

Systems Biology

(2) Networks: Representation & static analysis

David Gilbert Bioinformatics Research Centre www.brc.dcs.gla.ac.uk Department of Computing Science, University of Glasgow

Module outline

- 'Putting it all together' Systems Biology
- Motivation
- Biological background
- Modelling
 - Network Models
 - Data models
- Analysis:
 - Static
 - Dynamic
- Standardisation (sbml & sbw)
- Technologies
- Current approaches
- Systems robustness

Admin

- Term 2; 2006-2007 Fri 23/2, Mon 26/2, Wed 28/2, Fri 2/3
 - Lectures: 10.30-12.00, A230 Joseph Black
 - Labs: 13.00-15.00, 101 Davidson
- Module information, resources & reading list: www.brc.dcs.gla.ac.uk/~drg/courses/sysbiomres
- Assessment: 1 Coursework + Exam question
- Summer project optional
- Course staff
 - Lecturer: Professor David Gilbert
 - Demonstrator: Ms Xu Gu
- Additional: www.brc.dcs.gla.ac.uk/seminars (Fridays 11-12, BRC)

Note: Text-mining lecture

- 'Text-mining for Bioinformatics & Systems Biology', lecturer: Tamara Polajnar
- Part of the 'Bioinformatics' module in Computing Science www.brc.dcs.gla.ac.uk/~drg/courses/bioinformaticsHM
- Tuesday 27/2, 9-10 Modern Languages Room 208
 Plus possible lab: 10-11

Resources

- DRG's handouts
- www.brc.dcs.gla.ac.uk/~drg/bioinformatics/resources.html
- www.ebi.ac.uk/2can
 - Bioinformatics educational resource at the EBI
- International Society for Computational Biology: www.iscb.org
 - very good rates for students, and you get on-line access to the Journal of Bioinformatics.
- Broder S, Venter J C, Whole genomes: the foundation of new biology and medicine, Curr Opin Biotechnol. 2000 Dec;11(6):581-5.
- Kitano H. Looking beyond the details: a rise in system-oriented approaches in genetics and molecular biology. Curr Genet. 2002 Apr;41(1):1-10.
- Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network motifs: simple building blocks of complex networks. Science. 2002 Oct 25;298(5594):824-7.
- Yuri Lazebnick. Can a biologist fix a radio? Or, What I learned while studying Apoptosis. Cancer Cell september 2002 vol 2 179-182.
- Post Genome Informatics Kanehisa. Publisher OUP. Year 2000. Isbn 0198503261. Category background

Lecture outline

- Data models for Networks, pathways
- Sets
- Graphs

- Analysis
 - Some algorithms over graphs
 - Paths, circuits, searching
 - Network motifs
 - Network properties

Motivation

- We need to *model* aspects of an organism in order to be able to *analyse* its behaviour and function.
- In systems biology we are interested in the way in which biological *components* are composed so that they interact together in some way.
- Often the way in which a *network of interactions* can be modelled is by a *graph*.
- We can then use techniques from graph theory to analyse some features and properties of these networks.
- We will also often need to visualise these networks somehow.
- We will also need to store the biological data in a database whose schema may be interpreted as a graph.

Terminology: Pathways or Networks?

- Pathways implies 'paths' sequences of objects
- Networks more complex connectivity
- Both are represented by *graphs*
- Networks: generic; Pathways: specific (?)
 - 'Signal transduction networks'
 - 'The ERK signal transduction pathway'

Networks

Metabolic •

Signalling ٠

Protein-protein interaction •

Developmental ullet

BRC

This pathway looks nice and linear, but it is embedded in a network...

... is regulated by protein: protein interactions

BRC

→ general biochemical pathways, → animals, → higher plants, → unicellular organisms

BRC

13

Pathway orthologues

Escherichia coli K-12 MG1655

Yeast

Human

(c) David Gilbert, 2008

Networks, graphs

Alternative Pathways

- Genome evolution
 - compare with known genome
 - infer for unknown genome
 - Find missing enzymes
- Biotechnology
 - identification of alternative enzymes
 - identification of alternative pathways
 - identification of alternative substrates
 - identification of alternative products
- Pharmacology
 - non-homologous gene displacement
 - species-specific drug targets
- Identification of previously unknown genes

Network features (motifs)

Network characteristics

Protein-protein interaction

Reactions and compounds as graphs

Slide from Jacques van Helden

What do network representations have in common?

