
System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Chapter 2 – Assemblers

2.1 Basic Assembler Functions

 To show different assembler features, Fig 2.1 (Page 45)
shows an assembler language program for the basic
version of SIC.

Written by WWF １

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ２

 The mnemonic instructions used are those introduced in
Section 1.3.1 and Appendix A.

 The following assembler directives are used in the
program:
1) START – Specify name and starting address for the

program;
2) END – Indicate the end of the source program and

(optionally) specify the first executable instruction in the
program;

3) BYTE – Generate character or hexadecimal constant,
occupying as many bytes as needed to represent the
constant;

4) WORD – Generate one-word integer constant;
5) RESB – Reserve the indicated number of bytes for a

data area;
6) RESW – Reserve the indicated number of words for a

data area.
2.1.1 A Simple SIC Assembler

 Fig 2.2 (Page 47) shows the same program as in Fig 2.1,
with the generated object code for each statement.

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

 The translation of source program to object code requires

us to accomplish the following functions:
1) Convert mnemonic operation codes to their machine

language equivalents – e.g., translates STL to 14 (line
10);

Written by WWF ３

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ４

2) Convert symbolic operands to their equivalent machine
addresses – e.g., translate RETADR to 1033 (line 10);

3) Build the machine instructions in the proper format;
4) Convert the data constants specified in the source

program into their internal machine representations –
e.g., translate EOF to 454F46 (line 80);

5) Write the object program and the assembly listing.
 Considering the statement of line 10, this instruction

contains a forward reference – that is, a reference to a
label (RETADR) that is defined later in the program.

 If we attempt to translate the program line by line, we will
be unable to process this statement because we do not
know the address that will be assigned to RETADR.

 Because of this, most assemblers make two passes over
the source program.

 The first pass scans the source program for label
definitions and assigns addresses.

 The second pass performs most of the actual translation.
 In addition to translating the instructions of the source

program, the assembler must process statements called
assembler directives (or pseudo-instructions).

 The assembler must write the generated object code onto
some output device. This object program will later be
loaded into memory for execution.

 The simple object program format contains three types of
records: Header, Text, and End.

 The content of each record: shown at the bottom of Page
48 and at the top of Page 49.

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

 Fig 2.3 (Page 49) shows the object program

corresponding to Fig 2.2, using this format.

 A general description of the functions of the two-pass

assembler: see the top of Page 50.
2.1.2 Assembler Algorithm and Data Structures

 The simple assembler uses two major internal data
structures: the Operation Code Table (OPTAB) and the
Symbol Table (SYMTAB).

Written by WWF ５

 OPTAB must contain (at least) the mnemonic operation
code and its machine language equivalent. In more
complex assemblers, this table also contains information
about instruction format and length.

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

 During Pass 1, OPTAB is used to look up and validate
operation codes in the source program.

 In Pass 2, it is used to translate the operation codes to
machine language.

 OPTAB is usually organized as a hash table, with

mnemonic operation code as the key. In most cases,
OPTAB is a static table – that is, entries are not normally
added to or deleted from it.

 SYMTAB includes the name and value (address) for each
label in the source program, together with flags to indicate
error condition (e.g., a symbol defined in two different
places).

 During Pass 1, labels are entered into SYMTAB as they
are encountered in the source program, along with their
assigned addresses (from LOCCTR).

 During Pass 2, symbols used as operands are looked up
in SYMTAB to obtain the addresses to be inserted in the
assembled instruction.

 SYMTAB is usually organized as a hash table for
efficiency of insertion and retrieval.

Written by WWF ６

 A Location Counter (LOCCTR) is used to be a variable

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ７

and help in the assignment of addresses. Whenever a
label in the source program is read, the current value of
LOCCTR gives the address to be associated with that
label.

 There is certain information (such as location counter
values and error flags for statements) that can or should
be communicated between the two passes. For this
reason, Pass 1 usually writes an inter-mediate file that
contains each source statement together with its
assigned address, error indicators, etc. This file is used
as the input to Pass 2.

 Figures 2.4 (a) and (b) (Page 53~54) show the logic flow
of the two passes of our assembler.

