
SYSTEM TO PREDICT BIPOLAR DISORDER
CRISES ANALYSING MASSIVE DATA

Ana María Martínez Gómez

DOUBLE DEGREE IN COMPUTER SCIENCE AND MATHEMATICS
COMPUTER SCIENCE FACULTY

COMPLUTENSE UNIVERSITY OF MADRID

BACHELOR THESIS
5o academic year

16th June 2016

Director: GUADALUPE MIÑANA ROPERO
Codirector: MARÍA VICTORIA LÓPEZ LÓPEZ

Contents

List of �gures iii

List of tables v

Abstract vii

Keywords ix

1 Introduction 1
1.1 Objectives . 1
1.2 Antecedents . 1
1.3 Work plan . 2
1.4 State of the art . 2

1.4.1 NoSQL databases . 2
1.4.1.1 Key-value databases 3
1.4.1.2 Document-based databases 4
1.4.1.3 Conclusion . 6

1.4.2 Streaming processing with Spark 6
1.4.3 Neural networks . 13

2 MongoDB database 21
2.1 Features . 21

2.1.1 Queries . 21
2.1.2 Transactions . 22
2.1.3 Availability . 22
2.1.4 Consistency . 22
2.1.5 Scaling . 23

2.2 Learning MongoDB . 23
2.3 Database for the project . 24

2.3.1 Installation and con�guration 24
2.3.1.1 Development . 24
2.3.1.2 Production . 25
2.3.1.3 Authentication . 26

2.3.2 Design . 27
2.3.2.1 Colletions . 27
2.3.2.2 Users and roles . 34
2.3.2.3 Indices . 35

2.3.3 Queries . 37
2.4 Integration . 40

i

Contents

3 Android 43
3.1 Learning Android . 43
3.2 Application to collect medical data . 43

3.2.1 Speci�cation . 43
3.2.1.1 Final speci�cation . 44

3.2.2 Design . 46
3.2.2.1 Prototyping . 46
3.2.2.2 Design principles . 48

3.2.3 Implementation . 49
3.2.3.1 Android versions . 50
3.2.3.2 Material design . 50
3.2.3.3 Documentation . 50
3.2.3.4 Classes . 51
3.2.3.5 Manifest . 52
3.2.3.6 Main challenges encountered during the development . 52
3.2.3.7 Final application and testing 54

3.2.4 Usability testing . 54
3.2.4.1 Preparation of the usability testing 56
3.2.4.2 Testing sessions . 58
3.2.4.3 Analysis and recommendations 58

3.2.5 Future changes . 60

4 Contributions 63
4.1 Github . 63
4.2 Stack Over�ow . 64

5 Conclusion 65

Acronyms 67

Glossary 69

Bibliography 73

Appendix: MongoDB con�guration �le 75

Appendix: Actigraph data 77

Appendix: Creation of users and roles 81

Appendix: Prototypes images 87

Appendix: Screenshots of the �nal application 95

Appendix: Usability testing questionnaire 99

ii

List of Figures

1.1 UCM groups: Grasia and G-TeC . 1
1.2 Key-value databases most popular implementations 3
1.3 Document databases most popular implementations 4
1.4 Person schema . 5
1.5 3Vs . 7
1.6 Data sharing in Hadhoop . 7
1.7 Data sharing in Spark . 8
1.8 Hadhoop vs Spark . 8
1.9 Spark process . 9
1.10 Spark Engine . 10
1.11 Spark ecosystem . 11
1.12 Spark streaming �ow . 11
1.13 Spark dynamic load balancing . 12
1.14 Spark process . 13
1.15 Logistic sigmoid . 14
1.16 Neural networks . 15
1.17 Error function as a surface in the weight space 16

3.1 Application problems in some devices 55
3.2 No space after the help text in some old devices 55

4.1 Logos of the communities I contributed to 63

1 Fist prototype . 87
2 Second prototype . 88
3 Third prototype . 88
4 Fourth prototype . 89
5 Fifth prototype . 89
6 Sixth prototype . 90
7 Seventh prototype . 90
8 Eight prototype . 91
9 Ninth prototype . 91
10 Tenth prototype . 92
11 Final prototype . 93

iii

List of Tables

1.1 RDDs transformations and actions . 10
1.2 DStreams transformations . 12

v

Abstract

English

During the development of this project I learnt about Big Data, Android and
MongoDB while helping to develop a bipolar crises-prediction system by analysing
massive quantity of data from diverse sources. Concretely, I did a theoretical part
about NoSQL database, Streaming Spark and Neural Networks and then I designed
and con�gured a MongoDB database to be used in the bipolar disorder project. I also
learnt about Android and designed and developed an Android mobile application to
collect data to be used as an input in the crises-prediction system. I did usability
testing upon completion of the project too.

Spanish

Durante el desarrollo del proyecto he aprendido sobre Big Data, Android y
MongoDB mientras que ayudaba a desarrollar un sistema para la predicción de las
crisis del transtorno bipolar mediante el análisis masivo de información de diversas
fuentes. En concreto hice una parte teórica sobre bases de datos NoSQL, Streaming
Spark y Redes Neuronales y después diseñé y con�guré una base de datos MongoDB
para el proyecto del trastorno bipolar. También aprendí sobre Android y diseñé y
desarrollé una aplicación de móvil en Android para recoger datos para usarlos como
entrada en el sistema de predicción de crisis. Una vez terminado el desarrollo de la
aplicación también llevé a cabo una evaluación con usuarios.

vii

Keywords

English

Android, mobile applications, databases, NoSQL, MongoDB, Big Data, bipolar
disorder, Spark, neural networks.

Spanish

Android, aplicaciones móviles, bases de datos, NoSQL, MongoDB, Big Data,
trastorno bipolar, Spark, redes neuronales.

ix

1 Introduction

1.1 Objectives

Bipolar disorder often leads to periods of sick leave and close attention, causing
economic and social problems in work and family environments. Most patients su�er
crises that can be avoided through early prediction. The objective of my project is to
learn about Big Data, Android and MongoDB while helping to develop a bipolar
crises-prediction system by analysing massive quantity of data from diverse sources
such as mobile phone sensors, voice monitoring and accelerometers. This project is an
small part of a bigger project (see [13]) supported by the UCM groups G-TeC and
GRASIA (�gure 1.1). There were similar studies made, the main di�erence is that in
this case we are going to pay close attention to high sleep quality as we consider it to
be a determinant factor which will improve predictions signi�cantly. As it is a really
ambitious project I have developed a part of it, as it is detailed in the Work plan
section.

Figure 1.1: UCM groups: Grasia and G-TeC

1.2 Antecedents

I had not had any prior experience with Big Data, Android nor MongoDB before
starting this project. However, some of the subjects I took at the University played a
pivotal role while learning to work with these technologies. Specially, the subjects of
Tecnología de la programación, where I learned important concepts of OO
programming and I programmed in Java, and the subject of Bases de datos, where I
acquired sound knowledge of relational databases and SQL, and Diseño de sistemas
interactivos, which helps me in the designing and usability testing of the mobile
application.

1

1 Introduction

1.3 Work plan

As I had not had any previous contact with Big Data, the �rst step was to
investigate the technologies that are currently being used in this �eld. As it is a very
wide topic, I was recommended to concentrate on NoSQL databases , Streaming
processing with Spark and Neural networks . After that, as the project has just
started, I focused on collecting data to be analysed and on the database design and
management and its �nal integration. To collect data I developed an Android
application which users will use to �ll in a daily questionnaire. It allows users to
register and to sign in and it also collects other information measuring the interaction
of the user with the device. Regarding the database, I decided to use a MongoDB
database. I installed a MongoDB server, designed the collections and users and
illustrated how the data can be queried. I also commented on the MongoDB Drivers
that could be used to integrate the database with the di�erent clients that need to
access to the database server and I explained in detail the Java Driver which I used in
the mobile application.

1.4 State of the art

1.4.1 NoSQL databases

The environment for data has signi�cantly changed since the introduction of relational
databases in 1970:

• The emergence of cloud computing where data is stored in multiple servers.
When performing queries in a complex relational database, several large tables
are joined and executing distributed joins is a very complicated problem.

• The need to store unstructured data, such as social media posts and
multimedia. This is not possible in relational database tables where only
structured data can be saved.

• Database schema needs to change rapidly. In relational databases it is
needed to de�ne the schema in advance and alter it is really costly.

As a result, it does not still made sense to de�ne objects as sets of tables (or
relations). Non SQL or not only SQL (NoSQL) databases, which are more �exible,
distributed, horizontally scalable and in many cases provide better performance, have
gained traction, specially in Big Data and real-time web applications. However, as
they use an alternative model to the one used in relational databases, they usually
lack of other desirable properties such as security in the transactions, integrity and
consistency.

2

1.4 State of the art

It is clear that NoSQL will be useful in some parts of our project, although that
doesn't mean that SQL is not going to be used. What is not so clear is what is the
best type of NoSQL data store as there are many di�erent types: document,
key-value, column, graph, multi-model, etc. Following the advice of my directors, I am
going to analyse key-value and document-based, explaining how they work, their
advantages and disadvantages and their possible application to the project.

The main references that has been used for this section are [34], [30] and [23].

1.4.1.1 Key-value databases

(a) Riak (b) Redis

Figure 1.2: Key-value databases most popular implementations

Key-value databases or key-value stores are the simplest model. A key-value
database is a hash table which stores pairs (key, value), which only makes sense to use
when all accesses to the database use a primary key. We could already have a pair
(key, value) using a two-columns relational database, although in that case the value
column was restricted to have a single basic type of data (for example Integer or
String), while in a key-value database any kind of data can be stored. The database
does not care of what is inside, as it is the application who must understand what it is
stored. Because of the use of primary-key access they have great performance and can
be easily scaled.

There are many kinds of key-value stores. Some of them allow storing complex
value types and provide additional operations over these structures. Some others
provide iterators over the keys. There are several private options, such as DynamoDB,
which is provided by Amazon, but as we prefer free of charge options, we are now
going to concentrate on two of the most popular open source key-value databases:
Riak (�gure 1.2a) and Redis (�gure 1.2b).

Riak is an implementation of DynamoDB with advantages features. It is a
distributed key-value database where values can be anything, from plain text to
images, and relationship between keys are handled by links. All data can be accessed
using a simple HTTP interface. Riak o�ers high availability, fault-tolerant, �exibility,
scalability and it supports advanced querying via map-reduce. However, it lacks
robust support for custom queries and do not have foreign keys.

3

1 Introduction

Redis supports lists, sets and hashes and can do range, di�erence, union and
intersection operations. It has one of the most robust query mechanisms for a
key-value database and it is perfect when working with risk data.

As this model is so simple it can perform well in many scenarios but it will generally
be unsuitable in the following cases:

• If having relationships between di�erent sets of data is needed, even though some
key-value stores provides traversing links.

• When having multioperation transactions and when an operation fails you want
to revert the rest of the operations.

• If you need to search the keys using data from the value part.

• To operate over multiple keys at a time.

1.4.1.2 Document-based databases

(a) MongoDB (b) CouchDB

Figure 1.3: Document databases most popular implementations

Document-oriented databases are a subclass of the key-value databases, which
implies that key-value databases are more general. In document-based databases each
record is a document, typically XML, JSON or BSON. These documents are
self-describing, hierarchical tree data structures. Moreover, documents are
independent units which improve performance, as related data is read contiguously
and allow us to distribute data across multiple servers while keeping related data
together.

Documents have di�erences in their attributes and any data can be stored in them
(there are speci�c restrictions depending on the type of document database), so that
unstructured data can be stored easily. Similar documents belong to the same
collection. A collection is analogous to an SQL table, but in relational databases each
columns stores the same type of values or null, wasting memory and allowing less
�exibility. The �gure 1.4 shows an example of the di�erences between a table with
persons in a typical relational database and the collection persons in a document
database. Documents are closer to what we have in our programs than relational
schemas. Note that documents can be as complex as you choose: nested data can be

4

1.4 State of the art

(a) Relational database - Persons table

(b) Document database - Persons collection

Figure 1.4: Person schema

used to provide additional sub-categories of information about an object. You can
also use one or more document to represent a real-world object.

The strength of a document database's query language is an important
di�erentiator of these databases. We can query the data inside the document, while in
key-value databases we would have to seach the document by its key, get the whole
document and then look into the document. Because of that, document stores
provides as a balance between �exibility and similarity to relational databases, which
I am used to work with.

We are going to analyse MongoDB (�gure 1.3a), as it is a representative
implementation of document databases and CouchDB (�gure 1.3b) which is used in
some medical projects. Both of them are free and open-source, there are some private
options such as Azure DocumentDB, Lotus Notes or SimpleDB) but expense is not
worthwhile and we can not a�ord it.

5

1 Introduction

MongoDB uses JSON documents to manage the data, although internally it saves
BSON documents, which is a JSON-like format more compact than JSON that
improves e�ciency. Documents are limited to 16MB. MongoDB con�gures
consistency and improves availability by using replica sets. It allows atomic
transactions at the single-document level and it can also be scaled easily. All this
features of MongoDBare detailed in section 2.1.

As we have said above, CouchDB has been used in some medical projects, although
things like x-ray images or electroencephalography wave recordings are saved and it is
quite doubtful that those kind of projects are similar to ours. Let's mention two
interesting examples: [33] discuss the use of CouchDB for Document-based Storage of
DICOM Objects and [31] explains why using Document-Based Databases for Medical
Information Systems in Unreliable Environments is well-suited.

1.4.1.3 Conclusion

Both key-value and document-oriented databases are appropriate for web and
real-time analytics and provides us with schema �exibility, although document stores
query engine is a determinant factor. Moreover, the fact that they are closer to
relational databases will makes easier the transition from SQL and understanding the
database and its design. Also, the popularity of MongoDB provides us with a large
amount of documentation and manuals, which make my learning much easier. All in
all, I consider MongoDB to be the best option to this project.

1.4.2 Streaming processing with Spark

Volume, Velocity and Variety are the three properties which de�ne Big data, and
that is why we usually talk about the 3Vs (�gure 1.5). Streaming processing is the
solution when we want not only to process big volumes of varied data but to do it fast
too. It processes data in real time and focuses on unlimited and continuous data �ow.
Although data revolution has just started, stream processing has already
demonstrated to have a great future and it will surely become very important for
most companies in the close future.

We are going to focus interest on streaming analytics, although some of the
technologies mentioned can be used for other purposes. There are many di�erent
frameworks (such as Apache Storm, Apache Spark or Apache Samza) and products
(such as IBM InfoSphere Streams or TIBCO StreamBase) available on the market. As
all of them are very similar we are going to concentrate on Apache Spark, because it is
one of the most popular solutions and as it is free software we can use it with no cost.

6

1.4 State of the art

Figure 1.5: 3Vs

Apache Spark is a fast and general cluster computing framework originally started
by Matei Zaharia as part of his thesis at UC Berkeley AMPLab in 2009 and open
sourced in 2010. In 2003, it was donated to the Apache Software Foundation where it
remains today. Databricks, which is a startup o�ering commercial support for Spark,
was created in 2004.

Spark was developed as an alternative to Hadoop's two-stage disk-based MapReduce
paradigm shown in �gure 1.6. Hadoop is slow because of replication, serialization and
disk I/O, so that it is ine�cient for iterative algorithms (most of Maching Learning
Algorithms are iterative) and interactive data mining.

Figure 1.6: Data sharing in Hadhoop

7

1 Introduction

Figure 1.7: Data sharing in Spark

Spark 's multi-stage in-memory paradigm provides performance up to 100 times
faster than Hadoop MapReduce in memory (see �gure 1.8), or 10 time faster on disk.
That is achieved by allowing to access to the same dataset repeatedly without going
to disk. 1.7.

