

1	Getting Started 10
	Documentation Conventions10
	Special Fonts
	Menu Commands and Dialog Titles
	Special Keys
	User Interface
	Menu Bar
	Toolbars13
	Status Bar
	Display Area14
	Simulation Manager14
	Simulation Status14
	Command Tool
	Simulating a Design—a Simple Example15
	Creating a New Input File15
	Entering the Circuit Description
	Device Statements
	Simulation Commands
	Running the Simulation
	Simulation Queueing
	Setup Options
	T-Spice Server
	Text Editor
	Text Style22
	Adding Keywords to a Group
	External Programs
	Command-Line Options
	Running T-Spice From the Command-Line
	Batch Simulations from the Command Line
2	Simulation Concepts 28
_	Simulation Algorithms
	Kirchoff's Current Law
	DC Analysis
	gmin Stepping
	Transient Analysis
	Trapezoidal Integration Method
	Gear's BDF Method
	Small-Signal Analysis
	Tolerances
	abstol — reltol
	numnd — numnt — numntreduce
	chargetol — relchargetol
	Device Model Evaluation
	Evaluation Methods
	Table Resolution
	Parametric Analysis
	Monte Carlo Analysis
	Error Types and Correction
	Syntax Errors
	Connectivity Errors
	Convergence Errors

	• (C	ontinued)
	Multi-Threaded Processing	37
3	Running Simulations	38
	Input Files	
	File Synchronization	
	Opening SPICE Files	
	Editing Text Files	
	Comment Delimiters	
	Undo and Redo	
	Search and Replace	
	Command Tool	
	Setting Simulation Options	
	Simulation > Simulation Settings	44
	W-Edit	
	Launching a Simulation	46
	Simulation Manager	46
	Simulation Status	49
4	Input Conventions	51
-	Names	_
	Reserved Names	
	Device Names	
	Hierarchical Names	
	Subcircuit Pin Name Aliasing	
	Comments	
	Line Continuation	
	Comments in Continued Lines	
	Expressions and Continued Lines	
	Numbers and Units	
	Parameters	
	Expressions	55
	Built-in Functions	56
	Differentiation and Integration functions	57
5	Simulation Commands	59
	Introduction	59
	.ac.	
	Parameters	
	.acmodel	
	alter	
	.connect.	_
	.data	
	.dc	
	.del lib	
	.end	
	.enddata	
	.endl	_
	.ends	74
	.four	75
	.global	77
	.gridsize	78
	.hdl	79

A CONTRACTOR OF THE PARTY OF TH	eif / .else / .endif
.lib	
	Library File Format I:
	Library file format II:
.macro /.e	om
.measure	
	Trigger/Target Measurements
	Signal Statistics Measurements
	Find-When and Derivative Measurements
	Expression Evaluation Measurements
	Error Function Measurements
	Trigger/Target Example
	Signal Statistics Example
	Find-When and Derivative Example
	Error Function Example
.model	
.nodeset.	
noise	
.param	
	User-Defined Functions
	Monte Carlo Parameters
	Optimization Parameters
	nits
•	
.protect /	.unprotect
.save	
.savebias	
.step	
itable	MOSFET table example:
	Inverter table example:
	Resistor table example:
temn	Tooloo table oxample.
.vrange	
vice Stat	
Introducti	on
\	· (c)

T-Spice 13 User Guide

(Continued)

(Continued)

