Establishing record-keeping systems.

2. Ingrain professional discipline in PERSONNEL to record a mission or maintenance event.

3. Thoroughly document the sequence of actions leading up to a mission or maintenance event.

Depending on the consequences of the event, failure boards may be convened that investigate 
the WHO, WHAT, WHEN, WHERE, WHY, and WHY NOT of emergency and catastrophic 
events.

People, in general, and SEs, in particular, often lack proper training in reporting malfunctions
or events. Most people, by nature, do not like to document things. So-called event reporting tools
are not User friendly and typically perform poorly. For these reasons organizations should train
personnel and assess their performance from day 1 of employment concerning:

1. WHAT data records are to be maintained and in what media.

2. WHY the data are required.

3. WHEN data are to be collected.

4. WHO the Users are.

5. HOW the User(s) apply the data to improving system performance



Final Thought

The preceding discussions are intended to illustrate HOW TO THINK about system performance
monitoring. Earlier we described a condition referred to as analysis paralysis. These areas are prime
example.

As a reality check, SEs need to ask themselves the question: If we simply asked Users to iden-
tify and prioritize 3 to 5 system areas for improvement, would we glean as much knowledge and
intelligence as analyzing warehouses full of data? The answer depends. If you have to have objec-
tive evidence in hand to rationalize a decision, the answer is yes. Alternatively, establishing data-
base reporting systems that can be queried provide an alternative. IF you choose to take the shortcut
and only identify the 3 to 5 areas for improvement, you may overlook what seems to be a minis-
cule topic that may become tomorrow’s headlines. Choose the method WISELY!

57.5 WHY ANALYZE SYSTEM PERFORMANCE DATA?

You may ask: WHY do SEs need to analyze system performance data? If the system works prop-
erly, WHAT do you expect to gain from the exercise? WHAT is the return on investment (ROI)?
These are good questions. Actually there are at least several primary reasons WHY you need to
analyze system performance data for some systems:

Reason 1: To benchmark nominal system performance.

Reason 2: To track and identify system performance trends.

Reason 3: To improve operator training, skills, and proficiency.

Reason 4: To correlate mission events with system performance.

Reason 5: To support gap analysis.

Reason 6: To validate models and simulations.

Reason 7: To evaluate human performance.

Let’s explore each of these reasons further.

Reason 1: To Benchmark Nominal System Performance

Establish statistical performance benchmarks via baselines, where applicable, for WHAT consti-
tutes actual nominal system performance. For example, your car’s gas mileage has a statistical mean
of 30 miles per gallon as measured over its first 20,000 miles.

Remember, the original System Performance Specification (SPS) was effectively a “Design-To
limits” set of requirements based on human estimates of required performance. Verification simply
proved that the physical deliverable system or product performed within acceptable boundary limits
and conditions. Every HUMAN-MADE system has its own unique idiosyncrasies that require
awareness and understanding whether it is performing nominally or drifting in/out of specification.
Consider the following example:

EXAMPLE 57.3

If a hypothetical performance requirement is 100 ± 10, you NEED TO KNOW that System X’s nominal per-
formance is 90 and System Y’s nominal performance is 100. Sometimes this is important; sometimes not. The
borderline “90” system could stay at that level throughout its life while the perfect “100” system could drift
out of tolerance and require continual maintenance.
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Reason 2: To Track and Identify System Performance Trends

Use the nominal performance baselines as a benchmark comparison for system performance degra-
dation and trends over its service life to ensure preventive and corrective maintenance occur at the
proper time and are performed correctly. For example, suppose your car at 30,000 miles is only
averaging 25 miles per gallon.

Reason 3: To Improve Operator Training and Skills

Determine IF and HOW systems are being unnecessarily stressed, misused, abused, or misapplied
by particular operators.

Reason 4: To Correlate Mission Events 
with System Performance

Correlate system mission events and operator observations with recorded system responses and per-
formance data. Ask yourself: Are we observing a problem area or symptom of a problem that has
a root case traceable to latent defects?

Reason 5: To Support Gap Analysis

Collect objective evidence of existing system capabilities and performance to support “gap” analy-
sis between the current system and projected competitive or adversarial system performance.

Reason 6: To Validate Models and Simulations

VALIDATE laboratory models and simulations against actual system performance to support future
mission planning or assess proposed capability or performance upgrades.

Reason 7: To Evaluate Human Performance

Personnel such as infantry, pilots, and NASA astronauts are subjected to operating environments
that can overstress human performance. Thus, human operator performance within the context of
the overall MISSION SYSTEM performance must be well understood to ensure that training cor-
rects or enhances operator performance for future missions.

57.6 SE FOCUS AREAS DURING O&S

During the System Operations and Support (O&S) Phase, there are a number of SE focus areas
that represent initial starting points for tracking and assessing system, product, or service per-
formance. As stated in the Introduction, this chapter has two contexts:

1. Sustaining and improving current system performance.

2. Planning for next generation systems.

Assessment of current system performance includes several focus areas:

Focus Area 1: Correct latent defects.

Focus Area 2: Improve Human–System Integration (HSI) performance.

Focus Area 3: Maintain MISSION SYSTEM–training device concurrency.

Focus Area 4: Maintain system baselines.
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Focus Area 1: Correct Latent Defects

Systems, products, and services have degrees of perfection as viewed by the User and System
Developer. System Developers employ design verification and validation practices to discover any
latent defects and deficiencies early in the System Development Phase when corrective actions are
less costly. Despite the best of human attempts to perfect systems, some latent defects and defi-
ciencies remain hidden until someone discovers the problem during the System O&S Phase—hope-
fully WITHOUT adverse or catastrophic EFFECTS.

New systems, especially large complex systems, inevitably have latent defects and deficien-
cies. Sometimes these are minor; other times they are major. From a program and SE perspective,
the critical operational issue (COI) is to ensure that the delivered EQUIPMENT and its operators
are able to achieve their mission objectives without subjecting them to injury, damage, or threats
that jeopardize the mission. Software-intensive systems are especially prone to latent defects that
are not discovered during system verification testing.

Some defects or deficiencies not discovered until a system is fielded. Sometimes they are highly
obvious, and sometimes they are only detected over a period of time. The discovery may occur
directly or indirectly during analysis of large amounts of data. Therefore, monitor Problem Reports
(PRs) closely to determine if there are latent defects that need to be corrected and, if so, the degree
of urgency in correcting them.

Focus Area 2: Improve Human–System Integration 
(HSI) Performance

Our discussions up to this point focused on improving EQUIPMENT Element performance. As dis-
cussed earlier in this section, EQUIPMENT is just one of several system element performance
effecters that contribute to overall system performance. Measurable system performance may also
be achieved by improving the PERSONNEL Element performance aspects without having to
procure new EQUIPMENT solutions. How do we do this?

EQUIPMENT system performance is often limited by system operator and maintainer skills,
proficiency, and performance. System operators and maintainers require training to improve their
knowledge, skills, and proficiency in understanding the limitations of the EQUIPMENT and HOW
to properly apply the EQUIPMENT.

The mechanisms for improving human performance includes operator and maintainer selec-
tion, classroom training, field experience operating the system, and sometimes LUCK. Experienced
system operators and maintainers are often responsible for training new students. The training,
however, is dependent on the availability of training aides and devices that provide the students the
look, feel, and decision-making environment that enables them to become proficient.

The question for SEs is: HOW do we specify system capabilities that enable instructors to train
and evaluate student performance on the EQUIPMENT? Training sessions need to employ devices
that immerse the student in the types of operational and decision-making environments they will
actually confront in the OPERATING ENVIRONMENT. This presents several challenges for SEs.

Training Challenge for SEs. Most engineers, by virtue of education and lack of system devel-
opment training, focus immediately on hardware and software design details. If you ask most to
write a specification, seldom will you find anyone who SIMPLY asks the question: Does this system
have a training requirement? If so, WHAT capabilities must be incorporated into the system to
support training?

The solution to this challenge is to conduct on-site visits with the User stakeholders—the
system operators, maintainers, and instructors—and determine what training requirements will be
required for the system. Remember, the system requirements listed in the Operational Require-
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ments Document (ORD) should include training requirements. Some of those requirements are allo-
cated to training media, some to instructors, and some to the EQUIPMENT Element items that are
to be procured. In some cases, the System Developer’s contract may specify delivery of training
systems to support the EQUIPMENT Element.

For most HUMAN-MADE systems, the general thinking is to train system operators to use a
system or product after delivery. However, there are cases, especially in single-use systems, where
the actual mission is the one and only real world training session. Consider the following example:

EXAMPLE 57.4

During the Apollo program, astronauts trained with laboratory simulators, physical landing device simulators,
and neutral buoyancy tanks that provided the LOOK and FEEL of a zero gravity landing on the Moon.
However, all training had to be accomplished in a normal Earth gravity environment. THINK about the train-
ing challenge! The actual landing of the manned Apollo Lunar Lander, as an unprecedented system, on the
Moon’s surface represented the first time all elements of a single-use system were operated simultaneously in
its prescribed zero gravity OPERATING ENVIRONMENT.

So, HOW do we create training aids to support training? The answer is by way of training devices.

Training Devices. The cost, complexity, availability, and risk of using actual systems for train-
ing purposes often limits training. One mechanism for achieving similar results is to develop sim-
ulators that enable students to learn in a realistic, immersive environment without harming
themselves, the public, instructors, or the EQUIPMENT. Training devices provide this capability.
Training devices range from simple desktop computer models to highly complex aircraft simula-
tors located on multi-axis motion platforms as illustrated in Figure 51.6.

In general, most systems have training task lists (TTLs) that identify specific mission tasks for
assessing the knowledge, skills, and proficiency of trainee operators. Instructional System Devel-
opment (ISD) personnel analyze these tasks and determine what types of training aides and media
are required—whether to use classroom instruction, laboratory training devices or simulations, or
actual EQUIPMENT systems. As a result of the ISD analyses, TTL items are allocated to one or
more types of training. Therefore, training devices are required to provide capabilities to support
all or some of the TTL items.

Training Device Specification Challenges. Training devices present a couple of key chal-
lenges to SEs.

Challenge 1: Degree of Realism. The need to create and immerse a student in a realistic envi-
ronment sounds pretty simple. Wrong! The challenge for SEs is: HOW do we specify a system that
is: 1) realistic, 2) representative of the real world, and 3) provides effective training? THINK about
it. Do you specify that the simulated world should look and feel like the real world?

This challenge drives SEs to develop levels of fidelity—or the degree of realism representative
of the physical world. Typically, attribute descriptors such as low, medium, and high are applied to
levels of fidelity. However, define low, medium, and high? Medium fidelity to one person may be
low fidelity to someone else. Does a training device require components—such as switches, dials,
and gauges—that identically match the MISSION SYSTEM or are photographic models accept-
able? SEs must bound and define these terms to avoid confusion and misinterpretation.

Challenge 2: Simulator Concurrency. Another challenge for SEs is specifying a simulator
that identically matches the actual MISSION SYSTEM—e.g. aircraft, spacecraft, nuclear power



plant, etc.—in look, feel, and performance. If the simulator is not concurrent with the actual system,
you may have a negative training condition. If part of the actual system—e.g. vehicle—does not
operate due to a lack of maintenance, etc., that training device capability should also be inopera-
ble. This includes: switches, indicators lamps, displays, audio, etc.

Challenge 3: Scoring Capability Requirements. As with any training device, the question
is: HOW do we measure levels of student skills and proficiency? This area represents a highly
debated topic. The challenge for SEs is: HOW do you specify scoring capability requirements?