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ８

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

 The source lines input to this algorithm is assumed in a

fixed format with fields LABEL, OPCODE, and OPERAND.
If one of these fields contains a character string that
represents a number, we denote its numeric value with
the prefix # (for example, #[OPERAND]).

Written by WWF ９

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

2.2 Machine-Dependent Assembler Features
 Fig 2.5 shows the example program from Fig 2.1 by

SIC/XE instruction set.

Written by WWF １０

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF １１

 Prefix to operands: @ - indirect addressing; # - immediate
operands; + - extended instruction format.

 Instructions that refer to memory are normally assembled
using either the program-counter relative or the base
relative mode. The assemble directive BASE (Fig 2.5, line
13) is used in conjunction with base relative addressing.

 The main differences between Fig 2.5 (SIC/XE) and Fig
2.1 (SIC) involve the use of register-to-register
instructions (lines 150, 165). In addition, immediate
addressing and indirect addressing have been used as
much as possible (lines 25, 55, and 70).

2.2.1 Instruction Formats and Addressing Modes
 Fig 2.6 shows the object code generated for each

statement in the program of Fig 2.5.

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

 Key points of this subsection: the translation of the source

program, and the handling of different instruction formats
and different addressing modes.

 Note that the START statement (assembler directive)
specifies a beginning program address of 0.

Written by WWF １２

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF １３

 Translation of register-to-register instructions (such as
CLEAR – line 125, COMPR – line 150): The assembler
must simply convert the mnemonic operation code to
machine language (using OPTAB) and change each
register mnemonic to its numeric equivalent.

 Register-to-memory instructions: assembled using either
program-counter relative or base relative addressing; The
assembler must, in either case, calculate a displacement
to be assembled as part of the object instruction. Note
that
a) When the displacement is added to the contents of the

program counter (PC) or the base register (B), the
correct target address must be computed.

b) The resulting displacement must be small enough to fit
in the 12-bit field in the instruction. This means that the
displacement must be between 0 and 4095 (for base
relative mode) or between –2048 and +2047 (for
program-counter relative mode).

 If neither program-counter relative nor base relative
addressing can be used (because the displacements are
too large), then the 4-byte extended instruction format
(20-bit displacement) must be used.

 Example:
15 0006 CLOOP +JSUB RDREC 4B101036
(bit e set to 1 to indicate extended instruction format)

 Note that programmer must specify the extended format
by using the prefix + (line 15).
If extended format is not specified, the assembler first
attempts to translate the instruction using
program-counter relative addressing.

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF １４

If this is not possible (out of range), the assembler then
attempts to use base relative addressing.
If neither form is applicable and the extended format is
not specified, then the instruction cannot be properly
assembled and the assembler must generate an error
message.

 Example: the displacement calculation for program-
counter relative and base relative addressing mode -
A typical example of program-counter relative assembly:
10 0000 FIRST STL RETADR 17202D
1) Note that the program counter is advanced after each

instruction is fetched and before it is executed.
2) While STL is executed, PC will contain the address of

the next instruction (0003), where RETADR (line 95) is
assigned the address 0030.

3) The displacement we need in the instruction is 30 – 3
= 2D, that is, target address = (PC) + disp = 3 + 2D =
30.

4) Note that bit p = 1 to indicate PC relative addressing,
making the last 2 bytes of the instruction 202D.

 Another example of PC relative addressing:
40 0017 J CLOOP 3F2FEC
The operand address (CLOOP=0006); during instruction
execution, the PC=001A. Thus the displacement = 6 – 1A
= -14 (using 2’s complement for negative number in a
12-bit field = FEC).

 The displacement calculation process for base relative
addressing is much the same as for PC relative
addressing. The main difference is that the assembler

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF １５

knows what the contents of the PC will be at execution
time. On the other hand, the base register is under control
of the programmer.

 Therefore, the programmer must tell the assembler what
the base register will contain during execution of the
program so that the assembler can compute
displacements. This is done in our example with the
assembler directive BASE (line 13).

 In some case, the programmer can use another
assembler directive NOBASE to inform the assembler
that the contents of the base register can no longer be
relied upon for addressing.