Figure 1.8: Hadhoop vs Spark

Spark revolves around the concept of Resilient Distributed Datasets (RDD), which
is a collection of elements that can be operated on in parallel. They can work with
any kind of data, which is another plus point. All necessary transformations are done
over the RDDs, which contain not only the data but also the transformation
operations that must be done with them. Each RDD is divided in multiple partitions
which can be executed in di�erent nodes of the cluster (it also stores information
about partitions and the node that it should go to). Moreover, they are immutable:
once data have been read it is assumed that it is not going to change, so it is not read
again. When transformations are applied another RDD is created with the result of
these transformations. As a result of being immutable and containing information
about transformation �ow, partitions and nodes, RDDs are fault-tolerant.

8

1.4 State of the art

RDDs are also e�cient as they use lazy evaluation: Transformations are de�ned but
they are not executed until an action runs it. That allows to plan and optimize when
the operations are done and avoids unnecessary exchange of data between machines.
Spark allows a RDD to remain in memory to avoid recalculating it every time it is
needed again.

Figure 1.9: Spark process

To sum up, the process is illustrated in �gure 1.9. First a RDD is created,
transformations are applied (when necessary according to lazy evaluation) and then
actions, obtaining a value. During all the process everything is in RAM memory and
at the end data is saved.

Another important advantage of Spark is that it o�ers more operations apart from
Map and Reduce and allows more �exibility when de�ning operations. That is why
parallel applications can be built using Spark quickly and easily, allowing more
complex Big Data problems being solved. Some of the most common transformations
and actions can be seen in table 1.1. It also support writting applications in Java,
Scala, Python and R.

Spark applications run as independent sets of processes on a cluster. There is a
driver program, which is a process running the main function of the application and
creating the SparkContext. It also declares how RDDs are created and what
transformations and actions are done over them. The SparkContext connects to a
cluster manager and then Spark acquires executors on nodes. After that, the

9

1 Introduction

TRANSFORMATIONS
map(func)
�lter(func)

mapPartitions(func)
union(otherDataset)

intersection(otherDataset)
distinct([numTasks]))

groupByKey([numTasks])
reduceByKey(func, [numTasks])

sortByKey([ascending],
[numTasks])

join(otherDataset, [numTasks])
cogroup(otherDataset, [numTasks])

repartition(numPartitions)
. . .

ACTIONS
reduce(func)
collect()
count()
�rst()
take(n)

takeSample(withReplacement,
num, [seed])

takeOrdered(n, [ordering])
saveAsTextFile(path)

saveAsSequenceFile(path)
saveAsObjectFile(path)

countByKey()
foreach(func)

. . .

Table 1.1: RDDs transformations and actions

Figure 1.10: Spark Engine

application code is sent to the executors and the SparkContext sends tasks to them.
Figure 1.10 is diagram of Spark Engine which shows its components and the way they
interact.

Spark ecosystem is another important advantage. As it can be seen in �gure 1.11, it
includes Spark SQL, Spark Streaming, Mllib and GraphX. Spark SQL lets you query
structured data inside RDD. Spark streaming is the stream processing engine. MLlib
is Apache Spark's scalable machine learning library. Lastly, GraphX is Apache
Spark's API for graphs and graph-parallel computation.

We have already analysed in detail how Spark works and all the advantages that it
provides: it is incredibly fast (specially for iterative algorithms), fault-tolerant and

10

1.4 State of the art

Figure 1.11: Spark ecosystem

e�cient and it provides ease of use (o�ering a wide range of operations and allowing to
write in several programming languages) and generality (with its ecosystem). Its only
disadvantage is that it a quite new technology and it has not been tested in clusters
with a lot of nodes. We are now going to concentrate on how Spark Streaming works.

Figure 1.12: Spark streaming �ow

Spark Streaming discretizes the streaming data into tiny, sub-second micro-batches
and with each batch of data is built a RDD. This allows the streaming data to be
processed with the Spark engine explined above. This process can be seen in �gure
1.12. Dividing the data into small micro-batches allow us to schedule the tasks more
e�ciently, while in the traditional record-at-a-time approach the static scheduling
may cause that some nodes become a bottleneck and slow down the pipeline. In Spark
Streaming, the tasks are balanced across the nodes, some of them run a few longer
tasks while others run more of the shorter tasks. The di�erence is illustrated in �gure
1.13

Spark Streaming provides a high-level abstraction called DStream, which represents
a bu�er with a sequence of RDDs. Tranformation can also be used with DStream,
provinding ease of use. The most common transformations can be seen in table 1.2.
The transformation transform is particularly interesting as it allow applying a
RDD-to-RDD function to every RDD of the source DStream.

Last but not least, we are going to explain why Spark Streaming is fault-tolerant.
As all data transformation are based on RDDs operations and we have already
explained that they are fault-tolerant, if the input dataset is present, all data can be
recomputed. It tolerates the failure of the driver node by saving the state of the
DStreams periodically to a HDFS �le, which can be used to restart the streaming
computation. It also tolerates the failure of a node. When the input source is a HDFS

11

1 Introduction

Figure 1.13: Spark dynamic load balancing

TRANSFORMATIONS
map(func)

�atMap(func)
�lter(func)

repartition(numPartitions)
union(otherStream)

count()
reduce(func)

countByValue()
reduceByKey(func, [numTasks])
join(otherStream, [numTasks])

cogroup(otherStream, [numTasks])
transform(func)

updateStateByKey(func)
. . .

Table 1.2: DStreams transformations

data can be recomputed. On the other hand, when the input source receives data
through a network, data is replicated in memory between nodes of the cluster. The
only problem is when the node which fails is the one where the the network receiver
was running, as the data that has not been replicated will be lost.

Not only does Spark allows to recover from failure, but it also do it faster that the
traditional approach. In Spark, there are small tasks that can be run anywhere. That
allows that failed tasks can be rerun in parallel on any other nodes, as it is illustrated

12

1.4 State of the art

in �gure 1.14.

Figure 1.14: Spark process

The main bibliographic references used for this section are [8], [1] and [3]. The images
are also taken from these sources, except the �gures 1.8 and 1.6, which I took from [18]
and [2] respectively.

1.4.3 Neural networks

The aim of this section is to follow part of the chapter 5 of [21], commenting on
some details. I have also added information from the the videos I saw at [36]. At the
end I will also explain the importance of Neural Networks on Big Data.

Arti�cial neural networks are a machine learning technique based on how your
neurons in your brain work and they have been particularly successful recently in big
and hard problems. It is a supervised method, as we give it inputs and outputs to
train it, and it can be used for regression if the outputs are continuous and
classi�cation otherwise. They model complex and nonlinear patterns that simpler
models may miss. For example, we could predict if a person has a bipolar crisis base
on how many hours the person slept the day before and how concentrate he feel he is,
by using a classi�cation neural network.

Let's start by de�ning the basic neural network model. Given the input variables
x1, . . . , xD, we construct M linear combinations:

13

1 Introduction

aj =
D∑
i=1

w
(1)
ji xi + w

(1)
j0 (1.1)

With j = 1, . . . ,M . The superscript (1) indicates that we are in the �st layer of the
network. The parameters w(1)

ji and w(1)
j0 are called weights and biases respectively and

the quantities aj are called activations. Using a di�erentiable nonlinar function h1,
which is called activation function, we get what is called hidden units :

zj = h1(aj) (1.2)

Figure 1.15: Logistic sigmoid

The activation function is generally a sigmoid function, which is a function which
has a S shaped curve. The most famous example is the logistic sigmoid, which you
can see in �gure 1.15 and whose equation is:

h2(a) =
1

1 + e−a
(1.3)

Linearly combining the hidden units, we get output unit activations, which
corresponds to the second layer of the network:

ak =
M∑
j=1

w
(2)
kj zj + w

(2)
k0 (1.4)

With k = 1, . . . , K being K the number of outputs. As in the �rst layer, w2
k0 are

bias parameters. Again, using another activation function we get a set of network

14

1.4 State of the art

outputs yk.

We can now combine all the stages to give the overall network function:

yk = h2

(
M∑
j=1

w
(2)
kj h1

(
D∑
i=1

w
(1)
ji xi + w

(1)
j0

)
+ w

(2)
k0

)
(1.5)

Where w is the vector of weight and bias parameters. Also, the process of
evaluating this formula can be seen as a forward propagation of information through
the network, as it can be seen in the illustrative �gure 1.16.

Figure 1.16: Neural networks

To simpli�ed the formula 1.5 we can add an additional input variable x0 whose value
is 1. That way, the formula 1.1 becomes:

aj =
D∑
i=0

w
(1)
ji xi (1.6)

And the formula 1.5 turns into:

yk = h2

(
M∑
j=0

w
(2)
kj h1

(
D∑
i=0

w
(1)
ji xi

))
(1.7)

15

1 Introduction

Note that the neural network in �gure 1.16 can be easily generalized to an arbitrary
number of layers. Those networks with many layers are known as deep neural
networks and are used in deep learning. Although the one in 1.16, which is known as
two-layer-network or single-hidden-layer network, is the most widely used in practice.

Figure 1.17: Error function as a surface in the weight space

As the layers are �xed, the structure and behaviour is �xed too, but the result is
being updated as we train the neural network. Training a network means minimizing
the error function and as we do not have much control over data, we will minimize the
cost by changing the weights. Because of that the error function is of the form E(w)
and it must be di�erentiable. The error function can be viewed as a surface in the
weight space, as in �gure 1.17. If we make a small step in the weight space from w to
w + δw, then the change in the error function is δE ' δwT∇E(w). We can see that
doing the Taylor expansion of E(w) and E(w + δw) centred in 0:

E(w) ' E(0) + wT ∗ ∇E(w) (1.8)

E(w + δw) ' E(0) + (wT + δwT) ∗ ∇E(w) (1.9)

And subtracting 1.8 to 1.9 we get δE = E(w + δw)− E(w) ' δwT∇E(w).

16

1.4 State of the art

As E is di�erentiable in w, the derivative with respect to the vector v, DvE(w), is
the component of the gradient in the direction of v:

DvE(w) = ‖∇E(w)‖ ∗ ‖v‖ ∗ cosθ (1.10)

where θ is the angle formed by ∇E(w) and v. If we take v with ‖v‖ = 1 then:

DvE(w) = ‖∇E(w)‖ ∗ cosθ (1.11)

Consequently, DvE(w) is maximum when cosθ = 1, or equivalent, when v has the
direction of the gradient and this maximum value is ‖∇E(w)‖. So, ∇E(w) points in
the direction of greatest rate of increase of the error function. Because of being
di�erentiable, E(w) is a smooth continuous function of E(w) and then its smallest
value will occur when ∇E(w) = 0. Otherwise we could make a small step in the
direction if −∇E(w), reducing the error value.

If E is a non-convex function (as in �gure 1.17), that is that the function goes up
and then down, our neural network may get stuck in a local minimum. For a
successful application of neural networks we do not necessarily have to to �nd the
global minimum, but then we need to compare several local minimums to �nd a
su�ciently good solution.

We do not expect to �nd an analytical solution to the equation ∇E(w) = 0, instead
we use iterative numerical procedures. There are many techniques to optimize
continuous nonlinear functions, most of them choose an initial value w0 for the weight
vector and then move through weight space in every step. So, in the r step:

w(r+1) = w(r) + ∆w(r) (1.12)

We can use the gradient of the error function to achieve a reduction in the number
of evaluations, which turn into an improvement in speed, specially in higher
dimensions. For example when using the local quadratic approximation the order of
�nding the minimum is O(W 3), where W is the total number of weights and bias in
the network, and by using the gradient information it can be reduced to be O(W 2).
The simplest way to use the gradient to �nd the minimum value of the error function
is to take steps downhill (in the direction of negative gradient) and stopping when the

17

1 Introduction

cost stop getting smaller. Then, the formula 1.12 takes the form:

w(r+1) = w(r) − η∇E(w(r)) (1.13)

Where η > 0 is called learning rate. In every step the gradient is re-evaluated an
the processed repeated. This method is called gradient descent. Then, to �nd a
su�ciently good minimum, we should run the gradient descent algorithm several
times with di�erent starting points chosen randomly. After that we will need to
compare the results using and independent validation set.

Methods like gradient descent, where the whole data set is used at once, are called
batch methods. There are some variations of gradient descent, such as conjugate
gradients and quasi-Newton methods, which are more e�cient for batch optimization
than simple gradient descent. On the other hand, the method called on-line gradient
descent or stochastic gradient descent updates the weight vector based on one data
point at a time. The point can be selected in sequence or randomly. There are also
intermediate scenarios where weight vector is updated based on batches of data
points.

Stochastic gradient descent has been proved to be useful in practice for training
neural networks on large datasets. In that case the error function is:

E(w) =
N∑

n=1

En(w) (1.14)

Where N is the number of inputs. And the formula 1.12 takes the form:

w(r+1) = w(r) − η∇En(w(r)) (1.15)

Stochastic gradient descent method has several advantages. The most important is
that it allows to space from local minimums, as ∇En will not normally be 0 for every
n. It also handle redundancy in the data more e�ciently. In batch methods if the
input set is repeated n times, also is the error factor multiplied by a factor of n, so we
get an equivalent error function which is less e�cient to calculate. However, the
stochastic gradient descent method is una�ected.

As we have previously commented, arti�cial neural networks have recently become
very popular because of their success in a lot of big and hard problems, and Big Data

18

1.4 State of the art

�eld is not an exception, as it is explained in [12]. Most machine learning algorithms
has problems to scale up to big data. In addition, high dimensionality, velocity and
variety are a challenge for this algorithms. Using neural networks with methods such
as stochastic gradient descent which learn in an on-line, incremental mode without
requiring in-memory access to huge amounts of data, are less vulnerable to the size of
the data. They also can take advantage of massively parallel computations (as the
train of every input set can be done independently), which use very simple processors
and that can not be used in other machine learning technologies.

19

2 MongoDB database

2.1 Features

In this section we are going to comment on the features of MongoDB. I have
followed the Document Databases chapter in [34], as it is really complete and the
concepts are really well explained.

2.1.1 Queries

We have already mentioned that the strength of document databases' query
language is an important di�erentiator of these databases and MongoDB is not an
exception. In MongoDB documents are indexed using a BTree and queried using a
JavaScript query engine. It has a query language which is expressed via JSON. All
queries address a single collection and indexes allows e�cient queries (see 2.3.2.3).

Let's give an example of how queries are made in MongoDB in comparison with
SQL. Suppose that we want to query for all users whose house is in a Spanish city. In
relational databases we would probably have three collections, one for users, another
one with houses and the last one with information about cities. Then, the SQL would
be:

SELECT * FROM users , houses , cities

WHERE

houses.ownerId = users.id

AND houses.citiesId = cities.id

AND cities.contryName = "Spain"

And the equivalent Mongo query would be:

db.orders.find ({" users.house.contryName" : "Spain "})

The query for MongoDB is simpler because the objects are embedded inside a
single document and the information is usually repeated in several document (the
country name for every house in the same city). There are more examples of
MongoDB queries in the section 2.3.3.

21

2 MongoDB database

2.1.2 Transactions

Transactions in relational databases represent any change in the database. So when
a transactions begins, the database can be modi�ed using commands over di�erent
tables such as insert, update or delete and then it can be decided if the changes are
kept (commit) or not (rollback). This is not generally available in NoSQL databases, a
write can only succeed or fail. Transactions in MongoDB are at the single-document
level (atomic transactions): one or more �elds of the document (including
sub-documents and elements of an array) are updated and then the document is
updated in the database. Transactions involving more than one operation are not
possible, although there are other document databases, like RavenDB, that support
them. In fact, those multiple operation transaction are not needed in our project. For
example, they would be needed if we had duplicated data in several collections, but as
it is explained in 2.3.2 it is not the case in the database designed for the project.