A word of caution: some SEs have inflated egos and erroneously believe they can specify train-
ing capabilities for this area. AVOID this notion; recognize the limitations of your expertise! Talk
with the Instructional System Development (ISD) subject matter experts (SMEs) who are the pro-
fessionals and understand WHAT constitutes effective training capabilities. Collaborate with the
ISD SMEs to identify and specify the training capability requirements.

Challenge 4: Operational Task List Training. Large complex EQUIPMENT systems such as
ground vehicles, aircraft, and spacecraft involve Training Task Lists (TTLs) that must be performed
as part of normal system operations as well as in response to malfunctions.

Each of these operational tasks employs various system capabilities and levels of performance
that are controlled by the Human-in-the-Loop (HITL) or by automated decision-making systems.
When developing training devices, recognize that the simulator must provide the capability to train
system operators in using the TTLs. Some TTL items may or may not be applicable or trainable
except on the actual equipment. TTL items allocated to the simulator should be documented in the
System Performance Specification (SPS).

The challenge for SEs is to specify the simulation device(s) with capabilities that enable 
effective training students in applying the respective TTLs in the simulated OPERATING 
ENVIRONMENT.

Challenge 5: Levels of Training Capabilities. Human performance improvement entails
training in several skills areas. These include basic training, advanced training, and remedial 
training.

1. Basic Training Fundamental instruction complemented with hands-on experience to
achieve a level of competence in basic system capabilities and levels of performance.

2. Advance Training Specialized training in mission scenario environments that challenge the
limitations of the human and machine and ensure a level of proficiency in achieving mission
objectives.

3. Remedial/Refresher Training Retraining in skills and proficiency areas that may be 
deficient.

Challenge 6: Other Human Performance Indicators. Earlier we highlighted the depend-
ence of many engineers on actual EQUIPMENT data and noted that simple inspection by exami-
nation—such as for oil leaks, hydraulic leaks, or fatigue cracks—provides valuable insights into
system performance. The same is true with human performance.

When systems are designed, vast energies are expended designing them idealistically for
people who are in the 95th percentile of established anthropometric standards. For many applica-
tions, these design rules work. However, after a system is deployed to the field, SEs need to take
a field trip to observe the system’s operators and maintainers in action. Startling discoveries some-
times arise.

784 Chapter 57 System Operations and Support
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System operators and maintainers are clever and sometimes show the developers a better way
of doing things. All this is dependent on HOW WELL the Users like or loathe the system or product.
Also, observe the ergonomics of the work environment. Are there work habits or indications that
can degrade their performance?

Focus Area 3: Maintain MISSION SYSTEM-Training 
Device Concurrency

Training devices such as models, simulations, and simulators must remain in synchronized lock
step with the MISSION SYSTEM they simulate such as ground vehicles, aircraft, ships, nuclear
reactors, robotics surgeries and so forth.

Typically, the MISSION SYSTEM developer is different from the training device(s) devel-
oper. Where concurrency is a critical operational or technical issue (COI/CTI), Users and the
Acquirers must ensure that contracts are in place to support concurrency requirements to promote
communications among the organizations.

Focus Area 4: Maintain System Baselines

One of the challenges of fielded systems is failure to keep the As-Maintained configuration base-
line current. This commonly occurs when budgets are reduced or priorities are focused on other
activities. Unfortunately, some organizations have a view that if an activity doesn’t help the 
bottom line or accomplish a mission, it must not be worth investing resources. So, MISSION
SYSTEM Users and System Developers ask: “Do we invest money in the actual system to get more
capability or in maintaining system baselines in lock step?” Generally, the capability argument
wins. As a result, there may be a discrepancy between the physical MISSION SYSTEM and its
baselines.

Once a system is developed, delivered, and accepted, a key question is: WHO maintains the
product baseline for fielded systems? Systems often go through a series of major upgrades over
their useful service life. Each improvement or upgrade may be performed internally or externally
by a new System Developer contract. The challenge for User and Acquirer to ultimately answer is:
HOW do we assure the developer that the baseline configuration documentation identically matches
the improved or upgraded, As-Maintained system? As a User SE, you will be expected to answer
this question and vouch for the integrity of the As-Maintained Product Baseline.

Maintaining the currency of the Product Baseline is important not only for the existing fielded
systems but also for future production runs. Some systems are fielded in low quantities as trial runs
to assess consumer feedback in the marketplace. After the initial trials, production contracts may
be released for large quantities. Some markets may saturate quickly or, if your organization is 
lucky, enjoy system production over several years. These production runs may involve a single 
production contractor or multiple contractors; the baseline integrity challenges, however, are the
same.

57.7 PLANNING FOR NEXT-GENERATION SYSTEMS

Planning of next generation systems includes several focus areas:

Focus Area 5: Perform and maintain a “gap” analysis.

Focus Area 6: Bound and partition the problem and solution spaces.

Focus Area 7: Formulate and develop new capability requirements.
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Focus Area 5: Perform and Maintain a “Gap” Analysis

As MISSION SYSTEM and SUPPORT SYSTEM data are collected and analyzed, a repository of
knowledge is established. So, what do you do with all this data? Despite its title, this could be
simply a single page for management with a brief rationale depicting the current gap and gap pro-
jections over time.

The OPERATING ENVIRONMENT element of most systems is often highly competitive and
may range from benign or adversarial. Depending on the overall organizational mission, competi-
tors and adversaries will continually improve and upgrade their system capabilities. Regardless of
your organization’s operating domain, the marketplace, military environment, space environment,
and medical environment are dynamic and continually change in response to MISSION SYSTEM
changes.

For some systems survival or convenience means changing, either by necessity due to com-
ponent or obsolescence accordance cost of maintenance, in accord with marketplace trends and
demands. Thus, operational capability and performance gaps emerge between your existing system
and those of competitors and adversaries. This in turn forces investment to improve existing system
performance or develop new systems, products, and services.

Focus Area 6: Bound and Partition the Problem and 
Solution Spaces

The gap analysis provides an assessment of current capabilities and performance relative to pro-
jected organizational needs as well as competitor and adversarial capability projections. Analysis
of the “gaps” may reveal one or more potential problem spaces, each with its own degree of urgency
for fulfillment. Each problem space in turn must be partitioned into one or more solution spaces.

Focus Area 7: Formulate and Develop 
New Capability Requirements

Over time, the capability “gap” between the existing system and projected needs widens. At some
point in time a determination will be made to initiate actions to improve or upgrade existing system
performance or to develop a new system. Thus, the evolving problem and solution space bound-
aries—the Requirements Domain—will have to be captured in terms of required operational capa-
bilities and costs. As an SE, you may be assigned responsibility to collect and quantify these
requirements.

Referral For more information regarding system capabilities, refer to Chapter 21 on System
Operational Capability Derivation and Allocation.

57.8 GUIDING PRINCIPLES

In summary, the preceding discussions provide the basis with which to establish the guiding prin-
ciples that govern System Operations and Support (O&S) practices.

Principle 57.1 SE does not end with the System Development Phase; it addresses system per-
formance assessments throughout the System O&S Phase.

Principle 57.2 Ensure that the As-Maintained configuration baseline is current with the fielded
system at all times.
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57.9 SUMMARY

Our discussion of system O&S practices was intended to familiarize SEs with key areas that require defini-
tion prior to the formal solicitation effort that leads to new system development. We emphasized the two con-
texts of O&S:

1. Assessing existing system performance.

2. Planning for capability improvement upgrades and next-generation system requirements.

GENERAL EXERCISES

1. Answer each of the What You Should Learn from This Chapter questions identified in the Introduction.

2. Refer to the list of systems identified in Chapter 2. Based on a selection from the preceding chapter’s
General Exercises or a new system selection, apply your knowledge derived from this chapter’s topical
discussions. Assume that you have been contracted to develop requirements for the next-generation system.

(a) What are the SYSTEM level questions you would pose to the owners and Users concerning the 
performance of current operations?

(b) Using the System Elements as the frame of reference, what questions would you ask regarding the 
performance of each element?

ORGANIZATIONAL CENTRIC EXERCISES

1. Contact programs and functional organizations within your facility that procure systems for integration into
contract deliverables or installation within the facility.

(a) What experiences did they have with installation and integration of the new system?

(b) What types of latent defects or deficiencies were discovered after system delivery?

(c) Can they show metrics profiles concerning the frequency of finding defects over time?

(d) Did the supplier provide training for the users?

(e) For each of the System Elements, how would they grade the supplier’s performance?

(f) What lessons learned do they recommend avoiding in future procurements?
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Epilogue

The preceding chapters presented the key concepts, principles, and practices of System Analysis,
Design, and Development. Our purpose has been to provide insights that enable system analysts
and SEs to bridge the gap between a User’s abstract vision of a system, product, or service into
the physical realization that will satisfy their organizational or personal needs and objectives.

Our discussions highlighted key topics and methodologies that apply to the multi-disciplinary
“engineering of systems.” As a structured problem solving/solution development methodology,
these concepts and practices enable us to develop systems ranging from simple to highly complex.
The flexibility of the methodology facilitates application to any type of system, regardless of busi-
ness domain. These systems may range from institutional/organizational systems such as a banking
system, school, hospital system, et al. to the “engineering of systems” such as aircraft, ships, Space
Shuttle, or International Space Station (ISS).

Equipped with a this new knowledge and insights for thinking about, organizing, analyzing,
designing, and developing systems, you are now ready to embark on applying and tailoring what
you have learned. With practical application, these practices should enable you to create a frame-
work that can be tailored to best fit the needs of your business domain and line of business. With
seasoned experience, you are better prepared to lead collaborative engineering development efforts
to make informed decisions without having to take a quantum leap of faith to a point solution that
may or may not fulfill the User’s operational needs. 

With these points in mind, I extend best wishes to you in your quest for success through the
application of the concepts, principles, and practices of System Analysis, Design, and Development.

Charles S. Wasson
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Def. = definition

Abstraction
Defined 67
Hierarchical levels of 414
System levels of 76, 80–82

Acceptability
System 46

Accountability
Technical 128

Aggregation (Composition) 7
Agreements

Non-disclosure/Proprietary 572
Acquirer

Contracting Officer (ACO) 313, 493, 505, 717,
730

Furnished Equipment (AFE) 495, 675
Furnished Property (AFP) 481, 492, 493, 495

Actions
Allowable/Prohibited 202
Corrective 265, 270

Acceptance
Tests 701
Testing (def.) 734

Acceptance Test Procedures (ATPs)
Application 269, 271, 696
Defined 734
Derivation 742
Developing 747
Procedure-based ATPs 701, 748
Scenario-based ATPs 701, 748
Types of 747

Accreditation 652
Accuracy and Precision 547, 577, 581
Actor (See UML)
Adaptation

Defined 147
System 156

Affordability 49

Allocation(s)
Performance budget 460, 598, 601
Requirements 221, 225, 358, 365, 641–642

Alternative(s)
Analysis of (AoA) 674
Viable (def.) 673

American Board of Engineering and Technology
(ABET) 23

Analysis
Aggregation (Composition) 7
Conclusions 583
Defined 574
Effectiveness 575
Electromagnetic Compatibility (EMC) 577
Electromagnetic Interference (EMI) 577
Engineering Reports 579, 612
Error 535
Fault tree 577
Findings 583
Finite element 577
Gap 126, 781, 786
HFE task 526, 535, 603–611
Human Factors Engineering (HFE) 535
Lessons learned 581
Logistic Support (LSA) (def.) 774
Mission 442
Mission task 164
of Alternatives (AoA) 672, 674
Paralysis 574, 579, 632
Part/circuits tolerance analysis 644
Rate Monotonic (RMA) 611
Recommendations 583
Reliability 641
Resources 582
Sensitivity 673, 684
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System operational capability 237
System performance 603
System Requirements (SRA) 329
Task 526, 535
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Timeline 160
Transaction (def.) 452
Types of 577–578
Use case 174
Worst case 644, 654