Current Source (i)	158
Exponential Waveform	. 158
Pulse Waveform	
Piecewise Linear Waveform	
Piecewise Linear Waveform File	
Frequency-Modulated Waveform	
Sinusoidal Waveform	
Vectorized Waveform	
Current-Controlled Current Source (f)	
Current-Controlled Voltage Source (h)	165
Diode (d)	.167
Inductor (I)	
Instance (x)	
JFET (j)	
MESFET (z)	
MOSFET (m)	174
Mutual Inductor (k)	.178
Resistor (r)	
Voltage- or Current-Controlled Switch (s)	
Voltage-Controlled Switch	
Current-Controlled Switch	
Transmission Line (t)	
"Lossless" Transmission Line	
"Lossy" Transmission Line	
Voltage Source (v)	.186
Exponential Waveform	
Pulse Waveform	
Piecewise Linear Waveform	
Piecewise Linear Waveform File	
Frequency-Modulated Waveform	
Sinusoidal Waveform	
Vectorized Waveform	
Voltage-Controlled Current Source (g)	
Linear Functions	
Laplace Functions	
Expression-Controlled Functions	
Laplace Transforms	
Voltage-Controlled Resistor	. 194
Nonlinear Capacitor	. 194
Voltage-Controlled Capacitor	. 195
Switch-Level MOSFET	. 195
Diode	. 195
Voltage-Controlled Voltage Source (e)	.197
Linear Functions	
Polynomial Functions	
Laplace Functions	
Expression-Controlled Functions	
Ideal OpAmp	
Integrator element	
Differentiator element	
Single Pole / Residue	
Zero-Delay Inverter Gate	
Zero-Delay AND Gate	
Voltage-Controlled Oscillator (VCO)	. 203

(Continued)

7	Simulation Options	204
	Accuracy and Convergence Options	205
	Timestep and Integration Options	
	Iteration Count with Voltage Variance Test (IvItim = 1, 3, or 4) .	
	Local Truncation Error Algorithm (IvItim = 2 or 4)	
	Determining the Next Timestep (IvItim = 1, 2, 3, or 4)	242
	Model Evaluation Options	
	Linear Solver Options	
	General Options	
	Default Value	
	Description	
	Default value	
	Description	
	Output Options	
	Probing Options	
	Verilog-A Options	324
8	Device Models	332
	Introduction	332
	BIPOLAR Level/Model Cross Reference	
	Diode Level/Model Cross Reference	332
	JFET & MESFET Level/Model Cross Reference	
	MOSFET Level/Model Cross Reference	
	Philips Model Cross Reference	335
	Model Descriptions	336
	BJT Level 1 (Gummel-Poon)	338
	DC Current Parameters	
	Base Charge Parameters	
	Parasitic Resistor Parameters	
	Parasitic Capacitance Parameters	
	Junction Capacitance Parameters	
	Noise Parameters	
	Temperature Effect Parameters	
	Geometry Consideration	
	Current Equations (Level 1)	
	Substrate Current Equations	
	Variable Base Resistance Equations	349
	Capacitance Equations	
	Temperature Dependence	
	BJT Level 6 (Mextram)	
	BJT Level 9 (VBIC)	
	BJT Level 10 (Modella)	
	Capacitor	
	Coupled Transmission Line (Level 1)	
	Diode	
	Model Selectors	
	Geometric and Scaling Parameters	
	DC Parameters	
	Capacitance Parameters	
	Temperature Parameters	
	Fowler-Nordheim Model Parameters (level=2)	

(Continued)

	Levels 11 and 63 (Philips MOS 11)	
MOSFET	Levels 9 and 50 (Philips MOS 9)	
	Gate Charge	
	Drain Current	
	NonQuasi-Static Parameters	
	Process Parameters	
	Bin Description Parameters.	
	Temperature Parameters	
	Length and Width Parameters	
	Basic Model Parameters	
	Model Selectors	
MOSFE	Levels 8, 49 and 53 (BSIM3 Revision 3.3)	
	Level 5 (Maher-Mead)	
	Levels 4 and 13 (BSIM1)	
	Ward-Dutton Charge Model	
	Second-Order Effects	
	Linear and Saturation Regions	
	Subthreshold Region	
	Threshold Voltage	
	Capacitance	
	Charge	
	Current	
MOSFET	Levels 1/2/3 (Berkeley SPICE 2G6)	395
	Temperature Dependence Equations	391
	Capacitances	
	Currents	
	Temperature Dependence Parameters	
	Area Calculation Method (ACM) Parameters	
	Geometry Parameters	
	Noise Parameters	
	Capacitance Parameters	
	DC Parameters	
WILSFET.	Submodel Selectors	
MESEET	Charges	
	Charges	
UFEI	Currents	
JFET	Capacitance	
	Current Equations	
	Resistance	
	Grading Coefficient	
	Junction Capacitance	
	Contact Potential	378
	Transit Time	
	Breakdown Voltage	377
	Saturation Current	
	Energy Gap	
	Level 3	
	Level 1	
	Polysilicon (Contact Electrode) Capacitance	
	Junction Capacitance (Depletion Capacitance)	
	Diffusion Capacitance (Depletion Capacitance)	
	Level 1 and Level 3	

