
INF5040 autumn 2011, Frank Eliassen 1

System models for
distributed systems

INF5040/9040 autumn 2011

1

lecturer: Frank Eliassen

INF5040 H2011, Frank Eliassen

System models

 Purpose
illustrate/describe common properties and design choices for illustrate/describe common properties and design choices for
distributed system in a single descriptive model

 Three types of models
 Physical models: capture the hardware composition of a

system in terms of computers and other devices and their
interconnecting network;

 Architecture models: define the main components of the
system, what their roles are and how they interact (software

2

system, what their roles are and how they interact (software
architecture), and how they are deployed in a underlying
network of computers (system architecture);

 Fundamental models: formal description of the properties
that are common to architecture models. Three fundamental
models:

– interaction models, failure models and security models
INF5040 H2011, Frank Eliassen

INF5040 autumn 2011, Frank Eliassen 2

Physical models

Distributed
Systems

Early Internet-scale Contemporary
Systems
Scale Small Large Ultra-large

Heterogeneity Limited (typically
relatively
homogeneous
configurations)

Significant in terms
of platforms,
languages and
middleware

Added dimensions
introduced including
radically different styles of
architecture

Openness Not a priority Significant priority
with rage of

Major research challenge
with existing standards not g

standards
introduced

g
yet able to embrace
complex systems

Quality of
Service

Not a priority Significant priority
with rage of
services introduced

Major research challenge
with existing services not
yet able to embrace
complex systems

INF5040 H2011, Frank Eliassen 3

Architectural models

 To master the complexity of distributed systems, it is
crucial that they are properly organizedcrucial that they are properly organized

 Concern the logical organization of distributed
systems into:
 Communicating entities (objects, components and web

services);
 Communication paradigms (interprocess communication,

remote invocation and indirect communication);
Roles responsabilities and placement

4

 Roles, responsabilities and placement.
 Some important architectural styles and patterns:

 Layered architectures
 Object-based architectures
 Event-based architectures
 Shared data spaces

INF5040 H2011, Frank Eliassen

INF5040 autumn 2011, Frank Eliassen 3

Layered architecture

Vertical organization Vertical organization
of services

Tiered architectures
are complementary
to layering
 Organize layer g y

functionality into
appropriate servers
and physical nodes

INF5040 H2011, Frank Eliassen 5

Tiered

Examples

 Layered e edaye ed

Middleware

Applications and
services

User view
and Control Application

logic
Database
manager

PC
Application Server

DB Server

Tier 1 Tier 2 Tier 3

INF5040 H2011, Frank Eliassen 6

Computer and
Network Hardware

Operating System
manager

User view
and Control

Application
logic

Mobile Device

INF5040 autumn 2011, Frank Eliassen 4

Object-based architecture

Natural units of Natural units of
decomposition

Accessed via
interfaces

Connected via RMI
Objects can be bothObjects can be both

clients or servers

INF5040 H2011, Frank Eliassen 7

Event-based architecture

Indirect communicationIndirect communication

INF5040 H2011, Frank Eliassen 8

INF5040 autumn 2011, Frank Eliassen 5

Event bus realized as publish-
subscribe middleware

“IBM” & v>0Pub-sub service
publishers

subscribers

S1

S2

S3

IBM & v>0

“ACME”

“ACME”

IBM: -3,75

ACME: +0,15

IBM: +2,51

IBM: -3,75

ACME: +0,15

ACME: +0,15
S3: “ACME”

S2: “ACME”

S1: “IBM” & v>0

9

subscriptionevent notification

INF5040 H2011, Frank Eliassen

A data-centered architecture:
Shared data-spaces

10INF5040 H2011, Frank Eliassen

INF5040 autumn 2011, Frank Eliassen 6

Example distributed shared data
space: MIDAS Data Space

Information sharing through a
database‐like distributed system

Application

Select, Insert, …database like distributed system
called MIDAS Data Space Implementation

challenges:
-Availability
-Fault-tolerance
-Scalability
-Consistency
-Efficiency

11

Emergency area
without
communication
infrastructure

INF5040 H2011, Frank Eliassen

Centralized system architectures

Client-server model:
Known for more than 25 years very popular in DS designKnown for more than 25 years, very popular in DS design

