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System Models :
Transformations

on Vector Spaces

The fundamental purpose in modeling a system is to develop a mechanism
for predicting the condition or change in condition of the system. In the
abstract model TX =y of (1.1), T represents (or is a model of) the system,
whereas x and y have to do with the condition of the system. We explore
first some familiar models for the condition or changes in condition of
systems. These examples lead us to use a generalization of the usual notion
of a vector as a model for the condition of a system. We then develop the
concept of a transformation of vectors as a model of the system itself. The
rest of the chapter is devoted to examination of the most commonly used
models-linear models-and their matrix representations.

2.1 The Condition of a System

The physical condition (or change in condition) of many simple systems
has been found to possess a magnitude and a direction in our physical
three-dimensional space. It is natural, therefore, that a mathematical
concept of condition (or change in condition) has developed over time
which has these two properties; this concept is the vector. Probably the
most obvious example of the use of this concept is the use of arrows in a
two-dimensional plane to represent changes in the position of an object on
the two-dimensional surface of the earth (see Figure 2.1). Using the usual
techniques of analytic geometry, we can represent each such arrow by a
pair of numbers that indicates the components of that arrow along each of
a pair of coordinate axes. Thus pairs of numbers serve as an equivalent
model for changes in position.

An ordinary road map is another model for the two-dimensional surface
of the earth. It is equivalent to the arrow diagram; points on the map are
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34 System Models: Transformations on Vector Spaces

Figure 2.1. An “arrow vector” diagram.

equivalent to the arrow tips of Figure 2.1. The only significant difference
between these two models is that the map emphasizes the position (or
condition) of an object on the earth, whereas the arrow diagram stresses
the changes in position and the manner in which intermediate changes in
position add to yield a total change in position. We can also interpret a
position on the map as a change from some reference position. The
manner in which we combine arrows or changes in position (the paral-
lelogram rule) is the most significant characteristic of either model. Con-
sequently we focus on the arrow model which emphasizes the combination
process.

Reference arrows (coordinate axes) are used to tie the arrow model to
the physical world. By means of a reference position and a pair of
reference “position changes” on the surface of the earth, we relate the
positions and changes in position on the earth to positions and arrows in
the arrow diagram. However, there are no inherent reference axes on either
the physical earth or the two-dimensional plane of arrows.

The same vector model that we use to represent changes in position can
be used to represent the forces acting at a point on a physical object. The
reason we can use the same model is that the magnitudes and directions of
forces also combine according to the parallelogram rule. The physical
natures of the reference vectors are different in these three situations: in
one case they are changes in position on the earth, in another they are
arrows, in the third, forces. Yet once reference vectors are chosen in each,
all three situations become in some sense equivalent; corresponding to
each vector in one situation is a vector in the other two; corresponding to
each sum of vectors in one is a corresponding sum in the other two. We
use the set of arrows as a model for the other two situations because it is
the most convenient of the three to work with.

The set of complex numbers is one more example of a set of objects
which is equivalent to the set of arrows. We usually choose as references in
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the set of complex numbers the two numbers 1 and i. Based on these
reference numbers and two reference arrows, we interpret every arrow as a
complex number. Here we have one set of mathematical (or geometrical)
objects serving as a model for another set of mathematical objects.

Consider now a physical system which is more complicated than the two
physical systems discussed above. Imagine a flat metal sheet exposed to the
sun and partly submerged in a stream. (The sheet is representative of any
object subject to heat sources and coolants.) The thermal condition of the
sheet is described by the temperature distribution over the surface of the
sheet. A change in the cloud cover in the sky will change the pattern in
which the sun falls on the sheet. As a result, the temperature distribution
will change. Assuming the temperature distribution reaches a new steady
state, the new distribution equals the old distribution plus the change in
the distribution. We model this situation as follows. Let (s,t) denote a
position in some two-dimensional coordinate system on the surface of the
sheet. Let f(s,t) be the temperature at the point (s,t),  measured in degrees
centigrade, for all points (s,t) on the sheet. We model a change in the
thermal condition of the sheet by

(2.1)

for all (s,t) on the sheet. In effect, (2.1) defines fchange.  However, we hope to
use a model of the system to predict fchange.  Then (2.1) will determine fnew.
Equation (2.1) is a “distributed” equivalent of the arrow diagram in Figure
2.1; each of these models illustrates the manner in which changes in
condition combine to yield a net condition of the system in question. Once
again, references have been chosen in both the physical system and the
model (mathematical system) in order to equate the two systems; choosing
physical units of measurement (degrees centigrade) amounts to fixing the
relationship between the physical and mathematical systems.

The most significant difference between a system’ modeled by Figure 2.1
and a system modeled by (2.1) consists in the nature of the conditions in
each system. In one case we have a quantity with magnitude and direction
(e.g., force); in the other, a quantity without magnitude and direction—a
quantity that is distributed over a two-dimensional region. Yet there are
important similarities between the two systems. The changes in condition
of the system are under scrutiny; also, several changes in condition
combine by simple rules to yield a total or net condition.

Vector Spaces

By expressing various types of problems in a common framework, we learn
to use concepts derived from one type of problem in understanding other
types of problems. In particular, we are able to draw useful analogies
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between algebraic equations and differential equations by expressing both
types of equations as “vector” equations. Therefore, we now generalize the
common notion of a vector to include all the examples discussed in the
previous section.

Definition. A linear space (or vector space) v is a set of elements x, y,
Z,***, called vectors, together with definitions of vector addition and scalar
multiplication.

a. The definition of vector addition is such that:
1. To every pair, x and y, of vectors in V there corresponds a

unique vector x+ y in “/, called the sum of x and y.
2 .  x+y=y+x.
3 .  (x+y)+z=x+(y+z).
4. There is a unique vector 8 in ?r, called the zero vector (or

origin), such that x + 8 =x for all x in ‘V.
5. Corresponding to each x in 7/ there is a unique vector “-x” in

Ir such that x+(-x)=@.
b. The definition of scalar multiplication is such that:

1. To every vector x in ?r and every scalar a there corresponds a
unique vector ax in Y, called the scalar multiple of x?

2. a(bx) = (ab)x.
3 . l(x) =x (where 1 is the unit scalar).
4 .  a(x+y)=ax+  ay.
5 .  (a+b)x=ax+  bx.

Notice that a vector space includes not only a set of elements (vectors)
but also “valid” definitions of vector addition and scalar multiplication.
Also inherent in the definition is the fact that the vector space Ir contains
all “combinations” of its own vectors: if x and y are in V, then ax+ by is
also in ?r. The rules of algebra are so much a part of us that some of the
requirements may at first appear above definition; however, they are
necessary. A few more vector space properties which may be deduced from
the above definition are as follows:

1. Ox= 8 (where “0” is the zero scalar).
2. d9= 8.
3. (- 1)x= -xx.

Example 1. The Real 3-tuple Space S3. The space 9’ consists in the set of all

*The scalars are any set of elements which obey the usual rules of algebra. A set of elements
which obeys these rules constitutes a field (see Hoffman and Kunze [2.6]). We usually use as
scalars either the real numbers or the complex numbers. There are other useful fields, however
(P&C 2.4).
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real  3- tuples  (al l  ordered sequences of  three real  numbers) ,  x =  (&,&,Q,  y
= (~i,r)~,~),  with the following definitions of addition and scalar multiplication:

(2.2)

It is clear that the zero vector for this 3-tuple space, 8 = (0,0,0), satisfies x + 8 =x.
We show that 0 is unique by assuming another vector y also satisfies x+ y =x; that
is,

or & + 7jj = &. The properties of scalars then require vi=0 (or y = e). It is easy to
prove that 9L3, as defined above, satisfies the other requirements for a linear space.
In each instance, questions about vectors are reduced to questions about scalars.

We emphasize that the definition of a3 says nothing about coordinates.
Coordinates are multipliers for reference vectors (reference arrows, for
instance). The 3-tuples are vectors in their own right. However, there is a
commonly used correspondence between $FL3  and the set of vectors (ar-
rows) in the usual three-dimensional space which makes it difficult not to
think of the 3-tuples as coordinates. The two sets of vectors are certainly
equivalent. We will, in fact, use this natural correspondence to help
illustrate vector concepts graphically.

Example 2. The Two-Dimensional Space of Points (or Arrows). This space con-
sists in the set of all points in a plane. Addition is defined by the parallelogram rule
using a fixed reference point (see Figure 2.2). Scalar multiplication is defined as
“length” multiplication using the reference point. The zero vector is obviously the

Figure 2.2. The two-dimensional space of points.
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reference point. Each of the requirements can be verified by geometrical argu-
ments.

An equivalent (but not identical) space is one where the vectors are not the
points, but rather, arrows to the points from the reference point. We distinguish
only the magnitude and direction of each arrow; two parallel arrows of the same
length are considered identical.

Both the arrow space and the point space are easily visualized: we often
use the arrow space in two or three dimensions to demonstrate concepts
graphically. Although the arrow space contains no inherent reference
arrows, we sometimes specify reference arrows in order to equate the
arrows to vectors in CJL3. Because of the equivalence between vectors in C9L3
and vectors in the three-dimensional space of points, we occasionally refer
to vectors in $R3 and in other spaces as points.

Example 3. The Space of Column Vectors ‘X3 x ‘. The space 91L3  x ’ consists in
the set of all real 3x1 column matrices (or column vectors), denoted by

with the following definitions of addition and scalar multiplication:

(2.3)

In order to save space in writing, we occasionally write vectors from
9lL3x  ’ in the transposed form x = (5, t2 t3)‘. The equivalence between
9lL3x  ’ and 9L3 is obvious. The only difference between the two vector
spaces is in the nature of their vectors. Vectors in 9lL3x ’ can be multiplied
by m x 3 matrices (as in Section 1.5), whereas vectors in CR3 cannot.
Example 4. The Space of Real Square-Summable Sequences, I,. The space t2
consists in the set of all infinite sequences of real numbers, x= ([r,&,t3,. . .),
Y=@I~J~,Q,...)  which are square summable; that is, for which XF- rti2 < cc.
Addition and scalar multiplication in Z, are defined by

ax ii (a&&, 43,.  . . )
(2.4)

Most of the properties required by the definition of a linear space are easily
verified for Z2;  for instance, the zero vector is obviously 8 = (0,0,0, . . .). However,
there is one subtle difference between 1, and the space 9L3 of Example 1. Because
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the sequences in Z2 are infinite,
in l2. It can be shown that

it is not obvious that if x and y are in I,, x + y is also

[This fact is known as the triangle inequality (P&C 5.4)]. Therefore,

and x + y is square-summable. The requirement of square summability is a definite
restriction on the elements of Z2; the simple sequence (I, 1, 1,. . .), for instance, is not
in 12.

The definition of CR3 extends easily to w, the space of n-tuples of real
numbers (where n is a positive integer). The space anx ’ is a similar
extension of X3 x ’ Mathematically these “n-dimensional” spaces are no.
more complicated than their three-dimensional counterparts. Yet we are
not able to draw arrow-space equivalents because our physical world is
three-dimensional. Visualization of an abstract vector space is most easily
accomplished by thinking in terms of its three-dimensional counterpart.

The spaces CRn, wx ‘, and I, can also be redefined using complex
numbers, rather than real numbers, for scalars. We denote by $ the
complex n-tuple space. We use the symbol %zx ’ for the space of complex
n x 1 column vectors. Let 1; represent the space of complex square-
summable sequences. (We need a slightly different definition of square
summability for the space Zi:EF= llsi12  < cc). In most vector space defi-
nitions, either set of scalars can be used. A notable exception to inter-
changeability of scalars is the arrow space in two or three dimensions. The
primary value of the arrow space is in graphical illustration. We have
already discussed the equivalence of the set of complex scalars to the
two-dimensional space of arrows. Therefore, substituting complex scalars
in the real two-dimensional arrow space would require four-dimensional
graphical illustration.

We eventually find it useful to combine simple vector spaces to form
more complicated spaces.

Definition. Suppose ?i and w are vector spaces. We define the Cartesian
product ?r x 02ui of the spaces Ir and % to be the set of pairs of vectors

z i (X,Y), with x in Ir and y in ‘?.$.  We define addition and scalar
multiplication of vectors in Ir x ‘% in terms of the corresponding opera-
tions in ‘v and in w : if zr = (x,,y,) and z2 = (x2,y2), then

z,+z,  A 0% + x29 Y 1+ Y2)

az, =*(axPaY,)
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Example 5. A Cartesian Product. Let x = (&,t2),  a vector in 3’. Let y= (qr), a

vector in 9%‘.  Then z i ((51,52),  (qi)) is a typical vector in 9L2 x 9’. This Cartesian
product space is clearly equivalent to 913. Strictly speaking, however, z is not in R3.
It is not a 3-tuple, but rather a 2-tuple followed by a 1-tuple. Yet we have no need
to distinguish between 913 and %2X 9,‘.

Function Spaces

Each vector in the above examples has discrete elements. It is a small
conceptual step from the notion of an infinite sequence of discrete num-
bers (a vector in I,) to the usual notion of a function—a “continuum” of
numbers. Yet vectors and functions are seldom related in the thinking of
engineers. We will find that vectors and functions can be viewed as
essentially equivalent objects; functions can be treated as vectors, and
vectors can be treated as functions. A function space is a linear space
whose elements are functions. We usually think of a function as a rule or
graph which associates with each scalar in its domain a single scalar value.
We do not confuse the graph with particular values of the function. Our
notation should also keep this distinction. Let f denote a function; that is,
the symbol f recalls to mind a particular rule or graph. Let f(t) denote the
value of the function at t. By f = g, we mean that the scalars f(t) and g(t) are
equal for each t of interest.

