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ABSTRACT 

 

 

 

  

The main purpose of this study is to develop a T1 mapping technique by using 

variable flip angle (VFA) technique based on fast spoiled gradient echo (FSPGR) pulse 

sequence and to implement the technique in in vivo imaging. FSPGR imaging was 

performed on a set of T1 gel phantoms with different concentrations of Gd3Cl by using 1.5 

Tesla MRI. To determine the T1 values of the gel phantoms, signal intensities from three 

sets of images produced by using three different flip angles were fitted pixel-by-pixel by 

using spoiled gradient echo equation. The T1 values calculated were displayed as a T1 map. 

The T1 values of the gel phantoms estimated with selected ROI were compared with the 

values determined by a standard T1 measurement technique i.e. inversion recovery [TR = 

6500 ms, TE = 7.51 ms, inversion time (TI) = 50, 300, 550, 800, 1050 ms]. The VFA 

mapping was then performed on four healthy volunteers to assess its effectiveness in 

clinical imaging. The mapping was performed on the right thigh of the volunteer for two 

different anatomical orientations, axial and coronal. The T1 values of the fat and muscle 

estimated with selected ROI were compared with different orientations, scanning 

dimensions and pulse sequences. The comparison of T1 value for different orientation was 

performed for three pulse sequences i.e., Multislice Two Dimensional (M2D) FSPGR, three 
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dimensional (3D) FSPGR and Liver acceleration volume acquisition (3D LAVA) at axial 

and coronal orientations. The comparison of T1 value for scanning technique was 

performed using M2D FSPGR and 3D FSPGR pulse sequences. The comparison of T1 

value for different pulse sequence was performed using 3D FSPGR and 3D LAVA pulse 

sequences. The curve fitting and image analysis were performed by using Matlab 

software.The T1 values of the gel phantoms produced by using VFA technique of 3D 

FSPGR and 3D LAVA were close to the values determined by the IR method. The T1 

values estimated by 2D FSPGR showed different values respect to IR method. The T1 

values produced on volunteer at axial orientation was higher than values at coronal 

orientation. The T1 values estimated using 3D FSPGR and 2D FSPGR showed in large 

difference. The T1 values estimated using 3D FSPGR and 3D LAVA pulse sequence 

showed a smaller difference. We have developed a technique to map the T1 values by using 

VFA spoiled gradient echo technique. The technique has been successfully implemented on 

T1 gel phantoms and healthy volunteers. Further works will include more volunteers for 

improve the validity of this study. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background 

 

Magnetic resonance imaging (MRI) is one of the most widely used imaging 

methods to diagnose diseases. The machine employs magnetic and radiofrequency (RF) 

fields, which are non-ionizing radiations. Hence, it is considered much safer to the patient 

compared to X-ray based imaging modalities such as X-ray fluoroscopy and computed 

tomography (CT). MRI acquires signals from atomic nuclei, particularly hydrogen 

protons, which are abundant in human body (Dhawan, 2011). The MR signals are 

normally acquired when the protons are returning (or relaxing) to their equilibrium 

conditions from their excited states. Only protons in a preselected slice or volume are 

excited and then spatially encoded to form images. These processes are performed by 

using gradient coils, which create position dependent field strengths in the field-of-view 

(FOV). 

 

One of the main advantages of MRI compared to other imaging modalities is it is 

able to produce images based on a variety of contrast mechanisms. The most basic and 

common image contrasts used in clinical imaging are spin-lattice (T1)-weighted, spin-spin 

(T2)-weighted and proton density (PD)-weighted images. Different image weighted 

technique has different diagnostic application. For example, the T1-weighted images have 
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excellent tissue contrast and also called anatomy scan because of its ability to produce an 

excellent contrast between different tissues. The T2-weighted technique is also called 

pathology scan because of its ability to produce higher signal intensity in pathology than 

the normal tissue. The PD-weighted technique is based on the density of hydrogen 

protons or water content in the tissues. This technique is normally used in 

musculoskeletal studies for example to distinguish between articular cartilage from the 

cortical bone and menisci in the knee (McRobbie et al., 2007). Other than the three basic 

MRI pulse sequences, there are many other MRI techniques that have been developed by 

MR researchers such as blood oxygenation level dependent (BOLD), diffusion weighted 

imaging (DWI) and dynamic contrast-enhanced (DCE)-MRI.  

 

In this study, I focused on the T1 measurement techniques, which is one of the steps 

required in quantitative DCE-MRI studies. DCE-MRI is used to evaluate vascular 

characteristic of tumours such as blood volume, vascular leakage space and vascular 

permeability. The technique employs contrast agent i.e. gadolinium 

diethylenetriaminepentacetate (Gd-DTPA) which is used to enhance the appearance of 

tumours in tissues. Different imaging techniques may affect the accuracy of T1 values 

measured. Hence, the accuracy of the T1 values measured will also affect the quantitative 

parameters determined by using quantitative DCE-MRI such as transfer constant from the 

blood plasma into the extracellular extravascular space (K
trans

) and total extracellular 

extravascular space (EES) volume (ve). 

 

 

1.2 Objectives 

 The aims of this research project are: 
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a) To develop the T1 mapping technique for DCE-MRI application 

b)  To compare the accuracy of T1 mapping produced using different MRI pulse 

sequences 

c) To evaluate the T1 mapping using different imaging techniques in volunteers 

 

 

1.3 Literature review 

 

T1 values have several applications in MRI such as to optimize MRI protocols in 

clinical imaging and to estimate contrast agent uptake in the tissues. Different techniques 

can be used to measure T1 values in the tissue. The standard technique used is based on 

inversion recovery (IR) pulse sequences. By using this technique, a few set of images 

acquired by using different inversion time (TI). The T1 values are estimated by fitting the 

curve of signal intensities versus TI. Rakow-Penner et al. employed a modified IR 

technique to determine the T1 value called IDEAL. IDEAL imaging discovered the partial 

volume effects of fat and glandular tissue on quantifying relaxation rates of independent 

tissue types.  By using IDEAL sequence, a precise measurement of T1 in fat and 

fibroglandular tissue can be made. The main drawback of the inversion recovery technique 

is it is time consuming to be performed in clinical imaging. 

 

An alternative technique to measure T1 which is commonly used in clinical imaging 

is a variable flip angle by using spoiled gradient echo pulse sequence.  This technique is 

performed by acquiring a few sets of gradient echo images each one with different flip 

angle settings. The T1 values are then determined by fitting the curve of signal intensities as 

a function of flip angles (Brookes et al., 1999; W.Lin & Song, 2009). Combination of two 

to four flip angles is commonly used for this purpose (Brookes et al., 1999; W.Lin & Song, 
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2009). Table 1.1 shows example of T1 values using 1.5 Tesla MRI scanners reported in the 

literature. 

