
Page 1 of 11

Systems development life cycle

6.1 INTRODUCTION: The systems development life cycle (SDLC), also

referred to as the application development life-cycle, is a term used in systems

engineering, information systems and software engineering to describe a process

for planning, creating, testing, and deploying an information system. The systems

development life-cycle concept applies to a range of hardware and software

configurations, as a system can be composed of hardware only, software only, or a

combination of both.

6.2 Overview

A systems development life cycle is composed of a number of clearly defined and

distinct work phases which are used by systems engineers and systems developers

to plan for, design, build, test, and deliver information systems. Like anything that

is manufactured on an assembly line, an SDLC aims to produce high quality

systems that meet or exceed customer expectations, based on customer

requirements, by delivering systems which move through each clearly defined

phase, within scheduled time-frames and cost estimates. Computer systems are

complex and often (especially with the recent rise of service-oriented architecture)

link multiple traditional systems potentially supplied by different software vendors.

To manage this level of complexity, a number of SDLC models or methodologies

have been created, such as "waterfall"; "spiral"; "Agile software development";

"rapid prototyping"; "incremental"; and "synchronize and stabilize".

SDLC can be described along a spectrum of agile to iterative to sequential. Agile

methodologies, such as XP and Scrum, focus on lightweight processes which allow

for rapid changes (without necessarily following the pattern of SDLC approach)

along the development cycle. Iterative methodologies, such as Rational Unified

Process and dynamic systems development method, focus on limited project scope

and expanding or improving products by multiple iterations. Sequential or big-

design-up-front (BDUF) models, such as waterfall, focus on complete and correct

planning to guide large projects and risks to successful and predictable results.

Other models, such as anamorphic development, tend to focus on a form of

development that is guided by project scope and adaptive iterations of feature

development.

In project management a project can be defined both with a project life cycle

(PLC) and an SDLC, during which slightly different activities occur. According to

Taylor (2004) "the project life cycle encompasses all the activities of the project,

http://en.wikipedia.org/wiki/Systems_engineering
http://en.wikipedia.org/wiki/Systems_engineering
http://en.wikipedia.org/wiki/Information_systems
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Information_system
http://en.wikipedia.org/wiki/Service-oriented_architecture
http://en.wikipedia.org/wiki/Waterfall_model
http://en.wikipedia.org/wiki/Spiral_model
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Software_prototyping#Throwaway_prototyping
http://en.wikipedia.org/wiki/Incremental_development
http://en.wikipedia.org/wiki/Extreme_Programming
http://en.wikipedia.org/wiki/Scrum_(development)
http://en.wikipedia.org/wiki/Iterative_and_incremental_development
http://en.wikipedia.org/wiki/Rational_Unified_Process
http://en.wikipedia.org/wiki/Rational_Unified_Process
http://en.wikipedia.org/wiki/Dynamic_systems_development_method
http://en.wikipedia.org/wiki/Anamorphic_development
http://en.wikipedia.org/wiki/Project_management
http://en.wikipedia.org/wiki/Project_life_cycle
http://en.wikipedia.org/wiki/Project

Page 2 of 11

while the systems development life cycle focuses on realizing the product

requirements".

SDLC is used during the development of an IT project, it describes the different

stages involved in the project from the drawing board, through the completion of

the project.

6.3 History

The product life cycle describes the process for building information systems in a

very deliberate, structured and methodical way, reiterating each stage of the

product's life. The systems development life cycle, according to Elliott & Strachan

& Radford (2004), "originated in the 1960s, to develop large scale functional

business systems in an age of large scale business conglomerates. Information

systems activities revolved around heavy data processing and number crunching

routines".

Several systems development frameworks have been partly based on SDLC, such

as the structured systems analysis and design method (SSADM) produced for the

UK government Office of Government Commerce in the 1980s. Ever since,

according to Elliott (2004), "the traditional life cycle approaches to systems

development have been increasingly replaced with alternative approaches and

frameworks, which attempted to overcome some of the inherent deficiencies of the

traditional SDLC".

Phases

The system development life cycle framework provides a sequence of activities for

system designers and developers to follow. It consists of a set of steps or phases in

which each phase of the SDLC uses the results of the previous one.

