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ABSTRACT

SystemVerilog Assertions (SVA) are getting lots of attention in the verification community, and
rightfully so. Assertions Based Verification Methodology is a critical improvement for verifying
large, complex designs. But, we design engineers want to play too! Verification engineers add
assertions to a design after the HDL models have been written. This means placing the assertions
on module boundaries, binding external assertions to signals within the model, or modifying the
design models to insert assertions within the code. 

Design engineers can, and should, add assertions within a design while the HDL models are being
coded. There are challenges with doing this, however. A decision needs to be made before design
work begins as to what types of scenarios the design engineer should provide assertions for. The
design and verification teams need to coordinate efforts to avoid writing redundant assertions, or
worse, to miss adding assertions on key functionality. Design engineers have to learn the SVA (or
PSL) assertions language, which is a complex languages in and of itself. The design process will
probably take longer, because adding (and debugging) assertions as the design is being coded may
not be trivial.

This paper explores the challenges of having design engineers add assertions as HDL models are
developed. The test case used is a small DSP design. Suggestions and guidelines are presented for
partitioning assertions between the design and verification teams, and minimizing the impact on
design time.
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1.0 Introduction
Design engineers have a number of objectives that must be met for each design. These objectives
include meeting area, timing, and power requirements. And of course, the design must also
represent the specification. There are a number of tools and techniques used by design and
verification engineers to verify that a design correctly represents its specification. The focus
discussed in this paper is to show design engineers how they can take advantage of SystemVerilog
Assertions (SVA) as a tool to prove the intent of the design. This paper is written from a design
engineer’s perspective, targeted toward design engineers that do not have a strong background in
assertion techniques and usage.

The application of assertions to a design involves a number of considerations, the first of which is
determining which assertions will be written by design engineers and which will be written by the
verification and/or system engineers. Many of the assertions to be used to verify a design can, and
should, be determined before the design implementation phase begins. During the
implementation, the designer may need to add assertions beyond what was initially planned,
based on the design implementation. The designer may also need to make recommendations to the
verification team for additional top level assertions based on the details of the implementation. 

There will be a learning curve for a designer who is new to assertions, but with the help of this
paper and other available resources, a designer can start implementing SystemVerilog Assertions
into a design within a short period of time. As a beginning point, there are two main
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considerations a designer must make when adding assertions. The first consideration is to
recognize where to add assertions in a design. The second is to determine which type of assertion
to add. This paper will address these two considerations from a designer’s perspective.

A small 16-bit DSP is used as a case study for implementing SystemVerilog Assertions. This DSP
is used as a student design lab for Sutherland HDL training courses, and is designed to be simple
enough that the students can complete the DSP design in four to six hours. The design is complex
enough to require modeling of a variety of RTL blocks including a finite state machine (FSM), an
arithmetic logic unit (ALU), various registers and counters, and a bidirectional bus. This DSP lab
serves a dual purpose. The DSP design is a final project for students learning to write
synthesizable Verilog/SystemVerilog models. A complete, but broken, version of the DSP design
is used for students learning to write SystemVerilog assertions.

The DSP design lab has been used for a number of years in Sutherland HDL training courses.
Over the years the instructors have observed a number of common coding errors and specification
misunderstandings. These errors include:

• Bus contention on the multi-driver, bidirectional data bus
• MSB of the 16-bit data bus not tri-stated
• The trailing edge of reset not properly synchronized with the clocks
• The ALU exception and zero flags not properly cleared on the next operation after a flag is set
• Wrong bits of the instruction word bus connected to the program counter and controller
• Race conditions due to misuse of blocking and nonblocking assignments

Assertions will provide feedback to the designer during simulation regarding these common
errors, as well as many others potential coding discussed later in this paper.

The conclusions of this paper will summarize the ease (or difficulty) of adding assertions to the
DSP design, as well as several lessons learned from having students (both design engineers and
verification engineers) specify SystemVerilog Assertions.

2.0 A brief overview of SystemVerilog Assertions
SystemVerilog has two types of formal assertion statements: immediate assertions and concurrent
assertions. Both immediate and concurrent assertions perform a test on an aspect of the design. At
the completion of the test, pass or fail statements can be executed. In addition to the fail
statements, the failure severity level can be set for each assertion. The severity levels are set by
calling system tasks which include:

• $fatal — run-time fatal
• $error — run-time error
• $warning — run-time warning
• $info — notes that the assertion failed, but without any severity

Each of these severity level system tasks will print a tool-specific message, and may also include
user comments using the same syntax as the Verilog $display system task. Specifying a severity
level is optional; the default for assertion failures is $error, if not explicitly specified.
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2.1 SystemVerilog Assertion advantages

Assertion-like checks can be added into a design using the standard Verilog language. There are,
however, some serious drawbacks to writing assertion checks this way. One disadvantage is that
complex assertion-like checks can require writing complex Verilog code. Another disadvantage is
that checks written in Verilog will appear to be part of the RTL model to a synthesis compiler. A
third disadvantage is that an assertion-like check written in the Verilog language will be active
throughout simulation; there is no simple way to disable some or all checks during simulation.

