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Abstract. An essential prerequisite for designing model-based controllers is an 

accurate mathematical model. System Identification is a classical approach for getting a 

mathematical model from experimental data. Neural Networks are extensively deployed 

for the identification of systems as they are efficient function approximators. This paper 

proposes an intelligent technique for modelling a nonlinear Conical Tank System (CTS) 

using neural networks. Long Short Term Memory Recurrent Neural Networks (LSTM-

RNN) are used for modelling the real- time CTS using input-output data. It is shown that 

LSTM-RNN models are effective in modelling in comparison with empirical models. 

Keywords: Artificial neural networks, LSTM, nonlinear system, predictive 

models, RNN, system identification. 

 

1. Introduction 

System modelling is an imperative way of exploring and understanding the physical 

processes and is the very basis for model based control design for predicting the future 

behaviour of dynamic plants. Most of the existing real time systems are nonlinear and obtaining 

a mathematical model for a nonlinear system is a herculean task [1]. Several methods were tried 

and tested in control field to model real systems. TP (Tensor Product) model-based 

transformation technique was put into force to model the nonlinear magnetic levitation system 

along with further research to reduce the approximation errors [2]. An expedient method of 

identification of non-deterministic process is black box modelling, which uses input and output 

experimental data sets. The fuzzy based PID controller design using an empirical model was 

effectively demonstrated for telesurgical robot application. The model was built using the data 

sets [3]. In any control application, optimum performance is achieved based on the designed 

plant model which aids in reducing the modelling errors, minimizing the plant/model mismatch 

as well as increasing the robustness of the system.  Literature reveals that empirical modelling 

approach using artificial neural networks (ANN) was way more remarkable and apt for model-

based controller design because of its universal approximation capability. The intelligent models 

developed using ANN proved to be accurate, reliable, faster and efficient in prediction, 

modelling and control in medical environment [4]. 

Later multilayer neural networks were effectively employed for control as well as system 

identification of nonlinear dynamical systems using back propagation (static & dynamic) 

methods to adjust the model parameters [5], [6]. ANN model using back propagation algorithm 

was implemented in model predictive control design to determine the future control inputs [7]. 

The main benefits of Multilayer-Perceptron (MLP) is found to be its reduced sensitivity to the 

selection of neural model size. Nonlinear modelling using ANN is considered to guarantee good 

results but with a limiting factor that the number of nodes and hidden layers needs to be defined 



in advance. Several training algorithms were introduced for training the neural networks such as 

Levenberg-Marquardt, back-propagation, conjugate gradient, ERNEAD algorithms [8]. 

Gradient descent method when used in training processes resulted in local minima problems. 

During back propagation the neural network optimization gets stuck in the local minima 

because of noise that is present in the data. [9]. 

Considering the downsides in Multilayer Perceptron (MLP) neural architecture, several 

research works were carried out in Recurrent Neural Networks (RNN) which had good ability to 

learn the nonlinearity present in time series data. RNN employing back propagation through 

time algorithm (BPTT) was applied to nonlinear dynamical systems, and the derivatives 

obtained through this algorithm was used for system identification [10], [11]. But the main 

drawback is that RNN suffers from vanishing gradient problem. 

Later, changes were executed in the neural architecture by increasing the number of 

layers. Optimal predictive models were built using the training algorithm for deep architectures 

[12]. Hidden layers were increased instead of nodes and making it easier to unearth a deeply 

dense connected network [13]. As proficient knowledge is a bare necessity in identifying the 

nonlinear regressive models, deep neural networks were employed which were comparatively 

easier to train [14]. Outcomes displayed that system identification using deep neural networks is 

effective in estimating the models from the available input-output data set, even if noise is 

present in the data. The LSTM (Long Short Term Memory), which is basically a type of RNN 

architecture excelling in deep learning using gated units was predominantly used to evade the 

vanishing gradient problem that exists in conventional RNN networks [15]. System modelling 

using convex based LSTM neural networks was discussed and was proved that it works much 

satisfactorily than RNN conventional architecture [16]. Most of the nonlinear systems are being 

identified using ANN, which demands the use of multiple layers in the neural network and also 

encounters vanishing gradient problem but realizing the network with LSTM architecture 

overcomes such problems. 

Overfitting is one of the discerning concerns for neural architectures where the 

performance on the train set is good and continues to improve for an overfit model. The train 

loss slopes down but the performance on the validation set improves to a vantage point and then 

starts to degrade. To address this issue, a regularization methodology using the dropout layer is 

introduced in the neural network architecture which minimizes the possibility of overfitting as it 

works on decreasing the inter-dependencies between the nodes resulting in self-sustenance [17]. 

The RNN and LSTM architectures deploying the dropout layer, effectively  increased the 

performance of the model for many applications like speech recognition, machine translation, 

handwriting recognition  [18], [19], [20] but not implemented in control tasks as per the 

literature analysis. In this paper, LSTM architecture is proposed to obtain the best fit model of 

laboratory CTS of nonlinear dynamics from its real-time data sets that could be implemented in 

the model-based controller design for optimal results. This work also proposes using the dropout 

layer in the LSTM architecture for modelling dynamics in the field of control to suppress 

overfitting. 

