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Technická 2, 166 27 Praha 6
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Abstract

The thesis deals with application of system identification methods for fMRI data processing.
The main goal of this thesis is to define the complex dynamic system represented by brain
areas within the context of the systems theory, and to cast it as a task for system identification
procedures. The system, as interpreted by the systems theory, is a complex object consisting
of interconnected subsystems and components which transforms inputs into outputs and this
transformation can be characterized by a mathematical model, usually in the form of differential
equations. The key issue is to look for these models by identification methods and to consider
them as a certain alternatives for fMRI data processing to commonly used statistical methods.
We focus especially to DCM procedure for detection of the brain intrinsic structure and we
review that from user’s point of view within Writer’s cramp study. Then we propose application
of modern multidimensional systems identification algorithms of the subspace identification
theory in the context of fMRI data analysis. The methods originated in 1990s in the field of
process control and identification and yield robust linear model parameter estimates for systems
with many inputs, outputs and states. Our ultimate goal was to establish an alternative to the
DCM analysis procedure which would eliminate its main drawbacks, namely the need to pre-
define the models structure.

1 Goals and objectives

Specific goals of this dissertation were set as follows

1. Develop a comprehensive review of techniques and procedures used in the fMRI area from the
systems and process identification viewpoint. Focus on the process of fMRI measurement,
discuss the fMRI data structure and present other issues concerning fMRI which could be
helpful for the application of systems identification procedures in this area.

2. Get familiar with the ”State of the Art” techniques used in fMRI data processing, namely with
Dynamic Causal Modeling (DCM). Verify them with experimental data coming from a clin-
ical study. Established partnership with Department of Neurology, 1st Faculty of Medicine,
Charles University in Prague is supposed to be exploited. Discuss the results and identify
advantages and drawbacks of the standard fMRI modeling techniques.

3. Develop alternatives to fMRI data processing procedures, namely to Dynamic Causal Mod-
eling, based on process identification and estimation techniques. Demonstrate them with
simulated and experimental fMRI data.

2 Motivation

The main goal of the dissertation thesis is to formulate advanced concepts and procedures/algorithms
commonly used in process identification for fMRI research field and to apply the system identifica-
tion methods for fMRI data modeling. Human brain can be described as a system consisted of many
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subsystems representing constituent brain areas which represents a dynamical system with charac-
teristic dynamics. By means of fMRI technique it is even possible to measure output signals of this
complex system so we know the input-output behavior of the system and we suppose it is possible
to use identification and estimation methods to describe that by linear system with a certain accu-
racy. This approach could provide an important information about some crucial parameters of the
brain system and it could be a certain alternative to available statistical techniques which are com-
monly used for fMRI data processing at present. The thesis reports on some attempts to approach
the problem of modeling of simple system including just one brain area and looking for dynamics
description of more complex system with several brain areas. It also brings a comprehensive survey
of related literature, mainly out of the systems and control field.
The thesis was partly created in cooperation with Department of Neurology, 1st Faculty of Medicine,
Charles University in Prague (professor Evžen Růžička, Dr. Robert Jech).

3 Outline of thesis

The following second chapter gives the specific goals and objectives of the dissertation thesis. All
of them are then discussed in further chapters.

The third and fourth chapters contain the basic information about fMRI technique and data
processing by commonly used tool for Matlab called SPM toolbox and they bring some details
necessary to comprehension of the other chapters.

Next fifth chapter deals with the case study - Writer’s cramp study - completed in cooperation
with Department of Neurology, 1st Faculty of Medicine, Charles University in Prague. Our personal
experience with SPM toolbox for DCM procedure is discussed with real fMRI data giving some
details, advantages and drawbacks.

The sixth chapter deals with fMRI data modeling by system identification methods. It discusses
the results of the modeling depending on fMRI data quality. It also considers the subspace identifi-
cation methods as an alternative to DCM procedure for intrinsic structure detection.

In the seventh chapter, the results of the thesis are summed up and confronted with the goals
and objectives set. There are also summarized the scientific achievements of this thesis and outlines
immediate opportunities for improvement and further research.

Chapter 8 contains the publications of the authors, related directly to the thesis, and other refer-
ences used throughout the text.

