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• Most of the examples used in 
this tutorial are borrowed from 
our SVA book
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INTRODUCTION
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Hardware Verification Task

• Does DUT meet the spec?

• Simulation
• Does DUT meet the spec for given input stimuli?

• Formal Verification (FV)
• Does DUT meet the spec for any legal input stimuli?

DUT
(RTL)

SPEC
(Spec 

language)
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SystemVerilog Assertions (SVA)

• SystemVerilog (proliferation of Verilog) is a unified 
hardware design, specification, and verification language
• RTL/gate/transistor level

• Assertions (SVA)

• Testbench (SVTB)

• API

• SVA is a formal specification language
• Native part of SystemVerilog [SV12]

• Good for simulation and formal verification
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SVA Standardization History

• 2003
• Basic assertion features defined

• 2005
• Improved assertion semantics

• 2009
• Major changes in the language: deferred assertions, LTL support, 

checkers

• 2012

• Improved checker usability, final assertions, enhancements in bit-
vector system functions and in assertion control

• Part of SystemVerilog standardization (IEEE 1800)
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SVA vs. PSL

• Formal semantics of SVA is (almost) consistent with the 
formal semantics of PSL [PSL10]

• Meta-language layers are quite different (e.g., checkers 
vs. vunits)

• SVA has well-defined simulation semantics; tightly 
integrated with other parts of SystemVerilog
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FORMAL VERIFICATION 
MODEL. LTL PROPERTIES
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Linear Time Model. Global Clock

• We assume that the time is linear:
• There is one global clock (AKA system clock or reference clock) 

which always ticks (never stops)

• All signal changes are synchronized with the ticks of the global 
clock

• Global clock introduces the notion of discrete time in the system

• 0, 1, 2, …

• Each number corresponds to a tick of the global clock
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Global Clock in SystemVerilog

• In simulation the natural notion of global clock are simulation 
ticks. But such definition makes global clock very expensive

• In SystemVerilog there is a special construct for global 
clocking definition
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module m(input logic clk, …);
global clocking @(posedge clk); endclocking

…
default clocking @$global_clock; endclocking

…
endmodule : m

May be declared 
anywhere in the 

design

Default clocking 
defines the 

default clock for 
assertions

$global_clock
is explicit 

designation of 
global clock

global clocking is used in simulation, but usually ignored in FV and emulation

In practice most assertions are written relative to some specific clock,
not relative to the global clock. Will be discussed later



Formal Verification Model

• Kripke structure: � =	 �, �, �, �

• � – Finite set of states

• � ⊆ � – Set of initial states

• � – Set of Boolean variables (labels)

• 
: � → 2� – Labeling function mapping each state to the set of 
variables that are true in this state

• � ⊆ � × � – (Left total) transition relation

• Shows to which states it is possible to transition from given state
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Formal Verification Model. Example

• � = �, �

• � = ∅, � , � , �, �

• � = �

• �
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module m(input logic i, clk, output o);
wire a = !i;
global clocking @(posedge clk); endclocking

always @($global_clock) o <= a;
endmodule : m



Symbolic Representation

• Each � variable  is represented as a pair:
• Current value (its value at the current time moment): �
• Next value (its value at the next time moment): �′

• Each set and relation is represented by its characteristic 
function
• E.g., � = � ⊕ �′

• In SystemVerilog there is a notation of next value:
• $future_gclk(x)

• E.g., �⊕�′ corresponds to i ^ $future_gclk(o)

• Other future sampled value functions:
• $rising_gclk(x) � !x & $future_gclk(x) (for bit variables)
• $falling_gclk(x) � x & !$future_gclk(x) (for bit variables)
• $steady_gclk(x) � x === $future_gclk(x)
• $changing-gclk(x) � x !== $future_gclk(x)
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Linear Time Model

• Linear time FV model defines a number of legal infinite 
traces

• Specification language describes the properties of these 
traces
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module m(input logic clk, i, output logic o);
global clocking @(posedge clk); endclocking

default clocking @$global_clock; endclocking
always @(posedge clk) o <= !i;
assert property (i |=> !o);

endmodule : m

i 0 0 1 1 …

o 0 1 1 0 …

i 0 1 0 1 …

o 1 1 0 1 …

i 0 0 1 1 …

o 0 0 1 1 …

Feasible 
traces

Infeasible 
trace



Linear Time Language (LTL) Properties

• Properties are temporal statements that can be true or 
false
• Properties have a starting point (t), but no end point

• Boolean property: e

• Nexttime property: nexttime p

• In SVA there exists also a strong version: s_nexttime

• Discussed later
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0 1 2 t

e

0 1 2 t

p

t+1



LTL Properties (cont.)