To assess the efficacy of the proposed method, the empirical models obtained by three 

other established techniques from the literature are compared. The models used for comparison 

are the transfer function (TF) model, nonlinear ARX (autoregressive exogenous) model and 

NARX (Nonlinear autoregressive exogenous) neural network model. The paper is systematized 

as follows: Section 2 briefs about the system identification procedure. An idea about the 

nonlinear ARX model is given in Section 3. Section 4 is about the model identification using 

NARX neural network. Section 5 elaborates system identification using the RNN-LSTM model. 

In Section 6, the results are penultimated for different empirical models and conclusion is given 

in Section 7. 

 

2. System identification 

In every modelling task, the subsequent paramount steps have to be executed: 

• Collection of data set. 

• Selection of proper model set and structure. 

• Experimental design. 

• Parameter estimation using observations. 



• Model validation and evaluation. 

Models are categorized into different types based on system characteristics. In 

parametric models, the model structure is determined based on the physical insight whereas in 

nonparametric models it is based on the frequency characteristics and impulse response. 

Selection of model set is determined by the prior information.   In experiment design, different 

excitation signals are tried to excite a system so that sufficient information about the system can 

be acquired from the available data sets. It is assumed that the system implements the function f: 

RN →R mapping. 

The input-output measurement data relationship is given in 

y(j) = f(x(j)) + n(j),               (1) 

where n(j) is the observation noise. The mapping of the system is approximated in some sense 

by mapping the model 𝑓, and model also implements f: RN →R mapping: 

yMod(j) = 𝑓 (x(j), ),               (2) 

where yMod is the model output and parameter vector of the model structure is denoted by . The 

set of observations or measured data {𝑥(𝑗), 𝑦(𝑗)}𝑗=1
𝑃  about the system is the essential part for 

parameter estimation. Parameter estimation is the method of fitting the observations by 

adjusting the model parameters using a criterion function which is mainly influenced by the 

prior information. Criterion function (E()) is the error function between the system output y 

and the model output yMod. It is defined as the measure of the quality of the model: 

E() = E (y – yMod (, Md)),              (3) 

Md = {𝑥(𝑗), 𝑦(𝑗)}𝑗=1
𝑃 ,               (4) 

where Md is the set of measured data pairs, and also: 

E()= 
1

2
∑ ( 𝑦(𝑗)𝑃

𝑗=1 − 𝑦𝑀𝑜𝑑 (j))2 ,             (5) 

Eemp()=
1

𝑃
∑ ( 𝑦(𝑗)𝑃

𝑗=1 − 𝑦𝑀𝑜𝑑(j))2,             (6) 

where Eemp() is the empirical risk which is the average of squared error between the 

observations and the process model output. Depending on the parameters which are to be 

estimated, different methods are used namely least square estimation (LS), weighted parameter 

estimation, Bayes estimation, and Maximum Likelihood (ML) estimation. The quadratic 

criterion function is commonly applied as it needs only measured input and output data of the 

plant. Model validation is the ultimate phase of system identification. 

Black box modelling (Empirical modelling) approach is used when the prior information 

about the system is not known other than the observations to build the physical model.  The 

mapping of the black box model is described as yMod(j) = 𝑓 (x(j), ), where j=1,2…..P  and  is 

the parameter vector, which is given as  = [12 … …𝑞]T . The general form of this 

relationship is described as a sum of basis functions {𝑔𝑗(. )}𝑗
𝑁 in terms of 

yMod(k) = ∑ 𝛼𝑗
𝑁
𝑗=1  𝑔𝑗(𝑥(𝑘)).              (7) 

There are several basis function sets applied in identification where the mapping of 

input-output measurement data of the system can be approximated by Volterra series, 

exponentials, polynomials, Fourier series, Taylor expansion, etc. Different empirical models and 

their architecture are described in the following sections. 

 

3. Nonlinear ARX model 

One of the black box model variants is the nonlinear ARX (autoregressive exogenous) 

model considered for identification of nonlinear systems which consist of nonlinearity estimator 

and model regressors as shown in Fig. 1. The linear function and nonlinear function of nonlinear 

estimator act on the designed regressors to predict the model output y.  Regressors are the 

delayed outputs {y(t-1), y(t-2),..} and delayed inputs {u(t-1), u(t-2),..}.The orders and delays of 

the model are to be specified beforehand. The regressors are mapped to the model output y 

using the nonlinear estimator block. 



 

 
 

Fig. 1. Structure of the nonlinear ARX model 

 

These regressors will act as an input to the linear as well as the nonlinear function block 

of nonlinearity estimator. The function f(x) is 

f(x) = MT (rx  - rm) + d + g( N (rx  - rm)),             (8) 

where rx is the vector of regressors and rm is the mean of the regressors rx . M is the model 

parameter and d denotes the scalar offset. The linear function block output is MT (rx - rm) + d 

and g( N (rx  - rm)) denotes the nonlinear function block output. The projection matrix N helps in 

conditioning the calculations. The function f(x) mainly depends on the choice of nonlinearity 

estimators. Different networks namely wavelet networks, tree partition networks, multilayer 

neural networks are the available nonlinearity estimators. To model nonlinear complex 

behaviour, a flexible nonlinear function called wavelet network is used. Wavelet frames are 

considered as universal approximators for nonlinear system identification. The Levenberg-

Marquardt (LM) algorithm is used for solving nonlinear equations for their ability to converge 

quickly to a solution of the nonlinear least-squares problem  A set of n nonlinear equations with 

m vectors of unknown parameters (x1 , x2, …, xm)  is given as follows: 

fi (x1 , x2, …, xm)  = 0, i = 1…n,              (9) 

where fi(x) is the i-th equation. It is assumed that f(x)=0, f(x)=(f1(x), …,  fn(x)),  where f: Rm 

→Rn, f1(x), …, fn(x) are differentiable functions  of a vector x. 