 

Table 1.1: The T1 value for fat and muscle at 1.5 Tesla from literature 

References  T1 value for fat (ms) T1 value for muscle 

(ms) 

Brookes et al. (1999) 240 (Breast fat) - 

Rakow-Penner et al. (2006)  372.04 (Breast fat) - 

de Bazelaire et al. (2004)  343  856  

Han et al. (2003)  288 (Subcutaneous fat) 1130 (Knee) 

Moore (2005)  200 1075 

Bushberg et al. (2002)  260 870 

Nitz et al. (2010)  - 868 

 

1.4 Theory 

1.4.1 Spin-lattice relaxation (T1) 

Spin-lattice or longitudinal relaxation time (T1) is an intrinsic property of a 

tissue which is dependent on the mobility of protons and molecular structure and 

chemistry of tissues (Kirsch, 1991). Different tissues may have different T1 values 

compared to other tissue. The parameter can be characterized by the time constant for 

protons to align themselves with the external magnetic field from the excited state. For 

example, after a 90
o
 RF excitation pulse, the T1 is given by the time required for a 

longitudinal magnetization (Mz) to recover to 63% of its maximum value (see figure 

1.1). T1 values are dependent on the external magnetic field strength. The values 

increase with the field strength of an MRI machine (Rakow-Penner et al., 2006). 
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Figure 1.1: Spin lattice relaxation time (T1) can be defined as the time taken for a 

longitudinal magnetization (Mz) to recover to 63% of its maximum level (Mo) after a 90
o
 

RF excitation. 

 

The signal intensity of a T1 weighted image is not only determined by the T1 of 

a tissue but it also partially contributed by other parameters such as T2 and proton 

density. A quantitative T1 image (T1 map) can be produced by fitting signal intensities 

of images acquired with different settings such as TI and flip angle ( ) to the related 

equation.      

 

1.4.2 DCE-MRI  

DCE-MRI is considered as one of the most sensitive technique to diagnose cancers 

especially in the breast (Brookes et al., 1999; Rakow-Penner et al., 2006). It is performed 

by administering a Gd-DTPA contrast agent into the patient. The distribution of contrast 

Mz recovery (% original Mo) 

100 

Time (s) 

63 

T1 

value 

1-exp-t/τ1 

0 
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agent within the tissues is monitored by using a fast MRI technique such as Fast SPoiled 

GRadient echo (FSPGR), Fast Low Angle Shot (FLASH) and Liver Acceleration of 

Volume Acquisition (LAVA) pulse sequences. The measurement of native T1 value of 

tissue is required in quantitative (pharmacokinetic based) DCE-MRI to quantify the 

concentration of contrast agent from signal intensity in the dynamic images acquired. 

Brooke et al. (1999) suggested that quantifying signal enhancement without taking account 

the T1 of particular tissue displaying enhancement might be a cause of reduced specificity. 

The relationship of signal intensity and the contrast agent concentration (linear relation is 

assumed) is given by Eq. [1.1] by Henderson et al. (2000): 

    

  
             [1.1] 

where   is post-contrast signal intensity i.e signal intensities of dynamic images acquired 

after injection of contrast agent,    is pre-contrast signal intensity i.e. signal intensities of 

image acquired before the injection of contrast medium,     is a native T1 value (T1 of 

tissues before contrast administration),   is a constant which represents the relaxivity i.e. 

the ability of a paramagnetic species to influence relaxation rates (Higgins et al.,1987) of 

the contrast agent and      is the concentration of gadolinium contrast agent. Eq. [1.1] 

shows the contrast agent concentration can be estimated if     is known (Buckley et al., 

2005). Hitmair et al. (1994) suggested that the specificity of DCE-MRI can be improved if 

the concentration of contrast agent taken up by a tissue is known. Using the standard Tofts 

model (Tofts, 1997), contrast agent uptake can be approximated using Eq. [1.2]: 

 

      
      

     
                     [1.2] 
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where       represents tissue concentration as a function of time,        is transfer 

constant from the blood plasma into the extracellular extravascular space (EES),     is the 

haematocrit value,       represents arterial concentration as a function of time,     is 

transfer constant from the EES back to the blood plasma,   represents onset time of arterial 

contrast uptake. Total EES volume (  ) can be determined by using Eq. [1.3]:  

   
      

   
     [1.3] 

The concentration of contrast agent from Eq. [1.1] represents the tissue concentration in the 

Eq. [1.2]. Therefore, errors in the T1 values measured will reduce the accuracy of 

pharmacokinetic parameters such as k
trans

 and ve estimated by using Eq. [1.2].  

 

1.4.3 Magnetic Resonance Imaging (MRI) pulse sequence 

 

MRI is one of the most flexible imaging techniques available. Different image 

properties such as T1-weighted and T2-weighted can be produced by using different 

combination, strength and timing of RF and gradient pulses applied during imaging. This 

repeating application of pulses is called pulse sequence. In general, MRI pulse sequences 

can be grouped into two types: spin echo pulse sequence and gradient echo pulse sequence. 

 

1.4.3.1 Spin echo pulse sequence 

 

The spin echo pulse sequence employs a 90
o
 excitation RF pulse followed by a 180

o
 

refocusing RF pulse at half the time-to-echo (TE) to create an echo. A slice selection 
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gradient (SSG) is normally applied at the same time as the RF pulse to excite a desired slice 

thickness or a slab at a specific position along the patient. A ‘negative’ gradient is applied 

immediately after the SSG in the slice selective direction to compensate the dephasing of 

generated transverse magnetization occurred because of the frequency difference during the 

excitation process. The frequency encoding (FEG) or readout gradient is applied to collect 

the MR signal. The phase encoding gradient (PEG) is applied between the SSG and PEG so 

that the information of the third dimension is encoded into the echo. Figure 1.2 shows a 

typical spin echo pulse sequence. 

 

 

 

 

 

 

 

Figure 1.2: Diagram of a spin echo pulse sequence adopted from Nitz et al. Spin echo pulse 

sequence uses an initial 90
o
 excitation RF pulse follow by a 180

o
 refocusing pulse after a 

delay time equal to TE/2 to inverts the spins and produces an echo at time TE. The gradient 

slice was applied on slice selection. The gradient phase was applied immediately after the 

gradient slice to compensate the dephasing of generated transverse magnetization. The 

readout gradient is applied to collect MR signal. 

 

 

RF 

SSG 

PEG 

FEG 

MR signal 

90o 180o 

TE/2 

TE 

TR 
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1.4.3.1.1 Fast Spin Echo Inversion Recovery (FSE-IR) 

Inversion recovery sequence is commonly performed by applying a slice selective 

180
o
 degree RF pulse before the spin echo pulses i.e. 90

o
 and 180

o
 pulses (Figure 1.3). The 

duration between the inversion pulse and the 90
o
 RF pulse is called time-to-invert (TI). 

Like the normal spin echo, a 180
o
 degree RF pulse is applied at half the TE to create an 

echo. Inversion recovery pulse sequences with a very short TE can produce a heavy T1-

weighting in the signal. 

In clinical imaging, normally a faster version of IR technique i.e. fast spin echo 

inversion recovery (FSE-IR) is normally used. In this pulse sequence, more than one 180
o
 

refocusing pulse are applied after the 90
o
 excitation pulse. Hence, more than one echo are 

generated from one RF excitation. For clinical application, this pulse sequence is usually 

used as Short TI Inversion Recovery (STIR) or FLuid Attenuated Inversion Recovery 

(FLAIR). In STIR, a short TI is used to eliminate the fat signal, a long TI is used in FLAIR 

to saturate signal from cerebrospinal fluid (CSF) (McRobbie et al., 2007). 
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Figure 1.3: Diagram of a basic inversion recovery pulse sequence (Bushberg et al., 2002). 

Inversion recovery pulse sequence apply an initial 180
o
 RF pulse and followed by 90

o
 RF 

pulse after inversion time (TI) and then apply with second 180
o
 RF pulse at a time TE/2. 

The SSG is applied to localize the spins in the desired plane.  