• Always property: always p

• Eventually property: s_eventually p
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0 1 2 t

p p p pp p p

0 1 2 t

p



Compound Properties

• True from next moment: nexttime always p

• True from some moment: s_eventually always p

• Infinitely often: always s_eventually p
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t
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t
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t

p p p pp p pppp



Boolean Connectives

• Negation: not p

• Conjunction: p and q

• Disjunction: p or q

• Implication: p implies q

• Equivalence: p iff q

• Condition: if (e) p else q

• Case
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Counterexample

• Counterexample – trace witnessing a property failure

• In general case – infinite

• May be finite

• Meaning that any infinite extension of this finite trace is a 
counterexample
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Safety and Liveness

• Safety properties
• All their counterexample are finite

• E.g., always e

• Liveness properties
• All their counterexamples are infinite

• E.g., s_eventually e

• Hybrid properties also exist
• Sometimes also called “liveness”
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0 1 2 t

!e

0

!e !e !e!e !e!e !e!e!e!e!e

[AS87, KV01]



LTL Properties. Until

• Non-overlapping until
• p until q – if q does not happen, p holds forever

• p s_until q – q must eventually happen

• Overlapping until
• p until_with q – if q does not happen, p holds forever

• p s_until_with q – q must eventually happen
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0 1 2 t

p p p pp p q

0 1 2 t

p p p pp p

p and q

Safety

Safety

(General) 
liveness

(General) 
liveness



Bounded Versions 
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Property Semantics

[s_]nexttime [m] p [s_]nexttime … [s_]nexttime p

[s_]eventually [m:n] p [s_]nexttime [m] p or … or [s_]nexttime [n] p

s_eventually [m:$] p s_nexttime [m] s_eventually p

[s_]always [m:n] p [s_]nexttime [m] p and … and [s_]nexttime [m] p

always [m:$] p nexttime [m] always p



ASSERTION STATEMENTS

November 4, 2013 HVC2013 24



Assertion Kinds
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Assertions

Clocked Unclocked

Concurrent Immediate Deferred Final

2009 2012



(Concurrent) Assertion Statements

• Assertions
• Insure design correctness

assert property (p);

• Assumptions
• Model design environment

assume property (p);

• Cover statements
• To monitor coverage evaluation

cover property (p);

• Restrictions
• To specify formal verification constraint

restrict property (p);
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Assertion Placement

• Inside initial procedure execute only once

• Outside of initial procedure execute continuously
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initial

assert property(p);
Once

assert property(p); Every clock 
tick

Expresses pure 
semantics, but 

rarely used
initial assert property(rst);

p is always true

rst is high at time 0

Implicit always
always p is true at time 0

assert property(ok); ok is always high



Assertions

• Specify requirements from DUT

• FV
• Mathematically proves assertion correctness

• DV
• Checks assertion correctness for given simulation trace
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initial assert property (p);

Passes iff p is true at time 0 on all feasible traces

Fails iff p is false at time 0 on some feasible trace



Assumptions

• Specify requirements from environment

• FV
• Restricts the set of feasible traces in the model

• DV
• Checks assertion correctness for given simulation trace

• From FV point of view, the DUT acts as an assumption

• Contradictory assumptions (with each other or with the 
model) cause all assertions to pass

• This is called an empty model
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assume property (in == !inv_in)
else $error(“Inputs in and inv_in are expected to be inverse”);



Restrictions

• Specify condition for which FV has been performed

• FV

• Restricts the model

• Same as assumption

• DV

• Completely ignored
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restrict property (opcode == OP_ADD);



Cover

• Specify scenario you wish to observe

• FV
• Mathematically prove that the property holds on some feasible 

trace

• DV
• Capture scenario in simulation trace

• From FV point of view
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cover property (read[*2]);

initial cover property (p);

passes

initial assert property (not p);

fails



Formal View on Assertions and 
Assumptions
• Set of assumptions

• initial assume property (q_1);

• …

• initial assume property (q_m);

• and assertions
• initial assert property (p_1);

• …

• initial assert property (p_n);

• is equivalent to the following single assertion
• initial

assert property (q_1 and … and q_m
implies p_1 and … p_n);
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Sampling

• Signal values are sampled at the beginning of simulation 
tick

clock

sig

sample here
Time Step



SEQUENCES AND 
PROPERTIES
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Sequence

• Informal definition
• Sequence is a rule defining a series of values in time

• A sequence does not have a truth value, it has one initial 
point and zero or more match points

• When a sequence is applied to a specific trace, it defines 
zero or more finite fragments on this trace starting at the 
sequence initial point and ending in its match points

• Essentially, sequence is a regular expression
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Example