 Example for base relative assembly:
160 104E STCH BUFFER,X 57C003
1) According to the BASE statement, register B = 0033

(the address of LENGTH) during execution.
2) The address BUFFER is 0036.
3) Thus the displacement in the instruction must be

36-33=3.
4) Note that bits x and b are set to 1 to indicate indexed

and base relative addressing.
 Immediate addressing mode: the assembly of instruction

with immediate addressing is to convert the immediate
operand to its internal representation and insert it into the
instruction. Example:
55 0020 LDA #3 010003
1) The operand stored in the instruction is 003.
2) Bit i = 1 to indicate immediate addressing.

 Another example:

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF １６

133 103C +LDT #4096 75101000
1) In this case, the operand (4096) is too large to fit into

the 12-bit displacement field, so the extended
instruction format is called for. (If the operand were too
large even for this 20-bit address field, immediate
addressing could not be used.)

 A different way of using immediate addressing is shown in
the instruction
12 0003 LDB #LENGTH 69202D
1) The immediate operand is the symbol LENGTH.
2) Since the value of this symbol is the address assigned

to it, this immediate instruction has the effect of loading
register B with the address of LENGTH.

3) Note that we have combined PC relative addressing
with immediate addressing. (PC = 0006, LENGTH =
0033, disp = 0033 – 0006 = 002D)

 The mixed usage of different address mode is allowed.
For example, line 70 shows a statement that combines
PC relative and indirect addressing.

2.2.2 Program Relocation
 The program we considered in Section 2.1 is an example

of an absolute program (or absolute assembly). The
program must be loaded at address 1000 (specified at
assembly time) in order to execute properly.

 Example: 55 101B LDA THREE 00102D.
In the object program (Fig 2.3), this statement is
translated as 00102D, specifying that register A is to be
loaded from memory address 102D.

 Suppose we attempt to load and execute the program at
address 2000 instead of address 1000. If we do this,

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

address 102D will not contain the value that we expect.
 In reality, the assembler does not know the actual location

where the program will be loaded. However, the
assembler can identify for the loader those parts of the
object program that need modification. An object program
that contains the information necessary to perform this
kind of modification is called a relocatable program.

 Fig 2.7 shows different places (0000, 5000, 7420) for
locating a program. For example, in the instruction
“+JSUB RDREC”, the address of RDREC is 1036(0000),
6036(5000), 8456(7420). How to modify the address of
RDREC according to different relocating address?

 The solution to the relocation problem:

1) When the assembler generates the object code for
JSUB instruction, it will insert the address of RDREC

Written by WWF １７

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF １８

relative to the start of the program. (This is the reason
we initialized the location counter to 0 for the
assembly.)

2) The assembler will also produce a command for the
loader, instructing it to add the beginning address of
the program to the address field in the JSUB
instruction at load time.

 A modification record has the format shown in P.64.
 Note that the length field of a modification record is

stored in half-bytes (rather than byte) because the
address field to be modified may not occupy an integral
number of bytes. For example, the address field in the
+JSUB occupies 20 bits.

 The starting location field of a modification record is the
location of the byte containing the leftmost bits of the
address field to be modified. If this address field occupies
an odd number of half-bytes, it is assumed to begin in the
middle of the first byte at the starting location.

 Example: the modification record for the +JSUB
instruction would be “M00000705”. This record specifies
that the beginning address of the program is to be added
to a field that begins at address 000007 (relative to the
start of the program) and is 5 half-bytes in length.
Thus in the assembled instruction 4B101036, the first 12
bits (4B1) will remain unchanged. The program load
address will be added to the last 20 bits (01036) to
produce the correct operand address.

 In Fig 2.6, only lines 35 and 65 need to be relocated. The
rest of the instructions in the program need not be
modified when the program is loaded.
In some cases, this is because the instruction operand is

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

not a memory address at all (e.g., CLEAR R or LDA #3).
In other cases, no modification is needed because the
operand is specified using PC relative or base relative
addressing.

 Obviously, the only parts of the program that require
modification at load time are those that specify direct (as
opposed to relative) addresses.

 Fig 2.8 shows the complete object program
corresponding to the source program of Fig 2.5.

Written by WWF １９

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ２０

2.3 Machine-Independent Assembler Features
 Key points of this section: the implementation of literals

within an assembler, two assembler directives (EQU and
ORG), the use of expressions in assembler language,
program blocks and control sections.