   

1.4.3.2 Gradient Echo Pulse Sequences  

 

In gradient echo technique, an RF pulse with flip angle of less than 90
o
 is normally 

used. The echo is generated by using gradient fields instead of 180
o
 RF pulses in the 

frequency encode direction. The gradient field has two lobes where the first (‘negative’) 

lobe is in opposite direction and half of the size of the second lobe of the gradient field. The 

‘negative’ lobe is used to dephase the transverse magnetization before the signal readout. 

Hence, the spins will be in phase at the center of the readout gradient. Like the spin echo, 

PEG is also applied between the SSG and FEG.  



11 
 

 

The gradient echo pulse sequences are sensitive to susceptibility difference between 

different tissues or medium especially at bone-tissue or air-tissue interfaces. This often lead 

to an overall signal loss in the surrounding area of these particular regions. However, this 

effect can be useful in some clinical application such as in imaging of haemorrhagic lesions 

and perfusion studies. 

 

 

 

 

 

Figure 1.4: A diagram of a typical gradient echo pulse sequence adapted from Nitz et al. 

gradient echo pulse sequence uses an initial RF pulse with flip angle ( ) of less than 90
o
. 

The echo is generated by using gradient fields in the frequency encode direction. 
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1.4.3.2.1 Fast Spoiled Gradient echo (FSPGR) 

A Fast SPoiled GRadient echo (FSPGR) is based on the gradient echo technique. In 

this sequence, a low flip angle (10
o
 to 60

o 
degree) of RF pulses is used to excite the protons 

(Nitz et al., 2010). The transverse magnetization is spoiled after the signal readout by using 

RF or gradient spoiling techniques. Other gradient fields used are similar to the standard 

gradient echo pulse sequence. To produce a T1-weighted image, a large flip angle with a 

short repetition time (TR) and short echo time (TE) are applied. 

 

1.4.3.2.2 Liver Acceleration of Volume  Acquisition (LAVA) Pulse Sequence 

 

The LAVA pulse sequence is based on the 3D FSPGR pulse sequence. In its 

standard form, a fat suppression is automatically applied.  However, this function can be 

deactivated in the MRI machine. In this pulse sequence, a very short TR and TE are 

applied, which is useful to allow a very fast imaging time. This technique is very useful in 

abdominal imaging by providing a high spatial and temporal resolution images with good 

fat suppression and also in dynamic imaging (Low et al. 2010).  

 

1.4.4 2D versus 3D Image Acquisition 

 

Two-dimensional (2D) image acquisition is the technique of MRI scanning defined 

by a selective excitation. The thickness of the slice in 2D acquisition is limited by the 

gradient strength, the Fourier transform of the RF pulse profile, and the excitation 

bandwidth. Furthermore, because of imperfections in the excitation pulse, gaps are left 

between slices to avoid signal loss and altered image contrast. The 2D and 3D image have 
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similar resolution when viewing as a plane, but different geometric while viewed in the 

slice direction (Higgins et al., 1987).  

 

3D acquisition methods encode slices with phase-encoding gradients in a manner 

similar to that of in-plane phase encoding. Because the slice selection gradient is not used 

to encode slices, there is no practical limit on of the slice thickness. Slice thickness in 3D 

studies can be made that approximate in-plane resolution. The data from 3D study can be 

viewed in any desired direction without a perceptible loss in resolution (Higgins et al., 

1987). 

 

In clinical imaging, normally the images are acquired using a multislice 2D or 3D 

technique. In the conventional multislice 2D technique, the slice selection is performed 

sequentially i.e. the second slice only will be excited after all the signals acquired to 

produce an image slice are collected. To reduce the scanning time in multislice 2D 

technique, an interleave technique is commonly used. By using this technique, the scanner 

excited the other slices by changing the central frequency of the RF pulse in the object 

during the TR period of the first slices. Thus, during each TR the scanner excites and 

collects the echoes from many slices (McRobbie et al., 2007).  

 

In the multislice 2D, the spacing between slices is normally kept to a small space so 

that small pathologies that lie between the gaps will not be missed. However, too small 

slice gap may cause crosstalk i.e. the signals of difference slices to mix with each other. 

This is due to the imperfect rectangular shape of the profile in each slice. 
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In a standard 3D image acquisition technique an additional second phase-encode 

gradient is applied in the slice selective direction.  A selective RF pulse excites spins in a 

slab (volume) of the subject instead of a thin slice as in the 2D technique. In this technique 

phase encoding is applied in two directions i.e. in phase encoding gradient and in slice 

(slab) selective direction (figure 1.5). 

 

 

 

Figure 1.5: Diagram of 3D gradient echo pulse sequence (Allison et al., 2010). 3D gradient 

echo pulse sequence basically similar to conventional gradient echo pulse sequence but in 

3D pulse sequence phase encoding gradient were applied in slab selection direction. 

 

 

The 3D technique is normally used to produce high resolution images with thin 

slices. It allows a higher number of slices with more rectangular profile and signal to noise 

ratio (SNR) for an equivalent slice thickness acquired by using a 2D technique. However, 
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the main drawback of the technique is it requires a long acquisition time. Furthermore, 

ringing and aliasing artefact from neighbouring slices are more common in this technique 

compared to the 2D method.    

The slice profiles over the central slices of an image data set acquired with 3D 

sequence may be assumed to be rectangular; this assumption is invalid for 2D slices, where 

the individual slice profiles will be nonrectangular (Hänicke et al., 1988).  
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CHAPTER 2 

 

 

METHODOLOGY 

 

 

 

 

2.1 Imaging Experiment on Gel phantoms 

 

 Imaging experiments were performed on T1 gel phantoms by using a GE 1.5 Tesla 

MRI system (Signa HDx, General Electric Healthcare, USA). The gel phantoms used in 

this study was constructed by Mr. C.K Chia and Ms. Y.H. Lin (Lin, 2012), former students 

of Master Medical Physics Program, University of Malaya. The gel phantoms were 

constructed from gadolinium (III) chloride (GdCl3). Different concentration of GdCl3 was 

used to produce seven phantoms with different T1 value. The concentration of GdCl3 is 

given in table 2.1. Gadolinium is a paramagnetic contrast agent used in MRI. Gadolinium 

has seven unpaired electrons which contribute its strong paramagnetic property (Raymond 

et al., 2005). The material will change signal intensities in the T1-weighted image by 

shortening T1 value of the surrounding protons within water molecules. 

 

Table 2.1: The concentration of GdCl3 in the gel phantoms adapted from Lin (2012). 

Phantom Concentration of GdCl3 (M) 

A 1.450 

B 0.689 

C 0.435 

D 0.182 
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E 0.098 

F 0.056 

G 0.030 

 

The gel phantoms were placed horizontally in between a pair of cardiac RF coils. 

The phantoms were placed at the same positions during image acquisition. The experiments 

were performed by using four difference pulse sequences; i.e. FSE-IR, M2D FSPGR, 3D 

FSPGR and 3D LAVA.  

 

 An FSE-IR pulse sequence technique was performed to measure the T1 values on 

the gadolinium gel phantoms. This technique is considered as the standard method in the 

measurements of T1. However it is not routinely used for in vivo imaging because it is time 

consuming to be performed in clinical setting. The T1 relaxation time was measured by 

using FSE-IR preparation with different setting of TI. A repetition time (TR) of 6500 ms 

and echo time (TE) of 7.51 ms were used. Images were acquired with this following TI 

values: 50, 300, 500, 800 and 1050 ms to determine the value of T1 more accurately 

because the T1 value estimated from the graph fitted by signal intensity and TI values.  