The SDLC adheres to important phases that are essential for developers, such as

planning, analysis, design, and implementation, and are explained in the section

below. It includes evaluation of present system, information gathering, and

feasibility study and request approval. A number of SDLC models have been

created: waterfall, fountain, and spiral, build and fix, rapid prototyping,

incremental, and synchronize and stabilize. The oldest of these, and the best

known, is the waterfall model: a sequence of stages in which the output of each

stage becomes the input for the next. These stages can be characterized and divided

up in different ways, including the following:

http://en.wikipedia.org/wiki/Requirement
http://en.wikipedia.org/wiki/Product_life_cycle_(engineering)
http://en.wikipedia.org/wiki/Business_systems
http://en.wikipedia.org/wiki/Business_conglomerate
http://en.wikipedia.org/wiki/Data_processing
http://en.wikipedia.org/wiki/Number_crunching
http://en.wikipedia.org/wiki/Structured_systems_analysis_and_design_method
http://en.wikipedia.org/wiki/Office_of_Government_Commerce
http://en.wikipedia.org/wiki/Planning
http://en.wikipedia.org/wiki/Analysis
http://en.wikipedia.org/wiki/Design
http://en.wikipedia.org/wiki/Implementation

Page 3 of 11

 Preliminary analysis: The objective of phase 1 is to conduct a preliminary

analysis, propose alternative solutions, describe costs and benefits and

submit a preliminary plan with recommendations.

Conduct the preliminary analysis: in this step, you need to find out the

organization's objectives and the nature and scope of the problem under

study. Even if a problem refers only to a small segment of the organization

itself then you need to find out what the objectives of the organization itself

are. Then you need to see how the problem being studied fits in with them.

Propose alternative solutions: In digging into the organization's objectives

and specific problems, you may have already covered some solutions.

Alternate proposals may come from interviewing employees, clients,

suppliers, and/or consultants. You can also study what competitors are

doing. With this data, you will have three choices: leave the system as is,

improve it, or develop a new system.

Describe the costs and benefits.

 Systems analysis, requirements definition: Defines project goals into

defined functions and operation of the intended application. Analyzes end-

user information needs.

 Systems design: Describes desired features and operations in detail,

including screen layouts, business rules, process diagrams, pseudo-code and

other documentation.

 Development: The real code is written here.

 Integration and testing: Brings all the pieces together into a special testing

environment, then checks for errors, bugs and interoperability.

 Acceptance, installation, deployment: The final stage of initial

development, where the software is put into production and runs actual

business.

 Maintenance: During the maintenance stage of the SDLC, the system is

assessed to ensure it does not become obsolete. This is also where changes

are made to initial software. It involves continuous evaluation of the system

in terms of its performance.

 Evaluation: Some companies do not view this as an official stage of the

SDLC, but is it an important part of the life cycle. Evaluation step is an

http://en.wikipedia.org/wiki/Business_rule
http://en.wikipedia.org/wiki/Process_Diagram
http://en.wikipedia.org/wiki/Pseudocode

Page 4 of 11

extension of the Maintenance stage, and may be referred to in some circles

as Post-implementation Review. This is where the system that was

developed, as well as the entire process, is evaluated. Some of the questions

that need to be answered include: does the newly implemented system meet

the initial business requirements and objectives? Is the system reliable and

fault-tolerant? Does the system function according to the approved

functional requirements? In addition to evaluating the software that was

released, it is important to assess the effectiveness of the development

process. If there are any aspects of the entire process, or certain stages, that

management is not satisfied with, this is the time to improve. Evaluation and

assessment is a difficult issue. However, the company must reflect on the

process and address weaknesses.

 Disposal: In this phase, plans are developed for discarding system

information, hardware and software in making the transition to a new

system. The purpose here is to properly move, archive, discard or destroy

information, hardware and software that is being replaced, in a matter that

prevents any possibility of unauthorized disclosure of sensitive data. The

disposal activities ensure proper migration to a new system. Particular

emphasis is given to proper preservation and archival of data processed by

the previous system. All of this should be done in accordance with the

organization's security requirements.[8]

In the following example these stages of the systems development life cycle are

divided in ten steps from definition to creation and modification of IT work

products:

The tenth phase occurs when the system is disposed of and the task performed is

either eliminated or transferred to other systems. The tasks and work products for

each phase are described in subsequent chapters.

Not every project will require that the phases be sequentially executed. However,

the phases are interdependent. Depending upon the size and complexity of the

project, phases may be combined or may overlap.

System investigation

The system investigate the IT proposal. During this step, we must consider all

current priorities that would be affected and how they should be handled. Before

any system planning is done, a feasibility study should be conducted to determine

if creating a new or improved system is a viable solution. This will help to

http://en.wikipedia.org/wiki/Systems_development_life_cycle#cite_note-8
http://en.wikipedia.org/wiki/Feasibility_study

Page 5 of 11

determine the costs, benefits, resource requirements, and specific user needs

required for completion. The development process can only continue once

management approves of the recommendations from the feasibility study.