4 Writer’s cramp study

This section summarizes the Writer’s cramp study - project of the Department of Neurology, 1st

Faculty of Medicine, Charles University in Prague. We participated in the study by DCM analysis
of fMRI data acquired during second phase of the project - Advanced study. The final result of the
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project was joint paper published in NeuroEndocrinology Letters (HAVRANKOVA, P. et al., 2010).
The writer’s cramp is a common type of focal dystonia which manifests by involuntary spasm of
the hand and forearm muscles (HAVRANKOVA, P. et al., 2010). The conventional therapy is the
botulotoxin medication, sometimes without clinical effect unfortunately. The next alternative for
some patients is an experimental therapy by rTMS - repetitive Transcranial Magnetic Stimulation.
rTMS applies the sequence of magnetic pulses by coil focused on defined cortex area causing symp-
toms suppression. Within the writer’s cramp study, we processed fMRI data sets measured before
and after rTMS therapy for comparison. We completed DCM analysis as one part of an objective
assessment of rTMS therapy effect.

4.1 Materials and methods

12 patients (8 women and 4 men) with right hand writer’s cramp were included in the study. The
duration of their disorder was 2-11 years. Each patient underwent two five-day blocks of rTMS,
the first was real rTMS, the second was sham (placebo) rTMS. The rTMS took 30 minutes every
day. The fMRI measurement was carried out before the therapy began (the first day) and after the
therapy was finished (the fifth day).
rTMS was done by 70-mm double coil connected to stimulator. One pulse set contained 1800
pulses. The coil was focused on sulcus postcentralis. fMRI procedure was related to the task with
active movement of right hand fingers. The patients were required to perform about ten movements
during 6 minutes, each movement with 3 seconds duration. The movements were captured by the
video-fMRI monitoring (JECH, R. et al., 2008). As a result, two vectors were obtained for each
patients and they contained the onsets (start instants) and durations of movements. The vectors
served for fMRI analysis (the detection of statistical significant areas with hemodynamic response)
in SPM toolbox ver.5 (SPM toolbox, 2012). All related information on the fMRI procedure and
fMRI analysis are described in (JECH, R. et al., 2008).

4.2 DCM

The main task of DCM analysis was to quantitatively approve an effect of the rTMS therapy. All the
patients passed clinical examination before and after the therapy. The clinical examination consisted
in a subjective assessment by a patient himself, and objective assessments by raters, for instance
evaluation of cribbing of text for two minutes see Figure 1. The subjective and objective assessments
showed significant improvement of writer’s cramp symptoms for 9 patients who finished the therapy.
For detailed results concerning all assessment, in addition to DCM analysis, see (HAVRANKOVA, P.
et al., 2010).
The DCM analysis was called to confirm these results. 9 patients finished the rTMS therapy and
their fMRI data was put subject to the overall processing. DCM analysis was created only for
fMRI data related to real stimulation and measured before and after the therapy. The data was
processed separately and then particular connections and their strength were compared. Next to the
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results themselves, our goal was also to describe experience with the DCM tools of SPM ver.5 for
Matlab (SPM toolbox, 2012), based on a specific medical experiment data processing.

Figure 1: The handwriting of patient 3 and patient 4 before rTMS (V1), immediately after the last
session of rTMS (V2), and one week later (V3) - adopted from (HAVRANKOVA, P. et al., 2010)

4.2.1 Models

The first step of DCM analysis was the definition of models which were confronted with real data.
The definition usually results from clinical experience and from knowledge in functional brain or-
ganization. Originally, models which differed in number of connections for data measured before
and after the therapy were considered for these reasons. The reasoning behind was a presumption
that rTMS could have some influence on functional brain organization and more connections could
be detected for data measured after therapy. The problem here was however that the results of DCM
analysis for data measured before and data measured after are not easily and directly comparable in
this case. Since the DCM approach is based on hypotheses testing, one must ensure the same struc-
ture - all connections considered - for both the ”before” and ”after” presumed models. Based on this
observation a new set of 11 models depicted in the Figure 2 was created. All the models featured
equal number of areas for data measured before and after the therapy and contained just extrinsic
input namely into LS1, LSM1, and SMA area - input representing right hand fingers movement and
extrinsic input for coil position (there was not any modulatory input).

4.2.2 Areas

The next stage of DCM analysis was selection of substantial brain areas. Also in this case the clin-
ical experience helps. But the other clue can be fMRI analysis result with significant active areas
detection.
Here were selected five brain areas with significant activity related to the required task (finger move-
ment), based on the second level analysis as provided by (SPM toolbox, 2012). In the case of LS1,
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Figure 2: Models for DCM procedure

stimulated directly by the rTMS coil, the question was however whether to apply the same second
level analysis result for the coordinates estimation, or whether to define the coordinates explicitly
as the coil target. In terms of medical experience it seems more logical to consider location of the
coil as the stimulation area. The DCM results with this particular coordinate set also include more
significant connections as well which proves this assumption.