One of the biggest advantages to using SystemVerilog assertions over embedding checks written
using Verilog statements in the design is that SystemVerilog assertions are ignored by synthesis.
The designer does not need to include translate_off/translate_on synthesis pragmas
scattered throughout the RTL code. The reality is that most designers simply do not embed
“homemade” assertions written in Verilog into their designs because the extra code and synthesis
pragmas convolutes the RTL model. For instance, rarely is an if statement implemented as
follows in an RTL model:

if (if_condition)
// do true statements

else 
//translate_off 
if (!if_condition)
//translate_on 

// do the not true statements
//translate_off 
else 

$display("if condition tested either an X or Z");
//translate_on 

A second advantage to using SystemVerilog assertions over “homemade” assertion-like checks
written in Verilog is that SystemVerilog Assertions can easily be disabled or enabled at any point
during simulation, as needed. This allows designers to add assertions to the RTL code, but then
disable the assertions for simulation speed later in the design process, or to focus assertion checks
to a specific region of the design. Assertion can be controlled in several ways:

• All assertions in specific levels of hierarchy can be turned off and on. 
• Assertions within a specific module can be disabled and enabled. 
• Assertions can be individually disabled and enabled. 

The system tasks to perform these operations are $assertoff, $assertkill, and  $asserton.

2.2 Immediate assertions

Immediate assertions, as the name implies, execute immediately, in zero simulation time.
Immediate assertions can be placed anywhere procedural statements can be placed; within always
blocks, initial blocks, tasks, and functions. Any procedural statement can be used in the pass or
fail statement part of an immediate assertion. Care must be taken to ensure that no design
functionality is modeled in the pass/fail parts of an assertion, because it will be ignored by
synthesis, thus causing a modeling difference between simulation and synthesis.
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The syntax for an immediate assertion is:

assert (expression) [pass_statement;] [else fail_statement;] 

Note that the pass_statement is optional. Most engineers will not specify any pass statements;
engineers are looking for failures, and don’t need to do anything when an assertion succeeds. The
else fail_statement is also optional. If it is left off, a tool-generated message will be printed, with
a default severity level of $error. Designers often specify an assertion fail condition in order to
augment the default assertion failure information provided by simulation. 

Below are two examples of immediate assertions to check for X or Z values in combinational
logic conditional expressions. 

module example_1 (
input ifcond, a, b,
output logic if_out

);

always_comb begin 
assert (^ifcond !== 1’bx); 

else $error("ifcond = X");
if (ifcond)

if_out = a;
else 

if_out = b;
end 

endmodule 

module example_2 (
input  a, b, c, d,
input [1:0] sel,
output logic out

);

always_comb begin 
assert (^sel !== 1’bx); 

else $error("case_Sel = X");
case (sel)

2'b00 : out = a;
2'b01 : out = b;
2'b10 : out = c;
2'b11 : out = d;

endcase 
end 

endmodule 

For more examples and details on using immediate assertions to trap logic X and Z problems,
refer to the paper “Being Assertive With Your X” [2], published in the proceedings of SNUG 2004.

2.3 Concurrent assertions

Concurrent assertions use a clock to trigger the assertion evaluation. The primary difference
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between immediate and concurrent assertions is that concurrent assertions evaluate conditions
over time, whereas immediate assertions test at the point in time when the assertion is called. The
syntax difference between the two types of assertions is very slight. The concurrent assertion
directive adds the key word property. The syntax for a concurrent assertion directive is:

assert property (property_expr) [pass_statement;] [else fail_statement;] 

The argument to assert property is a property expression (whereas, the argument to an
immediate assertion is a simple boolean expression). A property expression comprises of a clock
specification and a sequence of Boolean expressions tested over time. The expressions are
evaluated on the clock edge specified. The sequence of Boolean expressions can be spread over
multiple clock cycles by using the ## cycle delay operator between each expression.

The following code is an example of a completely self contained concurrent assertion directive. 

example_3: assert property @(posedge clk) ( req ##1 grant ##10 
!req ##1 !grant); 

else $error("bus request failed");

In English, the sequence in the example above is read as: “req should be true (high) immediately,
followed by grant being true (high) one clock cycle later. After ten more clock cycles, req should
be false (low), followed by grant being false (low) one clock cycle later.” For this assertion to
succeed, each expression must evaluate true at its specified time.

The property expression of a concurrent assertion can be defined in a separate block of code,
between the keywords property and endproperty. This enables the same property expression to
be re-used by multiple concurrent assertions. 

property bus_req_prop2;
@(posedge clk) req ##1 grant ##10 !req ##1 !grant;

endproperty 

example_4: assert property (bus_req_prop2}; 
else $error("bus request failed");

A complex property expression can be broken into smaller sequence building blocks, specified
between sequence and endsequence. This is illustrated in the following example.

sequence start_bus_req;
req ##1 grant;

endsequence 

sequence end_bus_req;
!req ##1 !grant;

endsequence 

property bus_req_prop3;
@(posedge clk) start_bus_req ##10 end_bus_req;

endproperty 

example_5: assert property (bus_req_prop3};

Most concurrent assertions are written so that the assertion “fires” each and every clock cycle,
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throughout simulation. This allows the assertion to run in the background, concurrent with the
design functionality. Since the assertion fires every clock cycle, an assertion with a sequence that
takes twelve clock cycles to execute could possibly have twelve concurrent threads running at the
same time; each thread starting on a subsequent clock cycle. In the bus request/grant sequence
examples above, req will be tested every clock cycle, starting a new concurrent assertion thread.
If req is true, the thread will continue and test for grant on the next clock cycle. If req is false,
however, the assertion will fail at that point in time. This would be a false failure, since there is no
design problem.

