
SYSTEMVERILOG
ASSERTIONS FOR
FORMAL VERIFICATION
Dmitry Korchemny, Intel Corp.

HVC2013, November 4, 2013, Haifa

• Most of the examples used in
this tutorial are borrowed from
our SVA book

November 4, 2013 HVC2013 2

Agenda

• Introduction

• Formal verification model. LTL properties

• Assertion statements

• Sequences and properties

• Clocks and resets

• Assertion system functions

• Metalanguage and checkers

• Local variables

• Recursive properties

• Efficiency and methodology tips

• Future directions and challenges

November 4, 2013 HVC2013 3

INTRODUCTION

November 4, 2013 HVC2013 4

Hardware Verification Task

• Does DUT meet the spec?

• Simulation
• Does DUT meet the spec for given input stimuli?

• Formal Verification (FV)
• Does DUT meet the spec for any legal input stimuli?

DUT
(RTL)

SPEC
(Spec

language)

November 4, 2013 HVC2013 5

SystemVerilog Assertions (SVA)

• SystemVerilog (proliferation of Verilog) is a unified
hardware design, specification, and verification language
• RTL/gate/transistor level

• Assertions (SVA)

• Testbench (SVTB)

• API

• SVA is a formal specification language
• Native part of SystemVerilog [SV12]

• Good for simulation and formal verification

November 4, 2013 HVC2013 6

SVA Standardization History

• 2003
• Basic assertion features defined

• 2005
• Improved assertion semantics

• 2009
• Major changes in the language: deferred assertions, LTL support,

checkers

• 2012

• Improved checker usability, final assertions, enhancements in bit-
vector system functions and in assertion control

• Part of SystemVerilog standardization (IEEE 1800)

November 4, 2013 HVC2013 7

SVA vs. PSL

• Formal semantics of SVA is (almost) consistent with the
formal semantics of PSL [PSL10]

• Meta-language layers are quite different (e.g., checkers
vs. vunits)

• SVA has well-defined simulation semantics; tightly
integrated with other parts of SystemVerilog

November 4, 2013 HVC2013 8

FORMAL VERIFICATION
MODEL. LTL PROPERTIES

November 4, 2013 HVC2013 9

Linear Time Model. Global Clock

• We assume that the time is linear:
• There is one global clock (AKA system clock or reference clock)

which always ticks (never stops)

• All signal changes are synchronized with the ticks of the global
clock

• Global clock introduces the notion of discrete time in the system

• 0, 1, 2, …

• Each number corresponds to a tick of the global clock

November 4, 2013 HVC2013 10

[Pnu77]

Global Clock in SystemVerilog

• In simulation the natural notion of global clock are simulation
ticks. But such definition makes global clock very expensive

• In SystemVerilog there is a special construct for global
clocking definition

November 4, 2013 HVC2013 11

module m(input logic clk, …);
global clocking @(posedge clk); endclocking

…
default clocking @$global_clock; endclocking

…
endmodule : m

May be declared
anywhere in the

design

Default clocking
defines the

default clock for
assertions

$global_clock
is explicit

designation of
global clock

global clocking is used in simulation, but usually ignored in FV and emulation

In practice most assertions are written relative to some specific clock,
not relative to the global clock. Will be discussed later

Formal Verification Model

• Kripke structure: � =	 �, �, �, �

• � – Finite set of states

• � ⊆ � – Set of initial states

• � – Set of Boolean variables (labels)

•
: � → 2� – Labeling function mapping each state to the set of
variables that are true in this state

• � ⊆ � × � – (Left total) transition relation

• Shows to which states it is possible to transition from given state

November 4, 2013 HVC2013 12

[Kr63]

Formal Verification Model. Example

• � = �, �

• � = ∅, � , � , �, �

• � = �

• �

November 4, 2013 HVC2013 13

module m(input logic i, clk, output o);
wire a = !i;
global clocking @(posedge clk); endclocking

always @($global_clock) o <= a;
endmodule : m

Symbolic Representation

• Each � variable is represented as a pair:
• Current value (its value at the current time moment): �
• Next value (its value at the next time moment): �′

• Each set and relation is represented by its characteristic
function
• E.g., � = � ⊕ �′

• In SystemVerilog there is a notation of next value:
• $future_gclk(x)

• E.g., �⊕�′ corresponds to i ^ $future_gclk(o)

• Other future sampled value functions:
• $rising_gclk(x) � !x & $future_gclk(x) (for bit variables)
• $falling_gclk(x) � x & !$future_gclk(x) (for bit variables)
• $steady_gclk(x) � x === $future_gclk(x)
• $changing-gclk(x) � x !== $future_gclk(x)

November 4, 2013 HVC2013 14

Linear Time Model

• Linear time FV model defines a number of legal infinite
traces

• Specification language describes the properties of these
traces

November 4, 2013 HVC2013 15

module m(input logic clk, i, output logic o);
global clocking @(posedge clk); endclocking

default clocking @$global_clock; endclocking
always @(posedge clk) o <= !i;
assert property (i |=> !o);

endmodule : m

i 0 0 1 1 …

o 0 1 1 0 …

i 0 1 0 1 …

o 1 1 0 1 …

i 0 0 1 1 …

o 0 0 1 1 …

Feasible
traces

Infeasible
trace

Linear Time Language (LTL) Properties

• Properties are temporal statements that can be true or
false
• Properties have a starting point (t), but no end point

• Boolean property: e

• Nexttime property: nexttime p

• In SVA there exists also a strong version: s_nexttime

• Discussed later

November 4, 2013 HVC2013 16

0 1 2 t

e

0 1 2 t

p

t+1

LTL Properties (cont.)