The aim is to find the estimate 𝑥̂  that minimizes ‖𝑓(𝑥)‖, 

‖𝑓(𝑥)‖ = (f1(x)2+………+ fn(x)2).            (10) 

The optimality condition is given as 

∆‖𝑓(𝑥)‖2 = 0.              (11) 

Solving the nonlinear least-squares problem is difficult than solving the linear equation. 

The nonlinear least- squares problems are well resolved using Levenberg-Marquardt (LM) 

algorithm [21] as it is an epitome to act more like Gauss-Newton algorithm (GNA) when the 

parameters are away from the optimal value and also act like gradient-descent method when the 

parameters are in close proximity to the optimal value [22]. The nonlinear ARX model is built 

using the real time data of conical tank system using MATLAB and is briefly explained in 

Section 6.2. Among several empirical modelling approaches with its own drawbacks and 

advantages, identification using artificial neural networks plays an imperative role, for their 

intact skill of learning and noble problem solving capability that mimics the neurobiological 

system. 

 

4. Empirical modelling using NARX neural network 

System identification using neural networks are effective in identifying and controlling 

the nonlinear dynamical system. The adaptive nature of the learning process is the significant 

feature of the neural networks as it acquires knowledge from its environment. Neural network 

architecture using a single hidden layer is efficient and serves to be universal function 

approximator with an adequate degree of accuracy on network learning ability using back 

propagation (BP), radial basis function and regression neural network (RNN) [23] [24]. ANN 

also finds its significance in several other applications like pattern recognition [25]. The neural 

 



statistical downscaling and fuzzy statistical downscaling soft computational models were 

proposed for forecasting the rainfall over the state as it could anticipate the environment 

conditions [26]. The architecture of the neural network includes an input layer, next is the 

hidden layer and finally the output layer as depicted in Fig. 2. A neuron model consists of an 

activation function (nonlinear) and a combiner (linear) that calculate the scalar product of 

neuron input vector and weight vector represented by x and w respectively: 

h = ∑ 𝑤𝑛 𝑥𝑛
𝑁
𝑛=0  = 𝑤𝑇  x.             (12) 

 

 
Fig. 2. Neural network architecture 

 

Multilayer Perceptron (MLP) belongs to the class of feed-forward ANN. In MLP neural 

network, the error signal is calculated by comparing the estimated outputs with actual outputs 

and the error signal is propagated backwards through the network to minimize it. The static 

nonlinear mapping between the inputs and the outputs is 

yMod(k) = f (u(k)),              (13) 

where the output depends on the input u(k) at the same time step k. 

The main task is to construct the models for the dynamical systems where output of the 

system at a given time instant relies on the present inputs as well as the previous output of the 

system. RNN is a simple architecture same as MLP, additionally having a memory to remember 

the information sequence. It utilizes the self-feedback of neurons of the hidden layer part.  RNN 

is used to model nonlinear dynamical systems whose phase space dynamics are defined by the 

locally stable nodes [27]. 

The dynamical systems are considered to be the systems with memory. The storage 

elements (tapped delay lines) are used in the static network which helps to store the past values 

of the input. In feed forward architecture, tapped delay lines (TDL) are applied in the input part 

of all the neurons in the network. The n-th neuron output in layer p is 

𝑦𝑛
(𝑝)

(k) = g(∑ 𝑤𝑛𝑗
(𝑝)𝑇

𝑗  𝑥𝑗
(𝑝)

(𝑘)),             (14) 

where 𝑤𝑛𝑗
(𝑝)

 = [𝑤𝑛𝑗,0
(𝑝)

 , 𝑤𝑛𝑗,1
(𝑝)

 , … … , 𝑤
𝑛𝑗,𝑀𝑛

(𝑝)
(𝑝)

 ]
𝑇

is the j-th filter coefficient vector in the p-th layer 

for node n. 

The filter’s input vector is framed from the regressed outputs of the j-th neuron of the 

former layer: 

𝑦𝑗
(𝑝−1)

(k)  = 𝑥𝑗
(𝑝)

(𝑘) =  [𝑥𝑗
(𝑝)

(𝑘), 𝑥𝑗
(𝑝)

(𝑘1) , … … , 𝑥𝑗
(𝑝)

(𝑘 − 𝑀𝑛
(𝑝)

) ]
𝑇

.         (15) 

TDL are not only used in the input path but also in the output path to form a dynamic 

neural feedback architecture. This is considered as global feedback. The static neural networks 

with some universal approximation property can be framed as a general dynamic nonlinear 

neural modelling architecture. Local feedback is used where the output of the neuron(s) are used 

as inputs to the different or same neurons. The dynamic neural network can also be constructed 

by combining feed forward and feedback architectures. Similar to linear dynamic black box 

modelling, nonlinear system identification can also be framed. A nonlinear model architecture 

makes use of a regressor vector [28]. The model output ymod is the parametrized function of the 

regressor vector φ: 