Example 6. 9”, The Polynomials of Degree Less Than n. The space 9” consists
in all real-valued polynomial functions of degree less than n : f(t) = & + t2t + - - - +
&,t”-’  for all real t. Addition and scalar multiplication of vectors (functions) in qn
are defined by

(2.5)

for all t. The zero function is  for all t. This zero function is unique; if the
function g also satisfied f + g=f, then the values of f and g would satisfy

(f+g)(t)=f(t)+g(t)=f(t)

It would follow that for all t, or The other requirements for a vector
space are easily verified for qp”.

We emphasize that the vector f in Example 6 is the entire portrait of the
function f. The scalar variable t is a “dummy” variable. The only purpose
of this variable is to order the values of the function in precisely the same
way that the subscript i orders the elements in the following vector from Z2:

x=(&t2 ,..., ,,**-5. )
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Figure 2.3. A function f and its values f(t).

Figure 2.3 distinguishes graphically between the vector f and its value at t
for the specific function f defined by f(t) = 2 + 0.5 t. Figure 2.4 distinguishes
in a similar manner between an infinite sequence x and its ith element.

It is evident that the vector x from Z2 is just as much a function as is the
polynomial f from (Tn. In the space of polynomials, the index t is
continuous; in the space of infinite sequences the index i is discrete—it
takes on only positive integral values. In the latter case, we could as well
refer to the ith element li as the value of x at i. In point of fact, most
vector spaces can be interpreted as spaces of functions; the terms vector
space and function space are somewhat interchangeable. However, it is
common practice to use the term function space only for a space in which
the index t varies continuously over an interval.

It is unfortunate that the symbol f(t) is commonly used to represent both
a function and the value of that function at t. This blurring of the meaning
of symbols is particularly true of the sinusoidal and exponential functions.
We will try to be explicit in our distinction between the two concepts. As
discussed in the preface, boldface type is used to emphasize the interpreta-
tion of a function as a vector. However, to avoid overuse of boldface type,
it is not used where emphasis on the vector interpretation appears un-

i

Figure 2.4. The elements 6 of an infinite
sequence x.
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necessary; thus the value of a function f at t may appear either as f(t) or as
f(t). Furthermore, where confusion is unlikely, we sometimes use standard
mathematical shorthand; for example, we use Jb,fgdt  to mean Jb,f(t)g(t)dt.

It is difficult to describe or discuss functions in any detail except in
terms of their scalar values. In Example 6, for instance, the definitions of
addition and scalar multiplication were given in terms of function values.
Furthermore, we resorted again to function values to verify that the vector
space requirements were met. We will find ourselves continually reducing
questions about functions to questions about the scalar values of those
functions. Why then do we emphasize the function f rather than the value
f(t)? Because system models act on the whole vector f rather than on its
individual values. As an example, we turn to the one system model we
have explored thus far-the matrix equation Ax= y which was introduced
in Section 1.5. If A is an m X n matrix, the vector x is a column matrix in
9lLnX1; y i s  in  9Lmx1. Even though the matrix multiplication requires
manipulation of the individual elements (or values) of x, it is impossible to
determine any element of y without operating on all elements of x. Thus it
is natural to think in terms of A operating on the whole vector x. Similarly,
equations involving functions require operations on the whole function
(e.g., integration), as we shall see in Section 2.3.

Example 7. The Space e(iz,  b) of Continuous Functions. T h e  v e c t o r s  i n  e(a,b)
are those real functions which are defined and continuous on the interval
Addition and scalar multiplication of functions in (?(a,  b) are defined by the
standard function space definitions (2.5) for all t in [a,b].  It is clear that the sums
and scalar multiples of continuous functions are also continuous functions.

Example 8. The Real Square-integrable Functions. The space
consists in all real functions which are defined and square integrable on the
interval [a,b]; that is, functions f for which*

/
b2f (t)dt<oo

a

Addition and scalar multiplication of functions in are defined by (2.5) for
all t in [a,b]. The space lZ,(a,b)  is analogous to Z,. It is not clear that the sum of
two square-integrable functions is itself square integrable. As in Example 4, we
must rely on P&C 5.4 and the concepts of Chapter 5 to find that

*The integral used in the definition of C,(a,b) is the Lebesgue integral. For all practical
purposes, Lebesgue integration can be considered the same as the usual Riemann integration.
Whenever the Riemann integral exists, it yields the same result as the Lebesgue integral. (See
Royden [2.l].)
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It follows that if f and g are square integrable, then f + g is square integrable.

Example 9. A Set of Functions. The set of positive real functions [together with
the definitions of addition and scalar multiplication in (2.91 does not form a vector
space. This set contains a positive valued function f, but not the negative valued
function -f; therefore, this set does not include all sums and multiples of its
members.

Example 10. Functions of a Complex Variable. Let Y be the space of all
complex functions w of the complex variable z which are defined and analytic on
some region G! of the complex z plane.* For instance, s1 might be the circle ]z 1 Q 1.
We define addition and scalar multiplication of functions in Ir by

(2.6)

for all z in Sk In this example, the zero vector 8 is defined by 8 (z) = 0 for all z in St.
(We do not care about the values of the functions 0 and w outside of a.)

Exercise 1. Show that if w1 and w2 are in the space V of Example 10,
then w1 + w2 is also in ‘v.

Example 11. A Vector Space of Random Variables t A random variable x is a
numerical-valued function whose domain consists in the possible outcomes of an
experiment or phenomenon. Associated with the experiment is a probability
distribution. Therefore, there is a probability distribution associated with the values
of the random variable. For example, the throwing of a single die is an experiment.
We define the random variable x in terms of the possible outcomes u by

= 2,4,6 (the die is even)

= 1,3,5 (the die is odd)

The probability mass function w associated with the outcome (I of the experiment is
given by

*Express the complex variable t in the form s+ it, where s and t are real. Let the complex
function w be written as u+ iv, where u(z) and v(z) are real. Then w is analytic in !G? if and
only if the partial derivatives of II and v are continuous and satisfy the Cauchy-Riemann
conditions in Sz:

For instance, w(z) A z2 is analytic in the whole z plane. See Wylie [2.11].
† See Papoulis [2.7], or Cramér and Leadbetter [2.2].
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Then the probability mass function w, associated with the values of the random
variable x is

o,(x) = 4 forx=O,l

We can define many other random variables
experiment. One other random variable is

(functions) for the same die-throwing

1 (the die is 1)

2,3,4,5,6 (the die is not 1)

where

Oy(Y) =$ fory=O

=i fory=l

Two random variables x1 and x2 are equal if and only if their values x,(u)  and
x2(u)  are identical for all possible outcomes u of the experiment.

A vector space of random variables defined on a given experiment consists in a
set of functions defined on the possible outcomes of the experiment, together with
the following definitions of addition and scalar multiplication*:

for all possible outcomes u of the experiment. Let Y be the space of all possible
random variables defined on the above die-throwing experiment. If x and y are the
particular vectors described above, then is given by

and

What is the zero random variable for the vector space Y? It is       = 0 for   = 1,…,6.

*We note that the set of functions must be such that it includes all sums and scalar multiples
of its members.
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2.2 Relations Among Vectors

Combining Vectors

Assuming a vector represents the condition or change in condition of a
system, we can use the definitions of addition and scalar multiplication of
vectors to find the net result of several successive changes in condition of
the system.

Definition. A vector x is said to be a linear combination of the vectors x,,
x29 - * ’ , x, if it can be expressed as

(2.7)

for some set of scalars ci, . . . , cn. This concept is illustrated in Figure 2.5
where x= fxi +x2-xX,.

A vector space ‘Y is simply a set of elements and a definition of linear
combination (addition and scalar multiplication); the space V includes all
linear combinations of its own elements. If S is a subset of ?r, the set of
all linear combinations of vectors from S , using the same definition of
linear combination, is also a vector space. We call it a subspace  of V. A
line or plane through the origin of the three-dimensional arrow space is an
example of a subspace.

Definition. A subset % of a linear space y is a linear subspace (or linear
manifold) of V if along with every pair, x, and x2, of vectors in %, every
linear combination cix, + czx2  is also in % .* We call ‘% a proper subspace
if it is smaller than Ir; that is if % is not V itself.

Figure 2.5. A linear combination of arrows.

*In the discussion of infinite-dimensional Hilbert spaces (Section 5.3), we distinguish between
a linear subspace and a linear manifold. Linear manifold is the correct term to use in this
definition. Yet because a finite-dimensional linear manifold is a linear subspace as well, we
emphasize the physically motivated term subspace.
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Example 1. A Linear Subspace. The set of vectors from a3 which are of the
form (Cl, $9 cr + ~2) forms a subspace of ?k3.  It is, in fact, the set of all linear
combinations of the two vectors (1, 0, 1) and (0, 1, 1).

Example 2. A Solution Space. The set QJ  of all solutions to the matrix equation

is a subspace of 32,3x I. By elimination (Section 1.5), we find that %J contains all
vectors of the form (0 t2 -t2)=.  Clearly, % consists in all linear combinations of
the single vector (0 1 -l)T. This example extends to general matrices. Let A be an
m x n matrix. Let x be in %“x  ‘. Using the rules of matrix multiplication (Appen-
dix 1) it can be shown that if x1 and x2 are solutions to Ax- 8, then an arbitrary
linear combination crxt + c2x2  is also a solution. Thus the space of solutions is a
subspace of 31t” x ‘.

Example 3. Subspaces (Linear Manifolds) of Functions. Let (.?2(s2) be the space of
all real-valued functions which are defined and have continuous second partial
derivatives in the two-dimensional region Sk (This region could be the square
0 Q s < 1,O < t < 1, for instance.) Let r denote the boundary of the region Qt. Linear
combination in e’(s2)  is defined by

(f+g)W i f(s,t)+gb,t)

(afh 0 9 df(s, 0)
(2.8)

for all (s, t) in !Z The functions f in (Z’(G)  which satisfy the homogeneous boundary
condition f(s, t) = 0 for (s, t) on I? constitute a linear manifold of e2(Q).  For if f, and
f, satisfy the boundary condition, then (ctf, + c2fz)(s,  t) = crf,(s,  t) + czf2(s, t) = 0,
and the arbitrary linear combination ctfr + c2f2  also satisfies the boundary condi-
tion.

The set of solutions to Laplace’s equation,

(2.9)

for all (s, t) in !J,  also forms a linear manifold of c’(s2).  For if f, and f2 both satisfy
(2.9),  then

a 2klfl(s, t) + czus,  01 + a 2[Clf,(s,t)  + c2f2(s,  01 = o

as2 at2

and the arbitrary linear combination crf, + c2f2  also satisfies (2.9). Equation (2.9) is
phrased in terms of the values of f. Laplace’s equation can also be expressed in the
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vector notation

V2f=0 (2.10)

The domain of definition &? is implicit in (2.10). The vector 8 is defined by
8 (s, t) = 0 for all (s, t) in a.

In using vector diagrams to analyze physical problems, we often resolve
a vector into a linear combination of component vectors. We usually do
this in a unique manner. In Figure 2.5, x is not a unique linear combina-
tion of xi, x2, and x3; x = Ox,  +3x,+ 2x, is a second resolution of x; the
number of possible resolutions is infinite. In point of fact, x can be
represented as a linear combination of any two of the other vectors; the
three vectors xi, x2, and x3 are redundant as far as representation of x is
concerned.

Definition. The vectors xi, x2,. . . , x,, are linearly dependent (or coplanar) if
at least one of them can be written as a linear combination of the others.
Otherwise they are linearly independent. (We often refer to sets of vectors
as simply “dependent” or “independent.“)

In Figure 2.5 the set {xi, x2, x3}  is dependent. Any two of the vectors
form an independent set. In any vector space, a set which contains the 8
vector is dependent, for 8 can be written as zero times any other vector in
the set. We define the 8 vector by itself as a dependent set.

The following statement is equivalent to the above definition of inde-
pendence: the vectors xi, x2,. . . , x, are linearly independent if and only if

c,x,+c2x2+- +c,x,=e  * c1=***  =cn=o (2.11)

Equation (2.11) says the “zero combination” is the only combination that
equals 8. For if ci were not 0, we could simply divide by Ci to find Xi as a
linear combination of the other vectors, and the set (xi> would be
dependent. If ci = 0, Xi cannot be a linear combination of the other vectors.
Equation (2.11) is a practical tool for determining independence of vectors.

Exercise 1. Explore graphically and by means of (2.11) the following set
of vectors from

Example 4. Determining Independence In the space (X3 let xl = (1, 2, l), x2 = (2,
3, l), and x3 = (4, 7, 3). Equation (2.11) becomes
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Each component of this vector equation is a scalar-valued linear algebraic equa-
tion. We write the three equations in the matrix form:

We solve this equation by elimination (Section 1.5) to find cl = - 2c, and c2 = - c3.
Any choice for c3 will yield a particular nonzero linear combination of the vectors
x1,  x2, x3 which equals 8. The set is linearly dependent.

Definition. Let s e {xi, x2,. . . ,x,,} be a set of vectors from a linear space
V. The set of all linear combinations of vectors from S is called the
subspace of Y spanned (or generated) by 5 .* We often refer to this
subspace as span( S ) or span

Bases and Coordinates

We have introduced the vector space concept in order to provide a
common mathematical framework for different types of systems. We can
make the similarities between systems more apparent by converting their
vector space representations to a standard form. We perform this stan-
dardization by introducing coordinate systems. In the example of Figure
2.5, the vectors {x, xi, x2, x3} span a plane; yet any two of them will span
the same plane. Two of them are redundant as far as generation of the
plane is concerned.