4.3 Results

4.3.1 Individual assessment

The data set resulting from the medical experiment described in section 5.2 was restricted for prac-
tical reasons in terms of number of patients (9 in total). Consequently we will have some problems
with statistical processing.
On the other hand, the DCM analysis results for particular patients can be qualitatively analyzed eas-
ily to reveal some basic rules appearing in all models for one particular patient, or appearing across
the whole patient group for one particular model. In our case there was for instance the connection
LS1a → LSM1 included in majority of models. Interestingly, the strengths of this connection for
a particular patient across the whole set of models were roughly equal. This observation can serve
as a kind of ”cross-check” when deducing about a particular connection significance.

4.3.2 Statistical processing: Non-parametric statistical tests

The drawbacks of the parametric T-test discussed above can be eliminated by calling alternative
non-parametric statistical tests. The Wilcoxon test and Sign test were applied, leading to similar
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Table 1: Significant connections across the whole patient group - LS1 is location of the coil

connection t statistic probability

LS1a-SMA - model 2 0.0381

LS1a-RSM1 - model 6 0.0109

LS1a-LS2 - model 6 0.0109

LS1a-SMA - model6 0.0858

RSM1-LS1a - model 6 0.0663

LS2-LS1a - model 6 0.0284

conclusions. Only Wilcoxon test results are therefore discussed further.
The non-parametric tests show significant changes of six connections. The positive result is that
five connections of those six are in the (reciprocal) model number 6, see section 5.4.4 for details.
The non-parametric test results are summarized in Table 1. Four connections appear as significant
(probability of t-statistic smaller than significance level 5% (three of them in model No. 6), two
others are slightly above.

4.4 Conclusion

The chapter deals with DCM analysis of fMRI data measured on patients suffering from writer’s
cramp and subjected to an rTMS therapy. The main result is identification of a DCM model structure
based on a non-parametric test performed on a reduced measured data set. Practical experience with
DCM tools of the SPM toolbox is also discussed. The detailed description of the writer’s cramp
study from medical point of view and summary of all results (objective and subjective assessment)
are given in (HAVRANKOVA, P. et al., 2010).

5 System identification and fMRI data processing

The main goal of this section is to define the complex dynamic system represented by brain areas
within the context of the systems theory, and to cast it as a task for system identification. The system,
as interpreted by the systems theory, is a complex object consisting of interconnected subsystems
and components which transforms inputs into outputs and this transformation can be characterized
by a mathematical model, usually in the form of differential equations. The input stimulus signals
that enter into the brain system reflect the particular fMRI neurological experiment, and can be mod-
eled as rectangular signals (on/off or active/inactive) as they correspond to hand motion, pictures
projection, electrical stimulation etc. The measured outputs are BOLD signals which are usually
visualized as volumetric 3D plots. They can also be viewed as rectangular for which at every time
instance the measured value assumes a shape of a 3-dimensional array (cube). Hence the input-
output behavior of the brain system can be measured experimentally. However the brain system is
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characterized by specific intrinsic structure comprised of two different parts called neurodynamics
and hemodynamics, see Figure 3. The input (stimulus) signals enter the faster dynamics (neuro-
dynamics) representing the intrinsic interconnections among brain areas. Neurodynamics could be
modeled by several first order systems, each corresponding to a given brain area and their intrinsic
connections as is done by DCM in fact (FRISTON, K. J. et al., 2003). The neuronal response of
every brain area is only observed in the fMRI data after passing through the slower hemodynamics
part, which can be modeled as a simple system (filter) for each brain area separately. In contrast
to the nonlinear balloon model used within DCM, higher order hemodynamic linear filters (at least
order two) are necessary to capture the oscillatory behavior as shown in the next section concerning
subspace identification methods used for fMRI data fitting.