2.1.3 Availability

MongoDB uses the master-slave set-up and maintains several copies of data called
replica sets using native replication. The replica set is used to improve data
availability, by increasing the number of nodes and allowing reading from slaves. The
nodes elect the master (priorities can be given to favour some nodes) by themselves.
The master is who has all the data updated and receive all requests, and then data is
replicated to the slave nodes. If the master node goes down, the remaining nodes elect
a new master and it will serve all future requests. When the node that failed gets
on-line again, it joins in as a slave and get the updated data from the current master.
In our case we currently have one server so we do not have the chance to use replica
set. Although, that is not an availability problem at the moment as the tra�c in our
server is really low and in the future we could add more nodes easily as it is explained
in section scaling.

2.1.4 Consistency

Consistency in MongoDB database is also con�gured by using replica sets (multiple
copies of data) and waiting for the writes to be propagated to a given number of slaves
before they success. This number can be increased for stronger consistency but it will
a�ect write performance, as the writes will have to be propagated to more nodes.

The number of slaves the writes have to be propagated to and if reading from slaves
is allowed can be con�gured in the connection, database, collection or individually for
each operation and the speci�c characteristics of the project need to be taking into
account to choose those settings. In our project we have set them when creating users
(see Appendix: Creation of users and roles) by setting the w attribute to majority.
Currently there is only one node, the server I con�gured in section 2.3.1.2, so writes

22

2.2 Learning MongoDB

will return immediately. If we add more servers in the future, it will wait for the write
operation to have propagated to the majority of voting nodes before it returns as
successful. Until we add more servers there is no option to read from slaves.

2.1.5 Scaling

Scaling is a very important issue in our project as we have a single node at the
moment and we plan to add more nodes in the future. MongoDB allows horizontal
scale easily with no downtime and without changing your application. To allow
heavy-read we can add more read slaves and read directly from them. When a new
node is added, the process will be the same as the one explained in the availability
section when the master node gets on-line after having gone down: it get the data
from the existing nodes, join the replica set as secondary node and it is ready to serve
read requests.

When we want to horizontally scale for writes, we use sharding. It is a technique
similar to partitions in relational databases as the data is also split by a concrete �eld,
but then it is moved to a di�erent node. MongoDB automatically balances the data
by dynamically moving it between nodes. So, to scale for writes we just have to add
more nodes to the cluster and increase the number of writeable nodes. Moreover, each
shard can be a replica set, ensuring better read performance within the shard.

2.2 Learning MongoDB

It was the �rst time I worked with NoSQL databases and with MongoDB in
particular. First of all, I took almost the whole MongoDB for Java Developers course
([10]), although the course didn't start until 24 May 2016, so I saw the videos of
previous editions of the course at Youtube. There is also a subject of Systems for
management of data and information (Sistemas de Gestión de Datos y de la
Información) in the Master's of the Computer Science Faculty where MongoDB is
studied. I asked some students in this class to send me the slides they were using
([22]), which I found really useful as they have a lot in-depth information and
illustrative examples. I also used the complete o�cial guide of MongoDB, see [11]. For
more speci�c topics or doubts I used other guides, blogs and forums such as [14].

23

2 MongoDB database

2.3 Database for the project

2.3.1 Installation and con�guration

2.3.1.1 Development

I used Windows 7 for testing before moving to the production environment. The
last version I used was the 3.2.6, which is the last stable release. But I also worked
with other versions as the 3.2.6 was launch on Apr 28, 2016. I download MongoDB
2.3.6 MongoDB Community Edition from http://www.mongodb.org and I followed
the installation guide in the section Install MongoDB Community Edition on
Windows of [11].

I created the con�guration �le in my computer in the following route
C:\Program Files\MongoDB\mongod.cfg. The con�guration �le can be seen in the
Appendix: MongoDB con�guration �le. The data is stored in C:\data\db and the log
�le can be found in C:\data\log\mongod.log in my computer.

After the installation I con�gured a Windows Service for MongoDB Community
Edition. I ran this command in the cmd window with admin permissions to install the
service:

"C:\ Program Files\MongoDB\Server \3.2\ bin\mongod.exe"

--config "C:\ Program Files\MongoDB\mongod.cfg" --install

The following command can be ran to uninstall the service:

"C:\ Program Files\MongoDB\Server \3.2\ bin\mongod.exe" --remove

To start, restart and stop the server I used these commands:

net start MongoDB

net restart MongoDB

net stop MongoDB

The Mongo shell JavaScript client can be ran from the cmd window:

"C:\ Program Files\MongoDB\Server \3.2\ bin\mongo.exe"

Or, after enabling authentication with the admin user (see 2.3.2.2):

"C:\ Program Files\MongoDB\Server \3.2\ bin\mongo.exe" -u "admin"

-p "password5" --authenticationDatabase "bipolarDatabase"

24

http://www.mongodb.org

2.3 Database for the project

2.3.1.2 Production

Debian 7.1 is one of the OS recommended in the Production Notes of [11]. In
addition, for MongoDB 3.2, 32-bit binaries are deprecated and will be unavailable in
future releases. So Debian 7.1 64-bit was installed in the Server which is at the
Department Seminario ACyA of the Computer Science Faculty, whose static global IP
address is 147.96.25.33.

As in development, I installed the version 3.2.6 of MongoDB Community Edition. I
followed the installation guide in the section Install MongoDB on Debian of [11] but I
had a problem during the installation:

E: Unable to locate package mongodb -org -shell

I managed to solved it by installing every .deb from [5].
The con�guration �le is in /etc/mongod.conf. I eliminated the line where the bind

IP is declared as it is the loopback address by default and by eliminating it I made the
server listen in all IPv4 addresses on the local machine. This include the global IPv4
which is the one the external clients are going to use to communicate with the server.
I also modi�ed the con�guration �le to con�gure authentication, as it is explained in
2.3.1.3.

The log �le is save by default in /var/log/mongodb/mongod.log and the database
data is storaged in /var/lib/mongodb.

To start, restart and stop the server the following commands can be used:

sudo service mongod start

sudo service mongod restart

sudo service mongod stop

After installing and con�guring the server, it was needed to open the port 27017
(MongoDB port by default). I used iptables command to do so:

sudo iptables -A INPUT -p tcp --dport 27017 -j ACCEPT

sudo iptables -A OUTPUT -p tcp --sport 27017 -j ACCEPT

sudo iptables -save

To check that everything is working properly:

sudo netstat -lnp grep mongo

But surprisingly, after all that, connecting to the server from outside was not
possible because the UCM net does not allow connections to some ports and the

25

2 MongoDB database

27017 is one of them. It would have worked in other net but not at UCM one. So, I
tried with other ports until I found a port which works, the 8080. So I changed the
port in the con�guration �le (the con�guration �le can be seen in the Appendix:
MongoDB con�guration �le) and from that moment on I used the 8080 port.

In the server, the Mongo shell JavaScript client can be ran from the terminal
window:

mongo

Or, after enabling authentication with the admin user (see 2.3.2.2):

mongo -u "admin" -p "password5"

--authenticationDatabase "bipolarDatabase"

I also managed the server database from my house using Windows cmd, connecting
with the admin user to the server global IP and the port 8080. I used the following
command (it is necessary to include the port, it won't work otherwise):

"C:\ Program Files\MongoDB\Server \3.2\ bin\mongo.exe" --host

147.96.25.33 --port 8080 -u "admin" -p "password5"

--authenticationDatabase "bipolarDatabase"

2.3.1.3 Authentication

In both development and production environment I con�gured authentication that,
as we will explain in 2.3.2.2, it is crucial for the veracity and validity of the data
stored in our database. Before creating any role I had to change the authentication
mechanism to the previous one (MONGODB-CR) instead the default new one in
releases 3.* (SCRAM-SHA-1). I had to do that because we planned to access the
MongoDB database from the Android application and when using SCRAM-SHA-1
from the Java Driver java.nio.channels.AsynchronousSocketChannel is called
and it does not exist in Android, so it causes an exception and as a result it does not
work. So after installing and starting the server I connected with a client without
authentication and I changed the authentication mechanism in MongoDB following
the following steps:

use admin

var schema = db.system.version.findOne ({"_id" : "authSchema "})

schema.currentVersion = 3

db.system.version.save(schema)

26

2.3 Database for the project

After that we create the roles speci�ed in 2.3.2.2 as it is described in Appendix:
Creation of users and roles. Then I modi�ed the con�guration �le to add
authetication (authorization: enabled). The �nal con�guration �le can be seen in
the apendice Appendix: MongoDB con�guration �le.

Then I restarted the MongoDB server to enable authentication and from that
moment on I connected to the database with a speci�c user.

2.3.2 Design

The design of the database includes the design of collections, the creation of roles
and users and the creation of indixes.

2.3.2.1 Colletions

In document databases there are not rows as there are in relational databases, so we
can not restrict what it is saved in the database. However, it is necessary to know
what other applications are saving in the database to be able to read the information
we need and if some applications are saving the same data all of them should do it in
the same way.

I have called our database bipolarDatabase and the collections that I have
de�ned for our projects are the followings. The name of the collection and attributes
are in bold and the BSON data type of each attribute is also speci�ed. Information
about BSON types can be found in the section BSON Types of [11].

collection users: Stores the users data.

_id ObjectId unique, compulsory

Identi�er.

email String unique, compulsory

Email address.

name String compulsory

Full name.

birthDate Date compulsory

Birth date.

gender Boolean

Gender. Values: true (woman) and false (man).

pin 32-bit integer

6-digits password to be use in the mobile app.

27

2 MongoDB database

cohabitation 32-bit integer

Who the user lives with. Values: 0 (alone), 1 (with his/her couple),
2 (with his/her couple and children), 3 (with his/her parents) and 4
(others).

diagnosis String

ICD-10 diagnosis.

diagnosisAge 32-bit integer

Age at which the disorder was diagnosed.

senLit Boolean

Whether the patient is sensible to Lithium or not.

senVal Boolean

Whether the patient is sensible to Valproate or not.

senCar Boolean

Whether the patient is sensible to Carbamazepine or not.

seasonality Boolean

Whether the patient presents seasonality or not.

maniaCrises 32-bit integer

Frecuency of mania crises.

mixedCrises 32-bit integer

Frecuency of mixed crises.

freePeriod 32-bit integer

Number of months where the patient presents no symptoms.

psycSymp Boolean

Whether the patient presents psychotic symptoms or no.

others String

Other diagnosis.

collection comments: Stores the prescriptions and the noti�cations to be send to the
mobile app.

_id ObjectId unique, compulsory

Identi�er.

user_id ObjectId unique, compulsory

User identi�er.

prescription Boolean compulsory

28

2.3 Database for the project

Whether the document represents a prescription or a message.

dateStart Date compulsory

Start date and time.

dateEnd Date

End date and time. If it is empty the end date is inde�nite.

time 32-bit integer compulsory

Time at which the alarm has to be repeated or the medicine taken
from the start to the end date. Minutes from 00:00.

name String

Active ingredient or commercial name.

type 32-bit integer

Medicine type. Values: 0 (Lithium), 1 (anticonvulsant), 2
(antipsychotic), 3 (anxiolytic/hypnotic), 4 (antidepressant) and 5
(others).

title String

O�cial text.

text String

Alarm text.

dose 32-bit integer

Dose.

collection records: Stores the medical records.

_id ObjectId unique, compulsory

Identi�er.

user_id ObjectId unique, compulsory

User identi�er.

date Date compulsory

Date and time at which the record was saved.

eeag 32-bit integer

Rating in the GAF scale (see [7]).

hdrs Document

The document contains the following keys, which represents the
HDRS questions (see [9]), each with a 32-bit integer value
associated: deprMood, feelGuilty, suic, insoEarly, insoMiddle,
insoLate, workActiv, retard, agitat, anxiPsych, anxiSomat,

29

2 MongoDB database

somSymptGastr, somSymptGener, geniSympt, hypochon,
lossWeight and insight.

ymrs Document

The document contains the following keys, which represents the YMRS
questions (see [15]), each with a 32-bit integer value associated:
elevMood, incrActEner, sexuInters, sleep, irritab, speech,
lanThoughDis, content, disAggrBehav, appearan, insight.

panss Document

Document which can contains three documents with every part of the
PANSS interview (see [20]). Their keys are: panssPos, panssNeg and
panssPg.

panssPos contains the following keys, which represents the items of
the Positive scale part of the PANSS interview, each with a 32-bit
integer value associated: delsus, concepDisor, halluBehav,
excitem, grandios, suspc and hostil.

panssNeg contains the following keys, which represents the items of
the Negative scale part of the PANSS interview, each with a 32-bit
integer value associated: blunA�ec, emotWithd, pootRapor,
passSocWithd, di�AbstThin, lspontConv�ow and steoThink.

panssPg contains the following keys, which represents the items of the
General Psychopathology scale part of the PANSS interview, each with
a 32-bit integer value associated: somaConcer, anxiet, guiltFeels,
tension, mannPost, depress, motoRetar, uncoop, unuThough,
disorient, poorAtten, ljudInsight, distVolit, pinpContr, preoc and
asocAvoid.

collection analysis: Stores the result of the analysis phase.

_id ObjectId unique, compulsory

Identi�er.

user_id ObjectId unique, compulsory

User identi�er.

date Date compulsory

Date and time at which the prediction was saved.

eeag 32-bit integer

Prediction of EEAG (see [7]).

hdrs 32-bit integer

Prediction of the sum of the answer's value in the HDRS test (see
[9]).

30

2.3 Database for the project

ymrs 32-bit integer

Prediction of the sum of the answer's value in the YMRS test (see
[15]).

panss 32-bit integer

Prediction of the sum of the answer's value in the PANSS interview
(see [20]).

collection mobileTests: Stores the daily test that are done in the mobile app.

_id ObjectId unique, compulsory

Identi�er.

user_id ObjectId unique, compulsory

User identi�er.

date Date compulsory

Date and time at which the test is sent. There is only one test per
day.

speedReaction Document

Document which can contains three 32-bit integer with which we
measure the motor speed. Their keys are: last (the time to introduce
the pin the last time - the one that was correct), total (total time since
the users introduces the �rst number until he introduces the correct pin
and clicks start) and panssPg (the number of tries, minimum one).

a�ectiveState 32-bit integer

A�ective state. Values: -3,-2,-1,0,1,2,3

motivation 32-bit integer

Motivation. Values: -3, -2, -1, 0, 1, 2, 3

concentration 32-bit integer

Concentration. Values: 1, 2, 3, 4, 5

anxiety 32-bit integer

Anxiety. Values: 1, 2, 3, 4, 5

irritability 32-bit integer

Irritability. Values: 1, 2, 3, 4, 5

fatigue 32-bit integer

Fatigue. Values: 1, 2, 3, 4, 5

ca�eine 32-bit integer

Amount of ca�eine.

31

2 MongoDB database

alcohol 32-bit integer

Amount of alcohol.

tobacco 32-bit integer

Amount of tobacco.

drugs 32-bit integer

Whether the user toke any drug di�erent from alcohol and tobacco.
Values: true (yes) and false (no).

timeBed 32-bit integer

Time at which the user went to bed. Minutes from 00:00.

timeSleep 32-bit integer

Time at which the user fell asleep. Minutes from 00:00.

timeWakeUp 32-bit integer

Time at which the user woke up. Minutes from 00:00.

menstruation 32-bit integer

Whether the user is menstruating. This question only makes sense when
the user is a woman. Values: true (yes) and false (no).

collection actigraphData: Stores the data sent by the actigraph, speci�ed in [16].
There is some information that do no appear in [16] and I obtained it from the �les
generated by the actigraph which you can see in Appendix: Actigraph data. The data
that is is calculated by the actigraph based on other data that we are saving is not
stored.