ANALYSIS (Verification Method)
See Verification Methods

Anomaly
Defined 734
Challenges 755

Anthropometry
Defined 525

Anthropometrics
Defined 525

Architect
System 411, 412

Architecture(al)
Architecting 411
Attributes 414
Behavioral Domain Solution 453
Centralized 411, 418–420
Client server 420
Concerns 411, 413
Configuration redundancy 422
Decentralized 411, 420
Defined 411
Description (AD) 411, 413
Development 651
Entities 414
ES&H considerations 425
Fault tolerant 421, 469
Fire detection and protection 425
Flexibility 469
Formulation 412
IEEE 1471–2000 413
Item boundaries 500
Logical 74, 415, 454
Network 420
Open system 411, 469
Operational 415, 439
Operations Domain Solution 440
Physical 74, 415, 466
Physical attributes 469
Physical Domain Solution 467
Power considerations 425
Redundancy 422
Representation 414
Requirements 415
Requirements Domain Solution 415, 432
Scalability 469
Selection 425
Semantics 79
Stakeholder concerns 413, 417
SOI system elements 87

System security considerations 427
Trade studies 676
Transparency 469
View 411, 413, 414
Viewpoint 411, 413

Assessment
Situational (def.) 122

Assumptions
and caveats 582
Failure to document 647
Poor or incorrect 687
Specification 311

Atmosphere
Standard 577

Attributes
Defined 28
Physical / Functional (def.) 28
System 30–33

Audits
Functional Configuration (FCA) 56, 252, 255,

256, 260, 571, 696, 728, 752
Physical Configuration (PCA) 56, 253, 255, 256,

260, 571, 696, 728, 752
Requirements Traceability (RTA) 254, 718

Authorized Access
Defined 563

Availability
Achieved (Aa) 537
Defined 401
Design for 405
Interface 521
Inherent (Ai) 637
Operational (Ao) 50, 637, 775
System 636

Baseline Concept Description (BCD) 447
Baseline(s)

Allocated (def.) 490
Configuration 502
Control and maintenance 306
CSCI 490
Defined 490
Functional 504
Management (def.) 490
Product 504
Production 504
Requirements (def.) 491
Specification 355

Bathtub Curve
Failure profile 620–621

Behavioral Domain Solution
Architecture 453
Challenges 461
COIs / CTIs 461
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Defined 276
Dependencies 453
Development 451
Introduced 243–245
Key elements 452
Methodology 454
Need for 453
Objective 452
Optimization 282, 461
Responsibility 453
SE Process Model 281
Sequencing 453
V&V 461
Work products 463

Benchmark
System performance 780

Bill of Materials (BOM)
Engineering (EBOM) 82, 642, 643

Boards
Configuration Control Board (CCB) 432, 440,

453, 752
Material Review (MRB) 752
Software CCB (SCCB) 432, 453, 440, 752

Boehm, Dr. Barry 294, 296
Box, George E. P. 648, 669
British Engineering System (BES) 547
Budgets

Performance 460
Performance allocation 598–599
Safety margin 460

Build
Configuration 297–298

Business
Operational cycles 214

By-Products
Acceptable / Unacceptable 345

Calibration and Alignment
Equipment and tools 753, 754

Capability
Anatomy of 229
Automated or semi-automated (def.) 230
Bounding 230
Construct 232
Defined 27
Derivation 220, 434
Equating to modes 203
Force multiplier 142–143
Full operational (FOC) 62,125, 140, 297, 414, 

768
Gap 138
Initial operational (IOC) 62, 125, 140, 297, 414,

768
Level of urgency 125

Processing 171
Required Operational (ROC) 219
Reporting 235
Resource utilization 238
System operational 217

Case
Test (def.) 735
Use (def.) 168

Cautions and Warnings
User 219

Classification of Defects
Defined 692

Certification
Defined 692
Model & simulation 655, 706
System 760
Test equipment and tool 753

Characteristics
Aesthetic 35
Defined 29
General operating 34
Operating or behavioral 34
Physical 34
Required Operational 382
Required Technical 382
System 34–35

Command Media
System design and documentation 565

Commercial-Off-the-Shelf (COTS)
COIs/CTIs 675
Defined 481
Driving issues 484
Items 483
Physical items 469
Product (def.) 481
Selection questions 484–487
Trade Studies 675
Verification 696

Compatibility 150
Defined 147
Versus interoperability 150

Compensating Provision
Actions 646
Defined 616
Use case 173

Completeness 414
Complexity

Reduction of 71
Compliance

Certificate of (C of C) 483, 565, 695, 696, 
698

Consequences of non-compliance 155
Defined 545
Specification 337–338
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Command and Control (C2)
HSI 469
Input/Output (I/O) devices 531–532
Interactions 153

Common Support Equipment (CSE)
See Equipment

Comply
Defined 147

Component
Defined 466
Design options 482
External acquisition 493
Origins 493
Selection methods 483

Computer Software Configuration Item (CSCI)
Computer SW Component (CSC) 269
Computer SW Unit (CSU) 269
Defined 490
Implementation 493

Concept
Defined 4

Concept of Operations (ConOps)
Defined 178
Description 179
Operations Domain Solution 446
System Operations Model 179

Concerns
Architectural 413, 414

Conclusion(s)
Analysis report 581
Prerequisite 36
Trade Study Report (TSR) (def.) 673

Conditions
Abnormal operating 233
Environmental 170
Initial operating 36
Specification of operating Environment

312
System operating 321

Conference
Agenda 716
Minutes 711, 716
Action Items 716, 721–730

Configuration
As Allocated 503
As Built 260, 503
As Designed 56, 260, 309, 503
As Maintained 503, 785
As Produced 503
As Specified 503
As Validated 56, 503
As Verified 56, 260, 309, 503
Baselines 502

Defined 490
Developmental 61, 252, 502, 503
Effectivity 335, 491, 497
Identification responsibility 497
Item selection 496
Management (def.) 491
Redundancy 422
Semantics 492, 494–495

Configuration Control Board (CCB)
Behavioral Domain Solution 453
Deviations and waivers 752
Operations Domain Solution 440
Requirements baselines 432
SEIT function 309

Configuration Item (CI)
Applications 223, 493
Computer Software (CSCI)
CSCI boundaries 496, 500
Hardware Configuration (HWCI) 490, 491,

493–494, 495, 515, 666
Defined 491
Ownership 499
Logical (LCI) (def.) 491
Ownership and control 499
Physical (PCI) (def.) 491
Identification Responsibility 497
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Conflict of Interest
V & V 705

Conform
Defined 147

Conformance
Defined 545
Specification 337–338
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Application 232, 406
MISSION RESOURCES 91–92

Constraints
Boundary condition 576
Design and construction 217, 223
Operational 160, 170

Construct(s)
Behavioral interactions 153–155
Behavioral responses model 148
Phases and modes of operation 200
Physical environment architecture 101
System Entity 21
System architecture 68–70, 99
System capability 231
System element architecture 87

Contract Data Requirement List (CDRL)
Defined 563
Description 564
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Discussed 313, 717
Technical reviews 718

Contract Line Item Numbers (CLINs)
Technical reviews 718

Contract Logistics Support (CLS)
Implementation 630–631

Contract/Subcontract
Statement of Objectives (SOO) 78, 126, 253,

254, 273, 279, 317, 327, 352, 674
Statement of Work (CSOW) 230, 313, 305, 354,

384
Work Breakdown Structure (CWBS)
CWBS Dictionary 95
Technical direction 717, 730
Terms and Conditions (Ts & Cs) 61, 78, 257,

267, 305, 331, 467, 493, 714
Type 714, 762
References 78, 95, 310, 447, 468, 501, 502

Control or Staging Points
Defined 178
Developmental configuration 504
Mission 162
Verification 697

Control
Real-Time 611

Convention(s)
Angular displacement 555–556
Assumptions 559
Body axis 551
Control flow 209–210
Cycle Time 603–604
Data flow 209
Decomposition 10
Defined 545
Lesson learned 558
Observer’s frame of reference 549
PITCH, YAW, ROLL convention 550, 551–554
Right Hand Rule (RHR) 549
Semantics frame of reference 79

Coordinate System
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Defined 545
Dimensional reference 554
Discussion 548–556
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Observer’s eyepoint 549
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Transformation 559
World Coordinate System (WCS) 550

Correction
Error 592

Corrective
Action (def.) 265

Maintenance (def.) 616
Maintenance Frequency 635
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Positive / negative data 594

Cost
Effectiveness 52
Life Cycle 23, 52, 53
Design to (DTC) 403
Total Ownership Cost (TOC) 33, 470, 640

Cost as an Independent Variable (CAIV) 53,
162, 593, 657

Countermeasure
Application 152
Defined 147

Counter-Counter Measure (CCM)
Application 152
Defined 147

Criteria
Decision 673
Fitness for use 131, 362
Requirement validation 384

Critical Issues
Defined 391

Critical Operational/Technical Issues
(COIs/CTIs)

COI (def.) 391
CTI (def.) 734
Domain solutions 244
Evaluation of alternatives 296
Integrated Process and Product Development

(IPPD) 713
Modeling and simulation 697
SME peer reviews 583
Specification issues and tracking 336–337
System deployment 768
System Design Process 267
System Design V & V strategy 259
System O & S 779
Technical review resolution 717–718
Trade studies 672, 674–676
Training device concurrency 785
Validation requirements 319
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Auditory 531
Behavioral responses model 148
External inputs 92, 172
Modal transition 197
Vibratory 531
Visual 531
Use case 172

Customer
Needs, wants, can afford, willing to pay 49, 57,

360–361, 369
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Perceptions 57, 125, 718
Satisfaction 485

Cycles
Embedded or nested 214

Data
Acquirer and vendor 571
Accuracy and precision 547
Archival preservation 752
Authentication 571, 752
Convergence 595
Correlation 594
Defined 563
Deliverable 564
Design and development 564
Dispersion 591
Export control See ITAR
Flow 209–210
Integrity 751
Item Description (DID) 564
Maintainability 635–636
Operations & Support (O&S) 565
Personal engineering records 565
Proprietary 572
Regression 595
Released (def.) 563
Source credibility 582
Sources—failure to document 647
Subcontractor, vendor, supplier

564
System performance 780
Technical (def.) 563
Validation 571
Validity 687
Variability 587
Vendor 572
Working data 563, 565

Data Accession List (DAL)
Application 565
Defined 563
Description 566

Data Accession List (DAL)
Defined 563
Description 566

Data Correlation
Convergence/divergence 595
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Regression 595

Data Flow Convention 209–210
Decision(s)

Criteria 577, 673
Factor 673
Make vs Buy 473, 481
Technical attributes 575–577

Decision Making
Aids 653
Delivery of analysis results 577
Documentation format 581
HSI 469
Stakeholder participation 770
Team-based 12–13
Timing 576

Decision Support
Process 257
SE Process Model 282
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Decimal-based 11
Hierarchical 10
Rules 84
Tag-based 11

Defects
Classification of (def.) 692
Correction of 270, 705
Design errors / flaws 62, 120, 233, 258, 270,

328, 753
Latent 120, 233, 258, 328, 616, 669, 703, 705,

753, 775, 782
Workmanship 62

Deficiency
Defined 692
Discussions 258, 270, 669, 703, 775, 782

Demonstration
Proof of concept 262
Proof of principle 262
Technical 701–702

DEMONSTRATION (Verification Method)
See Verification Methods

Deployment
Challenges 769–771
Decision making 770
Defined 759
Design for 406
Engineering considerations 768
Environmental considerations 766, 769
Hazardous Materials (HAZMAT) 771
Interfaces 761
Mock 769
Modes of transportation 761
Objectives 759
Production distribution 760
Roles and responsibilities 760–761
Safety and security 766
SE application 761
SE roles 760
Security 766, 771
Shock and vibration 771
Site selection 763
Workforce availability 771
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Description
Architectural (AD) 411, 413
Baseline Concept (BCD) 447
Interface Design 462
System/Segment Design Description 462

