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BSTRACT

 

:  

 

Structural health monitoring (SHM) is a promising field with widespread application in civil

engineering.  SHM has the potential to make structures safer by observing both long-term structural

changes and immediate post-disaster damage.  However, the many SHM studies in the literature apply

different monitoring methods to different structures, making side-by-side comparison of the methods dif-

ficult.  This paper details the first phase in a benchmark SHM problem organized under the auspices of

the IASC-ASCE Structural Health Monitoring Task Group.  The scale-model structure adopted for use in

this benchmark problem is described.  Then, two analytical models based on the structure — one a

12DOF shear-building model, the other a 120DOF model, both finite-element based — are given.  The

damage patterns to be identified are listed as well as the types and number of sensors, magnitude of

sensor noise, and so forth.  M

 

ATLAB®

 

 computer codes to generate the response data for the various cases

are explained.  The codes, as well as details of the ongoing Task Group activities, are available on the

Task Group web site at http://wusceel.cive.wustl.edu/asce.shm/ .
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INTRODUCTION

 

Structural health monitoring (SHM) systems seek to monitor the state of a structure’s

“health” — that is, to determine the level and location of damage or deterioration within a struc-

ture.  Chang (1999) defined SHM as an “autonomous [system] for the continuous monitoring,

inspection, and damage detection of [a structure] with minimum labor involvement.”  SHM has
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application for all types of structures.  For civil engineering purposes, detecting the acute damage

caused by earthquakes immediately after the event or monitoring the long-term deterioration due

to the environment and human use (and abuse) can provide vital information on structural safety.

Such information can then be used to assess and plan future use and repairs, as well as estimate

changes in the expected lifetime of the structure.

 

Benefits of Structural Health Monitoring and Damage Detection (SHM/DD)

 

Recent seismic disasters, including those in the past several years in Turkey, Taiwan and

India, demonstrated yet again the damage caused by earthquakes that occur in or near urban areas.

Though the magnitude 6.8 Nisqually earthquake near Seattle in February 2001 did not cause

severe widespread damage — $1 to $2 billion cost — it served to remind us again of the continued

need to be prepared for future seismic events.  The level of structural damage caused by an earth-

quake is sometimes immediately obvious (

 

e.g.

 

, a building that has toppled over), but damage is

often hidden within a structure, such as damaged joints embedded behind walls or encased in con-

crete.  Such damage is difficult and expensive to discover by visual inspection, but may still pose

a risk to the health and integrity of the structure.  For example, significant expenditures after the

1994 Northridge earthquake went to inspecting joints of steel structures for damage, requiring

extensive removal of non-structural material, not to mention putting (at least part of) the structure

out of service during inspection.  Similar expenditures were required after the 1995 Great Hanshin

(Hyogo-Ken Nanbu or Kobe) earthquake as well (Mita, 1999).  SHM systems may prove invalu-

able in future urban earthquakes by giving quick assessments of the damage level of a structure

shortly after the quake itself.  Not only would this give the structure owner knowledge of what and



 

3

 

where damage may have occurred, but also whether immediate actions are necessary to evacuate

building occupants or contents or to reroute around damaged highways or bridges.

The benefits of monitoring long-term structural integrity are also dramatic.  The costs of civil

infrastructure maintenance, repair, and replacement are extensive — total construction costs are

estimated at about 10% of GDP for most major industrialized nations.  Further, many civil struc-

tures in the U.S. and abroad are now, or will soon be, approaching their design lives or are already

considered substandard (

 

e.g.

 

, Danhausen, 1995; Helmicki 

 

et al.

 

, 1999; Rahman 

 

et al.

 

, 1999).  The

dominant method today for evaluating the integrity of civil structures is manual, visual inspection

— a time-intensive and costly procedure.  Further, scheduling timely repair and maintenance is

difficult.  An autonomous structural health monitoring system has the potential to eliminate the

costs of regular periodic inspections, and to more accurately determine the condition of a deterio-

rating structure so as to better estimate remaining life and the upgrades necessary to keep the

structure sufficiently safe.  Further, a monitoring system can help avoid many unexpected failures

that may lead to economic or personal injury.

Currently, acquisition of sensor information is not a crucial issue.  Several recent workshops

and symposia on SHM and Damage Detection (

 

e.g.

 

, Chang, 1997, 1999, 2001) have demonstrated

significant developments in sensor technologies for a variety of monitoring purposes.  However,

the authors’ impressions of these meetings, which have been echoed by other SHM researchers,

have been that the critical problem now is not the acquisition of information.  Clearly, collecting

terabytes of data from a single structure is well within the capabilities of today’s hardware and

software.  Rather, crucial algorithmic developments are needed to process the vast wealth of infor-

mation and provide useful and simple measures of a structure’s current health status.
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SHM Benchmark Studies and the IASC-ASCE SHM Task Group

 

There have been numerous studies by researchers around the world applying various SHM

techniques.  The interested reader is directed particularly to the extensive review papers by Doe-

bling 

 

et al.

 

 (1996, 1998).  SHM systems may be classified in various ways.  One way is local

versus global methods.  Local SHM methods detect changes in a structure in localized regions;

some examples are various ultrasonic and x-ray devices, and piezoelectric devices (

 

e.g.

 

, Park 

 

et

al.

 

, 1999a,b)).  Global SHM methods — sometimes called vibration-based methods — may be

further classified by using unmeasured (and, often, unmeasurable) ambient excitation or known

(or measurable) excitation.  The former, of course, requires no artificial excitation source and is,

thus, simpler from an implementation point of view.  Examples of ambient excitation are

microtremors, wind, traffic, waves, mechanical processes, human factors, etc.  Known excitation

SHM methods for civil structures have focused on using actuators of various kinds, including

impact devices, step-relaxation methods (

 

e.g.

 

, releasing a tensioned cable), and shakers (rotating

unbalanced devices, servo-hydraulic devices, or electrodynamic devices).  (A brief review of exci-

tation for bridges is given by Farrar 

 

et al.

 

 (1999).) 