_id ObjectId unique, compulsory

Identi�er.

user_id ObjectId unique, compulsory

User identi�er.

date Date compulsory

Date and time at which the information was measured.

position Array

Array which contains three Doubles for x, y and z axis(in that order)
measured in g-force. Range of x, y, z : -8 to 8. Resolution of x, y, z :
0.0039.

lux 32-bit integer

Light level in lux. Range: 0 to 5000. Resolution: 5.

button Boolean

Whether the actigraph button is pressed. Values: true (pressed) and

32

2.3 Database for the project

false (not pressed).

temperature Double

Temperature in centigrades. Range: 0 to 70. Resolution: 0.1.

To design the database I have tried to follow the following principles:

• Store together (in the same document) what it is going to be queried
at the same time. That is why for example the phenotype is store together
with the user personal information in the collection users.

• Avoid storing big documents. Big documents make performance worst as
they take up a lot and they also waste the bandwidth. In fact, MongoDB limits
to 16MB the size of �les. Taking that into account, we are storing mobile tests,
comments, actigraph data and the analysis results, which are associated to a
users, in separate document as we will have many of them and consequently the
document which stores them will be really heavy. In this case, referencing is
better than nesting.

• Prioritize the storing phase over the analysis. For example, we could have
stored all mobile tests grouped them by user_id but then every time a test is
introduced we should have found the user_id and, when having millions of
users, this could be slow and the mobile apps should keep waiting until it
�nishes. On the other hand, storing data this way will make the analysis phase,
which probably will need all the test of the same user, slower. In bipolar
disorder, doctors usually detect a crisis one month later, so taking a little by
longer in the analysis phase is not a problem. In addition, although we think
that the analysis should be individual for every patient, as the illness varies a lot
from one patient to another, we do not discard that analysing the data of
di�erent users we could �nd a relation unknown until now. Because of the
di�culty for doctors to analyse hundred of patients at the same time and to
compare their patients with healthy users this idea is not hare-brained.

• Repetitions are not bad if we avoid making several queries. This is an
important principle as joins are really time-consuming in MongoDB and we
usually need to make several queries. Although I had it in mind while I was
designing the database, I did not �nd any use in this project.

As it is explained in the section Database References of [11], there are two ways of
relating documents: manual references and DBRefs. I have opted to use manual
references because they are simple and su�cient for this case. If I had chosen to use
DBRefs, the referenced collection (users) should be speci�ed every time a new
document is introduced and as there is only one collection referenced this does not

33

2 MongoDB database

make much sense. It is more logical to use DBRefs when it is necessary to speci�ed
the collection and database referenced.

Another thing worthwhile mentioned is that both prescription and comments are
very similar they are stored in the same collection. In fact, in the mobile app they will
be processed in the same way and storing them separately would imply querying two
collections. Also, there is information that the actigraph application calculates from
other data. This calculated data is not stored because, as it has already been
mentioned, it is more important to be fast in the storing phase than in the analysis.
Moreover, analysing the data really fast is not a priority, so it is not worthwhile saving
data that we can calculate when we need it.

Although the design of the database was my responsibility and I took the last
decision, I de�ned the variables of the users, comments and records collections with
my classmate David Peñas Gómez, as he needed to know them for his project as soon
as possible.

2.3.2.2 Users and roles

Authentication is a very important part of the database as it is going to be accessed
from multiples devices an some of them may expose the IP and port of our server and
we do not want anyone else to have access to it. Because of the same reason I had
placed great importance on creating users with an speci�c role for every part of the
project. I had given each users only the indispensable permissions and above
everything I had avoided removing information to the extent possible, so that, in case
that we detected suspicious connections, we would not lose information. We are now
going to explain in detail what permissions every user needs, making reference to the
collections of 2.3.2.1.

The mobile is used to send daily tests and it also manages users registration and log
in. That means that the mobile application needs to read the users from the users

collection (for the sign in), to insert them (for the sign up) and to update them (when
updating the pro�le). It also needs to insert tests in the mobileTests collection
(when they are �lled in), to read them (in case that it is needed to read some tests
that are not stored in the SQLite Android database) and to update them (when the
user changes the answers of a test that has already been stored in the MongoDB
database). It is planned that the mobile app receives reminders about the medication
and comments, although this feature is not already implemented, so the mobile
application will also need to read the comments collection.

The actigraph only sends the data collected once and never updates or reads it. So,
the actigraph only needs to insert data in the actigrpahData collection.

34

2.3 Database for the project

The web application is what the psychologist is going to use to interact with the
database. He adds new patients to the database and he also consults and edits their
pro�les, which means that he can see, edit and insert user in the collection users. The
doctor can also see and update the patients' medical history, therefore he needs to
�nd, update and insert records in the records collection. The results of the analysis
phase are displayed as the doctor could want to see them, so the web has permission
to �nd in the analysis collection. And eventually, in the web the prescription and
the comments to be received in the mobile application are also introduced. The
doctor can see, update, instead and remove comments or prescriptions in the
comments collection. This is the only case when removing data is allowed, as the
doctor could introduced a prescription or comment by mistake and, in that case, it
should be deleted. We could consider having an attribute to invalid comments instead
of permanently remove then and this way the web would not need remove
permissions. But at this �rst stage we have decided to keep it this way to simplify.

The analyst has to analyse the information collected by all the sources already
mentioned, so it has permissions to read all collection. It also can perform �nd,
update and insert actions over the analysis which the conclusions of the analysis are
saved. Depending on the technique used in the analysis phase, updating the data
stored may not be needed, but we have added as the technique is not already clear.

Last but not least, I created an admin user who has the dbOwner role to manage
the database. The commands needed to create, �nd and delete the users with the
roles described in this section are in Appendix: Creation of users and roles.

2.3.2.3 Indices

By default MongoDB creates indexes only on the _id �eld. Indexes are very
necessary for good performance as we can make searches faster by adding them. As
we are going to query the email attribute repeatedly we have added an index over it.
As we want the email to be unique in our database, we have added the unique

attribute to the index to guarantee its uniqueness.

db.users.createIndex ({" email": 1},

{" unique ":true})

To check if the index is working as we expect, we can use the operator explain,
which returns a JSON document with a lot of useful information, including the
number of documents examined, the execution time, the indexes it have used, etc. For
example:

35

2 MongoDB database

db.users.find ({" username ":" ana@email.com "}). explain(true)

To check the indexes we have de�ned we can use:

db.users.getIndexes ()

And to delete a index:

db.users.dropIndex("email_1")

We also have to add an index to the user_id attribute of comments, records,
analysis, mobileTests and actigraphData collections as it is acting as a foreign
key. The shell commands to add them are:

db.comments.createIndex ({" users_id ": 1})

db.records.createIndex ({" users_id ": 1})

db.analysis.createIndex ({" users_id ": 1})

db.mobileTests.createIndex ({" users_id ": 1})

db.actigraphData.createIndex ({" users_id ": 1})

Text indexes allow us to perform advanced searches over text �elds of a
document. As we are storing the user's �rst and family names in the key name in the
web application the doctor may want to search a patient by its family name and a
text index would be very useful for that. Also, the doctor may want to search a
patient by its email but he does not remember it exactly, so a text index would be
useful here to. Consequently I have added a text index over the document users for
this two keys (we can only add one text index but it can have multiple keys). As I
think that searching by name will be more common than doing it by email, I have
given the name a weight of 3 while email has the default weight of 1. I have also given
the index a custom name. As, at least at the beginning the project is going to be in
Spain we have also speci�ed Spanish as the default language. Although the language
should not be really important, as we are only querying names and emails.

db.users.createIndex(

{

name: "text",

email: "text"

},

{

36

2.3 Database for the project

weights: {

name: 3

},

name: "TextIndex",

default_language: "spanish"

}

)

2.3.3 Queries

This section illustrates how to query the data in the designed database. The queries
are going to be done for the Mongo Shell as the languages to be used in some part of
the project are not yet clear. And even if they were clear we may want access the
database with other languages in the future.

First of all we have to change to the bipolarDatabase database:

use bipolarDatabase

Let's start querying the users collection, as it is used for most clients and has
indexes whose use is worthwhile showing. To insert a new user with all the attributes
in the users collection:

db.users.insert(

{

"email" : "lolita@email.com",

"name" : "Lolita Martínez López",

"birthDate" : ISODate ("1980 -02 -24") ,

"gender" : true ,

"pin" : NumberInt (123456) ,

"cohabitation" : NumberInt (0),

"diagnosis" : "F00.0",

"diagnosisAge" : NumberInt (21),

"senLit" : true ,

"senVal" : false ,

"senCar" : false ,

"seasonality" : true ,

"maniaCrises" : NumberInt (3),

"mixedCrises" : NumberInt (0),

"freePeriod" : NumberInt (6),

"psycSymp" : false ,

"others" : "The patient suffers from migraines"

37

2 MongoDB database

}

)

Note that we do not introduce the _id as it is automatically generated. If there is
an attribute that we do not want to insert we can just not include it. By default, the
Mongo shell treats all numbers as �oating-point values, so we use NumberInt()
constructor to explicitly specify 32-bit integers. ISODate() constructor returns a Date
object using the ISODate() wrapper. If we want to know all the users that are in the
database we can execute:

db.users.find (). pretty ()

The pretty function is to display the results in an easy-to-read format. If we want
to �nd all users that satisfy some conditions, for example all women that are not
sensible to Valproate:

db.users.find(

{ "gender" : true , "senVal" : false }

). pretty ()

If we want to �nd an speci�c user, for example using the already mentioned typical
search by email:

db.users.find({ "email" : "lolita@email.com" }). pretty ()

We can also �nd a user by his id:

db.users.find(

{ "_id" : ObjectId ("573 ee9d4ae07fbe5b79bd0d0 ") }

). pretty ()

For the last two queries we can also use findOne(), as we want only one record. We
should take into account that find() returns a cursor and findOne() returns
document. I used the �rst alternative as the pretty() function can only be used over
a cursor, to be able to read it easily, but probably in an application using findOne()

would be better. Also, most drivers include a function to search by id which is
worthwhile using, but there is not this function in the Mongo shell.

The next query illustrate how to work with dates and with comparison operators.

38

2.3 Database for the project

It �nds all users who were born from 1990 on:

db.users.find(

{ "birthDate" : { $gte :ISODate ("1990 -01 -01T") }

}

). pretty ()

To remove all users:

db.users.remove ({})

And if we do not want to remove all users we can add conditions. For example, all
users whose id is 573ee9d4ae07fbe5b79bd0d0 :

db.users.remove(

{ "_id" : ObjectId ("573 ee9d4ae07fbe5b79bd0d0 ") }

)

We can also look for users using the text index created in section 2.3.3. For
example:

db.users.find({ $text: { $search: "Gómez" } }). pretty ()

It will �nd all users that has Gómez (or gomez as it is case insensitive by default)
in their name or email. We can go a little bit further and print the score and order
the results by the score given by the weights of the index:

db.users.find(

{$text: {$search: "Gómez"}},

{score: {$meta: "textScore "}}

).sort({score :{ $meta:" textScore "}}). pretty ()

We could also want to search the users whose last names are Martínez Gómez :

db.users.find(

{ $text: { $search: "\" Martínez Gómez \"" } }

). pretty ()

Querying others collections it is done in the same way, as the most common
functions are insert, update and �nd. So we are just going to show some examples that

39

2 MongoDB database

could not be illustrated over the users collection. Let's start by the actigraphData

collection. First, we are going to introduce a record in this collection, as it has
Doubles, Arrays and Dates with times that we do not have in the users collection:

db.actigraphData.insert(

{

"user_id" : ObjectId ("57416 ee9494026efedaa7735 "),

"date" : ISODate ("2016 -05 -22 T09 :43:18Z"),

"position" : [NumberInt (1), NumberInt (2), NumberInt (3)],

"lux" : NumberInt (27),

"button" : false ,

"temperature" : 23.2

}

)

It also important to illustrate how arrays are queried. For example, to �nd all
actigraph records in which the y coordinate is 2 we do:

db.actigraphData.find(

{ "position .1" : 2}

)

It is important that array indexes start at 0. There are more complex operations
over arrays but we do not need them as the client will work with the whole array as
the position is not useful without the three coordinates and it is very unlikely that
users are found by their position.

We are now going to use the records collection to illustrate how to query nested
documents. For example, to �nd the users whose hostility score is less than 20 in the
Positive scale part of the PANSS interview:

db.records.find(

{ "panss.panssPos.hostil" : { $lt : 20 } }

)

Lastly, we are going to use the mobileTests and users collection to illustrate how
joins can be done. For example, to query all mobile test of an speci�c users by his/her
email:

id = db.users.findOne({ "email" : "ana@email.com" })._id

40

2.4 Integration

db.mobileTests.find({ user_id: id}). pretty ()

2.4 Integration

Lastly, we are going to comment on how to integrate MongoDB with other
languages. The available drivers are detailed in the section MongoDB Drivers of [11].

Let's start with the mobile phone application. It is being developed for Android, so
the o�cial MongoDB Java Driver is being used. You can see the code of the mobile
application, which you can �nd in Github (see 3.2), to know the details of how this
integration is done.

For the web application we have thought to use Node.js. If that is the case the
o�cial MongoDB Node.js Driver could be used. Also, using Mongoose, an ODM for
Node.js which allows us to communicate with a MongoDB database simply and easily,
would make the integration much more comfortable. We could also consider using
Ruby on Rails for the development of the web application. In that case we should use
MongoDB Ruby Driver or if we want to include validations, associations, and other
high-level data modelling functions, the ODM o�cially supported by MongoDB :
Mongoid.

The actigraph libraries are written in C#, so it makes sense to write the application
that sends the actigraph data to the database in the same language. Therefore the
o�cial MongoDB C# Driver can be used for the communication with the database.

Lastly, for the analysis phase R is going to be used. As it is explained in [35], to use
R together with MongoDB there are mainly two packages: rmongodb and RMongo. I
recommend using rmongodb as it appears to be more popular and it does not require
Java, while RMongo uses the MongoDB Java Driver.

41

3 Android

The objective of this chapter is to comment on the process followed to learn Android
and to design, develop and test an Android mobile app to collect data to be analysed
for medical purposes.

3.1 Learning Android

I had not have any contact with Android before this project so I spent a considerable
amount of time learning about it, although my previous experience with Java made it
much easier. Some of my classmates took the iOS and Android programming course in
the Complutense Summer School and they send me the projects they did and the slides
they used at the course ([27]). I also asked some students that took or are currently
taking the subject of development of mobile app (Programación de aplicaciones para
dispositivos móviles) at the faculty to send me the material they used or are using, that
is mainly the slides [26]. So I started with the material of these two courses and then I
used the complete o�cial guide of Android, see [6]. For more speci�c topics or doubts
I used other guides, blogs and forums, primarily [14].

3.2 Application to collect medical data

The Android mobile application which collects data to be analysed for medical
purposes plays a really important role in our project, as it would allow us to know
how the bipolar patients feel they are. When working with mental illness, this kind of
subjective information is really valuable, not because of its veracity but because of
what their changeability can reveal. The code of the app is free software and can be
found here, together with the .apk, the �nal protoype, screenshots and other relevant
information: https://github.com/Ana06/medical-data-android

3.2.1 Speci�cation

Since I started working in the project the application speci�cation has changed several
times because of di�erent reasons:

• The necessity to have a �rst version of the application than can collect
data as soon as possible. Some functionality has been simpli�ed or discarded

43

https://github.com/Ana06/medical-data-android

3 Android

as it would have delay the development of the app in excess, altough some
improvements are planned to be introduced in future versions (see 3.2.5). As an
example, at the beginning some games wanted to be implemented as part of the
daily test to collect objective information about concentration, re�exes, etc.
Instead, the time to introduce the pin is measured as a concentration indicator.