Design
Cautionary range 588
Defects, deficiencies, errors, flaws See Defects
Normal operating range 588
Rationale document 330
Warning range 589

Design and Construction Constraints
Defined 217
Operational capability matrix 223
Specification of 310, 311

Design Criteria List (DCL)
Defined 563
Description 566

Design To/For Objectives
Availability 401, 405
Comfort 404
Cost (DTC) 403
Deployment 406
Disposal 407
Effectiveness 407
Efficiency 401, 407
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Integration, test, & evaluation 407
Interoperability 401, 404
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Maintainability 401, 407
Maneuverability 405
Mission support 406
Mobility 404
Portability 401, 405
Producibility 402, 405
Reconfigurability 402, 407
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Safety 402, 408
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404
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Training 406
Transportability 403, 404
Usability 403, 404
Verification 407
Vulnerability 403, 406
Value (DTV) 403

Development
Models 290
Specifications 303

Developmental Test & Evaluation (DT&E)
Defined 252

Description 261
Risk mitigation 261
System development overview 61
System Integration, Test, & Evaluation (SITE)

738, 745
System verification 704

Development Configuration
Defined 252
System Development Process 256

Development Strategy
Evolutionary 291, 293–294
Incremental 291, 297–298
Grand Design 291
Spiral 291, 294–296
System 292
System versus component 299
Waterfall 291, 292–293

Deviation
Defined 303
Applications 752

Diagram Types
Architecture Block (ABD) 414
Functional Flow Block (FFBD) 414
Interaction 9
N2 (N ¥ N) 417, 455, 456, 472
State 190
System Block (SBD) 6, 414, 458, 468, 

739
Sequence See UML
Use Case See UML

Dictionary
CWBS 95, 501
System Operations 179, 184, 221

Dimension—System of Units
Defined 545

Discrepancy(ies)
Defined 692
Classification of 743
Report (DR) 265, 743, 750
Reporting obstacles 753

Disposal (Waste)
Defined 759

Distribution
Exponential 624
Logarithmic (LogNormal) 587, 617
Negative Distribution 617, 618
Normal (Gaussian) 587, 617
Weibull 620

Documents
Applicable versus referenced 580, 583

Documentation
Acquirer and vendor 571
Assumptions and sources 697
Dates 582
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Electronic signatures 572
Issues 571
Planning 567
Lessons learned 582–583
Levels of formality 569
Level of detail 570
Organizational command media 565
Performance budgets 602
Safety margins 602
Sequencing 567
Specification 568
System design 568
Test 568
Verification 697

Domain
HIGHER ORDER SYSTEMS 99–100
PHYSICAL ENVIRONMENT 100–101
Solution (def.) 276

DoD Handbooks/Standards
DoD 5000.2-R 535
MIL-HDBK-217 642
MIL-HDBK-470 632
MIL-HDBK-881 736
MIL-HDBK-46855 533–534, 536–538
MIL-STD-822 525
MIL-STD-1908 540–541

Dynamics
Free body 552
Mission 36
State vectors 553

Effect(s)
Cumulative performance 592
Electromagnetic environment (E3) 120
End (def.) 616

Effectivity
Based specifications 335, 498
Configuration 497–498

Effectiveness
Cost 52
Design for 407
Measures of (MOEs) 47, 51
Operational 47, 51, 775
System 48, 53

Efficiency
Defined 401
Design for 407
Organizational 128

Electrostatic Discharge (ESD) 644
Emulate

Defined 741
Engineering

Analysis reports 579

Change Proposals (ECPs) 728
Defined 23
Human Factors (HFE) 533
Mechanics 553
Models 739
Professional certification 475
Release Records (ERRs) (def.) 563
Specialty 474
System (SE) (def.) 24
Technical report format 580–581

Entity
Defined 67

Entity Relationships
Defined 67
Logical 9, 68, 71–73
Logical Configuration Item (LCI) 476
Operational capability 218
Organizational 129
Peer-to-peer 111, 154
Phases, modes, and states 191
Physical 9, 68, 73–74
Physical Configuration Item (PCI) 476

Environment(al)
Atmospheric 103
Biospheric 104
Conditions 170
Cosmospheric 102
Defined 68
Geospheric 103
Global 102
Hazardous materials (HAZMAT) 766, 771
Hydrospheric 103
Induced 101–106
Local 103
HUMAN-MADE SYSTEMS 100, 104–105
NATURAL 102
Open Systems (OSE) 411
Operating 68
Reclamation 767
Remediation 186
Stress screening 647
System Threat 151

Environmental, Safety, and Health (ES&H)
Issues 767
Material Safety Data Sheets (MSDS) 766
NEPA (1969) 766
Physical Domain Solution considerations 475
Site selection considerations 746

Equilibrium—System
State of 36

Equipment
Alignment 754
Automated Test (ATE) (def.) 734
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Calibration 754
Common Support (CSE) 89, 631, 769, 775
Peculiar Support (PSE) 89, 769, 775
Powered Ground (PGE) (def.) 774
Support & Handing 90
Support Equipment (def.) 775
Test and Measurement 736, 775
Test, Measurement, and Diagnostic (TMDE)

89
Versus human strengths 527–528

EQUIPMENT System Element
Description 88
Performance affecters 157
System architecture element 87

Ergonomics
Defined 525

Error
Analysis 535
Correction 424
Cumulative 587, 592
Latent defects 258
Transient 736

Evaluations
Operational Sequence 535

Event
Defined 652
System performance 781
Triggering 190
Unscheduled or unanticipated 445

Evidence
Objective 582

Evolutionary Development Model
Strategy (def.) 291
Description 293–294

EXAMINATION Verification Method
See Verification Methods

Exception Handling 232
Expendables

MISSION RESOURCES 91–92
References 232, 406

Export Control
See ITAR

FACILITY System Element
Description 94–95
Performance affecters 157
System architecture element 87

Failure
Cause (def.) 616
Classification 647
Defined 616
Effect (def.) 616
Frequency distribution 624

Internal 165
Qualification 618
Rate 635
Period of Decreasing Failures 619–621
Period of Increasing Failures 619–621
Period of Stabilized Failures 619–620
Root cause 662
Service life profiles 619–620
Single point of (SPF) 419, 423, 644, 645

Failure Modes and Effects Analysis (FMEA)
Defined 616
Interface failure mitigation 120
System mission analysis 165
Fault tolerant architectures 421
Behavioral Domain Solution 461
Physical Domain Solution 474
Reliability, Availability, and Maintainability

(RAM) 643–644
Simulation-based failure investigations 663

Failure Reporting and Corrective Action System
(FRACAS)

Defined 631
Implementation 779

Fidelity
Model (def.) 652
Application 656

Figure of Merit (FOM)
Defined 391
Performance 677

Finding
Analytical Report 581
Trade study (def.) 673

Firmware 494
First Article

Defined 252
Deployment 760
Description 739
Reliability 621

Force Multipliers
Capability 142–143

Form, Fit, and Function
Defined 28
Discussions 28, 310, 740
Product 21
System 18

Frame of Reference 549
Conventions 549
Observer’s 77, 549, 654
OPERATING ENVIRONMENT

106
Right Handed Cartesian 549
Right Hand Rule (RHR) 549
Semantics 77
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Frequency
Corrective Maintenance 634
Distributions 624

Firmware 494
Function

Cumulative failure PDF 625
Defined 28
Hazard rate 623–624
Operations (def.) 440
Reliability 623
Response 149, 171
Survival 623
Transfer (def.) 149
Transfer response 171
Utility 673, 681–684

Functionality
Out of the Box 481

Gaps
Operational capability 448
Problem-solution space 142

Generalization (UML) 8
Grand Design

Development Strategy (def.) 291
Growth and expansion

Design for 405

Haptic(s)
Defined 525

HARDWARE System Element
Common Support Equipment (CSE) 89
Description 89–90
Peculiar support equipment (PSE) 89
Support and handling equipment 90
System architecture element 87
Test, Measurement, and Diagnostic Equipment

(TMDE) 89–90
HARDWARE Configuration Item (HWCI)

Defined 491
Discussions 270, 493–494, 495

HARDWARE System Element
Composition and description 89

Hazard Rate
Function 623

Health Hazards
Environmental, Safety, & Health See ESH
HIS element 533–534

HIGHER ORDER Systems Domain
Defined 100
Human Context 100
Physical Environment 100

Human-System Integration (HSI)
Areas of concern 533, 534
Elements 533

Issue areas 539–540
Performance improvement 782
Subjects of concern 536–538

Human
Characteristics 530
Factors (def.) 525
Factors 528, 530
Factors Engineering (HFE) 533–536
Performance strengths 527
Interface classes 528–529
In the Loop (HITL) 526, 542, 663, 784
Issue areas 536, 539, 540
Machine interfaces 111
Subjects of concern 536–538
Survivability 534
System Integration (HSI) 533
System tasking 538, 540–541
Versus EQUIPMENT strengths 527–528

Human Factors
Anthropometric factors 530
Cognitive factors 530
Defined 525
Psychological factors 530
Physiological factors 530
Prototypes and demonstrations 536
Sensory factors 530

HUMAN-MADE SYSTEMS Element 100
Business 105
Cultural 105
Defined 100
Description 104–105
Educational 105
Entity relationships 101
Government 105
Historical or heritage 104–105
OPERATING ENVIRONMENT domain element

99
Transportation 105
Urban 105

Human Performance
Defined 525
Evaluation 774, 781
Improvements 782
Indicators 784

IEEE
Standard 1471–2000 412–413

Incremental Development Model
Description 297–298
Strategy (def.) 291

Independent Test Agency (ITA)
Defined 253
OT & E 253, 262
Qualification tests 702
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System O & S 776
System validation 56
Test data authentication 752
TEMP implementation 744
V & V implementation 707

Independent Verification and Validation 
(IV & V)

Benefits of 703
Defined 692
Findings and recommendations 705–706

INDUCED ENVIRONMENT System Element
Defined 101
Description 106
Entity relationships 101
OPERATING ENVIRONMENT Architecture

element 99
System Element 101
Threat sources 151

INSPECTION (Verification Method)
See Verification Methods

Inputs
Acceptable 22, 345, 588
External 148, 170
Unacceptable 22, 345, 588

Input/Output (I/O) Devices
Audio I/O 532
Data entry 531
Electrical control 532
Mechanical control 532
Pointing control 531
Translation displacement control 532
Sensory I/O 532

Integrated Product & Process Development
(IPPD) 713

Issues
Specification 336
Technical resolution 717

Integration
Rules of 83–84

Integration Point (IP)
Defined 266
System Integration, Test, & Evaluation (SITE)

737
System of Systems (SoS) 77

Instructional System Development (ISD)
Personnel training 784

Interchangeability
Defined 111

Interface(s)
Access 118
Acoustical 116
Active 114
Attributes 513
Availability 521

Biological 117
Challenges 519–522
Chemical 117
Command and Control (C2) 531–532
Commitments 520
Compatibility 150, 520
Control (def.) 111
Control Document (ICD) 516–518
Control Working Groups (ICWGs)

516
Coupling 508
Dedicated 117
Defined 111
Definition and control challenges 519
Design Description (IDD) 462, 516
Design documentation 516, 518
Design solution 512
Development challenges 519
Devices (def.) 111
Electrical 116
Electronic data 117–118
Environmental 146, 509
Failure 120
Failure mitigation & prevention 120
Generalized 510–511, 532
Human—Machine 111
Human—System 469, 528–529
Interactions matrix 509
Integrity 521
Interoperability 150, 520
Latency 120
Logical 115
Maintainability 521
Man-Machine Interface (MMI) (def.)