• Read is followed by write in one or two clock ticks
• read ##[1:2] write

• Let starting point of this sequence be t = 2
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2 3 4 2 3 4
No match

2 3 4

Single match at 3

2 3 4

Single match at 4

2 3 4

Two matches (at 3 and 4)



Boolean Sequence

• Boolean expression e defines the simplest sequence – a 
Boolean sequence
• This sequence has a match at its initial point if e is true

• Otherwise, it does not have any satisfaction points at all
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Sequence Concatenation

• Sequence concatenation: r ##1 s

• There is a match of sequence r ##1 s if there is a match of 
sequence r and there is a match of sequence s starting from the 
clock tick immediately following the match of r

• In other words, a finite trace matches r ##1 s iff it can be split into two 
adjacent fragments, the first one matching r, and the second one 
matching s.
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Sequence Fusion

• Sequence fusion r ##0 s is an overlapping concatenation
• The fusion of sequences r and s, is matched iff for some match of 

sequence r there is a match of sequence s starting from the clock 
tick where the match of r happened

November 4, 2013 HVC2013 39



Zero Repetition (Empty Sequence)

• s[*0]
• sequence admitting only an empty match

• Matches on any trace but the trace fragment is empty (does not contain 
clock ticks)
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Sequence Disjunction

• Sequence disjunction r or s is a sequence which has a 
match whenever either r or s (or both) have a match
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Consecutive Repetition

• Repetition
• r[*0] is an empty sequence

• If n > 0 (const.)

• r[*n] � r[*n-1] ##1 r

• Finite repetition range
• r[*n:n] � r[*n]

• r[*m:n] � r[*m:n-1] or r[*n], m < n
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Infinite Repetition Range

• Infinite range: repeat s n or more times

• Formal definition
• Sequence s[*1:$] matches trace fragment i : j if it is possible to 

divide this trace fragment into one or more consecutive fragments 
so that each such fragment matches s

• s[*0:$]  � s[*0] or s[*1:$]

• s[*n:$]  � s[*0:n-1] or s[*1:$], n > 1

• Shortcuts (SVA 2009)
• s[*] � s[*0:$] – Zero or more times

• s[+] � s[*1:$] – One or more times
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s[*n:$] does not mean that sequence s is repeated infinitely many 
times, but that it is repeated n or more (finite) number of times



Sequence Concatenation and Delay

• r ##0 s is a sequence fusion

• r ##1 s is a sequence concatenation

• r ##n s, where n > 1 is defined recursively

• r ##n s � r ##1 1[*n-1] ##1 s

• ##n s � 1[*n] ##1 s
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Delay Ranges

• r ##[0:0] s � r ##0 s

• r ##[m:n] s � (r ##1 1[*m-1:n-1] ##1 s), where n ≥ m > 0

• r ##[0:n] s � (r ##0 s) or (r ##[1:n] s), where n > 0

• r ##[m:$] s � (r ##1 1[*m-1:$] ##1 s), where m > 0

• r ##[0:$] s � (r ##0 s) or (r ##[1:$] s), where n > 0

• ##[m:n] s � 1 ##[m:n] s, where n ≥ m ≥ 0

• ##[m:$] s � 1 ##[m:$] s, where m ≥ 0

• Shortcuts (SVA 2009)
• ##[*] � ##[*0:$]

• ##[+] � ##[*1:$]
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Other Sequence Operators

• Go to repetition: e[->n], e[->m:n]
• e is a Boolean

• Non-consecutive repetition: e[=n], e[=m:n]
• e is a Boolean

• Intersection: r intersect s

• Conjunction: r and s

• Containment: r within s

• Throughout: e throughout s

• First match: first_match(r)

• Sequence methods
• r.triggered

• r.matched
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Sequential Property

• Strong sequential property
• strong(s) is true in clock tick i iff sequence s with initial point i has 

a match

• Sequence s should not admit an empty match

• Weak sequential property
• weak(s) is true in clock tick i iff there is no finite trace fragment i : j

witnessing inability of sequence s with the initial point i to have a 
match.

