Systems Biology

(2) Networks: Representation \& static analysis

David Gilbert

Bioinformatics Research Centre

www.brc.dcs.gla.ac.uk

Department of Computing Science, University of Glasgow

Module outline

- 'Putting it all together’ - Systems Biology
- Motivation
- Biological background
- Modelling
- Network Models
- Data models
- Analysis:
- Static
- Dynamic
- Standardisation (sbml \& sbw)
- Technologies
- Current approaches
- Systems robustness
(c) David Gilbert, 2008

Admin

- Term 2; 2006-2007 Fri 23/2, Mon 26/2, Wed 28/2, Fri $2 / 3$
- Lectures: 10.30-12.00, A230 Joseph Black
- Labs: 13.00-15.00, 101 Davidson
- Module information, resources \& reading list: www.brc.dcs.gla.ac.uk/~drg/courses/sysbiomres
- Assessment: 1 Coursework + Exam question
- Summer project - optional
- Course staff
- Lecturer: Professor David Gilbert
- Demonstrator: Ms Xu Gu
- Additional: www.brc.dcs.gla.ac.uk/seminars (Fridays 11-12, BRC)

Note: Text-mining lecture

- 'Text-mining for Bioinformatics \& Systems Biology', lecturer: Tamara Polajnar
- Part of the 'Bioinformatics' module in Computing Science www.brc.dcs.gla.ac.uk/~drg/courses/bioinformaticsHM
- Tuesday 27/2, 9-10 Modern Languages Room 208
- Plus possible lab: 10-11

Resources

- DRG's handouts
- www.brc.dcs.gla.ac.uk/~drg/bioinformatics/resources.html
- www.ebi.ac.uk/2can
- Bioinformatics educational resource at the EBI
- International Society for Computational Biology: www.iscb.org
- very good rates for students, and you get on-line access to the Journal of Bioinformatics.
- Broder S, Venter J C, Whole genomes: the foundation of new biology and medicine, Curr Opin Biotechnol. 2000 Dec;11(6):581-5.
- Kitano H. Looking beyond the details: a rise in system-oriented approaches in genetics and molecular biology. Curr Genet. 2002 Apr;41(1):1-10.
- Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network motifs: simple building blocks of complex networks. Science. 2002 Oct 25;298(5594):824-7.
- Yuri Lazebnick. Can a biologist fix a radio? - Or, What I learned while studying Apoptosis. Cancer Cell september 2002 vol 2 179-182.
- Post Genome Informatics Kanehisa. Publisher OUP. Year 2000. Isbn 0198503261. Category background

Lecture outline

- Data models for Networks, pathways
- Sets
- Graphs
- Analysis
- Some algorithms over graphs
- Paths, circuits, searching
- Network motifs
- Network properties
(c) David Gilbert, 2008

Motivation

- We need to model aspects of an organism in order to be able to analyse its behaviour and function.
- In systems biology we are interested in the way in which biological components are composed so that they interact together in some way.
- Often the way in which a network of interactions can be modelled is by a graph.
- We can then use techniques from graph theory to analyse some features and properties of these networks.
- We will also often need to visualise these networks somehow.
- We will also need to store the biological data in a database whose schema may be interpreted as a graph.

Terminology: Pathways or Networks?

- Pathways implies 'paths' - sequences of objects
- Networks - more complex connectivity
- Both are represented by graphs
- Networks: generic; Pathways: specific (?)
- 'Signal transduction networks’
- 'The ERK signal transduction pathway’

Networks

- Gene regulation

- Protein-protein interaction

- Developmental
- Signalling

(c) David Gilbert, 2008

Networks, graphs

This pathway looks nice and linear, but it is embedded in a network...

... is regulated by protein:protein interactions

(c) David Gilbert, 2008

Networks, graphs

What can we analyse?

Pathway templates \& variations \rightarrow general biochemical pathways, \rightarrow animals, \rightarrow higher plants, \rightarrow unicellular organisms

(c) David Gilbert, 2008

Networks, graphs

Pathway orthologues

Escherichia coli K-12 MG1655

Fly

Yeast

Human

Alternative Pathways

- Genome evolution
- compare with known genome
- infer for unknown genome
- Find missing enzymes
- Biotechnology
- identification of alternative enzymes
- identification of alternative pathways
- identification of alternative substrates
- identification of alternative products
- Pharmacology
- non-homologous gene displacement
- species-specific drug targets
- Identification of previously unknown genes

Network features (motifs)

A Amino Acids

- Carbohydrates
\diamond Proteins
0 Purines
- Pyrimidines

T tRNAs

- Other
- (Filled) Phosphorylated
E.coli metabolic map

EcoCyc

http://ecocyc.org/

Network characteristics

Protein-protein interaction

Reactions and compounds as graphs

Slide from Jacques van Helden

What do network representations have in common?