Following are different components of the feasibility study:

 Operational feasibility

 Economic feasibility

 Technical feasibility

 Human factors feasibility

 Legal/Political feasibility

System analysis

The goal of system analysis is to determine where the problem is in an attempt to

fix the system. This step involves breaking down the system in different pieces to

analyze the situation, analyzing project goals, breaking down what needs to be

created and attempting to engage users so that definite requirements can be

defined.

Design

In systems design, the design functions and operations are described in detail,

including screen layouts, business rules, process diagrams and other

documentation. The output of this stage will describe the new system as a

collection of modules or subsystems.

The design stage takes as its initial input the requirements identified in the

approved requirements document. For each requirement, a set of one or more

design elements will be produced as a result of interviews, workshops, and/or

prototype efforts.

Design elements describe the desired system features in detail, and generally

include functional hierarchy diagrams, screen layout diagrams, tables of business

rules, business process diagrams, pseudo-code, and a complete entity-relationship

diagram with a full data dictionary. These design elements are intended to describe

the system in sufficient detail, such that skilled developers and engineers may

develop and deliver the system with minimal additional input design.

Environments

http://en.wikipedia.org/wiki/Feasibility_study#Operational_feasibility
http://en.wikipedia.org/wiki/Feasibility_study#Economic_Feasibility
http://en.wikipedia.org/wiki/Feasibility_study#Technical_Feasibility
http://en.wikipedia.org/wiki/Feasibility_study#Legal_feasibility
http://en.wikipedia.org/wiki/Systems_analysis
http://en.wikipedia.org/wiki/Work_breakdown_structure
http://en.wikipedia.org/wiki/Systems_design

Page 6 of 11

Environments are controlled areas where systems developers can build, distribute,

install, configure, test, and execute systems that move through the SDLC. Each

environment is aligned with different areas of the SDLC and is intended to have

specific purposes. Examples of such environments include the:

 Development environment, where developers can work independently of

each other before trying to merge their work with the work of others,

 Common build environment, where merged work can be built, together, as a

combined system,

 Systems integration testing environment, where basic testing of a system's

integration points to other upstream or downstream systems can be tested,

 User acceptance testing environment, where business stakeholders can test

against their original business requirements,

 Production environment, where systems finally get deployed to, for final use

by their intended end users.

The planning for, provisioning, and operating of such environments is known as

practice of IT environment management.

Testing

The code is tested at various levels in software testing. Unit, system and user

acceptance testing’s are often performed. This is a grey area as many different

opinions exist as to what the stages of testing are and how much, if any iteration

occurs. Iteration is not generally part of the waterfall model, but usually some

occur at this stage. In the testing the whole system is tested one by one

Following are the types of testing:

 Defect testing the failed scenarios, including defect tracking

 Path testing

 Data set testing

 Unit testing

 System testing

 Integration testing

 Black-box testing

 White-box testing

 Regression testing

 Automation testing

 User acceptance testing

 Software performance testing

http://en.wikipedia.org/w/index.php?title=IT_environment_management&action=edit&redlink=1
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Defect_tracking
http://en.wikipedia.org/wiki/Model-based_testing
http://en.wikipedia.org/wiki/Test_data
http://en.wikipedia.org/wiki/Unit_testing
http://en.wikipedia.org/wiki/System_testing
http://en.wikipedia.org/wiki/Integration_testing
http://en.wikipedia.org/wiki/Black-box_testing
http://en.wikipedia.org/wiki/White-box_testing
http://en.wikipedia.org/wiki/Regression_testing
http://en.wikipedia.org/wiki/Automation_testing
http://en.wikipedia.org/wiki/User_acceptance_testing
http://en.wikipedia.org/wiki/Software_performance_testing

Page 7 of 11

Training and transition

Once a system has been stabilized through adequate testing, the SDLC ensures that

proper training on the system is performed or documented before transitioning the

system to its support staff and end users.

Training usually covers operational training for those people who will be

responsible for supporting the system as well as training for those end users who

will be using the system after its delivery to a production operating environment.

After training has been successfully completed, systems engineers and developers

transition the system to its final production environment, where it is intended to be

used by its end users and supported by its support and operations staff.

Operations and maintenance

The deployment of the system includes changes and enhancements before the

decommissioning or sunset of the system. Maintaining the system is an important

aspect of SDLC. As key personnel change positions in the organization, new

changes will be implemented. There are two approaches to system development;

there is the traditional approach (structured) and object oriented. Information

Engineering includes the traditional system approach, which is also called the

structured analysis and design technique. The object oriented approach views the

information system as a collection of objects that are integrated with each other to

make a full and complete information system.

