

UBORA: Euro-African Open Biomedical Engineering e-Platform for Innovation through Education

# Systematic development of medical devices following the CDIO methodology

Andrés Díaz Lantada adiaz@etsii.upm.es

3<sup>rd</sup> - 7<sup>th</sup> September 2018

UBORA Design School 2018 - Pisa

Andrés Díaz Lantada





### What makes us engineers?

### UN Sustainable Development Global Goals



- Collection of 17 Goals set by the United Nations Development Programme.
  - Transforming our World: The 2030 Agenda.
  - 17 Goals, 169 targets and 304 indicators to measure compliance.



**FI OPMFI** 

# **UBORA and the Global Goals**



#### **UBORA pursues:**

- Equitable access to healthcare technologies.
- Involvement of end users in medical technology development.
- Innovation through education and shared knowledge.
- International collaboration in the biomedical field.







### **General Index**



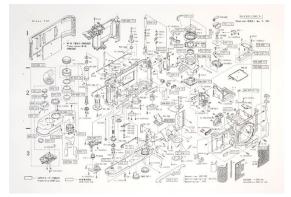
- 1. The CDIO approach
- 2. Conceive
- 3. Design
- 4. Implement
- 5. Operate

### 6. Conclusions and references

# 1. The CDIO approach



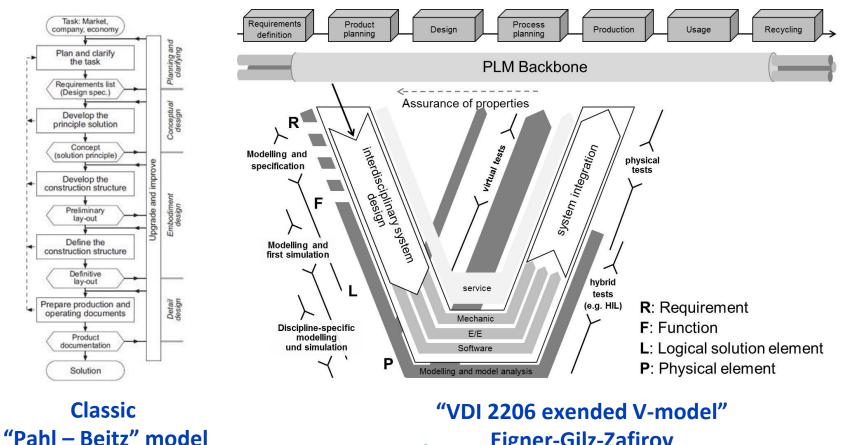
### 1.1. The CDIO product development approach


- Systematic product development:
  - Minimizes errors and costs
  - Improves time to market
  - Promotes creative problem solving
  - Constitutes a new educational model
  - Enables engineering very complex systems...
  - ... In a <u>reliable and efficient</u> way



Complex engineering systems: From toys to machines




http://cdio.org/



Nikon diagram source: Japan Camera Hunter

# 1. The CDIO approach





CONCEIVE DESIGN IMPLEMENT OPERATE"

**Eigner-Gilz-Zafirov** 

#### 3<sup>rd</sup> - 7<sup>th</sup> September 2018

UBORA Design School 2018 - Pisa

Find a relevant need.

**C.I.Product planning & specs.** 

**2.1.** Conceive: Product planning & Conceptual design

- Study existing solutions.

2. Conceive

- Select an objective market.
- Analyze economical viability.
- Analyze related regulations.
- Define objective price & cost.
- Define technical specifications.
- Interacting with main agents!

### **C.II.Conceptual design**

- Define main function.
- Describe subfunctions.
- Establish functional structure.
- Analyze solving principles.
- Generate product ideas.
- Evaluate product ideas...
- ... then, you have the concept.
- Eventually protect IP!

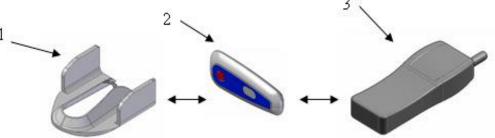
8



### 2. Conceive



### 2.2. Conceive: Application case ("bruxholter" device)


The need: Bruxism, an oral parafunctional activity consisting of excessive teeth grinding or jaw clenching. Limitations in current diagnostic and monitoring processes.



Bruxist jaw source: Broxogard TM



The proposed device: System for detecting teeth grinding, assessing the episode, storing the information and eventually alerting the patient and doctor.



#### From the need to the specifications $\rightarrow$ ... $\rightarrow$ From the specifications to the concept

Application example: Systematic development of a biomedical device for measuring bite force Source: Part of PhD Thesis by Andrés Díaz Lantada on "Development of medical devices based on smart polymers".