𝑦𝑀𝑜𝑑(k)= f(, 𝜑(𝑘)).              (16) 
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The regressor can be designed using the past given inputs, using the past model outputs 

or by using the past system outputs. One such architecture designed using past given inputs and 

the past system outputs is the NARX (Nonlinear autoregressive exogenous) model. NARX 

neural model is often called as a series & parallel model. NARX model exploits the nonlinear 

mapping capability of MLP that uses feedback from the neurons of the output layer to the input 

layer of the neural network, finds a significant role in many applications [29]. NARX model is 

well employed as it provides better predictions for system identification as it uses additional 

input that is stored in previous values of y(k) [30], [31], [32]. NARX neural model uses a input 

u(k) that is applied to the TDL memory of 𝑚𝑢 units and a single output y(k) which is fed to the 

input part through another TDL memory of 𝑚𝑦 units as shown in Fig. 3. 

 

 
Fig. 3.  NARX recurrent neural network 

 

The input layer of MLP is fed with the contents of the two tapped delay lines memories. 

The signal u(k) is the current state of the model input and y(k+1) is the corresponding state of 

the model output. The signal vector that acts on the input layer of MLP comprises of exogenous 

inputs (i.e. current and the past values of the input) and regressed values of the output as shown 

in equation (17), y(k) and u(k) are the  measurable output and input, 𝑚𝑢 and 𝑚𝑦 are the last 

value of input and output respectively: 

y(k) =  𝜑 [y(k-1), y(k-2),………., y(k-𝑚𝑦), u(k-1),  u(k-2),……., u(k-𝑚𝑢)].        (17) 

Vector 𝑦𝑝̂(k) is the estimated output of the NARX neural model and 𝑦𝑝(k) is the actual 

output of the system as shown in Fig. 4. The difference between 𝑦𝑝(k) and 𝑦𝑝̂ (k) is the error 

signal. The error signal, in turn, adjusts the free parameters (weights & biases) of the neural 

network to reduce the squared variance between the plant output and NN model output 

efficiently and is computed over the entire training sample. Mean square error (MSE), as well as 

the regression values, is determined to develop the best model fit suitable for the controller 

design. MSE is the average squared variance between the targets and the outputs and should be 

minimum (closer to zero).  Regression (R) determines the correlation between targets and the 

outputs which should be closer to one. If R is closer to one, we can assume that the model 

predicted is closer to the actual data set. 
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                      Fig. 4. Plant identification 

 

Dynamic networks are considered to be the sequential networks implementing nonlinear 

mapping between the available input-output experimental data sequences. The model structure 

as well as the model size has to be determined. The objective of the training is the reduction of 

squared error resulting from the elements of the resulting error sequences. The total error 𝐸𝑡𝑜𝑡 is 

𝐸𝑡𝑜𝑡 = ∑ 𝐸2(𝑘)𝑁
𝑘=1 ,              (18) 

where E(k) is the error output of the dynamic neural network at time step k. 

The length of the sequence is represented by N. The performance of the neural network 

must be validated to determine optimal stopping time while training. A set of test data which is 

not used in training is required to check the generalization capability of the model.  Cross-

validation plays a significant role in neural network modelling as it uses different data sets for 

validation purposes to estimate how the model is expected to perform. 

A neural model with the optimal model complexity is attained at the lowest value of the 

test error. The modelling error or the mean squared error Memp is defined as the sum of the 

squared errors: 

Memp ()  = 
1

𝑃
∑ ( 𝐸(𝑘)𝑃

𝑘=1 )2 ,             (19) 

Memp ()  = 
1

𝑃
∑ ( 𝑦(𝑘)𝑃

𝑘=1 − 𝑦𝑀𝑜𝑑 (k))2,            (20) 

where 𝐸(𝑘) = 𝑦(𝑘) − 𝑦𝑀𝑜𝑑 (, 𝜑(𝑘)) , the regressor vector is termed as 𝜑. 
The total number of hidden neurons and length of the TDL which deploys the nonlinear 

mapping has to be properly selected. The proper model order is very essential for dynamic 

system modelling. Identifying the proper order for the unknown nonlinear dynamic systems was 

proposed by a heuristic method [33]. This approach mainly depends on the data utilized for 

training and the continuity property of the nonlinear functions. The order of the model is 

determined by the index 

𝑙(𝑛) = (∏ √𝑛 
𝑝
𝑘=1  𝑙(𝑛)(𝑘))

1 𝑝⁄
.             (21) 

where 𝑙(𝑛)(𝑘) is the k-th biggest Lipschitz quotient. The number of input variables is 

represented by n whereas p denotes the positive number. The Lipschitz index can be well 

applied to NARX models, where the order of feedback and feed-forward paths can be 

determined: 

𝑦𝑀𝑜𝑑(k)=𝑓 [𝑦(𝑘 − 1), 𝑦(𝑘 − 2), … . . , 𝑦(𝑘 − 𝐿), 𝑢(𝑘 − 1), 𝑢(𝑘 − 2), … … . , 𝑢(𝑘 − 𝑀)].  (22) 

The Lipschitz index 𝑙(𝑛) = 𝑙(𝐿+𝑀), where M denotes the feed-forward order values and L 

represents the feedback order values. Therefore, this methodology is advantageous to estimate 

the order of the model but very sensitive to observation noise. The main disadvantage in RNN is 

that it suffers from vanishing gradient issues, as the BPTT method is used on the error signal for 

generating weights. In this method, the error signal decays exponentially as time elapses. 