A difficulty, however, is that the various studies apply different SHM/DD methods to differ-

ent structures, rendering side-by-side comparison difficult.  A benchmark study, where partici-

pants apply a number of monitoring techniques to a common structure with common objectives,

provides a platform for consistent evaluation of the proposed SHM methods.  One such recent

benchmark study was initiated at the 

 

15

 

th

 

 International Modal Analysis Conference

 

 (IMAC XV)

and is detailed in Black and Ventura (1998).  This study was a “blind test” in that the participants

were provided with forced vibration response data of a scale-model steel frame structure in
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undamaged and damaged (certain elements removed from the frame) states but with no knowledge

of the level or location(s) of damage.  The task, then, was to identify where the damage had

occurred.  The blind test is, of course, a realistic measure of the performance of different SHM

methods.  However, it makes it difficult for researchers to understand the advantages and disadvan-

tages of the methods, particularly the sensitivity to various aspects of the problem, such as full or

limited sensor information, the effects of noise, and so forth.  In the end, only one paper was actu-

ally submitted to the next IMAC conference directly addressing this blind test (Park 

 

et al.

 

, 1998).

Presumably, researchers were a bit leery of the completely blind nature of the study.

At the 1996 International Workshop on Structural Control (Chen, 1996), a plan was formed

by the International Association for Structural Control (IASC) to create task groups to study the

problem of structural health monitoring with particular focus on civil structures.  Three task

groups — one per region (Europe, Asia, U.S.) — were to be formed.  The U.S. task group solidi-

fied in 1999 jointly under the auspices of the U.S. Panel on Structural Control (1990) and of the

Dynamics committee of the ASCE Engineering Mechanics Division with Prof. James L. Beck

(Caltech) as chair.  Prof. Dennis Bernal took over as chair March 2001 until early 2003.  This joint

IASC-ASCE task group met first in June 1999 at the 

 

13

 

th

 

 ASCE Engineering Mechanics Confer-

ence

 

 at Johns Hopkins University, and has had regular subsequent working meetings (Caltech,

August 1999; USC, February 2000; UT-Austin [EM2000], May 2000; WashU, September 2000;

Caltech, March 2001; San Diego [MMC2001], June 2001; Como, Italy, April 2002; a planned

meeting at Stanford [3IWSHM] on 12 September 2001 did not materialize for obvious reasons).

The task group is charged with studying the efficacy of various structural health monitoring meth-

ods.
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The IASC-ASCE SHM Task Group is developing a series of benchmark SHM problems,

beginning with a relatively simple problem and proceeding on to more realistic (but more difficult)

problems.  This paper details the first phase of this study, based on simulated response of a test

structure that forms the cornerstone of the work.  The motivation for the structural model is dis-

cussed, as well as the data generation mechanisms for the simulated data.  Subsequent papers in

this journal issue will apply several SHM/DD methods to this common benchmark problem.  Later

work will involve analysis of experimental data from the test structure.

 

SHM/DD BENCHMARK PROBLEM DEFINITION

 

The Benchmark Structure

 

The Task Group decided that the use of simulated data from an analytical structural model

based on an existing structure would allow for future comparisons with data taken on the actual

structure.  Starting with simulated data allows participants to better understand the sensitivities of

their methods to various aspects of the problem, such as difference between the identification

model and the true model, incomplete sensor information, and the presence of noise in measure-

ment signals.  Since the earlier “blind test” study was based on data from a scale-model structure,

the Task Group chose to use an analytical model based on the same structure.

The structure (Black and Ventura, 1998), shown in Fig. 1, is a 4-story, 2-bay by 2-bay steel-

frame scale-model structure in the Earthquake Engineering Research Laboratory at the University

of British Columbia (UBC).  It has a 2.5

 

 

 

m 

 

×

 

 2.5

 

 

 

m plan and is 3.6

 

 

 

m tall.  The members are hot

rolled grade 300W steel with a nominal yield stress 300 MPa (42.6

 

 

 

kpsi).  The sections are

unusual, designed for a scale model, with properties as given in Table 1.  The columns are all ori-
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ented to be stronger bending toward the 

 

x

 

-direction (

 

i.e.

 

, about the 

 

y

 

-axis).  The floor beams are

oriented to be stronger bending vertically, 

 

i.e.

 

, about the 

 

y

 

-axis (

 

x

 

-axis) for those oriented with lon-

gitudinal axis parallel to the 

 

x

 

-axis (

 

y

 

-axis).  The braces have no bending stiffness, so their orien-

tation is irrelevant.  There is one floor slab per bay per floor:  four 800

 

 

 

kg slabs at the first level,

four 600

 

 

 

kg slabs at each of the second and third levels, and, on the fourth floor, either four 400

 

 

 

kg

slabs or three 400

 

 

 

kg and one 550

 

 

 

kg to create some asymmetry (discussed further below).

Two finite element models based on this structure were developed to generate the simulated

response data.  The first is a 12DOF shear-building model that constrains all motion except two

horizontal translations and one rotation per floor.  The second is a 120DOF model that only

requires floor nodes have the same horizontal translation and in-plane rotation.  The columns and

floor beams are modeled as Euler-Bernoulli beams in both finite element models.  The braces are

bars with no bending stiffness.  A diagram of the analytical model is shown in Fig. 2.  Note the 

 

x

 

-

direction (

 

i.e.

 

, bending about the 

 

y

 

-axis) is the strong direction due to the orientation of the col-

umns.  Further, to be consistent with the axes used in later experimental tests (Dyke 

 

et al.

 

, 2001),

the compass directions associated with the axes are South for the positive 

 

y

 

 (weak) direction, and

West for the positive 

 

x

 

 (strong) direction.

 

Damage Patterns

 

In addition to the undamaged structure, six damage patterns are studied as a part of the

benchmark problem.  These damage patterns advance from simple extreme damage that most any

method should be able to detect, to more difficult cases.  The damage patterns are not intended to

directly represent the complexity of damage mechanisms, but will test the ability of various
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SHM/DD methods in detecting, localizing, and quantifying damage.  The damage patterns are

shown graphically in Fig. 3, and are defined as follows:

(

 

i

 

) no stiffness in the braces of the first story (

 

i.e.