• Something we had planned to do is impossible, too di�cult or not
recommended. For example we wanted to register some information that are
not accessible in Android for security and privacy reasons such as the use of
other apss and the hours the screen is on. We had also thought about using the
phone as an accelerometer, but was quite unlikely that the battery can support
it.

• Issues that during the design or implementation of the application we
realised that had not been considered. For example, if we wanted to
register the number of tries and timing all of them or only one/some of them
when introducing the pin.

• Bad communication. In the mobile application that uses the doctor we where
told to ask the birth date and in the mobile application to ask the age. When
considering the integration of the two applications, we had to change the birth
date by the age in the mobile app.

• The necessities of the project changed. As we depended a lot on the client,
the hospital and specially the doctor working with us, changes had to be made
almost every time I had a meeting with him. As an example, the decision to
collect ca�eine was made towards the end of the development of this project.
The way the register is wanted to be done was also changed several times, as it
can be seen in the prototyping section.

3.2.1.1 Final speci�cation

The Android mobile application is in English and Spanish. The �rst time the
application is used the user should sign in or sign up. If the user has already been
registered by his doctor, he had already received an email with the 6 digits password
that, together with his/her email, can be used to sign in, and all the information
needed by the app will be get from the server. He would do the same if he had
already registered. Otherwise the following information is asked: Name, email, age,
gender and a 6 digits pin (it should be introduced twice). The chance to read the
terms and conditions, which must be agreed, is given. Then, the user will be inform
that the register has been correctly completed. The correctness of the information
introduced in both the sign in and the sign up processes will be checked and, if there

44

3.2 Application to collect medical data

is any error, it will be indicate appropriately.

It will be allow to modify the daily test answers. The reason why we allow that is
because if after completing the test something that change signi�cantly the patient's
mood happens, the users should be allow to change his answers. The main page is the
one that allow start the daily test or modify it if it has already been �lled today. To
start or modify the daily test it will be needed to introduce the pin correctly. If an
incorrect pin is introduced the pin is cleaned. The number of tries and the time since
the �rst number is introduced until the start button is clicked having provided the
corrected pin is saved. The last try (since the �rst number is introduced after cleaning
the pin space until the start button is clicked having provided the corrected PIN) time
is also saved.

The daily test asks the following data, which is what is stored in the mobileTests

collection de�ned in 2.3.2.1:

1. A�ective state: 7 points with a center one which is represented accordingly.

2. Motivation: 7 points with a center one which is represented accordingly.

3. Concentration: 5 points.

4. Anxiety: 5 points.

5. Irritability: 5 points.

6. Sleep quality: 5 points.

7. Menstruation: Yes or no.

8. Ca�eine: Integer

9. Alcohol: Integer

10. Cigarettes: Integer.

11. Other drugs: Yes or no.

12. Time to go to bed: Time.

13. Time to sleep: Time.

14. Time to wake up: Time.

For most information about this data, you can see the help texts in the application.
Question 1 to 6 use Likert scale, the number of points in these question was greatly
discussed and there is information about it at [25]. For these questions the answer of
the previous day the test was �lled is indicated. We do that to allow users to be more
accurate as they can compare with the answer they gave yesterday and value how
their mood have change since them.

45

3 Android

When all the questions has been answered it will be indicate to the user and show
the main page again given the possibility to change the answers, as it has been
already mentioned. If the send button is clicked and there is any question that has
not �lled correctly it will be indicated appropriately. The main page has a menu with
the following items: pro�le, con�guration and information. The pro�le page allows to
modify the personal information asked in the registration. Introducing the pin
correctly is needed to change it. In the con�guration page the option to disable or
enable using the mobile data to send information is given. The information page
shows the name of the app, its icon, the version, the name of the developer and allows
to show the terms and conditions.

3.2.2 Design

In the design of the application I followed the Material design suggestions and
recommendations in [24], [6] an [32]. Material design is a new visual language
proposed by Google, which represents a rational space in movement. Lights, shadows,
typographies, spaces and colours help us focusing our attention and tell us where
objects are in relation to other objects and how they move. Movement is meaningful
and continuous, feedback is subtle but clear and transitions are coherent and e�cient.

Regarding to the colour used in the application, for the primary colour I used the
pink from the material design primary color palette (#E91E63) and for the primary
dark color a variation of this pink also in the primary palette (#C51162).
Consequently, as the accent colour must contrast with the primary one, I used one of
the blues from the secondary palette (#00B0FF) for the accent colour. The primary
colour is the most widely used across all screens and components. The accent colour
should be used for the �oating action button and interactive elements, such as
selection controls, links, text �elds and sliders. However, as the main buttons of the
app are to big I decided to use the primary colour for that, to avoid the accent colour
to turn the most used. In fact, there are some Google's applications, such as Gmail,
that use the primary colour for buttons.

Apart from the colours, I did not have to worry about following Material design
principles as Justinmind uses it and I chose a theme in the application project that
uses it too.

3.2.2.1 Prototyping

The aim of this section is to illustrate the process followed to prototype the mobile
application. First, I did some sketches of lower �delity and then I did eleven computer
prototypes before starting the development or at the beginning of it. I used

46

3.2 Application to collect medical data

Justinmind, which is an prototyping tool with advantages features, for the computer
prototypes and, as it is not simple to use, I need to use the Justinmind complete
guide with explicative videos in [28]. Every prototype consisted on images (Visual
Prototypes) and from the third prototype also videos (Functional Prototypes) to
illustrate how the application is used.

In the Appendix: Prototypes images you can see images of the di�erent prototypes
and they may make easy to understand the prototyping process. In addition, the
videos of the last prototype can be seen in the following links. I do not include the
rest of videos here as this one is the one with highest �delity. Both the images and
videos are in Spanish.

Daily use: https://youtu.be/rmyIEO8Utz8

Registration: https://youtu.be/yqyoxoveptU

The �rst prototype (�gure 1) is the one of less �delity and was done before the
questions that we want to ask were clear, as we had to �nd a balance between
collecting as much information as possible and not getting the user tired or bored by
asking him too many question. In the second (�gure 2), the questions were much more
clear and I decided to introduce help texts for every question. In the third (�gure 3),
we eliminated the question about if the patient has taken his medicines (as it has no
sense for most users and we decided that it is better to introduce the noti�cations
feature in the future). We also introduced registration screens and change the way
some questions were rated, using a center point. Unfortunately, a misunderstanding
with doctor obliged me to change the rating again in the fourth prototype (�gure 4).
Apart from the center point I also coloured the answer given the previous day for a
more accurate answer. In this prototype, I also changed the main screen, as I had
been reading about Android issues and the grille used before could be di�cult to
implement for di�erent screen sizes. Some questions were also modi�ed. In the �fth
prototype (�gure 5) I basically added the terms and conditions in the registration
screen. In the sixth prototype (�gure 6) I added a settings screen and a con�rmation
screen to be shown after sending the daily test.

After a meeting with the doctor I realised that the rating method for the questions
with center point was not clear and change the values range, -3 to 3 instead of 1 to 7.
So I did the seventh prototype (�gure 7), in which I also changed the way number
were introduced as it could be really unconformable to �ll for big numbers. The
register was modi�ed too, as we decided to repeat the PIN to avoid introducing a
wrong pin without noticing it.

Then, I did some profs in Android to decide the menu that would be better for the
project. I implemented a Navigation Drawer and a Main menu and I decided that

47

https://youtu.be/rmyIEO8Utz8
https://youtu.be/yqyoxoveptU

3 Android

the second option �ts better our necessities as we will have very few options in the
menu and it will not be worthwhile using a Navigation Drawer. So, that is what was
introduced in the eight prototype (�gure 8), together with the screens of the pro�le,
settings and information options.

In the ninth prototype (�gure 9) the way the register is done was changed and a
screen to indicate that the register has been successfully completed added. Also, the
menu was introduced also for the register, but only with the information option, as
the rest do not make sense in this part. I added the navigation Android bar too,
which I had not added before because it is not easy to use it in Justinmind in screens
where scroll can be done. Lastly, in the �nal prototype (�gure 11) the colours were
changed to use the colours recommended by Material design guides, as it has been
previously explained. This �nal prototype is a high �dellity prototype. That can be
checked by comparing it with the application developed (see Appendix: Screenshots of
the �nal application).

3.2.2.2 Design principles

For doing the prototypes in the previous section and during the development I
followed the following principles: proximity, closure, consistency, feedback and
visibility, management of the visible state and freedom and control. All this
principles are explained in detail in [32] and I am going to mention examples in the
mobile application for all of them.

Proximity principle

Related elements must be close or even grouped together, as that favours learning
and memorability. The clearest example in the app is the help icon next to the title,
indicating that the icon opens the help text for that speci�c question.

Closure principle

This principle states that a closure of a process has to be natural, a continuation of
the process itself. Two good example in my application are the daily test and the
register, as to �ll in the information you do scroll vertically and the �nish button is at
the of the screen. If we I had put this button at the beginning of the screen I would
not have followed this principle.

Consistency principle

Users learn easily the concepts that are consistent with their previous knowledge.
There are two types of consistency: interior and external. The �rst one consists on
ensure that all controls with similar functionality have a similar appearance and vice
versa. Also, controls which have a di�erent appearance may have a di�erent
functionality. In the app, the questions of the daily tests that are similar have a rating

48

3.2 Application to collect medical data

similar (or exactly the same one) and the ones that are di�erent have a di�erent
rating. External consistency consists on use the same expression that the system and
other application use. In the app, the menu works exactly as it does in many other
Android applications and the option and help icons are the ones an Android user is
used to seeing.

Feedback and visibility principle

The interfaces must change to indicate their state. Apart from the typography,
lights, shadows and colours used in Material design to focus the attention, there is
also visual feedback, as I have used Android Toast messages to indicate errors. Also,
there are screen to inform that everything went right after important processes, such
as registration and sending the daily test. I have also keep the red color to indicate
errors as it is a cultural restriction. Other applications uses other kinds of feedback
too, such as auditive and haptical feedback. But using auditive feedback is not a good
a idea for our app, as bipolar patient may feel uncomfortable if the application
sounds. Using haptical feedback could have been useful in the application, but I
didn't have time for it.

Management of the visible state principle

This principle focuses on give the user information about the system while he is
doing any process. As there are no long process in the application it does inform of
the navigation state. It would become really important if we complicate the daily test
in the future and split it in several screens. However, the application informs about
the model state, by changing the name of the button by CHANGE ANSWERS
instead of START. It also allow to know the interface state, for example by changing
the button of colour when being clicked, informing that this operation is not longer
possible and avoiding this way that the user click it several times during long
operations (the ones involve a communication with the database)

Freedom and control principle

We have to allow the user to feel that he has the control of the processes. Because
of that, I had avoided to use con�rmations in the daily test and instead allowing him
to change the answers afterwards. Similarly, instead using con�rmations in the
registration there is a pro�le screen were the personal data can be modi�ed
afterwards.

3.2.3 Implementation

The mobile application designed has been developed using Android Studio, the O�cial
IDE for Android. Some manuals and guides recommend to use the Eclipse ADT plugin,
but it is no longer supported so I decided not to use it. During the development I used

49

3 Android

the guides and documentation at [6] and I tried to follow the o�cial Android Code Style
Guidelines at [4].

3.2.3.1 Android versions

When choosing and Android version we have to can into account that when more
versions are supported, there are more things to take into account during the
development. Some methods are deprecated in some versions and does not exist in
some others, and the same happens with some functionalities. Taken that into
account, the application can be used in Android 4.1 Jelly Bean (API level 16) or
higher, which according to Android Studio includes the 86% of the Android devices.

A good example of the works that involves supporting several versions is the way I
managed the Timepickers in the application:

if (Build.VERSION.SDK_INT > Build.VERSION_CODES.LOLLIPOP_MR1) {

questions [11] = tp12.getHour () * 60 + tp12.getMinute ();

} else {

questions [11] = tp12.getCurrentHour () * 60 +

tp12.getCurrentMinute ();

}

3.2.3.2 Material design

Some characteristic of Material design, such the material theme, are only available
in Android 5.0 (API level 21) or higher. Applications can be designed to use it in
devices that support it while being compatible with older Android versions. I
managed to do that by using the v7 Support Library, which can be used with Android
2.1 (API level 7) and include some features for material design when available. I also
used the Theme.AppCompat.Light.DarkActionBar theme, as Theme.AppCompat

themes allows us to set the material design color palette theme attributes.

3.2.3.3 Documentation

Taking into account that the development of the application is going to continue after
I �nish my project by other persons, I was concern about the importance of document
it. I used the Javadoc Standard Comments as it is recommended in the Android Code
Style Guidelines. Although, it is only compulsory to write Javadoc comments in classes
and nontrivial public method, I wrote them in all methods, including private ones, to
make easy to understand the code. In some overriding method I just wrote @override,
as that keeps the Javadoc comment of the class it overrides.

50

3.2 Application to collect medical data

3.2.3.4 Classes

An activity is a concrete thing that the user can do in an application. All activities
of the application developed interact with the user, so the Activity class creates the
window to do it and because of that they have at least one view associated.

Apart from the activity classes, I created two classes to manage the SQLite
database: FeedTestContract and FeedTestDbHelper. SQLite is the default database
in Android and there are classes to manage it easily. Speci�cally, I used the
SQLiteOpenHelper, which is a helper class to manage database creation and version
management with a useful set of Application Programming Interfaces (APIs). When
using this class to obtain references to the database, the system performs the
potentially long-running operations of creating and updating the database only when
needed and not during app startup. To use it, I created a subclass called
FeedTestDbHelper which overrides the onCreate() and onUpgrades() methods. I
used a contract class called FeedTestContract to de�ne the database schema, which
is used in the FeedTestDbHelper class to create the database. The database is used to
store the daily test locally, in case that there is no internet connection in the moment
they are �lled in. Also, the last two tests are used to indicate the user the answers he
gave the previous and in case he wants to change the days of the current day.

Sending the daily tests to the server database has been more di�cult that it may
seem, as there are many factors to take into account. We need to keep the last two
test but we send them as soon as possible to the database. Then, we need to know
what tests have been sent and what of them not, as the user could send several test
without connection. Also, we need to check if there is already a test with the same
date, to update it instead of insert it again. So, I have created two classes to manage
all that. The �rst one is SendTest and is the one which connect with the database to
send the daily tests. It inherits from the class AsyncTask, which allows to perform
background operations ans publish results on the main thread without having to
manipulate threads and/or handlers, as the connection with the database is a long
operation that has to be run in the background.

I have created the TestsService class too, which inherits from the Service class.
A service is an application component that can perform long-running operations in
the background and does not provide a user interface. Although a service runs in the
same process as the application in which it is declared and in the main thread of that
application, by default. The service will use the SendTest to send the daily tests and
as it is a intensive operations which is done while the user interacts with an activity
from the same application, the service will slow down activity performance. To avoid
that, it is run in a di�erent thread with background priority. If the service can not
send all tests because of connection problems, a BroadcastReceiver which noti�es
connection changes is set. When the app is closed, the service is closed too, but it is
restarted to avoid losing data. There is a bug in Android 4.4.x that prevent the server

51

3 Android

to restart when the app is closed. This bug also kills BroadcastReceivers, but do not
kill alarms, so adding an Alarm we could restart our service to avoid losing data in
those versions.

For the sign in, sign up and the pro�le I created the nested classes called
DownloadRegistration, SendRegistration and UpdateRegistration respectivily,
which are similar to the SendTest class. For helping me to manage the registration I
also created the User class, which has methods to create a user with all the
information needed and to save him in the SharedSettings.