• Always property: always p

• Eventually property: s_eventually p

November 4, 2013 HVC2013 17

0 1 2 t

p p p pp p p

0 1 2 t

p

Compound Properties

• True from next moment: nexttime always p

• True from some moment: s_eventually always p

• Infinitely often: always s_eventually p

November 4, 2013 HVC2013 18

t

p p p p

t

p p p pp p p

t

p p p pp p pppp

Boolean Connectives

• Negation: not p

• Conjunction: p and q

• Disjunction: p or q

• Implication: p implies q

• Equivalence: p iff q

• Condition: if (e) p else q

• Case

November 4, 2013 HVC2013 19

Counterexample

• Counterexample – trace witnessing a property failure

• In general case – infinite

• May be finite

• Meaning that any infinite extension of this finite trace is a
counterexample

November 4, 2013 HVC2013 20

Safety and Liveness

• Safety properties
• All their counterexample are finite

• E.g., always e

• Liveness properties
• All their counterexamples are infinite

• E.g., s_eventually e

• Hybrid properties also exist
• Sometimes also called “liveness”

November 4, 2013 HVC2013 21

0 1 2 t

!e

0

!e !e !e!e !e!e !e!e!e!e!e

[AS87, KV01]

LTL Properties. Until

• Non-overlapping until
• p until q – if q does not happen, p holds forever

• p s_until q – q must eventually happen

• Overlapping until
• p until_with q – if q does not happen, p holds forever

• p s_until_with q – q must eventually happen

November 4, 2013 HVC2013 22

0 1 2 t

p p p pp p q

0 1 2 t

p p p pp p

p and q

Safety

Safety

(General)
liveness

(General)
liveness

Bounded Versions

November 4, 2013 HVC2013 23

Property Semantics

[s_]nexttime [m] p [s_]nexttime … [s_]nexttime p

[s_]eventually [m:n] p [s_]nexttime [m] p or … or [s_]nexttime [n] p

s_eventually [m:$] p s_nexttime [m] s_eventually p

[s_]always [m:n] p [s_]nexttime [m] p and … and [s_]nexttime [m] p

always [m:$] p nexttime [m] always p

ASSERTION STATEMENTS

November 4, 2013 HVC2013 24

Assertion Kinds

November 4, 2013 HVC2013 25

Assertions

Clocked Unclocked

Concurrent Immediate Deferred Final

2009 2012

(Concurrent) Assertion Statements

• Assertions
• Insure design correctness

assert property (p);

• Assumptions
• Model design environment

assume property (p);

• Cover statements
• To monitor coverage evaluation

cover property (p);

• Restrictions
• To specify formal verification constraint

restrict property (p);

November 4, 2013 HVC2013 26

Assertion Placement

• Inside initial procedure execute only once

• Outside of initial procedure execute continuously

November 4, 2013 HVC2013 27

initial

assert property(p);
Once

assert property(p); Every clock
tick

Expresses pure
semantics, but

rarely used
initial assert property(rst);

p is always true

rst is high at time 0

Implicit always
always p is true at time 0

assert property(ok); ok is always high

Assertions

• Specify requirements from DUT

• FV
• Mathematically proves assertion correctness

• DV
• Checks assertion correctness for given simulation trace

November 4, 2013 HVC2013 28

initial assert property (p);

Passes iff p is true at time 0 on all feasible traces

Fails iff p is false at time 0 on some feasible trace

Assumptions

• Specify requirements from environment

• FV
• Restricts the set of feasible traces in the model

• DV
• Checks assertion correctness for given simulation trace

• From FV point of view, the DUT acts as an assumption

• Contradictory assumptions (with each other or with the
model) cause all assertions to pass

• This is called an empty model

November 4, 2013 HVC2013 29

assume property (in == !inv_in)
else $error(“Inputs in and inv_in are expected to be inverse”);

Restrictions

• Specify condition for which FV has been performed

• FV

• Restricts the model

• Same as assumption

• DV

• Completely ignored

November 4, 2013 HVC2013 30

restrict property (opcode == OP_ADD);

Cover

• Specify scenario you wish to observe

• FV
• Mathematically prove that the property holds on some feasible

trace

• DV
• Capture scenario in simulation trace

• From FV point of view

November 4, 2013 HVC2013 31

cover property (read[*2]);

initial cover property (p);

passes

initial assert property (not p);

fails

Formal View on Assertions and
Assumptions
• Set of assumptions

• initial assume property (q_1);

• …

• initial assume property (q_m);

• and assertions
• initial assert property (p_1);

• …

• initial assert property (p_n);

• is equivalent to the following single assertion
• initial

assert property (q_1 and … and q_m
implies p_1 and … p_n);

November 4, 2013 HVC2013 32

November 4, 2013 HVC2013 33

Sampling

• Signal values are sampled at the beginning of simulation
tick

clock

sig

sample here
Time Step

SEQUENCES AND
PROPERTIES

November 4, 2013 HVC2013 34

Sequence

• Informal definition
• Sequence is a rule defining a series of values in time

• A sequence does not have a truth value, it has one initial
point and zero or more match points

