Solving Real World Systems by Graphing

Today, the temperature in New York is -1 degree and is expected to rise 3 degrees per day.

It's 6 degrees in Alaska and expected to
fall 1 degree every 2 days.

In New York, m= \qquad $b=$ \qquad Equation \qquad

In Alaska, $m=$ \qquad $b=$ \qquad Equation \qquad

Now, graph both equations.

Systems of equations Real World graphing

Today, the temperature in New York is -1 degree and is expected to rise 3 degrees per day.

It's 6 degrees in Alaska and expected to
fall 1 degree every 2 days.

In New York, m = \qquad $b=$ \qquad Equation $y=3 x-1$ In Alaska, $m=\frac{-\frac{1}{2}}{2} \quad b=6 \quad$ Equation $y=-\frac{1}{2} x+6$

Now, graph both equations.

After \qquad days the temperature in both cities was \qquad . Before
\qquad days, it was colder in \qquad .
After \qquad days it was colder in \qquad .

Systems of equations Real World graphing

Mos Story/Answer Weakanswer After 2 days the temperature in both cities will be 5°. \qquad . StrongAnswer After \qquad 2 days the temperature in both cities was \qquad 5° . Before \qquad 2 days, it was colder in \qquad NY After \qquad 2 days it was colder in \qquad	

Suppose you have $\$ 20$ in your bank account. You start saving $\$ 5$ each week. Your friend has $\$ 5$ in his account and is saving $\$ 10$ each week. Assume neither of you make any withdrawals.

```
You
                                    riend
m=
m=
b=
b=
Equation: Equation
```

Now graph each line. Label the x axis with \qquad and the y axis with

1)After how many weeks will you and your friend have the same amount of money in your accounts? __ How much money will each of you have? \qquad
2) Make an $x-y$ table for each equation.
3) Check each equation using substitution.

Systems of equations Real World graphing

1)After how many weeks will you and your friend have the same amount of money in your accounts? 3 How much money will each of you have? \$35

You		Friend	
$y=5 x+20$	$y=10 x+5$		
x	x	y	
0	20	0	5
1	25	1	15
2	30	2	25
3	35	3	35
4	40	4	45
5	45	5	55

The temperature in Syracuse, NY started at $-14^{\circ} \mathrm{C}$ and rose 2 degrees
Every hour. The temperature in Mamaroneck, NY started $a t-2^{\circ} \mathrm{C}$
and rose 1 degree every 2 hours.

Syracuse:
$m=$
$b=$
Equation:

Now graph each line. Label the \times axis with \qquad and the y axis with \qquad

Look at your graph and answer the following questions:

1) After how many hours will the temperatures be the same? \qquad
2) What is this temperature? \qquad
3) Write the solution to this problem as an ordered pair. \qquad
4) Make an $x-y$ table for each equation.
5) Check each equation using substitution.

Systems of equations Real World graphing

Suppose you are testing 2 fertilizers on bamboo plants A and B which are growing under identical conditions. Plant A is 6 inches tall and growing at a rate of 4 inches each day. Plant B is 10 inches tall and i growing at a rate of 2 inches each day.

Plant A
$m=$
$b=$
Equation:

Plant B
$m=$
$b=$
Equation:

Now graph each line. Label the x axis with \qquad and the y axis with \qquad

1)Find the "Solution" or Point of Intersection. What does the solution mean in terms of the experiment
2) Make an $x-y$ table for each equation.
3) Check each equation using substitution.

Systems of equations Real World graphing

You are navigating a battleship during war games. Your mission is to lay mines at the points where the enemy travel lanes intersect. The enemy travel lanes are represented by the following equations. At what 3 points do you lay your mines?

Graph the lines
Enemy Lane 1: $\quad x-y=-4$
Enemy Lane 2: $5 x-y=8$
Enemy Lane 3: $x-2 y=-2$

Systems of equations Real World graphing

You are navigating a battleship during war games. Your mission is to lay mines at the points where the enemy travel lanes intersect. The enemy travel lanes are represented by the following equations. At what 3 points do you lay your mines?

Graph the lines
Enemy Lane 1: $\quad x-y=-4 \rightarrow y=x+4$
Enemy Lane 2: $5 x-y=8 \rightarrow y=5 x-8$
Enemy Lane 3: $x-2 y=-2 \rightarrow y=\frac{1}{2} x+1$

You and your friends want to go to a skate park on Saturday. There are two parks in your neighborhood, Sam's Skate Park, and Brad's Skate Park. The parks both charge for skating at their park. Each parks price is described below.

Sam's Skate Park: \$3 to get into the park and \$1 for every hour. Brad's Skate Park: $\$ 5$ to get into the park and $\$ 0.50$ for every hour.

Sam's Skate Park
equation: \qquad

Brad's Skate Park
equation: \qquad

Answer the following questions.

1. Where do the two lines intersect?
2. What does this intersection mean?
3. Which park do you think you and your friend will go skating at? Explain why you chose this park.

Systems of equations Real World graphing

You and your friends want to go to a skate park on Saturday. There are two parks in your neighborhood, Sam's Skate Park, and Brad's Skate Park. The parks both charge for skating at their park. Each parks price is described below.

Sam's Skate Park: $\$ 3$ to get into the park and $\$ 1$ for every hour.
Brad's Skate Park: $\$ 5$ to get into the park and $\$ 0.50$ for every hour.

Saris Skate Park equation: $y=1 x+3$
Brad's Skate Park
equation: $y=\frac{1}{2} x+5$
A. Assure the following questions. $(4,7)$
${ }^{2}$ 2 What toes this inereseston 4 hours, both parks will cost
3. Which park do you think you and your friend will go skating at? Explain why you chose this park. It depends..

If we skate less than

 hours, Sam's Park is the better deal.

If we skate more than 4 hours,

Brad's Park is the better deal.

Tell me a story....

Susie had 4 cupcakes.
She ate 1 cupcake every 2 hours while she worked.

Johnny had 6 cupcakes.
He ate 3 cupcakes every
2 hours while he worked

Write two equations and name the P.O.I.
$y=-\frac{1}{2} x+4$ and $y=-\frac{3}{2} x+6$ P.O.I $\frac{(2,3)}{\searrow}$
After 2 hours, Susie and Johnny both ate 3 cupcakes.