Neurodynamics Hemodynamics
Stimuli BOLD

Figure 3: Brain dynamics system structure - two types of dynamics, at first faster dynamics, slower
dynamics forms output BOLD signal in each activated brain area

5.1 MIMO identification - fMRI data fitting

This section summarizes first results of subspace identification experiments for fMRI simulated
data. We focused on subspace N4SID identification methods implemented in System Identification
Toolbox for Matlab (version 2007b). Subspace methods combine results of systems theory, geome-
try and numerical linear algebra (KATAYAMA, T., 2005) (FAWOREEL, W. et al., 2000). They seem
suitable for our task especially for their fine numerical reliability for MIMO system identification.
In addition, they give rise to models in the state-space form directly. The simulated data sets differ in
the signal-to-noise ratio factor (SNR) and in number of samples. Other parameters are the number
of areas, interscan interval, and the number of conditions, see (SPM toolbox, 2012) for details. The
data parameters are presented in the tables below for particular cases. Related tables show the vector
of onsets and vector of duration (definition of inputs, stimulation signal). The last piece of informa-
tion for the SPM simulator is the matrix A defining the strength of connections, and the input matrix
C. The results for particular parameters choices are the identified matrix A acquired from SPM tool-
box by DCM estimation and then the (linear dynamic) model of simulated data acquired from the
Identification Toolbox by help of subspace identification method (Identification toolbox, 2012).

5.1.1 Case 1

This example tests the quality of identification for simulated data with ”good” parameters, see
BOLD signals in Figure 4. The data set has enough samples and the signal-to-noise ratio is high,
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Table 2: The simulated data parameters - case 1,2

SNR areas TR scans cond.

50 3 1.7 256 1

onsets 20 45 113 154 203 240

duration 3 4 3 3 2 3

see Table 2. The input data is defined by vectors and the matrix of connection strength as well as
the input matrix are also presented below in Equation 1.

A =

−1 0 0

1 −1 1

2 0 −1

 C =

1

0

0

 (1)
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8
Region o1
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−2

0

2

4

6

8

10
Region o2
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0
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Region o3

secs

Figure 4: The simulated data for three areas - case 1 - created in SPM toolbox

The DCM procedure gives fairly good results in terms of the identified matrix A which corre-
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sponds to the simulation model’s A, see Equation 2 and 1 for comparison. The identification toolbox
also proves useful here and fits successfully the simulated data by the identified linear model of order
five, see Figure 5. We also bring the transfer function of model identified by subspace identification
method in zero-pole-gain format, see Equation 3.

A =

 −1 0 0

0.872 −1 1.0716

1.9955 0 −1

 (2)

0 50 100 150 200 250 300 350 400 450
−1

0

1

2

3

4

5

Time

Simulated fMRI data and model output for subsystem u1−>y1

 

 
measured data
model

Figure 5: The simulated data and model for case 1

Gu1y1 =
−0.52202(s− 1.631)(s+ 0.1145)(s2 + 0.6438s+ 1.364)

(s+ 0.1115)(s2 + 0.7257s+ 0.3925)(s2 + 0.8288s+ 0.7242)
(3)

5.1.2 Case 2

Simulated data with smaller signal-to-noise ratio equal to one are processed now. Other parameters
remain unchanged from the previous case. The DCM procedure naturally embodies worse results
than in the previous case which is shown in the matrix A again, see Equation 4. The system identi-
fication toolbox identifies the model with order three and the identified output series is confronted
with simulated data in the Figure 6.

A =

 −1 0 0

0.5057 −1 0.5106

0.9121 0 −1

 (4)

Gu1y1 =
−0.54433(s− 1.527)(s+ 0.1644)

(s+ 0.1663)(s2 + 0.4181s+ 0.2268)
(5)
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Figure 6: The simulated data and model for case 2

5.1.3 Conclusion

The simulation experiments carried out for various combinations of important parameters in the
cases 1-4 prove applicability of subspace identification methods for fitting simulated fMRI data by
linear dynamic higher-order models, without the necessity to pre-define the model structure. On
basis of identified models we can say that every output hemodynamics filter should be modeled
as at least a second order system with complex conjugate eigenvalues, reflecting the oscillatory
response as shown in continuous transfer functions. At this moment it is not clear however how to
interpret those dynamical models in terms of functional brain organization unfortunately, the DCM
is certainly considerably farther in this regard. This issue will be therefore the direction of further
research: how to interpret the linear identified model parameters in, say, a DCM-like manner.