Definition. A basis (or coordinate system) for a linear space ?r is a
linearly independent set of vectors from ?r which spans Ir.

Example 5. The Standard Bases for $Iln, OJR”  x ‘, and 9”. It is evident that any
three linearly independent vectors in S3 form a basis for CR3. The n-tuples

(2.12)

form a basis for 9’. The set E i {et,...,e,} is called the standard basis for 9Ln.

We use the same notation to represent the standard basis for

where e, is a column vector of zeros except for a 1 in the ith place. The set % i {f,,

f,, * * * , f,} defined by fk(t)= tkT1  forms a basis for 9” ; it is analogous to the
standard bases for 3,” and

*The definition of the space spanned by an infinite set of vectors depends on limiting
concepts. We delay the definition until Section 5.3.
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Example 6. The Zero Vector Space. The set { 6} together with the obvious
definitions of addition and scalar multiplication forms a vector space which we
denote 0 . However, the vector 8, by itself, is a dependent set. Therefore 0 has no
basis.

If !X : {Xi,  x2,. . .,x,} is a basis for the space V, any vector x in V can
be written uniquely as some linear combination

x=clxl+czx2+“’  +c,x, (2.13)

of vectors in % . The multipliers ci are called the coordinates of x relative to
the ordered basis %. It is easy to show that the coordinates relative to a
particular ordered basis are unique: just expand x as in (2.13) for a second
set {di} of coordinates; then independence of the basis vectors implies
4= ci.

It is common to write the coordinates of a vector relative to a particular
basis as a column matrix. We will denote by [xl% the coordinate matrix of
the vector x relative to the (ordered) basis % ; thus corresponding to (2.13)
we have

(2.14)

Some bases are more natural or convenient than others. We use the term
natural basis to mean a basis relative to which we can find coordinates by
inspection. The bases of Example 5 are natural bases for %‘, Xnx i, and
CP’.  Thus if f(t)=&+t2‘zt+--  +&t”-‘, then [f],=(& 52-$,)T.

Example 7. Coordinates for Vectors in S3. Let OX  i {x1, x2, x,} be an ordered
basis for 9t3, where x1 = (1, 2, 3), x2= (2, 3, 2), and x3=(2, 5, 5). Let x = (1, 1, 1). To
find [xl,, we must solve (2.13):

++2C2+2C3, 2Cl+3C2+5C3, 3C,+2C2+5C3)

We rewrite the vector (3-tuple) equation in the matrix notation:

(2.15)
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We solved this equation in Example 1 of Section 1.5. The result is

The coordinate matrix of Example 7 is merely a simple way of stating
that x= 3x1 +$x2- $,x3.  We choose to write the coordinates of a vector x
as a column matrix because it allows us to carry out in a standard matrix
format all manipulations involving the coordinates of x.

In Example 4 of Section 1.5 we solved (2.15) with a general right-hand
side; that is, for x=(~~,r/~,~).  That solution allows us to determine quickly
the coordinate matrix, relative to the basis !X of Example 7, for any vector
x in $F13,  including the case x= (0, 0, 0). In general, (2.13) includes (2.11);
inherent in the process of finding coordinates for an arbitrary vector x is
the process of determining whether 3(, is a basis. If % is not independent,
there will exist nonzero coordinates for x= 8. If % does not span the
space, there will be some vector x for which no coordinates exist (P&C
2.7).

Example 8. Coordinates for Vectors in 9’. Let S i {f,, f2, f,} be an ordered
basis for q3, where f,(t)= 1 +2t+3t2,  f2(t)=2+3t+2t2,  and f3(t)=2+5t+5t2.  Let
f be defined by f(t) = 1 + t + t2. To find [f],, we solve (2.13), f = c,f l + c2f2  + c3f3.  To
solve this equation, we evaluate both sides at t:

f(t) = (c,f1+ c2f2 + c$3)(0

= Clf,(d + &W + @3(t) (2.16)

1+t+t2=c1(1+2t+3t2)+c2(2+3t+2t2)+c3(2+5t+5t2)

Equating coefficients on like powers of t we again obtain (2.15). The coordinate
matrix of f is

In order to solve the vector (function) equation (2.16) we converted it to
a set of scalar equations expressed in matrix form. A second method for
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converting (2.16) to a matrix equation in the unknowns {c,.}  is to evaluate
the equation at three different values of t. Each such evaluation yields an
algebraic equation in { ci}.  The resulting matrix equation is different from
(2.15),  but the solution is the same. We now describe a general method,
built around a natural basis, for converting (2.13) to a matrix equation. The
coordinate matrix of a vector x relative to the basis !?C = {x1,. . . , xn} is
Cxln = (c, - * * CJ’, where the coordinates ci are obtained by solving the
vector equation

x=c,x,+-*-  +c,x,

A general method for obtaining an equivalent matrix equation consists in
taking coordinates of the vector equation relative to a natural basis —a
basis relative to which coordinates can be obtained by inspection. The
vector equation becomes

(2.17)

We determine [xl%, [x&, …  , [x,]~ by inspection. Then we solve (2.17)
routinely for [xl%.

Example 9. Finding Coordinates via a Natural Basis. Let the set 9 2 {f,, f,, f3}

be a basis for 9’, where f,(t)=l+2t+3t2, f2(t)=2+3t+2t2,  and f,(t)=2+5t+
5 t2. We seek [f], for the vector f(t) = 1 + t + t2. To convert the defining equation for
coordinates into a matrix equation, we use the natural basis CJC i {gl, g2, g3},
where gk(t)= t k-1. For this problem, (2.17) becomes

VI, = (PII, :. P21, i [r,l,)mT

or

The solution to this equation is [f], = (5 $ - 3)‘. (Compare with Example 8.)
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Typically, the solution of (2.17) requires the elimination procedure

(2.18)

If we wish to solve for the coordinates of more than one vector, we still
perform the elimination indicated in (2.18),  but augment the matrix with
all the vectors whose coordinates we desire. Thus if we wish the
coordinates for zi, z2, and z3, we perform elimination on

This elimination requires less computation than does the process which
goes through inversion of the matrix ([xi]%  i l - l i [x,,]~),  regardless of
the number of vectors whose coordinates we desire (P&C 1.3).

Example 10. A Basis and Coordinates for a Subspace. Let %! be the subspace of
Tp3 consisting in all functions f defined by the rule f(t)=& + t2t + (& +&)t2 for
some [i and t2. Note that the standard basis functions for Y3 are not contained in
‘?lf.  The functions defined by gi( t) = 1 + t2 and g2(t)  = t + t2 are clearly independent
vectors in %. Because there are two “degrees of freedom” in % (i.e., two
parameters [i and 42 must be given to specify a particular function in 7JJ) we

expect the set 9 4 {gi, g2} to span %f and thus be a basis. We seek the coordinate
matrix [f], of an arbitrary vector f in ‘%f  . That is, we seek cl and c2 such that

f(t) = c&(t) + c2g2w

The matrix equation (2.17) can be written by inspection using the natural basis FYZ
of Example 9:

[II, = ([&I, i k¶2la)Me ~

Then Ci =& and

lfl
(1

9 =
(6 12

Because we were able to solve uniquely for the coordinates, we know that
4 is indeed a basis for %. The subspace % is equivalent to the subspace
of Example 1. Note that the elimination procedure does not agree precisely
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with (2.18) because there are only two degrees of freedom among the three
coefficients of the arbitrary vector f in W .

Dimension

The equivalence between the three vector spaces CR3,  T3, and 9lL3x  ’ is
apparent from Examples 7 and 8; The subspace % of Example 10,
however, is equivalent to 9R,2x ’ rather than 9L3 x I, even though the
elements of % are polynomials in (Y3. The key to the equivalence lies not
in the nature of the elements, but rather in the number of “degrees of
freedom” in each space (the number of scalars which must be specified in
order to specify a vector); more to the point, the key lies in the number of
vectors in a basis for each space.

Definition. A vector space is finite dimensional if it is spanned by a finite
number of vectors. It is intuitively clear that all bases for a finite-
dimensional space contain the same number of vectors. The number of
vectors in a basis for a finite-dimensional space Y is called the dimension
of ?r and is denoted by dim( ‘Y).

Thus CR3 and 53”  are both three-dimensional spaces. The subspace % of
Example 10 has dimension 2. Knowledge of the dimension of a space (or a
subspace) is obtained in the course of determining a basis for the space

(subspace). Since the space 0 2 { 8} has no basis, we assign it dimension
zero.

Example 11. A Basis for a Space of Random Variables. A vector space Y of
random variables, defined on the possible outcomes of a single die-throwing
experiment, is described in Example 11 of Section 2.1. A natural basis for ‘v is the

set of random variables 5% 9 {Xi, i= 1,...,6},  where

Xi(U) ’ 1 for u = i (the die equals i)

i 0 for (I # i (the die does not equal i)

That 5% is a basis for Y can be seen from an attempt to determine the coordinates
with respect to 5X of an arbitrary random variable z defined on the experiment. If

then [z]% = (ci . . . C6)T;  a unique representation exists.



54 System Models: Transformations on Vector Spaces

The random variables {xi,. . . , xg}  are linearly independent. However, they are
not statistically independent. Statistical independence of two random variables x
and y means that knowledge of the value of one variable, say, x, does not tell us
anything about the outcome of the experiment which determines the value of the
other variable y, and therefore it tells us nothing about the value of y. The random
variables {Xi}  are related by the underlying die-throwing experiment. If we know
xi = 0, for instance, then we know u # 1 (the die is not equal to 1); the probability
mass functions for x2,..., x, and for all other vectors in V are modified by the
information concerning the value of xi. The new probability mass functions for x
and y of Example 11, Section 2.1, given that xi = 0, are

ox(x;x,=O)  = 5 for x=0 w,(y;x,=O)=l  fory=O

=32 forx=l =0 fory=l

The space I2 of square-summable sequences described in Example 4 of
Section 2.1 is obviously infinite dimensional. A direct extension of the
standard basis for % seems likely to be a basis for Z2. It is common
knowledge that functions f in e(O, 27~),  the space of functions continuous
on [0,  27~1, can be expanded uniquely in a Fourier series of the form
f(O=b,+X~., ( ak sinkt + b,cos kt). This fact leads us to suspect that the
set of functions

9: (l,sint,cost,sin2t,cos2t,...} (2.19)

forms a basis for L?(O,  2w),  and that the coordinates of f relative to this
basis are

This suspicion is correct. The coordinates (or Fourier coefficients) actually
constitute a vector in Z2. We show in Example 11 of Section 5.3 that Z2
serves as a convenient standard space of coordinate vectors for infinite-
dimensional spaces; in that sense, it plays the same role that %’ x ’ does
for  n-dimensional spaces. Unfortunately, the concepts of independence,
spanning sets, and bases do not extend easily to infinite-dimensional vector
spaces. The concept of linear combination applies only to the combination
of a finite number of vectors. We cannot add an infinite number of vectors
without the concept of a limit; this concept is introduced in Chapter 5.
Hence detailed examination of infinite-dimensional function spaces is left
for that chapter.
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There is no inherent basis in any space-one basis is as good as another.
Yet a space may have one basis which appears more convenient than
others. The standard basis for 9” is an example. By picking units of
measurement in a physical system (e.g., volts, feet, degrees centigrade) we
tie together the system and the model; our choice of units may automati-
cally determine convenient or standard basis vectors for the vector space
of the model (based on, say, 1 V, 1 ft, or 1 O C).

By choosing a basis for a space, we remove the most distinguishing
feature of that space, the nature of its elements, and thus tie each vector in
the space to a unique coordinate matrix. Because of this unique connection
which a basis establishes between the elements of a particular vector space
and the elements of the corresponding space of coordinate matrices, we are
able to carry out most vector manipulations in terms of coordinate
matrices which represent the vectors. We have selected %,‘x ‘, rather than
%“, as our standard n-dimensional space because matrix operations are
closely tied to computer algorithms for solving linear algebraic equations
(Section 1.5). Most vector space manipulations lead eventually to such
equations.

Because coordinate matrices are themselves vectors in a vector space
(w x ‘), we must be careful to distinguish vectors from their coordinates.
The confusion is typified by the problem of finding the coordinate matrix
of a vector x from wx ’ relative to the standard basis for ntnx ‘. In this
instance [xl, =x; the difference between the vector and its coordinate
matrix is only conceptual. A vector is simply one of a set of elements,
although we may use it to represent the physical condition of some system.
The coordinate matrix of the vector, on the other hand, is the unique set of
multipliers which specifies the vector as a linear combination of arbitrarily
chosen basis vectors.

2.3 System Models

The concept of a vector as a model for the condition or change in
condition of a system is explored in Sections 2.1 and 2.2. We usually
separate the variables which pertain to the condition of the system into two
broad sets: the independent (or input) variables, the values of which are
determined outside of the system, and the dependent (or output) variables,
whose values are determined by the system together with the independent
variables. A model for the system itself consists in expressions of relations
among the variables. In this section we identify properties of system
models.
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Example I. An Economic System Let x represent a set of inputs to the U. S.
national economy (tax rates, interest rates, reinvestment policies, etc.); let y
represent a set of economic indicators (cost of living, unemployment rate, growth
rate, etc.). The system model T must describe the economic laws which relate y to
X.