- They consist of objects connected by lines or arrows
- The objects can be molecules, reaction labels,...
- Mathematically they can be modelled as graphs

Some notation: set theory

- A set is any collection of *distinct* objects {,,,}
 Fruit = {apple, pear, orange, tomato}
 Veg = {carrot, potato, tomato}
- Member: object ∈ set
 Apple ∈ Fruit , Apple ∉ Veg, X ∈ Fruit and X ∈ Veg?
- Set equality: A = B
 {carrot, potato, tomato} = {tomato, carrot, potato}
- Subset: A ⊂ B, A ⊆ B
 {potato} ⊂ Veg
 {tomato, carrot, potato} ⊆ Veg
 - {tomato, carrot} \subseteq Veg
- Intersection: $A \cap \overline{B}$, (objects in common)
- Union: A ∪ B (all objects)
 Veg ∩ Fruit =
 Veg ∪ Fruit =
- Set subtraction: A \ B , A B
 Fruit C = {apple, pear, orange}
- Size (cardinality): |A|
 |Fruit| = ? |Fruit ∩ Veg| = ? , |Fruit ∪ Veg| = ?
- Empty set, cardinality: {} or Ø
 |Ø| = ?

BRC

Graphs

- A graph G is an ordered pair (V, E)
 V = set of vertices (nodes), E = set of edges
 - Dense graph: $|E| \approx |V|^2$; Sparse graph: $|E| \approx |V|$
 - Undirected graph: edge pairs are unordered
 edge (u,v) = edge (v,u)

Directed graph: nodes & arcs
 Arc: i.e. directed edge (u,v) from initial vertex u to terminal vertex v, notation u→v
 Two vertices u,v adjacent if u≠v and u→v or u→v

- Directed Acyclic Graph (DAG): directed graph with no cycles
- A *weighted graph* associates weights with either the edges or the vertices
- Input (output) degree of a node: number of input (output) arcs associated with the node

Graph Theory (simple!)

Optionally *label* vertices & arcs

Graph = (V,A) V = {cat:1, cat:2, mouse:3, dog:4, rat:5 }

A = {loves:1 \rightarrow 2, fears:2 \rightarrow 3, chases:3 \rightarrow 2, fears:3 \rightarrow 1, fears:1 \rightarrow 4, admires:1 \rightarrow 1}

BRC

Pathway analysis

- What are the possible paths from entity A to entity B?
- How many paths, and of what lengths, lead from A to B?
- What is the average path distance between entities?
- Find all paths including a given set of entities
- Which genes are affected by a specific compound?
- Which pathways are affected if a given entity is missing or switched off?
- Compare pathways between two organisms or tissues, find common features or missing elements

Paths and Circuits of a Graph

• *Path* = sequence of arcs

$$(x_1 \rightarrow x_2, x_2 \rightarrow x_3, x_3 \rightarrow x_4, \dots, x_{k-1} \rightarrow x_k)$$

- Also can write $[x_1, x_2, x_3, \dots, x_k]$
- Simple if does not use the same arc twice, else composite
- Elementary if does not use same vertex twice
- Can be *finite* or *infinite*
- Circuit = path [x₁,x₂,x₃,..., x_k] where initial vertex x₁ = terminal vertex x_k
- *Elementary* circuit if all vertices distinct apart from $x_1 = x_k$
- Length of path $(x_1 \rightarrow x_2, \dots, x_{k-1} \rightarrow x_k)$ is K-1
- Loop is circuit length=1, I.e. $(x_1 \rightarrow x_1)$

Example

Paths - find these!

<u>Circuits</u> - find these!

Representing Graphs

- Assume V = {1, 2, ..., *n*}
- An *adjacency matrix* represents the graph as a *nxn* matrix M:
 - $M[i, j] = 1 \text{ if edge } (i, j) \in E \text{ (or weight of edge)}$ $= 0 \text{ if edge } (i, j) \notin E$
 - Storage requirements: O(V²)
 - A dense representation
 - But, can be very efficient for small graphs
 - Especially if store just one bit/edge
 - Undirected graph: only need one diagonal of matrix

Adjacency matrix - undirected graph

Binary \Rightarrow Base 10: Compact representation in a computer! ... but what if large number of vertices?