• Sequence s should not admit an empty match

• In assertions, assumptions and restrictions weak may be 
omitted

• In cover statements strong may be omitted
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Sequential Properties. Examples

• initial assert property (rst[*2]);
• Same as initial assert property (weak(rst[*2]));

• For global clock it is also the same as initial assert property 
(strong(rst[*2]));

• initial assert property (rst[*]);
• Admits empty match

• initial assert property (rst[*] ##1 ready);
• Same as initial assert property (rst until ready);

• initial assert property (strong(rst[*] ##1 ready));
• Same as initial assert property (rst s_until ready);

• initial assert property (##[*] ready);
• Tautology

• initial assert property (strong(##[*] ready));
• Same as initial assert property (s_eventually ready);
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Suffix Implication

• A suffix implication is a property built from a sequence (s) 
and a property (p)
• s – antecedent – triggering condition

• p – consequent – checked when triggering condition holds

• Suffix implication is true when its consequent is true upon each 
completion of its antecedent

• Overlapping implication: s |-> p
• consequent is checked starting from the moment of every

nonempty match of the antecedent

• Nonoverlapping implication: s |=> p
• consequent is checked starting from the next clock tick of every 

match of the antecedent

• For singly-clocked properties
• s |=>p � s ##1 1 |-> p
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Examples

• Request must be granted
1. assert property (req |-> s_eventually gnt);

2. assert property (req |=> s_eventually gnt);

• Both assertions allow sending one grant to multiple requests

• Request must be granted in 3 cycles
1. assert property (req |-> ##3 gnt); or

2. assert property (req |=> ##2 gnt);

• Request must be active until grant is asserted
1. assert property(req |-> req until grant);

2. assert property(req |-> req until_with grant);

3. assert property(req |-> req s_until grant);

4. assert property(req |-> req s_until_with grant);

• Two consecutive alerts must be followed by reset
• assert property (alert[*2] |=> reset);
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Vacuity

• What do we check in previous assertions if requests 
cannot be produced by the model?

• Assertion holds vacuously if it is redundant
• E.g., the previous assertions may be rewritten in this case as

assert property (not req);

• FV tools provide vacuity check
• The cost is rather high
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Suffix Conjunction

• A suffix conjunction is a property built from a sequence (s) 
and a property (p)
• s – antecedent – triggering condition

• p – consequent – checked when triggering condition holds

• Suffix conjunction is true when its consequent is true upon at least  
one completion of its antecedent

• Overlapping conjunction: s #-# p

• Nonoverlapping conjunction: s #=# p

• Example:
• Reset is initially high and when it becomes low it remains low 

forever

• initial assert property (rst[+] ##1 !rst |=> always !rst);

• initial assert property (rst[+] ##1 !rst #=# always !rst);
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Passes if rst is 
always high

Fails if rst is 
always high



CLOCKS
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Clocks

• Assertion clock should be explicitly written or inferred from 
the default clocking

November 4, 2013 HVC2013 54

assert property (@clk p);

assert property (@(posedge clk) p);

default clocking @(posedge clk); endclocking
…
assert property (p);



Clock Rewriting

• Unless clock is not inferred as a system clock (=global 
clock) by an FV tool, the corresponding property is 
rewritten

• Examples
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assert property (@(posedge clk) e);

assert property ($rising_gclk(clk) |-> e);

assert property (@(posedge clk) req |=> gnt);

assert property (($rising_gclk(clk) & req ##1 $rising_glck(clk)|-> gnt);



Clock Fairness

• Clock is fair if it ticks infinitely many times

• Without any preliminary knowledge clock fairness is not 
guaranteed

• Clock may stop ticking at some moment

• Global clock is fair by its definition

November 4, 2013 HVC2013 56



Clock Fairness (cont.)

• Clock defines a subtrace
• Only moments corresponding to clock ticks are retained

• When clock is fair the subtrace is infinite
• Formal semantics does not change

• When clock is not fair the subtrace is finite
• Need to define property semantics on finite trace
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Weak and Strong Properties

• Weak operators do not require clock to tick

• Strong operators require clock to tick enough times

• Example

• nexttime – weak version

• s_nexttime – strong version
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initial assert property (@clk nexttime p);

initial assert property (@clk s_nexttime p);

Passes iff either p is 
true at time 1 or clk

ticks less than two 
times

Passes iff clk ticks at 
least two times and p is 

true at time 1



Weak and Strong Properties. Negation

• Negation inverts weakness
• E.g., not, antecedent in implies

• Example
• not always p � s_eventually not p
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Mixing Weak and Strong Properties

• Mixing weak and strong properties in most cases in non-
intuitive and should be avoided
• Also for performance reasons

• Example
• s_nexttime always p

• Clock should tick at least twice and p should true at each clock tick 
starting from time t + 1

• In some cases mixing is meaningful

• s_eventually always p – fairness

• always s_eventually p
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Multiply Clocked Properties

• SVA supports multiply clocked properties
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assert property(@(posedge clk1) a |=> @(posedge clk2) b);



RESETS
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Resets and Aborts

• Reset and abort operators – operators to stop property 
evaluation when some condition is met
• Simplify writing assertions in presence of hardware resets