Example 2. A Baking Process. Suppose x is the weight of a sample of clay
before a baking process and y is the weight after baking. Then the system model T
must describe the chemical and thermodynamic laws insofar as they relate x and y.

Example 3. A Positioning System. Suppose the system of interest is an armature-
controlled motor which is used to position a piece of equipment. Let x represent
the armature voltage, a function of time; let y be the shaft position, another
function of time. The system model T should describe the manner in which the
dynamic system relates the function y to the function x.

The variables in the economic system of Example 1 clearly separate into
input (or independent) variables and output (or system condition)
variables. In Example 2, both the independent and dependent variables
describe the condition of the system. Yet we can view the condition before
baking as the input to the system and view the condition after baking as
the output. The dynamic system of Example 3 is reciprocal; x and y are
mutually related by T. Since the system is used as a motor, we view the
armature voltage x as the input to the system and the shaft position y as
the output. We could, as well, use the machine as a dc generator; then we
would view the shaft position as the input and the armature voltage as the
output.

The notation TX = y that we introduced in (1.1) implies that the model T
does something to the vector x to yield the vector y. As a result, we may
feel inclined to call x the input and y the output. Yet in Section 1.3 we note
that equations are sometimes expressed in an inverse form. The positions
of the variables in an equation do not determine whether they are inde-
pendent or dependent variables. Furthermore, we can see from Example 3
that the input and output of a system in some instances may be determined
arbitrarily. In general, we treat one of the vectors in the equation TX = y as
the input and the other as the output. However, unless we are exploring a
problem for which the input is clearly defined, we use the terms input and
output loosely in reference to the known and unknown variables, respec-
tively.

Transformations on Vector Spaces

Our present purpose is to make more precise the vaguely defined model T
introduced in (1.1) and illustrated above.

Definition. A transformation or function T: 5 ,-) s, is a rule that
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associates with each element of the set S, a unique element from the set
S,*. The set S, is called the domain of T; 5, is the range of definition of T.

Our attention is directed primarily toward transformations where s, and
S, are linear spaces. We speak of T: V+ (?l! as a transformation from the
vector space ‘v into the vector space W. An operator is another term for a
transformation between vector spaces. We use this term primarily when
the domain and range of definition are identical; we speak of T: V+ ?r as
an operator on V. If S y is a subset of ?r, we denote by T( s y) the set of
all vectors TX in % for which x is in s y; we refer to T( S y) as the image
of S y under T. The range of T is T(V), the image of V under T. The
nullspace of T is the set of all vectors x in V such that TX = 8, (8, is the
zero vector in the space %). If SW is a subset of ‘?&,  we call the set of
vectors x in Ir for which TX is in S U the inverse image of S GuT. Thus the
nullspace of T is the inverse image of the set { 8, }. See Figure 2.6.

Figure 2.6. Abstract illustration of a transformation T.

Example 4. A Transformation Define T: ?iL2+%’  by

T(L52) :)/G-l for(f+<i>l (2.20)

AO= for [f+[i< 1

Physically, the vector TX can be interpreted as the distance between x and the unit
circle in the two-dimensional arrow space. The variables t, and I2 are “dummy”
variables; they merely assist us in cataloguing the “values” of T in the defining

*In the modeling process we use the function concept twice: once as a vector—a model for
the condition of a system—and once as a relation between input and output vectors—a model
for the system itself. In order to avoid confusion, we use the term function in referring to
vectors in a vector space, but the term transformation in referring to the relation between
vectors.
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equation; we can use any other symbols in their place without changing the
definition of T. The range of T is the set of positive numbers in al. The nullspace
of T is the set consisting of all vectors in the domain R2 which satisfy [f + 6,’ < 1.

Suppose we wish to solve the equation TX= 1 for the transformation of
Example 4. In effect, we ask which points in the arrow space are a unit
distance from the unit circle—all points on the circle of radius 2. The
solution is not unique because T assigns to the single number 1 in 3’ more
than one vector in S2. The equation TX = -1, on the other hand, has no
solution because T does not assign the number -1 in %’ to any vector in
CF12. We now proceed to specify the properties of a transformation which
are necessary in order that the transformation be uniquely reversible.

Definition. Let T: ?r+ “?ti. Then T is one-to-one if

Xl 7-2 + TX, #TX, (2.21)

for all x, and x2 in 1/; that is, if T does not assign more than one x in ?r
to a single y in %J.

If T is one-to-one, any solution to TX= y is unique. It might appear that
the effect of T is reversible if T is one-to-one. The nonreversibility of T in
Example 4, however, arises only in part because T is not one-to-one. In
general, there may be vectors in the range of definition % which are not
associated in any way with vectors in Ir. In point of fact, range(T)  consists
precisely of those vectors y in w for which the equation TX= y is solvable.
Unless we know which vectors are in range(T),  we cannot reverse the
transformation.

Definition. Let T: V+ %. Then T is onto if

range(T)  = % (2.22)

That is, T is onto if every vector y in ‘% is associated with at least one
vector x in V.

Definition. If a transformation is one-to-one and onto, then it is invertible
—it can be reversed uniquely. If T: ‘v+(% is invertible, we define the
inverse of T to be the transformation T- ’ : w + Y which associates with
each y in % the unique vector x in V for which TX = y. See (2.29) for
another characterization of T- ‘.

Example 5. The Identity Operator, I. Let V be a vector space. Define the
operator I on Y by

IX:, (2.23)
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for all x in Y. The nullspace of I is &. Range (I)= ?r; thus I is onto. Furthermore,
I is one-to-one. Therefore, the identity operator is invertible.

Example 6. The Zero Transformation, 8. Let Y and % be vector spaces. Define
9: T’-+%J  b y

e&ew (2.24)

for all x in Y. The nullspace of 8 is Y. The range of 8 is eW. The zero
transformation is neither one-to-one nor onto. It is clearly not invertible.

Example 7.  A Transformation on a Function Space. Define T: b? (a,b)+%,’ by

Tf k lbff2(t)dt
a

(2.25)

for all f in (2 (a, b). This transformation specifies an integral-square measure of the
size of the function f; this measure is used often in judging the performance of a
control system. The function f is a dummy variable used to define T; the scalar t is
a dummy variable used to define f. In order to avoid confusion, we must carefully
distinguish between the concept of the function f in the vector space e(a, b) and
the concept of the transformation T which relates each function f in (?(a,  6) to a
vector in 9%‘.  The transformation acts on the whole function f-we  must use all
values of f to find Tf. The range of T is the set of positive numbers in a’; thus T is
not onto the range of definition CFL’.  The nullspace of T is the single vector fIy. If
we define f, and f2 by f,(t) = 1 and f2(t) = -1, then Tf, = Tf2; therefore T is not
one-to-one.

The transformations of Examples 4 and 7 are scalar valued; that is, the
range of definition in each case is the space of scalars. We call a
scalar-valued transformation a functional. Most functionals are not one-to-
one.

Example 8. A Transformation for a Dynamic System. Let e2(a, b) be the space of
functions which have continuous second derivatives on .[a,  b]. Define L: e2(a, b)
+WO) by

(Lf)(t)  e f~(t)+,(f(t)+0.01f3(t>) (2.26)

for all f in lZ2(a,  b) and all t in [a, b]. This transformation is a model for a particular
mass-spring system in which the spring is nonlinear. The comments under Example
7 concerning the dummy variables f and t apply here as well. As usual, the
definition is given in terms of scalars, functions evaluated at t. Again, L acts on the
whole function f. Even in this example we cannot determine any value of the
function Lf without using an “interval” of values of f, because the derivative
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function f’ is defined in terms of a limit of values of f in the neighborhood of t:

The nullspace of L consists in all solutions of the nonlinear differential equation,
Lf-eW ; restated in terms of the values of Lf, this equation is

f”(t)+a(f(t)+0.01f3(t))=0 a<t<b

To determine these solutions is not a simple task. By selecting C? (a, b) as the range
of definition, we ask that the function Lf be continuous; since Lf represents a force
in the mass-spring system described by (2.26) continuity seems a practical assump-
tion. By choosing e’(a,b) as the domain, we guarantee that Lf is continuous. Yet
the range of L is not clear. It is in the range of definition, but is it equal to the
range of definition? In other words, can we solve the nonlinear differential
equation Lf =u for any continuous u? The function f represents the displacement
versus time in the physical mass-spring system. The function u represents the force
applied to the system as a function of time. Physical intuition leads us to believe
that for given initial conditions there is a unique displacement pattern f associated
with each continuous forcing pattern u. Therefore, L should be onto. On the other
hand, since no initial conditions are specified, we expect two degrees of freedom in
the solution to Lf =u for each continuous u. Thus the dimension of nullspace (L) is
two, and L is not one-to-one.

Combining Transformations

The transformation introduced in Example 8 is actually a composite of
several simpler transformations. In developing a model for a system, we
usually start with simple models for portions of the system, and then
combine the parts into the total system model. Suppose T and U are both
transformations from II into % . We define the transformation aT+ bU:
‘-lb%  b y

(aT+ bU)x 4 aTx + bUx (2.27)

for all x in V. If G: % +G%, we define the transformation GT: V+%
bY

(GT)x i G(Tx) (2.28)

for all x in Ir. Equations (2.27) and (2.28) define linear combination and
composition of transformations, respectively.
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Example 9. Composition of Matrix Multiplications. Define G: a3+a2 by

and T: CR2+CX3  by

$3 i (5 $)

Then GT: (Zk2+CR2  is described by

Exercise 1. Let T: Y+%. Show that T is invertible if and only if
V = % and there is a transformation T- ’ : % -+ Y such that

T-‘T=m-l=I (2.29)

Exercise 2. Suppose G and T of (2.26) are invertible. Show that

(GT)-‘=T-‘G-l (2.30)

The composition (or product) of two transformations has two nasty
characteristics. First, unlike scalars, transformations usually do not com-
mute; that is, GT#TG.  As illustrated in Example 9, G and T generally do
not even act on the same vector space, and TG has no meaning. Even if G
and T both act on the same space, we must not expect commutability, as
demonstrated by the following matrix multiplications:
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Commutable operators do exist. In fact, since any operator commutes with
itself, we can write G2, as we do in Example 10 below, without being
ambiguous. Operators which commute act much like scalars in their
behavior toward each other (see P&C 4.29).

If two scalars satisfy ab = 0, then either a = 0, b = 0, or both. The second
matrix multiplication above demonstrates that this property does not
extend even to simple transformations. This second difficulty with the
composition of transformations is sometimes called the existence of divi-
sors of zero. If GT =8 and G #9, we cannot conclude that T = 9 ; the
cancellation laws of algebra do not apply to transformations. The difficulty
lies in the fact that for transformations there is a “gray” region between
being invertible and being zero. The range of T can lie in the nullspace of
G.

Example 10. Linear Combination and Composition of Transformations. The
space en (a, b) consists in all functions with continuous nth derivatives on [a, b].

Define G: 67” (a, b)+P-‘(a,b)  by Gf 9 f’ for all f in en (a, b). Then G2: e2(a, b)

+ e (a, b) is well defined. Let U: CZ2(a,  b)+ e(a, 6) be defined by (Uf)(t) i f(t)
+ 0.01f3(t)  for all f in e2(a, b) and all t in [a, b]. The transformation L of Example 8

can be described by L 9 G2 + au.

As demonstrated by the above examples, the domain and range of
definition are essential parts of the definition of a transformation. This
importance is emphasized by the notation T: ‘v+w. The spaces li‘ and
G2Lci  are selected to fit the structure of the situation we wish to model. If we
pick a domain that is too large, the operator will not be one-to-one. If we
pick a range of definition that is too large, the operator will not be onto.
Thus both ‘Y and ‘?lJ affect the invertibility of T. We apply loosely the
term finite (infinite) dimensional transformation to those transformations
that act on a finite (infinite) dimensional domain.

2.4 Linear Transformations

One of the most common and useful transformations is the matrix
multiplication introduced in Chapter 1. It is well suited for automatic
computation using a digital computer. Let A be an m X n matrix. We
define T: Wx1+9?Yx1  by

TX 5 Ax (2.3 1)

for all x in QYxl. We distinguish carefully between T and A. T is not A,
but rather multiplication by A. The nullspace of T is the set of solutions to
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the matrix equation Ax= 8. Even though T and A are conceptually
different, we sometimes refer to the nullspace of T as the nullspace of A.

Similarly, we define range(A)  b range(T).
Suppose A is square (m = n) and invertible; then the equation TX = Ax

= y has a unique solution x = A- ‘y for each y in W x ‘. But T- ’ is defined
as precisely that transformation which associates with each y in W x ’ the
unique solution to the equation TX= y. Therefore, T is invertible, and T- ’ :

is given by T- ‘y 2 A- ‘y.
The properties of matrix multiplication (Appendix 1) are such that

A(ax, + bx,) = aAx,  + bAx,. That is, matrix multiplication preserves linear
combinations. This property of matrix multiplication allows superposition
of solutions to a matrix equation: if x1 solves Ax= y, and x2 solves Ax =y2,
then the solution to Ax= y, +y2 is x, +x2.  From one or two input-output
relationships we can infer others. Many other familiar transformations
preserve linear combinations and allow superposition of solutions.

Definition. The transformation T: V+G2l(j  is linear if

T(ax, + bx2) = aTx, + bTx, (2.32)

for all vectors x1 and x2 in II‘ and all scalars a and b.