The second imaging technique used was axial M2D FSPGR sequence with flip 

angles of 5
o
, 10

o
 and 14

o
, TR of 9.1 ms, TE of 1.75 ms. The third technique was axial 3D 

FSPGR sequence with flip angles of 5
o
, 10

o
 and 14

o
, TR of 11.61 ms and TE of 5.26 ms. 

The fourth technique was axial 3D LAVA pulse sequence with flip angles of 5
o
, 10

o
 and 

14
o
, TR of 5.27 ms and TE of 2.62 ms. Parameter settings used are summarized in table 2.2. 
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Table 2.2: Scanning parameters used in imaging experiment on T1 gel phantoms 

Parameters M2D 

FSPGR 

3D FSPGR LAVA FSE-IR 

Repetition time (ms) 9.1 11.61 5.27 6500 

Echo time (ms) 1.75 5.26 2.62 7.51 

Flip angle ( ) 5
o
, 10

o
, 14

o
 - 

Inversion time (ms) - - - 50, 300, 

550, 800, 

1050 

No of slices   5 44 44 1 

Slices thickness (mm) 5 3 3 5 

Echo train length 1 1 1 7 

Field of view (mm) 220 220 220 220 

Image size (pixel) 512 × 512 256 × 256 512 × 512 256 × 256 

   

 

2.1.1 Image Analysis of Experiments on gel Phantoms 

 

Signal intensity was measured from circular regions-of-interest (ROI) drawn over 

each DICOM images of gel phantoms using ImageJ 1.43u (National Institute of Health, 

USA) software for FSE-IR. Graphs of signal intensity versus IR were plotted using Matlab 

(MathWorks, Natrick MA). Matlab’s Curve fitting function were used to determine the 

value of T1 from combination of five different TI for FSE-IR pulse sequence. The T1 values 

were determined from the curve fitting are based on the equation Eq. [2.1] (Bushberg et al. 

2002, McRobbie et al., 2007).  

    [     
  

  ]     [2.1] 
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where    represents the signal intensity of the image and    represents the maximum signal 

intensity at equilibrium condition. 

 Since the M2D FSPGR, 3D FSPGR and 3D LAVA are based on spoiled gradient 

echo pulse sequence (McRobbie et al., 2007), the same equation, Eq. [2.2] was used for 

curve fitting process. For this equation the flip angle ( ) is the manipulating factor. The flip 

angle used in this experiment was 5
o
, 10

o
 and 14

o
.  Other parameters including TR and TE 

were fixed.  

 

    
[   

  
  ]     

   ( 
 

  
  )      

    [2.2] 

 where   is the signal intensity obtains from the image and    is the magnetization at 

equilibrium condition. 

 

For the spoiled gradient echo based sequences, the T1 values were displayed as T1 

map. The map was produced by calculating the T1 values by curve fitting technique for 

each pixel in the image. The mapping is performed by uploading the images with different 

flip angles into the computer. The image size then reduced from 512 × 512 pixels to 128 × 

128 pixels. This step is performed to reduce the processing time and to reduce the noise in 

the T1 map. After all the imaging parameter setting such as α and TR were set, curve fitting 

is performed on each pixel in the uploaded image to determine the T1 values. The value of 

T1 then shown as a colour map. The image is then increased back to 512 × 512 for display 

purpose. A summary of the techniques used to produce the T1 map is shown in Figure 2.1. 
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Figure 2.1: The flowchart of the T1 mapping 
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The three ROIs were drawn at the centre of phantom with T1 map produced from 

mapping technique to measure the average value of the T1 in each phantom (see figure 2.2).  

 

 

Figure 2.2: Typical image of three ROIs placed at centre 

of the phantom for T1 measuring at M2D FSPGR pulse 

sequence (TR: 9.1 ms; TE: 1.75 ms).    

 

 

2.2  Imaging Experiment on Volunteers. 

 

Imaging experiment was performed on four healthy volunteers (one male and three 

female) by using a GE 1.5 Tesla MRI system. Ethical committee approvals were obtained 

from local ethic committee (Medical Ethics Committee University Malaya Medical Centre) 

and informed consent was obtained from all the volunteers. The volunteers were positioned 

prone in the scanner and the cardiac receiver coil was used. The imaging procedures were 

performed on the right thigh of the volunteer in order to evaluate the value of T1 of 

subcutaneous fat and muscle.    
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The imaging protocol acquires axial and coronal M2D FSPGR images with 

different flip angles. The experiments were repeated by using axial and coronal 3D FSPGR 

sequence, followed by axial and coronal 3D LAVA sequence. The 3D LAVA sequence 

used in this experiment was not the standard from the manufactured which includes the fat 

suppression in the technique. In this experiment, the fat suppression function of the 3D 

LAVA pulse sequence was removed to obtain the fat images for data analysis. Flip angles 

of 5
o
, 10

o
 and 14

o
 were used in all pulse sequence. Other parameter settings are shown in 

table 2.3. 

 

Table 2.3: Scanning parameters setup for volunteer 

Parameters 2D FSPGR 3D FSPGR LAVA 

 Axial  Coronal  Axial  Coronal  Axial  Coronal  

Repetition time 

(ms) 

9.1 9.1 11.52 11.43 4.91 4.14 

Flip angle ( ) 5
o
, 10

o
, 14

o
 

Echo time (ms) 1.76 1.77 5.18 5.1 2.47 2.03 

No of Slices   5 4 60 96 60 116 

Slices thickness 

(mm) 

5 5 3 3 3 3 

Field of View 

(mm) 

220 270 220 330 220 270 

Image size (pixel) 512 × 

512 

512 × 

512 

256 × 

256 

256 × 

256 

512 × 512 256 × 256 
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2.2.1 Volunteer Image Analysis  

 

The same technique was used to produce the T1 map on a volunteer. However, in 

the volunteer, four ROIs were placed at fat and muscle area (see figure 2.3) to determine 

the average T1 of the tissues.  

 

 

Figure 2.3: Typical image of four ROIs used to determine the average 

T1 of fat and muscle tissues at 3D pulse sequence (TR: 11.52 ms; TE: 

5.18 ms) at axial orientation. 
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CHAPTER 3 

 

 

RESULTS 

 

 

 

 

3.1 Imaging Experiment on Gel Phantom 

3.1.1 Fast Spin Echo Inversion Recovery (FSE-IR) 

 

Figure 3.1 shows a set of gel phantom images acquired using different inversion 

time: 50, 300, 550, 800 and 1050 ms.  
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Figure 3.1: Typical images 

of gel phantoms produced 

using FSE-IR pulse 

sequence (TR: 6500 ms; 

TE: 7.51 ms) with 

inversion time of (a) 50 

ms, (b) 300 ms, (c) 550 

ms, (d) 800 ms, and (e) 

1050 ms. 
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 Figure 3.2 shows the signal intensity as a function of inversion time for each sample 

with their respective fitted curves. The T1 values estimated are given in table 3.1.       

 

Figure 3.2: Plot of signal intensity as a function of inversion time produced using FSE-IR 

pulse sequence. All phantoms exhibited different T1 values are distinguishable from each 

other at any points of inversion time. 

 

 

Table 3.1: T1 values of gel phantoms using FSE-IR pulse sequence acquired from the curve 

fitting process.  

