Georgia Packaging Tech Research Center

College of Engineering

System Scaling for New Era of Automotive Electronics: A Largescale Industry Consortium at Georgia Tech in Partnership with Global Supply-Chain Mfg and OEMs SRC June 7, 2016

Prof. Rao R. Tummala

Joseph M. Pettit Endowed Chair Professor in ECE & MSE Director, 3D Microsystems Packaging Research Center Georgia Institute of Technology – Atlanta, GA USA rao.tummala@prc.gatech.edu

Outline

- System Scaling as a Microelectronics Technology Frontier
- New Era of Automotive Electronics (NAE)
- Industry Consortium at GT
 - Faculty
 - Industry Partners
 - Facilities
 - Technical Programs
 - Computing and Communication Electronics
 - Sensing Electronics
 - High Power and High Temperature Electronics
- Summary

SYSTEM SCALING AS A MICROELECTRONICS SYSTEMS TECHNOLOGY FRONTIER

Georgia Tech PRC Center started with a Vision For Digital Convergence by SOP Concept in 1993

Digital + Analog + RF + Optical + Sensors

Computing Internet

Digital Imaging/Video

Shutter ...

DIGITAL CAMCORDER OVIZ

3 | SRC

Sensors

Digital Audio

Cellular/Wireless

GPS/Satellite

And, of course, timekeeping!

GT PRC Started with the 1st NSF ERC in US in System Scaling and Integration (SSI)

SRC 41

SOP @ PRC "Package is the System"

System: Convergent Computing, Communication, Consumer & Biomedical

IC-Package Trend

Outcomes of Georgia Tech's NSF ERC & Model

An Example of System Scaling vs. Transistor Scaling

Basis of System Scaling

3D System Package – A Fundamental Concept

- 1. Ultra-thin, Large, Low CTE, HT Substrates
- 2. Ultra-short TSV-like System Interconnects
 - Signal vias, power vias, photonic vias and Large Thermal Vias

- 3. Ultra Low-loss Materials & Interconnects
- 4. Balanced Fine-pitch RDL for Min. Warpage
- 5. High-temp & High-power Cu-Cu Interconnects
- 6. High-throughput Panel Mfg and Panel Assembly

New Era of Automotive Electronics (NAE)

NAE: Most Complex Electronics System

- Wireless Electronics
- Sensor Electronics
- Camera Electronics
- 4G LTE
- Digital Electronics
- MEMS and Sensors
- Power Electronics

 Sensing Electronics for Autonomous Driving

- Radar, LiDAR, Cameras
- High-power and Hightemp for Electric Cars
 - GaN, SiC devices
 - Metal-insulators
- Healthcare Electronics

Etc ...

New Era of Automotive Electronics (NAE) is the Most Complex Electronic System

Global Challenges in New Era of Electronics

- New Technologies
- Educated Workforce
- Global Manufacturing Supply-chain
- Component Integration
- System Assembly
- Roadmaps
- Standards

3 Main Reasons for NAE

1. Reducing Human Fatalities

- 94% of 33,000 Deaths in the U.S., and 1.3M globally due to human error
- 2. Improving Driving Energy Efficiency
- 3. Improving Human Productivity

Many, Many more

Mercedes-Benz F 015 Luxury in Motion Research

Grand Challenges in Automotive Electronics (Ford)

NAE: Ultimate Electronic System Opportunity

16 | SRC

Global Ecosystem for NAE – From R&D to System Integration

17 | SRC

INDUSTRY CONSORTIUM AT GT

Georgia Tech Industry Consortium

Automotive Programs in the South East

Organization	Emphasis
NTRC – National Transportation Research Center, Oak Ridge, TN	Improving fuel economy, reducing emissions and addressing transportation systems issues
CTR – Center for Transportation Research, Univ. of Tennessee, Knoxville	Conduct research; develop expertise; serve transportation research, service and training needs
CU-ICAR – Clemson Univ International Center for Automotive Research	Campus is an automotive ecosystem that helps companies make connections and build relationships
CAVE-3 – Center for Advanced Vehicle and Extreme Environmental Electronics, Auburn Univ.	New technologies for packaging electronics with emphasis on cost, harsh environment and reliability
CAVT – Center for Advanced Vehicle Technologies, Univ. of Alabama, Tuscaloosa	Powertrains, energy storage, materials and manufacturing and other automotive electronics
CAVS – Center for Advance Vehicular Systems, Mississippi St. Univ., Starkville	Engineering solutions for design, technology, production, and infrastructure for sustainable mobility
ATDC – Advanced Technology Development Center, El2, Georgia Tech	Startup incubator that helps technology entrepreneurs in Georgia launch and grow successful companies
Venture Lab, EI2, Georgia Tech	Ranked #2 University based incubator in the world
NCTSPM – National Center for Transportation Systems Productivity and Management; Ga Tech, FL International Univ, Univ. Central FL, Univ. Alabama Birmingham	Tier 1 University Transportation Center (UTC) that conducts transportation related research in the areas of safety, state-of-good-repair, and economic competitiveness