• When a sequence is applied to a specific trace, it defines
zero or more finite fragments on this trace starting at the
sequence initial point and ending in its match points

• Essentially, sequence is a regular expression

November 4, 2013 HVC2013 35

Example

• Read is followed by write in one or two clock ticks
• read ##[1:2] write

• Let starting point of this sequence be t = 2

November 4, 2013 HVC2013 36

2 3 4 2 3 4
No match

2 3 4

Single match at 3

2 3 4

Single match at 4

2 3 4

Two matches (at 3 and 4)

Boolean Sequence

• Boolean expression e defines the simplest sequence – a
Boolean sequence
• This sequence has a match at its initial point if e is true

• Otherwise, it does not have any satisfaction points at all

November 4, 2013 HVC2013 37

Sequence Concatenation

• Sequence concatenation: r ##1 s

• There is a match of sequence r ##1 s if there is a match of
sequence r and there is a match of sequence s starting from the
clock tick immediately following the match of r

• In other words, a finite trace matches r ##1 s iff it can be split into two
adjacent fragments, the first one matching r, and the second one
matching s.

November 4, 2013 HVC2013 38

Sequence Fusion

• Sequence fusion r ##0 s is an overlapping concatenation
• The fusion of sequences r and s, is matched iff for some match of

sequence r there is a match of sequence s starting from the clock
tick where the match of r happened

November 4, 2013 HVC2013 39

Zero Repetition (Empty Sequence)

• s[*0]
• sequence admitting only an empty match

• Matches on any trace but the trace fragment is empty (does not contain
clock ticks)

November 4, 2013 HVC2013 40

Sequence Disjunction

• Sequence disjunction r or s is a sequence which has a
match whenever either r or s (or both) have a match

November 4, 2013 HVC2013 41

Consecutive Repetition

• Repetition
• r[*0] is an empty sequence

• If n > 0 (const.)

• r[*n] � r[*n-1] ##1 r

• Finite repetition range
• r[*n:n] � r[*n]

• r[*m:n] � r[*m:n-1] or r[*n], m < n

November 4, 2013 HVC2013 42

Infinite Repetition Range

• Infinite range: repeat s n or more times

• Formal definition
• Sequence s[*1:$] matches trace fragment i : j if it is possible to

divide this trace fragment into one or more consecutive fragments
so that each such fragment matches s

• s[*0:$] � s[*0] or s[*1:$]

• s[*n:$] � s[*0:n-1] or s[*1:$], n > 1

• Shortcuts (SVA 2009)
• s[*] � s[*0:$] – Zero or more times

• s[+] � s[*1:$] – One or more times

November 4, 2013 HVC2013 43

s[*n:$] does not mean that sequence s is repeated infinitely many
times, but that it is repeated n or more (finite) number of times

Sequence Concatenation and Delay

• r ##0 s is a sequence fusion

• r ##1 s is a sequence concatenation

• r ##n s, where n > 1 is defined recursively

• r ##n s � r ##1 1[*n-1] ##1 s

• ##n s � 1[*n] ##1 s

November 4, 2013 HVC2013 44

Delay Ranges

• r ##[0:0] s � r ##0 s

• r ##[m:n] s � (r ##1 1[*m-1:n-1] ##1 s), where n ≥ m > 0

• r ##[0:n] s � (r ##0 s) or (r ##[1:n] s), where n > 0

• r ##[m:$] s � (r ##1 1[*m-1:$] ##1 s), where m > 0

• r ##[0:$] s � (r ##0 s) or (r ##[1:$] s), where n > 0

• ##[m:n] s � 1 ##[m:n] s, where n ≥ m ≥ 0

• ##[m:$] s � 1 ##[m:$] s, where m ≥ 0

• Shortcuts (SVA 2009)
• ##[*] � ##[*0:$]

• ##[+] � ##[*1:$]

November 4, 2013 HVC2013 45

Other Sequence Operators

• Go to repetition: e[->n], e[->m:n]
• e is a Boolean

• Non-consecutive repetition: e[=n], e[=m:n]
• e is a Boolean

• Intersection: r intersect s

• Conjunction: r and s

• Containment: r within s

• Throughout: e throughout s

• First match: first_match(r)

• Sequence methods
• r.triggered

• r.matched

November 4, 2013 HVC2013 46

Sequential Property

• Strong sequential property
• strong(s) is true in clock tick i iff sequence s with initial point i has

a match

• Sequence s should not admit an empty match

• Weak sequential property
• weak(s) is true in clock tick i iff there is no finite trace fragment i : j

witnessing inability of sequence s with the initial point i to have a
match.