For a recurrent cell, x(k) is 

x(k) =   [ w(k) x(k-1)],             (23) 

x(k) unfolded into n steps is 
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x(k-n) =  [ w(k) x(k-n-1)],             (24) 

and 𝑦𝑀𝑜𝑑 (k) = x(k), if y(k) is the desired output. The squared output error is given in 

J(k) = 
1

2
 [ 𝑦𝑀𝑜𝑑(𝑘) −𝑦(𝑘) ]2  = 𝑒0

2(k).            (25) 

The gradient descent is 

w(k+1) = w(k) - 
𝜕𝐽(𝑘)

𝜕𝑤(𝑘)
,             (26) 

where  
𝜕𝐽(𝑘)

𝜕𝑤
 = 𝑒0(k) ′

 x(k-1). For n steps it leads to 

w(k+1) = w(k) -  ∑ 𝑒𝑗(𝑘)𝑛
𝑗  x(k-j),            (27) 

𝑒𝑗(𝑘) = 𝑒𝑗−1(𝑘) w(k) ′
  =  𝑒0(k)∏ [𝑤(𝑘)𝑛

𝑗=1 ′
].           (28) 

From equation (28), it can be concluded that if || w(k) ′
|| >1, then it is a gradient distend 

and if  || w(k) ′
|| <1, the gradient of the error vanishes. For long term dependencies, RNN 

networks use their back connections to memorize the recent inputs structure, due to this the back 

propagated errors become immeasurably high in time or vanishes which results in complexity in 

computation of slow varying weights [34]. To overcome this problem of vanishing gradient, a 

method was proposed where RNN was used with gated units, called LSTM [35]. The procedure 

involved in developing the NARX neural model for the conical tank system is elaborated in 

Section 6.3. The following section deals with the identification of the system using the LSTM 

algorithm. 

 

5. RNN-LSTM model 

Recent research has proved that deep neural networks are effective in modelling highly 

nonlinear real-time systems and are effective model estimators for the available experimental 

input and output data set. Long-Short Term Memory (LSTM) is a kind of RNN that uses gate 

techniques and recurrent mechanisms. It allows the neural model to learn and recall the 

information for a long duration. LSTM has various advantages over feedforward multilayer 

networks as well as RNN in time series modelling. The LSTM network has good predictive 

capability compared to CNN-LSTM [36]. LSTM neural network also finds its applications in 

the field of control. The speed prediction model is developed for the automation of paving ships 

[37]. LSTM neural network is used to predict the control action for the micro grid to increase 

the efficiency of power systems [38]. The LSTMs were intended to alleviate the vanishing 

gradient problem while back propagating through time. It trains RNN to ensure continual error 

stream through CEC (constant error carousels) within multiplicative gate units. The layer is 

activated only when || w(k) ′
|| ≈1. 

 

5.1. LSTM structure 

LSTM structure comprises of a set of recurrently linked subnets (memory blocks). Each 

memory block contains memory cells  and distinctive gates namely input gate, a unique forget 

gate and the output gate where the informative data is permitted to enter through these gates and 

provides good control over what is added or removed from memory in the hidden layer part. 

The LSTM structure is shown in Fig. 5. These gates can protect and control the cell state.  The 

data remains in the cell till the gate is closed and once the gate is opened the data can be used 

after a long duration of time: 

r(k) = 𝜎 (wr (k)[y(k-1),u(k)]),             (29) 

where 𝜎 represents sigmoid activation function which is used by each gate to scale every value 

of the gate vector to remain within 0 and 1 value.  The input signal and output signal is 

represented by u(k) and y(k-1) respectively,  r(k) is the  input given to the cell state and  wr (k) is 

considered as the weight for forget gate in terms of 

i(k) = 𝜎 ((wi (k)[y(k-1),u(k)]),             (30) 

𝑥̃(k)= tanh (wx(k)[y(k-1),u(k)]),             (31) 

where i(k) and  x̃(k) are inner states, wi (k) and wx (k) are the weights for input gate. The extent to 

which a value withstands in the cell is controlled by forget gate.  



 

 
 

Fig. 5. The LSTM structure 

 

The degree to which a fresh value enters the cell is controlled by input gate 

c(k) = 𝜎 ((wc (k)[y(k-1),u(k)]),             (32) 

y(k)= c(k) tanh(x(k)),              (33) 

where wc (k) is the weight for output gate and c(k) is the inner state. The level of cell state that is 

added to the hidden state is controlled by output gate. 