Property expressions can be specified with an implication operator, either |-> or |=> (there is an
important difference in these two operators, but we won’t go into that level of detail in this
paper—our examples will just use the |-> implication operator, which is the style we recommend
in our training courses). An implication operator tells the property not to evaluate a sequence (the
consequent) unless the first condition before the operator (the antecedent) is true. In the code
examples above, the designer will most likely only want to test the request/grant sequence when
req is true. For clock cycles where req is false, the assertion is a don’t care, and the request/grant
sequence should not be evaluated. In the following example, the implication operator prevents the
sequence from continuing when req is not true. The assertion does not fail, it simply does not run.

property bus_req_prop4;
@(posedge clk) req |-> ##1 grant ##10 !req ##1 !grant;

endproperty 

example_6: assert property (bus_req_prop4);

A property expression can automatically be disabled under specific conditions using a disable
iff statement. When the condition specified with disable iff is false, the assertion does not
fire, and kills any threads that are already running. A primary usage of disable iff is to prevent
false assertion failures from occurring while a design is being reset. The next example illustrates
this usage.

property bus_req_prop5;
@(posedge clk) 
disable iff (reset) // disable assertion during reset
req |-> ##1 grant ##10 !req ##1 !grant;

endproperty 

example_5: assert property (bus_req_prop5);

In addition to disable iff and the implication operator, there are several other property
operators that are useful in defining properties. These other operators are not covered in this
paper.

2.4 SystemVerilog constructs with built-in assertions

In addition to the assert construct, SystemVerilog provides some important RTL modeling
constructs that have built-in assertion behavior. Three primary constructs are briefly covered in
this section. By using these constructs, design engineers gain the advantages of adding assertions
to a design, without having to actually write the assertions.
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always_comb — This specialized procedural block provides several capabilities that the Verilog
always procedural block does not have. In brief, this specialized block enforces a synthesizable
modeling style. In addition, the always_comb block allows software tools to check that the code
within the block functions as combinational logic. For example, there are a number of coding
mistakes in intended combinational logic that can result in latches. By using always_comb, these
coding mistakes can be detected early in the design stage. Writing assertions to detect inadvertent
latched behavior is not necessary; the checks are built into the always_comb construct. More
details on always_comb and other SystemVerilog specialized procedural blocks (always_ff and
always_latch) can be found the book “SystemVerilog for Design” [3].

Note that the IEEE SystemVerilog standard does not require a tool to detect and report latched
logic functionality in an always_comb procedural block. At the time this paper was written, VCS
does not report such warnings, but DC Compiler does.

unique/priority decisions — These decision modifiers require that tools check that a decision
sequence (a case statement or an if...else...if statement) be completely specified. If during
simulation, the decision statement is entered and no branch is taken, a run-time warning is issued.
This is a useful built-in assertion that does not need to be written as a separate assert statement. In
addition, the unique modifier requires that simulation report a warning any time two or more
decision branches are true at the same time. This is another built-in assertion that designers should
take advantage of. For a much more detailed description on unique and priority decisions, refer to
the papers “SystemVerilog Saves the Day—the Evil Twins are Defeated! “unique” and “priority”
are the new Heroes” [4], and “SystemVerilog’s priority & unique - A Solution to Verilog’s
‘full_case’ & ‘parallel_case’ Evil Twins!”[5].

Enumerated types — Enumerated types provide a mechanism to give names (called labels) to
specific logic values. Enumerated types do much more than make code more readable. They also
specify a legal set of values for a variable. Enumerated variables are more strongly typed than
Verilog variables. It is illegal to assign an enumerated variable a value that is not in the
enumerated value set. In addition, it is illegal to have two enumerated labels with the same value.
The strongly typed nature of enumerated types is a form of built-in assertions that can prevent
inadvertent coding errors such as assigning a state machine state variable the value of a non-
existent state, or having a state value that decodes to more than one state. More details on the
advantages of enumerated types can be found in the book “SystemVerilog for Design” [3].

2.5 Invariant, sequential and eventuality assertions

Languages such as C, SystemC and VHDL have an assertion construct. These constructs,
however, do not have near the capabilities of SystemVerilog Assertions (neither does PSL, for that
matter). The C, SystemC and VHDL assert construct is essentially the same as SVA’s immediate
assertion. What makes SVA unique is the ability to specify concurrent assertions that evaluate as a
separate thread in parallel with the design code, and can span any number of design clock cycles.
(PSL also has concurrent assertions, but lacks some features and advantages of SVA).

SystemVerilog Assertions can be categorized into three general classifications. 

Invariant assertions look for conditions that are always true or are never true. For example, a
FIFO should never indicate full and empty conditions at the same time. An invariant assertion can
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be represented using either an immediate assertion or a concurrent assertion. Most of the
assertions that are specified by design engineers will probably be invariant assertions.

Sequential assertions look for a set of conditions occurring in a specific order and over a specific
number of clock cycles. The examples shown in section 2.3, above, are sequential assertions,
where req should be followed by grant followed by !req followed by !grant. 