• disable iff – main reset of an assertion

• Aborts
• Asynchronous

• accept_on

• reject_on

• Synchronous

• sync_accept_on

• sync_reject_on
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Aborts

• Asynchronous aborts
• Ignore the actual clock

• Checked at each time step

• Synchronous aborts

• Checked at clock ticks only

• Informal semantics
• accept_on (cond) p, sync_accept_on (cond) p

• True if there is no evidence of the failure of p before the abort condition 
has become true

• reject_on (cond) p, sync_reject_on (cond) p

• False if there is no evidence of the success of p before the abort 
condition has become true
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Asynchronous Aborts. Example
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assert property(@(posedge clk)
accept_on (retry)a |=> reject_on(bad) b[*2]);



Synchronous Aborts. Example
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assert property(@(posedge clk)
sync_accept_on (retry) a |=> sync_reject_on(bad) b[*2]);



One More example

• reject_on(rst) 1[*3]
• Property 1[*3] can never fail

• Therefore, reject_on(rst) 1[*3] fails iff rst becomes high any time 
during first three clock cycles

• sync_reject_on(rst) 1[*3] is equivalent to !rst[*3]
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Disable Clause

• Syntax
• disable iff (expression)

• Specifies top-level assertion reset
• At most one in the entire assertion

• In FV may be regarded as accept_on in assertions and 
assumptions, and as reject_on in cover statements

• Formally introduces a notion of disabled evaluation
• Evaluation is disabled if the assertion evaluation has been aborted 

because the disable condition became true

• Disable condition is checked continuously, and it is not
sampled
• This definition introduces inconsistency between simulation and FV
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Disable Clause (cont.)

• default disable iff may be used to specify the default 
disable condition
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module m (input logic reset, rst, req, gnt, clk, …);
default disable iff reset;

a1: assert property (@(posedge clk) req |=> gnt);
a2: cover property (@(posedge clk) req ##1 gnt);
a3: assert property (@(posedge clk) disable iff (1’b0) a |=> b);
a4: assert property (@(posedge clk) disable iff (rst) a |=> b);

endmodule : m



ASSERTION SYSTEM 
FUNCTIONS
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Bit-Vector System Functions
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Name Description

$onehot0 Check that at most one bit in a vector is high

$onehot Check that exactly one bit in a vector is high

$countones Count number of bits in a vector with value high

$countbits Count number of bits having specific value

$isunknown Check whether a vector has a bit with value x or z



Sampled Value Functions
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Name Description

$sampled Return sampled value of expression

$past Return past value of expression

$rose Check whether expression value rose

$fell Check whether expression value fell

$changed Check whether expression value changed

$stable Check whether expression value remained stable



Past Sampled Values
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• $past(e, n, en, @clk)
• e – expression
• n ≥ 1 – constant expression 

specifying the number of 
clock ticks (delay)

• en – gating expression for 
the clocking event

• clk – clocking event



Values Before Initial Clock Tick

• What happens if for a given time-step there are not 
enough previous clock ticks?
• $past(e) returns an initial value of e

• The initial value of e is that as computed using the initial 
values stated in the declaration of the variables involved 
in e

• If a static variable has no explicit initialization, the default value of 
the corresponding type is used, even if the variable is assigned a 
value in an initial procedure
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FV tools may ignore variable initialization everywhere, except in 
checker constructs. Also, many FV tools consider all variables to be of 
two-state value type, and therefore they assume that $past(e) is 0 in 
clock tick 0 for any e



Other Sampled Value Functions

• $rose(e, @clk) �
$past(LSB(e),,,@clk)!== 1 && $sampled(LSB(e))=== 1

• $fell(e, @clk) �
$past(LSB(e),,,@clk)!== 0 && $sampled(LSB(e))=== 0

• $changed(e, @clk) �
$past(e,,,@clk)!== $sampled(e)

• $stable(e, @clk) �
$past(e,,,@clk)=== $sampled(e)
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Global Clocking Sampled Value Functions

• May be used only if global clock has is defined

• Past
• $past_gclk(e) � $past(e, 1, 1, @$global_clock)

• $rose_gclk(e) � $rose(e, @$global_clock)

• $fell_gclk(e) � $fell(e, @$global_clock)

• $changed_gclk(e) � $changed(e, @$global_clock)

• $stable_gclk(e) � $stable(e, @$global_clock)

• Future
• $future_gclk(e) – Sampled value of e in the next tick of the global clock

• $rising_gclk(e) � $sampled(LSB(e))!== 1 && $future_gclk(LSB(e)) === 1

• $falling_gclk(e) � $sampled(LSB(e))!== 0 && $future_gclk(LSB(e)) === 0

• $changing_gclk(e) � $sampled(e) !== $future_gclk(e)

• $steady_gclk(e) � $sampled(e) === $future_gclk(e)