12

General interaction between a client and a server.
INF5040 H2011, Frank Eliassen

INF5040 autumn 2011, Frank Eliassen 7

Component view of client-
server model

Server

Client

Client
Server

request

response

request

response

13

Process

Computer

INF5040 H2011, Frank Eliassen

Variants of client-server (1)
Multiple server processes:

- service realised as a number of server-processes
service

Server

Client

Server

- several access points

14

Client

Server

INF5040 H2011, Frank Eliassen

INF5040 autumn 2011, Frank Eliassen 8

Variants of client-server (2)
Client/server model with proxy-server:

Cache: stores recently used data objects that are closer to the client than theCache: stores recently-used data objects that are closer to the client than the
original objects themselves.

Proxy server: cache that is shared between several clients

Proxy

Client Web server

15

Proxy
server

Client Web server

INF5040 H2011, Frank Eliassen

Variants of client-server (3)

Mobile code (applets) . Enables e.g., “push-model”: the server
invokes the client or more advanced user interfacesinvokes the client, or more advanced user interfaces

ServerClient

applet code

16

ServerClient applet

INF5040 H2011, Frank Eliassen

INF5040 autumn 2011, Frank Eliassen 9

Variants of client-server (4)
Mobile agents . Program (code + data) that migrates between computers

and executes a task on behalf of someone.

ServerClient

ServerClient Mobile
agent

17

ServerClient Mobiel
agent

ServerClient Mobile
agent

INF5040 H2011, Frank Eliassen

Decentralized system
architectures

Referred to as peer-to-peer (P2P) systems
 Every node act both as a client and server

(“servent”), and “pays” for the participation by
offering access to some if its resources (typically
processing and storage resources, but can also
be logical resources (services)

Advantages: no single point of failure, scalability

18

Disadvantages: complexity of protocols
Many application areas
 File sharing, streaming, process sharing, collaborative

and social applications, web-caching etc

INF5040 H2011, Frank Eliassen

INF5040 autumn 2011, Frank Eliassen 10

Example: P2P file sharing (1)
 Key idea: share the content, storage and bandwidth of

individual (home) users
 Model

 Each user stores a subset of files
 Each user has access (can download) files from all users in the

system

19

Internet

INF5040 H2011, Frank Eliassen

Example: P2P file sharing (2)

Main challengea c a e ge
 Find where a particular file is stored

D

E

F

20

A
B

C

E?

INF5040 H2011, Frank Eliassen

INF5040 autumn 2011, Frank Eliassen 11

Example: P2P file sharing (3)
 Gnutella: Ask your neighbor

 Assume: m1’s neighbors are m2 and m3; m3’s neighbors are
4 d 5m4 and m5;…

D

E

F

m4

m5

m6

E?

E?
E?

E

21

A
B

C

m1
m2

m3

E?

INF5040 H2011, Frank Eliassen

Spontaneous networks
 Clients carry mobile devices (laptop, PDA, ….) between different

network environments (hotel network, airport network, …) and can
exploit local and remote services while on the move using 3G WiFiexploit local and remote services while on the move using 3G, WiFi,...
(ubiquitous computing) .

Hotel’s
wireless

Music
service

Alarm
service

Print/fax
service

Discovery
i

gatewayInternet

22

wireless
network

TV/PC

service

Laptop

PDA Mobile
device of
guest

register
lookup

INF5040 H2011, Frank Eliassen

INF5040 autumn 2011, Frank Eliassen 12

Fundamental models
 Properties shared by all architecture models

 communicates by sending messages across a networkcommunicates by sending messages across a network
 requirements of performance, reliability, and security

 Fundamental models
 abstracts over unnecessary details
 used to address questions like

– what are the most important entities in the system?
– how do they interact?

what are the characteristics that affect their individual and collective

23

– what are the characteristics that affect their individual and collective
behaviour?