Eventuality assertions check that one condition is followed by a second condition, but with any
number of clocks between the two conditions. For example, when an active-low reset goes to
zero, it should eventually return to one. Eventuality assertions can also be used for monitoring
handshaking signals between two asynchronous clocks. The monitoring will take place in one
clock zone but will monitor signals from the other clock zone.

3.0 Where assertions can be specified
The initial place to start considering assertions is during the development of the design
specification. The assertions specified during this phase of the design process will most likely be
extensions of the design specification itself, written in assertion pseudo code. This will
recommend, from a system point of view, which assertions should be defined. 

The test plan is another place where assertion pseudo code should be specified. Part of defining
how, and what, will be tested in the design should be defining where assertions will be used.
Specifying assertions as part of the test plan is presented in much greater detail in Section 4.2 of
this paper.

The actual assertions can be specified in three source code locations:

• Embedded in the RTL code
• As part of the testbench code
• In a separate file that is bound into the design

Embedding assertions into the RTL code should be the responsibility of the design engineer(s)
writing the model. Verification engineers should not modify the design code, itself. These
embedded assertions can be specified by the designer to ensure that the detailed implementation is
correct. Most of these assertions will be immediate assertions, but there will be places where
concurrent assertions will need to be used. For example, concurrent assertions can be used to
verify that the correct state machine transitions occur, and to flag bad transitions. Another place
where imbedded assertions should be used is in SystemVerilog interface models to ensure that
design blocks that use the interface correctly use the interface protocol. Note that any assertions
embedded in the RTL code will be lost during synthesis, since synthesis ignores assertions.

Assertion binding allows verification engineers to add assertions to design blocks, without
touching or modifying the designer’s code in any way. In essence, the assertion property blocks
and assert statements are in a separate testbench file, which is bound during the simulation
elaboration to specific design blocks. Assertion binding is a unique, and powerful, feature of
SystemVerilog. Being able to bind assertions to the design provides expanded capabilities. For
instance, verification engineers can write assertions for RTL models deep in the hierarchy of the
design without touching the RTL code, which will make RTL designers very happy. Another
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place where binding assertions is useful is in designs with mixed Verilog and VHDL models. The
SystemVerilog assertions can be bound to the VHDL models within the design. Assertion binding
can also be used to add assertions to IP models embedded in the design. 

Guideline — Assertions that might be useful both before and after synthesis should be external to
the RTL code and then bound to the design. Using binding allows the same assertions to be used
with both the RTL models and the gate level synthesized design. 

4.0 An assertions test plan for a small DSP design
In this section, we will show how assertions can be specified as the verification test plan is
developed. We will not delve into writing test plans; that is a different topic. Our focus is on
figuring out where assertions should be used, and whether the designer or verification engineer
should write the assertions.

A small Digital Signal Processor (DSP) design was used as a test case to illustrate how design
engineers can take advantage of assertions. This small DSP is somewhat contrived; it is not a
commercial or production design. The DSP is used in Sutherland HDL training courses to teach
design engineers to model complete, synthesizable designs in SystemVerilog. A complete, but
faulty, version of the DSP model is used in the SystemVerilog Assertions course to teach
engineers how to write assertions at both the design level and the testbench level.

4.1 The DSP design blocks

This small DSP design contains several blocks that can benefit from assertions.

Clock Generator — generates two phase-synchronized clocks, and synchronizes an external
reset to those clocks.

Program Memory — a 16-bit by 1024 word Random Access Memory (RAM) that contains the
program for the DSP to execute. Each instruction in the program memory contains a 16-bit
instruction word. An instruction word has two parts; the upper four bits represent the DSP
instruction, and the lower 12 bits represent the instruction data. To simplify the design for lab time
constraints, the program memory is wired for read-only activity. The logic for loading the
program memory is omitted from the DSP.

Instruction Register — a pre-fetch register that stores the next instruction to be executed by the
DSP.

Program Counter — a loadable counter that controls which instruction word is read from the
program memory.

Controller — a state machine that turns on and off eleven control signals that are used throughout
the processor.

Arithmetic Logic Unit (ALU) — executes eight operations: add, subtract, multiply, AND, OR
and exclusive-OR functions, plus a no-operation and a pass-through operation. The ALU also
creates a zero flag and an exception flag that continually reflect the result of the current operation.

Decoder — a combinational logic block that decodes the current processor instruction, and
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creates an operation code (opcode) for the ALU.

Status Register — stores the result of the ALU operation, operation flags, and a status flag that
indicates if a branching instruction is being executed.

Data Register — stores a data word used as an input to the ALU.

Data Memory — a 16-bit by 1024 word Random Access Memory (RAM) used to store data for
ALU operations and operation results.

Tri-state Buffers — control the multi-driver bidirectional busses in the DSP.

Figure 1 contains a high-level block diagram showing how these major parts of the DSP are
connected together. 

Figure 1.  Block diagram of the DSP test case

4.2 An assertions plan for the DSP

As noted previously in section 3 of this paper, one of the first steps in using assertions is to
develop an assertions test plan. This requires that the design team and the verification team sit
down together and discuss the primary purpose of each block of the design. The focus of the
discussion should be on what assertions will be needed to adequately verify each block. As these
assertions are discussed, a decision should be made as to whether it would be best to specify the
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assertion inside the design block, or external to the design block. 