5.2 Intrinsic structure detection

The next idea behind our approach is to estimate the significance of interconnections among the
brain areas (so called intrinsic structure) by identifying the coupling among the states of an under-
lying linear state-space model. This is done by finding the state matrices describing the dynamics
of neuronal states through the measured hemodynamic responses, using conventional linear sys-
tem identification techniques, subspace identification methods here (N4SID especially). However,
these methods do not apply constraints on the form of the state matrix. We finesse this problem by
modeling the data with a number of hidden states that is greater than the number of observed brain
areas. We then find a transformation of the hidden states that conforms to the known expected block
structure of the state matrix appropriate for our problem. This transformation relies on the numer-
ically reliable Schur decomposition of the original state matrix and related eigen decompositions.
We can then interpret the transformed states in terms of neuronal and hemodynamic states. The
transformed state matrix gives direct information on couplings between particular neuronal states,
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and also defines the mapping from neuronal to hemodynamic subsystems.
The subspace identification proves useful here and fits successfully the simulated data by the identi-
fied linear model as is shown in previous section; just for the last data set with smaller signal-to-noise
ratio and number of samples the model is not able to fit data sufficiently. We can summarize that
subspace identification methods are a promising technique for hemodynamic response fitting. So we
attempt to extend the identification procedure to the system including intrinsic structure detection.

5.2.1 Identification procedure for brain system structure

Subspace identification methods return a linear state space model in form Equation 6. The matrix
A represents the dynamics, B is related to the inputs and C characterizes the outputs. The matrix D
indicates direct connection from input to output in general. Choosing the linear model Equation 6
instead of the bilinear model used in DCM procedure (see chapter 4 for details) for brain area system
description is intentional, ignoring so-called modulatory inputs motivated by simplicity. The hidden
states x include certain transformation of all the neuronal and hemodynamic states in our model.
This means the number of hidden states is much greater than the number of observations y (and that
C is not a square matrix).

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

(6)

If we had the state space description in suitable form we could see intrinsic connections among
selected brain areas directly. Unfortunately matrices A, B and C as a result of subspace methods
are usually full and inappropriate to the specific structure of the brain system. Apparently it is nec-
essary to transform the state space model into a realization reflecting separation of neurodynamics
and hemodynamics. Matrix D of identified state space description is zero because there is no direct
connection from input to output. One way to enforce this structure into the state space realization is
a similarity transformation with a suitable transformation matrix T . The next section illustrates con-
struction of the T matrix in a simple case which corresponds to the special brain structure according
to Figure 7.

5.2.2 First order hemodynamics filter case

We consider a system including one input (stimulus) signal, two brain areas and two output (BOLD)
signals, see Figure 7. The output filters for hemodynamics modeling are considered as first order
systems only for this moment (note that it does not fully correspond to orders necessary to model
accurately hemodynamic filters as identified in the previous section 6.2., so it is not possible to
use SPM toolbox as the data generator, and we use the generator according to system matrices
Equation 8 instead). The subspace identification methods yield the full matrices A, B, and C, see
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Figure 7: The detailed structure of brain system - neurodynamics is modeled by reciprocally con-
nected first order systems. Each area has also own hemodynamics represented by higher order
system

Equation 7. The matrix D is zero (no direct throughputs are present in the system considered).

A =


a1 a2 a3 a4

a5 a6 a7 a8

a9 a10 a11 a12

a13 a14 a15 a16

 B =


b1

b2

b3

b4

 C =

(
c1 c2 c3 c4

c5 c6 c7 c8

)
(7)

A =


e1 0 g1 0

0 e2 0 g2

0 0 e3 c12

0 0 c21 e4

 B =


0

0

1

1

 C =

(
1 0 0 0

0 1 0 0

)
(8)

However, the desired form is in Equation 8. This form reveals the specific structure of the brain
system with the neuronal dynamics affected directly by the inputs and the hemodynamics projected
immediately into the measured outputs. Matrix A contains the eigenvalues e1, e2 and the gain co-
efficients g1, g2 defining the hemodynamic SISO filters associated to a particular brain area. The
lower right submatrix represents the (much faster) neurodynamics. The coefficients c12 and c21