525
Methodology (def.) 511
Methodology—design 116
Natural Environment 117
Mechanical 116
Objectives (purpose) 112
Optical 116
Ownership (def.) 111
Ownership and control 508, 515
Passive 114
Physical 115
Point-to-point 111
Reliability 521
Requirements Specification (IRS) 514
Specialized 510, 511, 532
Specification 514–515
Standardized 117, 519
Types of 114
User-Computer (UCI) (def.) 526
Vulnerability 120, 521
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International System (SI) of Units
Metric (mks) system 547

International Traffic & Arms Regulations (ITAR)
Export control 570–571, 572, 686, 716

Item
Commercial-Off-the-Shelf (COTS) 481, 483, 675
Configuration (CI) 491, 493–496
Defined 491
Logical Configuration (LCI) 491
Non-Developmental (NDI) 481, 483
Physical Configuration (PCI) 491
Repairable (def.) 775
Replacement (def.) 775
Reliability Critical (RCI) 643

Interaction(s)
Analysis methodology 156
Architectural 414
Diagrams 9, 458
Hierarchical (def.) 68
Levels of 156
Peer Level (def.) 111
Peer-to-peer 154
PERSONNEL-EQUIPMENT 531
Point-to-point 111
Strategic 156
System 459
System element 95
System of Interest (SOI) 509
Tactical 156

Interoperability
Defined 111
Design for 404
Interface 150
Versus compatibility 150

Investment
Return on (ROI) 780

Key Performance Parameters (KPPs)
Defined 391

Latency
System 598

Lethality
Design for 406

Levels of Abstraction
Architectural 414
ASSEMBLY 81, 84
PART 82, 84
PRODUCT 81, 84
SEGMENT 81, 84
SUBASSEMBLY 82, 84
SUBSYSTEM 81, 84
SYSTEM 79, 81

Life Cycle Phases
Identified 60
Life cycles within life cycles 63
System Definition Phase 60
System Development Phase 61–62
System Disposal Phase 62–63
System O & S Phase 62
System Procurement Phase 61
System Production Phase 62

Life Cycle(s)
Cost 23, 52, 53
Evolutionary 65
System/product 60
Within life cycles 63

Life Cycle Phase(s)
Life Cycle 60
System Definition 60, 253
System Development 60, 254–257
System Disposal 60
System O & S 60
System Procurement 60, 253
System Production 60

Line Replaceable Unit (LRU)
Defined 491
Corrective maintenance 631

Logical Entity Relationship
Application 71–73
Defined 68

Logistic(s)
Delay Time (LDT) 633
Support Analysis (LSA) (def.) 774

Make-Buy-Modify Decision
Defined 481
Introduced 473

Maintainability
Computations 632
Concept 630
Data sources 636
Defined 401
Design for 407
Interface 521
System 630

Maintenance
Administrative Delay Time (ADT) 634
Condition-based (CBM) 631, 633
Corrective (def.) 616
Corrective implementation 630
Defined 774
Downtime (MDT) 633
Factory 631
Field or organizational 631, 774
Preventive 214, 631
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System operations 184
Types of 630

Malfunction 233, 234
Manpower and Personnel

HSI element 534
SUPPORT SYSTEM operations 93

Man-Machine Interfaces (MMIs)
Computer-Human Interfaces (def.) 539
Defined 525
Human—machine (def.) 111
User-Computer Interfaces (def.) 526

Maneuverability
Design for 405

Material Review Board (MRB)
Corrective action disposition 752

Matrix
I/F Interaction 509
Logical interactions 455
N ¥ N 417, 456
Requirements Verification (RVM) 375, 376,

378–379, 514
System capability 217, 220, 223

Mean
Active Maintenance Time (MAMT) 636
Corrective Maintenance Time (CMT) 635
Time Between Failures (MTBF) 624, 630
Time Between Maintenance (MTBM) 636
Time To Repair (MTTR) 635, 638

Measurement
Biased or aliased 751
Technical Performance (TPM) 392
TPM challenges 397
TPM reporting 398

Measures of Effectiveness (MOE)
Defined 47
Mission gap analysis 126
Description 51

Measures of Performance (MOP)
Defined 47
Design to 598, 599
Organizational 124
Specification requirements 323
TPM plots 396
Trade space 677

Measures of Suitability (MOS)
Application 51–52
Defined 47

Methodology
Behavioral Domain Solution 459–461
Component selection 483
COTS selection 483
Interface definition 116
Interface design 511

Logical-physical architecture 73, 454
Mission definition 160–165
Operating environment requirements 106
Operations Domain Solution 441–447
Physical Domain Solution 470–475
Requirements derivation 362–365
Requirements Domain Solution 432–436
SE Process Model 277
System interactions 156
Trade Study 680

Metrics (Refer to)
Administrative Delay Time (ADT)
Availability
Corrective Maintenance (CMT)
Figure of Merit (FOM)
Measures of Suitability (MOSs)
Measures of Performance (MOPs)
Measures of effectiveness (MOEs)
Logistics Delay Time (LDT)
Maintenance Down Time (MDT)
Mean Active Maintenance Time (MAMT)
Mean Corrective Maintenance Time (CMT)
Mean Time Between Failures (MTBF)
Mean Time Between Maintenance (MTBM)
Mean Time To Failure (MTTF)
Mean Time To Repair (MTTR)
Preventive Maintenance (PMT) 633
Technical Performance Measures (TPMs)

Mission
Analysis 159, 651
Defined 159
Definition methodology 160–165
Event Timeline (MET) 444
Needs Statement (MNS) 160
Objectives 127, 161
Reliability 160, 161, 628
Strategy 162
Sustainment 164
Unreliability 622

Mission Critical
Component 618, 621, 644
System (def.) 159

Mission Phase of Operation
Objective 192

Mission Support
Design for 406

MISSION SYSTEM
Configuration 500
Introduced 40
Modal operations and interactions 195–198
Organization roles and missions 130–133
Personnel Roles 88
Roles 40, 88
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System architecture element 69, 87
Supply chain 130–132
System elements 88

MISSION RESOURCES System Element
Description 91–92
Performance affecters 157
System architecture element 87

Mobility
Design for 404

Mode(s) of Operation
ABNORMAL operations 199, 233–234, 320
ANALYSIS 199
CALIBRATE/ALIGN 199
CATASTROPHIC operations 321
CONFIGURE 199
Construct 195
Defined 190
Derivation 194
Description 194
EMERGENCY operations 320
Equating to capabilities 203
MAINTENANCE 199
NORMAL operations 199, 320
Operations Domain Solution 445
of transportation 761
OFF 199
POWER-DOWN 199
POWER-UP/INITIALIZE 199
SAFING 199
TRAINING 199

Modal
Transitions 195–198
Triggering events 196

Model
6 Degree of Freedom (DOF) 551, 553
Application examples 658–668
Assumptions and scenarios 668
Behavioral response 148–149
Business operations 213
Certified (def.) 652
Certification 655–656, 706
Closed loop 153
Defined 652
Deficiencies and flaws 668
Deterministic (def.) 654
Development 654
Documentation 669
Earth-Centered, Earth-Fixed (ECEF) 551
Earth-Centered Inertial (ECI) 551
Earth-Centered Rotating (ECR) 551
Engineering 739
Fidelity 652, 656–657
Hostile encounter 155
Improper application 668

Issue arbitration 155
Open loop 153
Portability 669
Problem-solving / solution Development 277
SE Process 275–289
Status and health request 154
Stochastic model 654
System operations 179–186
Test environment stimulus 662
Undocumented features 669
V-Model (def.) 256, 272
Validated (def.) 652
Validation (def.) 653

Model-Test-Model 652
Modeling and Simulation (M&S)

Accreditation (def.) 652
Architectural configuration 643, 658
Architecture selection example 658–659
Certification 655, 706
Certified (def.) 652
Challenges and Issues 668–669
Characteristics 656
Defined 652
Deterministic 652, 654
Documentation 669
Event (def.) 652
Examples 658–668
Failure investigations 662–663
Fidelity (def.) 652
Frequency distribution 617
Initial conditions (def.) 652
Initial state (def.) 652
Monte Carlo algorithm (def.) 653
Monte Carlo method (def.) 653
Performance allocations 659
Physical 643
Quick look reliability 642
Performance 642
Reliability network 626
Simulation time 653
Simulation-Based Acquisition (SBA)

660
SOI Operations 208
Stimulation 653
Stochastic process 653, 654
System performance analysis 610
Test beds 664–668
Time (def.) 653
Training 663–664
Validated (def.) 652
Validation (def.) 653
Validation description 655
Validation reasons 781
Verification (definition) 653
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Verification (description) 697
Virtual reality (def.) 664

Modes and states 445
Physical Domain Solution 474

MOE, MOS, MOP, TPM
Relationships 392

Moments of Truth 126
Application x, xii

Monte Carlo
Algorithm / Method (def.) 653
Techniques 589

National Aeronautics and Space Administration
(NASA)

Apollo Program 165, 457
International Space Station (ISS) 161
Space Shuttle 61, 198, 212, 235

NATURAL ENVIRONMENT System Element
Classes 102
Defined 100
Composition 102–104
Entity relationships 101
OPERATING ENVIRONMENT architecture

element 99
Threat sources 151

Need
Operational 55
Prioritized 126
Specification of 311

Non-Developmental Items (NDIs)
Certificate of compliance (C of C) 696
Defined 481
Description 483
Driving issues 484
Realities 469
Selection questions 484–487

Notation
Decimal-based 11–12
Scientific 547–548
Tag-based 11–12

Notes
Specification 311

Notebook
System Design 330

NPRD-95 642

Operations and Support (O & S)
Focus areas 781–785
Phase objectives 775–776

Object
Defined 68
Management Group (OMG) 6

Objectives
Mission 127, 161

Operations and Support (O&S) 775
Phase 192, 444
System 127

Open
Standards 545
Systems Environment (OSE) 411

OPERATING ENVIRONMENT Domain
Architecture 97
Scope 98
System architecture 69

Operation(s)
ABNORMAL 233, 320
Abnormal recovery 234
CATASTROPHIC 321
Concept of Operations (ConOps) 179
Computer resources support 93
Decision support 93
Defined 5
Dictionary 221
EMERGENCY 320
Function (def.) 440
Manpower and personnel 93
Mapping to phases 219
Mode of 190
NORMAL 320
Packaging, Handling, Storage, & Transportation

(PHS&T) 93
Phase objectives 192
Publications support 93
Recovery 234
Shadow 768
State of 190
System 179
System maintenance 93
Supply support 93
Technical data 93
Training and training support 93

Operations and Support (O & S)
Objectives 775

Operational
Architecture (def.) 439
Asset 439
Availability 50, 57, 636–637, 775
Capability bounding 230
Concept Description (OCD) 126, 180, 

198
Control flow 209–210
Cycles within cycles 214
Data flow 209–210
Domain Solution 439
Effectiveness 47, 51, 57, 390, 775
Need 55
Need priorities 126
Performance monitoring 777–780
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Requirement document (ORD) 126, 253, 319,
706

Scenario 167
Site activation 759
States versus physical states 200–202
Suitability 48, 50, 57, 390, 775
Task sequence evaluations 535
Utility 57, 390, 775

Operational Requirements Document (ORD)
System development 253, 255
System O & S 783

Operational Test & Evaluation (OT&E)
Defined 253
Risk mitigation 261–262
System Development Phase 61
System performance monitoring 776
System validation 56
Validation requirements 319
V & V activity 704