- They consist of objects connected by lines or arrows
- The objects can be molecules, reaction labels,...
- Mathematically they can be modelled as graphs

Some notation: set theory

- A set is any collection of distinct objects $\{,,$,

Fruit = \{apple, pear, orange, tomato $\}$
Veg $=\{$ carrot, potato, tomato $\}$

- Member: object \in set

Apple \in Fruit , Apple \notin Veg, $X \in$ Fruit and $X \in$ Veg?

- Set equality: $A=B$
\{carrot, potato, tomato $\}=\{$ tomato, carrot, potato $\}$
- Subset: $A \subset B, A \subseteq B$
\{potato\} \subset Veg
\{tomato, carrot, potato $\} \subseteq$ Veg
\{tomato, carrot\} \subseteq Veg
- Intersection: $\mathrm{A} \cap \mathrm{B}$, (objects in common)
- Union: A \cup B (all objects)

Veg \cap Fruit =
Veg \cup Fruit =

- Set subtraction: $\mathrm{A} \backslash \mathrm{B}, \mathrm{A}-\mathrm{B}$

Fruit - C = \{apple, pear, orange\}

- Size (cardinality): |A|
\mid Fruit $\mid=$? $\quad \mid$ Fruit \cap Veg $\mid=$? , \mid Fruit \cup Veg $\mid=$?
- Empty set, cardinality: $\}$ or \varnothing
$|\varnothing|=$?

Graphs

- A graph G is an ordered pair (V, E)
$\mathrm{V}=$ set of vertices (nodes), $\mathrm{E}=$ set of edges
- Dense graph: $|\mathrm{E}| \approx|\mathrm{V}|^{2}$; Sparse graph: $|\mathrm{E}| \approx|\mathrm{V}|$
- Undirected graph: edge pairs are unordered edge (u, v) = edge (v, u)
- Directed graph: nodes \& arcs

Arc: i.e. directed edge (u, v) from initial vertex u to terminal vertex v, notation $u \rightarrow v$
Two vertices u, v adjacent if $u \neq v$ and $u \rightarrow v$ or $u \rightarrow v$

- Directed Acyclic Graph (DAG): directed graph with no cycles
- A weighted graph associates weights with either the edges or the vertices
- Input (output) degree of a node: number of input (output) arcs associated with the node
(c) David Gilbert, 2008

Graph Theory (simple!)

$$
\begin{aligned}
& \text { Graph }=(\mathrm{V}, \mathrm{~A}) \\
& \mathrm{V}=\{1,2,3,4,5\} \\
& \mathrm{A}=\{1 \rightarrow 2,2 \rightarrow 3,3 \rightarrow 2,3 \rightarrow 1,1 \rightarrow 4,1 \rightarrow 1\}
\end{aligned}
$$

Optionally label vertices \& arcs

Graph $=(\mathrm{V}, \mathrm{A})$
$\mathrm{V}=\{$ cat:1, cat:2, mouse:3, dog:4, rat:5 \}
A $=\{$ loves: $1 \rightarrow 2$, fears: $2 \rightarrow 3$, chases: $3 \rightarrow 2$, fears: $3 \rightarrow 1$, fears: $1 \rightarrow 4$, admires: $1 \rightarrow 1\}$

Pathway analysis

- What are the possible paths from entity A to entity B ?
- How many paths, and of what lengths, lead from A to B ?
- What is the average path distance between entities?
- Find all paths including a given set of entities
- Which genes are affected by a specific compound?
- Which pathways are affected if a given entity is missing or switched off?
- Compare pathways between two organisms or tissues, find common features or missing elements

Paths and Circuits of a Graph

- Path = sequence of arcs

$$
\left(x_{1} \rightarrow x_{2}, x_{2} \rightarrow x_{3}, x_{3} \rightarrow x_{4}, \ldots x_{k-1} \rightarrow x_{k}\right)
$$