• Cannot be nested or used in reset conditions
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METALANGUAGE
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Let Declaration

• “Compile-time macro” for integral expressions
• Follow normal scoping rules
• Formal arguments may be typed or untyped
• Formal arguments can have default actual arguments
• May be included in a package
• May easily be processed by tools for linting and statistical 

reporting

• Typical usage
• Templates for Boolean assertions
• Instrumental code
• Does not introduce new variables
• Visible to debuggers
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let identifier [(port, port, …)] = expression;



Let Example
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module m (input logic clk, rst, …);
logic mod1, mod2;
logic req1, req2;
logic rsp;
let req = mod1 & req1 | mod2 & req2;
let gnt = $changed(rsp);
…
a: assert property (@(posedge clk) disable iff (rst) req |=> gnt);

endmodule : check



Sequence and Property Declaration
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module m(input logic clk, rst, …);
logic my_req;
logic gnt;
sequence two_reqs(req);

req[*2];
endsequence

property delayed_grant(int n);
nexttime [n] gnt;

endproperty

…
req_granted: assert property (@(posedge clk) disable iff (rst)

two_reqs(my_req) |-> delayed_grant(2);
endmodule



CHECKERS
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Checkers

• Checkers are SystemVerilog containers to package 
verification code
• Both assertions and modeling

• Checker is a kind of hybrid of module, property and 
assertion

• May contain (almost) the same constructs as a module

• Is instantiated as a property (in place)

• Placed as an assertion

• Acts as an assertion with complex internal implementation
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Example. Sequential Protocol
• Whenever start is high, dataIn is valid.

• Whenever complete is high, dataOut is valid.

• If start is high, then the value of dataIn at that time must equal the value of dataOut at the next strictly 
subsequent cycle in which complete is high

• If start is high, then start must be low in the next cycle and remain low until after the next strictly 
subsequent cycle in which complete is high

• complete may not be high unless start was high in a preceding cycle and complete was not high in any of 
the intervening cycles
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dataIn dataOut

completestart



Sequential Protocol Verification Checker
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checker seq_protocol (start, complete, dataIn, dataOut, event clk);

default clocking @clk; endclocking

var type(dataIn) data;

property match (first, last); first |=> !first until_with last; endproperty

always_ff @clk if (start) data <= dataIn;

a_data_check: assert property (complete |-> dataOut == data);
a_no_start: assert property (match(start, complete));
a_no_complete: assert property (match(complete, start));

initial

a_initial_no_complete: assert property (!complete throughout start[->1]);
endchecker : seq_protocol



Checker Binding
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module top;
logic clock, snda, sndb, sndc, rcva, rcvb, rcvc;
...
trans ta (clock, snda, rcva);
trans tb (clock, sndb, rcvb);
trans #(2) tc (clock, sndc, rcvc);
endmodule : top

module trans #(DEL=1) (input logic clock, in, output logic out);
if (DEL == 1) begin : b

always @(posedge clock) out <= in;
end
else begin : b

logic [DEL - 2: 0] tmp;
always @(posedge clock) begin 

tmp[0] <= in;
for (int i = 1; i < DEL - 1; i++) tmp[i] <= tmp[i-1];
out <= tmp[DEL - 2];

end
end

endmodule : trans

checker eventually_granted (req, gnt, …);
…

endchecker : eventually_granted

checker request_granted (req, gnt, n, …);
…

endchecker : request_granted

bind trans eventually_granted check_in2out(in, out, posedge clock);
bind trans: ta, tb request_granted delay1(in, out,, posedge clock);
bind trans: tc request_granted delay2(in, out, 2, posedge clock);



Free Variables

• Checker may have free variables
• Behave non-deterministically (like free or constrained inputs)

• FV: consider all possible values imposed by assumptions and 
assignments

• Simulation: their values are randomized

• Free variable values are never sampled

• Limitations
• Continuous and blocking assignments to free variables are illegal
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rand bit r;
bit [2:0] x;
…
assign x = r ? 3’d3 : 3’d5;

rand bit a;
always_ff @clk a <= !a;