The updated cell state is 

x(k) = r(k) x(k-1) + i(k) 𝑥̃(k),             (34) 

where x(k-1) and r(k) are multiplied means to forget and add  { i(k) 𝑥̃(k)}. Substituting, 

x(k)=𝜎(wr(k)[𝑦𝑀𝑜𝑑(k-1),u(k)])x(k-1)+ 𝜎 ((wi(k)[ 𝑦𝑀𝑜𝑑(k-1),u(k)]) 

          tanh(wx(k)[ 𝑦𝑀𝑜𝑑(k-1),u(k)]),            (35) 

𝑦𝑀𝑜𝑑(k)=𝜎 (wc (k)[ 𝑦𝑀𝑜𝑑(k-1),u(k)]) tanh(x(k)).           (36) 

The weights wi , wf , wc and wx  are to be updated such that neural network output 𝑦𝑀𝑜𝑑(k) 

converge to y(k) which is the system output: 

𝑚𝑖𝑛
𝑤𝑖,𝑤𝑐 ,𝑤𝑥 , 𝑤𝑟 

[ 𝑦𝑀𝑜𝑑(k)–y(k)]2,             (37) 

𝑦𝑀𝑜𝑑(k)=M[y(k-1),..,y(k-n),u(k),u(k-1),..,u(k-m)],           (38) 

where n and m are the regression order for output y(k) and input u(k) respectively, and M is the 

model structure. 

The weights are updated and learning law for one LSTM cell are 

wc(k+1) = wc(k)- ∑ 𝑒𝑐(𝑘)[𝑁
𝑗=1 𝑦𝑀𝑜𝑑(kj),u(kj)],           (39) 

wr (k+1) = wr (k) - ∑ 𝑒𝑟(𝑘)[𝑁
𝑗=1 𝑦𝑀𝑜𝑑(k-j), u(k-j)],          (40) 

wi (k+1) = wi (k) - ∑ 𝑒𝑖(𝑘)[𝑁
𝑗=1 𝑦𝑀𝑜𝑑(k-1), u(k)],           (41) 

wx (k+1) = wx (k) - ∑ 𝑒𝑥(𝑘)[𝑁
𝑗=1 𝑦𝑀𝑜𝑑(k-1), u(k)],           (42) 

where 𝑒𝑐(𝑘) = 𝑒𝑐−1(𝑘) wc (k)𝜎′ (x(k)), 𝑒𝑐1(𝑘) = 𝑒0, 𝑒𝑟(𝑘) = 𝑒𝑟−1(𝑘) wr (k)𝜎′ x(k-1), 𝑒𝑖(𝑘) = 

𝑒𝑖−1(𝑘) wi (k)𝜎′  (wx (k) [𝑦𝑀𝑜𝑑(k-1), u(k)]), 𝑒𝑥(𝑘) = 𝑒𝑥−1(𝑘) wx (k)′
 𝜎 (wi (k) [𝑦𝑀𝑜𝑑(k-1), 

 



u(k)]). 

The error remains in the LSTM unit cells when the errors are propagated back from the 

output layer. The constant error carousels (CEC) continuously provide constant error to each of 

the multiplicative gate units. Thus by using LSTM, vanishing gradient issue is solved by using 

gates units through which the memory of past states is controlled efficiently. LSTM effectively 

maintains long term memory which makes it easy to get accurate predictions. LSTM model 

serves to be best when compared to BP (Back-propagation) neural network model [39]. Speed 

of convergence was also found to be better for LSTM when compared to Bayesian networks, 

ANFIS-Grid and MLP neural networks [40]. 

 

5.2. The LSTM algorithm 

LSTM algorithm works in two stages: forward phase and backward phase. The flowchart 

for LSTM model is shown in Fig. 6. In forward phase, the weights are randomly initialized to 

the nodes of each layer and values are assigned for learning rate, number of hidden neurons, and 

activation function. The number of neurons for each input and output layers is chosen. The 

weighted sum of neurons (input) through activation function is computed. Finally, the difference 

between NN model output and target output is calculated to determine the RMSE (root mean 

square error) value. 

 

 
 

Fig. 6. Flowchart of LSTM algorithm 

 

In backward phase, the weights are adjusted by back-propagating them in the reverse 

direction that is from the output layer to the input layer. In LSTM neural architecture, each node 

is connected to itself as well to the other node. The output is calculated and compared for the 

 



current instant t and previous instant (t-1). The optimum value is kept in memory and other 

values are removed. The error function is calculated. The program gets terminated when the 

minimum error is attained or when the iterations of the epoch get completed. 

The real-time data set obtained from the real system is split into training data set and test 

data set. The LSTM model is developed by utilizing the training data set and predictions are 

made based on the test data set using the model. The persistence estimation on test data set 

attains an error which provides a tolerable lower bound of the performance on the test data set. 

Next is the model evaluation / validation. Every time step of the test data is estimated one at a 

time. A model is used to predict for the time step, then the expected value is made accessible to 

the model to predict for the next time step. All estimations on the test data set are collected and 

the performance of the model can be summarized based on the calculated root mean squared 

error (RMSE). 

The data has to be transformed, before fitting the LSTM model to the data set to make 

predictions. Trends are removed from the data set. The data set is rescaled to be between 1 and -

1 so that it gets access to the hyperbolic tangent activation function of the model. More training 

epochs are used to build the LSTM model. ADAM optimization algorithm is used to fit the 

model and mean squared error (MSE) function is calculated. 

The identification algorithm not only takes multiple steps but also includes many files 

like time series data files, training data/testing data/evaluation data files, model output and 

estimated time series file. The training of the model takes place iteratively, by constantly tuning 

the parameters of the learning algorithm and finally deploying the developed RNN-LSTM 

model for optimal controller design. Section 6.4 describes the identification of the conical tank 

system using RNN-LSTM algorithm. 