 

, the braces still contribute mass, but provide

no resistance within the structure),

(

 

ii

 

) no stiffness in any of the braces of the first and third stories,

(

 

iii

 

) no stiffness in one brace in the first story (north brace on the west face of the structure;

noted with the ellipse in Fig. 3

 

iii

 

),

(

 

iv

 

) no stiffness in one brace in the first story (north brace on the west face) and in one brace in

the third story (west brace on the north face),

(

 

v

 

) the same as damage pattern (

 

iv

 

) but with the north floor beam at the first level on the west

face of the structure (

 

i.e.

 

, the beam from 

 

(

 

(2.5m, 0, 0.9m) to (2.5m, 1.25m, 0.9m)) partially

unscrewed from the northwest column at (2.5m, 0, 0.9m) — consequently, the beam-col-

umn connection there can only transmit forces and cannot sustain any bending moments —

and

(

 

vi

 

) two-thirds stiffness (

 

i.e.

 

, a one-third stiffness loss) in one brace in the first story (the same

brace damaged in pattern (

 

iii

 

):  the north brace on the west face).

 

12DOF Shear-Building Model

 

Two finite element models of the structure were developed to generate the simulated data for

the SHM/DD benchmark problem in the undamaged and damaged conditions.  The first finite ele-

ment model is a twelve degree-of-freedom (12DOF) shear building model.  In this model, the

floors (floor beams and floor slabs) move as rigid bodies, with translation in the 

 

x

 

- and 

 

y

 

-directions

and rotation 

 

θ

 

 about the center column.  Thus, there are three degrees-of-freedom per floor.  The
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columns are modeled as linear elastic Euler-Bernoulli beams, and the braces as axial bars.  A

M

 

ATLAB®

 

 based finite element analysis code (available through the Task Group web site http://

wusceel.cive.wustl.edu/asce.shm/) is used to compute mass 

 

M

 

 and stiffness 

 

K

 

 matrices.  The nat-

ural frequencies are given in Table 2 for the undamaged structure and for damage patterns (

 

i

 

) and

(

 

ii

 

).  The mode shapes of the first three modes are shown in Fig. 4.  The  model has story stiff-

nesses as shown in Table 3, with percent loss of story stiffnesses for each damage pattern shown in

Table 4, and the 12DOF stiffness matrix 

 

K

 

 is given in the Appendix.  Note that since the floor is

perfectly rigid and bending of the floor beams is not allowed, damage pattern (

 

v

 

) is no different

than (

 

iv

 

) for the 12DOF model (this will not be the case for the 120DOF model as shown below).

As discussed previously, some of the cases to be studied have some asymmetry in the mass of the

fourth floor; the natural frequencies of the lumped-mass 12DOF model with this asymmetry are

shown in Table 5.

In fact, two 12DOF models have been studied as a part of this benchmark problem.  The ini-

tial code, developed by the first author and denoted herein as the 

 

USC code

 

, used a consistent mass

matrix, but neglected any mass of damaged braces and is restricted to a unidirectional study and

the first two damage patterns (cases 1 and 2 as defined below).  The later code, spearheaded by the

second author and discussed in more depth below, incorporated the options to study the more com-

plex 120DOF data generation model and the more advanced cases and damage patterns, but used

a lumped mass matrix (and includes the mass from damaged braces) — this code is denoted the

 

HKUST code

 

.  However, the consistent mass matrix in the initial 

 

USC code

 

 allows for identifica-

tion model error.  Further, some of the application papers to follow report their initial results iden-

tifying damage in this structure with the consistent mass matrix.  Consequently, the natural

frequencies are given in Table 2 for both lumped (

 

HKUST code

 

) and consistent (

 

USC code

 

) mass
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matrices, and both matrices are given in the Appendix.  However, for ease of use, consistency, and

study of the advanced cases, the later 

 

HKUST code should be used for any new studies of this

problem.

120DOF Model

Most structures are not as simple as engineers often model them, which leads to the presence

of model error.  To include model error effects in this benchmark study, a more complex 120DOF

model was constructed using finite elements. This model is used to simulate the response measure-

ments, while the model used in the identification analyses remains the (simpler) 12DOF shear-

building model.  The 120DOF model constrains the horizontal translation and rotation (about the

vertical axis) of the nodes in each floor to be the same.  The horizontal slab panels are assumed to

contribute only towards the in-plane stiffness making the floor behave as rigid with respect to in-

plane motions only. The remaining out-of-plane degrees of freedom (namely, vertical motion and

pitching/rolling of the floor) are active.  The resulting natural frequencies, given in Table 2 for

undamaged and damage patterns (i) and (ii) with symmetric mass and in Table 6 for all damage

patterns with asymmetric mass, are lower than those of the 12DOF case due to fewer constraints.

(Some participants in this study may have used an older version of the HKUST code that had a dif-

ferent orientation for the floor beams, resulting in slightly lower natural frequencies; those natural

frequencies were reported in previous conference papers (Johnson et al., 2000, 2001, 2002)).

“Equivalent” horizontal story stiffnesses do not have a unique definition.  One possible

approach is to look just at the elements of the 120DOF stiffness matrix that are in rows and col-

umns corresponding to the horizontal (x, y, and θ) degrees of freedom.  This results in a reduced

stiffness matrix that gives story stiffnesses identical to those for the 12DOF model given in
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Table 3.  Another approach is to define the “equivalent” stiffness based on the effects of a unit

force applied to each of the 12 degrees-of-freedom on the induced motion in those same degrees-

of-freedom.  This reduces to finding a 12DOF shear-building stiffness matrix whose inverse — the

flexibility matrix — is close to the corresponding rows and columns of the 120DOF flexibility

matrix.  A least-squares optimization may be used to find this “equivalent” 12DOF model, and the

resulting story stiffnesses.  This approach results in the story stiffnesses given in Table 7 and per-

cent loss of story stiffnesses for each damage pattern given in Table 8.  Because of the coupling of

vertical and horizontal motion, removing braces affects the “equivalent” horizontal stiffness on

floors above and below where the brace was actually removed.