Operating Condition(s)
ABNORMAL operations 233
CATASTROPHIC operations 321
Categories 321
EMERGENCY operations 233
Initial 36
NORMAL operations 233
Prerequisite 36
Specification 321

OPERATING CONSTRAINTS System 
Element

Defined 100
OPERATING ENVIRONMENT architecture

element 99
System use case 170

Operations Domain Solution
Baseline Concept Description (BCD) 447
Challenges 448
Critical Operational Issues (COIs) 447
Critical Technical Issues (CTIs) 447
Defined 276
Dependencies 440
Development 440
Introduced 243–245
Key elements 440
Methodology 441
Objective 440
Optimization 282
Responsibility 440
SE Process Model implementation 280–281
Sequencing 440
Verification and validation 447
Workflow sequences 443
Work products 448

Opportunity
Location-based 137
Space (def.) 136
SE Process implementation 278, 279
Targets of (TOO) 123, 133
Time-based 137
Types of 136
Understanding 279

Optimization
Behavioral Domain Solution 282, 461
Operations Domain Solution 282
Physical Domain Solution 282, 475, 477
System 575, 578, 611
System performance 461, 578

ORGANIZATION System Element
Defined 100
OPERATING ENVIRONMENT architecture

element 99
Organizational

Accountability 128
Command media 565
Entity relationships 129
Roles and missions 130–133
System Elements (OSEs) 124

Out-of-the-Box Functionality 481
Outputs

Acceptable 21, 345, 738
Unacceptable 21, 345, 738

Outsourcing
Defined 481

Packaging, Shipping, Handling & Transportation
(PHS&T)

Support operations 93, 94
Paradigm(s)

Bathtub 619–620
Defined 122
Requirements derivation 362

Parameters
Key Performance (KPPs) 391
Technical (Performance) (TPPs)

391
Parts Program

Reliability 646
Peculiar Support Equipment (PSE)

See Equipment
PERSONNEL System Element

Description 88
Equipment interactions 531
Equipment trade-offs 530
HSI element 532
Performance affecters 157
Roles—MISSION SYSTEM 88
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Roles—SUPPORT SYSTEM 88
System architecture element 87

Performance
Analysis tools 578
Defined 28
Expected or mean approximation 609
Evaluation 776
Human-System Integration (HSI) 782
Human 774, 781
Improvements 612
Level of 28
Measures of (MOP) 47
Monitoring 777–781
Objective 29
Organization System Element (OSE)

124
Pareto ranked 612
Personnel 88
Processing time 605
Safety margins 460, 474
Subjective 29, 34
Trends 781
Verification and validation (V&V)

701–702
Performance Budgets

Assignment 474
Allocations 460, 598, 601–602
Documentation 602
Ownership 474, 602

Phases of Operation
Allocation of mission operations 192
Defined 111
Mission 192
Objectives 192, 444
of Flight 193
Pre-Mission 192
Post-Mission 192
Entity relationships 191

Phases, Modes and States
Entity relationships (ERs) 191, 200, 202

PHS&T
Description 93, 94
Implementation 778

Physical Architecture
Attributes 469
Baseline 475
Configuration states 473
Development 467
Formulation 470

Physical Configuration
Audits (PCA) 56, 253, 255, 256, 260, 571, 696,

729, 752
States 200–202

Physical Entity Relationships
Application 73–74
Defined 68

PHYSICAL ENVIRONMENT
Domain 100
Levels of abstraction 101
System elements 102

Physical Domain Solution
Challenges 476
COIs/CTIs 469, 475
Defined 276
Dependencies 467
Development 465
ESH Compliance 475
Introduced 243–245
Key elements 466
Methodology 470
Modes and states of operation 474
Objectives 466
Optimization 282, 475–477
Performance budgets and margins 474
Professional certification 475
Requirements allocation 471
Responsibility 467
SE Process Model implementation 281
Verification and Validation (V&V) 475
Work Products 477

Plan
Environmental mitigation 766
Integrated Support (ISP) 630
Integrated Master (IMP) 697, 705, 764
Operations and Support (O&S) 630
Operational site activation 764–765
Strategic 122
System Integration & Verification 744, 755
System O & S 630
Tactical 123
Technical management 567, 639
Test & Evaluation Master (TEMP) 319, 744

Planning
Facility engineering 764
Destructive test sequence 745
Site survey 762
Strategic 123–124
System deployment risk mitigation 769
Tactical 124

Point
Critical staging or control 162, 178, 504, 697
Integration (IP) 77, 266, 737
of delivery 160
of origination or departure 160, 193
of termination or destination 160, 193
Point-to-point (def.) 111
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Portability
Defined 401
Challenges 669

Post-Mission Phase of Operation
Objective 192

Power, Balance of 37
Practice

Best or preferred 5, 311
Defined 5
SE specification

Precedented
Systems 21, 266, 332, 457

Pre-Planned Product Improvements (P3I)
Releases/upgrades 93, 293

Principle
Defined 4

Probability
Circular Error (CEP) (def.) 587, 592–594
Density Function (PDF) 587, 622, 625
of occurrence (use case) 172

Problem
Reporting 744, 774
Statement 136, 139, 576

Problem Space
Boundaries 138, 279
Control 139
Defined 136
Degree of Urgency 140
Dynamics 137
Forecasting 138
Partitioning 140–141, 278
Representation 141
Semantics communications 78
SE Process 278
Solving 71, 137
Space 136, 279, 433, 786

PROCEDURAL DATA System Element
Composition 91
Performance affecters 157
System architecture element 87

Process(ing)
Defined 4
Decision Support 257
SE 277
Stochastic 653
System Design 267
Technical Management 257
Time 598, 605
Trade study 679

Producer—Supplier
Relationships 132

Producibility
Defined 402
Design for 405

Product
Defined 21

Production Systems
Deployment 760
Low Rate Initial (LRIP) 621, 729
Mass or full scale 620–621, 729

Profile
Equipment characteristics 647
Failure rate 622
Service life 619

Product Structure
Defined 77
Tree 467–468

Pre-Mission Phase of Operation
Objective 192

Preservation, Packaging, & Delivery
Specification of 312

Producer-supplier
Relationships 131–132

Procedures
Operating 91
Standard Operating Procedures and Practices

(SOPPs) 91, 196, 565, 742
Proof of Concept/Principle

Demonstration 262
Properties

Defined 28
Dimensional 546
System 27

Prototypes & Demos
Design verification support 697
Human Factors Engineering (HFE) 536
Technical demonstrations 701

Provisioning 774

Quality
Function Deployment (QFD) 408
System 564

Quality Record(s)
Defined 253
SE Process 283

Queue
Time 598

Rate
Failure 633
Hazard 624
Repair 635

Recommendations
Analytical Report 581
Defined 673

Reconfigurability
Defined 402
Design for 407
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Records
Engineering Release (ERR) 563
Personal engineering data 565
Quality (QR) 253

Redundancy
Architectural configuration 422, 645
Cold or standby 422
Component 645
Compensating provisions 173, 646
Data link 424
Improving reliability 644
K-out-of-n systems 423
Like 423
Operational 422
Processing 423
Service Request 424
Unlike 423

Refurbishment/Reconditioning
Test article 754

Regression
Data 595
Testing 742

Regulations See ITAR
Reliability

Bathtub curve 619–620
Challenges 647
Compensating actions 173, 616, 646
Critical items (RCIs) 643
Defined 402
Design for 405
Estimates 643
Estimates versus predictions 629
Function 623
Hazard rate 624
Interface 521
Mission (def.) 160
Mission discussion 160–162, 629, 

639
Models 642–643
Parallel network configuration 626
Parts/circuits tolerance analysis 644
Parts program 646
Period of Decreasing Failures 619, 620
Period of Increasing Failures 619
Period of Stabilized Failures 619
Precepts 619
Resource allocations 646
Series network configuration 626
Series-Parallel network configuration

627
Service life profiles 619
Single point of failure (SPF) 645
Software 648
Survival function 623

System/component mortality 621
Unreliability 622

Repair
Defined 775

Repairability
Defined 775

Replenishment
Expendables and consumables 183

Report
After Action/Follow-Up 779
Analysis conclusions 581, 583
Discrepancy (DR) 265, 743, 750, 

753
Engineering analysis 580
Findings 581, 583, 686
Hardware Trouble (HTR) 744
Problem 774, 779, 782
Recommendations 581, 583, 686
Test Incident 736
Trade Study 673, 678, 684–687

Report(ing)
System Analysis 612
System capability 235

Request for Proposal (RFP)
Failure to research references 333
Issues and clarifications 336
Interface specification requirements 514
SE Design 267
Specification analysis 327
System performance history 779
System requirements 317
System verification 55

Requirement(s)
ABNORMAL operations 320
Allocation 221, 225, 358, 365, 641–642, 

651
Baseline (def.) 491
Capability 318
CATASTROPHIC operations 320
Categories 318
Common problems 323
Compliance 337
Compound 382
Conflicting 230, 323–324
Conformance 337
Deficiencies 323–324, 331–335
Defined 316
Derivation 35, 358, 359–365
Derivation methodology 362–365
Derivation paradigm 362
Development 340
Development guidelines 381–383
Duplicated 230, 324
Elicitation (def.) 316, 317
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EMERGENCY operations 320
Flow Down 359, 365
Good 371
Hierarchy 322
Interfaces 318
Issues and Clarifications 435
Key characteristics 371–372
Leaf level (def.) 358
Management tools 379
Meet 338
Minimization 385
Misplaced 323–324
Missing 230, 323–324
Modes of operation 320
MOEs, MOSs, MOPs 385
Need for 305
Non-functional 316, 318
NORMAL operations 320
Objective 316, 319
Official (formalization) 372–373
Operational 316, 318
Operational characteristics 382
Optimal 386–387
Origin of 65–66
Outcome-based 372
Performance (def.) 316
PERSONNEL 312
Performance characteristics 365
Phases of operation 320
Primitive 374
Priorities 319
Reliability, Availability, Maintainability (RAM)

640, 642
SE Process 359
Singular 754
Source or originating 303, 317
Stakeholder 316, 317
Stakeholder objectives 317
Statement challenges 590
Statement development 373–375
SUPPORT SYSTEM 312
TBDs and TBSs 349
Technical characteristics 382
Testing 359, 383
Threshold 316, 319
Time 160
Traceability 128, 359, 365, 367–368, 462
Traceability audits 718
Traceability verification 697
Types of 317
Use case-based 371
Use of “all, and/or, etc.” 381–383
Use of “shall” and “will” 381

Validation 258, 316, 319, 359
Validation criteria 258, 383
Verification 316, 319, 359, 754
Verification Matrix (RVM) 375, 378–379, 514
Verification method selection 375–378
Visual configuration (graphics) 364
Writing versus developing 230

Requirements Domain Solution
Architecture 432
Baseline 436
Challenges 436–437
Critical Operational Issues (COIs) 435
Critical Technical Issues (CTIs) 435
Defined 276
Dependencies 431
Development 431
Introduced 243–245
Key elements 431
Methodology 432
Objective 431
Responsibility 432
SE Process Model implementation 279
Sequencing 431
V&V 436
Work Products 437

RESOURCES System Element
Defined 100
OPERATING ENVIRONMENT domain element

99
Responses

Behavioral 92, 150
Return on Investment (ROI)

Discussions 16, 18, 23, 41, 46, 48, 52, 128, 132,
161, 691, 780

Review(s)
Categories 712
Common types of 719
Conference minutes 711, 716
Contract requirements 713, 715
Critical Design (CDR) 255, 259, 267, 287, 504,