Uniqueness of GT Consortium

- Leading-edge, precompetitive, 100 global researchers, developers, manufacturers and OEMS
- Co-development by all 50+ companies
- Device-Package synergy and system integration
- Basic research by Ph.D and MS students
- Integration and prototype research by GRAs, company engineers and GT research faculty
- Long-term roadmap with 2 year deliverables

Georgia Tech Faculty Expertise

300mm Cleanroom Pilot Facility and Labs

Plating Facility

Environmental Testing

Substrate Cleanroom

Assembly Facility

Shared User Labs

Partnership with Tool Companies

Global Industry Co-development Consortium at GT PRC

UNITED STATES	EUROPE		ASIA	JAPAN			
Brewer Sci - Polymers	HC Starck – Capacitors	Orbotech –	Metrology	Ajinomoto – Dry Film			
Corning – Glass	Schott – Glass		CHINA	Asahi Glass – Glass			
Applied Materials – PVD, CVD Tools	Atotech – Plating	JCET – Bur	mpina	MGC – Laminates			
Coherent – Laser	Suss – Laser Via			TOK – Photopolymer			
ESI – Laser	Xyztec – Assembly	K	OREA	Asahi Glass – TPV			
K&S – TCB Bonder	TDK-Epcos – RF	Gigalane –	RF	Disco – Dicing			
MKS – Plasma Etching				Mitsubishi Electric – Laser			
Tango – PVD Tools		17	AIWAN	Ushio – Lithography			
Veeco - Cleaning		Unimicron	– 2.5D	NGK/NTK – 2.5D			
QualiTau – Assembly		ASE – ASSE	embly	Shinko – 2.5D			
AVX – Passives		I SMIC – US	er	Namics – Underfill			
Ciena – Opto							
Global Foundries							
Intel – Digital							
Qualcomm – All							
TE – Opto							
TI – Passives							
Materials	Tools	Substrates	Assembly	Users			

25 | SRC

Additional Recent Industry Interest

UNITED STATES	EUROPE	KOREA	JAPAN
AMD	Audi	Samsung	FujiFilm
Dow	Bosch		Ibiden
Finisar	Continental		Nitto Denko
IDT	Hella		Renesas
Linear	Heraeus		Rohm
On-Semi	Infineon		WALTS
Rodgers	Thales		
Rudolph	Valeo		
Savansys	Volkswagen		
Stellar			
USCI			
Veeco			

GT PRC 2016 Industry Consortia Members

Fundamental Challenges & Trends in Electronics

ICs	Device Packaging	Systems Packaging
 IC < 14nm: no cost Front end: leakage Back end: RC delay Split SOC inevitable 	 Digital: Organic, Si RF: LTCC & laminate Power: embedded fanout Bulky and expensive 	 SIP MCM 2.5D Interposers with 3D ICs
 Trend: 2.5D Si Interposer 2.5D Glass BGA (GT) 	<i>Trend</i>:WLFOPFO: Glass by GT	Trend: System on Board • 3D System Architecture (GT)

Packaging Evolution to Glass Pkg, & Wafer Fanout

Wafer vs. Panel Fanout

Wafer FO: Promise of Ultimate I/O Density

- Reality: Limited by materials and processes
- Limited to 300 mm so limited to small size packages
- High cost for large multi-chip or SIP
- Reliability and lithography limited by molding materials
- One-stop shop for IC and package
- Panel FO: Promise of Ultimate Low Cost
 - Reality: Low cost
 - Limited in I/O density
 - Limited by polymer materials
 - Limited by large area sub-micron tools
 - Limited by large panel foundry investments

Future: Ultimate I/O Density and Ultimate Low Cost!