Example 1. Integration. Define T: C?(O, l)+(?(O, 1) by

(Tf)(t)  A i*f(s)ds (2.33)

for all f in e(O, 1) and all t in [0, I]. The linearity of this indefinite integration
operation is a fundamental fact of integral calculus; that is,

The operator (2.33) is a special case of the linear integral operator T: C? (a, b)-+
(? (c, d) defined by

(2.34)

for all f in e(a,b) and all t in [c,d]. We can substitute for the domain e(a,b) any
other space of functions for which the integral exists. We can use any range of
definition which includes the integrals (2.34) of all functions in the domain. The
function k is called the kernel of the integral transformation. Another special case
of (2.34) is T: h( - 00, oo)+ h( - co, cc) defined by
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for some g in I.Q - co, oo), all f in C,( - cc,  co),  and all t in (- co, 00).  This T is
known as the convolution of f with the function g. It arises in connection with the
solution of linear constant-coefficient differential equations (Appendix 2).

The integral transformation (2.34) is the analogue for function spaces
of the matrix multiplication (2.31). That matrix transformation can be ex-
pressed

(Tx)~~  i Ati6 i = l,...,m
j- 1

(2.35)

for all vectors x in wx i. The symbol .$ represents the jth element of x;
the symbol (TX)i  means the ith element of TX. In (2.35) the matrix is
treated as a function of two discrete variables, the row variable i and the
column variable j. In analogy with the integral transformation, we call the
matrix multiplication [as viewed in the form of (2.35)] a summation
transformation; we refer to the function A (with values A& as the kernel of
the summation transformation.

Example 2. Differentiation Define D: @(a, b)+e (a, b) by

(Df)(t) i f’(t) i lim
f(t+At)-f(t)

At+0
dt (2.36)

for all f in @(a,b)  and all t in [a,b]; f’(t) is the slope of the graph of f at t; f’ (or
Df) is the whole “slope” function. We also use the symbols i and r<‘) in place of Df.
We can substitute for the above domain and range of definition any pair of
function spaces for which the derivatives of all functions in the domain lie in the
range of definition. Thus we could define D on E!(a, b) if we picked a range of
definition which contains the appropriate discontinuous functions. The nullspace
of D is span{ l}, where 1 is the function defined by l(t)= 1 for all t in [a,b].  It is
well known that differentiation is linear; D(clf,  + czfi) = clDf, + c2Df2.

We can define more general differential operators in terms of (2.36). The general
linear constant-coefficient differential operator L: c3” (a, b)-+ C? (a, b) is defined, for
real scalars { ai}, by

LiDn+aJY-‘+ -.a +a,1 (2.37)

where we have used (2.27) and (2.28) to combine transformations. A variable-
coefficient (or “time-varying”) extension of (2.37) is the operator L: E? (a, b)
+e(a,b)  defined by*

(Lf)(t)  : g&)fyt)+g~(t)f(“-‘)(t)+  ” l +g,(t)f(t) (2.37)

*Note that we use boldface print for some of the functions in (2.38) but not for others. As
indicated in the Preface, we use boldface print only to emphasize the vector or transformation
interpretation of an object. We sometimes describe the same function both ways, f and J
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for all f in C?” (a, b) and all t in [a,b]. (We have denoted the kth derivative Dkf by
fck).) If the interval [a, b] is finite, if the functions gi are continuous, and if go(t)# 0
on [a,b], we refer to (2.38) as a regular n th-order differential operator. [With
go(t)  +O, we would lose no generality by letting go(t)  = 1 in (2.38).] We can apply
the differential operators (2.37) and (2.38) to other function spaces than (?” (a, 6).

Example 3. Evaluation of a Function. Define T: e(a, b)+ 3’ by

Tf 9 f(t,) (2.39)

for all f in the function space C? (a, b). In this example, f is a dummy variable, but
is not. The transformation is a linear functional called “evaluation at t,.” The range
of T is %,‘;  T is onto. The nullspace of T is the set of continuous functions which
pass through zero at t,. Because many functions have the same value at tl, T is not
one-to-one. This functional can also be defined using some other function space for
its domain.

Example 4. A One-Sided Laplace Transform, t?. Suppose % is the space of
complex-valued functions defined on the positive-real half of the complex plane.
(See Example 10, Section 2.1.) Let Ir be the space of functions which are defined
and continuous on [0, co] and for which e -“‘If(t)1 is bounded for some constant c
and all values of t greater than some finite number. We define the one-sided
Laplace transform I?: Y+% by

(ef)(s)  i ime-sf f(t)dt (2.40)

for all complex s with real(s) > 0. The functions in Y are such that (2.40) converges
for real(s)>O.  We sometimes denote the transformed function Bf by F. This
integral transform, like that of (2.34), is linear. The Laplace transform is used to
convert linear constant-coefficient differential equations into linear algebraic equa-
tions. l

Exercise 1. Suppose the transformations T, U, and G of (2.27) and (2.28)
are linear and T is invertible. Show that the transformations aT+ bU, GT,
and T-l are also linear.

Exercise 2.  Let Ir be an n-dimensional linear space with basis 5%.
Define T: ‘v-, 9Lnx * by

TX i [xl% (2.41)

Show that T, the process of taking coordinates, is a linear, invertible
transformation.

*It can be shown that [ Ii!(D#Y)(s)-f(O’),  where f(O+) is the limit of f(t) as t+O
from the positive side of 0.
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The vector space V of Exercise 2 is equivalent to %Yx ’ in every sense
we might wish. The linear, invertible transformation is the key. We say two
vector spaces Ir and % are isomorphic (or equivalent) if there exists an
invertible linear transformation from Y into G2K. Each real n-dimensional
vector space is isomorphic to each other real n-dimensional space and,
in particular, to the real space w” ‘. A similar statement can be made
using complex scalars for each space. Infinite-dimensional spaces also
exhibit isomorphism. In Section 5.3 we show that all well behaved infinite-
dimensional spaces are isomorphic to Zz.

Nullpace and Range—Keys to Invertibility

Even linear transformations may have troublesome properties. In point of
fact, the example in which we demonstrate noncommutability and
noncancellation of products of transformations uses linear transformations
(matrix multiplications). Most difficulties with a linear transformation can
be understood through investigation of the range and nullspace of the
transformation.*

Let T: ?f+% be linear. Suppose x,, is a vector in the nullspace of T
(any solution to TX= 0); we call xh a homogeneous solution for the
transformation T. Denote by x. a particular solution to the equation
TX = y. (An xP exists if and only if y is in range(T).)  Then xP + axh is also a
solution to TX= y for any scalar (II. One of the most familiar uses of the
principle of superposition is in obtaining the general solution to a linear
differential equation by combining particular and homogeneous solutions.
The general solution to any linear operator equation can be obtained in
this manner.

Example 5. The General Solution to a Matrix Equation. Define the linear opera-
tor T. 9R,2xx+31t2x1 b. Y

Then the equation

Tx=(;  :,(;;)=(;)& (2.42)

has as its general solution x = ( ). A particular solution is xP = (1 0)T. The2 -2
nullspace of T consists in the vector x,, = (-1 2)T and all its multiples. The general
solution can be expressed as x=xP  + ax,, where a is arbitrary. Figure 2.7 shows an

of*See Sections 4.4 and 4.6 for further insight into noncancellation and noncommutability
linear operators.
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Figure 2.7. Solutions to the linear equation of Example 5.

arrow-space equivalent of these vectors. The nullspace of T is a subspace of 9R,2x *.
The general solution (the set of all solutions to TX = y) consists of a line in ‘5X2”  ‘;
specifically, it is the nullspace of T shifted by the addition of any particular
solution.

The nullspace of a linear transformation is always a subspace of the
domain V. The freedom in the general solution to TX= y lies only in
nullspace(  the subspace of homogeneous solutions. For if 4 is another
particular solution to TX= y, then

T@p -$)=Tx,-T$,=y-y=8

The d i f fe rence  be tween  xP and  $ i s  a  vec to r  in  nullspace(  If
nullspace = 8, there is no freedom in the solution to TX = y; it is unique.

Definition. A transformation G: v+ % is nonsingular if .nullspace(G)  =
8.

Exercise 3. Show that a linear transformation is one-to-one if and only if
it is nonsingular.

Because  a  l inear  t r ans format ion  T: V+ % prese rves  l i nea r
combinations, it necessarily transforms 8, into 8,. Furthermore, T acts
on the vectors in Y by subspaces—whatever T does to x it does also to cx,
where c is any scalar. The set of vectors in ‘Y which are taken to zero, for
example, is the subspace which we call nullspace( Other subspaces of Ir
are “rotated” or “stretched” by T. This fact becomes more clear during our
discussion of spectral decomposition in Chapter 4.
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Example 6. The Action of a Linear Transformation on Subspaces. Define T:

CR3+9L2  by T([,,c2,[3)  i (t3,0). The set {xi = (l,O,O), x2=(0,  1,O)) forms a basis for
nullspace( By adding a third independent vector, say, x3 = (1, 1, 1), we obtain a
basis for the domain 913. The subspace spanned by {xi,x2} is annihilated by T.
The subspace spanned by {x3}  is transformed by T into a subspace of —the
range of T. The vector x3 itself is transformed into a basis for range(T).  Because T
acts on the vectors in a3 by subspaces, the dimension of nullspace is a measure
of the degree to which T acts like zero; the dimension of range(T) indicates the
degree to which T acts invertible. Specifically, of the three dimensions in a3, T
takes two to zero. The third dimension of $R3 is taken into the one-dimensional
range(T).

The characteristics exhibited by Example 6 extend to any linear trans-
formation on a finite-dimensional space, Let T: V+% be linear with
dim(V)  = n. We call the dimension of nullspace  the nullity of T. The
rank of T is the dimension of rangem.  Let {xi,. . . ,xk} be a basis for
nullspace(  Pick vectors {xk+ r, . . . ,xn} which extend the basis for
nullspace  to a basis for ‘?f (P&C 2.9).  We show that  T takes
{JQ+p..., x,,}  into a basis for range(T).  Suppose x= ctx, + l  . . + cnxn is an
arbitrary vector in ‘v. The linear transformation T annihilates the first k
components of x. Only the remaining n-k components are taken into
range(T).  Thus the vectors {TX,, ,, . . . ,Tx,} must span range(T).  To show
that these vectors are independent, we use the test (2.11):

Since T is linear,

T(&+~JQ+~+.-  +5,x,)=@,

Then &+1xk+1+  l  . . + 5;1x,,  is in nullspace(  and

sk+l%+l +**a +&Xn=dlXl+- +dkXk

for some { di}.  The independence of {x1,.  . . , xn} implies d, = . . . = dk = &+ 1
= . . . =&=O;  thus {Txk+t,..., TX,}  is an independent set and is a basis

for range(T).
We have shown that a linear transformation T acting on a finite-

dimensional space V obeys a “conservation of dimension” law:

dim{ v) = rank(T)  + nullity(T) (2.43)

Nullity(T)  is the “dimension” annihilated by T. Rank(T)  is the “dim-
ension” T retains. If nullspace  = { 8 }, then nullity(T) = 0 and rank(T)
= dim(V).  If, in addition, dim( %) = dim(V),  then rank(T)  = dim( ‘?$) (T is
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onto), and T is invertible. A linear T: V+ % cannot be invertible unless
dim(w) = dim( Ir).

We sometimes refer to the vectors xk+ ,, . . . ,x, as progenitors of the range
of T. Although the nullspace and range of T are unique, the space spanned
by the progenitors is not; we can add any vector in nullspace to any
progenitor without changing the basis for the range (see Example 6).

The Near Nullpace

In contrast to mathematical analysis, mathematical computation is not
clear-cut. For example, a set of equations which is mathematically
invertible can be so “nearly singular” that the inverse cannot be computed
to an acceptable degree of precision. On the other hand, because of the
finite number of significant digits used in the computer, a mathematically
singular system will be indistinguishable from a “nearly singular” system.
The phenomenon merits serious consideration.

The matrix operator of Example 5 is singular. Suppose we modify the
matrix slightly to obtain the nonsingular, but “nearly singular” matrix
equation

(2.44)

where c is small. Then the arrow space diagram of Figure 2.7 must also be
modified to show a pair of almost parallel lines. (Figure 1.7 of Section 1.5
is the arrow space diagram of essentially this pair of equations.) Although
the solution (the intersection of the nearly parallel lines) is unique, it is
difficult to compute accurately; the nearly singular equations are very ill
conditioned. Slight errors in the data and roundoff during computing lead
to significant uncertainty in the computed solution, even if the computa-
tion is handled carefully (Section 1.5). The uncertain component of the
solution lies essentially in the nullspace of the operator; that is, it is almost
parallel to the nearly parallel lines in the arrow-space diagram. The above
pair of nearly singular algebraic equations might represent a nearly singu-
lar system. On the other hand, the underlying system might be precisely
singular; the equations in the model of a singular system may be only
nearly singular because of inaccuracies in the data. Regardless of which of
these interpretations is correct, determining the “near nullspace” of the
matrix is an important part of the analysis of the system. If the underlying
system is singular, a description of the near nullspace is a description of
the freedom in the solutions for the system. If the underlying system is just
nearly singular, a description of the near nullspace is a description of the
uncertainty in the solution.
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Definition. Suppose T is a nearly singular linear operator on a vector
space v. We use the term near nullspace of T to mean those vectors that
are taken nearly to zero by T; that is, those vectors which T drastically
reduces in “size.“*

In the two-dimensional example described above, the near nullspace
consists in vectors which are nearly parallel to the vector x = (-1 2)T. The
near nullspace of T is not a subspace of ‘v. Rather, it consists in a set of
vectors which are nearly in a subspace of ‘v. We can think of the near
nullspace as a “fuzzy” subspace of ?r.