BRC

Networks, graphs

Adjacency matrix - directed graph

Outgoing: 1, Incoming: -1

	а	b	С	d
а	0	1	0	-1
b				
С				
d				

How to represent in binary?

(c) David Gilbert, 2008

BRC

Adjacency lists

- Associate each node with list of edges
- Undirected
 Vertex : Edges
 a : {b,d}
 b : {a,c,d}
 c : {b}
 d : {a,b}

Directed
Ins : Vertex : Outs
{d} : a : {b}
{a}: b : {c,d}
{b}: c : {}
{b}: d : {a}

Less compact representation in a computer! ... but what if large number of vertices and few edges?

BRC

Networks, graphs

a

b

C

Adjacency matrix - directed graph

Outgoing: 1, Incoming: -1

	а	b	С	d
а	0	1	0	-1
b				
С				
d				

How to represent in binary?

(c) David Gilbert, 2008

Construct adjacency matrices for

Input & output degrees

• Compute the input and output degrees for the nodes in

Search strategies

- A search strategy is defined by picking the order of node expansion
- Strategies are evaluated along the following dimensions:
 - completeness: does it always find a solution if one exists?
 - time complexity: number of nodes generated
 - space complexity: maximum number of nodes in memory
 - optimality: does it always find a least-cost solution?
- Time and space complexity are measured in terms of
 - *b:* maximum branching factor of the search tree
 - *d:* depth of the least-cost solution
 - *m*: maximum depth of the state space (may be ∞)

Breadth-First Search

- "Explore" a graph, turning it into a tree
 - One vertex at a time
 - Expand frontier of explored vertices across the *breadth* of the frontier
- Builds a tree over the graph
 - Pick a *source vertex* to be the root
 - Find ("discover") its children, then their children, etc.

Breadth-first search

- Expand shallowest unexpanded node
- Implementation:
 - fringe is a FIFO queue, i.e., new successors go at end

Breadth-First Search: Properties

- BFS calculates the *shortest-path distance* to the source node
 - Shortest-path distance δ(s,v) = minimum number of edges from s to v, or ∞ if v not reachable from s
- BFS builds *breadth-first tree*, in which paths to root represent shortest paths in G
 - Thus can use BFS to calculate shortest path from one vertex to another in O(V+E) time

Properties of breadth-first search

- <u>Complete?</u> Yes (if *b* is finite)
- <u>Time?</u> $1+b+b^2+b^3+...+b^d+b(b^d-1) = O(b^{d+1})$
- <u>Space?</u> $O(b^{d+1})$ (keeps every node in memory)
- <u>Optimal?</u> Yes (if cost = 1 per step)
- Space is the bigger problem (more than time)

Depth-first search

- Expand deepest unexpanded node
- Implementation:
 - *fringe* = LIFO queue, i.e., put successors at front

Properties of depth-first search

- <u>Complete?</u> No: fails in infinite-depth spaces, spaces with loops
 - Modify to avoid repeated states along path
 - \rightarrow complete in finite spaces
- <u>Time?</u> $O(b^m)$: terrible if *m* is much larger than *d*
 - but if solutions are dense, may be much faster than breadth-first
- <u>Space?</u> O(bm), i.e., linear space!
- <u>Optimal?</u> No

Iterative deepening search / =3

Properties of iterative deepening search

- <u>Complete?</u> Yes
- <u>Time?</u> $(d+1)b^0 + d b^1 + (d-1)b^2 + ... + b^d = O(b^d)$
- <u>Space?</u> O(bd)
- <u>Optimal?</u> Yes, if step cost = 1

Simple path search algorithm

```
Search path From ... To
Given G=(V,A)
Initialise: Path:= [From]
```

```
While (From→Next) ∈ A and Next ≠To
Path := Path + [Next]
From := Next, Next:=NewNext
```

```
If (From→To) ∈ A then
Path:= Path + [To]
Return Path
Else Return 'Fail'
```

Depth-first or Breadth-first?

BRC

Circuit detection algorithm

• Do this...!

KEGG

- <u>http://www.genome.ad.jp/kegg/</u> Institute for Chemical Research, Kyoto University (part of the Japanese Human Genome Program).
- Repository of metabolic pathways for organisms whose genome is completely sequenced. Also regulatory information.
- For many of these organisms, the body of experimental data is very restricted. Protein function inferred from sequence similarity with proteins characterised experimentally in other organisms.
- Pathways represented as diagrams, manually created & stored as static gif files.
- Upon selection of an organism, the reactions for which an enzyme is known in that organism are highlighted in colour in the generic pathway diagrams.