•	(Continued
MOSFET Levels 14 and 54 (BSIM4 Revision 5).	
MOSFET Levels 15 and 61 (RPI Amorphous-Si	ΓFT Model) 432
MOSFET Levels 16 and 62 (RPI Poly-Si TFT Mo	del, 1.0 and 2.0) 435
MOSFET Level 20 (Philips MOS 20)	439
MOSFET Level 28 (Extended BSIM1)	440
Process Parameters	441
Drain Current	
Subthreshold Current	
MOSFET Level 30 (Philips MOS 30)	
MOSFET Level 31 (Philips MOS 31)	
MOSFET Level 40 (Philips MOS 40)	
MOSFET Levels 44 and 55 (EKV Revision 2.6) .	
MOSFET Level 47 (BSIM3 Revision 2)	
Drain Current	
MOSFET Level 57 (BSIM3SOI)	
SOI Modes	
Body and Temperature Nodes	
MOSFET Level 100 (Penn State & Philips PSP N	
Additional MOSFET Parameters	
Parasitic Resistances	
Parasitic Diodes	
Effective Areas and Perimeters	
Resistor	
Resistance	
Canacitance	160
Capacitance	
Switch	466
·	466
Switch	
Switch	
Switch Transmission Line nall-Signal and Noise Models Introduction Small-Signal Models	
Switch	
Switch Transmission Line nall-Signal and Noise Models Introduction. Small-Signal Models Noise Models. Diode	
Switch Transmission Line nall-Signal and Noise Models Introduction. Small-Signal Models Noise Models Diode Small-Signal Model	
Switch Transmission Line nall-Signal and Noise Models Introduction. Small-Signal Models Noise Models Diode Small-Signal Model Noise Model	
Switch Transmission Line nall-Signal and Noise Models Introduction. Small-Signal Models Noise Models. Diode Small-Signal Model	
Switch Transmission Line nall-Signal and Noise Models Introduction. Small-Signal Models Noise Models Diode Small-Signal Model Noise Model	
Switch Transmission Line nall-Signal and Noise Models Introduction. Small-Signal Models Noise Models Small-Signal Model Noise Model Small-Signal Model Small-Signal Model Oliode Small-Signal Model Noise Model	
Switch Transmission Line nall-Signal and Noise Models Introduction. Small-Signal Models Noise Models Diode Small-Signal Model Noise Model Noise Model Small-Signal Model Noise Model	
Switch Transmission Line nall-Signal and Noise Models Introduction. Small-Signal Models Noise Models Small-Signal Model Small-Signal Model Noise Model BJT Level 1 (Gummel-Poon) Small-Signal Model Gummel-Poon Noise Model Thermal Noise Shot Noise	470 470 470 470 470 470 470 470
Switch Transmission Line nall-Signal and Noise Models Introduction. Small-Signal Models Noise Models. Diode Small-Signal Model Noise Model. BJT Level 1 (Gummel-Poon) Small-Signal Model Gummel-Poon Noise Model. Thermal Noise Shot Noise Flicker Noise	
Switch Transmission Line nall-Signal and Noise Models Introduction. Small-Signal Models Noise Models Diode Small-Signal Model Noise Model. BJT Level 1 (Gummel-Poon) Small-Signal Model Gummel-Poon Noise Model Thermal Noise Shot Noise Flicker Noise	