Time History Response Simulation Cases

The finite element models (either the 12 or 120 DOF models) give a structural model in terms

of active degrees of freedom q, related to physical degrees of freedom by .  The equation

of motion is  where f = a vector of forces applied to the physical degrees

of freedom.  Sixteen accelerometers, two each in the x- and y-directions per floor, return noisy

sensor measurements:   where v = a sensor noise vector, the elements of which

are Gaussian pulse processes with RMS 10% of the largest RMS of the acceleration responses

(typically one of the roof accelerations).  1% modal damping is assumed in each mode, so Cd is

computed based on the solution to the standard  eigenvalue problem.  Two sets of

excitations are used in various cases of the benchmark problem:  independent loading in the y-

direction at each floor as in Fig. 5; or as a roof acceleration at the center column in a direction

 (where  and  are unit vectors in the x- and y-directions, respectively).  In both loading

x Tq=

Mq̇̇ Cdq̇ Kq+ + TTf=

ẏ̇ Cq Df v+ +=

KΦΦΦΦ MΦΦΦΦΛΛΛΛ=

î ĵ–( )± î ĵ
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scenarios, the excitation(s) are modeled as independent filtered Gaussian white noise (Gaussian

white noise processes passed through a 6th order low-pass Butterworth filter with a 100 Hz cutoff).

Two methods of time history integration are given as options to the user.  The first uses MAT-

LAB’s lsim command, which uses a discrete-time integration algorithm that assumes excitation is

constant over a time step.  The other integration algorithm uses the Nigam-Jennings integration

that decomposes the system into modal space, integrates each mode assuming the excitation is

piecewise linear over a time step, and superimposes to get the time response (Nigam and Jennings,

1968, 1969).  The nominal integration time step should be 0.001 seconds, to a duration of about

100 seconds.  Participants in the benchmark study are free to adjust these, but must justify signifi-

cant deviations.  The acceleration time history responses are available, then, at a 1 kHz sampling

rate but participants may freely use lower sampling rates as they wish (to reduce computational

effort, for example).  Sample time histories for several cases and damage patterns are shown in

Fig. 6, and the corresponding power spectral densities, that expose the modes of the system, are

shown in Fig. 7.

A total of six cases are defined as a part of this phase 1 benchmark problem, each with several

components including the various damage patterns.  The matrix of simulation cases is shown in

Table 9.  Figure 5 depicts the scenario for the first two simulation cases, which is a one-dimen-

sional analysis in the weak (y) direction.  The excitations are applied one per floor as approximat-

ing wind or other ambient excitation, and are modeled as independent filtered Gaussian white

noise.  Subsequent cases add additional realism (though not yet to the stage of the complexity of a

full-scale structure).  Case 3 replaces the “ambient” excitation with a shaker on the roof (top of the

center column).  Although the structure is excited in two directions, only the y-direction is to be
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analyzed for Case 3.  Cases 4–6 introduce asymmetry by replacing one of the 400 kg floor slabs on

the roof (the one with hatched shading in Fig. 5) with a 550 kg slab, and are analyzed with 3-D

motion of the floors.  Case 4 reverts to the 12DOF data generation model, but case 5 brings model

error back into the picture and introduces damage pattern (v).  Case 6 decreases the number of sen-

sors by 50% to test the ability of various SHM/DD algorithms to be robust to limited sensor data.

Data Generation Program: datagen

The data generation program for this phase 1 benchmark problem is available on the Task

Group web site http://wusceel.cive.wustl.edu/asce.shm/ .  This MATLAB program, called datagen,

provides both command-line and graphical user interface (GUI) methods of building the 12 or 120

DOF finite element models and simulating their response.  The resulting acceleration time histo-

ries (as well as other parameters like the mass and stiffness matrices) are stored in a MATLAB .mat

file, and can be loaded into MATLAB for analysis by the identification, monitoring, or damage

detection code of interest.  The GUI has four primary modal windows that sequentially request

user input.  Snapshots of these GUIs are shown in Fig.  8.  The first GUI (Fig. 8a) asks the user

which case for which it should generate the date.  The second (Fig. 8b) asks what damage pattern

should be used.  The third (Fig. 8c) asks the user to select the integration scheme for simulating the

response time histories.  And finally, the fourth (Fig. 8d) asks for the numerical values of a number

of parameters.  Default values are provided, some of which are prescribed as part of the bench-

mark definition (but the user can change them if it helps demonstrate some aspect of their identifi-

cation or damage detection methodology).  Most of these are described above or are self-

explanatory.  The “noise level” is the RMS of the sensor noises, generated using independent

Gaussian pulse processes, as a percentage of the maximum RMS acceleration responses; this noise
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level should be 10% for the benchmark problem.  The “filter index” is a boolean value (0 or 1)

indicating whether the excitation(s) should be passed through the aforementioned low-pass filter;

this option is included because the Butterworth filter requires the Signal Processing toolbox in

MATLAB, which may not be available for all interested parties.  The “formal” benchmark defini-

tion uses this filter so that the excitation and responses have finite variances that do not depend on

the length of the time step.  The random number generator seed can be adjusted to give different

excitation and noise time histories to perform multiple analyses.  Finally, the name of the output

.mat datafile may be chosen.

While not a part of the formal benchmark definition, the GUI provides a means for selecting

and defining an arbitrary damage pattern.  Clicking on “User define damage case” in Fig. 8b

causes datagen to pop up a list of element categories (Fig. 9a) and a frame drawing of the structure

with elements numbered (Fig. 9b).  Selecting one of the element categories brings up another

window to choose specific elements that are damaged (Fig. 9c).  The element, if checked, is

assumed to lose all of its stiffness.

CONCLUSIONS

An autonomous monitoring system that has the capability of predicting what parts of a struc-

ture are damaged and which are not would have a positive economic impact, as well as the poten-

tial for saving lives by giving quick assessments of structural health to indicate whether continued

use of a structure may be allowed or if alternate routes must be used by emergency vehicles and

other necessary traffic.  Quick and effective prioritization of actions after a seismic disaster is

infeasible with manual inspection.  However, a number of autonomous health monitoring methods
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have been studied and tested in recent years.  While promising, it is often difficult to compare the

merits of various approaches as they are typically applied to different structures, with different

excitation models, and evaluated on different criteria.  A benchmark study can help provide a

common basis for studying and exploring a variety of health monitoring and damage detection

approaches.  Further, rooting a benchmark in a modern programming language like MATLAB helps

simplify and make transparent the modelling and response calculations in an open code; further,

users can modify the code as needed to fit the peculiarities of their chosen SHM/DD methodology.