KEGG - search & compute

- KEGG pathways searched by EC numbers (enzymes), compound numbers, & by gene accessions.
- Combine search with KEGG grouping or the hierarchical classification. (e.g. EC numbers from a specific group in the superfamily table (or SCOP table) & searching against pathway diagrams.
- Search KEGG pathways by sequence similarity. (identify orthologs & reconstruct pathways from the gene catalog).
- Given list of enzymes, automatically generate the organism specific pathways by marking the matching enzymes on the diagram. Missing elements imply either gene catalog wrong or unknown reaction pathway utilizing different enzymes in the catalog.
- Compute pathways from a given list of enzymes. Deduction from binary relations of substrates and products with optional use of query relaxation for functional hierarchies.

KEGG Query & result

Pathway Search Result

 map00271 Methionine metabolism 	2.7.2.4
•EC 2.1.1.13	1.2.1.11
•EC 2.3.1.46	1.1.1.3
•EC 2.5.1.6	
 •EC 4.4.1.8 • map00260 Glycine, serine and threonine metabolism 	2.3.1.46
map00300 Lysine biosynthesis	4.2.99.9
map00450 Selenoamino acid metabolismmap00920 Sulfur metabolism	4.4.1.8
 map00272 Cysteine metabolism map00670 One carbon pool by folate 	2.1.1.13
 map00910 Nitrogen metabolism 	2.5.1.6
	map00271
	Methionine
	metabolism

http://www.genome.ad.jp/kegg-bin/mk_point_html?ec

BRC

Networks, graphs

Query =

KEGG Query & result

http://www.genome.ad.jp/kegg-bin/mk_point_html?ec

BRC

Networks, graphs

Pathway Hunter Tool

- Metabolic pathway analysis web service (Pathway Hunter Tool at CUBIC).
 S. A. Rahman , P. Advani , R. Schunk , R. Schrader and Dietmar Schomburg. Bioinformatics 2005 21(7):1189-1193
- Motivation: Pathway Hunter Tool (PHT), is a fast, robust and user-friendly tool to analyse the shortest paths in metabolic pathways. The user can perform shortest path analysis for one or more organisms or can build virtual organisms (networks) using enzymes. Using PHT, the user can also calculate the average shortest path, average alternate path and the top 10 hubs in the metabolic network. The comparative study of metabolic connectivity and observing the cross talk between metabolic pathways among various sequenced genomes is possible.
- Results: A new algorithm for finding the biochemically valid connectivity between metabolites in a metabolic network was developed and implemented. A predefined manual assignment of side metabolites (like ATP, ADP, water, CO2 etc.) and main metabolites is not necessary as the new concept uses chemical structure information (global and local similarity) between metabolites for identification of the shortest path.
- Availability: PHT is accessible at http://www.pht.uni-koeln.de

A scheme for representing metabolic and regulatory networks

• Slides from Jacques van Helden

Chemical Reaction

Set of Biochemical Entities (substrates) -o [Reaction] -> Set of Biochemical Entities (products) Slide from Jacques van Helden

Enzymatic catalysis

Enzymatic catalysis

Multifunctional enzyme

Isofunctional enzymes

Slide from Jacques van Helden

Inhibition/Activation

Gene expression

Metabolic Step

Metabolic Pathway: Proline Biosynthesis

Slide from Jacques van Helden

Transcriptional Regulation

Transcriptional repression (down-regulation)

Protein -o [down-regulates] -> expression

Transcriptional activation (up-regulation)

-o [up-regulates] ->

Protein

expression Slide from Jacques van Helden

Methionine Biosynthesis in E.coli

Slide from Jacques van Helden

Methionine Biosynthesis in S.cerevisiae

Slide from Jacques van Helden

Alternative methionine pathways

Shortcut Representation

Slide from Jacques van Helden

High-level Abstraction

Slide from Jacques van Helden

Queries - subgraph extraction

A. Seed reactions

C. Subgraph extraction

Slide from Jacques van Helden (c) David Gilbert, 2008 B. Reaction linking

D. Linear Path Enumeration

Pathway Building : semi-automated annotation

Pathway builder program

Metabolic pathway: Query on EC numbers:

E.coli, methionine biosynthesis

2.7.2.4 1.2.1.11 1.1.1.3 2.3.1.46 4.2.99.9 4.4.1.8 2.1.1.13 2.5.1.6

(c) David Gilbert, 2008

BRC

Further graph operations

- Sub-graph matching
 - Pattern (graph motif) matching
- Pattern discovery
 - common motif repeated in 1 graph or
 - across many graphs
- Graph comparison

What are the uses?