Rigid Variables

• Rigid variables = constant free variables
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checker data_consistency (start, complete, dataIn, dataOut,
event clk, untyped rst);

default clocking @clk; endclocking
default disable iff rst;

rand const type(dataIn) data;

a1: assert property (start && data == dataIn ##1 complete[->1]
|-> dataOut == data);

endchecker : data_consistency

Rigid 
variable



Modular Assertion Modeling
checker check_fsm(logic [1:0] state, event clk); 

logic [1:0] astate = IDLE; // Abstract state 
model_fsm c1(state, clk, astate); 
check_assertions c2(state, astate, clk); 

endchecker 

checker model_fsm(input event clk, output logic [1:0] astate = IDLE); 
always @clk

case (astate) 
IDLE: astate <= …; 
… 
default: astate <= ERR; 

endcase

endchecker 

checker check_ assertions(state, astate, event clk); 
default clocking @clk; endclocking

a1: assert property (astate == IDLE <-> state inside {IDLE1, IDLE2}); 
//… 

endchecker 
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Implementing Formal Verification 
Environment With Checkers

checker env(event clk, output logic out1, out2); 
rand bit a, b;
m: assume property (@clk $onehot0({a, b}));
assign out1 = a;
assign out2 = b;

endchecker : env

module m(input logic in1, in2, clock, output …); 
…

endmodule : m

module top(); 
logic clock, n1, n2;
…
m m1(n1, n2, clock, …);
evn env1(clock, n1, n2);

endmodule : top

In simulation module 
input signals are 
randomized  remaining 
mutually exclusive
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LOCAL VARIABLES
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Informal Definition
• Local variable is a variable associated with an evaluation attempt

• Local variables are not sampled
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checker data_consistency (start, complete, dataIn, dataOut,
event clk, untyped rst);

default clocking @clk; endclocking
default disable iff rst;

property p_data_check;
var type(dataIn) data;
(start, data = dataIn) ##1 complete[->1] |-> dataOut == data;

endproperty : p_data_check

a1: assert property (p_data_check);

endchecker : data_consistency

Local 
variable

Match 
item



Example

• Check that the value of dataIn when start is high 
coincides with the value of dataOut read in n clock ticks

• If n = const

• If n is not const
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assert property (start |-> ##n dataOut == $past(dataIn, n) );

property data_check;
var type(n) ctr;

(start, ctr = n - 1) ##1 (ctr > 0, ctr--)[*] ##1 (ctr == 0)
|-> dataOut = dataIn;

endproperty : data_check

assert property (data_check);



Local vs. Rigid Variables

• Local variables are “broader” than rigid variables
• They are mutable

• Local variables are more intuitive

• Local variables are supported in simulation, rigid variables 
are not

• Rigid variables are FV friendly – their implementation is 
straightforward
• Efficient implementation of local variables in FV is challenging
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RECURSIVE PROPERTIES
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Recursive Properties

• Properties may be recursive
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property prop_always (p) ;
p and nexttime prop_always (p);

endproperty

initial assert property (@(posedge clk) prop_always (ok));

property prop_weak_until (p, q);
q or (p and nexttime prop_weak_until (p, q));

endproperty

initial assert property (@(posedge clk) prop_weak_until (req, gnt));



EFFICIENCY AND 
METHODOLOGY TIPS
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Assertion Compilation for FV

• Assertions are usually compiled into finite automata [Var96]

• Typical for FV and emulation

• Sometimes done for simulation as well

• Safety assertions are compiled into (conventional) finite 
automata on finite words

• Liveness and hybrid assertions are compiled into finite 
automata on infinite words (e.g., Büchi automata):

• Finite automata on finite words + fairness conditions

• Complexity of automaton reflects well FV efficiency

• Another factor is the number of state variables in the model
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Automaton-Based Compilation. Example
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true

a a a b !c

true

a b !c

a

true

a !cb always a ##1 b |=> c
always a[*3] ##1 b |=> c
always a[+] ##1 b |=> c



Avoid Large and Distant Time Windows
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assert property (start ##1 !complete[0:1000] ##1 complete |=> done);

⇕

assert property (start ##1 complete[->1] |=> done);

⇕

assert property (start ##1 !complete[*] ##1 complete |=> done);

����

����

Also applies to bounded property operators and $past



Avoid Using Liveness Assertions Unless 
Really Needed
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Request must be active until grant is asserted

assert property(req |-> req s_until grant);

assert property(req |-> req until grant);

����
����

Do you really want 
to check that grant 

is eventually 
received?

Strong operators 
have clumsier 

syntax to prevent 
inadvertent 

usageClock is fair

assert property (s_eventually clk);����

assert property (req |-> ##[1:1000] gnt);

assert property (req |-> s_eventually gnt);

����
����

Liveness assertion 
is usually better 

than a safety 
assertion with a 

large time window



Avoid Mixing Weak and Strong Properties
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s_nexttime always p nexttime always p

nexttime s_eventually p s_nexttime s_eventually p

Sometimes this is unavoidable

always s_eventually p

����

����

����

����

����



Past vs. Future

• Future value functions are cheap in FV
• Recall that each variable is represented as a pair (v, v')

• Past value functions are more expensive
• They introduce new flip-flops (=variables)