Phantom T1 (ms) 

A 92 

B 189 

C 287 

D 563 

E 863 

F 1165 

G 1471 
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3.1.2 Multislices 2D FSPGR (M2D FSPGR) 

 

Figure 3.3(a) to (c) shows images of gel phantoms produced by using M2D FSPGR 

pulse sequence with three different flip angles (5
o
, 10

o 
and 14

o
). Figure 3.3(d) shows the 

image of T1 map produced from the three previous images. The colour scale beside the 

phantoms represents the T1 values estimated. The T1 values estimated from each phantom 

are given in table 3.2.  

 

 

  

  

Figure 3.3: Phantoms images of M2D FSPGR pulse sequence (TR: 9.1 

ms; TE: 1.75 ms) with flip angle of (a) 5
o
 (b) 10

o
 (c) 14

o
. Image of 

phantom with T1 map (d) produced using the three images of (a), (b) 

and (c). 
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Table 3.2: T1 values of gel phantoms estimated using M2D FSPGR pulse sequence. The T1 

values were the average of four volunteer.  

Phantom T1 values (ms) 

A 643 ± 6 

B 833 ± 17 

C 926 ± 17 

D 1441 ± 17 

E 1769 ± 14 

F 1389 ± 54 

G 1637 ± 87 

 

 

3.1.3 Three Dimensional Fast Spoiled Gradient Echo (3D FSPGR) 

 

Figure 3.4(a) to (c) shows images of the gel phantoms produced by using 3D 

FSPGR pulse sequence with three different flip angles. Figure 3.4(d) shows the image of T1 

map produced from figure 3.4(a), (b) and (c). The colour scale beside the phantoms 

represents the value of T1 map on the phantom image. The T1 values estimated from the 

figure 3.4 (d) are given in table 3.3. 
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Figure 3.4: Images of gel phantoms produced using 3D FSPGR pulse 

sequence (TR: 11.61 ms; TE: 5.26 ms) with flip angle of: (a) 5
o
 (b) 10

o
 

(c) 14
o
. (d) The T1 map produced using images of (a), (b) and (c). 

 

 

 

 

Table 3.3: T1 values of gel phantoms using 3D FSPGR pulse sequence. The T1 values were 

the average of four volunteer. 

PHANTOM T1 value (ms) 

A 135 ± 7 

B 288 ± 5 

C 395 ± 11 

D 747 ± 1 

E 1086 ± 25 

F 1470 ± 14 

G 2000 ± 48 

 

 

3.1.4 Liver Acquisition with Volume Acceleration (3D LAVA)  

 

Figure 3.5(a) to (c) shows images of phantoms produced by using 3D LAVA pulse 

sequence with three different flip angles. Figure 3.5(d) shows the image of T1 map 

produced from figure 3.5(a), (b) and (c). The colour scale beside the phantoms represents 

the value of T1 map on the phantom image. The value of T1 estimated for each phantom for 

3D LAVA pulse sequence obtained were given in the table 3.4. 
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Figure 3.5: Phantoms images of 3D LAVA pulse sequence (TR: 5.27 

ms; TE: 2.62 ms) with flip angle of: (a) 5
o
 (b) 10

o
 (c) 14

o
. (d) Image 

of phantom with T1 map produced using images of (a), (b) and (c). 

 

 

 

 

 

Table 3.4: T1 values of gel phantoms using 3D LAVA pulse sequence. The T1 values were 

the average of four volunteer. 

Phantom T1 value (ms) 

A 162 ± 4 

B 263 ± 4 

C 353 ± 19 

D 601 ± 58 

E 872 ± 12 

F 1049 ± 30 

G 1499 ± 107 
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3.2 Data Analysis for Phantom Imaging  

3.2.1  Comparison of T1 values of M2D FSPGR, 3D FSPGR and 3D LAVA with FSE-IR 

 

 Figure 3.6 shows the T1 values of gel phantoms (A, B, C, D, E, F, G) using different 

pulse sequences; FSE-IR, M2D FSPGR, 3D FSPGR and 3D LAVA.  

 

 

 

Figure 3.6: The T1 values of gel phantom plot for different pulse sequence.  

 

 

 Figure 3.7 shows the percentage difference of T1 values of gel phantom using M2D 

FSPGR, 3D FSPGR and 3D LAVA pulse sequences with respect to FSE-IR pulse 

sequence. The differences are calculated using Eq. [3.1]: 
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Where                     represents the value of T1 estimated by using different VFA 

techniques,           
 represents the value of T1 at FSE-IR pulse sequence. 

 

Figure 3.7: Percentage difference of T1 values at M2D FSPGR, 3D FSPGR and 3D LAVA 

with respect to FSE-IR pulse sequence.  

 

 

Figure 3.7 shows that the difference of T1 values from 3D LAVA pulse sequence 

with FSE-IR is in the range of 1 to 77 %. For 3D FSPGR pulse sequence, the difference of 

T1 values is in range 26 to 52%. While for the 2D FSPGR, the difference of T1 value 

compare to FSE-IR pulse sequence which is around 11 to 603% of difference. A summary 

of the difference of T1 values respect to FSE-IR (in percentage) given in table 3.5. 
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Table 3.5: The percentage difference of T1 values respect to FSE-IR pulse sequence.  

PHANTOM Percentage Difference to FSE-IR (%) 

 M2D FSPGR 3D FSPGR 3D LAVA 

A 603 47 77 

B 341 52 39 

C 223 38 23 

D 156 33 7 

E 105 29 1 

F 19 26 -10 

G 11 36 2 

 

 

 

3.3 Imaging Experiment on Volunteers 

3.3.1 M2D FSPGR  

 

 Figure 3.8 (a) to (c) shows an image of the right thigh of one of the volunteers 

acquired in axial orientation using M2D FSPGR pulse sequence with three different flip 

angles (5
o
, 10

o 
and 14

o
). These three images were obtained from the same volunteer and 

from the same slice position. Hence, the same position of thigh is assumed. Figures 3.8 (a), 

(b) and (c) are the images acquired by using different flip angles, and 3.8 (d) is the T1 map 

produced. The colour scale beside the image represents the T1 values estimated.  

  

 

  

(a) (b) 
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Figure 3.8: Typical images of volunteer right thigh using M2D FSPGR pulse 

sequence (TR: 9.1 ms; TE: 1.76 ms) at axial orientation with flip angle of (a) 5
o
 (b) 

10
o
 (c) 14

o
. (d) Typical image of volunteer right thigh with T1 map acquired from the 

three images (a), (b) and (c). 

 

Figure 3.9 shows the images from the coronal orientation of scanning. The T1 value 

of fat and muscles estimated from the volunteers’ right thigh at axial and coronal 

orientation are given in table 3.6. 

 

   

(c) (d) 

(a) (b) 
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Figure 3.9: Typical images of volunteer right thigh using M2D 

FSPGR pulse sequence (TR: 9.1 ms; TE: 1.77 ms) at coronal 

orientation with flip angle of: (a) 5
o
 (b) 10

o
 (c) 14

o
. (d) Typical 

image of volunteer right thigh with T1 map acquired from the three 

images (a), (b) and (c). 

 

 

Table 3.6: T1 values of fat and muscle by using M2D FSPGR pulse sequence at axial and 

coronal orientation. 