• Sequence s should not admit an empty match

• In assertions, assumptions and restrictions weak may be
omitted

• In cover statements strong may be omitted

November 4, 2013 HVC2013 47

Sequential Properties. Examples

• initial assert property (rst[*2]);
• Same as initial assert property (weak(rst[*2]));

• For global clock it is also the same as initial assert property
(strong(rst[*2]));

• initial assert property (rst[*]);
• Admits empty match

• initial assert property (rst[*] ##1 ready);
• Same as initial assert property (rst until ready);

• initial assert property (strong(rst[*] ##1 ready));
• Same as initial assert property (rst s_until ready);

• initial assert property (##[*] ready);
• Tautology

• initial assert property (strong(##[*] ready));
• Same as initial assert property (s_eventually ready);

November 4, 2013 HVC2013 48

����

Suffix Implication

• A suffix implication is a property built from a sequence (s)
and a property (p)
• s – antecedent – triggering condition

• p – consequent – checked when triggering condition holds

• Suffix implication is true when its consequent is true upon each
completion of its antecedent

• Overlapping implication: s |-> p
• consequent is checked starting from the moment of every

nonempty match of the antecedent

• Nonoverlapping implication: s |=> p
• consequent is checked starting from the next clock tick of every

match of the antecedent

• For singly-clocked properties
• s |=>p � s ##1 1 |-> p

November 4, 2013 HVC2013 49

Examples

• Request must be granted
1. assert property (req |-> s_eventually gnt);

2. assert property (req |=> s_eventually gnt);

• Both assertions allow sending one grant to multiple requests

• Request must be granted in 3 cycles
1. assert property (req |-> ##3 gnt); or

2. assert property (req |=> ##2 gnt);

• Request must be active until grant is asserted
1. assert property(req |-> req until grant);

2. assert property(req |-> req until_with grant);

3. assert property(req |-> req s_until grant);

4. assert property(req |-> req s_until_with grant);

• Two consecutive alerts must be followed by reset
• assert property (alert[*2] |=> reset);

November 4, 2013 HVC2013 50

Vacuity

• What do we check in previous assertions if requests
cannot be produced by the model?

• Assertion holds vacuously if it is redundant
• E.g., the previous assertions may be rewritten in this case as

assert property (not req);

• FV tools provide vacuity check
• The cost is rather high

November 4, 2013 HVC2013 51

[Ar03]

Suffix Conjunction

• A suffix conjunction is a property built from a sequence (s)
and a property (p)
• s – antecedent – triggering condition

• p – consequent – checked when triggering condition holds

• Suffix conjunction is true when its consequent is true upon at least
one completion of its antecedent

• Overlapping conjunction: s #-# p

• Nonoverlapping conjunction: s #=# p

• Example:
• Reset is initially high and when it becomes low it remains low

forever

• initial assert property (rst[+] ##1 !rst |=> always !rst);

• initial assert property (rst[+] ##1 !rst #=# always !rst);

November 4, 2013 HVC2013 52

Passes if rst is
always high

Fails if rst is
always high

CLOCKS

November 4, 2013 HVC2013 53

Clocks

• Assertion clock should be explicitly written or inferred from
the default clocking

November 4, 2013 HVC2013 54

assert property (@clk p);

assert property (@(posedge clk) p);

default clocking @(posedge clk); endclocking
…
assert property (p);

Clock Rewriting

• Unless clock is not inferred as a system clock (=global
clock) by an FV tool, the corresponding property is
rewritten

• Examples

November 4, 2013 HVC2013 55

assert property (@(posedge clk) e);

assert property ($rising_gclk(clk) |-> e);

assert property (@(posedge clk) req |=> gnt);

assert property (($rising_gclk(clk) & req ##1 $rising_glck(clk)|-> gnt);

Clock Fairness

• Clock is fair if it ticks infinitely many times

• Without any preliminary knowledge clock fairness is not
guaranteed

• Clock may stop ticking at some moment

• Global clock is fair by its definition

November 4, 2013 HVC2013 56

Clock Fairness (cont.)

• Clock defines a subtrace
• Only moments corresponding to clock ticks are retained

• When clock is fair the subtrace is infinite
• Formal semantics does not change

• When clock is not fair the subtrace is finite
• Need to define property semantics on finite trace

November 4, 2013 HVC2013 57

0 1 2

0 1 2

Weak and Strong Properties

• Weak operators do not require clock to tick

• Strong operators require clock to tick enough times

• Example

• nexttime – weak version

• s_nexttime – strong version

November 4, 2013 HVC2013 58

initial assert property (@clk nexttime p);

initial assert property (@clk s_nexttime p);

Passes iff either p is
true at time 1 or clk

ticks less than two
times

Passes iff clk ticks at
least two times and p is

true at time 1

Weak and Strong Properties. Negation

• Negation inverts weakness
• E.g., not, antecedent in implies

• Example
• not always p � s_eventually not p

November 4, 2013 HVC2013 59

Mixing Weak and Strong Properties

• Mixing weak and strong properties in most cases in non-
intuitive and should be avoided
• Also for performance reasons

• Example
• s_nexttime always p

• Clock should tick at least twice and p should true at each clock tick
starting from time t + 1

• In some cases mixing is meaningful

• s_eventually always p – fairness

• always s_eventually p

November 4, 2013 HVC2013 60

Multiply Clocked Properties

• SVA supports multiply clocked properties

November 4, 2013 HVC2013 61

assert property(@(posedge clk1) a |=> @(posedge clk2) b);

RESETS

November 4, 2013 HVC2013 62

Resets and Aborts

• Reset and abort operators – operators to stop property
evaluation when some condition is met
• Simplify writing assertions in presence of hardware resets