In addition, an initial decision should be made as to whether the assertion should be written by the
designer as the RTL model is developed, or added by the verification engineer. Delegating this
responsibility before any actual code is written enables both engineering teams to work in
parallel, without duplicating effort. Just as important, specifying ownership for each assertion
helps ensure that all assertions are written. Neither team will falsely assume the other team will
write a specific assertion.

Experience has shown that the assignment of responsibility for each assertion must be flexible.
The design and verification teams should meet together often during the design process to review
the assertions test plan, and make adjustments if needed. For example, during the coding process,
a designer might decide that a specific assertion requires the use of signals that are not part of that
design block (such as access to a clock in a pure combinational logic design block). Therefore,
responsibility for that assertion should be transferred to the verification team, which has access to
both system level clocks and the combinational block. On the other hand, in the process of writing
assertions, the verification engineer might discover that some signal names internal to the design
block are required. Since those signal names are local to a design block, it would be more
appropriate for the designer to specify the assertion as the design code is being written.

4.3 Rule of thumb for delegating assertions

A simple rule of thumb can be used for determining whether an assertion should be written by the
design team as part of the design block, or specified by the verification team external to the design
block. As with any rule of thumb, this is just a guideline, but it is a good place to start.

Designer engineers should write assertions to verify assumptions that affect the functionality of a
design block. For example, the ALU block of the DSP assumes that the A, B and opcode inputs
will never have a logic X or Z value. The RTL code within the ALU depends on that assumption
to function properly. It is appropriate for the designer to add assertions to the design block that
verify those assumptions hold true. It is a very easy assertion to write, and should the assumption
prove false, the assertion failure helps quickly isolate where a functional problem arose.

Verification engineers should write assertions that verify design functionality meets the design
specification. For example, the zero flag output of the ALU block of the DSP should always be set
if the result output is zero. Again, an assertion failure will help quickly isolate the cause of a
functional problem.

Not all of the assertions in the test plan will fall neatly into one of these two categories, but a
majority of checks will. For those assertions that do not fall into either of these two categories, the
design and verification teams will need to discuss which team gets the privilege of writing the
assertion.

4.4 An example assertions test plan

The following tables illustrate an assertion test plan for the simple DSP design. Additional
assertions could be added to this test plan, but what is shown is adequate to illustrate the intent.
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Table 1: Clock Divider / Reset Synchronization block

Functionality to Verify Assertion 
Type Assigned To

When external reset goes low, it should eventually go high again eventuality designer

ctl_clk is always the invert of ext_clk invariant verifier

After reset, a posedge of sys_clk occurs every third posedge of ext_clk sequential verifier

rstN is low whenever ext_rstN is low invariant verifier

At posedge ext_rstN, rstN goes high on the first posedge of ctl_clk before a 
posedge of sys_clk (must allow for gate delay skew on clock edges)

sequential verifier

Table 2: RAM block

Functionality to Verify Assertion 
Type Assigned To

!rdN (read) and !wrN (write) are mutually exclusive invariant designer

address input never has any X or Z bits when writing into the RAM invariant designer

data never has any X or Z bits when writing into the RAM invariant designer

address input never has any X or Z bits when reading from the RAM invariant designer

data never has any X or Z bits when reading from the RAM invariant designer

Table 3: Program Counter block

Functionality to Verify Assertion 
Type Assigned To

load and increment are mutually exclusive invariant designer

If increment, then d input never has any X or Z bits invariant designer

If !load and !increment, then on posedge of clock, pc does not change (must allow 
for clock-to-q delay)

sequential verifier

If increment, then pc increments by 1 (must allow for clock-to-q delay) sequential verifier

If load, then pc == d (must allow for clock-to-q delay) sequential verifier
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Table 4: Decoder block

Functionality to Verify Assertion 
Type Assigned To

After reset, instruction input never has any X or Z bits invariant designer

All instructions decoded unique case designer

If pass instruction (4’b1000), then ALU opcode == pass (3’b001) invariant verifier

If arithmetic and logical instructions (instruction[3] == 0), then ALU opcode == 
instruction[2:0] 

invariant verifier

If move and branch instructions (instruction == hex 9 through hex F), then opcode 
== no-op (3’b000)

invariant verifier

Table 5: ALU block

Functionality to Verify Assertion 
Type Assigned To

After reset, the A input never has any X or Z bits invariant designer

After reset, the B input never has any X or Z bits invariant designer

After reset, the opcode input never has any X or Z bits invariant designer

All instructions decoded unique case designer

zbit always set if result == 0 invariant verifier

zbit never set if result != 0 invariant verifier

After overflow/underflow, xbit cleared on next operation if no overflow/under-
flow

sequential verifier

Add/multiply operation overflows when the A and B input MSB's are both set sequential verifier

Subtract operation underflows when the A input is less than the B input invariant verifier

Non-arithmetic operations never causes an exception invariant verifier

Table 6: Data Register block

Functionality to Verify Assertion 
Type Assigned To

If !load, then at each clock, q does not change sequential verifier

If load, then after posedge clock, q == d (must allow for gate clock-to-q delay) sequential verifier
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Table 7: Status Register block

Functionality to Verify Assertion 
Type Assigned To

If !load, then after posedge clock, r_reg, x_reg, z_reg do not change sequential verifier

If load, then after posedge clock, r_reg == r_in (allow for gate clock-to-q delay) sequential verifier