 T1 value (ms) 

Area Axial Orientation Coronal Orientation 

Fat 217 ± 31 202 ± 32 

Muscle 554 ± 32 505 ± 36 

 

 

3.3.2 3D FSPGR 

 

Figure 3.10(a) to (c) shows one of volunteer images produced by using 3D FSPGR 

pulse sequence with three different flip angles (5
o
, 10

o
 and 14o) at axial orientation. Figure 

3.10 (d) shows the T1 map of phantom produced by using the three images with different 

flip angles [(a) to (c)].  

 

 

 

(c) (d) 
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Figure 3.10: Typical images of volunteer right thigh scanned by using 3D FSPGR 

pulse sequence (TR: 11.52 ms; TE: 5.18 ms) at axial orientation with flip angles of 

(a) 5
o
 (b) 10

o
 (c) 14

o
. (d) Typical image of volunteer right thigh with T1 map acquired 

from the three images (a), (b) and (c). 

 

Figure 3.11 shows the images by using the same pulse sequence but at coronal 

orientation. The table 3.7 shows the T1 value estimated for fat and muscles from volunteers’ 

right thigh at axial and coronal orientation for 3D FSPGR pulse sequence. 
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Figure 3.11: Typical images of volunteer’s right thigh using 3D 

FSPGR pulse sequence (TR: 11.43 ms; TE: 5.1 ms) at coronal 

orientation with flip angle of (a) 5
o
 (b) 10

o
 and (c) 14

o
. (d) Typical 

image of volunteer right thigh with T1 map acquired from the three 

images (a), (b) and (c). 

 

 

Table 3.7: T1 values of fat and muscle by using 3D FSPGR pulse sequence at axial and 

coronal orientation 

 T1 value (ms) 

Area Axial orientation Coronal orientation 

Fat 134 ± 29 78 ± 18 

Muscle 618 ± 97 397 ± 59 

 

 

3.2.3 3D LAVA 

 

Figure 3.12(a) to (c) shows one of volunteer images formed by using 3D LAVA 

pulse sequence with three different flip angles (5
o
,10

o
 and 14

o
) at axial orientation. The T1 

map image of phantom with the colour scale had illustrated on figure 3.12 (d). Each colour 

on the scale represents the value estimated on the phantom.  

 

 

 

(a) 

(c) (d) 
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Figure 3.12: Typical images of volunteer right thigh using 3D LAVA pulse sequence 

(TR: 4.91 ms; TE: 2.47 ms) at axial orientation with flip angle of (a) 5
o
 (b) 10

o
 (c) 14

o
. 

(d) Typical Image of volunteer right thigh with T1 map acquired from the three images 

(a), (b) and (c). 

 

 

 

Figure 3.13 represents the image of phantom from similar pulse sequence but 

different scanning orientation. Table 3.8 shows the T1 value estimated for fat and muscles 

at thigh of the volunteers using 3D LAVA pulse sequence for both orientation: axial and 

coronal. 

 

(c) 

(b) 

(d) 
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Figure 3.13: Typical images of volunteer right thigh using 3D LAVA 

pulse sequence (TR: 4.14 ms; TE: 2.03 ms) at coronal orientation 

with flip angle of (a) 5
o
 (b) 10

o
 (c) 14

o
. (d) Typical image of 

volunteer’s right thigh with T1 map acquired from images (a), (b) 

and (c). 

 

 

Table 3.8: T1 values of fat and muscle by using 3D LAVA pulse sequence at axial and 

coronal orientation 

 T1 value (ms) 

Area Axial orientation Coronal orientation 

Fat 179 ± 19 95 ± 17 

Muscle 637 ± 75 442 ± 22 

 

 

 

(b) 

(c) (d) 

(a) 
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3.4 Data Analysis for Volunteers Imaging 

3.4.1 Comparison of T1 values estimated from different anatomical orientation 

 

Figure 3.13 and 3.14 shows the difference of T1 values of fat and muscle of thigh 

measured at different anatomical orientation for three different pulse sequences.  

 

 

Figure 3.14: The T1 values of fat with difference in anatomical orientation for three pulse 

sequences. 

 

 

The T1 value of fat shows slightly small difference between the scanning 

orientations which for M2D FSPGR is about 7%. While for 3D FSPGR is 42% and 3D 

LAVA is 47% shown large difference of T1 value for two different scanning orientations. 

Figure 3.14 shows the T1 value of fat using M2D FSPGR is higher than T1 value estimated 

using 3D FSPGR and 3D LAVA for both axial and coronal scanning orientations. 
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Figure 3.15: The T1 values of muscle different with difference in anatomical orientation for 

three pulse sequences. 

 

 

The difference of T1 value for muscle using M2D FSPGR pulse sequence shows a 

smaller difference compared to 3D FSPGR and 3D LAVA for two scanning orientation 

which is around 9% difference, while for 3D FSPGR is 36% and 3D LAVA is 31%. Figure 

3.15 shows the value of T1 for muscle using M2D FSPGR is the highest followed by 3D 

LAVA and 3D FSPGR at coronal orientation. For axial orientation, the value of T1 using 

M2D FSPGR is the lowest followed by 3D FSPGR and 3D LAVA. 

 

Table 3.9 shows the difference of T1 values of fat and muscle measured by using 

different scanning orientation using M2D FSPGR, 3D FSPGR and 3D LAVA pulse 

sequences. The percentage differences are calculated using Eq. [3.2]. 
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where             represents the value of T1 at coronal orientation,           represents the 

value of T1 at axial orientation. Both T1 values were measured from the same pulse 

sequence. 

 

 

Table 3.9: The percentage difference of T1 values for different scanning orientation using 

three pulse sequences  

 M2D FSPGR  3D FSPGR  3D LAVA  

 T1 value (ms) % 

Diff 

T1 value (ms) % 

Diff 

T1 value (ms) % 

Diff  AX COR AX COR AX COR 

Fat 217 202 -7 134 78 -42 180 95 -47 

Muscle 554 505 -9 618 397 -36 638 442 -31 

 

 

3.4.2  Comparison of T1 values estimated for different scanning technique 

 

Figure 3.16 and 3.17 show comparison of T1 values obtained using M2D and 3D 

FSPGR pulse sequence at fat and muscle of thigh.  

 

 
 

Figure 3.16: The T1 values of fat with different in scanning technique for FSPGR pulse 

sequence. 
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Figure 3.16 shows the difference between dimensional scanning techniques i.e. 

M2D FSPGR and 3D FSPGR at axial orientation for fat has smaller difference compared to 

the difference of T1 at coronal orientation about 62% and 159% respectively. The T1 value 

estimated using M2D FSPGR is higher than T1 value using 3D FSPGR for both scanning 

orientations.  

 

 

Figure 3.17: The T1 values of muscle different with difference in scanning technique for 

FSPGR pulse sequence. 

 

 

Figure 3.17 shows the difference of T1 value between dimensional scanning 

techniques at axial orientation for muscle is smaller than difference at coronal orientation 

about 10% and 27% respectively. At axial orientation, the value of T1 estimated is higher 

using 3D FSPGR compared with the value of T1 using M2D FSPGR. While at coronal 

orientation, the T1 value shows the opposite result using M2D FSPGR is higher than 3D 

FSPGR pulse sequence.   
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Table 3.10 shows the percentage difference of T1 values of fat and muscle using 

M2D FSPGR pulse sequence with respect to 3D FSPGR pulse sequence. The percentage 

differences were calculated using Eq. [3.3]. 