Switch Transmission Line nall-Signal and Noise Models Introduction. Small-Signal Models Noise Models Diode Small-Signal Model Noise Model. BJT Level 1 (Gummel-Poon) Small-Signal Model Gummel-Poon Noise Model Thermal Noise Shot Noise Flicker Noise JFET/MESFET Small-Signal Model	476 476 476 476 476 477 477 477 477 477
Switch Transmission Line nall-Signal and Noise Models Introduction. Small-Signal Models Noise Models Diode Small-Signal Model Noise Model. BJT Level 1 (Gummel-Poon) Small-Signal Model Gummel-Poon Noise Model Thermal Noise Shot Noise Flicker Noise	476 470 470 470 470 470 470 470 470 470 470
Switch Transmission Line nall-Signal and Noise Models Introduction. Small-Signal Models Noise Models. Diode Small-Signal Model Noise Model. BJT Level 1 (Gummel-Poon) Small-Signal Model Gummel-Poon Noise Model. Thermal Noise Shot Noise Flicker Noise JFET/MESFET Small-Signal Model Noise Model. Noise Model. Noise Model.	476 476 476 476 477 477 477 477 477 477
Switch Transmission Line nall-Signal and Noise Models Introduction. Small-Signal Models Noise Models Diode Small-Signal Model Noise Model. BJT Level 1 (Gummel-Poon) Small-Signal Model Gummel-Poon Noise Model. Thermal Noise Shot Noise Flicker Noise Flicker Noise JFET/MESFET Small-Signal Model Noise Model. MOSFET. Small-Signal Model	476 470 470 470 470 470 470 470 470 470 470
Switch Transmission Line mall-Signal and Noise Models Introduction. Small-Signal Models Noise Models Diode Small-Signal Model Noise Model. BJT Level 1 (Gummel-Poon) Small-Signal Model Gummel-Poon Noise Model Thermal Noise Shot Noise Flicker Noise JFET/MESFET Small-Signal Model Noise Model. MOSFET	
Switch Transmission Line nall-Signal and Noise Models Introduction. Small-Signal Models Noise Models Diode Small-Signal Model Noise Model. BJT Level 1 (Gummel-Poon) Small-Signal Model Gummel-Poon Noise Model. Thermal Noise Shot Noise Flicker Noise Flicker Noise JFET/MESFET Small-Signal Model Noise Model. MOSFET. Small-Signal Model	
Switch Transmission Line nall-Signal and Noise Models Introduction. Small-Signal Models Noise Models Diode Small-Signal Model Noise Model BJT Level 1 (Gummel-Poon) Small-Signal Model Gummel-Poon Noise Model. Thermal Noise Shot Noise Flicker Noise JFET/MESFET Small-Signal Model Noise Model Noise Model Noise Model Noise Model References	
Transmission Line nall-Signal and Noise Models Introduction. Small-Signal Models Noise Models Diode Small-Signal Model Noise Model BJT Level 1 (Gummel-Poon) Small-Signal Model Gummel-Poon Noise Model. Thermal Noise Shot Noise Flicker Noise JFET/MESFET Small-Signal Model Noise Model. MOSFET. Small-Signal Model Noise Model Noise Model References er-Defined External Models	
Switch Transmission Line mall-Signal and Noise Models Introduction. Small-Signal Models Noise Models Diode Small-Signal Model Noise Model. BJT Level 1 (Gummel-Poon) Small-Signal Model Gummel-Poon Noise Model Thermal Noise Shot Noise Flicker Noise JFET/MESFET Small-Signal Model Noise Model. MOSFET Small-Signal Model Noise Model Noise Model	