Network motifs

• Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network motifs: simple building blocks of complex networks. Science. 2002 Oct 25;298(5594):824-7.

Networks, graphs

Network	Nodes	Edges	N _{real}	$N_{\rm rand} \pm {\rm SD}$	Z score	N _{real}	$N_{\rm rand} \pm {\rm SD}$	Z score	N _{real}	$N_{\rm rand} \pm {\rm SD}$	Z score
Gene regulation (transcription)			X V Y V Z	Feed- forward loop	X Z	Y W	Bi-fan	Tour	Tano		
E. coli S. cerevisiae*	424 685	519 1,052	40 70	7 ± 3 11 ± 4	10 14	203 1812	47 ± 12 300 ± 40	13 41			
Neurons				X ₩ ¥ ¥ Z	Feed- forward loop	x	₩ ₩	Bi-fan	¥ ² ^Y ¥	^κ Ν _W ^Z	Bi- parallel
C. elegans†	252	509	125	90 ± 10	3.7	127	55 ± 13	5.3	227	35 ± 10	20
Food webs				X ♥ Y V Z	Three chain	и У У Ч	N N Z	Bi- parallel			
Little Rock Ythan St. Martin Chesapeake Coachella Skipwith B. Brook	92 83 42 31 29 25 25	984 391 205 67 243 189 104	3219 1182 469 80 279 184 181	$\begin{array}{c} \textbf{Z} \\ 3120 \pm 50 \\ 1020 \pm 20 \\ 450 \pm 10 \\ 82 \pm 4 \\ 235 \pm 12 \\ 150 \pm 7 \\ 130 \pm 7 \end{array}$	2.1 7.2 NS 3.6 5.5 7.4	7295 1357 382 26 181 397 267	$2220 \pm 210 230 \pm 50 130 \pm 20 5 \pm 2 80 \pm 20 80 \pm 25 30 \pm 7$	25 23 12 8 5 13 32			
Electronic circuits (forward logic chips)			X Ψ Y Ψ	Feed- forward loop	x z	₩ W	Bi-fan	Y Y N	X V V V V	Bi- parallel	
s15850 s38584 s38417 s9234 s13207	10,383 20,717 23,843 5,844 8,651	14,240 34,204 33,661 8,197 11,831	424 413 612 211 403	$2 \pm 2 10 \pm 3 3 \pm 2 2 \pm 1 2 \pm 1$	285 120 400 140 225	1040 1739 2404 754 4445	1 ± 1 6 ± 2 1 ± 1 1 ± 1 1 ± 1	1200 800 2550 1050 4950	480 711 531 209 264	2 ± 1 9 ± 2 2 ± 2 1 ± 1 2 ± 1	335 320 340 200 200
Electronic circuits (digital fractional multipliers)		$ \begin{array}{c} x \\ \uparrow \\ x \leftarrow \end{array} $	- z	Three- node feedback loop	x	₩ W	Bi-fan	x- ↑ z <	$\rightarrow Y$ \downarrow $\leftarrow W$	Four- node feedback loop	
s208 s420 s838‡	122 252 512	189 399 819	10 20 40	1 ± 1 1 ± 1 1 ± 1	9 18 38	4 10 22	1±1 1±1 1±1	3.8 10 20	5 11 23	1 ± 1 1 ± 1 1 ± 1	5 11 25
World Wide	Web			X ♦	Feedback with two	ZX	N	Fully connected	\checkmark^{x}	7	Uplinked mutual
world wide			L	¥ Ž	mutual dyads	Ÿ←	→ z	triad	Ý←	⇒ z	dyad

Databases, data structures

- Adjacency matrix
- Relational Database models
- ?Can you construct a simple database?