- Also can write $\left[x_{1}, x_{2}, x_{3}, \ldots, x_{k}\right]$
- Simple if does not use the same arc twice, else composite
- Elementary if does not use same vertex twice
- Can be finite or infinite
- Circuit $=$ path $\left[x_{1}, x_{2}, x_{3}, \ldots, x_{k}\right]$ where initial vertex $x_{1}=$ terminal vertex x_{k}
- Elementary circuit if all vertices distinct apart from $x_{1}=x_{k}$
- Length of path $\left(x_{1} \rightarrow x_{2}, \ldots x_{k-1} \rightarrow x_{k}\right)$ is K-1
- Loop is circuit length=1, I.e. $\left(x_{1} \rightarrow x_{1}\right)$

Example

Paths - find these!

Circuits - find these!

Circuits \& paths

(c) David Gilbert, 2008

Representing Graphs

- Assume V = $\{1,2, \ldots, n\}$
- An adjacency matrix represents the graph as a $n \times n$ matrix M :
$-\mathrm{M}[i, j]=1$ if edge $(i, j) \in \mathrm{E} \quad$ (or weight of edge) $=0$ if edge $(i, j) \notin \mathrm{E}$
- Storage requirements: $\mathrm{O}\left(\mathrm{V}^{2}\right)$
- A dense representation
- But, can be very efficient for small graphs
- Especially if store just one bit/edge
- Undirected graph: only need one diagonal of matrix

Adjacency matrix - undirected graph

	8	4	2	1
	a	b	c	d
a	0	1	0	1
b				
c				
d				

Binary \Rightarrow Base 10: Compact representation in a computer! ... but what if large number of vertices?

Adjacency matrix - directed graph

Outgoing: 1, Incoming: -1

	a	b	c	d
a	0	1	0	-1
b				
c				
d				

How to represent in binary?

Adjacency lists

- Associate each node with list of edges
- Undirected

Vertex : Edges
$a:\{b, d\}$
b: $\{a, c, d\}$
c: \{b\}
$d:\{a, b\}$

- Directed

Ins: Vertex: Outs
\{d\}: a : \{b\}
\{a\}: b: \{c,d\}
\{b\}: c: \{\}
\{b\}: d: \{a\}

Less compact representation in a computer!
... but what if large number of vertices and few edges?

Adjacency matrix - directed graph

Outgoing: 1, Incoming: -1

	a	b	c	d
a	0	1	0	-1
b				
c				
d				

How to represent in binary?

Construct adjacency matrices for

Input \& output degrees

- Compute the input and output degrees for the nodes in

G0

Search strategies

- A search strategy is defined by picking the order of node expansion
- Strategies are evaluated along the following dimensions:
- completeness: does it always find a solution if one exists?
- time complexity: number of nodes generated
- space complexity: maximum number of nodes in memory
- optimality: does it always find a least-cost solution?
- Time and space complexity are measured in terms of
- b: maximum branching factor of the search tree
- d: depth of the least-cost solution
- m: maximum depth of the state space (may be ∞)

Breadth-First Search

- "Explore" a graph, turning it into a tree
- One vertex at a time
- Expand frontier of explored vertices across the breadth of the frontier
- Builds a tree over the graph
- Pick a source vertex to be the root
- Find ("discover") its children, then their children, etc.

Breadth-first search

- Expand shallowest unexpanded node
- Implementation:
- fringe is a FIFO queue, i.e., new successors go at end

Breadth-First Search: Properties

- BFS calculates the shortest-path distance to the source node
- Shortest-path distance $\delta(\mathrm{s}, \mathrm{v})=$ minimum number of edges from s to v, or ∞ if v not reachable from s
- BFS builds breadth-first tree, in which paths to root represent shortest paths in G
- Thus can use BFS to calculate shortest path from one vertex to another in $\mathrm{O}(\mathrm{V}+\mathrm{E})$ time

Properties of breadth-first search

- Complete? Yes (if b is finite)
- Time? $1+b+b^{2}+b^{3}+\ldots+b^{d}+b\left(b^{d}-1\right)=O\left(b^{d+1}\right)$
- Space? $O\left(b^{d+1}\right)$ (keeps every node in memory)
- Optimal? Yes (if cost = 1 per step)
- Space is the bigger problem (more than time)