• disable iff – main reset of an assertion

• Aborts
• Asynchronous

• accept_on

• reject_on

• Synchronous

• sync_accept_on

• sync_reject_on

November 4, 2013 HVC2013 63

Aborts

• Asynchronous aborts
• Ignore the actual clock

• Checked at each time step

• Synchronous aborts

• Checked at clock ticks only

• Informal semantics
• accept_on (cond) p, sync_accept_on (cond) p

• True if there is no evidence of the failure of p before the abort condition
has become true

• reject_on (cond) p, sync_reject_on (cond) p

• False if there is no evidence of the success of p before the abort
condition has become true

November 4, 2013 HVC2013 64

Asynchronous Aborts. Example

November 4, 2013 HVC2013 65

assert property(@(posedge clk)
accept_on (retry)a |=> reject_on(bad) b[*2]);

Synchronous Aborts. Example

November 4, 2013 HVC2013 66

assert property(@(posedge clk)
sync_accept_on (retry) a |=> sync_reject_on(bad) b[*2]);

One More example

• reject_on(rst) 1[*3]
• Property 1[*3] can never fail

• Therefore, reject_on(rst) 1[*3] fails iff rst becomes high any time
during first three clock cycles

• sync_reject_on(rst) 1[*3] is equivalent to !rst[*3]

November 4, 2013 HVC2013 67

Disable Clause

• Syntax
• disable iff (expression)

• Specifies top-level assertion reset
• At most one in the entire assertion

• In FV may be regarded as accept_on in assertions and
assumptions, and as reject_on in cover statements

• Formally introduces a notion of disabled evaluation
• Evaluation is disabled if the assertion evaluation has been aborted

because the disable condition became true

• Disable condition is checked continuously, and it is not
sampled
• This definition introduces inconsistency between simulation and FV

November 4, 2013 HVC2013 68

Disable Clause (cont.)

• default disable iff may be used to specify the default
disable condition

November 4, 2013 HVC2013 69

module m (input logic reset, rst, req, gnt, clk, …);
default disable iff reset;

a1: assert property (@(posedge clk) req |=> gnt);
a2: cover property (@(posedge clk) req ##1 gnt);
a3: assert property (@(posedge clk) disable iff (1’b0) a |=> b);
a4: assert property (@(posedge clk) disable iff (rst) a |=> b);

endmodule : m

ASSERTION SYSTEM
FUNCTIONS

November 4, 2013 HVC2013 70

Bit-Vector System Functions

November 4, 2013 HVC2013 71

Name Description

$onehot0 Check that at most one bit in a vector is high

$onehot Check that exactly one bit in a vector is high

$countones Count number of bits in a vector with value high

$countbits Count number of bits having specific value

$isunknown Check whether a vector has a bit with value x or z

Sampled Value Functions

November 4, 2013 HVC2013 72

Name Description

$sampled Return sampled value of expression

$past Return past value of expression

$rose Check whether expression value rose

$fell Check whether expression value fell

$changed Check whether expression value changed

$stable Check whether expression value remained stable

Past Sampled Values

November 4, 2013 HVC2013 73

• $past(e, n, en, @clk)
• e – expression
• n ≥ 1 – constant expression

specifying the number of
clock ticks (delay)

• en – gating expression for
the clocking event

• clk – clocking event

Values Before Initial Clock Tick

• What happens if for a given time-step there are not
enough previous clock ticks?
• $past(e) returns an initial value of e

• The initial value of e is that as computed using the initial
values stated in the declaration of the variables involved
in e

• If a static variable has no explicit initialization, the default value of
the corresponding type is used, even if the variable is assigned a
value in an initial procedure

November 4, 2013 HVC2013 74

FV tools may ignore variable initialization everywhere, except in
checker constructs. Also, many FV tools consider all variables to be of
two-state value type, and therefore they assume that $past(e) is 0 in
clock tick 0 for any e

Other Sampled Value Functions

• $rose(e, @clk) �
$past(LSB(e),,,@clk)!== 1 && $sampled(LSB(e))=== 1

• $fell(e, @clk) �
$past(LSB(e),,,@clk)!== 0 && $sampled(LSB(e))=== 0

• $changed(e, @clk) �
$past(e,,,@clk)!== $sampled(e)

• $stable(e, @clk) �
$past(e,,,@clk)=== $sampled(e)

November 4, 2013 HVC2013 75

Global Clocking Sampled Value Functions

• May be used only if global clock has is defined

• Past
• $past_gclk(e) � $past(e, 1, 1, @$global_clock)

• $rose_gclk(e) � $rose(e, @$global_clock)

• $fell_gclk(e) � $fell(e, @$global_clock)

• $changed_gclk(e) � $changed(e, @$global_clock)

• $stable_gclk(e) � $stable(e, @$global_clock)

• Future
• $future_gclk(e) – Sampled value of e in the next tick of the global clock

• $rising_gclk(e) � $sampled(LSB(e))!== 1 && $future_gclk(LSB(e)) === 1

• $falling_gclk(e) � $sampled(LSB(e))!== 0 && $future_gclk(LSB(e)) === 0

• $changing_gclk(e) � $sampled(e) !== $future_gclk(e)

• $steady_gclk(e) � $sampled(e) === $future_gclk(e)

• Cannot be nested or used in reset conditions

November 4, 2013 HVC2013 76

METALANGUAGE

November 4, 2013 HVC2013 77

Let Declaration

• “Compile-time macro” for integral expressions
• Follow normal scoping rules
• Formal arguments may be typed or untyped
• Formal arguments can have default actual arguments
• May be included in a package
• May easily be processed by tools for linting and statistical

reporting

• Typical usage
• Templates for Boolean assertions
• Instrumental code
• Does not introduce new variables
• Visible to debuggers