Evaluation

The final phase of the SDLC is to measure the effectiveness of the application and

evaluate potential enhancements.

Systems analysis and design

The systems analysis and design (SAD) is the process of developing information

systems (IS) that effectively use hardware, software, data, processes, and people to

support the company's businesses objectives. System analysis and design can be

considered the meta-development activity, which serves to set the stage and bound

the problem. SAD can be leveraged to set the correct balance among competing

high-level requirements in the functional and non-functional analysis domains.

System analysis and design interacts strongly with distributed enterprise

architecture, enterprise I.T. Architecture, and business architecture, and relies

http://en.wikipedia.org/wiki/Software_deployment
http://en.wikipedia.org/wiki/Software_maintenance
http://en.wikipedia.org/wiki/Object_oriented

Page 8 of 11

heavily on concepts such as partitioning, interfaces, personae and roles, and

deployment/operational modeling to arrive at a high-level system description. This

high level description is then further broken down into the components and

modules which can be analyzed, designed, and constructed separately and

integrated to accomplish the business goal. SDLC and SAD are cornerstones of full

life cycle product and system planning.

Object-oriented analysis

Object-oriented analysis (OOA) is the process of analyzing a task (also known as a

problem domain), to develop a conceptual model that can then be used to complete

the task. A typical OOA model would describe computer software that could be

used to satisfy a set of customer-defined requirements. During the analysis phase

of problem-solving, a programmer might consider a written requirements

statement, a formal vision document, or interviews with stakeholders or other

interested parties. The task to be addressed might be divided into several subtasks

(or domains), each representing a different business, technological, or other areas

of interest. Each subtask would be analyzed separately. Implementation

constraints, (e.g., concurrency, distribution, persistence, or how the system is to be

built) are not considered during the analysis phase; rather, they are addressed

during object-oriented design (OOD).

The conceptual model that results from OOA will typically consist of a set of use

cases, one or more UML class diagrams, and a number of interaction diagrams. It

may also include some kind of user interface mock-up.

The input for object-oriented design is provided by the output of object-oriented

analysis. Realize that an output artifact does not need to be completely developed

to serve as input of object-oriented design; analysis and design may occur in

parallel, and in practice the results of one activity can feed the other in a short

feedback cycle through an iterative process. Both analysis and design can be

performed incrementally, and the artifacts can be continuously grown instead of

completely developed in one shot.

Some typical input artifacts for object-oriented :

 Conceptual model: Conceptual model is the result of object-oriented

analysis, it captures concepts in the problem domain. The conceptual model

is explicitly chosen to be independent of implementation details, such as

concurrency or data storage.

http://en.wikipedia.org/wiki/Problem_domain
http://en.wikipedia.org/wiki/Concurrency_(computer_science)
http://en.wikipedia.org/wiki/Distributed_computing
http://en.wikipedia.org/wiki/Persistence_(computer_science)
http://en.wikipedia.org/wiki/Use_cases
http://en.wikipedia.org/wiki/Use_cases
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Class_diagram
http://en.wikipedia.org/wiki/Interaction_diagram
http://en.wikipedia.org/wiki/User_interface
http://en.wikipedia.org/wiki/Object-oriented_analysis
http://en.wikipedia.org/wiki/Object-oriented_analysis
http://en.wikipedia.org/wiki/Conceptual_model_(computer_science)

Page 9 of 11

 Use case: Use case is a description of sequences of events that, taken

together, lead to a system doing something useful. Each use case provides

one or more scenarios that convey how the system should interact with the

users called actors to achieve a specific business goal or function. Use case

actors may be end users or other systems. In many circumstances use cases

are further elaborated into use case diagrams. Use case diagrams are used to

identify the actor (users or other systems) and the processes they perform.

 System Sequence Diagram: System Sequence diagram (SSD) is a picture

that shows, for a particular scenario of a use case, the events that external

actors generate, their order, and possible inter-system events.

 User interface documentations (if applicable): Document that shows and

describes the look and feel of the end product's user interface. It is not

mandatory to have this, but it helps to visualize the end-product and

therefore helps the designer.

 Relational data model (if applicable): A data model is an abstract model that

describes how data is represented and used. If an object database is not used,

the relational data model should usually be created before the design, since

the strategy chosen for object-relational mapping is an output of the OO

design process. However, it is possible to develop the relational data model

and the object-oriented design artifacts in parallel, and the growth of an

artifact can stimulate the refinement of other artifacts.