Depth-first search

- Expand deepest unexpanded node
- Implementation:
- fringe = LIFO queue, i.e., put successors at front

Properties of depth-first search

- Complete? No: fails in infinite-depth spaces, spaces with loops
- Modify to avoid repeated states along path
\rightarrow complete in finite spaces
- Time? $O\left(b^{m}\right)$: terrible if m is much larger than d
- but if solutions are dense, may be much faster than breadth-first
- Space? O(bm), i.e., linear space!
- Optimal? No

Iterative deepening search / =3

Properties of iterative deepening search

- Complete? Yes
- Time? $(d+1) b^{0}+d b^{1}+(d-1) b^{2}+\ldots+b^{d}=$ $O\left(b^{d}\right)$
- Space? O(bd)
- Optimal? Yes, if step cost = 1

Simple path search algorithm

Search path From ... To
Given $G=(V, A)$
Initialise: Path:= [From]
While $($ From \rightarrow Next $) \in A$ and $N e x t \neq$ To
Path := Path + [Next]
From := Next, Next:=NewNext

If $($ From \rightarrow To $) \in A$ then
Path:= Path + [To]
Return Path
Else Return 'Fail'
Depth-first or Breadth-first?

Circuit detection algorithm

- Do this...!

KEGG

- http://www.genome.ad.jp/kegg/ Institute for Chemical Research, Kyoto University (part of the Japanese Human Genome Program).
- Repository of metabolic pathways for organisms whose genome is completely sequenced. Also regulatory information.
- For many of these organisms, the body of experimental data is very restricted. Protein function inferred from sequence similarity with proteins characterised experimentally in other organisms.
- Pathways represented as diagrams, manually created \& stored as static gif files.
- Upon selection of an organism, the reactions for which an enzyme is known in that organism are highlighted in colour in the generic pathway diagrams.

KEGG - search \& compute

- KEGG pathways searched by EC numbers (enzymes), compound numbers, \& by gene accessions.
- Combine search with KEGG grouping or the hierarchical classification. (e.g. EC numbers from a specific group in the superfamily table (or SCOP table) \& searching against pathway diagrams.
- Search KEGG pathways by sequence similarity. (identify orthologs \& reconstruct pathways from the gene catalog).
- Given list of enzymes, automatically generate the organism specific pathways by marking the matching enzymes on the diagram. Missing elements imply either gene catalog wrong or unknown reaction pathway utilizing different enzymes in the catalog.
- Compute pathways from a given list of enzymes. Deduction from binary relations of substrates and products with optional use of query relaxation for functional hierarchies.

KEGG Query \& result

Pathway Search Result

- map00271 Methionine metabolism
-EC 2.1.1.13
-EC 2.3.1.46
-EC 2.5.1.6
-EC 4.4.1.8
- map00260 Glycine, serine and threonine metabolism
- map00300 Lysine biosynthesis
- map00450 Selenoamino acid metabolism
- map00920 Sulfur metabolism
- map00272 Cysteine metabolism
- map00670 One carbon pool by folate
- map00910 Nitrogen metabolism

Query $=$
2.7.2.4
1.2.1.11
1.1.1.3
2.3.1.46
4.2.99.9
4.4.1.8
2.1.1.13
2.5.1.6
map00271
Methionine
metabolism
http://www.genome.ad.jp/kegg-bin/mk_point_html?ec

KEGG Query \& result

Query $=$
2.7 .2 .4
1.2 .1 .11
1.1 .1 .3
2.3 .1 .46
4.2 .99 .9
4.4 .1 .8
2.1 .1 .13
2.5 .1 .6
map00271
Methionine
metabolism
http://www.genome.ad.jp/kegg-bin/mk_point_html?ec
(c) David Gilbert, 2008

Networks, graphs

Pathway Hunter Tool

- Metabolic pathway analysis web service (Pathway Hunter Tool at CUBIC). S. A. Rahman , P. Advani , R. Schunk, R. Schrader and Dietmar Schomburg. Bioinformatics 2005 21(7):1189-1193
- Motivation: Pathway Hunter Tool (PHT), is a fast, robust and user-friendly tool to analyse the shortest paths in metabolic pathways. The user can perform shortest path analysis for one or more organisms or can build virtual organisms (networks) using enzymes. Using PHT, the user can also calculate the average shortest path, average alternate path and the top 10 hubs in the metabolic network. The comparative study of metabolic connectivity and observing the cross talk between metabolic pathways among various sequenced genomes is possible.
- Results: A new algorithm for finding the biochemically valid connectivity between metabolites in a metabolic network was developed and implemented. A predefined manual assignment of side metabolites (like ATP, ADP, water, CO2 etc.) and main metabolites is not necessary as the new concept uses chemical structure information (global and local similarity) between metabolites for identification of the shortest path.
- Availability: PHT is accessible at http://www.pht.uni-koeln.de