November 4, 2013 HVC2013 78

let identifier [(port, port, …)] = expression;

Let Example

November 4, 2013 HVC2013 79

module m (input logic clk, rst, …);
logic mod1, mod2;
logic req1, req2;
logic rsp;
let req = mod1 & req1 | mod2 & req2;
let gnt = $changed(rsp);
…
a: assert property (@(posedge clk) disable iff (rst) req |=> gnt);

endmodule : check

Sequence and Property Declaration

November 4, 2013 HVC2013 80

module m(input logic clk, rst, …);
logic my_req;
logic gnt;
sequence two_reqs(req);

req[*2];
endsequence

property delayed_grant(int n);
nexttime [n] gnt;

endproperty

…
req_granted: assert property (@(posedge clk) disable iff (rst)

two_reqs(my_req) |-> delayed_grant(2);
endmodule

CHECKERS

November 4, 2013 HVC2013 81

Checkers

• Checkers are SystemVerilog containers to package
verification code
• Both assertions and modeling

• Checker is a kind of hybrid of module, property and
assertion

• May contain (almost) the same constructs as a module

• Is instantiated as a property (in place)

• Placed as an assertion

• Acts as an assertion with complex internal implementation

November 4, 2013 HVC2013 82

Example. Sequential Protocol
• Whenever start is high, dataIn is valid.

• Whenever complete is high, dataOut is valid.

• If start is high, then the value of dataIn at that time must equal the value of dataOut at the next strictly
subsequent cycle in which complete is high

• If start is high, then start must be low in the next cycle and remain low until after the next strictly
subsequent cycle in which complete is high

• complete may not be high unless start was high in a preceding cycle and complete was not high in any of
the intervening cycles

November 4, 2013 HVC2013 83

dataIn dataOut

completestart

Sequential Protocol Verification Checker

November 4, 2013 HVC2013 84

checker seq_protocol (start, complete, dataIn, dataOut, event clk);

default clocking @clk; endclocking

var type(dataIn) data;

property match (first, last); first |=> !first until_with last; endproperty

always_ff @clk if (start) data <= dataIn;

a_data_check: assert property (complete |-> dataOut == data);
a_no_start: assert property (match(start, complete));
a_no_complete: assert property (match(complete, start));

initial

a_initial_no_complete: assert property (!complete throughout start[->1]);
endchecker : seq_protocol

Checker Binding

November 4, 2013 HVC2013 85

module top;
logic clock, snda, sndb, sndc, rcva, rcvb, rcvc;
...
trans ta (clock, snda, rcva);
trans tb (clock, sndb, rcvb);
trans #(2) tc (clock, sndc, rcvc);
endmodule : top

module trans #(DEL=1) (input logic clock, in, output logic out);
if (DEL == 1) begin : b

always @(posedge clock) out <= in;
end
else begin : b

logic [DEL - 2: 0] tmp;
always @(posedge clock) begin

tmp[0] <= in;
for (int i = 1; i < DEL - 1; i++) tmp[i] <= tmp[i-1];
out <= tmp[DEL - 2];

end
end

endmodule : trans

checker eventually_granted (req, gnt, …);
…

endchecker : eventually_granted

checker request_granted (req, gnt, n, …);
…

endchecker : request_granted

bind trans eventually_granted check_in2out(in, out, posedge clock);
bind trans: ta, tb request_granted delay1(in, out,, posedge clock);
bind trans: tc request_granted delay2(in, out, 2, posedge clock);

Free Variables

• Checker may have free variables
• Behave non-deterministically (like free or constrained inputs)

• FV: consider all possible values imposed by assumptions and
assignments

• Simulation: their values are randomized

• Free variable values are never sampled

• Limitations
• Continuous and blocking assignments to free variables are illegal

November 4, 2013 HVC2013 86

rand bit r;
bit [2:0] x;
…
assign x = r ? 3’d3 : 3’d5;

rand bit a;
always_ff @clk a <= !a;

Rigid Variables

• Rigid variables = constant free variables

November 4, 2013 HVC2013 87

checker data_consistency (start, complete, dataIn, dataOut,
event clk, untyped rst);

default clocking @clk; endclocking
default disable iff rst;

rand const type(dataIn) data;

a1: assert property (start && data == dataIn ##1 complete[->1]
|-> dataOut == data);

endchecker : data_consistency

Rigid
variable

Modular Assertion Modeling
checker check_fsm(logic [1:0] state, event clk);

logic [1:0] astate = IDLE; // Abstract state
model_fsm c1(state, clk, astate);
check_assertions c2(state, astate, clk);

endchecker

checker model_fsm(input event clk, output logic [1:0] astate = IDLE);
always @clk

case (astate)
IDLE: astate <= …;
…
default: astate <= ERR;

endcase

endchecker

checker check_ assertions(state, astate, event clk);
default clocking @clk; endclocking

a1: assert property (astate == IDLE <-> state inside {IDLE1, IDLE2});
//…

endchecker

November 6, 2013 Intel Confidential 88

Implementing Formal Verification
Environment With Checkers

checker env(event clk, output logic out1, out2);
rand bit a, b;
m: assume property (@clk $onehot0({a, b}));
assign out1 = a;
assign out2 = b;

endchecker : env

module m(input logic in1, in2, clock, output …);
…

endmodule : m

module top();
logic clock, n1, n2;
…
m m1(n1, n2, clock, …);
evn env1(clock, n1, n2);

endmodule : top

In simulation module
input signals are
randomized remaining
mutually exclusive

November 6, 2013 Intel Confidential 89

LOCAL VARIABLES

November 4, 2013 HVC2013 90

Informal Definition
• Local variable is a variable associated with an evaluation attempt