2.3.1 Literals
 It is often convenient for the programmer to be able to

write the value of a constant operand as a part of the
instruction that uses it. The program in Fig 2.9 illustrates
the use of literals and the object code generated for the
statements of this program is shown in Fig 2.10.

 Note that a literal is identified with the prefix =, which
followed by a specification of the literal value. Example:
45 001A ENDFIL LDA =C’EOF’ 032010
specifies a 3-byte operand with value ‘EOF’.

 It is important to understand the difference between a
literal and immediate operand.
1. With immediate addressing, the operand value is

assembled as part of the machine instruction.
2. With a literal, the assembler generates the specified

value as a constant at some other memory location.
The address of this generated constant is used as
target address for the machine instruction. For
instance, see line 45 and 55 in Fig 2.10 (P. 69).

 All of the literal operands used in a program are gathered
together into one or more literal pools. Normally literals
are placed into a pool at the end of the program. (See Fig
2.10)

 In some cases, it is desirable to place literals into a pool
at some other location in the object program. To allow this,

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

we introduce the assembler directive LTORG (line 93 in
Fig 2.9).

Written by WWF ２１

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

1. When the assembler encounters a LTORG statement,
it creates a literal pool that contains all of the literal
operands used since the previous LTORG (or the
beginning of the program).

2. This literal pool is placed in the object program at the
location where the LTORG directive was encountered
(Fig 2.10).

Written by WWF ２２

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ２３

3. Of course, literals placed in a pool by LTORG will not
be repeated in the pool at the end of the program.

 If we had not used the LTORG statement on line 93, the
literal =C’EOF’ would be placed in the pool at the end of
the program.

 Most assemblers recognize duplicate literals – that is, the
same literal used in more than one place in the program –
and store only one copy of the specified data value. For
example, the literal =X’05’ is used in our program on lines
215 and 230.

 How to find the duplicate literals? The easiest way to
recognize duplicate literals is by comparison of the
character strings defining them (the string =X’05’).

 The basic data structure that assembler handles literal
operands is literal table LITTAB. For each literal used, this
table contains the literal name, the operand value and
length, and the address assigned to the operand when it
is placed in a literal pool.

 LITTAB is often organized as a hash table, using the
literal name or value as the key. During pass 1, the
assembler searches LITTAB for the specified literal name
(or value).
If the literal is already present in the table, no action is
needed.
If it is not present, the literal is added to LITTAB (leaving
the address unassigned).

 During pass 2, the operand address for use in generating
object code is obtained by searching LITTAB for each
literal operand encountered.

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ２４

2.3.2 Symbol-Defining Statements
 The user-defined symbols in assembler language

programs appear as labels on instructions or data areas.
The value of such a label is the address assigned to the
statement on which it appears.

 Most assemblers provide an assembler directive that
allows the programmer to define symbols and specify
their value. The assembler directive generally used is
EQU. The general form:
symbol EQU value
*This statement define the given symbol (enters it into
SYMBOL) and assigns to it the value specified.

 One common use of EQU is to establish symbolic names
that can be used for improved readability in place of
numeric values.

+LDT +4096 → MAXLEN EQU 4096

 +LDT #MAXLEN
When the assembler encounters the EQU statement, it
enters MAXLEN into SYMTAB (with value 4096).

 Another common use of EQU is in defining mnemonic
names for registers. For example:
A EQU 0
X EQU 1
L EQU 2
These statements cause the symbols A, X, L, ,,, to be
entered into SYMBOL with their corresponding values 0,
1, 2, …

 Another common assembler directive ‘ORG’: its form is
ORG value

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ２５

where value is a constant or an expression involving
constants and previously defined symbols.

 When this statement is encountered during assembly of a
program, the assembler resets its location counter
(LOCCTR) to the specified value. Since the values of
symbols are taken from LOCCTR, the ORG statement will
affect the values of all labels defined until the next ORG.