 The purpose of fundamental models
 to make explicit all relevant assumptions about the system we are

modeling
 to find out what is generally feasible and not feasible under the

given assumptions INF5040 H2011, Frank Eliassen

Fundamental models
Aspects of distributed systems we want to express
 Interaction model Interaction model

– processes, messages, coordination (synchronisation and
ordering)

– must reflect that messages are subject to delays, and that delay
limits exact coordination and maintenance of global time

 Failure model
– defines and classifies failures that can occur in a DS
– basis for analysis of effects of failures and for design of systems

that are able to tolerate failures of each type while continuing to

24

that are able to tolerate failures of each type while continuing to
run correctly

 Security model
– defines and classifies security attacks that can occur in a DS
– basis for analysis of threats to a system and for design of

systems that are able to resist them

INF5040 H2011, Frank Eliassen

INF5040 autumn 2011, Frank Eliassen 13

Two variants of the
interaction model

 Synchronous distributed systems
 the time to execute each step of a process has known lower and the time to execute each step of a process has known lower and

upper bounds
 each message transmitted over a channel is received within a

known bounded time
 each process has a local clock whose drift rate from real time has a

known bound
 Asynchronous distributed systems

 the time to execute each step of a process can take arbitrarily long

25

the time to execute each step of a process can take arbitrarily long
 each message transmitted over a channel can be received after an

arbitrarily long time
 each process has a local clock whose drift rate from real time can

be arbitrarily large

INF5040 H2011, Frank Eliassen

Significance of synchronous
vs asynchronous DS

 Many coordination problems have a solution in
synchronous distributed systems, but not in asynchronoussynchronous distributed systems, but not in asynchronous
 e.g., “The two army problem” or “Agreement in Pepperland” (see

[Coulouris])
 Often we assume synchrony even when the underlying

distributed system in essence is asynchronous
 Internet is in essence asynchronous but we use timeouts in

protocols over Internet to detect failures
 based on estimates of time limits

26

based on estimates of time limits
 but: design based on time limits that can not be guaranteed, will

generally be unreliable

INF5040 H2011, Frank Eliassen

INF5040 autumn 2011, Frank Eliassen 14

Ordering of events

 distributed coordination protocols have a need for
d i f t i ti (“h d b f ”ordering of events in time (“happened before”-

relationship)
– events: sending and receiving messages
– example: update of replicated data must generally be done in

the same order in all replica
– difficult to use physical clocks in computers for coordination

(e.g.,. clock values in messages)
• have limited time resolution and ticks with different rates

27

• have limited time resolution and ticks with different rates
(clock drift)

• basic properties of message exchange limit the accuracy of
the synchronization of clocks in a DS [Lamport 78]

INF5040 H2011, Frank Eliassen

Example: e-mail exchange

send(m) rcv(Re:m) rcv(Re:m)
Time

Y

X

Z

m1

m2

rcv(m)

send(Re:m)

send(Re:m)

rcv(Re:m) rcv(Re:m)

rcv(Re:m)

28

Z
rcv(m)

A

rcv(Re:m)
()

m1m3
m2

INF5040 H2011, Frank Eliassen

INF5040 autumn 2011, Frank Eliassen 15

Logical clocks
 Possible to describe logical ordering of events even without

accurate clocks by using logical clocks [Lamport78]
 Principle

 If two events happens in the same process, then they occur in the
same order as in the process that observed them

 When a message is transmitted between two processes, the event
“send message” will always happen before the event “receive
message”

 Happened-before relationship
 is derived by generalizing the two relationships above such that if x, y

and z are events and x “happened-before” y and y “happened

29

pp y y pp
before” z, then x “happened-before” z

 Logical clocks extends the idea above
 more later in the course (Coulouris, chap 14)