• Local variables are not sampled

November 4, 2013 HVC2013 91

checker data_consistency (start, complete, dataIn, dataOut,
event clk, untyped rst);

default clocking @clk; endclocking
default disable iff rst;

property p_data_check;
var type(dataIn) data;
(start, data = dataIn) ##1 complete[->1] |-> dataOut == data;

endproperty : p_data_check

a1: assert property (p_data_check);

endchecker : data_consistency

Local
variable

Match
item

Example

• Check that the value of dataIn when start is high
coincides with the value of dataOut read in n clock ticks

• If n = const

• If n is not const

November 4, 2013 HVC2013 92

assert property (start |-> ##n dataOut == $past(dataIn, n));

property data_check;
var type(n) ctr;

(start, ctr = n - 1) ##1 (ctr > 0, ctr--)[*] ##1 (ctr == 0)
|-> dataOut = dataIn;

endproperty : data_check

assert property (data_check);

Local vs. Rigid Variables

• Local variables are “broader” than rigid variables
• They are mutable

• Local variables are more intuitive

• Local variables are supported in simulation, rigid variables
are not

• Rigid variables are FV friendly – their implementation is
straightforward
• Efficient implementation of local variables in FV is challenging

November 4, 2013 HVC2013 93

RECURSIVE PROPERTIES

November 4, 2013 HVC2013 94

Recursive Properties

• Properties may be recursive

November 4, 2013 HVC2013 95

property prop_always (p) ;
p and nexttime prop_always (p);

endproperty

initial assert property (@(posedge clk) prop_always (ok));

property prop_weak_until (p, q);
q or (p and nexttime prop_weak_until (p, q));

endproperty

initial assert property (@(posedge clk) prop_weak_until (req, gnt));

EFFICIENCY AND
METHODOLOGY TIPS

November 4, 2013 HVC2013 96

Assertion Compilation for FV

• Assertions are usually compiled into finite automata [Var96]

• Typical for FV and emulation

• Sometimes done for simulation as well

• Safety assertions are compiled into (conventional) finite
automata on finite words

• Liveness and hybrid assertions are compiled into finite
automata on infinite words (e.g., Büchi automata):

• Finite automata on finite words + fairness conditions

• Complexity of automaton reflects well FV efficiency

• Another factor is the number of state variables in the model

November 4, 2013 HVC2013 97

Automaton-Based Compilation. Example

November 4, 2013 HVC2013 98

true

a a a b !c

true

a b !c

a

true

a !cb always a ##1 b |=> c
always a[*3] ##1 b |=> c
always a[+] ##1 b |=> c

Avoid Large and Distant Time Windows

November 4, 2013 HVC2013 99

assert property (start ##1 !complete[0:1000] ##1 complete |=> done);

⇕

assert property (start ##1 complete[->1] |=> done);

⇕

assert property (start ##1 !complete[*] ##1 complete |=> done);

����

����

Also applies to bounded property operators and $past

Avoid Using Liveness Assertions Unless
Really Needed

November 4, 2013 HVC2013 100

Request must be active until grant is asserted

assert property(req |-> req s_until grant);

assert property(req |-> req until grant);

����
����

Do you really want
to check that grant

is eventually
received?

Strong operators
have clumsier

syntax to prevent
inadvertent

usageClock is fair

assert property (s_eventually clk);����

assert property (req |-> ##[1:1000] gnt);

assert property (req |-> s_eventually gnt);

����
����

Liveness assertion
is usually better

than a safety
assertion with a

large time window

Avoid Mixing Weak and Strong Properties

November 4, 2013 HVC2013 101

s_nexttime always p nexttime always p

nexttime s_eventually p s_nexttime s_eventually p

Sometimes this is unavoidable

always s_eventually p

����

����

����

����

����

Past vs. Future

• Future value functions are cheap in FV
• Recall that each variable is represented as a pair (v, v')

• Past value functions are more expensive
• They introduce new flip-flops (=variables)

• Need to optimize the usage of $past

November 4, 2013 HVC2013 102

logic check;
logic [31:0] a, b, c;

assert property (##1 check |-> $past(c) == $past(a) + $past(b));

assert property (##1 check |-> $past(c == a + b));

����

����

Intersection Family

• Sequence operators from intersection family (intersect, and, within)
are expensive

• These operators are not inefficient by themselves, but allow to concisely
code complex sequences

• Use only where appropriate

• Top-level conjunction in a sequence promoted to property is not
expensive

November 4, 2013 HVC2013 103

Each transaction should contain two read requests and three write requests

assert property (start |-> read[=2] intersect write[=3] intersect complete[->1]);

Common case

assert property (start |-> write[=3] ##1 read[=2] intersect complete[->1]);