 

                         

            
       [3.3] 

 

where              represents the value of T1 by using M2D FSPGR pulse sequence, 

              represents the value of T1 by using 3D FSPGR pulse sequence. Both T1 values 

are from the same scanning orientation; axial orientation or coronal orientation. 

 

 

Table 3.10: The percentage difference of T1 values for difference dimensional of scanning 

technique with respect to 3D FSPGR 

 AXIAL  CORONAL  

 T1 value (ms) % 

Difference 

T1 value (ms) % 

Difference  M2D  

FSPGR 

3D 

FSPGR 

M2D  

FSPGR 

3D 

FSPGR 

Fat 217 134 62 202 78 159 

Muscle 554 618 -10 505 397 27 

 

 

3.4.3 Comparison of T1 values estimated using different pulse sequence 

 

Figures 3.18 and 3.19 show the difference of T1 values using different pulse 

sequences at two anatomical orientations for fat and muscle of thigh.  
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Figure 3.18: The T1 values of fat with difference pulse sequence for two orientations. 

 

 

The difference of T1 value of fat using 3D LAVA and 3D FSPGR is small at 

coronal orientation compared with the T1 value at axial orientation. The difference is about 

34% at axial orientation and 21.9% at coronal orientation. The T1 value of fat using 3D 

LAVA is slightly higher than 3D FSPGR for both orientations. 

 

 

Figure 3.19: The T1 values of muscle different with difference pulse sequence for two 

orientations. 
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The difference of T1 value of muscle using 3D LAVA and 3D FSPGR is small at 

axial orientation compare with the T1 value at coronal orientation. The difference is about 

3% at axial orientation and 11% at coronal orientation. The T1 value of muscle using 3D 

LAVA is slightly higher than 3D FSPGR for both orientations. 

 

Table 3.11 shows the percentage difference of T1 values of fat and muscle using 3D 

LAVA pulse sequences with respect to 3D FSPGR pulse sequence. The percentage 

differences are calculated using Eq. [3.4]: 

 

                     

            

       [3.4] 

 

Where T1(LAVA) represents the value of T1 by using 3D LAVA pulse sequence, T1(3D FSPGR) 

represents the value of T1 by using 3D FSPGR pulse sequence. Both T1 values are from the 

same scanning orientation i.e., axial or coronal orientation. 

 

 

Table 3.11: The percentage difference of T1 values for 3D LAVA with respect to 3D 

FSPGR pulse sequence 

  AXIAL CORONAL 

 T1 value (ms) % 

Difference 

T1 value (ms) % 

Difference   3D 

LAVA 

3D 

FSPGR 

3D 

LAVA 

3D 

FSPGR 

Fat 180 134 34 95 78 22 

Muscle 638 618 3 442 397 11 
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CHAPTER 4 

 

 

DISCUSSION 

 

 

 

 

4.1 Imaging Experiment on Gel Phantom 

4.1.1 Fast Spin Echo Inversion Recovery (FSE-IR) 

 

 Inversion recovery pulse sequence is considered as the standard technique to 

measure T1 (Steen et al., 1994). By using this technique the imaging is repeated several 

times each one with different TI. Ideally, the TR should be at least five times the maximum 

T1 values of the subject. The maximum T1 value in the phantom study was 1470 ms and the 

TR is 6500 ms. The TR value used in this study approximately five times the maximum of 

the T1 value i.e., 4.4 times of maximum T1. A long imaging time is required to measure T1 

by using this technique because of the long TR used. Longer acquisition time is required if 

a longer TR is used. Hence, this technique is not normally used to measure T1 in patients or 

volunteers especially by using 3D acquisition technique.  

 

 

4.1.2 Comparison of T1 values of M2D FSPGR, 3D FSPGR and 3D LAVA with IR-FSE  

 

 Figure 3.6 shows the pattern of the T1 values for each phantom acquired by using 

FSE-IR, 3D FSPGR and 3D LAVA. The T1 value increases from phantom A to G. Note 
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that the concentration of the gel phantom is the highest in phantom A and the lowest in 

phantom G (see table 2.1). However, for the M2D FSPGR, the T1 value only increases for 

the first five phantoms (A to E) and the T1 values of phantom F and G are lower than 

phantom E.  

 

In this experiment, it was found that the T1 values measured in the gel phantoms are 

dependent on the imaging technique used. Figure 3.7 shows the difference of T1 values (in 

percentage) for three techniques i.e. M2D FSPGR, 3D FSPGR and 3D LAVA relative to 

FSE-IR pulse sequence. It was found that the values of T1 measured by using 3D LAVA 

and 3D FSPGR are very similar to the FSE-IR which is considered as the standard T1 

measurement technique. The M2D FSPGR pulse sequence shows a much higher difference 

compared to other pulse sequences especially for the phantoms with short T1 values 

(Phantom A-E). However, for the phantoms with long T1 (F and G), the values are very 

close to the values obtained using FSE-IR.  

 

The high differences of the T1 values measured between the M2D FSPGR and FSE-

IR may be due to the crosstalk between the slices in the M2D technique. The individual 

slice profile for each individual slice acquired by using the 2D acquisition technique is 

nonrectangular (Hänicke et al., 1988). Part of the slices may overlap with each other if the 

slice gaps are very close. Hence, it may affect the signal intensities and the T1 values 

measured on the gel phantoms.  

 

The 3D LAVA pulse sequence is basically based on 3D FSPGR sequence ("LAVA  

sequence MRI," 2013). Therefore, the value of T1 produced from both 3D LAVA and 3D 

FSPGR should be very close to each other if the same parameters are used.  
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4.2 Imaging Experiment on Volunteers 

4.2.1 Comparison of T1 values estimated from different anatomical orientation 

 

In this study, it was found that the T1 values in fat and muscle of the thigh varied 

with the scanning orientation applied in the MRI procedure. Figures 3.13 and 3.14 show 

that the value of T1 at fat and muscle of volunteers at axial orientation is measure as higher 

than at coronal scanning orientation for all three different pulse sequences i.e M2D FSPGR, 

3D FSPGR and 3D LAVA. This difference may be due to the influence of blood flow in 

the tissue.  

 

The slightly lower values of all T1 values of muscle and fat compared to the 

literature values may be due  to the different anatomical regions of the tissue, for example 

abdominal fat may be have different molecular composition compared to breast fat. Hence 

the tissues might have different T1 values.  It is the same for muscle, the T1 value of muscle 

in the abdomen may be not be the same as the value at lower extremities.  Another possible 

explanation is the T1 may be affected by the factors such as gender, age, ethnicity, and their 

lifestyle. 

 

 

4.2.2  Comparison of T1 values estimated from different scanning dimensional 

 

In this study, we noticed that the T1 values in fat and muscle of thigh varied with the 

dimensional of all scanning technique applied during MRI procedure. Figures 3.16 and 3.17 

demonstrate that the value of T1 at fat and muscle of volunteers for M2D FSPGR and 3D 
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FSPGR at axial and coronal. The value of T1 of fat shows large differences between two 

differences dimensional scanning while skeletal muscle shows slightly smaller difference.  

 

   

4.2.3 Comparison of T1 values of difference pulse sequence 

 

In this study, we noticed the T1 values in fat and muscle of thigh varied with the 

pulse sequence applied during the MRI procedure. Figures 3.18 and 3.19 demonstrate that 

the value of T1 of fat and muscle of volunteers for 3D FSPGR and 3D LAVA. The 

difference of T1 value of fat at axial and coronal orientation has small difference compare 

with the T1 value of muscle. The difference is 34% and 21.9% at for fat and 3.3% and 

11.3% for muscle respectively.  

