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Background on QbD approach 

Process development involves: 

• Define the target product profile 

• Identify the critical quality attributes (CQAs) 

• Select an appropriate manufacturing strategy 

• Implement a control strategy 

This talk is on control systems technology  
for integrated pharmaceutical and biologics 
manufacturing  
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Why Integrated Manufacturing? 

Reduce contact between 

biology/chemistry & personnel 

Continuous operation has  

the potential to 

• Increase product quality 

• Increase yields 

• Enable new drug product  

formulations (e.g., thin films) 

• Reduce scale-up risks 

• Reduce footprint 
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Outline 

 Control Systems for Integrated Continuous Operations 

 Design Spaces vs. Feedback Control 

 Application to Biologics Manufacturing 
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Integrated Control Strategy 

for Continuous Manufacturing 

 Tight integration of continuous operations can result in 
disturbances propagating downstream, unless their 
effects are suppressed by an integrated control strategy 

 The strategy must optimize the overall plant operation 
instead of only isolated units (i.e., need plantwide control) 
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Plantwide Control of Continuous Manufacturing 

Challenges 

• Many connected unit operations 

• Very fast to slow processes 

• Multi-purpose plants with short development time 

• Alignment with regulatory requirements (e.g., design space) 

Approach adapted from the chemical industry 

• Employs systematic and modular design of plantwide 
control strategies for continuous manufacturing facilities 

• Experimentally demonstrated on continuous pilot plant 

R. Lakerveld, B. Benyahia, R.D. Braatz, & P.I. Barton, Model-based design of a plant-wide control 

strategy for a continuous pharmaceutical plant, AIChE Journal, 59, 3671-3685, 2013 
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A continuous pilot plant 
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A continuous pilot plant 

• First-principles 
dynamic 
models were 
built for each 
unit operation 
(UO) as they 
were developed 

• Models were 
validated and 
then placed into 
a plant-wide 
simulation 

• Plant simulation 
used to design 
UO & plantwide 
control strategy 
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Model-based Design of a Plant-wide Control Strategy 

2. Optimizing control 

objectives 
Level 1 – Total I/O 

Level 4 – Detailed 

Control tasks 

(CQA, CPP)1 

Level 2 – Intermediates 

1. Stabilizing control 

objectives (local) 

Structure of plant-wide  

control strategy 

Level 3 – Recycles 

Control tasks 

(CQA, CPP)2 

Control tasks 

(CQA, CPP)3 

Control tasks classified into 

optimizing and stabilizing 

Hierarchical decomposition 

• Reduces complexity 

• Exploits separation of time scales 
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Parametric Sensitivities Used to Evaluate 
Relationships Between CPPs and CQAs 

  0 0 0, , ,ft t t x t t x   
- State variables 

- Input variables 

- Output variables (CQAs) 
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Use sensitivities (Si,j) to identify  

causal relations CPPs-CQAs: 

• Direction and order of magnitude 

• Guide selection of automated control loops 

• Determined from process simulation (could use DOE) 
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Example Sensitivity Results:  
Level 1: Total Inputs & Outputs 
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Also use sensitivities to evaluate dynamic I/O relationships, 
to assess controllability and disturbance propagation 
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A continuous pilot plant 

Met all 
purity 

specs in 
Summer 

2012 
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Outline 

 Control Systems for Integrated Continuous Operations 

 Design Spaces vs. Feedback Control 

 Application to Biologics Manufacturing 
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Design Space vs. Feedback Control (both are 
consistent with quality-by-design principles) 

Design-space methods: 

• Control strategy based on operation 

within a fixed parameter space 

• Applicable to each continuous 

process unit operation 

• More complicated to apply to an 

entire continuous pharmaceutical 

manufacturing plant 

 Feedback methods: 

• Control strategy based on 

feedback to a “parameter space” 

• Easier to scale up 

• Design space does not need to 

be exhaustively validated a priori 

• Necessary for continuous 

manufacturing 
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Outline 

 Control Systems for Integrated Continuous Operations 

 Design Spaces vs. Feedback Control 

 Application to Biologics Manufacturing 



Product manufacturing: 

Allston, MA USA 

Product QC: Haverhill, UK 

Fill/finish: Waterford, IE 

Cerezyme patients distributed worldwide 

Manufacturing biologic drugs today 

17 



Towards Biomanufacturing on Demand (BioMOD) 

Design  Requirements  Patient 

18 

BioMOD capabilities 

• Enable flexible methodologies for genetic engineering/modification of microbial 
strains to synthesize multiple and wide-ranging protein-based therapeutics 

• Develop flexible & portable device platforms for manufacturing multiple 
biologics with high purity, efficacy, and potency, at the point-of-care,  
in short timeframes (<24 hours), when specific needs arise 

• Include end-to-end manufacturing chain (including downstream processing)  
within a microfluidics-based platform 

• Focus on currently approved therapeutics by FDA (i.e. no drug discovery) 
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Rationale for Pichia pastoris  

as microbial host for biosimilar products 

Advantages from a regulatory perspective 

• Many products on market or in late-stage development  

(including one Phase I target) 

• Reduced risk for viral contamination in InSCyT process 

• Human-like post-translational modifications (folding, glycosylation, etc.) 

Technical benefits 

• Genetically stable organism 

• High density cultivation (culture volume >70% biomass) 

• High yields of secreted proteins (up to ~15 g/L) 

• Limited host cell protein (HCP) profile (eases burden on downstream) 

• Amenable to lyophilization 

20 
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Recall Quality by Design approach 

Process development involves: 

• Define the target  

product profile 

• Identify the  

critical quality  

attributes (CQAs) 

• Select an  

appropriate  

manufacturing  

strategy 

• Implement a 

control strategy 

22 



Plant-wide control approach 

• Characteristics of InSCyT 

– Many connected unit operations 

– Many discrete operations 

– Multi-product plant 

– Alignment with regulatory  

requirements (e.g., design space) 

• QbD approach adapted from chemical industry 

– Employing systematic and modular design of plantwide  

control strategies for production-scale manufacturing facilities 

– Using numerical algorithms that can handle discrete operations 

and multiple products 

R. Lakerveld, B. Benyahia, R.D. Braatz, & P.I. Barton, Model-based design of a plant-wide control 

strategy for a continuous pharmaceutical plant, AIChE Journal, 59, 3671-3685, 2013 
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Application to biologic drug production 

• Build first-principles  

dynamic models for  

each unit operation (UO) 

• Design control system  

for each UO to meet  

“local” material attributes 

• Evaluate performance in  

simulations and propose  

design modifications as needed 

• Implement and verify the control system for each UO 

• Design and verify plantwide control system to ensure 

that the CQAs are met 
24 
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Local “UO” control for bioreactor unit operations 

27 
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Local “UO” Control: Microscale controlled cell culture 

Kevin S. Lee et al., Lab on a Chip, 11, 1730-1739 (2011) 
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Kevin S. Lee et al., Lab on a Chip, 11, 1730-1739 (2011) 

Local “UO” control: Microscale controlled cell culture 

30 



Application to biologic drug production 

• Build first-principles  

dynamic models for  

each unit operation (UO) 

• Design control system  

for each UO to meet  

“local” material attributes 

• Evaluate performance in  

simulations and propose  

design modifications as needed 

• Implement and verify the control system for each UO 

• Design and verify plantwide control system to ensure 

that the CQAs are met 
31 
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