711, 726
Date driven 713
Entry/exit criteria 715, 716
Event driven 713
Formal Qualification (FQR) 504
Hardware/Software Specification (SSR) 504,

711, 722–724
In-Process Review (IPR) 711, 729–730
Items 718
Integrated Baseline Review (IBR) 720
Location 716
Objective 712
Peer reviews 583, 711
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Preliminary Design (PDR) 711, 723, 725
Presentation / handout materials 259, 504, 711,

716, 723, 725
Production Readiness (PRR) 504, 711, 728–730
Quality records (QRs) 715
Ready-to-Ship Review (RTSR) 712, 728–729
Software Specification (SSR) 259
System Design (SDR) 259, 504, 712, 721, 723
System Requirements (SRR) 331, 332, 336, 352,

504, 712, 720–721
System Verification (SVR) 56, 504, 712, 728
Technical direction 717
Technical reviews 711, 727
Test Readiness (TRR) 504, 712, 727, 755
Verification 697
Work products 715

Risk 711
COIs/CTIs 461
Design 259
Mission 164
Mitigation (DT&E and OT&E) 261–262
Reducing 481
System 164
Specification reuse 332
Trade studies 687–688

Roles
MISSION SYSTEM 40
SUPPORT SYSTEM 40

ROLES AND MISSIONS System Element
Defined 100
OPERATING ENVIRONMENT domain element

99
Rules

Operational capability analysis 237
System decomposition/integration 81–83

Safety
Critical (def.) 525
Design for 408
HSI issue area 539
HSI subject of concern 538
System (def.) 402

Safety Margin
Application 599–602
Defined 598

Sanity Check 575
SE Process Model 277

Application 285
Behavioral Domain Solution 281
Characteristics 283
Decision support 282
Defined 276
Entry criteria 277

Iterative characteristic 276, 283
Methodology 277
Objective 277
Operations Domain Solution 280
Physical Domain Solution 281
Quality Records (QRs) 283
Recursive characteristic 276, 285
Requirements Domain Solution 279
Specification development 350
Work products 283

Scenario
Consequences 171, 173
Operational (def.) 167
Use case (def.) 168
What if 219

Schedule
Master Program (MPS) 705
Integrated Master (IMS) 417, 705

Security
Communications 32
Deployment 766
Design for 408
System (def.) 402
Types of 32

Semantics
Frame of reference 77
Levels of abstraction 76
Opportunity versus problem 137

Sensitivity Analysis
Defined 673
Description 684

Services
Acceptable 345
Unacceptable 345

Serviceability
Defined 402

Similarity
See Verification Methods

Simplicity
Defined 402

Simulate
Defined 741

Simulation
Discussion 658
Failure investigation 662
System 658
Time (def.) 653
Virtual reality (def.) 664

Simulator
Concurrency 783, 785
Fixed/motion platforms 664

Single-use applications
Design for 404
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Site—Deployment
Data collection 763
Installation (def.) 759
Operational Site Activation (def.) 759
Preparation and development (def.) 765
Selection (def.) 759
Survey (def.) 759, 762–763
Visits 763

Software Configuration Control Board (SCCB)
Behavioral Domain Solution 453
Deviations and waivers 752
Operations Domain Solution 440
Requirements baselines 432

SOFTWARE System Element
Change Requests (CRs) 744
Description 90
System architecture element 87

Solution(s)
Behavioral Domain 451
Candidate 143
Domain (def.) 276
Generalized 406, 532
Operations Domain 439
Physical Domain 465
Requirements Domain 430
Specialized 406, 532

Solution Domains
Introduced 244–245
Defined 276
Sequencing 244

Solution Space
Bounding 279
Defined 136
Partitioning 278
Requirements Domain 433
SE Process 278
System O & S 786

Space
Opportunity 136, 279
Problem 136–141, 278, 279, 433, 786
Solution 136, 141–142, 278, 279, 433, 786

Specification(s)
Acquirer perspective 328
Ambiguity 333
Analyzing 327
Applicable documents 333
Baseline control 306
Broad references 333
Change management 324, 325
Common deficiencies 323, 331
Compliance 337
Conflicting requirements 323–324
Conformance 337

Content 310
Defined 303
Design and construction constraints 311
Detail (def.) 303
Developer perspective 328
Development (def.) 303
Development checklist 354
Development paradigm 349–352
Development sequencing 313
Deviation (def.) 303, 752
Effectivity-based 335, 498
Evolution 313
Facility Interface (FIS) 764, 770
Feasibility 307
General attributes 306–307
General standard outline 306, 332, 342–343
Generalized structure 312
Graphical analysis 329
Hardware Requirements (HRS) 496
Hierarchical analysis 329
Interface (def.) 303
Interface Requirements (IRS) 514–515
Issues and concerns 336
Key elements 310–312
Language 307, 371
Misplaced requirements 323–324
Missing requirements 323–324
Model-based structured analysis 346–349
Model fidelity 657
Modeling & simulation analysis 329
Notes & assumptions 311
Objectives of 304
Over/under 334
Ownership and accountability 306, 309, 318, 333
Packaging 312
Performance (def.) 303
Performance criteria 312
PERSONNEL requirements 312
References versus applicable docs. 333
References 333, 335
Requirements categories 318–319
Requirements duplication 324
Requirements structure 371
Requirements vs. CSOW tasks 305
Reviews 341, 355
SE Practices 311
SE Process Model application 350
Sections 352–353
Sequencing 313
Software Requirements (SRS) 496
SUPPORT SYSTEM Requirements 311
Tailoring (def.) 303
TBDs and TBSs 349
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Technology analysis 329
Traceability 307
Traceability to CWBS 310
Types of 307, 308
Use case relationship 175
Verification method 311
Waivers (def.) 303
Writers versus developers 335

Specification Development
Architecture-based approach 341
Feature-based approach 341, 343–344
Performance-based approach 341, 345–346
Reuse-based approach 341, 344–345
Reuse risks 332

Specification Tree
Defined 303
Implementation 307, 309, 498
Ownership and control 309
Tree alignment with CIs 498

Spiral Development Model
Description 294–296
Strategy (def.) 291

Staging or Control Points 162, 178, 
504

Stakeholder
Defined 39
Requirements 317
Roles 42–45

Standard(s)
Application 559
Atmosphere 557
Authorities 546
Conflicts 559
Defined 545
Deviation 586
Informative clauses 546
Lessons learned 558
Normative clauses 546
Open (def.) 545
Specification references 311
Subject matter 546
Technical (def.) 545
Weights and measures 546

Standard Operating Practices & Procedures
(SOPPs) 91, 196, 565, 641, 742

State(s)
Defined 190
Diagram 190
Entity relationships 202
Final 10, 170
Initial 10, 36, 170
Machine 190
of equilibrium 36

State Machine Defined 190
of operation 190, 199
Operational 200
Physical configuration 201, 473
Physical versus operational 200–202

Statement
Mission Needs (MNS) 126, 160, 253
of Objectives (SOO) See Contract SOO
Problem 136, 576

Statics 36
Statistical Data

Application 590
Dispersion 591

Statistical Distributions
Normal (Gaussian) 587
Logarithmic (LogNormal) 587
Variance 587

Statistical Process Control (SPC) 587
Stimulate

Defined 741
Stimulation

Defined 653
Stimuli

Behavioral response model 148
External inputs 92, 172
Modal transition dependency 197
Test environment 661
Use case 172

Strategic
Plan 122
Planning 123
Threats 147

Strategy
Evolutionary development 291
Grand Design 291
Incremental development 291
Mission 162
SE design 269
System Integration, Test, & Evaluation 268, 745
Spiral development 291
System development V & V 253–261
System development workflow 251
System Design Process 266
System vs. component development 299
Waterfall development 291

Strengths
Human performance 527
Machine performance 527–528

Strengths, Weaknesses, Opportunities, & Threats
(SWOT) 44, 122, 126, 133

Subcontract Data Requirements List (SDRL)
Defined 563
References 565
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Suboptimization
Defined 575
Description 578

Subphases
of Operation 191, 193

Subsystems
Mission specific 500–502
Infrastructure 500–502

Suitability
Measures of (MOS) 51
Operational 48, 50, 775

Supply Chain
Producer—supplier 130–132

Support
and handling equipment 90
Contract Logistics (CLS) 631
Design for mission 406
Equipment 775
Supply 94
System 92–94

SUPPORT SYSTEM
Computer resources support operations 94, 

778
Decision support operations 93, 778
Elements 87–88
Facility operations 778
Introduced 40
Maintenance operations 93, 778
Manpower and personnel operations 93–94, 

778
Organizational roles and missions 130–133
Performance affecters 157
Personnel roles 88
PHS&T operations 94, 778
Publications support operations 94, 778
Roles 40
Supply chain 131
Supply support operations 94, 778
System architecture element 69, 87
System elements 88
Technical data operations 94, 778
Training and training support operations 94, 

778
Types of operations 93–94

Supportability
Defined 402

Survivability
Defined 402
Design for 406

Susceptibility
Defined 402

Sustainability
Defined 402

Symptom Solving 137

System(s)
Abuse 168, 173
Acceptability challenges 48
Adaptation 147
Affordability 49
Allowable actions 202
Analytical representation 22
Application/misapplication 168, 173
Application types 211–212
Attributes 30–33
Availability 636
Balance of power 37
Benign 164
Bounding 98
Business 105
Capabilities matrix 217
Capability construct 231
Certification 760
Characteristics 34–35
Checkout 767
Complexity reduction 71
Concept of operations (ConOps) 446
Context 20
Cooperative 164
Cost 481
Cultural 105
Deactivation 183
Decomposition rules 81–83
Dedicated use 211
Defined 18
Deployment 758
Educational 105
Effectiveness 48, 53
Element 68, 70
End User/User 39
Engagement 147
Equilibrium 36
Fault tolerant 421–422
Feasibility 49
Frame-based 611
Friendly or cooperative 164
Government 105
Historical or heritage 104
Hostile or adversarial 164
Initial operating conditions 316
Installation 767
Integration 767
Integration rules 81–83
Introduced 70
Latency 598
Legacy (def.) 481
Levels of abstraction 76
Life cycle phases 60
Maintainability 629
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Malfunction 234
MISSION 40
Mission critical 159
Mission dynamics 36
Objectives 127
of Interest (SOI) 40, 68
of Systems (SoS) 74, 77
of Units 546
Operational capability (def.) 217
Operations (def.) 179
Operations dictionary (def.) 179, 184, 221
Operations Model (def.) 179
Optimization 575, 578, 611, 651
Performance optimization 461, 578
Phase-out 183
Precedented 179, 266, 457
Prohibited actions 202
Production deployment 760
Quality 564
Real-time 611
Reliability 618
Repairability 775
Resources 100
Responses 92
Roles 40
Safety and security 402, 766
Shadow operations 768
Simulation 658
Software 90
Software intensive 412, 782
Sphere of influence 30, 135
Stabilization 37
Stakeholders 39, 42–45
Statics 36
State of equilibrium 36
Suboptimization 578
SUPPORT 40
Tactics 152
Threat 147
Transportation 105
Types of 20
Unanticipated/unscheduled events 445
Unprecedented 21, 179, 266, 457
Urban 105
Use/misuse 168, 173
Use cases 166–167, 444, 446
Verification and Validation (V & V)

54
Validation 56–57, 260, 699
Verification 55–56, 260, 694
Weights & Measures 546–547

System Applications
General use 211
Multi-purpose/use 211, 404

Reusable 211–212, 214
Single-use 211–212, 214
Types of system 211–212

System Documentation
Design 568
Export control Refer to ITAR
Integration and Test 568–569
Issues 571–572
Plans 567
Posting Acquirer / vendor data 571
Sanity check 575
Specifications 568