INF5040 H2011, Frank Eliassen

A failure model

 Is a definition of in which way failures may occur in y y
distributed systems

 Provides a basis for understanding the effects of failures
 Definition of the failure model of a service enables

construction of a new service that hides the faulty
behaviour of the service it builds upon
 example: TCP on top of IP

30

example: TCP on top of IP
– TCP: reliable byte-stream service
– IP: unreliable datagram service

INF5040 H2011, Frank Eliassen

INF5040 autumn 2011, Frank Eliassen 16

Specification of failure model
 Specification of failure models requires a way to describe

failuresfailures
 One approach is to classify failure types (Cristian, 1991)

(Hadzilacos & Toueg, 1994)
 Omission failures
 Arbitrary failures
 Timing failures

 System model:

31

send m

outgoing message buffer

receive m

communication channel

incoming message buffer
INF5040 H2011, Frank Eliassen

Omission failure (1)

 A process or channel fails to perform actions that it is p p
supposed to do

Failure class Affects Description

Fail-stop Process Process halts and remains halted.
Other processes may detect this
state.

Crash Process Process halts and remains halted

32

Crash Process Process halts and remains halted.
Other processes may not be able to detect
this state.

Omission Channel A message inserted in an outgoing message
buffer never arrives in the other end’s
incoming buffer.

INF5040 H2011, Frank Eliassen

INF5040 autumn 2011, Frank Eliassen 17

Omission failure (2)
Failure class Affects Description

Send-omission Process A process completes a send-operation, but
the message is not put into the outgoing
message buffer.

Receive-omission Process A message is put into a process’s incoming
message buffer, but the process does not
receive it.

33INF5040 H2011, Frank Eliassen

Omission failure (3)

 Usual assumption that a server has “fail-stop” failure
model
 the server crashes in a “nice” way

– it halts completely
– other servers may detect it has failed

 if the server nevertheless fails in a different way, the software
that uses the server, may fail in unpredictable ways

 It is difficult to detect omission failures for processes in

34

p
an asynchronous system

INF5040 H2011, Frank Eliassen

INF5040 autumn 2011, Frank Eliassen 18

Arbitrary failures (Byzantine failures)
 Process or channel may exhibit arbitrary behavior when

failing,
 send/receive arbitrary messages at arbitrary intervals
 a process may halt or perform “faulty” steps
 a process may omit to respond now and then

 By adopting a byzantine failure model, we can attempt
to make systems that are “ultra-reliable” (handles HW
failures, and provide guaranteed response times)
 control systems in air planes

35

control systems in air planes
 patient monitoring systems
 robot control systems
 control systems for nuclear power plants

INF5040 H2011, Frank Eliassen

Timing failure
 Applicable in synchronous distributed systems

 responses that are not available to clients in a specified time p p
interval

 timing guarantees requires guaranteed access to resources when
they are needed

 Examples:
 control and monitoring systems, multimedia systems

Failure class Effects Description

36

Clock Process Process’s local clock exceeds the bounds on
its rate of drift from real time

Performance Process Process exceeds the bounds on the interval
between two processing steps

Performance Channel A message’s transmission takes longer than
the stated bounds

INF5040 H2011, Frank Eliassen

INF5040 autumn 2011, Frank Eliassen 19

Summary
 Three types of system models

 Physical models: capture the hardware composition of a Physical models: capture the hardware composition of a
system in terms of computers and other devices and their
interconnecting network;

 Architecture models: defines the components of the system,
the way they interact, and the way the are deployed in a
network of computers

– client-server models (many variants)
– peer processes (P2P)

37

– spontaneous networks (mobility)
 Fundamental models: formal description of the properties

that are common to all architecture models
– interaction models
– failure models
– security models (not covered in this course, but see e.g., INF3190)

INF5040 H2011, Frank Eliassen