If load, then after posedge clock, x_reg == x_in (allow for gate clock-to-q delay) sequential verifier

If load, then after posedge clock, z_reg == z_in (allow for gate clock-to-q delay) sequential verifier

after posedge clock, b_reg == b_in (allow for gate clock-to-q delay) sequential verifier

after posedge clock, d_reg == d_in (allow for gate clock-to-q delay) sequential verifier

Table 8: Controller block

Functionality to Verify Assertion 
Type Assigned To

After reset, instruction input never has any X or Z bits invariant designer

At posedge of clock, state is always one-hot invariant designer

If !rstN, state == reset sequential verifier

If in decode state, prior state was reset or store sequential verifier

If in load state, prior state was decode sequential verifier

If in store state, prior state was load sequential verifier

Table 9: IO Buffer block

Functionality to Verify Assertion 
Type Assigned To

If !en, all bits of output should be tri-stated sequential verifier
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5.0 Example assertions per the assertion test plan
The following code snippets illustrate a few of the assertions design engineers can, and should,
add to the design code. These examples come from the assertions test plan listed in section 4.4,
above.

5.1 ALU block: No X on inputs; All opcodes decoded

always_comb begin 
// Assertions to test for bad inputs (no X or Z bits)
ai_a_never_x: assert (^a !== 1'bx);
ai_b_never_x: assert (^b !== 1'bx);
ai_opc_never_x: assert (^opcode !== 1'bx);

overflow = 0; //assume no overflow by default
unique case (opcode)
ALU_NOP : result = 0;
ALU_PASS : result = a;
ALU_ADD : {overflow[0], result} = (a + b);
ALU_SUB : {overflow[0], result} = (a - b);
ALU_MULT : {overflow, result}    = (a * b);
ALU_AND : result = (a & b);
ALU_OR : result = (a | b);
ALU_XOR : result = (a ^ b);
endcase 

end 

The three assert statements are invariant immediate assertions. They verify the design assumption

Table 10: Top-level block

Functionality to Verify Assertion 
Type Assigned To

!dmem_rdN and !rslt_oeN are mutually exclusive invariant verifier

After reset, data bus never has any X or Z bits invariant verifier

After reset, PC d input == lower 12 bits of IW invariant verifier

After reset, decoder instruction == upper 4 bits of IW invariant verifier

After reset, controller instruction == upper 4 bits of IW invariant verifier

load_s, load_b and load_pc are mutually exclusive invariant verifier

load_f and load_pc are mutually exclusive invariant verifier

inc_pc and load_pc are mutually exclusive invariant verifier

!dmem_rdN and !dmem_wrN are mutually exclusive invariant verifier
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that the inputs to the ALU are valid (no bits with X or Z values) each time the procedural block is
entered. That was easy, wasn’t it! 

To test that all opcodes are decoded, the unique modifier is added to the case statement. This
modifier has built-in assertion behavior. Simulation is required to report a warning if the case
statement is entered, and no branch is taken. Simulation is also required to report a warning if it
detects that two or more branches are true at the same time. This was an easy check to add to the
RTL code, too! 

Two other assertion checks are also illustrated in this code example. The always_comb procedural
block informs software tools that the designer’s intent is that this block of code represent
combinational logic. Should a coding mistake cause latched logic behavior, tools can warn that
the code does not match the designer’s intent. (At the time this paper was written, VCS did not
provide this warning, but DC Compiler does.) The opcode names are defined as an enumerated
type (not shown in the code snippet, above). Enumerated types have built-in syntactic assertions
that prevent two opcode names being inadvertently defined with the same opcode value.

5.2 RAM: Mutually exclusive read/write control lines

// assertion to check that read and write are never low at the same time
always @(rdN or wrN)

#0 ai_read_write_mutex: assert (!(!rdN && !wrN));

This simple assertion is written as an invariant immediate assertion. A mutually exclusive
assertion such as this would normally be written as a concurrent assertion that runs as a separate
thread in parallel to the model’s RTL code. However, concurrent assertions require a clock, and
since this model is an asynchronous RAM, there is no clock. Therefore the assertion is written as
a separate always procedural block. Synthesis will ignore the assert statement, making this an
empty procedural block, which will also be ignored by synthesis.

5.3 Controller state machine: At posedge of clock, state is always one-hot 

// FSM state should always be one-hot
property p_fsm_onehot;

@(posedge clk) disable iff (!rstN) ($onehot(state));
endproperty 
ap_fsm_onehot: assert property (p_fsm_onehot);

This test is modelled as an invariant concurrent assertion. It executes as a parallel thread with the
RTL code. At every positive edge of clock, the assertion verifies that the value of the state
variable has one, and only one, bit set.

Section 6.7, in “Lessons learned”, discusses some additional considerations for this assertion.