T-Spice 13 User Guide

10

11

T-Spice 13 User Guide—Contents

<u>-</u>	(Continued)
Templates	482
Examples	
Compiling External Models	483
Using Microsoft Developer	484
Using External Models	484
Initializing the Definition	485
Instancing a Device	
External Model Features	
User-Defined Model and Device Parameters	
Error Handling	
Automatic Model Selection	
Parasitic Effects and Internal Nodes	
Tables	
Noise Analysis	
Current-Controlled Devices	
Voltage Sources	
External Model Actions	
PARSE_MODEL_PARAMETERS	
MODEL_MATCHES_DEVICEPRECOMPUTE_MODEL_PARAMETERS	
PRECOMPUTE_MODEL_PARAMETERS	
TABLE_MATCHES_DEVICE	
PARASITIC_SETUP	
TABLE_SETUP	
EVALUATE DEVICE	
EVALUATE DERIVATIVES	
NOISE SETUP	497
NOISE_EVALUATE	497
PRINT_SMALL_SIGNAL_PARAMS	498
CLEANUP_DEVICE	498
CLEANUP_MODEL	498
External Tables	499
Introduction	
Generating Tables From Presupplied Models	
Generating Tables From User-Supplied Data	
Using Tables	
Table > Generate Table	
Table > Evaluate Table	
Table > Convert Table	
Table > Monotonicity Check	
Table > Print Table	
Table Format	
Grid Point Resolution	
Table Value Monotonicity	
Multiple Input Dimensions	
MOSFET Tables	
A Simple Example	
Utility Programs	
tv	

	· (Co	ontinued)
	table	508
	mc	509
2	Parametric Analysis	510
	Introduction	510
	Output File Formats	510
	Parameter Sweeps	
	Example 1: Parametric Sweep	511
	T-Spice Input	
	Output	512
	Waveform	513
	Monte Carlo Analysis	514
	Example 2: Monte Carlo Analysis	515
	Input	
	Output	
	Waveform	
	Optimization	
	Defining Optimization Parameters	
	Defining Optimization Goals	
	Invoking Optimization	
	Example 3: Optimization	518
	Output	527
	Example 4: Optimization Using HSPICE-Compatible Comman	ds 528
	Input	
3	References	530
	Credits	568

1 Getting Started

This chapter describes the T-Spice documentation conventions and user interface, and provides a simple tutorial on basic T-Spice usage.

Documentation Conventions

This section contains information about the typographical and stylistic conventions used in this user guide.

Special Fonts

The following references in the text are represented by a bold font:

- Menu and simulation commands (For example: .print tran v(out).)
- Literal user input (For example: Enter **14.5**.)
- Program output (For example: S-Edit generates names for the ports on the symbol based on the PAD string.)
- All dialog elements—fields, checkboxes, drop-down menus, titles, etc. (For example: Click Add.)

Freestanding quotations of input examples, file listings, and output messages are represented by a constant-width font—for example:

```
.ac DEC 5 1MEG 100MEG
```

Variables for which context-specific substitutions should be made are represented by bold italics—for example, *myfile*.tdb.

Sequential steps in a tutorial are set off with a checkbox $(\mathbf{\Sigma})$ in the margin.

References to mouse buttons are given in all capitals—for example, MOVE/EDIT. When a key is to be pressed and held while a mouse button is used, the key and button are adjoined by a plus sign (+). For example, **Shift**+SELECT means that the **Shift** key is pressed and held while the SELECT mouse button is used.

The terms "left-click," "right-click," and "middle-click" all assume default mappings for mouse buttons.

Menu Commands and Dialog Titles

Elements in hierarchical menu paths are separated by a > sign. For example, File > Open means the Open command in the File menu.

Tabs in dialog boxes are set off from the command name or dialog box title by a dash. For example, **Setup > Layers—General** and **Setup Layers—General** both refer to the **General** tab of the **Setup Layers** dialog.

Special Keys

Special keys are represented by the following abbreviations:

Key	Abbreviation
Shift	Shift
Enter	Enter
Control	Ctrl
Alternate	Alt
Backspace	Back
Delete	Del
Escape	Esc
Insert	Ins
Tab	Tab
Home	Home
End	End
Page Up	PgUp
Page Down	PgDn
Function Keys	F1 F2 F3
Arrow Keys	\downarrow , \leftarrow , \rightarrow , \uparrow

When keys are to be pressed simultaneously, their abbreviations are adjoined by a plus sign (+). For example, **Ctrl+R** means that the **Ctrl** and **R** keys are pressed at the same time.

When keys are to be pressed in sequence, their abbreviations are separated by a space (). For example, Alt+E R means that the Alt and E keys are pressed at the same time and then released, immediately after which the R key is pressed.