Life cycle

Management and control

SPIU phases related to management controls. The SDLC phases serve as a

programmatic guide to project activity and provide a flexible but consistent way to

conduct projects to a depth matching the scope of the project. Each of the SDLC

phase objectives are described in this section with key deliverables, a description

of recommended tasks, and a summary of related control objectives for effective

management. It is critical for the project manager to establish and monitor control

objectives during each SDLC phase while executing projects. Control objectives

help to provide a clear statement of the desired result or purpose and should be

used throughout the entire SDLC process. Control objectives can be grouped into

major categories (domains), and relate to the SDLC phases as shown in the

figure.[12]

http://en.wikipedia.org/wiki/Use_case
http://en.wikipedia.org/wiki/Scenario_(computing)
http://en.wikipedia.org/wiki/System_Sequence_Diagram
http://en.wikipedia.org/wiki/Look_and_feel
http://en.wikipedia.org/wiki/Relational_data_model
http://en.wikipedia.org/wiki/Object_database
http://en.wikipedia.org/wiki/Object-relational_mapping
http://en.wikipedia.org/wiki/Systems_development_life_cycle#cite_note-USHR99-12

Page 10 of 11

To manage and control any SDLC initiative, each project will be required to

establish some degree of a work breakdown structure (WBS) to capture and

schedule the work necessary to complete the project. The WBS and all

programmatic material should be kept in the "project description" section of the

project notebook. The WBS format is mostly left to the project manager to

establish in a way that best describes the project work.

There are some key areas that must be defined in the WBS as part of the SDLC

policy. The following diagram describes three key areas that will be addressed in

the WBS in a manner established by the project manager.

Work breakdown structured organization

Work breakdown structure.

The upper section of the work breakdown structure (WBS) should identify the

major phases and milestones of the project in a summary fashion. In addition, the

upper section should provide an overview of the full scope and timeline of the

project and will be part of the initial project description effort leading to project

approval. The middle section of the WBS is based on the seven systems

development life cycle phases as a guide for WBS task development. The WBS

elements should consist of milestones and "tasks" as opposed to "activities" and

have a definitive period (usually two weeks or more). Each task must have a

measurable output (e.x. document, decision, or analysis). A WBS task may rely on

one or more activities (e.g. software engineering, systems engineering) and may

require close coordination with other tasks, either internal or external to the

project. Any part of the project needing support from contractors should have a

statement of work (SOW) written to include the appropriate tasks from the SDLC

phases. The development of a SOW does not occur during a specific phase of

SDLC but is developed to include the work from the SDLC process that may be

conducted by external resources such as contractors.

Baselines

Baselines are an important part of the systems development life cycle. These

baselines are established after four of the five phases of the SDLC and are critical

to the iterative nature of the model. Each baseline is considered as a milestone in

the SDLC.

 functional baseline: established after the conceptual design phase.

 allocated baseline: established after the preliminary design phase.

http://en.wikipedia.org/wiki/Work_breakdown_structure
http://en.wikipedia.org/wiki/Statement_of_work

Page 11 of 11

 product baseline: established after the detail design and development phase.

 updated product baseline: established after the production construction

phase.

Complementary methodologies

Complementary software development methods to systems development life cycle

are:

 Software prototyping

 Joint applications development (JAD)

 Rapid application development (RAD)

 Extreme programming (XP); extension of earlier work in Prototyping and

RAD.

 Open-source development

 End-user development

 Object-oriented programming

Strengths and weaknesses

Few people in the modern computing world would use a strict waterfall model for

their SDLC as many modern methodologies have superseded this thinking. Some

will argue that the SDLC no longer applies to models like Agile computing, but it

is still a term widely in use in technology circles. The SDLC practice has

advantages in traditional models of systems development that lends itself more to a

structured environment. The disadvantages to using the SDLC methodology is

when there is need for iterative development or (i.e. web development or e-

commerce) where stakeholders need to review on a regular basis the software

being designed. Instead of viewing SDLC from a strength or weakness perspective,

it is far more important to take the best practices from the SDLC model and apply

it to whatever may be most appropriate for the software being designed.

http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Software_prototyping
http://en.wikipedia.org/wiki/Joint_applications_development
http://en.wikipedia.org/wiki/Rapid_application_development
http://en.wikipedia.org/wiki/Extreme_programming
http://en.wikipedia.org/wiki/Open-source
http://en.wikipedia.org/wiki/End-user_development
http://en.wikipedia.org/wiki/Object-oriented_programming