I also needed a the nested class to allow the terms and conditions in the register to
be clickable: MyClickableSpan, which inherits from ClickableSpan. I created three
classes to manage the custom ratings too. As I wanted to use two di�erent custom
ratings with a lot of similarities I took advantage of inheritance. So, I created a class
called RatingStars with the similar functionality, and two classes (RatingStars5 and
RatingStars7) which inherit from the �rst class and contains the speci�c
functionality.

Lastly, I have a class called Variables which contains static �nal variables and
methods used around the program.

3.2.3.5 Manifest

Every Android application must have a manifest. It contains important information
such as the name of the Java package (unique in the device), the components of the
app (activities, services, intentions it can manage, etc.) and the permissions.

In the application manifest you can �nd the name of the Java package, the name,
icon and theme of the app, all the activities, the test service explained in the previous
section and the following permissions needed to check the connectivity state:
INTERNET, ACCESS_WIFI_STATE and ACCESS_NETWORK_STATE.

3.2.3.6 Main challenges encountered during the development

Apart from the compatibility in some Android versions already commented, I
encountered several challenges. The ones I considered to be more di�cult to solve are
in the following list:

• Finding out why the service was not restarted when the application
was closed. It is a bug in Android 4.4.x that by coincidence was the version I

52

3.2 Application to collect medical data

was using to test the application. The reason why it was so di�cult to discover
is that there is not almost information about that. I �nally found a detailed
article about the problem at [17].

• Finding out why the authentication with MongoDB does not work in
Android. When using SCRAM-SHA-1 authentication method from the Java
Driver java.nio.channels.AsynchronousSocketChannel is called and it does
not exist in Android, so it causes an exception and as a result it does not work.
I solved it by changing the authentication mechanism to the previous one
(MONGODB-CR) instead the default new one in releases 3.* (SCRAM-SHA-1).
It was di�cult to solve because this problem is only for Android and the Java
driver works �ne in general, so there is no a lot of information about this error
neither.

• Managing times. Managing times was a complicated issue during the
development of the project because of time changes as UTC is used by default
and I needed to manage it in some places in the device local time. The problem
more di�cult to solved was to manage the day light savings, as it is not
something common in most countries an it is not taking into account in most of
the solutions I found on the Internet.

• Making the title to be present when get a question focused because
there is an error. Both in the register and the daily text, we want not only to
get focus on the answer when there is an error (what is done by default when
calling requestFocus()) but also to be see its title. In addition, most of the
daily text answers can not request focus, as they are not FieldTexts. I did that
by using the Rect class and the requestRectangleOnScreen() method. It was
di�cult to me to understand who these class and method worked at the
beginning.

• Making the terms and conditions clickable in the register. The terms
and conditions are a subtext in a sentence and we do not want the whole
sentence to be clickable. I tried to managed it by de�ning two TextViews in the
view, but it did not work. I managed to do it by using the SpannableString

and MyClickableSpan classes in the activity associated.

• Customizing the NumberPickers in the daily test to add an empty option
by default. That is important because we want to force the users to �ll in
all the question and because of that that the 0 value, which is an acceptable
value, can no be the default one. I managed to do that by using the Formatter

class and the setMinValue(), setMaxValue(), setWrapSelectorWheel() and
setFormatter() methods.

53

3 Android

3.2.3.7 Final application and testing

Screenshots of the �nal application in two di�erent devices with di�erent Android
versions can be seen in the Appendix: Screenshots of the �nal application. Also, a
video of how the application looks and how to use it in a Nexus 4 with Android 6.0.1
can be watched in the following link:

https://youtu.be/InZCw9WAZzI

Regarding the testing, during the development of the project I mainly used my own
mobile phone, an Elephone P3000S with Android 4.4.2 to test the application.
But I also tested the application in a wide range of phone and tablets. While testing
the app I discovered that it was not been displayed properly in some devices with
small screen (specially those with older Android versions), as it can be seen in picture
3.1. The problem of the ratings was caused because of being using text inside the
circles of the ratings. The solution was to manually set the text size for di�erent
screen sizes. Also, the scroll was not working properly, although it worked �ne in
other versions. I solved it by adding a FrameLayout between the RelativeLayout and
the ScrollView. The last error I found was that the checkbox did not appear in small
devices because of the way padding was set, so it was easy to solve it by changing the
way of doing it the RelativeLayout. At the last minute I also discover that there is
not space between the last line of the help text and the pink box in old version of
Android (�gure 3.2). Although it does not seem di�cult to solve, I did not have time
to do it and in fact it is not a hight priority issue.

I could also have used Android Studio emulator, but it is really slow, specially for
an old laptop like mine and as it was not di�cult to have access to several devices to
test the app I did not use it.

3.2.4 Usability testing

Usability testing is a technique which consists on allowing users to work with our
application directly and observing if they can use it for its intended purpose. The
information that we obtain from usability testing is more valuable than using any
other technique which does not involve users and it is the only way to know how real
users will use our system.

The usability testing can be helpful in any part of the project, but it has a high
cost, as we need to recruit users, prepare it, doing it and analyse it. Because of the
time needed, I only did usability testing at the end, but taken into account that the
development of the application is going to continue and some new features are
planned to be introduced, the objectives of this testing were the ones of an evaluation

54

https://youtu.be/InZCw9WAZzI

3.2 Application to collect medical data

(a) Ratings did not �x the

screen

(b) The last part of scroll

views was not seen

(c) The checkbox did not

appear

Figure 3.1: Application problems in some devices

Figure 3.2: No space after the help text in some old devices

test and not the ones of a veri�cation test. In other parts of the project, I evaluated
the application by showing it to my directors and other people working in the project
and taken their feedback into account.

55

3 Android

The aim of a evaluation testing is to check if the users are able to do complex tasks
without any help. Although quantitative information is written down the most
important information is qualitative. The interaction between the interviewer and the
user is minimum and the user has not only to indicate how he would do a task, but to
execute it too. The result of this type of test is a list of parts of the application where
the users get stuck, make errors or �nd inconsistencies. Afterwards, improvements to
solve the problems found are proposed.

I used the Chapter 5 of [32] for writing this chapter and to help me to do a good
and useful usability testing.

3.2.4.1 Preparation of the usability testing

First of all, I had to decided what parts of the application I wanted to evaluate.
Taken into account the objective of the testing, I decided that the best was asking the
users to register in the application and �ll in a daily test, as this cover the main
purpose of the app (�lling daily tests) and the register is indispensable to start using
it. I summarized my objectives in the following questions, which I expected to be
answered by the usability testing:

• ¾Is it easy to complete the register?

• ¾Do the users understand the questions of the daily test?

• ¾Is it easy to �ll in the daily test?

• ¾Do the users understand the icons of the application?

• ¾Do the users know what elements are touchable?

I was especially interested in knowing how many questions of the daily test the user
does not understand, how many errors does the user make and the time that takes
him to complete the daily test. I was also interested in �nding out how comfortable
and di�cult is using the application.

I needed to choose the users too, as they had to be representative of the users of the
application. As the app will be used by bipolar and healthy adults, I choose three
users of di�erent ages and genders, although they medical information can not be
revealed because of legacy and privacy reasons.

After that I made a description of the environment, the tools that would be used
and my tasks as a moderator: The sessions will take place in my living room. The
users will use their own Android mobile phone to ensure that the errors they make are
not because of being using an unknown device. There will be a camera recording the

56

3.2 Application to collect medical data

screen,the interaction with it and the audio. The camera will be on the left side if the
user is right-handed or in the right side if the user is left-handed. Ideally, there should
be several people participating in the usability testing, but in that case I will be alone.
This also has advantages, as the user will fell more comfortable with only one person.
First, I will sit down in front the user, give him a short introduction about the
application and explain him the task. After that I will move to be able to see the user
using the app and ask him to start. I will take notes while he is using the application.
At the end, I will allow the user to make comments or explain anything he wants and
I will ask him to �ll in a questionnaire.

I planned to use the think-aloud technique, which consists on asking the users to
speak during the testing explaining what they are thinking. We may have to
remember the users to keep talking and we can use silences and the phatic function of
language in our favour. That technique is really useful as it allows us to understand
the user mental model and if what the users expects is what it is happening in the
application. It also helps the user to concentrate in the task and re�ect on the actions
he will do.

When using this technique it is really important to explain it properly to the users,
so I will give them an introduction, which will be something like that (it is in Spanish
as it is the language in which will be done the testing):

La aplicación que vas a usar ha sido diseñada para recoger datos diariamente sobre el
estado de ánimo de los usarios para enviarlos a un servidor y analizados con el
objetivo de poder entender mejor enfermedades relacionadas con trastornos afectivos y
mejorar su tratamiento. Lo que debes hacer es registrarte en la aplicación y después
completar el test diario de hoy. Todo esto debes hacerlo tú solo, así que yo no te puedo
ayudar. Durante la prueba es muy importante que expliques en voz alta todo lo que
haces, como porque pulsas un botón o las razones por las pones una respuesta en una
determinada pregunta.

At the end of any usability testing it is recommended to do an interview, a
questionnaire or a combination of them. I will only ask them a general question, as I
do not want that they get tired and after that I will ask them to �ll in a
questionnaire. This way I will have quantitative information. I will use a version of
the IBM questionnaire, the PSSUQ, with which I will obtain four variables: the
general satisfaction (OVERALL), system usefulness (INFOQUAL and the quality of
the interface (INTERQUAL). I used this questionnaire because it is simpler than
others, such as UTAUT, and it is quite popular. The questionnaire that I prepared for
the interview can be seen in the Appendix: Usability testing questionnaire.

57

3 Android

3.2.4.2 Testing sessions

In this section I am going to provide links to the records of the usability testing.
Remember that the test was done in Spanish.

As I have already mentioned, �rst I gave a short introduction. The introduction of
the usability testing with the third user can be seen in the following link. The
introductions with the two other users are very similar, I choose that one because the
audio quality is better:

https://youtu.be/wuXlG2m4rOg

The testing itself with every users can be seen in the three following links.
Remember that every user used his own mobile phone.

User 1 (LG-440 - Android 4.1.2): https://youtu.be/xSxgU9x7sP4

User 2 (ZTE blade Apex - Android 4.1.2): https://youtu.be/fmGYmMUiBxw

User 3 (Aquaris E4 - Android 4.4.2): https://youtu.be/POcuAoa6ni4

The short interview after the testing with the �rst user can be seen in the following
link. I chose that one because she was the most communicative user of the three users
in this part:

https://youtu.be/GzMy9bZuF3k

The questionnaires the users �lled in can be seen in Appendix: Usability testing
questionnaire.

3.2.4.3 Analysis and recommendations

The �rst users was the younger of the three. She did the testing really well and fast
with no errors. She was shy and not very talkative, but when she spoke she gave me
really valuable information. The second and the third user get stuck trying to sign up,
as they were signing in instead. And as the form it is cleared with clicking sing in that
takes them too long and they were much slower than the �rst user.

The three users found �lling the birth date very uncomfortable. Also, the second
and the third users did not �nd the help buttons, event though they said not to
understand how to answer the questions. The �rst user found it easily, but she only
used for the two �rst questions. After that, she assumed how the questions works.

58

https://youtu.be/wuXlG2m4rOg
https://youtu.be/xSxgU9x7sP4
https://youtu.be/fmGYmMUiBxw
https://youtu.be/POcuAoa6ni4
https://youtu.be/GzMy9bZuF3k

3.2 Application to collect medical data

That made her to misunderstand the question about concentration, where the
question is asking for concentration problems, so the 1 is the best value, in contrast to
the other questions.

The second user also get confused when the application took a little bit to sign up,
although there is visual feedback, as the button change its colour. The three users,
but specially the second one, said that it was di�cult to know the time they get
asleep and fell uncomfortable �lling this question. Any of the users opened the terms
and conditions, although probably that is not an usability problem, as they knew how
to open them but they just did not do it. Also the second and the third users did not
understand that the main screen after �lling the test was to change the answers and
that it was not compulsory.

So, if we go back to the questions we wanted to answer with the testing:

• ¾Is it easy to complete the register? No. It is quite easy to �ll the
information, but not to �nd where to register.

• ¾Do the users understand the questions of the daily test? Most of them,
except the one of the concentration, the ca�eine and the alcohol. It is explained
in the help texts, but they did not open them.

• ¾Is it easy to �ll in the daily test? Yes, it is quite easy.

• ¾Do the users understand the icons of the application? Most of them,
but no the help icon.

• ¾Do the users know what elements are touchable? In general they do, but
the terms and conditions and the help icon are exceptions.

All this is qualitative information, but I also get the following quantitative
information:

Questions of the daily test the users do not understand: 3 (Concentration,
alcohol and ca�eine).

Number of errors does the user make (without counting not understanding
the questions): 0, 3 and 2 respectively.

Time that takes the user to complete the daily test: 4, 7 and 9 minutes
respectively.

We can also get quantitative information from the questionnaires (which can be
seen in the Appendix: Usability questions questionnaire) too:

59

3 Android

OVERALL (average of all questions): 5.8

SYSUSE (average of questions 1 to 8): 5.3

INFOQUAL (average of questions 9 to 15): 6

INTERQUAL (average of questions 16 to 18): 5.3

The usability problems found can be summarized in the following list. The priority
is indicated with a number between 1 and 5, being 5 the the highest priority.

• The register is not clear. We should change the register. Adding a new
screen to make it more clear if you are signing up or signing in. Priority: 4

• The sign in is cleared when there are errors. We should should not clear
it to avoid the users �lling the data several times. Priority: 2

• Changing the initial date in the birth date question. We could change
the initial date in the birth date question. Priority: 1

• Help buttons are not recognizable. We could change their color and add
them relief. Priority: 5

• Concentration question is easily misunderstanding. We should rewrite
the help text to make the 5 to be the best value, as in the rest of the questions.
Priority: 5

• Visual feedback when clicking a button is not clear. For operations that
can take a while (the ones that needs to connect with the server), we could add
a Toast message to make it clear that the button has been clicked. Priority: 3

• The question about getting asleep is uncomfortable and get users
tired. As the doctor was also thinking that this question may be less useful as
we expected, we should eliminate it. Priority: 2

• It is not clear that the main screen after �lling in the test is to change
the answer. We should add a message to make it more clear. Priority: 3

60

3.2 Application to collect medical data

3.2.5 Future changes

Obviously, the development of a large application like that has not yet �nished and
there are some future changes planned. I have included the changes suggested in
section 3.2.4.3 after the usability testing. The changes are ordered by priority, being
�rst the ones with highest priority. This changes have also been added to the Github
repository by creating issues. In Github they have tags to classify them, and
screenshots and other useful information has been included.

• Change the text help of the question about concentration. We should
rewrite the help text to make the 5 to be the best value, as in the rest of the
questions, to avoid misunderstandings.

• Change help buttons colour and add them relief to make them more
recognizable.

• Change the register. Add an extra screen to make clear if we are signing up
or signing in.

• Eliminate the email from SharePreferences. The email and the PIN are
both stored in the SharePreferences. As these data is the one used to log in
that could be a security problem. If we eliminate the email, internet will be
needed to see the pro�le, but the application will be more secure.

• Show a Toast message when clicking a button which activate an
action that could take few seconds in �nishing. Improving visual feedback
this way.

• Add a message in the main screen after the daily test has been �lled
in. This will make clear that now we can change the answers.

• Eliminate the question about getting asleep. As it is a new
recommendation of the doctor and because of what I observed in the usability
testing.

• Translate help messages, which are only in Spanish.

• Stop clearing the sign in when there are errors to avoid the users �lling
the data several times.

• Add link to www.bip4cast.org in the terms and conditions.