A scheme for representing metabolic and regulatory networks

- Slides from Jacques van Helden

Chemical Reaction

Set of Biochemical Entities (substrates) -o [Reaction] ->
Set of Biochemical Entities (products)
1.5.1.2 EC (reaction) number compound

Enzymatic catalysis

Protein (enzyme)
-o [Catalyses] ->
Reaction

1.5.1.2

compound

Enzymatic catalysis

Multifunctional enzyme

Aspartate kinase II homoserine Dehydrogenase

Isofunctional enzymes

Aspartate kinase I

Inhibition/Activation

Biochemical Entity

-o [Inbibits] ->
Reaction Catalysis
Slide from Jacques van Helden

1.5.1.2 EC (reaction) number compound

Gene expression

-o [Expression] ->
Protein
Slide from Jacques van Helden

1.5.1.2 EC (reaction) number compound

Metabolic Step

Metabolic Pathway: Proline Biosynthesis

Slide from Jacques van Helden

Transcriptional Regulation

Transcriptional repression (down-regulation)

Protein
-o [down-regulates] ->
expression

Transcriptional activation (up-regulation)

Protein
-o [up-regulates] ->
expression
Slide from Jacques van Helden

Methionine Biosynthesis in E.coli

Slide from Jacques van Helden

Methionine Biosynthesis in S.cerevisiae

Slide from Jacques van Helden

Alternative methionine pathways

Shortcut Representation

Slide from Jacques van Helden

High-level Abstraction

Slide from Jacques van Helden

Queries - subgraph extraction

A. Seed reactions

C. Subgraph extraction

Slide from Jacques van Helden
(c) David Gilbert, 2008

Pathway Building: semi-automated annotation

Semi-automated
Annotation

Slide from Jacques van Helden

Pathway builder program

Slide from Jacques van Helden
(c) David Gilbert, 2008

Metabolic pathway: Query on EC numbers:

E.coli, methionine biosynthesis

2.7.2.4
1.2.1.11
1.1.1.3
2.3.1.46
4.2.99.9
4.4.1.8
2.1.1.13
2.5.1.6
(c) David Gilbert, 2008

Further graph operations

- Sub-graph matching
- Pattern (graph motif) matching
- Pattern discovery
- common motif repeated in 1 graph or
- across many graphs
- Graph comparison

What are the uses?

Network motifs

- Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network motifs: simple building blocks of complex networks. Science. 2002 Oct 25;298(5594):824-7.

(c) David Gilbert, 2008

(c) David Gilbert, 2008

Networks, graphs

Databases, data structures

- Adjacency matrix
- Relational Database models
- ?Can you construct a simple database?

Visualisation of pathways

Summary

- Data models for Networks, pathways
- (Sets)
- (Trees)
- Graphs
- Paths, circuits, searching
- Breadth-first search
- Depth-first search
- Analysis
- Some algorithms over graphs

Scale-free networks

- Using a Web crawler, physicist Albert-Laszlo Barabasi and his colleagues at the University of Notre Dame in Indiana, USA, in 1999 mapped the connectedness of the Web. To their surprise, the web did not have an even distribution of connectivity (so-called "random connectivity").
- Instead, a very few network nodes (called "hubs") were far more connected than other nodes.
- In general, they found that the probability $p(k)$ that a node in the network connects with k other nodes was, in a given network, proportional to $k-\gamma$.
- The degree exponent γ is not universal and depends on the detail of network structure. Numerical values of the exponent γ for various systems are diverse but most of them are in the range $2<y \leq 3$.
- At the same time a similar observation was obtained to the Internet by the Faloutsos brothers (1999). In this form, essentially all graphs with a power law degree distribution were grouped together as "scale-free". Several revisions of this definition have been suggested.
[Wikipedia]

Nodes: WWW documents

 Links: URL linksOver 1 billion documents 101: collects all URL's found in a document and follows them recursively