This paper has detailed the first phase of a benchmark problem in structural health monitor-

ing.  The benchmark problem is based on simulated response time histories of a laboratory-scale

frame building.  12 and 120 DOF finite element models are used to generate the response data.

Participants are charged with using a 12DOF shear-building as their identification model.  Six

cases are defined with undamaged and six damage patterns.  The IASC-ASCE Task Group on

Structural Health Monitoring has been studying this phase of the benchmark problem, and the

remainder of the papers in this special journal issue apply various SHM methods to this phase of

the benchmark problem.  The Task Group encourages participation in this benchmark study by

researchers around the world and would appreciate any comments or suggestions on this work.

More details on this study, as well as the current and future efforts of the Task Group, are available

on the web at http://wusceel.cive.wustl.edu/asce.shm/ .
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APPENDIX.  MASS AND STIFFNESS MATRICES FOR 12DOF MODELS

Some methods of health monitoring may require knowledge, partial or full, of the mass

matrix of the structure.  As participants of this benchmark problem are to use a 12DOF shear-

building identification model, the mass matrices for the 12DOF models are given in Fig. 10.  Fur-

ther, for purposes of comparison with participant results, the stiffness matrices of the 12DOF

models in undamaged and in the 6 damage cases, are shown in Fig. 11.
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Property Columns Floor Beams Braces

 section type B100×9 S75×11 L25×25×3

 cross-sectional area A [m2] 1.133×10–3 1.43×10–3 0.141×10–3

 moment of inertia (strong direction) Iy [m
4] 1.97×10–6 1.22×10–6 0

 moment of inertia (weak direction) Iz [m
4] .664×10–6 .249×10–6 0

 St. Venant torsion constant J [m4] 8.01×10–9 38.2×10–9 0

 Young’s Modulus E [Pa] 2×1011 2×1011 2×1011

 Shear Modulus G [Pa] E / 2.6 E / 2.6 E / 2.6

 Mass per unit volume ρ [kg/m3] 7800 7800 7800

Table 1: Properties of structural members.
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Undamaged Damage Pattern (i)
no 1st floor braces 

Damage Pattern (ii)
no 1st & 3rd floor braces 

12DOF
consistent

mass 

12DOF
lumped

mass 

120DOF
lumped

mass 

12DOF
consistent

mass

12DOF
lumped

mass 

120DOF
lumped

mass 

12DOF
consistent

mass 

12DOF
lumped

mass 

120DOF
lumped

mass 

  9.41 y   9.41 y   8.59 y   6.24 y   6.24 y   5.47 y   5.83 y   5.82 y   4.96 y 
11.79 x 11.79 x   9.18 x   9.91 x   9.91 x   7.37 x   9.52 x   9.51 x   6.68 x 
16.53 θ 16.38 θ 14.58 θ 11.84 θ 11.73 θ   9.69 θ 11.13 θ 11.01 θ   8.70 θ 
25.60 y 25.54 y 23.45 y 21.58 y 21.53 y 19.31 y 14.93 y 14.89 y 12.34 y 
32.07 x 32.01 x 25.95 x 28.99 x 28.92 x 22.77 x 24.98 x 24.91 x 17.79 x 
38.85 y 38.66 y 36.81 y 37.56 y 37.37 y 34.18 θ 28.78 θ 28.41 θ 21.56 θ 
45.17 θ 44.64 θ 40.65 θ 38.75 θ 38.28 θ 35.29 y 36.28 y 36.06 y 34.79 y 
48.37 y 48.01 y 42.21 x 47.57 x 47.34 x 40.66 x 41.65 y 41.35 y 38.75 y 
48.68 x 48.44 x 46.98 y 48.19 y 47.83 y 46.73 y 47.06 x 46.79 x 40.62 x 
60.60 x 60.15 x 56.74 x 60.45 x 59.99 x 56.38 x 54.76 x 54.34 x 49.47 x 
68.64 θ 67.48 θ 62.96 θ 66.46 θ 65.31 θ 60.43 θ 64.86 θ 63.64 θ 59.98 θ 
85.51 θ 83.62 θ 81.05 θ 85.20 θ 83.31 θ 80.53 θ 74.27 θ 72.61 θ 68.57 θ 

Table 2: Natural frequencies [Hz] of analytical models for Cases 1–3.
Modes with weak direction dominant motion are shaded.
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Element Undamaged Damage Pattern

Story DOF (i) (ii) (iii) (iv) (v) (vi)

1 x 106.60   58.37   58.37 106.60 106.60 106.60 106.60
1 y   67.90   19.67   19.67   55.85   55.85   55.85   63.89
1 θ 232.02   81.30   81.30 209.11 209.11 209.11 225.35
2 x 106.60 106.60 106.60 106.60 106.60 106.60 106.60
2 y   67.90   67.90   67.90   67.90   67.90   67.90   67.90
2 θ 232.02 232.02 232.02 232.02 232.02 232.02 232.02
3 x 106.60 106.60   58.37 106.60   94.54   94.54 106.60
3 y   67.90   67.90   19.67   67.90   67.90   67.90   67.90
3 θ 232.02 232.02   81.30 232.02 210.78 210.78 232.02
4 x 106.60 106.60 106.60 106.60 106.60 106.60 106.60
4 y   67.90   67.90   67.90   67.90   67.90   67.90   67.90
4 θ 232.02 232.02 232.02 232.02 232.02 232.02 232.02

Table 3: Horizontal story stiffnesses [MN/m] of undamaged and damaged 12DOF model.
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Element Damage Pattern

Story DOF (i) (ii) (iii) (iv) (v) (vi)

1 x 45.24% 45.24% 0 0 0 0
1 y 71.03% 71.03% 17.76% 17.76% 17.76% 5.92%
1 θ 64.96% 64.96%   9.87%   9.87%   9.87% 2.88%
2 x 0 0 0 0 0 0
2 y 0 0 0 0 0 0
2 θ 0 0 0 0 0 0
3 x 0 45.24% 0 11.31% 11.31% 0
3 y 0 71.03% 0 0 0 0
3 θ 0 64.96% 0   9.16%   9.16% 0
4 x 0 0 0 0 0 0
4 y 0 0 0 0 0 0
4 θ 0 0 0 0 0 0