 Example: To define a table STAB, the content of the table
is as follows:
SYMBOL field – 6-byte, VALUE field – one-word, FLAGS
field – 2-byte.
Using Indexed Addressing: Using ORG:

Reserve space Use LOCCTR to address fields
STAB RESB 1100 STAB RESB 1100
Refer to each field ORG STAB
SYMBOL EQU STAB SYMBOL RESB 6
VALUE EQU STAB+6 VALUE RESW 1
FLAGS EQU STAB+9 FLAGS RESB 2
Ex: To fetch the VALUE field ORG STAB+1100
 LDA VALUE, X (*Last ORG sets LOCCTR back)

 Notice that two-pass assembler design requires that all
symbols be defined during Pass 1. Example:
ALPHA RESW 1 BETA EQU ALPHA

BETA EQU ALPHA ALPHA RESW 1

 (*BETA cannot be assigned a value)

 Another example: the sequence of statements cannot be
resolved by an ordinary two-pass assembler regardless of
how the work is divided between passes.
ALPHA EQU BETA
BETA EQU DELTA
DELTA RESW 1

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ２６

2.3.3 Expressions
 Most assemblers allow the use of expressions. Each such

expression must be evaluated by the assembler to
produce a single operand address or value.

 Expressions are classified as either absolute expressions
or relative expressions.
Relative: means relative to the beginning of the program.
Labels on instructions and data areas, and references to
the location counter value, are relative terms.
Absolute: means independent of program location. A
constant is an absolute term.
Note: A symbol whose value is given by EQU (or some
similar assembler directive) may be either an absolute
term or a relative term depending on the expression used
to define its value.

 If relative terms occur in pairs and the terms in each such
pair have opposite signs, then the resulting expressions
are absolute expressions. None of the relative terms may
enter into a multiplication or division operation.

 A relative expression is one in which all of the relative
terms except one can be paired as described above; the
remaining unpaired relative term must have a positive
sign.

 Example: 107 MAXLEN EQU BUFEND－BUFFER
 both BUFEND and BUFFER are relative terms, each
representing an address within the program. However,
the expression represents an absolute value: the
difference between the two addresses.

 Example: BUFEND ＋ BUFFER, 100 － BUFFER, or
3×BUFFER represent neither absolute values nor

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ２７

locations within the program. Because such expressions
are very unlikely to be of any use, they are considered
errors.

 To determine the type of an expression, we must keep
track of the types of all symbols defined in the program.
(See page 77 example symbol table) With this information,
the assembler can easily determine the type of each
expression used as an operand and generate
Modification records in the object program for relative
values.

2.3.4 Program Blocks
 Program blocks are referred to be segments of code that

are rearranged within a single object program unit, and
control sections (appeared in next subsection) to be
segments that are translated into independent object
program units.

 Fig 2.11 shows our example program, as it might be
written using program blocks. Three blocks are used: The
first (unnamed) program block contains the executable
instructions of the program. The second (named CDATA)
contains all data areas that are a few words or less in
length. The third (named CBLKS) contains all data areas
that consist of larger blocks of memory.

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ２８

 The assembler directive USE indicates which portions of
the source program belong to the various blocks.

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ２９

The beginning of program begins Default block (unnamed)
Line 92 signals the beginning of CDATA
Line 103 begins the CBLK block
Line 123 resumes Default block
Line 183 resumes CDATA
Line 208 resumes Default block
Line 252 resumes CDATA

 The assembler accomplishes this logical rearrangement
of code by maintaining, during Pass 1, a separate location
counter for each program block. Thus each label in the
program is assigned an address that is relative to the start
of the block that contains it.

 At the end of Pass 1, the latest value of the location
counter for each block indicates the length of that block.
The assembler can then assign to each block a starting
address in the object program (beginning with relative
location 0).

 For code generation during Pass 2, the assembler needs
the address for each symbol relative to the start of the
object program (not the start of an individual program
block). This is easily found from the information in
SYMTAB. The assembler simply adds the location of the
symbol, relative to the start of its block, to the assigned
block starting address.

 Fig 2.12 shows this process applied to our sample
program. Notice that the symbol MAXLEN (line 107) is
shown without a block number. It is an absolute symbol.

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

 See page 80 for the table constructed by assemblers at

Written by WWF ３０

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

the end of Pass 1. This table contains the starting
addresses and lengths for all blocks.

 Example: 0006 0 LDA LENGTH 032060
 SYMTAB shows the value of the operand (LENGTH)
as relative location 0003 within program block 1 (CDATA).
The starting address for CDATA is 0066. Thus the desired
target address for this instruction is 0003+0066=0069.