 

6. Results and discussion 

The real-time laboratory conical tank system which is modelled in this study is shown in 

Fig. 7. The total height (H) and top radius (R) of the tank is 52 cm and 24 cm respectively.  The 

volumetric inflow rate to the tank is 0-1000 lph. The level of the tank is the controlled variable 

and the voltage applied to the pump is the manipulated variable which in turn regulates the 

inflow rate of the tank. 

 

 
 

Fig. 7.  Laboratory conical tank system 

 

A step change is applied to the input voltage of the pump and the open-loop responses of 

the conical tank in terms of level are recorded for two different operating points. The output 

voltage (0-5V) from the NI DAQ-6221 relates to the corresponding output level (0 cm – 50 cm) 

of the liquid in the conical tank. Using this experimental input/output data, four different 

empirical models (TF model, NARX model, NARX NN model, and RNN-LSTM model) are 



developed with the help of MATLAB software. 

 

6.1. The transfer function model 

The transfer function (TF) model is built using the real-time data set using 

MATLAB/Simulink. Initialization is done by using the N4SID method to handle the initial state 

of the system. The continuous transfer function model for both the regions of the conical tank 

system under nominal conditions is shown in Table 1. Fig. 8 depicts the responses of the conical 

tank system, where voltage output (V) corresponds to the tank level is plotted against time (sec). 

It is observed that response of the TF model follows the response of experimental data recorded 

for both the operating regions. 

 

Table 1. Transfer function for both the operating zone 

Operating region Transfer function 

Zone 1 

Range( 4.5  to 34 cm) 

1

294.377𝑠 + 1
 

 

Zone 1 

Range( 34.1 to 50 cm) 

1.495

593.1198𝑠 + 1
 

 

 

 
 

Fig. 8. Open-loop response of the conical tank system 

 

6.2. The nonlinear ARX model 

Based on the theory presented in Section 3, a nonlinear ARX model is built using the 

real time experimental data from the conical tank system using MATLAB/Simulink software. 

Figs. 9 and 10 show the nonlinear ARX model output with an accurate fit to the data for both 

the zones respectively, where the measured output follows the predicted output. 

 



 
 

Fig. 9. Nonlinear ARX model for zone 1 

 
 

Fig. 10.  Nonlinear ARX model for zone 2 

 

The regressors and model order are changed in the trial and error method to get the best 

model which accurately describes the process dynamics. Orders and delays are specified to 

predefine the regressors of the model.  To predict the current output, the number of past output 

terms (na) and past input terms (nb) are selected as 1 and 2 respectively. The transport delay (nk) 

is selected as one. The nonlinear autoregressive equation is given as y(t) =[ f(y(t-1), u(t-1), u(t-

2))]  for the two input delays selected for both the zones. The nonlinearity estimator used in this 

work is the wavelet network. LM (Levenberg-Marquardt) algorithm is used for iterative 

minimization of the objective function. 

 

6.3. The NARX neural network model 

Based on the theoretical concepts given in section 4, the NARX neural network model is 

built using experimental data set. The input and output real-time experimental data obtained 

from the conical tank system (zone1) is of (1X 1700) matrix. The procedure of training, 

validation, and testing is being done. Target time steps of 1700 are randomly divided as 70% 

target time steps (1190 samples) for training, 15% (255 samples) for validation and the 

remaining 15% (255) for testing. Similarly, the input and output real-time experimental data 

obtained is of (1X 1431) matrix for zone 2. Target time steps of 1431 are randomly divided as 

70% target time steps (1001 samples) for training, 15% (215 samples) for validation and the rest 

of 15% for the testing procedure. NARX model time response plots are shown in Figs. 11 and 

12 for both the zones. 



 

 
 

Fig. 11. Time-series response of the chosen NARX network for zone 1 

 

 
 

Fig. 12. Time-series response of the chosen network for zone 2 

The number of hidden neurons and delays are repeatedly changed such that the 

regression value and MSE for all the 3 steps (training, validation, and testing) are one and zero 

respectively. The proposed work uses LM algorithm, as its learning capability is fast and has 

very good convergence behavior by gradually increasing the hidden neurons. The flexibility of 

neural network increases when the hidden neurons are increased in number. The procedure is 

repeated for developing the best model for both the zones of the conical tank. Error histograms 

with 20 bins for zone 1 and 2 are shown in Fig. 13 and Fig. 14, respectively. Bins are the 

vertical bars where each of them represents the samples from the data set in a particular bin. 

Best NARX neural model fit is framed using 20 hidden neurons and 2 delays for zone 1 and 10 

hidden neurons and 2 delays for zone 2 and RMSE value for both the models are calculated. 

 



 
 

Fig. 13. Error histogram for zone 1 

 

 
 

Fig. 14.  Error histogram for zone 2 

 

6.4. System Identification using RNN-LSTM model 

LSTM model is built for both the zones based on the concepts briefly explained in 

Section 5. LSTM network is trained to estimate the values of future time steps, where the 

training sequences are shifted by one-time step. LSTM network learns to estimate the value of 

the succeeding time step at every time step of the input sequence. LSTM network can also be 

trained to predict the values for multiple time steps in the future. 

Real-time input-output data sets (1700 samples) for zone 1 and (1431 samples) for zone 

2 are segregated as training data and testing data. For the first operating zone, 1530 samples (90 

% of the data) are used for training and remaining 170 samples (10 % of the data) are used for 

testing. Similarly for zone 2, 1288 samples for training and 143 samples for testing are used. 