We now present a method, referred to as inverse iteration, for describing
the near nullspace of a nearly singular operator T acting on a vector space
V. Let ~0 be an arbitrary vector in Ir. Assume xa contains a component
which is in the near nullspace of T. (If it does not, such a component will
be introduced by roundoff during the ensuing computation.) Since T
reduces such components drastically, compared to its effect on the other
components of ~0, T-’ must drastically emphasize such components.
Therefore, if we solve TX, = xa (in effect determining x1 =T- ‘xJ, the
computed solution xi contains a significant component in the near
nullspace of T. (This component is the error vector which appears during
the solution of the nearly singular equation.) The inverse iteration method
consists in iteratively solving Txk+ i =xk.  After a few iterations, xk is
dominated by its near-nullspace component; we use xk as a partial basis
for the near nullspace of T. (The number of iterations required is at the
discretion of the analyst. We are not looking for a precisely defined
subspace, but rather, a subspace that is fuzzy.) By repeating the above
process for several different starting vectors ~0, we usually obtain a set of
vectors which spans the near nullspace of T.

Example 7. Describing a Near Nullspace. Define a linear operator T on X2” ’
by means of the nearly singular matrix multiplication described above:

TX&(: I:r)~

For this simple example we can invert T explicitly

We apply the inverse iteration method
no roundoff in our computations:

to the vector x()=(1 l)=; o f course, we have

x,=( ;), x2= A( yy), x3= -&( “‘;;;;y2),...

*In Section 4.2 we describe the near nullspace more precisely as the eigenspace for the
smallest eigenvalue of T.
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If E is small, say e = 0.01, then

x,=50(  f?‘) and ~,=(50)~(  -::ii)

After only three iterations, the sequence xk has settled; the vector x3 provides a
good description of the near nullspace of T. If E = 0, T is singular; x3 lies almost in
the nullspace of this singular operator (Figure 2.7). Were we to try other starting
vectors xe, we would obtain other vectors xk nearly parallel to (-1 2)T. This near
nullspace of T should be considered one-dimensional.

We note from Example 7 that the vector xk in the inverse iteration grows
drastically in size. Practical computer implementations of inverse iteration
include normalization of xk at each step in order to avoid numbers too
large for the computer. A description for a two-dimensional near nullspace
is sought in P&C 2.26. In Section 4.2 we analyze the inverse iteration more
precisely in terms of eigenvalues and eigenvectors. Forsythe [2.3] gives
some interesting examples of the treatment of nearly singular operators.

The Role of Linear Transformations

The purpose of modeling a system is to develop insight concerning the
system, to develop an intuitive feel for the input-output relationship. In
order to decide whether or not a particular model, linear or nonlinear, is a
good model, we must compare the input-output relationship of the model
with the corresponding, but measurable, input-output relationship of the
system being modeled. If the model and the system are sufficiently in
agreement for our purposes, we need not distinguish between the system
and the model.

Almost all physical systems are to some degree nonlinear. Yet most
systems act in a nearly linear manner if the range of variation of the
variables is restricted. For example, the current through a resistor is
essentially proportional to the applied voltage if the current is not large
enough to heat the resistor significantly. We are able to develop adequate
models for a wide variety of static and dynamic physical systems using
only linear transformations. For linear models there is available a vast
array of mathematical results; most mathematical analysis is linear analy-
sis. Furthermore, the analysis or optimization of a nonlinear system is
usually based on linearization (Chapters 7 and 8). Even in solving a
nonlinear equation for a given input, we typically must resort to repetitive
linearization.

The examples and exercises of this section have demonstrated the
variety of familiar transformations which are linear: matrix multiplication,
differentiation, integration, etc. We introduce other linear transformations
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as we need them. The next few chapters pertain only to linear transforma-
tions. In Chapter 3 we focus on the peculiarities of linear differential
systems. In Chapter 4 we develop the concepts of spectral decomposition
of linear systems. The discussion of infinite-dimensional systems in
Chapter 5 is also directed toward linear systems. Because we use the
symbols T and U so much in reference to linear transformations,
hereinafter we employ the symbols F and G to emphasize concepts which
apply as well to nonlinear transformations. We begin to examine nonlinear
concepts in Chapter 6. We do not return fully to the subject of nonlinear
systems, however, until we introduce the concepts of linearization and
repetitive linearization in Chapters 7 and 8.

2.5 Matrices of Linear Transformations

By the process of picking an ordered basis for an n-dimensional vector
space v, we associate with each vector in v a unique n X 1 column
matrix. In effect, we convert the vectors in V into an equivalent set of
vectors which are suitable for matrix manipulation and, therefore, auto-
matic computation by computer. By taking coordinates, we can also
convert a linear equation, TX= y, into a matrix equation. Suppose T:
Ir+ % is a linear transformation, dim( ‘V) = n, and dim( %)= m. Pick as

bases for V and (?l! the sets % b {x,, . . . , xn} and 3 i {yl, . . . , y,},
respectively. The vectors x in V and TX in % can be represented by their
coordinate matrices [xl, and [TX]%.  The vectors x and TX are linearly
related (by the linear transformation T). By (2.41), we know that a vector
and its coordinates are also linearly related. Therefore, we expect [xl, and
[TX],  to be linearly related as well. Furthermore, we intuitively expect the
linear relation between the n x 1 matrix [xl%  and the m X 1 matrix [TX]%  to
be multiplication by an m x n matrix. We denote this matrix by [T],, and
refer to it as the matrix of T relative to the ordered bases % and 3 ; it must
satisfy

m&l, i PI, (2.45)

for all x in V. Assume we can find such a matrix. Then by taking
coordinates (with respect to 9 ) of each side of the linear equation TX = y,
we convert the equation to the equivalent matrix equation.

[Tl,,[xl, = [Ylcg (2.46)

We will show that we can represent any linear transformation of V into
% by a matrix multiplication by selecting bases for ‘V-  and —we can
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convert any linear equation involving finite-dimensional vector spaces into
a matrix equation. We first show how to determine the matrix of T, then
we show that it satisfies the defining equation (2.45) for all vectors x in y.

Example 1. Determining the Matrix of a Linear Transformation Let x= (tl, t2,
&), an arbitrary vector in 9L3. Define T: 9L3+%2  by

We now find [T],!,G2, where G, and G2 are the standard bases for CR3 and (X2,
respectively. By (2.45), we have

for all vectors (&, t2, t3), or

(2.47)

where we have used {au}  to represent the elements of [Tj6,6,. By making three
independent choices of the scalars tr, t2, and t3, we could convert this matrix
equation into six equations in the six unknowns {au}.  However, by using a little
ingenuity, we reduce this effort. Think of the matrix multiplication in terms of the
columns of [T]63Q2. The ith element of [x]s,  multiplies the ith column of [TjQ3Q1.  If

we choose x=(1,  0, 0), then [(l, 0, O)],,= i , and (2.47) becomes
0

We have found the first column of [TlQ36, directly. We obtain the other two
columns of [TIQJQz from (2.47) by successive substitution of x= (0, 1, 0) and x=(0,
0, 1). The result is

In Example 1 we avoided the need for simultaneous equations by
substituting the basis vectors ei, e2, and e3 into (2.47) to pick out the
columns of [T]6,6z. This same technique can be used to find the matrix of
any linear transformation acting on a finite-dimensional space. We refer
again to T: V+ ?.$, with dim(V)  = n, dim( %) = m, % a basis for v, and
9 a basis for %, If we substitute into (2.45) the vector xi, the ith vector of
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the basis % , we pick out the ith column of [T],, :

We can find each column of [T],, independently. The only computa-
tional effort is that in determining the coordinate matrices [Txi]%. There-
fore,

[Tlaou  = ([TX,],  : [TX,], i -- * : [TX,],) (2.48)

Example 2. The Matrix of a Linear Operator. Define the differential operator

D: Y3+ (Y3  as in (2.36). The set % i {f,, f,, f3},  where f,(t)  = 1, f2(t) = t, f3(t) = t2,
is a natural basis for T3. We use (2.48) to find

From the method used to determine [T],%  in (2.48), we know that this
matrix correctly represents the action of T on the basis vectors {Xi}. We
now show that the matrix (2.48) also represents correctly the action of T on
all other vectors in ‘Y. An arbitrary vector x in V may be written in terms
of the basis vectors for 1/:

n
X= cs.x.a 1

i==l

Since the transformation T is linear,

TX= ~ ~iTXi
i=l
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Because the process of taking coordinates is linear [see (2.41)],

75

Thus, continuing Example 2 above, if f is the arbitrary vector defined by

f(t) i [r +t2t +t3t2, then

(Df)(t)  =52+25&  [f], -(ii, [Df], =(‘;) 7 and  [D]n.x[f]s =[Dfl,,

When the domain and range space of T are identical, and the same basis is
used for both spaces (as it is in Example 2), we sometimes refer to the
matrix [T],,  as the matrix of the operator T relative to the basis ‘76.

We expect the matrix of a linear transformation to possess the basic
characteristics of that transformation. The only basic characteristics of a
linear transformation that we have discussed thus far are its rank and
nullity. The picking of coordinate systems ‘5% and ‘% converts the trans-
formation equation TX = y to a precisely equivalent matrix equation, [TX],
=[Tl,, [xl, =[Ylq ; for every x and y in the one equation, there is a
unique [xl% and [y]% in the other. The dimensions of the nullspace and
range of the transformation “multiplication by [T],, ” must be the same,
therefore, as the dimensions of the nullspace and range of T. We speak
loosely of the rank and nullity of [T],, when we actually mean the rank
and nullity of the transformation “multiplication by [T],% .” We refer to
the nullity and rank of a matrix as if it were the matrix of a linear
transformation. The nullspace and range of matrix multiplications are
explored in P&C 2.19; the problem demonstrates that for an m x n matrix
A,

rank(A)  = the number of independent columns of A

= the number of independent rows of A

nullity(A)  = n -rank(A)

nullity(AT) = m -rank(A)
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Once again referring to Example 2, we see that the nullity of D is 1 [the
vector f, is a basis for nullspace(D  The nullity of CD]%%  is also 1 ([DIXn.
contains one dependent column). The matrix [Dlan.  does possess the same
nullity and rank as the operator D.

It is apparent that determination of the matrix of a transformation
reduces to the determination of coordinate matrices for the set of vectors
{TXi} of (2.48). We found in Section 2.2 that determination of the
coordinate matrix of a vector x with respect to a basis % = {xi}  can be
reduced to performing elimination on the matrix equation (2.17):

where % is a natural basis for the space V of which x is a member (i.e., a
basis with respect to which coordinates can be determined by inspection).

Exercise 1. Show that [T],, of (2.48) can be obtained by the row
reduction

0 I
.

y1 s : -** i I’y& i [TX&  i . - - i [Tx,la)‘(I  i PI,,)

(2.49)

where % is a natural basis for the range of definition %. (Hint: if the
elements of [TX,],  are denoted by [TXi]q  = (C,i  l l l C,i)‘, then TX, =Zj+yi,
and [TXiJn.  = ~jC~i[yi],,  .) Use this approach to find [TIC+, of Example 1.

Example 3. The Matrix of a Matrix Transformation. Let T: 91Lnx  *+ ‘3Lmx * be

defined by TX t Ax, where A is an m X n matrix. Denoting the standard bases for
9RnX 1 and ntmx 1 by &, and G,,, , respectively, we find [Tjs, s = A. Although [xl%
and x are identical in this example, we should distinguish between them, for it is
certainly incorrect to equate the matrix [Tjsms, to the transformation T.

S u p p o s e  T: V-,G2lci i s  i n v e r t i b l e  a n d  l i n e a r ;  v a n d  (?lJ a r e  f i n -
ite-dimensional with bases ?X and 9 , respectively. It follows from (2.45)
that

P-‘I, dYl%  =P-‘Yl, (2.50)

for all y in %. Then, for each x in ‘sr,

[xl”x =rwGx. =P-‘I, %PlS =F’l, E]CPlpJXl%

A similar relationship can be established with T and TV1 reversed. Then as
a consequence of (2.29),

P-11G3~=ITl& (2.51)
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Exercise 2. Suppose 71‘, % , and ‘% are finite-dimensional vector spaces
with bases 5%) % + and Z, respectively. Show that

a. If T: 1/+w and U: v+%% are linear, then

b. If T: Y+ % and U: %‘+ 9L are linear, then

[W,, =FJl, dqx%

(2.52)

(2.53)

Changes in Coordinate System

In Chapter 4 we discuss coordinate systems which are particularly suitable
for analysis of a given linear transformation—coordinate systems for
which the matrix of the transformation is diagonal. In preparation for that
discussion we now explore the effect of a change of coordinate system on a
coordinate matrix [x] and on the matrix of a transformation [T].

Suppose 5% and Z are two different bases for an n-dimensional vector
space ‘V. We know by (2.41) that the transformations

x+[x]~ and x+[x]~

are linear and invertible. Thus we expect [xl, and [x]~ to be related by

sPd9c = PI* (2.54)

where S is an n X n invertible matrix. In fact, multiplication of [xl%  by any
invertible matrix represents a change from the coordinate system % to
some new coordinate system. We sometimes denote the matrix S of (2.54)
by the symbol S,,, thereby making explicit the fact that S converts
coordinates relative to 5% into coordinates relative to 55. Then (S,,)-’
=S,,.