5.4 Controller state machine: Proper state sequencing

// verify asynchronous reset to RESET state
property p_fsm_reset;

@(posedge clk) !rstN |-> state == RESET;
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endproperty 
ap_fsm_reset: assert property (p_fsm_reset);

// verify DECODE state was entered from RESET or STORE state
property p_fsm_decode_entry;

@(posedge clk) disable iff (!rstN) 
state == DECODE |-> $past(state) == RESET || $past(state) == STORE;

endproperty 
ap_fsm_decode_entry: assert property (p_fsm_decode_entry);

// verify LOAD state was entered from DECODE state
property p_fsm_load_entry;

@(posedge clk) disable iff (!rstN) 
state == LOAD |-> $past(state) == DECODE;

endproperty 
ap_fsm_load_entry: assert property (p_fsm_load_entry);

// verify STORE state was entered from LOAD state
property p_fsm_store_entry;

@(posedge clk) disable iff (!rstN) 
state == STORE |-> $past(state) == LOAD;

endproperty 
ap_fsm_store_entry: assert property (p_fsm_store_entry);

The requirement for these assertions is that they look back in simulation time to see previous
values of the state variable. In Verilog, this would require extra code to preserves past values of
the variable. SystemVerilog Assertions makes this an easy test to write. The $past function is
provided, which automatically looks back a specified number of clock cycles (the default is one
cycle, which is what is used in these examples) and returns the previous value of a net or variable.

6.0 Lessons learned
Developing assertions for this small DSP design illustrates a number of important lessons on
Assertion Based Verification. As noted earlier in this paper, the DSP case study used in this paper
is a training lab. The lab is used in two ways: for designers to learn to write synthesizable RTL
models, and for design and verification engineers to learn to write SystemVerilog assertions.

Some of the lessons learned form the dual use of this DSP case study are listed in this section.

6.1 Developing the assertions test plan takes time

The design and verification teams should plan to invest a fair amount of time before any RTL
coding begins developing the assertions test plan. This is not a trivial task, but it is critical to the
success of assertion based verification. From the design engineer’s perspective, the assertion test
plan is important, because it is the guideline on what assertions the designer is responsible to
write.

6.2 The assertion test plan helps identify similar assertions

As the assertion test plan is developed, it becomes obvious that some assertions are essentially the
same for each design block. These assertions are prime candidates for the use of property blocks.
SNUG San Jose 2006 18 SystemVerilog Assertions for Design Engineers



A generic property block can be used for multiple assertions. This greatly reduces the amount of
time it takes to write the assertions.

6.3 Take advantage of SystemVerilog constructs with built-in assertions

The DSP design used as a case study for this paper has been used as a training lab in Sutherland
HDL training courses for several years. The lab is a final project, giving engineers an opportunity
to use all of the principles presented during the course to model a complete design. Students new
to Verilog often make simple modeling mistakes, such as incomplete case statements and
inadvertent latches in what should be combinational logic. In our Sutherland HDL training
courses, we encourage engineers to use the SystemVerilog constructs that have built-in assertions,
such as unique/priority case statements, enumerated types, and always_comb/always_ff
procedural blocks. We have seen the use of SystemVerilog constructs with built-in assertions
dramatically reduce the time it takes even the most novice of engineers to model the DSP design
and get the model to correctly simulate and synthesize.

The assertions test plan should specify critical areas of the design where SystemVerilog constructs
with built-in assertions should be used.

6.4 An assertion should not just duplicate RTL functionality

RTL code causes specific output changes. An assertion should monitor those changes, and verify
what caused the change.

Designers are prone to writing assertions that duplicate RTL code. It is natural for designers to
think along the lines that an action should cause an effect, and write assertions in the same way
they write RTL code. For example, an assertion that verifies “if the ALU result is zero, then the
zero flag should be set” only duplicates the RTL logic. Assertions should be written to test that an
affect should be the result of a cause. A better assertion is for the zero flag is “if zero flag is set,
then result should be zero”.

One of the observations of the authors is that most designers will go through a learning curve in
order to learn to think about writing assertions differently than they write RTL logic.

6.5 Disabling assertions during resets is important

Concurrent assertions, and immediate assertions in combinational logic, will begin executing at
the very start of simulation. Before a design has been reset, and while it is being reset, a design is
probably not in a known, stable condition. Dozens, possibly hundreds of false assertion failures
can be reported prior to reset completing. These false failures could hide a real assertion failure. It
is important to prevent the clutter of false assertion failures. 

As discussed earlier in this paper, in sections 2.1 and 2.3, SystemVerilog makes it easy to disable
assertions until the design reaches a stable point.

6.6 Need to be flexible on who writes the assertions

It is important to keep some flexibility in the dividing line between assertions the designer should
write and assertions the verification engineer should write. In the development of the assertions
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test plan, the dividing line can seem obvious, but students defining assertions for the small DSP
design frequently encounter many situations where an assertion that seemed logical for the
designer to write as the model is developed turned out to be difficult or ineffective at that level.
The ALU block of the DSP is a prime example. The ALU block is pure combinational logic,
which does not have a clock. Since concurrent assertions are cycle based, a clock is required. In
order to concurrently test ALU inputs and functionality using assertions, the assertion needs to be
written outside of the ALU block, where it has access to the clock and the internal signals within
the ALU. The assertions test plan needs to allow the design engineer to re-assign the task of
writing the assertion back to the verification team.

6.7 Testing logic that has enumerated types requires access to the enumerated names

The DSP controller is a state machine. The state names are typically modeled as either parameter
constants or enumerated type labels. In traditional Verilog/SystemVerilog modeling styles, these
state names are declared within the state machine module. Since the state names are local to the
state machine module, a verification engineer cannot write assertions on state transitions until the
state names are defined. This means the verification team cannot develop those assertions in
parallel with the design team. In addition, a verification engineer cannot write the assertions
outside of the state machine module, because the state labels do not exist outside of the design
block. The assertions must be embedded in the design module in order to use the locally declared
state names.