The training data is to be standardized to get zero mean and unit variance to avoid the training 

process from deviating and to get a better fit. LSTM layer for zone 1 uses 150 hidden units and 

the learning rate being 0.00036. Zone 2 uses 200 hidden units with a learning rate of 0.0002. 

The learning rate can be constant or set to drop periodically throughout the training process. In 

this work, the learning rate is periodically set to drop as it helps the training to converge. The 

loss function drops fast for a smaller value of learning rate. Initial learning rate was kept as 

0.009 for zone 1 and 0.001 for zone 2. Learn rate drop factor is set to 0.2 for both the zones. 

L2 norm-based gradient threshold method is employed. The gradient threshold is 

specified as 1 to avoid the gradients from exploding for both the zones. Maximum values for 

epochs are set for both the zones so to get RMSE and validation loss so that it reaches a 

satisfactory steady-state value. Epochs for zone 1 is set as 100 and 150 for zone 2. The solver 



used for optimization is ADAM. LSTM regression network is trained for both the operating 

zones of the conical tank process. Overfitting is one of the major issues, where the train loss 

slopes down and the validation loss also slopes down, reaches an inflection point and again 

starts to rise. So this results in more training epochs and training model could be stopped at this 

inflection point. To avoid overfitting, a regularization method employing a dropout layer is 

included in the LSTM architecture. A dropout layer is incorporated before the fully connected 

layer which has an output of same size as that of number of outputs in training data and dropout 

layer is applied to recurrent and input connections of the memory units for both the zones of the 

conical tank. It was observed that the inclusion of dropout layer increased the performance of 

the model. 

For multiple time steps future prediction, the time steps are predicted one at a time and 

state of the network is updated at every prediction. The test data is standardized as it was done 

for training data. The training progress is monitored in MATLAB as shown in Figs. 15 and 16 

for both zones which reports the RMSE value calculated from the standardized data. During 

training, the network is validated. The training process stops when the validation loss starts 

decreasing to the smallest loss value. The LSTM network starts to converge at 50 epochs and 

later the convergence process remains to be stable for zone 1. For zone 2, the LSTM network 

starts to converge after about 40 epochs. Though the convergence process fluctuates lightly to 

some extent, the overall loss is decreasing which exemplifies the efficacy and robust 

generalization capability of the LSTM algorithm using the dropout layer. Speed of convergence 

is good for LSTM compared to RNN. LSTM faces limitations for very long sequences of data 

but not in this application of the conical tank system of a short sequence of task. Hence speed of 

convergence is efficiently good using a LSTM model. 

 

 
 

Fig. 15. Training progress plot for zone 1 (RNN-LSTM model) 

 

The predictions will be more exact when the state is updated using observed values 

rather than using the predicted values. Figs. 17 and 18 show the response where the training data 

is compared with the predicted values for zone 1 and 2 respectively. Figs. 19 and 20 show the 

response of the test data in comparison with predicted data and RMSE value for both the zones 

respectively. 

 



 

Fig. 16. Training progress plot for zone 2 (RNN-LSTM model) 

 

 

Fig. 17. Plotting training time series with predicted values for zone 1 (RNN-LSTM model) 

 

 

Fig. 18. Plotting training time series with predicted values for zone 2 (RNN-LSTM model) 

 



 

 

Fig. 19. Comparing the predicted values with test data for zone 1 (RNN-LSTM model) 

 

 

Fig. 20. Comparing the predicted values with test data for zone 2 (RNN-LSTM model) 

 

The validity of the identified system models is confirmed by plotting the output of the 

models with actual system response. The validation of all the empirical models is compared 

based on RMSE (Root Mean Square Error) values as shown in Table 2. 

 

Table 2. Validation of empirical models based on RMSE 

Empirical Models Zone 1 Zone 2 

Transfer Function 

Model 
0.1177 0.0942 

NARX model 0.075670 
0.07844

7 



NARX Neural Model 0.063205 
0.06809

5 

RNN- LSTM Model 0.0519 
0.04961

4 

 

Figs. 21 and 22 show the performance comparison chart based on RMSE for zone 1 and 

zone 2, respectively. It is observed that the LSTM model is with the least RMSE value and 

hence it is comparatively efficient in giving the best fit model of the system. 

 

 
 

Fig. 21. Performance comparison based on RMSE for zone 1 

 

 
 

Fig. 22.  Performance comparison based on RMSE for zone 2 

 

7. Conclusion 

Modelling of nonlinear dynamical systems is one of the major concerns if we go for 

model-based controller design. Several empirical methods are adopted for the identification of 

such processes. In this paper, modelling based on RNN-LSTM neural architecture is built using 

the experimental data for a real-time conical tank system. 

Memory structure of LSTM with gated units gives an upper hand over the vanishing 

gradient problem that exist in conventional RNN structure and introducing a dropout layer in 
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LSTM architecture conquers the problem of overfitting. Through model validation, it has been 

empirically demonstrated that LSTM based identification has a vintage efficiency for modelling 

nonlinear dynamical systems in contrast to other empirical methods like the TF model, 

nonlinear ARX model, and NARX neural model with less RMSE in both the operating zones. 

Hence LSTM identification algorithm can be diligently and overwhelmingly used for modelling 

the conical tank system in controller design. 
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