 We can see that the separation of the program into blocks
as considerably reduced our addressing problems.
Because the large buffer area is moved to the end of the
object program, we no longer need to use extended
format instructions on lines 15, 35, and 65.

 Fig 2.13 shows the object program corresponding to Fig
2.11. It does not matter that the Text records of the object
program are not in sequence by address; the loader will
simply load the object code from each record at the
indicated address.

 Fig 2.14 traces the blocks of the example program

through this process of assembly and loading.

Written by WWF ３１

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

2.3.5 Control Sections and Program Linking

 A control section is a part of the program that maintains its
identity after assembly; each such control section can be
loaded and relocated independently of the others.
Different control sections are most often used for
subroutines or other logical subdivisions of a program.

 Control sections differ from program blocks in that they
are handled separately by the assembler.

 Fig 2.15 shows three control sections: The first section
continues (from COPY) till the CSECT statement on line
109. (CSECT signals the start of a new control section
named RDREC – 2nd control section.) Similarly, CSECT

Written by WWF ３２

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

on line 193 begins WRREC – 3rd control section. The
assembler establishes a separate location counter
(beginning at 0) for each control section, just as it does for
program blocks.

Written by WWF ３３

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ３４

 Fig 2.15 shows the use of two assembler directives to
identify such references: EXTDEF (external definition)
and EXTREF (external reference).
The EXTDEF statement in a control section names
symbols, called external symbols, that are defined in this
control section and may be used by other sections.
Control section names do not need to be named in an
EXTDEF statement because they are automatically
considered to be external symbols.
The EXTREF statement names symbols that are used in
this control section and are defined elsewhere.

 Fig 2.16 shows the generated object code for each
statement in the program. Example:
0003 CLOOP +JSUB RDREC 4B100000
 The operand RDREC is named in the EXTREF
statement for the control section, so this is an external
reference.
0017 +STCH BUFFER,X 57900000
 This instruction makes an external reference
BUFFER. The instruction is assembled using extended
format with an address of zero.

 The assembler must remember (via entries in SYMTAB)
in which control section a symbol is defined. For example,
note the handling difference between line 107 and line
190. The symbols BUFEND and BUFFER are defined in
the same control section with the EQU statement on line
107. Thus, the value of the expression can be calculated
immediately by the assembler. This could not be done for
line 190; BUFEND and BUFFER are defined in another
control section, so their values are unknown at assembly
time.

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

 The assembler must include information in the object
program that will cause the loader to insert the proper
values where they are required. We need two new record
types (Define and Refer) in the object program.

 A Define record gives information about external symbols

that are defined in this control section – that is, symbols
named by EXTDEF. (The record format see page 89)

 A Refer record lists symbols that are used as external
reference by the control section – that is, symbols named
by EXTREF. (The record format see page 89)

 In addition, a revised Modification record is also shown in
page 89.

 Fig 2.17 shows the object program corresponding to the

source in Fig 2.16. Notice that there is a separate set of
object program records for each control section.

Written by WWF ３５

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

 Example: The address field for the JSUB on line 15

begins at relative address 0004. Its initial value in the
object program is zero. The Modification record
‘M00000405+RDREC’ in control section COPY specifies
that the address of RDREC is to be added to this field,
thus producing the correct machine instruction for
execution.

 Example: The handling of line 190. The value of this word
is to be BUFEND－BUFFER, where both BUFEND and
BUFFER are defined in another control section. The
assembler generates an initial value of zero for this word.
The last two Modification records in RDREC direct that
the address of BUFEND be added to this field, and the
address of BUFFER be subtracted from it. This
computation, performed at load time, results in the
desired value for the data word.

Written by WWF ３６

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ３７

2.4 Assembler Design Options
2.4.1 One-Pass Assemblers

 The main problem in trying to assemble a program in one
pass involves forward references and forward jump (page
93).

 There are two main types of one-pass assembler. One
type produces object code directly in memory for
immediate execution (load-and-go assembler); the other
type produces the usual kind of object program for later
execution.

 Fig 2.18 shows a sample program for a one-pass
assembler.