Table 4: Percent loss in horizontal story stiffnesses of damaged 12DOF model.
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Undamaged Damage Patterns

(i) (ii) (iii) (iv) (v) (vi)

  9.29 y   6.18 y   5.76 y   8.79 y   8.79 y   8.79 y   9.15 y 
11.64 x   9.80 x   9.39 x 11.64 x 11.50 x 11.50 x 11.64 x 
16.19 θ 11.63 θ 10.90 θ 15.80 θ 15.68 θ 15.68 θ 16.07 θ 
25.27 y 21.27 y 14.78 y 24.37 y 24.36 y 24.36 y 24.98 y 
31.66 x 28.59 x 24.70 x 31.66 x 30.82 x 30.82 x 31.66 x 
38.26 y 36.87 y 28.22 θ 37.77 y 37.76 y 37.76 y 38.10 y 
44.20 θ 37.93 θ 35.97 y 43.61 θ 42.91 θ 42.91 θ 43.99 θ 
47.75 y 46.81 x 40.60 y 47.68 y 47.68 y 47.68 y 47.72 y 
47.97 x 47.54 y 46.46 x 47.96 x 47.96 x 47.96 x 47.97 x 
59.81 x 59.63 x 53.68 x 59.81 x 58.18 x 58.18 x 59.81 x 
66.90 θ 64.67 θ 63.44 θ 66.58 θ 66.56 θ 66.56 θ 66.79 θ 
83.23 θ 82.89 θ 71.58 θ 83.18 θ 81.76 θ 81.76 θ 83.21 θ 

Table 5: Natural frequencies [Hz] of the 12DOF model with asymmetric mass for Case 4.
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Undamaged Damage Patterns

(i) (ii) (iii) (iv) (v) (vi)

  8.47 y   5.42 y   4.90 y   7.99 y   7.99 y   7.95 y   8.34 y 
  9.05 x   7.28 x   6.59 x   9.05 x   8.81 x   8.81 x   9.05 x 
14.40 θ   9.61 θ   8.60 θ 14.01 θ 13.85 θ 13.85 θ 14.29 θ 
23.19 y 19.06 y 12.26 y 22.25 y 22.22 y 22.20 y 22.90 y 
25.63 x 22.47 x 17.65 x 25.63 x 24.72 x 24.72 x 25.63 x 
36.44 y 33.73 θ 21.44 θ 35.81 y 35.78 y 35.77 y 36.25 y 
40.21 θ 34.94 y 34.62 y 39.68 θ 38.84 θ 38.84 θ 40.01 θ 
41.85 x 40.23 x 38.17 y 41.84 x 41.71 x 41.71 x 41.85 x 
46.77 y 46.50 y 40.13 x 46.68 y 46.68 y 46.66 y 46.74 y 
56.55 x 56.17 x 49.20 x 56.55 x 54.67 x 54.67 x 56.55 x 
62.42 θ 59.82 θ 59.58 θ 62.04 θ 62.04 θ 62.04 θ 62.29 θ 
80.75 θ 80.20 θ 67.85 θ 80.67 θ 79.07 θ 79.07 θ 80.72 θ 

Table 6: Natural frequencies [Hz] of the 120DOF model with asymmetric mass for Cases 5–6.
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Element Undamaged Damage Pattern

Story DOF (i) (ii) (iii) (iv) (v) (vi)

1 x   77.38   35.21   35.49   77.38   77.47   77.47   77.38
1 y   61.62   15.41   15.54   49.82   49.82   49.07   57.74
1 θ 197.34   56.05   56.98 179.33 179.43 179.42 191.41
2 x   57.38   49.05   43.35   57.38   56.16   56.16   57.38
2 y   53.66   46.57   42.90   52.95   52.94   52.18   53.47
2 θ 171.75 142.54 126.22 169.99 168.78 168.77 171.29
3 x   54.88   54.85   22.17   54.87   46.54   46.54   54.88
3 y   51.04   51.13   12.25   51.05   51.03   51.08   51.04
3 θ 174.97 178.95   41.00 175.17 156.83 156.83 175.02
4 x   52.85   52.44   42.22   52.84   51.14   51.14   52.85
4 y   49.16   48.69   41.68   49.12   49.09   49.08   49.15
4 θ 175.93 175.44 135.69 175.91 173.83 173.82 175.92

Table 7: “Equivalent” Horizontal story stiffnesses [MN/m] of 120DOF model.
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Element Damage Pattern

Story DOF (i) (ii) (iii) (iv) (v) (vi)

1 x 54.50% 54.13% –0.00% –0.11% –0.11% 0
1 y 74.99% 74.79% 19.14% 19.15% 20.38% 6.29%
1 θ 71.60% 71.12% 9.12% 9.08% 9.08% 3.00%
2 x 14.52% 24.44% 0 2.13% 2.13% 0
2 y 13.21% 20.06% 1.32% 1.34% 2.75% 0.35%
2 θ 17.00% 26.51% 1.02% 1.73% 1.73% 0.27%
3 x 0.04% 59.61% 0.01% 15.20% 15.20% 0
3 y –0.19% 76.00% –0.02% 0.02% –0.08% 0
3 θ –2.27% 76.56% –0.11% 10.37% 10.36% –0.03%
4 x 0.76% 20.10% 0.01% 3.23% 3.23% 0
4 y 0.95% 15.23% 0.08% 0.14% 0.17% 0.02%
4 θ 0.28% 22.87% 0.01% 1.19% 1.20% 0

Table 8: Percent loss in “equivalent” horizontal story stiffnesses of damaged 120DOF model.
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Description Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
(1D+noise)
(weak dir.)