Abbreviations for alternative key-presses are separated by a slash (/). For example, **Shift**+ \uparrow / \downarrow means that the **Shift** key can be pressed together with either the up (\uparrow) arrow key or the down (\downarrow) arrow key.

User Interface

The T-Spice user interface consists of the following elements:

- Title bar
- Menu bar

- Toolbars
- Status bar
- Simulation Manager
- Simulation Status window

Commands on the **View** menu toggle display of the last four items.

Text windows in the display area display the contents of input and output files.

Menu Bar

The menu bar contains the names of the T-Spice command menus. The **Edit** and **Window** menus are only available when the active window contains a text file.

Toolbars

The Standard toolbar contains buttons with icons representing the most commonly used menu commands.

The Simulation toolbar contains buttons with icons representing simulation commands.

Status Bar

When the pointer is positioned over a button in the toolbar, the left side of the status bar contains a short description of the button's function. When a text window in the display area is active, the status bar provides information useful for editing.

Display Area

The *display area* consists of the entire T-Spice window not occupied by the title, menu bar, toolbars, Simulation Manager, Simulation Status window, or status bar. In this area, input files are viewed and edited and simulation status information is displayed.

Simulation Manager

The Simulation Manager allows you to control and monitor all T-Spice simulations. Use **View > Simulation Manager** to display or hide the Simulation Manager. You can use the Simulation Manager to monitor multiple simulations at one time. Each simulation occupies one row, and each row has five attributes.

Simulation Status

The Simulation Status window displays output messages from the T-Spice simulation engine. When you select a simulation in the Simulation Manager, the Simulation Status window displays the results for that simulation.

Command Tool

T-Spice also provides a *Command Tool*, which presents a categorized listing of T-Spice simulation commands and options. You can use this tool as a guide in composing commands for the input file.

Simulating a Design—a Simple Example

This section illustrates some basic principles of T-Spice operation using a simple example.

Creating a New Input File

Create a new input file by clicking the **New File** button () or selecting **File > New**.

When you click the **New File** button, T-Spice opens a new text window with the default filename **T-Spice1**. T-Spice increments the default name for additional new files, assigning them **T-Spice2**, **T-Spice3**, etc.

When you select **File > New**, a dialog appears that prompts you to specify the type of file you wish to create:

The extension shown in parentheses will be the default file format.

- SPICE Netlist (.sp)
- C Macro (.c)
- Text (.txt)

Selecting **T-Spice** enables color-coding for T-Spice commands and comments. An empty active window appears in the display area; it is provisionally called **T-Spice1** (or **T-Spice2**, **T-Spice3**, etc.). Change the name to **test.sp** as follows:

- Use the File > Save command (or click in the toolbar).
- Type test.sp under File name in the Save As dialog.
- Press Return or click OK.

T-Spice will change the window title accordingly.

Entering the Circuit Description

Device Statements

Type the following text in the **test.sp** window, pressing **Enter** after each line:

```
* Test circuit
vv top gnd SIN(0 1 10MEG)
r1 top out 1
r2 out gnd 2
```

The first line is a *comment*. (T-Spice always treats the first line of an input file as a comment, whether or not it begins with a comment symbol.) The next three lines, beginning with **vv**, **r1**, and **r2**, are *device statements* comprising a SPICE description of the elementary voltage divider schematically represented below.

For information on comments, see "Input Conventions" on page 51. For information on device statements, see "Device Statements" on page 151.

Simulation Commands

With the blinking cursor at the beginning of the next blank line in the **test.sp** window, use the **Edit > Insert Command** command (shortcut **Ctrl+M** or use the toolbar icon to open the *Command Tool*.

The first category on the left is **Analysis**. Expand that category and select the **Transient** command. T-Spice displays the appropriate options in the right-hand pane of the Command Tool.

In the Command Tool:

- For Maximum Time Step enter 5n.
- For Simulation Length enter 500n (nanoseconds).
- Click Insert Command.

The full command is placed as a line of highlighted text into **test.sp**, and the Command Tool closes.

Click at the end of this line to deselect it, then press **Enter** to create another blank line. Open the Command Tool again, and select the **Output** category and the **Transient results** command.