 

The T1 value for muscle using 3D FSPGR and 3D LAVA pulse sequences shows 

very similar values. Basically, the 3D LAVA pulse sequence protocol is based on the 3D 

FSPGR. In its standard form the 3D LAVA pulse sequence employs fat saturation. 

However in this study, the function was disabled. Small differences in the T1 values 

measured by using 3D LAVA and 3D FSPGR may be due to the different parameter setting 

used in both pulse sequences such the TR and TE.      
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CHAPTER 5 

 

 

CONCLUSIONS 

 

 

 

 

5.1 Conclusion 

 

 

DCE-MRI is considered as one of the most sensitive imaging technique to detect 

cancer. In clinical setting, a qualitative technique normally based on visual inspection of 

signal enhancement curves is used in the diagnosis. However this technique is dependent on 

the scanning technique used. Hence, quantitative techniques that can produce 

pharmacokinetic parameters such as k
trans

 and ve have been introduced (Tofts, 1997). 

Normally, the native T1 values of the tissues are measured and applied in the parameters 

estimation. Hence, any error in the T1 measured will influence the accuracy of the 

pharmacokinetic parameters estimated.  

 

For the comparison of T1 values measured using different pulse sequence i.e. M2D 

FSPGR, 3D FSPGR and 3D LAVA with FSE-IR at 1.5 Tesla, it was found that the T1 value 

by 3D FSPGR and 3D LAVA were closest to value to the T1 value measured by the 

standard T1 measurement technique i.e. FSE-IR. However the T1 values measured using 

M2D FSPGR pulse sequence showed a substantial difference compared to the T1 values 

measured by FSE-IR. 
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 From experiments on phantom it was found that the T1 value measured by using 3D 

image acquisition is much closer to the IR method compared to M2D imaging. The 

reduction in the accuracy of T1 especially at short T1 may be due to the crosstalk between 

the slices. Hence, it can be assumed that both the 3D FSPGR and LAVA are the techniques 

that should be used to measure T1 values in phantoms, while the M2D FSPGR technique 

should not be used for this purpose. 

 

The T1 values also are affected by the scanning orientation used in the experiment. 

From the experiments performed, the axial orientation give the higher T1 value compared to 

coronal orientation for all the three pulse sequences, M2D FSPGR, 3D FSPGR and 3D 

LAVA. This may be due to the effect of blood flow in the tissue, the signal intensity and 

image contrast, which than affected the T1 values estimated.  

 

Variable flip angle (VFA) using 3D FSPGR and 3D LAVA pulse sequences 

produce very similar T1 values. This may be due to 3D LAVA is a modified version of 3D 

FSPGR pulse sequences. Note that 3D LAVA has a special parallel imaging technique to 

reduce the scanning time.   

 

 

5.2  Limitation of this study 

 

 Due to the time constrain and the scanner’s busy schedule, only four volunteers 

were able to be scanned for this study. This may affect the accuracy of the results. 
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 The T1 values of the fat and muscle reported in the literature are from different 

anatomical locations of the volunteers and were measured in western countries. Hence, the 

T1 values measured in this experiment cannot be directly compared with the values 

reported. 

 

 

5.3 Future works 

 

The experiments on volunteers of this study only involve four volunteers. Hence, to 

increase the validity of the results should be planned to include more volunteers for this 

purpose in the future (up to 10 volunteers as approved by the ethic committee). It is also 

proposed that the experiment can also be performed by using 3 Tesla MRI. 
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APPENDIX 

Appendix A 

Appendix A (i): Ethic approval form from the Medical Ethics Committee  
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Appendix A (ii): Sample of consent form given to volunteers 
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Appendix B 

Appendix B (i): Raw data for T1 value measurement for phantoms using M2D FSPGR 

 

 Measurement Mean of 

measurement 

Standard 

deviation Phantom 1 2 3 

A 640.72 650.45 638.61 643.26 6.32 

B 836.12 849.02 815.94 833.69 16.67 

C 925.83 944.45 910.67 926.98 16.92 

D 1440.1 1425 1459.2 1441.43 17.14 

E 1761.7 1785.5 1761 1769.4 13.95 

F 1326.6 1420.6 1420 1389.07 54.1 

G 1655.9 1713.6 1542.6 1637.37 86.99 

 

 

Appendix B (ii): Raw data for T1 value measurement for phantoms using 3D FSPGR 

 Measurement Mean of 

measurement 

Standard 

deviation Phantom 1 2 3 

A 126.67 137.23 140.66 134.85 7.29 

B 293.46 285.92 283.34 287.57 5.26 

C 398.55 383.37 404.38 395.43 10.85 

D 746.34 748.94 746.42 747.23 1.48 

E 1107.9 1092.9 1058.6 1086.47 25.27 

F 1455.7 1469.7 1484 1469.8 14.15 

G 1948.8 2044 2008.5 2000.43 48.11 

 

 

Appendix B (iii): Raw data for T1 value measurement for phantoms using 3D LAVA 

 Measurement Mean of 

measurement 

Standard 

deviation Phantom 1 2 3 

A 156.84 165.59 162.45 161.63 4.43 

B 265.47 257.80 264.67 262.65 4.22 

C 353.61 334.07 372.40 353.36 19.17 

D 667.3 579.43 557.38 601.37 58.15 

E 882.19 859.16 875.22 872.19 11.81 

F 1082.2 1022.8 1041.3 1048.77 30.4 
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G 1404.8 1476.7 1614.8 1498.77 106.72 

 

Appendix C 

 

Appendix C (i): Raw data for T1 value of muscle measurement for volunteer using M2D 

FSPGR, 3D FSPGR and 3D LAVA  

 Scanning technique 

 M2D FSPGR 3D FSPGR 3D LAVA 

 AXIAL CORONAL AXIAL CORONAL AXIAL CORONAL 

Volunteer 1 517.18 447.54 439.39 285.95 474.54 385.6 

Volunteer 2 640.28 586.48 854.95 491.54 760.3 477.69 

Volunteer 3 562.41 545.3 693.74 507.45 768.33 476.11 

Volunteer 4 495.37 440.74 483.38 303.37 548.78 428.59 

Mean of 

volunteer 

measurement 

553.81 505.01 617.87 397.08 637.99 442.00 

Standard 

deviation 

64.05 72.33 193.14 118.65 149.02 43.96 

Standard 

error 

32.03 36.16 96.57 59.323 74.51 21.98 

 

 

Appendix C (ii): Raw data for T1 value of fat measurement for volunteer using M2D 

FSPGR, 3D FSPGR and 3D LAVA  

 Scanning technique 

 M2D FSPGR 3D FSPGR 3D LAVA 

 AXIAL CORONAL AXIAL CORONAL AXIAL CORONAL 

Volunteer 1 165.74 147.29 50.87 50 134.67 51.31 

Volunteer 2 230.07 199.82 166.21 86.23 195.64 114.38 

Volunteer 3 299.83 292.19 180.57 126.95 223.19 130.42 

Volunteer 4 171.82 170.21 139.01 50 165.69 85.72 

Mean of 

volunteer 

measurement 

216.86 202.38 134.17 78.29 179.79 95.46 

Standard 

deviation 

62.45 63.62 58.15 36.66 38.16 34.76 

Standard 

error 

31.22 31.81 29.07 18.33 19.08 17.38 
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