The solution to this dilemma—and a good coding guideline to adopt—requires two changes to
how designers use enumerated types:

a. Make the names to be used for enumerated type labels, such as the state names of a state
machine, part of the design specification. In this way, both the designer and the verification
engineer know up front what names will be used within a module block.

b. Move the definition of the enumerated label names to a package, outside of the state machine
module. This gives access to these names in both the design module and in verification
blocks.

6.8 Enumerated type labels disappear after synthesis

Enumerated types provide a mechanism to give labels (names) to specific logic values. A
common use of enumerated types is to label state machine names, ALU opcodes, and processor
instructions. An abstract enumerated type definition does not specify the hardware logic value for
each label. The definition of the actual logic values in a gate-level implementation is left to
synthesis compilers. An example of a typical enumerated type definition from the DSP case study
is:

typedef enum {RESET, DECODE, LOAD, STORE} states_t;

states_t state, next_state; // state and next state have labeled values

Assertions on the state machine can be written using these enumerated value labels. However,
after the design has been synthesized, the gate-level design has arbitrary, synthesis-selected logic
values; and the assertions using enumerated labels are no longer valid.
SNUG San Jose 2006 20 SystemVerilog Assertions for Design Engineers



SystemVerilog has the capability to define specific values for each enumerated label at the RTL
level, before synthesis (VHDL, C and SystemC do not have this capability). For example:

typedef enum logic [3:0] {
RESET = 4’b0001, 
DECODE = 4’b0010, 
LOAD = 4’b0100, 
STORE = 4’b1000

} states_t;

states_t state, next_state; // state and next state have one-hot values

Now the values of each enumerated label are known prior to synthesis. Synthesis compilers can
be instructed to keep these same values in the gate level implementation of the design (the default
behavior for DC Compiler). An assertion written using the enumerated labels will now work with
at both the RTL level and the post-synthesis gate level of the design.

As a guideline, enumerated types that will be used in both the design and in assertions should
always define the actual values for each enumerated label.

6.9 Assertion based verification may require different design partitioning

Concurrent assertions are cycle based, and require a clock definition. However, pure
combinational logic does not have a clock. In addition, it is desirable to disable most assertions
during reset, but pure combinational logic does not have a reset. The specification for the DSP
design has two design blocks that are pure combinational logic, the ALU and Decoder. In order to
effectively use assertions to verify these design blocks, the design specification should re-
partition the design to combine the combinational logic and the sequential logic that registers the
ALU results (the status register) into a single partition.

7.0 Conclusions
Assertions are not just for verification engineers! Design engineers can, and should, learn to take
advantage of SystemVerilog assertions. Designers should embed assertions into their design code
as the models are being written. Specifically, designers should add an assertion for any
assumption about design conditions on which the model depends. At a minimum, this includes
assertions that inputs to each module are valid values.

An assertion test plan is critical to assertion-based verification. The test plan defines what
assertions need to be written, and whether the designer or the verifier is responsible for writing the
assertion. This up-front delegation of responsibility ensures that all assertions are written, and
than no assertions are missed.

Design engineers need to think differently when writing assertions. RTL code monitors input
values and causes output changes. Assertions should monitor output values, and verify what
caused the change. There is a learning curve involved in adopting assertion-based verification.

Design engineers should take full advantage of the SystemVerilog constructs that have built-in
assertions. These include specialize always procedural blocks, enumerated types, and unique/
priority decisions.
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The case study of a small DSP design presented in this paper is used as a final project in
Sutherland HDL Verilog/SystemVerilog training courses. The authors have observed many
common modeling mistakes engineers learning Verilog often make. The assertions test plan
presented in this paper effectively traps nearly all common design mistakes novice designers
make on this final project. Without assertions, these mistakes are difficult to debug and isolate to
the root cause. Assertions have proven to be very effective at detecting functional problems in a
design, and pointing to the exact cause of the problem. Assertions can reduce troubleshooting
time from a half hour or more to just minutes.

In discussions during training classes, the authors have often encountered skepticism from design
engineers regarding adding assertions to their design code. Some of the reasons given for this
hesitancy are: assertions are too hard to write, assertions will convolute the RTL code, adding
assertions could possibly introduce bugs in the RTL logic, assertions will take too long to write,
and assertions will slow down simulation run-times.

As noted earlier in this paper, three major advantages to having designers embed some assertion
checking into the RTL code are:

• SystemVerilog makes it easy to write basic assertions (complex sequences that utilize SVA
operators can be more difficult to write, but those types of assertions are usually written by the
verification team).

• SystemVerilog Assertions are ignored by synthesis; there is no need to convolute the code with
translate_off/translate_on synthesis pragmas.

• SystemVerilog Assertions can be disabled at any time during simulation, on a global basis, on
a per module basis, or on a specific assertion basis. Disabling assertions can eliminate false
failures during reset or other conditions where parts of the design are not stable. Disabling
assertions can also be used to improve simulation run-time performance when some, or all,
assertion checks are not needed.

When time is invested to write a good assertion test plan, adding assertions to RTL code is very
simple. SystemVerilog Assertions really are for design engineers, too! 
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