### 3.1. Design: Basic engineering and optimization

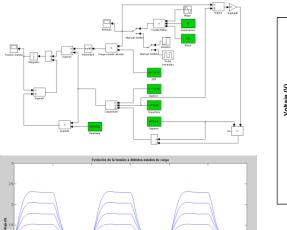
- Design basic geometries (CAD programmes and existing space).
- Optimize considering geometries-materials-processes (simulations).
- Design and model subsystems and subdomains.
- Select commercial elements and off-the-shelf components.
- Integration between domains: Mechanical, electrical, thermal, fluidical.
- Perform preliminary testing of subsystems.
- Revise economical & technical viability.
- Revise fulfillment of specifications.
- Continue involving patients and their families, as well as medical professionals during the whole development process.

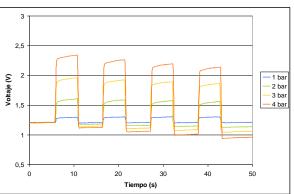
#### 3<sup>rd</sup> - 7<sup>th</sup> September 2018

#### 11

#### From the concept to the design

Application example: Systematic development of a biomedical device for measuring bite force Source: Part of PhD Thesis by Andrés Díaz Lantada on "Development of medical devices based on smart polymers".


**3.2.** Design: Application case ("bruxholter" device)


Materials selection,

definition of geometries,

preliminary tests

### Modeling subsystems and subdomains, validating the models with support of characterization tasks





**Revising technical and** 

economical viability...



# 3. Design

## 4. Implement

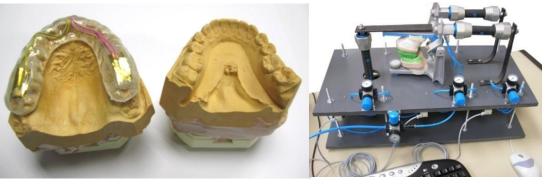


### 4.1. Implement: Prototyping and testing

- Adapt design to prototyping processes.
- Analyze mounting and joining of subsystems.
- Perform controlled technical trials (i.e. in vitro).
- Perform advanced tests (i.e. in vivo / first test clients).
- Validate modeling approaches and their use for optimization.
- Revise economical & technical viability.
- Revise fulfillment of specifications.
- Redesign as needed and prototype again.
- Validate before approaching production.
- Find the right support towards device validation (i.e. well-equipped animal testing facilities and operating rooms with adequate professionals).

### 4. Implement




### 4.2. Implement: Application case ("bruxholter" device)

Prototyping and testing: Exhaustive in vitro tests before approaching in vivo trials

### Pre-production validations



#### Ad hoc test benches + standardized procedures



#### From the design to the prototype

Application example: Systematic development of a biomedical device for measuring bite force Source: Part of PhD Thesis by Andrés Díaz Lantada on "Development of medical devices based on smart polymers".

# 5. Operate



### 5.1. Operate: Production and products' life

- Fine-tune design to final production processes
- Interact with suppliers and define joint strategy
- Generate technical documentation (mounting, joining, operation...)
- Generate regulatory-related documents for pre-production marking
- Define the warranty strategy
- Accomplish short runs and final production series
- Reach the final customers supported by the marketing strategy
- Manage and continuously adjust the supply chain
- Manage and continuously adjust maintenance plans and end of life
- Rely on the support of experienced professionals towards device commercialization.

#### UBORA Design School 2018 - Pisa

Application example: Systematic development of a biomedical device for measuring bite force Source: Part of PhD Thesis by Andrés Díaz Lantada on "Development of medical devices based on smart polymers".

### 5.2. Operate: Application case ("bruxholter" device)

Extensive documentation of trials and systematic evaluation of effectivity and performance

Labelling for commercialization (depending on medical device class → self-certified (for very low risk devices) or externally assessed.

#### From the prototype to the product

CE

Dental clinic image source: Ezzo.ro







# 6. Conclusions and references



#### **Main conclusions**

- → Systematic product / process development methodologies, including the CDIO process, help to promote innovation, while keeping reliable along the development process.
- → Innovating medical devices means continuously interacting with patients, patient associations and medical professionals along the whole product development process.
- → Typically, relevant and successful devices place medical needs first and then develop the adequate technology for solving the need in more efficient or effective ways.
- → Engineering design methodologies adapted to the medical field help to minimize errors and promote an straightforward approach to the final solution.

# 6. Conclusions and references



#### Some references and websites

- $\rightarrow$  EU Regulation on Medical Devices (MDR 2017/745).
- → Díaz Lantada, A. (2013). Handbook on Advanced Design and Manufacturing Technologies for Biomedical Devices. Springer.
- → Pahl, G.; Beitz, W.; Feldhusen, J.; Grote, K.H. (2007, 3rd ed.). Engineering Design: A systematic approach. Springer.
- → Yock, Zenios, et al. (2015). Biodesign: The Process of Innovating Medical Technologies. Cambridge University Press.

#### → http://ubora-biomedical.org

→ http://www.cdio.org (Worldwide CDIO Initiative)

### Thanks for your attention



UBORA: Euro-African Open Biomedical Engineering e-Platform for Innovation through Education

Andrés Díaz Lantada adiaz@etsii.upm.es

*This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No* 731053