If known that all reads come after writes

assert property (en |-> r and s);

assert property (en |-> (r and s) ##1 a);

This is rather
efficient

Assertion Clock

• Assertions governed by a global clock are more efficient
in FV than assertions governed by an arbitrary clock

November 4, 2013 HVC2013 104

true

a !cb
always a ##1 b |=> c

true

a & @clk !c & @clkb & @clk

!@clk !@clk

@clk always a ##1 b |=> c

FV tools may automatically infer the global clock from a singly clocked design

Local vs. Free and Rigid Variables

• Implementing free and rigid variables is straightforward in
FV

• Implementing local variables is tricky

• Important advantage of local variables
• Allow checking assertions in simulation

• Both are usually expensive

• Efficiency is strongly dependent on FV tool
• May need to experiment

November 4, 2013 HVC2013 105

Assignments vs. Assumptions

• Assignments are usually more efficient than assumptions
• They add directionality to the search

• Compare

November 4, 2013 HVC2013 106

assign x = !y;

assume property (x != y);

vs.

Overlapping vs. Nonoverlapping
Transactions
• Nonoverlapping transactions may be modeled

deterministically

• Overlapping transactions usually require nondeterministic
modeling
• E.g., local or rigid variables

• Compare:
• Sequential protocol vs.

November 4, 2013 HVC2013 107

property p_data_check;
var type(dataIn) data;

(start, data = dataIn) ##1 complete[->1] |->
dataOut == data;

endproperty : p_data_check

If it is known that transactions cannot overlap, model them as nonoverlapping

Be More Specific

• Being more specific usually pays off. Check only what you
really need
• Don’t check for eventuality unless this is essential

• If events are ordered in a sequence specify this order explicitly

• If you know that transactions do not overlap model this fact
explicitly

• Nulla regula sine exceptione
• Liveness assertions are usually more efficient than safety

assertions with large/distant time windows

• Being more specific comes at a price of generality

• However, generality does not help if performance problems prevent us
from getting result

November 4, 2013 HVC2013 108

Efficiency: Simulation vs. FV

• Simulation and FV efficiency requirements may be
inconsistent
• Especially when assertion simulation has a transaction-based

implementation

• E.g.
• Infinite ranges and repetitions are efficient in FV, but not in

simulation

• Sequence intersection is efficient in simulation, but not in FV

• Liveness does not cost in simulation

• Future value functions are more efficient than past value functions
in FV. The situation with simulation is opposite

• Local variables are rather efficient in simulation, but not in FV

November 4, 2013 HVC2013 109

FUTURE DIRECTIONS AND
CHALLENGES

November 4, 2013 HVC2013 110

Convergence Between SVA and SVTB

• Coverage features are divided between SVA and SVTB
• Assertion coverage belongs to SVA

• Covergroups belong to SVTB

• Currently there is no organic connection between the two
• Syntax and semantics are absolutely different

• One can consider temporal coverage specification by
integrating sequences and covergroups

November 4, 2013 HVC2013 111

Standard Packages

• SVA provides basic assertion capabilities and some
sugaring
• There are many useful properties and functions that could be

reused, but are not a basic part of the language

• It makes sense to standardize them by creating standard property
packages

• PSL has some of such common properties embedded into the
language, e.g., never, before, next_event, etc.

November 4, 2013 HVC2013 112

Assertion Libraries

• Using SVA checker mechanism it is possible to create a
powerful and flexible standard assertion library with
concise library assertion invocation

• Kind of “next generation” OVL

November 4, 2013 HVC2013 113

AMS Assertions

• AMS = Analog and Mixed Signals

• The intention is to merge SystemVerilog and Verilog-AMS
• This includes development of AMS assertions and including them

into SVA

• The initial step was done in SV2012: real type support in SVA

• No continuous time support yet

November 4, 2013 HVC2013 114

TLM Assertions

• SVA covers RTL assertions

• TLM assertions are different
• Unclocked or approximately clocked

• SVA is too low level for TLM

• Need to extend SVA to cover TLM needs

November 4, 2013 HVC2013 115

Checkers for UVM

• UVM – Universal Verification Methodology
• Widely used in verification

• Includes verification level – monitors – to check design
correctness
• Part of TB

• Uses completely different mechanism, does not explore the
strength of assertions

• Implemented as class methods

• Challenge

• Checkers currently cannot be instantiated in classes

• Need to enhance them to allow their usage in UVM

November 4, 2013 HVC2013 116

BIBLIOGRAPHY

November 4, 2013 HVC2013 117

• [Ar03] - R.Armoni et al., Enhanced Vacuity Detection in Linear
Temporal Logic, 2003

• [AS87] - B. Alpern, F.B. Schneider, Recognizing safety and
liveness, 1987

• [Kr63] - S. Kripke. Semantical Considerations on Modal Logic,
1963

• [KV01] - O. Kupferman, M.Y. Vardi, Model checking of safety
properties, 2001

• [Pnu77] - A. Pnueli. The temporal logic of programs, 1977

• [PSL10] - IEEE Standard for Property Specification language
(PSL), 2010

• [SV12] - IEEE Standard for SystemVerilog, 2012

• [Var96] - M. Vardi. An Automata-Theoretic Approach

• to Linear Temporal Logic, 1996

November 4, 2013 HVC2013 118