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

 Fig 2.19(a) shows the object code and symbol table

entries as they would be after scanning line 40 of the
program in Fig 2.18.

Written by WWF ３８

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

The first forward reference occurred on line 15. Since the
operand (RDREC) was not yet defined, the instruction
was assembled with no value assigned as the operand
address (denoted by ----).
RDREC was then entered into SYMTAB as an undefined
symbol (indicated by *); the address of the operand field
(2013) of the instruction was inserted in a list associated
with RDREC.
A similar process was followed with the instructions on
lines 30 and 35.

 Now consider Fig 2.19(b), which corresponds to the
situation after scanning line 160.

Written by WWF ３９

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

By this time, some of the forward references (ENDFIL,
line 45 and RDREC, line 125) have been resolved, while
others (EXIT, line 175 and WRREC, line 210) have been
added.
When the symbol ENDFIL was defined (known), the
assembler placed its value in the SYMTAB entry; it then
inserted this value into the instruction operand field (at
address 201C) as directed by the forward reference list.
From this point on, any references to ENDFIL would not
be forward references, and would not be entered into a
list.

 At the end of the program, any SYMTAB entries that are
still marked with * indicate undefined symbols. These
should be flagged by the assembler as errors.

 One-pass assemblers that produce object programs
follow a slightly different procedure from that previously
described.

Written by WWF ４０

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

1) Forward references are entered into lists as before.
2) When the definition of a symbol is encountered,
instructions that made forward references to that symbol
may no longer available in memory for modification. In
general, they will already have been written out as part of
a Text record in the object program. In this case, the
assembler must generate another Text record with the
correct operand address.
3) When the program is loaded, this address will be
inserted into the instruction by the action of the loader.

 Fig 2.20 illustrates the above process.

The 2nd Text record contains that object code generated
from lines 10 through 40 in Fig 2.18. The operand
addresses for the instructions on lines 15, 30, and 35
have been generated as 0000.
When ENDFIL on line 45 is encountered, the assembler
generates the 3rd Text record. This record specifies that
the value 2024 (the address of ENDFIL) is to be loaded at
location 201C (the operand address field of JEQ on line
30).
When the program is loaded, the value 2024 will replace

Written by WWF ４１

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

the 0000 previously loaded.
 Note that in this section, we considered only simple

one-pass assemblers that handled absolute programs.
2.4.2 Multi-Pass Assemblers

 Consider the program sequence
ALPHA EQU BETA
BETA EQU DELTA

 DELTA RESW 1
Note that any assembler that makes only two sequential
passes over the source program cannot resolve such a
sequence of definitions.

 The general solution is a multi-pass assembler that can
make as many passes as are needed to process the
definitions of symbols.

 Fig 2.21(a) shows a sequence of symbol-defining
statements that involve forward references.

Fig 2.21(b) displays symbol table entries resulting from
Pass 1 processing of the statement. The entry &1
indicates that one symbol in the defining expression is
undefined.

Written by WWF ４２

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Fig 2.21(c) shows two undefined symbols involved in the
definition: BUFEND and BUFFER.

Fig 2.21(d) shows a new undefined symbol PREVBT
(dependent on BUFFER) is added.

Written by WWF ４３

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Fig 2.21(e) shows that when BUFFER is encountered,
PREVBT can be determined accordingly.

Fig 2.21(f) shows that when BUFEND is defined,
MAXLEN and HALFSZ can be determined accordingly.

Written by WWF ４４

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

2.5 Implementation Examples

(Skip)

Written by WWF ４５

	Chapter 2 – Assemblers
	2.1 Basic Assembler Functions
	2.1.1 A Simple SIC Assembler
	2.1.2 Assembler Algorithm and Data Structures
	2.2 Machine-Dependent Assembler Features
	2.2.1 Instruction Formats and Addressing Modes
	2.2.2 Program Relocation
	2.3 Machine-Independent Assembler Features
	2.3.1 Literals
	2.3.2 Symbol-Defining Statements
	2.3.3 Expressions
	2.3.4 Program Blocks
	2.3.5 Control Sections and Program Linking
	2.4 Assembler Design Options
	2.4.1 One-Pass Assemblers
	2.4.2 Multi-Pass Assemblers
	2.5 Implementation Examples