61

3 Android

• Store and send information about location to the database as we thing
that this data can improve predictions signi�cantly.

• Change the initial date in the birth date question For example to be
10/4/1985, as user's birth date would be closer to that date than today's date.

• Download the last two tests and store them in the database. This way,
when a user that has already been using the app sign in he will have the
information of the test of the previous day and the test of the current day, if any.

• Add Touch Gestures to custom ratings to make them easy to use.

• Add noti�cations to allow the doctor to send the users remainders about their
medication and other messages.

• Solve bug in Android 4.4.x There is a bug in Android 4.4.x and Services and
BroadcastReceivers are stopped when the app is closed (closed not pause). So,
after creating the Service for sending the tests to the database, an alarm should
be programmed to restart the service.

• Solve visual bug in some Android versions In some Android version there
is not space between the last line of the help text and the pink box.

62

4 Contributions

Not only have I learned a wide range of theoretical concepts and gained a lot of
practical experience while doing this project, but I have also contributed to Github
(4.1a) and Stack Over�ow (4.1b).

(a) GitHub (b) Stack Over�ow

Figure 4.1: Logos of the communities I contributed to

4.1 Github

GitHub is a web-based Git repository hosting service. It has a community of more
than 14 million people and over 35 million projects. As it o�ers free plans for open
source projects, it host the world's largest collection of open source software and, by
storing past versions of source code, it allows to follow the development of projects.

My Github account is Ana06. The mobile app code, together with the .apk, the �nal
protoype, screenshots and other relevant information, can be found here:

https://github.com/Ana06/medical-data-android

The code has been pusblished under GNU GENERAL PUBLIC LICENSE v3. It is
a copyleft license that requires anyone who distributes the code or a derivative work
to make the source available under the same terms, so everbody will be able to bene�t
from the current project and from future improvements and changes. More
information about this license can be found at [19].

Contributors are accepted, so a list of issues has been created on Github with the
future changes proposed in section 3.2.5. Anyone can contribute by submiting a pull
request or creating new issues with new ideas or bugs. I will revise the correction of
the code submited and its adherence to the o�cial Android Code Style Guidelines

63

https://github.com/Ana06
https://github.com/Ana06/medical-data-android

4 Contributions

and, if everything is correct, I will incorporate the changes to the project.

4.2 Stack Over�ow

Stack Over�ow is the largest online community for programmers, where users ask
and answer programming questions. Questions and answers can be edited and voted
up and down.

I have previously commented that during the development of the project I used
Stack Over�ow to solve some of my doubts. So I decided to create an account (ana06)
and contribute to the Stack Over�ow community with the things I was learning about
Android and MongoDB. Apart from voting up (when I earn enough reputation to do
it) the answers that worked for me, I answered questions and edited answers with
mistakes. Some of my best contributions were:

• Button style not working for some versions of Android I found a di�erent
solution for this problem. I posted in two di�erent pages and some users found it
useful.

http://stackover�ow.com/questions/29860906/widget-appcompat-button-
colorbuttonnormal-shows-gray

http://stackover�ow.com/questions/29882292/buttonstyle-not-working-for-22-1-
1

• Authentication on MongoDB 3.0.5 with Java Driver 3.x Because of the
problem to authenticate on MongoDB 3.2, I need to use authentication mechanism
to the previous one (MONGODB-CR) instead the default new one in releases 3.*
(SCRAM-SHA-1). I found an almost perfect soluction to do it, so I edited it to
correct the mistake it had.

http://stackover�ow.com/questions/32019778/authentication-on-mongodb-3-0-
5-with-java-driver-3-0-3-and-gridfs

64

http://stackoverflow.com/users/6245337/ana06
http://stackoverflow.com/questions/29860906/widget-appcompat-button-colorbuttonnormal-shows-gray/36990099#36990099
http://stackoverflow.com/questions/29860906/widget-appcompat-button-colorbuttonnormal-shows-gray/36990099#36990099
http://stackoverflow.com/questions/29882292/buttonstyle-not-working-for-22-1-1/36989924#36989924
http://stackoverflow.com/questions/29882292/buttonstyle-not-working-for-22-1-1/36989924#36989924
http://stackoverflow.com/questions/32019778/authentication-on-mongodb-3-0-5-with-java-driver-3-0-3-and-gridfs/32029627#32029627
http://stackoverflow.com/questions/32019778/authentication-on-mongodb-3-0-5-with-java-driver-3-0-3-and-gridfs/32029627#32029627

5 Conclusion

I did not know almost anything about Big Data before starting this project and I
have to say that learning about it has been truly rewarding. Although I have only
learnt about Streaming Spark and Neural Networks in a theoretical way, I have found
those two topics really appealing and I will surely delve into them in the future.

Learning about NoSQL databases and using MongoDB in a real project has been
really interesting as I have discovered a new paradigm quite di�erence to the one in
SQL databases which I was used to working with. In fact, when starting reading
about documental databases I though that storing data that way was confusing and
inhabitual, but after designing and working with a database of this kind during
several months I have realised that it is more natural and closer to the information
and data structures we have in our programs. I have also noticed that SQL and
NoSQL databases can be combined to make the most of the advantages of both
technologies, as I used both satisfactory in the mobile application.

Designing, developing and testing a whole mobile application on my own has been a
enriching experience too. I love Android and learning how Android applications are
developed is something I wanted to learn since a lot of time ago. Having the
opportunity to do it while developing an application that not only is going to be used
in real life, but also may help to improve the treatment of the bipolar disorder which
a�ects an important percentage of people and their families, is amazing.

Apart from everything I have learnt, I feel proud of having contributed to the
Github and Stackover�ow communities and I hope that this will make other people
learning a little bit easier.

65

Acronyms

.apk Android Application Package. 42, 63

ADT Android Development Tools. 49

API Application Programming Interface. 11, 49, 50

BSON Binary JSON. 4, 6, 26

DICOM Digital Imaging and Communication in Medicine. 6

EEAG Escala de Evaluación de la Actividad Global. 30

GAF Global Assessment of Functioning. 29

HDFS Hadoop Distributed File System. 12

HDRS Hamilton Depression Rating Scale. 29, 30

I/O input/output. 7

IBM International Business Machines Corporation. 7, 57

ICD-10 10th revision of the International Statistical Classi�cation of Diseases and
Related Health Problems. 27

IDE Integrated development environment. 49

IP Internet Protocol. 24, 25, 33

JSON JavaScript Object Notation. 4, 6, 20, 35, 66

NoSQL Non SQL or not only SQL. vi, 2, 3, 21, 22, 65

ODM Object Document Mapper. 40

OO Object oriented. 1

OS Operating System. 24

PANSS Positive and Negative Syndrome Scale. 29, 30, 40

PSSUQ Post-Study System Usability Questionnaire. 57, 94

67

Acronyms

RAM Random Access Memory. 9

RDD Resilient Distributed Datasets. v, 7, 9�12

SQL Structured Query Language. 1�4, 6, 11, 20, 65, 66

TIBCO The Information Bus Company. 7

UC University of California. 7

UCM Universidad Complutense de Madrid. 1, 25

UTAUT Uni�ed theory of acceptance and use of technology. 57

UTC Coordinated Universal Time. 52

XML eXtensible Markup Language. 4

YMRS Young Mania Rating Scale. 29, 30

68

Glossary

cluster set of connected computers (nodes) that work together so that, in many
respects, they can be viewed as a single system. 7, 9�12, 22

g-force a measurement of the type of acceleration that causes weight. 32

horizontally scalable vertical scalability is when only one node is improved. In some
cases when this is not enough, horizontal scalability is used. It consists on adding
more nodes. When adding more nodes is feasible, it is said that it is horizontally
scalable. 2

lux (symbol: lx) is the SI unit of illuminance and luminous emittance, measuring
luminous �ux per unit area. 32

69

Bibliography

[1] Apache Spark o�cial web page. URL http://spark.apache.org/.

[2] Lightening Fast Big Data Analytics using Apache
Spark. URL http://www.slideshare.net/manishgforce/

lightening-fast-big-data-analytics-using-apache-spark.

[3] Streaming Big Data: Storm, Spark and Samza - DZone Big Data. URL https:

//dzone.com/articles/streaming-big-data-storm-spark.

[4] Code style for contributors. URL http://source.android.com/source/

code-style.html.

[5] Index of /apt/debian/dists/wheezy/mongodb-org/3.2/main/binary-amd64. URL
http://repo.mongodb.org/apt/debian/dists/wheezy/mongodb-org/3.2/

main/binary-amd64/.

[6] Android developers guide. URL http://developer.android.com/intl/es/

guide/index.html.

[7] Escala de Evaluación de la Actividad Global - EEAG. URL http:

//salpub.uv.es/SALPUB/practicum12/docs/visidom/Escalas+Instrum_

valoracion_atencion_domiciliaria/129_ESCALA_EVALUACION_ACTIVIDAD_

GLOBAL_EEAG.pdf.

[8] Slides: Paradigmas del procesamiento en Big-Data. URL https://sites.google.

com/site/tecnologiaucmgtec/downloads.

[9] The ham-d scale. URL http://serene.me.uk/tests/ham-d.pdf.

[10] M101J: MongoDB for Java Developers course. . URL https://university.

mongodb.com/courses/M101J/about.

[11] Mongodb documentation, . URL https://docs.mongodb.com.

[12] Neural Network Learning in Big Data. URL http://www.

journals.elsevier.com/neural-networks/call-for-papers/

special-issue-on-neural-network-learning-in-big-data.

[13] Contrato lou artículo 83 siguientes: Ref: 4155904 clínica nuestra señora de la paz,
título: Predicción de crisis en el trastorno de bipolaridad, dirigido por victoria
lópez lópez (ucm) y por diego urgelés (clínica nuestra señora de la paz).

71

http://spark.apache.org/
http://www.slideshare.net/manishgforce/lightening-fast-big-data-analytics-using-apache-spark
http://www.slideshare.net/manishgforce/lightening-fast-big-data-analytics-using-apache-spark
https://dzone.com/articles/streaming-big-data-storm-spark
https://dzone.com/articles/streaming-big-data-storm-spark
http://source.android.com/source/code-style.html
http://source.android.com/source/code-style.html
http://repo.mongodb.org/apt/debian/dists/wheezy/mongodb-org/3.2/main/binary-amd64/
http://repo.mongodb.org/apt/debian/dists/wheezy/mongodb-org/3.2/main/binary-amd64/
http://developer.android.com/intl/es/guide/index.html
http://developer.android.com/intl/es/guide/index.html
http://salpub.uv.es/SALPUB/practicum12/docs/visidom/Escalas+Instrum_valoracion_atencion_domiciliaria/129_ESCALA_EVALUACION_ACTIVIDAD_GLOBAL_EEAG.pdf
http://salpub.uv.es/SALPUB/practicum12/docs/visidom/Escalas+Instrum_valoracion_atencion_domiciliaria/129_ESCALA_EVALUACION_ACTIVIDAD_GLOBAL_EEAG.pdf
http://salpub.uv.es/SALPUB/practicum12/docs/visidom/Escalas+Instrum_valoracion_atencion_domiciliaria/129_ESCALA_EVALUACION_ACTIVIDAD_GLOBAL_EEAG.pdf
http://salpub.uv.es/SALPUB/practicum12/docs/visidom/Escalas+Instrum_valoracion_atencion_domiciliaria/129_ESCALA_EVALUACION_ACTIVIDAD_GLOBAL_EEAG.pdf
https://sites.google.com/site/tecnologiaucmgtec/downloads
https://sites.google.com/site/tecnologiaucmgtec/downloads
http://serene.me.uk/tests/ham-d.pdf
https://university.mongodb.com/courses/M101J/about
https://university.mongodb.com/courses/M101J/about
https://docs.mongodb.com
http://www.journals.elsevier.com/neural-networks/call-for-papers/special-issue-on-neural-network-learning-in-big-data
http://www.journals.elsevier.com/neural-networks/call-for-papers/special-issue-on-neural-network-learning-in-big-data
http://www.journals.elsevier.com/neural-networks/call-for-papers/special-issue-on-neural-network-learning-in-big-data

Bibliography

[14] Stackover�ow. URL http://stackoverflow.com.

[15] Young Mania Rating Scale. URL psychology-tools.com/

young-mania-rating-scale/.

[16] GENEActiv instruction manual v1.2, March 2012. URL http:

//1yn2me1hmr8p1dh4kt426lhe.wpengine.netdna-cdn.com/wp-content/

uploads/2014/03/geneactiv_instruction_manual_v1.2.pdf.

[17] [Bug Watch] Stopping Apps On Android 4.4.2 Can Silently
Kill Related Background Services, A Fix Is On The Way,
March 2014. URL http://www.androidpolice.com/2014/03/07/

bug-watch-stopping-apps-on-android-4-4-2-can-silently-kill-related-background-services-a-fix-is-on-the-way/.

[18] Apache Spark vs Hadoop MapReduce, December 2015. URL http://www.

edureka.co/blog/apache-spark-vs-hadoop-mapreduce.

[19] GNU General Public License v3.0, May 2016. URL http://choosealicense.

com/licenses/gpl-3.0/.

[20] Positive and Negative Syndrome Scale, January 2016. URL https:

//en.wikipedia.org/w/index.php?title=Positive_and_Negative_

Syndrome_Scale&oldid=699130814. Page Version ID: 699130814.

[21] Christopher M. Bishop. Pattern Recognition and Machine Learning. 2012. ISBN
978-0387-31073-2.

[22] Enrique Martín. Slides: Sistemas de Gestión de Datos y de la Información. 2015-
2016.

[23] Fabio Fumarola. Document Oriented Databases. URL http://es.slideshare.

net/fabiofumarola1/9-document-oriented-databases.

[24] Google. Material design. URL https://www.google.com/design/spec/

material-design.

[25] Jan Losby, Anne Wetmore. CDC Co�ee Break: Using Likert Scales in Evaluation
Survey Work. URL http://www.cdc.gov/dhdsp/pubs/docs/cb_february_14_

2012.pdf.

[26] José Luis Sierra Rodríguez y Rubén Fuentes Fernández. Slides: Programación de
aplicaciones para dispositivos móviles. 2015-2016.

[27] José María Sordo Juanena. Slides: Programación iOS Y Android. 2014.

[28] Justinmind. Justinmind support. URL http://www.justinmind.com/support.

[29] James R. Lewis. IBM computer usability satisfaction questionnaires: Psychometric
evaluation and instructions for use. International Journal of Human-Computer
Interaction, 7(1):57�78, January 1995. ISSN 1044-7318. doi: 10.1080/
10447319509526110. URL http://dx.doi.org/10.1080/10447319509526110.