$\underset{\text { BRe }}{\mathrm{R} \text { R. Albert, H. Jeong \& A.-L. Barabasi, Nature, }}$
1999) David Gilbert, 2008

Networks, graphs

Stefan Wuchty www.nd.edu/~swuchty/Download/pisa.pp

Scale-free networks

- Tend to contain centrally located and interconnected high degree "hubs", which dramatically influences the way a network operates.
- For example, random node failures have very little effect on a scale-free network's connectivity or effectiveness
- Deliberate attacks on such a network's hubs can dismantle a network with alarming ease. Thus, the realization that certain networks are scale-free is important to security.
- SCF also exhibit the Small world phenomenon: two average nodes are separated by a very small number of connections.
-
- Also, scale-free networks generally have high clustering coefficients.
- A multitude of real-world networks have been shown to be scale-free, including:
- Social networks, including collaboration networks. An example that have been studied extensively is the collaboration of movie actors in films.
- Protein-Protein interaction networks.
- Sexual partners in humans, which affects the dispersal of sexually transmitted diseases.
- Many kinds of computer networks, including the World Wide Web.
[Wikipedia]
(c) David Gilbert, 2008

Networks, graphs

Stefan Wuchty

Metabolic network

www.nd.edu/~swuchty/Download/pisa.ppt

Archaea

Bacteria

Eukaryotes

Organisms from all three domains of life are scale-free networks!
H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, and A.L. Barabasi, Nature, 2000

Yeast protein network

Nodes: proteins

Links: physical interactions (binding)

Yeast protein network

- lethality and topological position -

Highly connected proteins are more essential (lethal)...
H. Jeong, S.P. Mason, A.-L. Barabasi \&Z.N. Oltvai, Nature, 2001

Modular vs. Scale-free Topology

(a)

Scale-free

(b)

Modular

(c) David Gilbert, 2008

Real Networks Have a Hierarchical Topology

What does it mean?

Many highly connected small clusters combine into
few larger but less connected clusters combine into even larger and even less connected clusters
$>$ The degree of clustering follows:

$$
C(k) \sim k^{-\beta}
$$

(c) David Gilbert, 2008

Networks, graphs
Stefan Wuchty
www.nd.edu/~swuchty/Download/pisa.pp

Modules in the E. coli metabolism

E. Ravasz et al., Science, 2002

Stefan Wuchty
www.nd.edu/~swuchty/Download/pisa.ppt

Origin of scaling in protein interaction

Stefan Wuchty
www.nd.edu/~swuchty/Download/pisa.ppt ILIN

Proteins with more interactions are more likely to get a new link:

$$
\begin{aligned}
& \Pi(k) \sim k \\
& \text { (preferential attachment) } \\
& \text { Vazquez et al., cond-mat/0108043 } \\
& \text { Sole et al., Adv. Compl. Syst., } 2001
\end{aligned}
$$

(c) David Gilbert, 2008

Stefan Wuchty
www.nd.edu/~swuchty/Download/pisa.ppt
Topology and Evolution

$\#$	Motifs	Number of yeast motifs	Natural conservation rate	Random conservation rate	Conservation ratio
1	\bullet	9,266	13.67%	4.63%	2.94
2	$\mathbf{8}$	167,304	4.99%	0.81%	6.15
3	$\boldsymbol{\&}$	3,846	20.51%	1.01%	20.28
4	$\mathbf{8}$	$3,649,591$	0.73%	0.12%	5.87
5	$\mathbf{8 :}$	$1,763,891$	2.64%	0.18%	14.67
6	$: 8$	9,646	6.71%	0.17%	40.44
7	$\mathbf{8}$	164,075	7.67%	0.17%	45.56
8	$\mathbf{8}$	12,423	18.68%	0.12%	157.89
9	$\mathbf{8}$	2,339	32.53%	0.08%	422.78
10	$\%$	25,749	14.77%	0.05%	279.71
11	$\mathbf{8}$	1,433	47.24%	0.02%	$2,256.67$

S. Wuchty, Z. Oltvai \& A.-L. Barabasi, Nature Genetics, 2003
(c) David Gilbert, 2008

Networks, graphs

Stefan Wuchty www.nd.edu/~swuchty/Download/pisa.ppt 1 II 1 ISTM|S

What is the meaning of clustering in other systems (quality measure)?