are the crucial parameters which determine the intrinsic neuronal interconnections between the two
modeled brain areas. The matrix B represents the structure of inputs and matrix C corresponds to
the structure of outputs, in agreement with Figure 7.
Now we describe the sequence of similarity transformations steps leading from the full state-space
model see Equation 7 to the structured form realization Equation 8 from which the coupling param-
eters c12 and c21 can be detected. We consider a system with one input and two brain areas, each
modeled by first order dynamics and with corresponding two output BOLD signals. Each similarity
transformation follows the conventional rule in Equation ??. The first step is Schur decomposition
applied to the identified dynamic matrix A. It yields zero elements under the main diagonal on
which the eigenvalues are displayed. These are then ordered to separate the eigenvalues of hemody-
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namics (slow) and neurodynamics (fast). The subsequent steps are devised to impact the remaining
parts of state space description and to preserve the effect of the previous transformation steps. In
this way, the eigenvectors of a selected submatrix of the new dynamic matrix A are calculated and
used for diagonalization of the submatrix representing hemodynamics filters, and the null space of
output matrix C is used for zeroing its selected elements. We also use inverse submatrix for adjust-
ment of parts concerning gain coefficients of output (hemodynamic) filters. All steps are detailed
in a Matlab pseudocode-form see Figure 8, and are illustrated by a numerical example in the case
study in the next section.

>>[T1,A1] = schur(A)

>>[T2,A2] = ordschur(T1,A1,[1,2,3,4])

>>G2 = ss(T2\A*T2, T2\B, C*T2, 0);

>>[t1,aj1] = eig(G2.a(1:2,1:2));

>>C2 = G2.c*blkdiag(t1,eye(2));

>>T3 = T2*blkdiag(t1,eye(2))*[eye(4,2), null(C2)];

>>G3 = ss(T3\G2.a*T3, T3\G2.b, G2.c*T3, 0);

>>t2 = inv(G3.a(1:2,3:4));

>>T4 = [eye(2) zeros(2);zeros(2) t2];

>>G4 = ss(T4\G3.a*T4, T4\G3.b, G3.c*T4, 0);}

Figure 8: Matlab pseudo-code for similarity transformation

6 Contribution of the thesis

6.1 Main results

In accordance with the stated objectives, the thesis brings the following concrete contributions.

• We provide a comprehensive review of techniques and procedures commonly used in fMRI
area especially from systems identification point of view. We present elementary terminology
of fMRI area, basic principle of fMRI measurement and we also mention some basic methods
of fMRI data modeling, see State-of-the-Art, chapters 3 and 4.

• We present commonly used tool for fMRI processing called SPM toolbox in chapter 4. We
also give a description of Dynamic Causal Modeling technique for intrinsic structure de-
tection and discuss some advantages and drawbacks of that from user’s viewpoint within
cooperation with Department of Neurology, 1st Faculty of Medicine, Charles University in
Prague and project called Writer’s cramp study. We develop joint paper ”Repetitive TMS of
the somatosensory cortex improves writer’s cramp and enhances cortical activity” published
in Neuro Endocrinology Letters. The results and our experience with DCM implemented in
SPM toolbox are shown in chapter 5.
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• We present subspace identification methods for fMRI data modeling and consider them as
certain alternative to DCM procedure. We show intrinsic structure detection on simplified
case - paper ”Dynamic causal modeling and subspace identification methods” is published in
Biomedical Signal Processing.
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[1] Tauchmanová J.; Computer controlled switching device for deep brain stimulation, Acta Poly-
technica, 2007, vol. 47, p.4-5.(100%)
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8 Anotace

Funkčnı́ magnetická rezonance (fMRI) je modernı́ metoda použı́vaná neurology pro zı́skánı́ tro-
jrozměrného obrazu aktuálnı́ho lokálnı́ho průtoku krve v mozku, na základě čehož je tak možné
usuzovat na lokálnı́ neurálnı́ aktivitu. Napřı́klad je tak možné detekovat mozková centra zapojená
do tzv. hemodynamické odezvy na konkrétnı́ podněty.

Cı́lem práce je aplikovat metody z oboru identifikace a odhadovánı́ dynamických systémů pro
zı́skánı́ modelu mozkové aktivity. Nejprve je však nutné seznámit se se základnı́mi principy a
metodami použı́vanými při měřenı́ a zpracovánı́ fMRI dat.

Velká část práce je věována tzv. DCM proceduře, která detekuje vazby mezi vybranými oblastmi
mozku. Procedura je posuzována i z uživatelského hlediska na reálných fMRI datech a to v rámci
studie s pacienty s pı́sařskou křečı́ prováděné na Neurologické klinice při 1. Lékařské fakultě UK.

Na toto zhodnocenı́ DCM procedury pak navazuje formulovánı́ úlohy detekce vazeb mezi vy-
branými oblastmi mozku jako úlohy pro metody modelovánı́ dynamických systémů. Použity jsou
subspace identifikačnı́ metody a na jednoduchém přı́kladu jsou použity jako slibná alternativa k
DCM proceduře.