72

http://stackoverflow.com
psychology-tools.com/young-mania-rating-scale/
psychology-tools.com/young-mania-rating-scale/
http://1yn2me1hmr8p1dh4kt426lhe.wpengine.netdna-cdn.com/wp-content/uploads/2014/03/geneactiv_instruction_manual_v1.2.pdf
http://1yn2me1hmr8p1dh4kt426lhe.wpengine.netdna-cdn.com/wp-content/uploads/2014/03/geneactiv_instruction_manual_v1.2.pdf
http://1yn2me1hmr8p1dh4kt426lhe.wpengine.netdna-cdn.com/wp-content/uploads/2014/03/geneactiv_instruction_manual_v1.2.pdf
http://www.androidpolice.com/2014/03/07/bug-watch-stopping-apps-on-android-4-4-2-can-silently-kill-related-background-services-a-fix-is-on-the-way/
http://www.androidpolice.com/2014/03/07/bug-watch-stopping-apps-on-android-4-4-2-can-silently-kill-related-background-services-a-fix-is-on-the-way/
http://www.edureka.co/blog/apache-spark-vs-hadoop-mapreduce
http://www.edureka.co/blog/apache-spark-vs-hadoop-mapreduce
http://choosealicense.com/licenses/gpl-3.0/
http://choosealicense.com/licenses/gpl-3.0/
https://en.wikipedia.org/w/index.php?title=Positive_and_Negative_Syndrome_Scale&oldid=699130814
https://en.wikipedia.org/w/index.php?title=Positive_and_Negative_Syndrome_Scale&oldid=699130814
https://en.wikipedia.org/w/index.php?title=Positive_and_Negative_Syndrome_Scale&oldid=699130814
http://es.slideshare.net/fabiofumarola1/9-document-oriented-databases
http://es.slideshare.net/fabiofumarola1/9-document-oriented-databases
https://www.google.com/design/spec/material-design
https://www.google.com/design/spec/material-design
http://www.cdc.gov/dhdsp/pubs/docs/cb_february_14_2012.pdf
http://www.cdc.gov/dhdsp/pubs/docs/cb_february_14_2012.pdf
http://www.justinmind.com/support
http://dx.doi.org/10.1080/10447319509526110

Bibliography

[30] MongoDB. Document Databases. URL https://www.mongodb.com/

document-databases.

[31] Tim A. Majchrzak Oliver Schmitt. Using Document-Based Databases for Medical
Information Systems in Unreliable Environments. 2012.

[32] Pablo Moreno Ger, Guillermo Jiménez Díaz, Antonio Sánchez Ruiz-Granados.
Apuntes de la asignatura Desarrollo de Sistemas Interactivos. 2015/2016.

[33] Simón J. Rascovsky, Jorge A. Delgado, Alexander Sanz, Víctor D. Calvo, and
Gabriel Castrillón. Informatics in Radiology: Use of CouchDB for Document-
based Storage of DICOM Objects. RadioGraphics, 32(3):913�927, May 2012. ISSN
0271-5333. doi: 10.1148/rg.323115049. URL http://pubs.rsna.org/doi/abs/

10.1148/rg.323115049.

[34] Pramod J. Sadalage and Martin Fowler. NoSQL Distilled: A Brief Guide to the
Emerging World of Polyglot Persistence. Addison-Wesley, August 2012. ISBN
978-0-13-303612-1.

[35] Ra�ael Vogler. MongoDB � State of the R, November 2014. URL http://www.

joyofdata.de/blog/mongodb-state-of-the-r-rmongodb/.

[36] Welch Labs. Neural Networks Demysti�ed. URL https://www.youtube.com/

watch?v=bxe2T-V8XRs.

73

https://www.mongodb.com/document-databases
https://www.mongodb.com/document-databases
http://pubs.rsna.org/doi/abs/10.1148/rg.323115049
http://pubs.rsna.org/doi/abs/10.1148/rg.323115049
http://www.joyofdata.de/blog/mongodb-state-of-the-r-rmongodb/
http://www.joyofdata.de/blog/mongodb-state-of-the-r-rmongodb/
https://www.youtube.com/watch?v=bxe2T-V8XRs
https://www.youtube.com/watch?v=bxe2T-V8XRs

Appendix: MongoDB con�guration

�le

Those are the �le mongod.cfg used for MongoDB con�guration in both Windows
and Debian. Be careful to use spaces and not tabs or it will not work.

Windows

systemLog:

destination: file

path: c:\data\log\mongod.log

storage:

dbPath: c:\data\db

security:

authorization: enabled

Debian

mongod.conf

for documentation of all options , see:

http :// docs.mongodb.org/manual/reference/configuration -options/

where to write logging data.

systemLog:

destination: file

logAppend: true

path: /var/log/mongodb/mongod.log

Where and how to store data.

storage:

dbPath: /var/lib/mongo

journal:

enabled: true

75

Appendix: MongoDB con�guration �le

#processManagement:

network interfaces

net:

port: 8080

#security:

#operationProfiling:

#replication:

#sharding:

Enterprise -Only Options

#auditLog:

#snmp:

76

Appendix: Actigraph data

This appendix contain the �rst 99 lines of the .bin generated by the GENEActive
actigraph which is wearing one of the patients without any processing. Some lines are
too long and do not include usefull information for my project and I have shorted
them indicating it with [...].

Device Identity

Device Unique Serial Code :029874

Device Type:GENEActiv

Device Model :1.1

Device Firmware Version:Ver4 .08a date14Jul14

Calibration Date :2015 -05 -27 10:19:14:000

Device Capabilities

Accelerometer Range:-8 to 8

Accelerometer Resolution :0.0039

Accelerometer Units:g

Light Meter Range:0 to 5000

Light Meter Resolution :5

Light Meter Units:lux

Temperature Sensor Range:0 to 70

Temperature Sensor Resolution :0.1

Temperature Sensor Units:deg. C

Configuration Info

Measurement Frequency :10 Hz

Measurement Period :1440 Hours

Start Time :2016 -03 -04 17:14:33:000

Time Zone:GMT +01:00

Trial Info

Study Centre:CNSDLP

Study Code:

Investigator ID:

Exercise Type:

Config Operator ID:DUP

Config Time :2016 -03 -04 15:55:35:410

Config Notes:Notes

77

Appendix: Actigraph data

Extract Operator ID:

Extract Time :2016 -04 -01 16:13:26:657

Extract Notes :(device clock drift -3.553 ,657s)

Subject Info

Device Location Code:left wrist

Subject Code:ALPA

Date of Birth :1900 -1-1

Sex:female

Height:

Weight:

Handedness Code:

Subject Notes:

Calibration Data

x gain :25304

x offset :-168

y gain :25343

y offset :-663

z gain :25114

z offset :-313

Volts :54

Lux :989

Memory Status

Number of Pages :535

Recorded Data

Device Unique Serial Code :029874

Sequence Number :0

Page Time :2016 -03 -04 17:14:38:000

Unassigned:

Temperature :36.7

Battery voltage :4.1493

Device Status:Recording

Measurement Frequency :10.0

06000 BF2F040073009F2A040072001F25040077006F2904407F00BF [...]

Recorded Data

Device Unique Serial Code :029874

Sequence Number :1

Page Time :2016 -03 -04 17:15:08:000

Unassigned:

Temperature :35.9

Battery voltage :4.1493

Device Status:Recording

78

Measurement Frequency :10.0

EE6FB9FCE000F24FABFCF000EF9FD2FDA000F1D01EFFB000F120140 [...]

Recorded Data

Device Unique Serial Code :029874

Sequence Number :2

Page Time :2016 -03 -04 17:15:38:000

Unassigned:

Temperature :35.4

Battery voltage :4.1493

Device Status:Recording

Measurement Frequency :10.0

FB0F00FEA000FABF07FE4000FA6EF9031000FACF0AFE8000FAAF17F [...]

Recorded Data

Device Unique Serial Code :029874

Sequence Number :3

Page Time :2016 -03 -04 17:16:08:000

Unassigned:

Temperature :35.1

Battery voltage :4.1493

Device Status:Recording

Measurement Frequency :10.0

F87EDEFC7000F5CEB3FED000F41F2AFE9000F43F54FE3000F2EF33F [...]

79

Appendix: Creation of users and

roles

This appendix includes the commands needed to create, �nd and delete the users
with the roles explained in 2.3.2.2.

To create the roles:

use bipolarDatabase

db.createRole(

{

role: "mobile",

privileges:

[

{

resource:

{

db: "bipolarDatabase",

collection: "users"

},

actions: ["find", "update", "insert"]

},

{

resource:

{

db: "bipolarDatabase",

collection: "mobileTests"

},

actions: ["find", "update", "insert"]

},

{

resource:

{

db: "bipolarDatabase",

collection: "comments"

},

81

Appendix: Creation of users and roles

actions: ["find"]

}

],

roles: []

},

{ w: "majority" , wtimeout: 3000 }

)

db.createRole(

{

role: "actigraph",

privileges:

[

{

resource:

{

db: "bipolarDatabase",

collection: "actigraphData"

},

actions: ["insert"]

}

],

roles: []

},

{ w: "majority" , wtimeout: 3000 }

)

db.createRole(

{

role: "web",

privileges:

[

{

resource:

{

db: "bipolarDatabase",

collection: "users"

},

actions: ["find", "update", "insert"] },

{

resource:

{

db: "bipolarDatabase",

collection: "comments"

},

82

actions: ["find", "update", "insert", "remove"]

},

{

resource:

{

db: "bipolarDatabase",

collection: "records"

},

actions: ["find", "update", "insert"]

},

{

resource:

{

db: "bipolarDatabase",

collection: "analysis"

},

actions: ["find"]

}

],

roles: []

},

{ w: "majority" , wtimeout: 3000 }

)

db.createRole(

{

role: "analysis",

privileges:

[

{

resource:

{

db: "bipolarDatabase",

collection: "users"

},

actions: ["find"]

},

{

resource:

{

db: "bipolarDatabase",

collection: "mobileTests"

},

actions: ["find"]

},

83

Appendix: Creation of users and roles

{

resource:

{

db: "bipolarDatabase",

collection: "comments"

},

actions: ["find"]

},

{

resource:

{

db: "bipolarDatabase",

collection: "records"

},

actions: ["find"]

},

{

resource:

{

db: "bipolarDatabase",

collection: "analysis"

},

actions: ["find", "update", "insert"]

}

],

roles: []

},

{ w: "majority" , wtimeout: 3000 }

)

To see the roles:

db.getRoles ()

To remove all roles from the database:

db.runCommand(

{ dropAllRolesFromDatabase: 1,

writeConcern: { w: "majority" }

}

)

84

To create the users:

db.createUser({ "user" : "androidUser",

"pwd": "password",

"roles" : ["mobile"] }

)

db.createUser({ "user" : "actigraphUser",

"pwd": "password2",

"roles" : ["mobile"] }

)

db.createUser({ "user" : "webUser",

"pwd": "password3",

"roles" : ["mobile"] }

)

db.createUser({ "user" : "analyst",

"pwd": "password4",

"roles" : ["analysis"] }

)

db.createUser({ "user" : "admin",

"pwd": "password5",

"roles" : ["dbOwner"] }

)

To see the users:

db.getUsers ()

To eliminate a user (for example androidUser):

db.dropUser("androidUser")

To remove all user from the database:

db.runCommand(

{ dropAllUsersFromDatabase: 1,

85

Appendix: Creation of users and roles

writeConcern: { w: "majority" }

}

)

86

Appendix: Prototypes images

The following images of the di�erent prototypes (2 or 3 captures of every prototype,
except for the last one, for which 6 captures are shown) pretend to underline the main
di�erence between every prototype and to make easy to understand the process
followed to prototype. You can read more about the prototyping in section 3.2.2.1.

Figure 1: Fist prototype

87

Appendix: Prototypes images

Figure 2: Second prototype

Figure 3: Third prototype

88

Figure 4: Fourth prototype

Figure 5: Fifth prototype

89

Appendix: Prototypes images

Figure 6: Sixth prototype

Figure 7: Seventh prototype

90

Figure 8: Eight prototype

Figure 9: Ninth prototype

91

Appendix: Prototypes images

Figure 10: Tenth prototype

92

Figure 11: Final prototype

93

Appendix: Screenshots of the �nal

application

Elephone P3000S with Android 4.4.2

In this section you can see how the application looks in my Elephone P3000S with
Android 4.4.2.

95

Appendix: Screenshots of the �nal application

96

Nexus 4 with Android 6.0.1

In this section you can see how the application looks in the Nexus 4 with Android
6.0.1, a newer version which uses Material Design.

97

Appendix: Screenshots of the �nal application

98

Appendix: Usability testing

questionnaire

The questionnaire I used for the usability testing is based on the PSSUQ. More
information about this questionnaire can be found at [29]. The questions of my
questionnaire, which was in Spanish as users where native Spanish speakers, were:

1. En general, estoy contento con lo fácil que resulta usar la applicación.

1 2 3 4 5 6 7

Comentarios:

2. Usar la aplicación es sencillo.

1 2 3 4 5 6 7

Comentarios:

3. Puedo proporcionar información sobre mi estado afectivo de forma efectiva con
esta aplicación.

1 2 3 4 5 6 7

Comentarios:

4. Puedo proporcionar información sobre mi estado afectivo rápido con esta
aplicación.

1 2 3 4 5 6 7

Comentarios:

5. Puedo proporcionar información sobre mi estado afectivo de forma e�ciente con
esta aplicación.

1 2 3 4 5 6 7

Comentarios:

6. Me siento cómodo usando la aplicación.

1 2 3 4 5 6 7

Comentarios:

7. Es fácil aprender a usar la aplicación.

1 2 3 4 5 6 7

99

Appendix: Usability testing questionnaire

Comentarios:

8. Creo que podré hacer uso de la aplicación de forma productiva en un corto periodo
de tiempo.

1 2 3 4 5 6 7

Comentarios:

9. Los mensajes de error que aparecen en la aplicación me indican de forma clara
como solucionar los problemas.

1 2 3 4 5 6 7

Comentarios:

10. Cuando comento un error usando la aplicación, es fácil y rápido recuperarse de
él.

1 2 3 4 5 6 7

Comentarios:

11. La información proporcionada en la aplicación es clara.

1 2 3 4 5 6 7

Comentarios:

12. Es fácil encontrar la información que necesito.

1 2 3 4 5 6 7

Comentarios:

13. La información proporcionada en la aplicación es fácil de entender.

1 2 3 4 5 6 7

Comentarios:

14. La información proporcionada me ayuda a proporcionar información sobre mi
estado afectivo.

1 2 3 4 5 6 7

Comentarios:

15. La forma de organizar la información en las pantallas de la aplicación es clara.

1 2 3 4 5 6 7

Comentarios:

16. La interfaz de la aplicación es agradable.

1 2 3 4 5 6 7

Comentarios:

100

17. Me gusta utilizar la interfaz de la aplicación.

1 2 3 4 5 6 7

Comentarios:

18. La aplicación tiene todas las caracteristicas y opciones que esperaba que tuviese.

1 2 3 4 5 6 7

Comentarios:

19. En general, estoy satisfecho con la aplicación.

1 2 3 4 5 6 7

Comentarios:

Answered questionnaires

The users answers were the followings.

101

Appendix: Usability testing questionnaire

User 1

102

103

Appendix: Usability testing questionnaire

104

User 2

105

Appendix: Usability testing questionnaire

106

107

Appendix: Usability testing questionnaire

User 3

108

109

Appendix: Usability testing questionnaire

110

	List of figures
	List of tables
	Abstract
	Keywords
	Introduction
	Objectives
	Antecedents
	Work plan
	State of the art
	NoSQL databases
	Key-value databases
	Document-based databases
	Conclusion

	Streaming processing with Spark

	Contents
	Neural networks

	MongoDB database
	Features
	Queries
	Transactions
	Availability
	Consistency
	Scaling

	Learning MongoDB
	Database for the project
	Installation and configuration
	Development
	Production
	Authentication

	Design
	Colletions
	Users and roles
	Indices

	Queries

	Integration

	Android
	Learning Android
	Application to collect medical data
	Specification
	Final specification

	Design
	Prototyping
	Design principles

	Implementation
	Android versions
	Material design
	Documentation
	Classes
	Manifest
	Main challenges encountered during the development
	Final application and testing

	Usability testing
	Preparation of the usability testing
	Testing sessions
	Analysis and recommendations

	Future changes

	Contributions
	Github
	Stack Overflow

	Conclusion
	Acronyms
	Glossary
	Bibliography
	Appendix: MongoDB configuration file
	Appendix: Actigraph data
	Appendix: Creation of users and roles
	Appendix: Prototypes images
	Appendix: Screenshots of the final application
	Appendix: Usability testing questionnaire