Determination of the specific change-of-coordinates matrix S defined in
(2.54) follows the same line of thought as that used to determine [T] in
(2.48). By successively substituting into (2.54) the vectors x1, x2,. . . ,x, from
the basis %, we isolate the columns of S: the ith column of S is [xi]%.
Thus the unique invertible matrix S which transforms coordinate matrices
relative to 5% into coordinate matrices relative to Z is

(2.55)

where the xi are the vectors in the basis %.
Since a change-of-coordinates matrix is always invertible, we determine
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s- ‘[xl2 = [XIX

and

s-1=$&  =s,, = ([Zll% : * ’ l  : P&J (2.56)

where the zi are the vectors in the basis % . If % is a natural basis for the
space, then S can be found by inspection. On the other hand, if % is a
natural basis, we find S-l by inspection. It is appropriate to use either
(2.55) or (2.56) in determining S. We need both S and S-i to allow
conversion back and forth between the two coordinate systems. Besides,
the placing of S on the left side of (2.54) was arbitrary.

Example 4. A Change-of-Coordinates Matrix, Let & be the standard basis for
?R3. Another basis for ?Zk3  is % = {q, z,, z3}, where zl=(l, 1, I), z,=(l, 1, 0), and
z3 = (1, 0, 0). Since & is a natural basis for a3, we use (2.56) to find

(2.57)

A straightforward elimination (Section 1.5) yields

s=(f -p 4) (2.58)

We note that for an arbitrary vector x=(tt, t2, t3) in $k3, [xl6 = (tl [, 53)T. By
(2.54),

(2.59)

But then,

x = (53)z* + (52 - 531%  + (5, - 52b3

=(53)(1,1,1)+(52-53)(1,1,0)+(51-52)(1,0,0)

= tt,, 52953) (2.60)

and the validity of the change of coordinates matrix S is verified.

If neither % nor FZ is a natural basis, the determination of S can still be
systematized by the introduction of an intermediate step which does
involve a natural basis.
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Exercise 3. Suppose we need the change-of-coordinates matrix S such
that S[x]%  = [xl%,  where neither 5% nor % is a natural basis for ‘v.
Suppose 97, is a natural basis. Show, by introducing an intermediate
change to the coordinates [xl%, that

S=([z,]s : ‘a * i [z.]J’([x& : ** - : [x,],) (2.61)

Example 5. Change of Coordinates via an Intermediate Natural Basis. Two bases

for 5Yp3  are 9 5 (4, f2, f3>  and 8 f {gl, gz, g3}, where

f,(t)=l, f*(t)=l+t,  f,(t)=l+P

g,(t)= 1+ t, gJt)= t, gJt)= t+ t2

To find S such that S[fj9 = [fig, we introduce the natural basis 5% i (h,, h2, h3},
where hi(t) = t j- ‘. Then, by (2.61),

s= ([g& .: [g,], i [g&J1([fll~ 3 P21, : [f3ld

-(b 8 g)-‘(g d i))

=(-; 8-y& b ;!I=(-6 i-i)

Similarity and Equivalence Transformations

Now that we have a process for changing coordinate systems, we explore
the effect of such a change on the matrix of a transformation. Suppose T is
a linear operator on V, and that 5% and % are two different bases for V.
Then CT],,  is defined by

Pl,,wx =Pln

The change from the % to the % coordinate system is described by

s[Jd%  = [xl2

The change-of-coordinates matrix S also applies to the vector TX in ?r :

WY x = [TX1 %
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By substituting [xl, and [TX]% from these last two equations into the
defining equation for [TX],, , we find

[T],,S-‘[xl, =S-‘[TX],,

(S[Tl,,S-‘)[xl,  = [TX],

But this is the defining equation for [T],,. It is apparent that

[TIE% =S[T],,S-’ (2.62)

where S converts from the % coordinate system to the % coordinate
system. Equation (2.62) describes an invertible linear transformation on

mx, known as a similarity transformation. In Section 4.2, we find that a
similarity transformation preserves the basic spectral properties of the
matrix. It is comforting to know that any two matrix representations of a
linear system have the same properties-these properties are inherent in
the model, T, and should not be affected by the coordinate system we
select.

Example 6. A Similarity Transformation. In Example 2 we found the matrix of
the differential operator on 9’ relative to the natural basis for 9”:

Another basis for 9’ is 9 = {gl, g2, g3}, where g*(t)  = 1+ t, g2(t)  = t, and g3(t)  = t +
t2. The change-of-coordinates matrix which relates the two bases 9Z and 9 is
defined by S[fJa  =[f’j I ; we find it using (2.56):

The inverse matrix is
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Then, by (2.62),

Exercise 4. Let T: Y+%!l$  be a linear transformation. Assume ‘v and
%’ are finite dimensional. Let the invertible matrix SXs convert from the
basis 5% to the basis 3 in V. Let the invertible matrix S,, convert from
the basis 3 to the basis 8 in %. Show that

(2.63)

This transformation of the matrix [T],, is called an equivalence trans-
formation. The similarity transformation (2.42) is a special case. The term
“equivalence” is motivated by the fact that [T],, and [T],@ are equiva-
lent models of the system. The system equation TX= y is equally well
represented by the matrix equations which result from the introduction of
any coordinate systems for V and W.

The discussion of matrices of transformations has been limited to
transformations on finite-dimensional vector spaces. The primary reason
for avoiding the infinite-dimensional counterparts is our inability to speak
meaningfully about bases for infinite-dimensional spaces before discussing
convergence of an infinite sequence of vectors (Section 5.3). However,
matrices of infinite dimension are more difficult to work with (to invert,
etc.) than are finite-dimensional matrices.

2.6 Problems and Comments

*2.1 Let 5, and S, be subsets of a vector space Ir. Let W, and %, be
subspaces of V.
(a) The intersection S r n S, of the sets S, and S, is the set of

vectors which belong to both S, and $5,;  if S I n S, is empty
or if S,n S,= 8, we say S, and S, are disjoint.

(b) The union $5, u $5, of the sets $5, and S, is the set of vectors
which belong either to 5, or to S, or to both.
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(c) The sum S i + S, of the sets S i and S, is the set of vectors of
the form xi +x2, where xi is in S i and x2 is in S,.

(d) ‘%Y,  n 9.l!‘,  is a subspace.
(e) 5!$, u %!YZ  is usually not a subspace.
(f> %, + “ru;,  is the subspace spanned by %, u %,.
(g) dim(‘?6,)+dim(‘%,)=dim(~,+~J+dim(~,n  %J.

2.2 Prove that the real 3-tuple space s3 introduced in Equation (2.2) is
a vector space.

2.3 Determine whether or not the following sets of vectors are linearly
independent:
(a) The column vectors (2 1 0 1)T, (1 2 -1 1)T, and (3 0 1 1)T

in %4x1
(b) The functions f,(t)= 1+2t-  t2, f,(t)=2+2t+  t2, a n d  f3(t)

 in 9’.
(c) The functions gl(t)=  1+2t + t2- t3, g2(t)= 1 + t - t2+ t3, and

g3(t)=  1 +3t+3t2-3t3 in 5Y4.
*2.4 Modulo-2 scalars: data transmitted by radio or telephone usually

consist in strings of binary numbers (ones and zeros). A character
or number to be transmitted is represented by a binary code word
of length n. It is a sequence of these code words which makes up
the transmitted string. We can think of the set of all possible code
words of length n as vectors in a vector space. We call the space a
binary linear code (see [2.8]). The scalars used in vector space
manipulations can be restricted to binary numbers if ordinary
addition of scalars is replaced by modulo-2 addition:

o+o=o O+l=l

l+O=l l+l=O

The rules for multiplication of scalars need not be changed. One
way to check for errors in data transmission is to let the nth
element of each code word equal the sum (mod-2) of the other
elements in the word. If a single error appears in the transmitted
word, the nth element will fail to give the proper sum.
(a) Let V be the set of 5 x 1 matrices with the mod-2 scalars as

elements. Show that ‘v is a vector space. (Assume that addi-
tion and scalar multiplication of the matrices is based on the
mod-2 scalars.)

(b) Let %Y be the subset of ‘V consisting in vectors for which the
fifth element equals the sum of the other four elements. Show
that % is a subspace of V.

(c) Find a basis % for %. Determine [xl,, where x = (1 1 0 1
1)T.
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(d) The subspace (?!lJ is a binary linear code. A code can also be
described by a “parity check” matrix P for which the code is
the nullspace. Find the parity check matrix for the code %.

2.5 The set of all real m x n matrices, together with the usual defini-
tions of addition and scalar multiplication of matrices, forms a
vector space which we denote by ‘?Xmxn.  Determine the dimension
of this linear space by exhibiting a basis for the space.

*2.6 Let Ir and % be vector spaces. With the definition of linear
combination of transformations given in (2.27),
(a) The set of all transformations from V into Gtl(;  forms a vector

space.
(b) The set C( V, W) of all linear transformations from ?r into

‘?l! forms a subspace of the vector space in (a).
(c) The set of all linear transformations which take a particular

subspace of V into 8, constitutes a subspace of I?( Ir, %).
(d) If dim(Y)= n and dim(%)=,,  then dim(E(‘V,%))=mn.

*2.7 Exploring linear combinations by row reduction. Let % 9 (y,, . . . , y,>
be a set of m x 1 column vectors. The linear combination y
= 2y, + * l l + c,y, can be expressed as y= Ax by defining

A = ( yi i y2 i . . . i y,) and x k (c, . . . c,)‘. Row reduction of the

matrix (A i y) for an unspecified vector y A (7,. . - qJT, or the
equivalent row reduction of (A : I) for an m X m matrix I, deter-
mines the form of the vectors in span( 3 ) and pinpoints any linear
dependency in the set % . If 9 is linearly independent, the row
reduction also determines the coordinates with respect to % of
each vector y in span( ‘3 ). Let

y=( g, yl=( a)¶ Y2=( ;J y3=( g9 y4=( a,

(a) Row reduce (A i I).
(b) Determine the space spanned by % ; that is, determine the

relationships that must exist among the elements {qi}  of y in
order that y be some linear combination of the vectors in % .
Determine a basis for span( % ).

(c) Determine which linear combinations of the vectors in %
equal the specific vector y given above.

(d) The form of span( % ) can also be determined by row reduc-
tion of A’. The nonzero rows of the row-reduced matrix
constitute a basis for span( 9 ). Any zero rows which appear
indicate the linear dependence of the set ‘% .
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2.8 For the following sets of vectors, determine if y is in span{y,}.  If so,
express y as a linear combination of the vectors {y,}.

(a) y=(i),  YI=( $ Y249 Y3= (4)

(b) y=(i),  YI=($ Y2=($ y3= (i>

(c) y=(;;)9  yl=(;).  y2=(99 y3=('i)

2.9 Find a basis for the subspace of C?’ spanned by the functions
fl(t)=  1+ t +2t2, f2(t)=2t+  t2+ t3, and f3(t)=2+3t2-  t3. Extend
the basis for the subspace to a basis for C?’ by adding appropriate
vectors to the basis.

2.10 Find the coordinate matrix of the vector x= (1, 1, 1) in %k3:
(a) Relative to the basis 5% = { (1, 0, 0), (1, -1, 0), (0, 1, -1)).
(b) Relative to the basis 3 = {( 1, 1, -l), (1, -1, l), (-1, 1,

l>>*
2.11 Find the coordinate matrix of the function f relative to the basis

9 = {gi, g,, g3}, where f(t) i t, gl(t) f l+ t, g2(t) 9 l+ t2, and
g3( t) = 1 - t2.

2.12 Find the coordinate matrix of the function g relative to the basis

?F= {fl, f,, f,}, where f,(t)  i 1- t, f2(t) i 1- t2, f,(t)  2 1 + t - t2,

and g(t) b & +[,t +c3t2.
2.13 Find the coordinates of the vector x in ‘%2x2 relative to the basis

%L = (xl, x2, x3, x4}, where

2 14 Let ?P2x2 denote the space of polynomial functions of the form.
f(s, t)= aI, + a,,s+ a,,t + a,,st. Find a basis for C!?2x2  which in-
cludes the function f&s,  t) = 2s - t - 1. Find the coordinate matrix
of the general vector f in C?2x2 relative to that basis.
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2.15 Let 1/ be the space of continuous functions. Define the forward

difference operator A,,: Ir+V by (A,f)(t) A [f(t+  &)-f(t)]/6  for
all f in ‘V and for all t, where 6 >0 is a fixed real number. Show
that As is linear.

2.16 Financial planning: the financial condition of a family unit at time t
can be described by f(t) = f(t - 6) + af(t - 6) + g(t) where f(t) is the
family savings at time C, f(t - 6) is the savings at a previous time
t - 8, a is the interest rate per time interval 6, and g(t) is the deposit
at time t. (No deposits occur between t - 8 and t.)
(a) Let the time interval 6 be 1 month. If we consider t only at

monthly intervals, the above financial model can be expressed
as the difference equation, f(k)  = (1 + a)f(k - 1) + g(k). Given
f(0) = $100, a = 0.005 (i.e., 6% compounded monthly), and
g(k)=$lO  for k= 1, 2,…, determine the savings versus time
over 1 year by computing f(1) from f(O),  f(2) from f(l),  etc.
(This computation is known as “marching.“)

(b) The above financial model can be rewritten as

The quantity b i a/8 is the interest rate per unit time;

u(t) 4 g(t)/6  is the deposit rate for the interval. If we let 6+0,
the model becomes a differential equation, f(t) = bf(  t) + u( t).
Let f(0) = $100, b = 0.005 per month, and u(t) = $10 per month
for t > 0; find the savings versus time over 1 year by solving the
differential equation. Compare the result with (a).