System Engineering
Defined 24

System Engineering and Integration Team
(SEIT)

Performance budgets and margins 602
RAM reviews 646
Specification development 349
Specification ownership 309, 349, 366
V & V 701

System Elements
Classes 70
Defined 68
EQUIPMENT 70, 88–90, 641
FACILITIES 70, 94–95, 641
HARDWARE 89
INDUCED ENVIRONMENT 101, 

106
Interactions 87, 91, 95
Introduced 70
Higher Order Domain 69
HUMAN-MADE SYSTEMS 100, 

104–105
MISSION RESOURCES 70, 91–92, 641
NATURAL ENVIRONMENT 102–104
PERSONNEL 70, 88, 641
Performance 610
Physical Environment Domain 69
PROCEDURAL DATA 70, 91, 641
OPERATING CONSTRAINTS 70, 

100
ORGANIZATION 70, 100, 124
RESOURCES 70, 100
ROLES AND MISSIONS 70, 100
SOFTWARE 90
System 68, 70
SYSTEM RESPONSES 70, 92, 641

System Integration, Test, & Evaluation (SITE)
Activities 738
Challenges & issues 751
Data integrity 751
Defined 737
Design for 407, 737
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Deviations and waivers 752
Elements of 739
Fundamentals 737
Guiding philosophy 739
Objective 737–738
Planning 744, 762
Preparation 740
Procedures 742
Process strategy 745
Selection 759, 762–764
Tasks 749
Task sequencing 738
Time allocations 753
Work products 744

SITE Roles
Acquirer test representative 746
Lab manager 746
QA representative 746
Security representative 746
Test director 745
Test safety officer 746
Tester 746

System of Interest (SOI)
Architecture construct 87
Architectural system elements 87–95
MISSION SYSTEM role 40, 87
Specifying 311
SUPPORT SYSTEM role 40, 87

System Operations
Defined 179
Dictionary (def.) 179
Dictionary description 184, 221
Model (def.) 179
Model description 180–186

System Performance
Acceptability 588
Affecters 157
Analysis 603
Benchmark 780
Cumulative effects 591
Evaluation 776–780
Monitoring 778
V & V 701–702

System Performance Specification (SPS)
Defined 303
Discussions 78, 307

System Requirements Document (SRD) 225, 254,
317, 327, 352

SYSTEM RESPONSES Element 92
Description 92
Performance affecters 157
System architecture element 87

SysML 6

Tactics
System 152

Tactical
Plan (def.) 123
Planning 124
Threats 148

Tailoring
Specification (def.) 303

Targets of Opportunity (TOO) 123, 126, 133
Task(ing)

Analysis 526, 535
Attributes 540–541
Defined 5
Human-System tasking 538, 540–541
Mission 604
Modeling and simulation 610
Multi 607
Post-Mission 604
Pre-Mission 604
Order (def.) 160
Statistical characteristics 606
System 603
Time approximation estimation 609

Taxonomy
Defined 68

Technical/Technology
Demonstrations 701–702

Technical Data Package (TDP)
Defined 563

Technical Performance Measurement (TPM)
Challenges 397–398
Defined 392
Plotting 396
TPM selection 397

Technical Performance Parameters (TPPs)
Defined 391

Test & Evaluation (T&E)
Defined 735
Developmental (DT&E) 252, 261–262, 738, 745
Operational (OT&E) 253, 262, 738, 776
Working Group (TEWG) 735, 755

Test(ing)
Acceptance 734
Alignment 754
Alpha (def.) 734
Alignment 754
Anomaly 734, 755
Article 735
Beta (def.) 734
Case (def.) 735
Challenges and issues 751–755
Configuration (def.) 735
Conflicts 755
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Coverage (def.) 735
Criteria (def.) 735
Data 751, 752
Daily Operational Readiness (DORT)

233
Data correlation 594–595
Data dispersion 591
Defined 735, 736
Destructive 735, 741, 745
Discrepancy Reports (DRs) 743, 750–751
Environment (def.) 735, 741
Equipment and tools 753
Equipment calibration 753, 754
Field trails 702
Formal (def.) 735
Functional 741
Incident report (def.) 736
Instrumentation (def.) 736
Independent Test Agency (ITA) 56, 61, 253, 262,

702, 707, 752, 776
Issue resolution 755
Markets 702
and measurement equipment 736
Multiple requirements 742
Non-destructive 735, 741
Operating environment 740, 741
Organization 745
Personnel qualification 742
Personnel roles 745–747
Qualification 702, 735, 741
Range (def.) 736
Readiness Review (TRR) 727
Regression (def.) 735, 742–743
Repeatability (def.) 736
Responsibility 742
Resources (def.) 736
Scenarios 755
Sequence planning 745
System Verification (SVT) 56, 61, 260, 269, 313,

702
Transient error 736
Types of 741
Unit Under (UUT) 739
Verification method (def.) 693
Work products 742

Test Article
Defined 735
Discussions 687, 739, 752
Failure 687
Hooks 755
Refurbishment / reconditioning 754
Unit Under Test (UUT) 739
Utilization 752

TEST (Verification Method)
See Verification Methods

Testability
Defined 402

Testbed
Application 664–668
Environment 664

Threat(s)
Alliances 151
Behavior 152
Countermeasures 152
Counter-countermeasures (CCM) 152
Encounters 152
Environment 151–152
Sources 151
Strategic (def.) 147
System 147
Tactical (def.) 148
Types of 151

Time
Administrative Delay (ADT) 633
Corrective Maintenance (CMT) 634
Delay (def.) 616
Estimate approximation (nominal) 609
Logistics Delay (LDT) 634
Maintenance Down (MDT) 633
Mean Active Maintenance (MAMT) 636
Preventive Maintenance (PMT) 633
Process(ing) 598, 605
Queue 598, 605
Requirements 160
Simulation (def.) 653
Transport 598, 605
Turn around (def.) 775

Timeline
Analysis (def.) 160
Event-based 170
Mission Event (MET) 129–130, 163, 279, 444,

460
Tool

Defined 21
Requirements management 379

Traceability
Audits 254, 718
CWBS 463
Specification requirements 128, 307, 

462
Trade Space

Cost—schedule 678
Defined 673
Performance—cost 678
Performance—schedule 678
Utility 673
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Trade Study
Analysis of alternatives (AoA) 672
COIs/CTIs 675
Conclusion (def.) 673
Conclusions 686
Decision areas 674
Decision criteria 673
Decision factors 673, 680–681
Defined 673
Dependency sequencing 676
Findings (def.) 673
Findings 686
Methodology 680, 688
Objectives 674
Outline 685–686
PERSONNEL-EQUIPMENT Trade-Offs

530
Process 679
Recommendation (def.) 673
Recommendations 686
Report 673
Resource constraints 688
Risk areas 687
Selection criteria 688
Semantics 674
Sensitivity analysis (def.) 673
Suggestions 688
Trade space (def.) 673
Report (TSR) 575, 673, 684–687
Utility function 681, 681–684
Utility space (def.) 673
Viable alternative (def.) 673

Trade(s)
Cost—schedule 678
Performance—cost 678
Performance—schedule 678
Space 54, 673, 677–679

Training
Challenges 783–784
Design for 406
Devices 783
Device concurrency 785
Operator 781, 782
Scoring 784
Task Lists (TTL) 784
Levels of 784
HSI element 533–534

Transaction
Analysis (def.) 452
Defined 452

Transitions
Triggering event based 195–196
Modal 197–198

Transportability
Defined 403
Design for 404

Tree
Specification 303, 309–310
Product structure 467–468

Triggering
Event 190
Transition 195–196

UML™
Activation box 10
Activity 10
Actor 11, 174
Decision block 10, 11
Event 10
Final State 10, 11
Fork 11
Interaction diagram 9, 458
Initial State 10
Lifeline 174
Join 11
References 6, 8, 172, 177, 453–463, 470
Sequence diagrams 10, 167, 172–173, 463
Swimlane 174
Synchronization bar 10, 11
Use case diagram 168, 172

Units
British Engineering System (BES) 547
International System (SI) of 547
Metric System (mks) 547
System of 546

Unprecedented
Systems 21, 266, 457

Usability
Defined 403
Design for 404

Use Case(s)
Analysis 174
Attributes 169–173
Consequences 171
Defined 168
Event-based timeline 170
Diagram (def.) 168
Operational use cases 512
Optimal quantity 175
Priorities 170
Preceding circumstances 170
Problem of occurrence 172
Resources 170
Scenario 168, 444
Specification requirements 175
System 167, 444, 446
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System interactions 156
Thread 366

User/End User
Defined 39
Moments of truth ix–x, 126
System 77
Training 767

Utility
Bounding value ranges 682
Function 673, 681–684
Operational 50, 775
Space (def.) 673

Validation
Defined 693
Methods 700
Model 655
Requirements 258
Responsibility 700
System 56–57, 699–700
V-Model 266

Value
Design to (DTV) 403

Variance (Statistical)
Defined 587
Deviation, waiver, departure 491, 693, 752

Verification
Acceptance Test Procedures (ATPs) 742
Acceptance Test(ing) 701, 734
Authenticate System Baseline 695
Simulation (Method) 699
Component procurement and development

695
Control points 697
Defined 693
Design for 407
Methods 269, 698
Modeling and simulation 697
Multi-level application 696
OT&E 695
Requirements 375–378
Requirements traceability 697
Responsibility 696
SITE 695
System 55–56
System Design 695
System Verification Test (SVT) 56, 61, 260, 269,

313, 702
Verification & Validation (V&V)

Authenticate System Baseline 260–261
Behavioral Domain Solution 461
Benefits 694, 707
Certification 706

Challenges and issues 704–706
Classification of defects 692
Component Procurement/Dev. 259
Defined 693
Independent 692
Introduced 54
Myth 693
Operations Domain Solution 447
Physical Domain Solution 475
Practices 694, 699–700
Requirements Domain Solution 436
Responsibility 700
SE Design strategy 259
Solution to program challenges 694
System 54, 260, 691
System IT&E strategy 259
SPS strategy 258
System performance 701

V & V Strategy
Authenticate System Baselines 260–261
Component Procurement and Development

259
SE Design 259
System Development Phase 254–255
System Integration, Test, & Evaluation (SITE)

259–260
System Performance Specification (SPS)

258
System Procurement Phase 253–254
Validate system 260

Verification Method(s)
ANALYSIS (def.) 692
ANALYSIS method description 698
ANALYSIS method selection 377
Cost factors 699
DEMONSTRATION (def.) 692
DEMONSTRATION method 698
DEMONSTRATION selection 377
INSPECTION / EXAMINATION 693
INSPECTION method description 699
INSPECTION method selection 377
Method selection process 376
TEST (def.) 693
TEST method description 698
TEST method selection 377
Similarity 377, 693, 698
Validation of records 699

View
Architectural 411, 413
Logical/Functional 415
Operational architecture 415
Physical architecture 415
Requirements architecture 415
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Viewpoint
Architectural 411, 413

Vulnerability
Defined 403
Design for 406
Interface 521
System success 97

Waiver
Defined 303
Variance, deviation, waiver, departure 491, 693,

752
Wasson’s

Law 335
Task Significance Principle 689

Waterfall Development Model
Application 267
Development strategy (def.) 291
Description 292

Waypoint
Defined 160
Mission timeline 162

Weibull Distribution 620
Weights and Measures 546–547
Work Product(s)

Behavioral Domain Solution 463
Physical Domain Solution 477
Operations Domain Solution 448
Requirements Domain Solution 437
Review 715
SE Process 283
System Integration, Test, & Evaluation 744
Testing 742

Workflow
System development 251

Working Groups
Interface Control (ICWG) 516
Test & Evaluation (TEWG) 735