• Need to optimize the usage of $past
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logic check;
logic [31:0] a, b, c;

assert property (##1 check |-> $past(c) == $past(a) + $past(b));

assert property (##1 check |-> $past(c == a + b));

����

����



Intersection Family

• Sequence operators from intersection family (intersect, and, within) 
are expensive

• These operators are not inefficient by themselves, but allow to concisely 
code complex sequences

• Use only where appropriate

• Top-level conjunction in a sequence promoted to property is not 
expensive
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Each transaction should contain two read requests and three write requests

assert property (start |-> read[=2] intersect write[=3] intersect complete[->1]);

Common case

assert property (start |-> write[=3] ##1 read[=2] intersect complete[->1]);

If known that all reads come after writes

assert property (en |-> r and s);

assert property (en |-> (r and s) ##1 a);

This is rather 
efficient



Assertion Clock

• Assertions governed by a global clock are more efficient 
in FV than assertions governed by an arbitrary clock
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true

a !cb
always a ##1 b |=> c

true

a & @clk !c & @clkb & @clk

!@clk !@clk

@clk always a ##1 b |=> c

FV tools may automatically infer the global clock from a singly clocked design



Local vs. Free and Rigid Variables 

• Implementing free and rigid variables is straightforward in 
FV

• Implementing local variables is tricky

• Important advantage of local variables
• Allow checking assertions in simulation

• Both are usually expensive

• Efficiency is strongly dependent on FV tool
• May need to experiment
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Assignments vs. Assumptions

• Assignments are usually more efficient than assumptions
• They add directionality to the search

• Compare
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assign x = !y;

assume property (x != y);

vs.



Overlapping vs. Nonoverlapping
Transactions
• Nonoverlapping transactions may be modeled 

deterministically

• Overlapping transactions usually require nondeterministic 
modeling
• E.g., local or rigid variables

• Compare:
• Sequential protocol vs.
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property p_data_check;
var type(dataIn) data;

(start, data = dataIn) ##1 complete[->1] |-> 
dataOut == data;

endproperty : p_data_check

If it is known that transactions cannot overlap, model them as nonoverlapping



Be More Specific

• Being more specific usually pays off. Check only what you 
really need
• Don’t check for eventuality unless this is essential

• If events are ordered in a sequence specify this order explicitly

• If you know that transactions do not overlap model this fact 
explicitly

• Nulla regula sine exceptione
• Liveness assertions are usually more efficient than safety 

assertions with large/distant time windows

• Being more specific comes at a price of generality

• However, generality does not help if performance problems prevent us 
from getting result
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Efficiency: Simulation vs. FV

• Simulation and FV efficiency requirements may be 
inconsistent
• Especially when assertion simulation has a transaction-based 

implementation

• E.g.
• Infinite ranges and repetitions are efficient in FV, but not in 

simulation

• Sequence intersection is efficient in simulation, but not in FV

• Liveness does not cost in simulation

• Future value functions are more efficient than past value functions 
in FV. The situation with simulation is opposite

• Local variables are rather efficient in simulation, but not in FV
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FUTURE DIRECTIONS AND 
CHALLENGES
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Convergence Between SVA and SVTB

• Coverage features are divided between SVA and SVTB 
• Assertion coverage belongs to SVA

• Covergroups belong to SVTB

• Currently there is no organic connection between the two
• Syntax and semantics are absolutely different

• One can consider temporal coverage specification by 
integrating sequences and covergroups
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Standard Packages

• SVA provides basic assertion capabilities and some 
sugaring
• There are many useful properties and functions that could be 

reused, but are not a basic part of the language

• It makes sense to standardize them by creating standard property 
packages

• PSL has some of such common properties embedded into the 
language, e.g., never, before, next_event, etc.
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Assertion Libraries

• Using SVA checker mechanism it is possible to create a 
powerful and flexible standard assertion library with 
concise library assertion invocation

• Kind of “next generation” OVL
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AMS Assertions

• AMS = Analog and Mixed Signals

• The intention is to merge SystemVerilog and Verilog-AMS
• This includes development of AMS assertions and including them 

into SVA

• The initial step was done in SV2012: real type support in SVA

• No continuous time support yet
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TLM Assertions

• SVA covers RTL assertions

• TLM assertions are different
• Unclocked or approximately clocked

• SVA is too low level for TLM

• Need to extend SVA to cover TLM needs
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Checkers for UVM

• UVM – Universal Verification Methodology
• Widely used in verification

• Includes verification level – monitors – to check design 
correctness
• Part of TB

• Uses completely different mechanism, does not explore the 
strength of assertions

• Implemented as class methods

• Challenge

• Checkers currently cannot be instantiated in classes

• Need to enhance them to allow their usage in UVM
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