(+ model 
error)

(roof excit) (3D) (+ model 
error)

(+ limited 
sensors)

Data generation model:
1. Floors rigid (USC 12DOF)  ×  ×  × 
2. Floors rigid in-plane (HKUST 120DOF)  ×  ×  × 

Mass Distribution:
1. Symmetric (four 400kg masses on roof)  ×  ×  × 
2. Asymmetric (three 400kg,  one 550 kg)  ×  ×  × 

Excitation:
1. “Ambient”  ×  × 
2. Shaker diagonal on roof  ×  ×  ×  × 

ID Model:  linear 12DOF shear building  ×  ×  ×  ×  ×  × 
ID Data:  4 sensors/floor with 10% RMS noise

1. Known input a a
2. Unknown input b b b b b
3. Unknown input; sensors on 2nd,4th floors c

Damage Patterns:  remove the following
i. all braces in 1st story  ×  ×  ×  ×  ×  × 

ii. all braces in 1st and 3rd stories  ×  ×  ×  ×  ×  × 
iii. one brace in 1st story  ×  ×  × 
iv. one brace in each of 1st and 3rd stories  ×  ×  × 
v. as iv, and loosen floor beam at 1st level  ×  × 

vi. 2/3 stiffness in one brace in at 1st story  ×  ×  × 

Table 9: Simulation case matrix of the phase 1 SHM benchmark problem.
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Figure 1:  Steel-frame scale structure.

Photo courtesy Prof. Carlos Ventura, UBCPhoto courtesy Prof. Carlos Ventura, UBC
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Figure 4:  First 3 mode shapes of the 12DOF consistent-mass-matrix model.
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Figure 8:  datagen’s standard graphical user interface.

(a) startup GUI to select the analysis case.

(c) GUI to select the integration routine.

(b) GUI to select the damage pattern. (d) GUI to enter the numerical quantities.
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Figure 9:  datagen’s graphical user interface for user-selectable damage patterns.

(a) Element categories. (b) Frame drawing of the elements. (c) Specific elements.
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3430.2 0 0 11.1 0 0 0 0 0 0 0 0 
0 3430.2 0 0 11.1 0 0 0 0 0 0 0 
0 0 3726.4 0 0 23.0 0 0 0 0 0 0 

11.1 0 0 2630.2 0 0 11.1 0 0 0 0 0 
0 11.1 0 0 2630.2 0 0 11.1 0 0 0 0 
0 0 23.0 0 0 2893.0 0 0 23.0 0 0 0 
0 0 0 11.1 0 0 2630.2 0 0 11.1 0 0 
0 0 0 0 11.1 0 0 2630.2 0 0 11.1 0 
0 0 0 0 0 23.0 0 0 2893.0 0 0 23.0  
0 0 0 0 0 0 11.1 0 0 1798.8 0 0 
0 0 0 0 0 0 0 11.1 0 0 1798.8 0 
0 0 0 0 0 0 0 0 23.0 0 0 1991.1  

kgM =12DOF
undamaged

consistent

3425.3 0 0 11.1 0 0 0 0 0 0 0 0 
0 3425.3 0 0 11.1 0 0 0 0 0 0 0 
0 0 3718.8 0 0 23.0 0 0 0 0 0 0 

11.1 0 0 2630.2 0 0 11.1 0 0 0 0 0 
0 11.1 0 0 2630.2 0 0 11.1 0 0 0 0 
0 0 23.0 0 0 2893.0 0 0 23.0 0 0 0 
0 0 0 11.1 0 0 2630.2 0 0 11.1 0 0 
0 0 0 0 11.1 0 0 2630.2 0 0 11.1 0 
0 0 0 0 0 23.0 0 0 2893.0 0 0 23.0  
0 0 0 0 0 0 11.1 0 0 1798.8 0 0 
0 0 0 0 0 0 0 11.1 0 0 1798.8 0 
0 0 0 0 0 0 0 0 23.0 0 0 1991.1  

kgM =12DOF
(i)

consistent

3425.3 0 0 11.1 0 0 0 0 0 0 0 0 
0 3425.3 0 0 11.1 0 0 0 0 0 0 0 
0 0 3718.8 0 0 23.0 0 0 0 0 0 0 

11.1 0 0 2625.3 0 0 9.2 0 0 0 0 0 
0 11.1 0 0 2625.3 0 0 9.2 0 0 0 0 
0 0 23.0 0 0 2879.9 0 0 19.2 0 0 0 
0 0 0 9.2 0 0 2625.3 0 0 11.1 0 0 
0 0 0 0 9.2 0 0 2625.3 0 0 11.1 0 
0 0 0 0 0 19.2 0 0 2885.5 0 0 23.0  
0 0 0 0 0 0 11.1 0 0 1798.8 0 0 
0 0 0 0 0 0 0 11.1 0 0 1798.8 0  
0 0 0 0 0 0 0 0 23.0 0 0 1991.1  

kgM =12DOF
(ii)

consistent

3452.4 0 0 0 0 0 0 0 0 0 0 0 
0 3452.4 0 0 0 0 0 0 0 0 0 0 
0 0 3819.4 0 0 0 0 0 0 0 0 0 
0 0 0 2652.4 0 0 0 0 0 0 0 0 
0 0 0 0 2652.4 0 0 0 0 0 0 0 
0 0 0 0 0 2986.1 0 0 0 0 0 0 
0 0 0 0 0 0 2652.4 0 0 0 0 0 
0 0 0 0 0 0 0 2652.4 0 0 0 0 
0 0 0 0 0 0 0 0 2986.1 0 0 0 
0 0 0 0 0 0 0 0 0 1809.9 0 0 
0 0 0 0 0 0 0 0 0 0 1809.9 0 
0 0 0 0 0 0 0 0 0 0 0 2056.9 

kgM =12DOF
all patterns

lumped

3452.4 0 0 0 0 0 0 0 0 0 0 0 
0 3452.4 0 0 0 0 0 0 0 0 0 0 
0 0 3819.4 0 0 0 0 0 0 0 0 0 
0 0 0 2652.4 0 0 0 0 0 0 0 0 
0 0 0 0 2652.4 0 0 0 0 0 0 0 
0 0 0 0 0 2986.1 0 0 0 0 0 0 
0 0 0 0 0 0 2652.4 0 0 0 0 0 
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0 0 0 0 0 0 0 0 2986.1 0 0 0 
0 0 0 0 0 0 0 0 0 1959.9 0 93.8 
0 0 0 0 0 0 0 0 0 0 1959.9 –93.8 
0 0 0 0 0 0 0 0 0 93.8 –93.8 2213.1 

kgM =12DOF
all patterns

lumped

Case 1

Case 1

Case 1

Cases 1&3

Case 4

Figure 10:  Mass matrices of the 12DOF models.
Note: zero elements are light green (light gray); medium blue (medium gray) denotes elements of 
the damaged consistent mass matrices elements unchanged from the undamaged, and of
the Case 4 lumped mass matrix elements unchanged from the corresponding Cases 1&3 matrix.
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0 0 464.04 0 0 –232.02 0 0 0 0 0 0 