(c) An arbitrary nonlinear time-varying differential equation with
initial conditions can be approximated by a difference equa-
tion in order to obtain an approximate solution via the simple
marching technique of (a). Approximate the differential equa-
tion of (b) by using the forward-difference approximation f(t)
w(l/C)(f(t+E)-f(t), e = 1 month, and considering t only at
monthly intervals. Solve the difference equation for a 1 year
period using f(O), b, and u(t) as given in (b). Compare the
result with (b). How can the difference approximation be
improved?

2.17 The electrostatic potential distribution within a two-dimensional
charge free region satisfies Laplace’s equation:

A a2f(s9t) + a2f(&t) =.
(.V2f)(s,  t) = ~ -

as2 at2
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For the potential distribution between two parallel plates of spac-
ing d, the model reduces to f”(s)=0 with f(0) and f(d) given.
(4

(b)

cc>

Assume the differential operator D2 acts on e2(0,d),  a space
of twice-differentiable functions. Find the nullspace of D2, a
subspace of e2(0,d).  The nullspace is the solution space for
the above differential equation. Express the solution space in
terms of the known boundary values f(0) and f(d).  What is the
dimension of the nullspace of D2?
Define the central-difference operator A on e2(0,d) by

(Af)(s) i f(s+ $) -f(s- ;)

The derivative of f can be expressed as the limit of the
central-difference approximation, f’(s)w(Af)(s)/&  Verify that
D2, as it acts on L?‘(O,d),  can be approximated arbitrarily
closely by the second-central-difference approximation, D2
WA2/iS2.
Suppose the plate spacing is d = 5. Let 6 = 1, and evaluate the
finite-difference approximation A2f = 8 at s = 1, 2, 3, and 4 to
obtain four algebraic equations in the variables f(O),
f(l) , . . . ,f(5). Formulate these algebraic equations as a 4 X 6
matrix equation Ax= 8. Compare this matrix equation with
the differential equation D2f = 8; that is, compare the spaces
on which the operators act; also compare the dimensions of
their solution spaces. Solve the matrix equation in terms of the
boundary values f(0) and f(5). Compare the discrete solution
with the continuous solution found in (a).
This problem can also be carried out for the two-dimensional
case, where f(s, t) is given on a closed boundary. The finite-
difference approach in (b) and (c) is widely used in the
solution of practical problems of this type. The equations,
sometimes numbering as many as 100,000, are solved by
iterative computer techniques. See Forsythe and Wasow [2.4].

2.18 According to the trapezoidal rule for approximate integration, if we
subdivide the interval [a, b] into n segments of length 6, and denote
g(a+j8) by 6, j=O, l,..., n, then for a continuous g,
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We can view the trapezoidal rule as an approximation of a function
space integral operation by a matrix multiplication Ax, where A is

lxn andxi(go.+.g,JT.
(a) Find the matrix A which expresses the trapezoidal rule for

6 = 1 and n = 5. Apply the trapezoidal rule to accurately repre-

sent the integral of the discontinuous function g(s) e 1 for

0 < s < 2, g(s) 4 0 for 2 < s < 5. Hint: at the discontinuity use
the midpoint value, (g; + gT)/2.

(b) We can also approximate a general integral operator by a

matrix multiplication. Suppose (Tf)(t) s jik(t,s)f(s)  ds for t
in [a, b]. We can treat the function k(t, s)f(s)  as we did g(s) in
(a). Subdivide both the s and t intervals into n segments of
length 6, and use the same subscript notation for function
values as above. Then if k(t,s)f(s) is continuous,

for j=O, I,..., n. We can approximate the integral operation
by a matrix multiplication, y = Ax, where x = (foe 0 . f,)’ and
Y = ((TOO  * . . (Tf),,)‘. Find A for 6= 1, n=5,  a=O, b=5, and

Hint: use midpoint values as in (a). Note that the operator is
ordinary indefinite integration.

(c) Apply the matrix multiplication found in (b) to obtain the
approximate integral of f(s) = 3s2. Compare the approximation
to the actual integral at the points t = 0, 1,…,5.

*2 19. Exploring the nullspace and range by row reduction: Let

Multiplication by A is a linear transformation from %4x1 into
(?liL3x  ‘. Multiplication by AT is a linear transformation from a3 x ’
into YlL4” ‘. In Section 5.4 we find that if y is in range(A)  and x is
in nullspace(A9,  then x l y = 0 where x l y is the dot product of
analytic geometry. Furthermore, if z is in range(AT)  and w is in
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nullspace( then z l w = 0. By means of these dot product equa-
tions, we can use bases for nullspace(A3  and range(A3  to find
bases for range(A)  and nullspace( and vice versa. We can also
show that rank(A)  =rank(A’).  In this problem we obtain null-
space(A) and range(A)  directly from A’.
(a) Row reduce (A i I). Use the results of the row reduction to

determine bases for nullspace and range(A).
(b) Row reduce (A’ : I). Show that the nonzero rows in the

left-hand block of the row-reduced matrix constitute a basis
for range(A).  Show that the rows of the right-hand block
which correspond to zero rows of the left-hand block of the
row-reduced matrix constitute a basis for nullspace(

2.20 Define T: $P3+ C? (0, 1) by (Tf)(t)  B jAk( t,s)f(s)  ds for all f in C?‘,
where

k(t,s)=  t(1 -s) f o r  t < s

=(1-t)s  f o r  t>s

Find a basis for range(T).  Describe nullspace(

2.21 Let % be the space of polynomial functions f of the form

f(s, t) f c, + c2s  + c,t + c,st for all s and t. Define T: w +G2l(i by

(Tf)(s, t) 9 (a/%)f(s,  t) for all f in % .
(a) Find a basis for the range of T.
(b) Determine the rank and nullity of T.

2.22 Define T: 9’lL2x2+911,2x2  by

T( :; f:) 9 ( y2 c4cIc3)

for all choices of the scalars cl, c2, c3, and c4. Find nullspace  and
range(T)  by exhibiting a basis for each.

2.23 Expected value: the throws of a single die constitute an experiment.
Let II‘ be the space of random variables defined on this experi-
ment. We can think of the probability mass function a(u) as the
relative frequency with which the outcome u occurs: o(a)  = d for
u=l, 2 ,..., 6.
(a) A random variable x in V associates a value x(a)  with each

possible outcome of the experiment. The value which x
associates with an actual trial of the experiment is called a
sample value of x. The probability mass function o,(x) speci-
fies the relative frequency with which the sample value x
occurs during repeated trials. Find w,(y)  for the random
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2.24

variable y defined by y(a) 4 2 for 0 = 1 or 2 and by y(a) 4 0
for u=3, 4, 5, or 6.

(b) The expected value of x is the average, over many trials, of the
sample values of x. Thus

Find E(y) for the random variable y given in (a).
(c) Show that the functional E: v+% is linear. Pick a basis %

for V. Let & g {(1)} be a basis for 3. Find [y]% and [ElxXG,
where y is the random variable in (a).

(d) If f: ?r+ V then f(x) is a random variable. Express E (f(x))  in
terms of o(u). Find E(y2) for the random variable y given in
(a). If g: Ir x V+ Ir, can E be applied to g(x, y)?

Hadamard matrices: let f(s) represent the light intensity versus
position in one line of a television picture. Let the n x 1 column
vector x be a discrete approximation to f. Then x can be viewed as
a one-dimensional photograph. Suppose the data x must be trans-
mitted for remote viewing. One way to reduce the effect of trans-
mission errors and to reduce the amount of data transmitted is to
transmit, instead, a transformed version of x. A computationally
simple transformation is the Hadamard transform—multiplication
by a Hadamard matrix. A symmetric Hadamard matrix H consists
in plus and minus ones, and satisfies H-l  = H (see [2.9]). Denote
the transformed vector by X = Hx. Let n = 8 and

The Hadamard transform spreads throughout the elements of X the
information which is concentrated in a single element of x; it
concentrates information which is spread out.
(a) D e t e r m i n e  t h e  e f f e c t  o f  H o n  t h e  p h o t o g r a p h s  x

=(11111111)T and x = &i,  where q is the ith standard basis
vector for %8x1.
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2.25

(b) Find the transform of the photograph x = (2 2 2 3 2 2 2 2)T. As-
sume that an error during transmission of X reduces the third
element of X to zero. Determine the effect of the error on the
reconstructed photograph.

(c) The inverse transform, x= HX, can be interpreted as an
expansion of x in terms of the columns of H. The columns of
H are analogous to sinusoidal functions; the number of zero
crossings corresponds to frequency. Let x be the photograph
in (b). Determine the effect on the reconstructed photograph
of not transmitting the highest frequency component of X (i.e.,
the effect of making the second element of X zero). Determine
the effect on the reconstructed photograph of eliminating the
zero frequency component (i.e., the effect of making the first
component of X zero).

The space C?‘(O,  cc) consists in the continuously differentiable func-
tions on [0, co]. Define the Cartesian product space ?r by

Yi el(o,w)>:  ..’ x E?‘(O,  cc). Denote the vector-valued func-
n-1

tions in Ir by x. We can treat the values of x as vectors in ?Rn x I;
that is, x(t)=(f,(t).  * . f,(t))‘, where fj is in C?‘(O,  00). Let A be a real
n x n matrix. Define the linear transformation T: V+ % by

This transformation is central to the state-space analysis of
dynamic systems.
(a) Determine an appropriate range of definition %$ for T.
(b) Find a basis for nullspace if n = 2 and

2.26 Assume e < 6~ 1. Then the following matrix is nearly singular:

Use inverse iteration to find a basis for the near nullspace of A.

2.27 Define T: CR,*+ CR,* by ‘JXl, t2) i (Cl  + 2t2,t1 - 25,) for all (cl,<*) in
CR,*.  Let % = {(1, l), (1, -l)}. Find [T],,.
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2.28

2.29

2.30

2.31

2.32

2.33

2.34

Define T: by

(a) Determine [TIF,  G2, the matrix of T relative to the standard
bases for CR3 and Ck2.

(b) Determine [T],, , where % = {(1, 0, -l), (1, 1, 1), (1, 0, 0)}
and % = {(1, 0), (1, 1)}.

Define T: C?L2-+ CR3 by T(5,, t2) f (Cl + t2, & - t2, 2t2) for all (&,  t2) in
%2. Let % = {(1, 1), (1, -1)) and ‘% = {(1, 1, -1), (1, -1, 1), (-1,
1,1)}. Find [T],, .

Let C?2x2 denote the space of polynomial functions of the form
f(s,t)=a,,+ a,,s+a,,t  + a,,st. Define T: C?2x2+W  by

(Tf)(s, t) = jsf(u,  t)du
0

where ‘%’ =range(T).
(a) Find bases, g for q2 x2 and 9 for qti .
(b) Find [T],, .
(c) Determine T- ’ and [T- I]@%.  How else might [T- ‘lgF be

obtained?
The sets % = {(1, -1, 0), (1, 0, 1), (1, 1, 1)} and 3 = {(1, 1, 0),
(0, 1, 1), (1, -1, 1)} are bases for $k3. Find the change of
coordinates matrix S,, which converts coordinates relative to 5%
into coordinates relative to %I .

Let gl(t)  = 1 - t, g2(t) = 1 - t2, and g3(t) = 1 + t - t2. The set 4
= {g,, g,, g3} is a basis for 03. Another basis is % = {f,, f2, f3} where
f/Jt)= P-'.
(a) Find [f], for the arbitrary vector f(t)=tl +t2t +c3t2.
(b) Find the coordinate-transformation matrix S such that [fle

= S[f],.

Define T: Cfi,2+a3  by T (t1,t2)  e (5‘2-5,,51,251-52)  for all &,S,>
in Ck2. The sets % = {(1, l), (1, -l)} and % ={(1, 2), (2, l)} are
bases for Ck2. The sets ‘% = {(1, 1, -1), (1, -1, 1), (-1, 1, 1)} and
x = {(1, 1, 1), (0, 1, 1), (0, 0, 1)} are bases for C!R3.
(a) Find [T],, .
(b) Find the coordinate transformations S,, and S,, .
(c) Use the answers to (a) and (b) to compute [T],, by means of

an equivalence transformation.

Define T: a2+ a2 by T(5,,t2) 9 (tr + 2t2,5, - 2t2) for all (tl, t2) in
$k2.  The sets 5% = {(1, 2), (2, 1)} and % = {(1, 1), (1, -1)} are bases
for CR2.
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(a) Find [T]%,,.
(b) Find the coordinate transformation S,, .
(c) Use the answers to (a) and (b) to compute [T], q by means of

a similarity transformation.

2.35 Multiplication by an invertible matrix can be interpreted either as a
linear transformation or as a change of coordinates. Let CX =
{x1,x2}  be a basis for a two-dimensional space ‘V and x a vector in

V. Then [x,1% = (A) and [x2]%  = (7).  Let

(a) Alias interpretation: assume A[x]~ =[x]~  , where % = {yl,y2}
is a second basis for ‘Ir. Find [ylln and [y2]%. Sketch [xJ~,
[X21Xx [Xl%? [Y,lw and [y21n as arrows in a plane. What is the
relationship between [xl% and the basis {[yljX, [y2]%};  that
is, what is meant by the notation [xl%  ?

(b) Alibi interpretation: assume A[x], =[Tx],.  Sketch [x,]~,

[x215%  9 [Xl%  9 and [TX], as arrows in a plane. What is the
relationship between [TX],  and the basis {[xJX,  [x21X};  that
is, what is meant by the notation [TX],?
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