GT Industry Consortium Technical Strategy

31 | SRC

Basic & Design & Demonstration Research (2016-'18)

Si-like I/Os with Glass Packaging

Parameter Prior to 2014 2014-2016 2016-2018 TPV 180 µm **Glass Thickness** 100µm 30-50µm • **TPV** Pitch 150-200µm 100-120µm 50µm • RDL Line- Space- Via 5-5-15µm 3-3-8µm 1.5-1.5-2µm ۲ Layer Count 3 + 32 + 24 + 4•

What is a System Scaling Platform? Ultra-thin Panel Glass with Ultra-fine Pitch TPV & RDL

Characteristic	Materials						
Characteristic	Ideal Properties	Glass	SC Si	Poly Si	Organic	Metal	Ceramic
Electrical	High resistivityLow loss and low k						
Physical	 Smooth surface finish Large area availability Ultra thin 						
Thermal	 High Conductivity 						
Mechanical	High strength & modulusLow warpage						
Chemical	 Resistance to process chemicals 						
TPV and RDL Cost	 Low cost Via formation and metallization 						
Reliability	 CTE matched to Si and PWB 						
Cost/mm ²	 At 25µm I/O pitch 						
341 SRC		Prof. Rao R. T	Go ummala	od 📃	Fair 📕	Poor	

Leading Advances in Glass Packaging

TPVs in Glass @ TSV Pitch

Polishing mold 40um 2.5 um 10um 1LD2 (10 um) 1LD1 (30 um)

Pitch 20um

2.5D with 40um Pitch

1st Demo at 20um Pitch

Single Mode Photonics Integration

2um RDL @ 20-40um Pitch

Si-like RDL on Glass Panels for Low Cost

Dry film resist wet processing

Extending SAP to 40 µm Pitch & Beyond Enabled by Glass

Via in Line at 20 µm Pitch Multilayer RDL - 1st time on Panel

Georgia Tech Glass Embedded Fanout Si-like I/Os, Laminate-like Cost

Interconnections & Assembly Research

Prof. Tummala

Power Module Research

Dr. Sharma

Design and demonstrate low power module for consumer electronics with following attributes

5G Research

P

aj Dr. Sundaram

- Explore novel designs, materials, processes and 3D packaging structures and RF components to build 5G-enabled modules that accommodate V2X applications with superiority over LTCC and organic packages in terms of:
 - 1. Performance
 - 2. Miniaturization
 - 3. Reliability
 - 4. Cost
 - 5. Integrability (e.g.transparent)
 - 6. IoT compatibility
 - 7. Broadband/multiband (e.g. 5.9GHz/mmW) operability

3D Glass Photonics Research

Dr. Liu Dr. Sundaram

 Demonstration of low loss optical interconnects integrated with high speed electronics in 3D Glass Photonics (3DGP) interposer for optimum Energy Efficiency, Density, and Cost

mm-Wave Automotive Radar Research

Objectives:

Prof. Cressler Prof. Tummala

- Extended Range (Low SNR) by LNA
- chip-package Synergy
- SiGe for high speed and Si Mfg.
- Board-Level Reliability
- Low-cost
- Three Focus Areas
 - Device Innovation
 - Package Innovation
 - Chip-Package Co-Development

Short, Medium and Long Range RADAR Modules Critical to Fully Autonomous Driving

Lidar Research

- Design and demonstrate a 3D Glass Packaging platform for waveformresolved Lidar module to support integrated collision avoidance
- Ability to see through fog/dust/rain/snow.
- Electrically steerable optical transmitter & receiver array enables high spatial and temporal resolution
- Smaller form factor for flexible integration (50x50x20) mm3
- Reaction time: ~1 msec
- High reliability due to solid-state Lidar system

- Design and demonstrate most advanced and miniaturized mono and high speed stereo camera with integrated image processing.
- Reaction time: 1 msec
- High frame rate on demand: 1000 fps
- Optional wireless data transmission using Wi-Fi and Bluetooth
- Low cost and High Reliability for operation time up to 20,000 hours

High Power & High-temp Electronics Research

- Integrated power, control and drive \rightarrow ultra-thin
- CTE-matched "zero-stress" 3D integration
- Low thermal impedance, no liquid cooling
- Low cost

Summary

- NAE is the Most Complex Electronics System, Requiring:
 - Technologies and Educated Workforce
 - Partnership with
 - Manufacturing Supply-chain and OEMs
- Georgia Tech Large-scale Global Industry Consortium Involves about 100:
 - Researchers
 - Developers
 - Manufacturers, and
 - OEMs

Georgia Tech College of Engineering

Thank you

rao.tummala@ece.gatech.edu