–106.60 0 0 213.20 0 0 –106.60 0 0 0 0 0 
0 –67.90 0 0 135.81 0 0 –67.90 0 0 0 0 
0 0 –232.02 0 0 464.04 0 0 –232.02 0 0 0 
0 0 0 –106.60 0 0 213.20 0 0 –106.60 0 0 
0 0 0 0 –67.90 0 0 135.81 0 0 –67.90 0 
0 0 0 0 0 –232.02 0 0 464.04 0 0 –232.02 
0 0 0 0 0 0 –106.60 0 0 106.60 0 0 
0 0 0 0 0 0 0 –67.90 0 0 67.90 0 
0 0 0 0 0 0 0 0 –232.02 0 0 232.02 

MN
mK =12DOF

undamaged
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0 87.58 0 0 –67.90 0 0 0 0 0 0 0 
0 0 313.32 0 0 –232.02 0 0 0 0 0 0 
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0 –67.90 0 0 135.81 0 0 –67.90 0 0 0 0 
0 0 –232.02 0 0 464.04 0 0 –232.02 0 0 0 
0 0 0 –106.60 0 0 213.20 0 0 –106.60 0 0 
0 0 0 0 –67.90 0 0 135.81 0 0 –67.90 0 
0 0 0 0 0 –232.02 0 0 464.04 0 0 –232.02 
0 0 0 0 0 0 –106.60 0 0 106.60 0 0 
0 0 0 0 0 0 0 –67.90 0 0 67.90 0 
0 0 0 0 0 0 0 0 –232.02 0 0 232.02 

MN
mK =12DOF

(i)

164.97 0 0 –106.60 0 0 0 0 0 0 0 0 
0 87.58 0 0 –67.90 0 0 0 0 0 0 0 
0 0 313.32 0 0 –232.02 0 0 0 0 0 0 

–106.60 0 0 164.97 0 0 –58.37 0 0 0 0 0 
0 –67.90 0 0 87.58 0 0 –19.67 0 0 0 0 
0 0 –232.02 0 0 313.32 0 0 –81.30 0 0 0 
0 0 0 –58.37 0 0 164.97 0 0 –106.60 0 0 
0 0 0 0 –19.67 0 0 87.58 0 0 –67.90 0 
0 0 0 0 0 –81.30 0 0 313.32 0 0 –232.02 
0 0 0 0 0 0 –106.60 0 0 106.60 0 0 
0 0 0 0 0 0 0 –67.90 0 0 67.90 0 
0 0 0 0 0 0 0 0 –232.02 0 0 232.02 

MN
mK =12DOF

(ii)

213.20 0 0 –106.60 0 0 0 0 0 0 0 0 
0 123.75 –15.07 0 –67.90 0 0 0 0 0 0 0 
0 –15.07 445.20 0 0 –232.02 0 0 0 0 0 0 

–106.60 0 0 213.20 0 0 –106.60 0 0 0 0 0 
0 –67.90 0 0 135.81 0 0 –67.90 0 0 0 0 
0 0 –232.02 0 0 464.04 0 0 –232.02 0 0 0 
0 0 0 –106.60 0 0 213.20 0 0 –106.60 0 0 
0 0 0 0 –67.90 0 0 135.81 0 0 –67.90 0 
0 0 0 0 0 –232.02 0 0 464.04 0 0 –232.02 
0 0 0 0 0 0 –106.60 0 0 106.60 0 0 
0 0 0 0 0 0 0 –67.90 0 0 67.90 0 
0 0 0 0 0 0 0 0 –232.02 0 0 232.02 

MN
mK =12DOF

(iii)

213.20 0 0 –106.60 0 0 0 0 0 0 0 0 
0 123.75 –15.07 0 –67.90 0 0 0 0 0 0 0 
0 –15.07 445.20 0 0 –232.02 0 0 0 0 0 0 

–106.60 0 0 201.14 0 –15.07 –94.54 0 15.07 0 0 0 
0 –67.90 0 0 135.81 0 0 –67.90 0 0 0 0 
0 0 –232.02 –15.07 0 445.20 15.07 0 –213.18 0 0 0 
0 0 0 –94.54 0 15.07 201.14 0 –15.07 –106.60 0 0 
0 0 0 0 –67.90 0 0 135.81 0 0 –67.90 0 
0 0 0 15.07 0 –213.18 –15.07 0 445.20 0 0 –232.02 
0 0 0 0 0 0 –106.60 0 0 106.60 0 0 
0 0 0 0 0 0 0 –67.90 0 0 67.90 0 
0 0 0 0 0 0 0 0 –232.02 0 0 232.02 

MN
mK =12DOF

(iv)

K =12DOF
(v)

K12DOF
(vi)

=

213.20 0 0 –106.60 0 0 0 0 0 0 0 0 
0 131.79 –5.02 0 –67.90 0 0 0 0 0 0 0 
0 –5.02 457.76 0 0 –232.02 0 0 0 0 0 0 

–106.60 0 0 213.20 0 0 –106.60 0 0 0 0 0 
0 –67.90 0 0 135.81 0 0 –67.90 0 0 0 0 
0 0 –232.02 0 0 464.04 0 0 –232.02 0 0 0 
0 0 0 –106.60 0 0 213.20 0 0 –106.60 0 0 
0 0 0 0 –67.90 0 0 135.81 0 0 –67.90 0 
0 0 0 0 0 –232.02 0 0 464.04 0 0 –232.02 
0 0 0 0 0 0 –106.60 0 0 106.60 0 0 
0 0 0 0 0 0 0 –67.90 0 0 67.90 0 
0 0 0 0 0 0 0 0 –232.02 0 0 232.02 

MN
mK =12DOF

(vi)

Figure 11:  Stiffness matrices of the 12DOF models.
Note: zero elements are light green (light gray); light blue (medium gray) in the damaged 

cases denote elements that are unchanged from the undamaged stiffness matrix.