Visualisation of pathways

 Automatic graph layout algorithms are good for visualising relational information and work for small networks

Summary

- Data models for Networks, pathways
- (Sets)
- (Trees)
- Graphs
 - Paths, circuits, searching
 - Breadth-first search
 - Depth-first search
- Analysis
 - Some algorithms over graphs

Scale-free networks

- Using a Web crawler, physicist Albert-Laszlo Barabasi and his colleagues at the University of Notre Dame in Indiana, USA, in 1999 mapped the connectedness of the Web. To their surprise, the web did not have an even distribution of connectivity (so-called "random connectivity").
- Instead, a very few network nodes (called "hubs") were far more connected than other nodes.
- In general, they found that the probability p(k) that a node in the network connects with k other nodes was, in a given network, proportional to k-γ.
- The degree exponent γ is not universal and depends on the detail of network structure. Numerical values of the exponent γ for various systems are diverse but most of them are in the range 2 < γ ≤ 3.
- At the same time a similar observation was obtained to the Internet by the Faloutsos brothers (1999). In this form, essentially all graphs with a power law degree distribution were grouped together as "scale-free". Several revisions of this definition have been suggested.

[Wikipedia]

World Wide Web

Scale-free networks

- Tend to contain centrally located and interconnected high degree "hubs", which dramatically influences the way a network operates.
 - For example, random node failures have very little effect on a scale-free network's connectivity or effectiveness
 - Deliberate attacks on such a network's hubs can dismantle a network with alarming ease. Thus, the realization that certain networks are scale-free is important to security.
- SCF also exhibit the Small world phenomenon: two average nodes are separated by a very small number of connections.
- •
- Also, scale-free networks generally have high clustering coefficients.
- A multitude of real-world networks have been shown to be scale-free, including:
 - Social networks, including collaboration networks. An example that have been studied extensively is the collaboration of movie actors in films.
 - Protein-Protein interaction networks.
 - Sexual partners in humans, which affects the dispersal of sexually transmitted diseases.
 - Many kinds of computer networks, including the World Wide Web.

[Wikipedia]

H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, and A.L. Barabasi, Nature, 2000

Yeast protein network

Nodes: proteins

Links: physical interactions (binding)

Stefan Wuchty www.nd.edu/~swuchty/Download/pisa.ppt

Yeast protein network - lethality and topological position -

Highly connected proteins are more essential (lethal)...

H. Jeong, S.P. Mason, A.-L. Barabasi & Z.N. Oltvai, Nature, 2001

BRC

Modular vs. Scale-free Topology

(c) David Gilbert, 2008

Networks, graphs

Stefan Wuchty www.nd.edu/~swuchty/Download/pisa.pp

Real Networks Have a Hierarchical Topology

What does it mean?

Many highly connected small clusters combine into few larger but less connected clusters combine into even larger and even less connected clusters

> The degree of clustering follows:

 $C(k) \sim k^{-\beta}$

Modules in the *E. coli* metabolism

E. Ravasz et al., Science, 2002

Stefan Wuchty

www.nd.edu/~swuchty/Download/pisa.ppt

Origin of scaling in protein interaction

networks

Stefan Wuchty www.nd.edu/~swuchty/Download/pisa.ppt

Proteins with more interactions are more likely to get a new link: Π(k)~k (preferential attachment) Vazquez et al., cond-mat/0108043 Sole et al., Adv. Compl. Syst., 2001

Stefan Wuchty www.nd.edu/~swuchty/Download/pisa.ppt

Topology and Evolution

#	Motifs	Number of yeast motifs	Natural conservation rate	Random conservation rate	Conservation ratio
1	••	9,266	13.67%	4.63%	2.94
2	*	167,304	4.99%	0.81%	6.15
3	4	3,846	20 .51%	1.01%	20.28
4		3,649,591	0.73%	0.12%	5.87
5		1,763,891	2.64%	0 .18%	14.67
6		9,646	6.71%	0 .17%	40.44
7	*	164, 0 75	7.67%	0 .17%	45.56
8	**	12,423	18.68%	0.12%	157.89
9	*	2,339	32.53%	0.08%	422.78
10		25,749	14.77%	0.05%	279.71
11		1,433	47.24%	0.02%	2,256.67

S. Wuchty, Z. Oltvai & A.-L. Barabasi, Nature Genetics, 2003 (c) David Gilbert, 2008 Networks, graphs

Stefan Wuchty www.nd.edu/~swuchty/Download/pisa.pptDED QUESTIONS

What is the meaning of clustering in other systems (quality measure)?

(c) David Gilbert, 2008

BRC