In the Command Tool:

- For Plot type, select Voltage.
- For **Node name** enter **top**. Then click the **Add** button.
- Replace the name **top** with the name **out**, and click the **Add** button again.
- Click the Insert Command button.

test.sp now looks like this:

```
* Test circuit
vv top gnd SIN(0 1 10MEG)
r1 top out 1
r2 out gnd 2
.tran/op 5n 500n method=bdf
.print tran v(top) v(out)
```

The last two lines (beginning with .tran and .print) are the simulation command sequence, directing T-Spice to perform a transient analysis for 500 nanoseconds with a maximum time step of 5 nanoseconds, and to report the results of the transient analysis for the voltages at nodes top and out.

Alternatively, simulation commands can be incorporated directly into a circuit schematic. Then the commands will be present in the netlist when it is exported.

For information on the commands used in this example, see "Simulation Commands" on page 59.

Save **test.sp**. The circuit description is now complete and the simulation can be run.

Running the Simulation

Use the **Simulation > Run Simulation** command (or click rin the toolbar) to initiate simulation.

The status of the simulation is shown in the Simulation Status window.

Text within the scrolling portion of the Simulation Status window can be copied for pasting into another input window.

At the same time, the output of the simulation is shown graphically in a separate W-Edit window. For information on W-Edit, see the *W-Edit User Guide*.

The voltage at node **out** is, correctly, two-thirds of the voltage at node **top**.

Simulation Queueing

You can submit multiple simulations... they will run in the order they were submittedr.

You can also run batch simulations from a DOS or Unix command-line using T-Spice's -batch option, which passes the simulation commands listed in a text batch file to the T-Spice engine. See "Command-Line Options" on page 24 for a description of command-line options.

Chapter 1: Getting Started **Setup Options**

Setup Options

The three tabs in **Setup > Application** control global options in T-Spice.

T-Spice Server

An internal http server in T-Spice allows other Tanner applications to launch it and run a simulation. This setup tab indicates the status of the server, the port on which it is active and whether to log simulation jobs sent to the server.

When a remote request is sent to launch T-Spice, it initiates a sequence of checks to determine whether T-Spice is installed on the local PC, whether the user has a current license and whether the version of the remote application is compatible with the version of T-Spice.

Status Indicates the status of the internal T-Spice server. Use the **Start**,

Pause and **Stop** buttons to control the simulation job.

Network protocol settings Enter the port to use to search for the T-Spice executable.

Logging When Enable logging is checked, you can enter a name in the Log

file field and location (using the browse button) for a log file.

Chapter 1: Getting Started Setup Options

Text Editor

Determines T-Spice behavior in file saving operations. The most recently used settings are kept as defaults.

Auto-Load

Modified text files

When checked, T-Spice automatically loads changes whenever a text file is modified outside T-Spice. No warning will be provided.

Controls how files modified within T-Spice will be saved prior to simulation operations. Options are:

- Save all changes—automatically saves all active windows when one of the above operations is invoked.
- Prompt to save changes—T-Spice will display a prompt when there are unsaved changes in the simulation input file. Select Yes to save the input file and proceed with simulation. If you select No, the Run Simulation command is ignored.
- Don't save changes—modified files will not be saved and the operation will use the stored version of those files.

When Auto-Load is disabled, T-Spice will open a checklist of all the files open in the text editor that have been modified elsewhere. You will have the option to reload modified files (checked) or not.

Files that have also been modified in the text editor will be highlighted. Similarly, when **Prompt to save changes** is selected, T-Spice will open a checklist of the modified files associated with the operation you are running. For example, you might open a text file in T-Spice, then later overwrite it by

Chapter 1: Getting Started Setup Options

reexporting a netlist. In such a case, T-Spice will display the following message to warn you that the file on disk has changed since you opened it in T-Spice:

If you click **Yes**, T-Spice updates the file in memory.

Text Style

Use this tab to define the types of text (**keyword** groups) that will be highlighted when displayed in the T-Spice text editor, and their formatting. You can set text formats for SPICE netlists, C macro and text files.

Each file type has a set of predefined keyword groups that cannot be edited or deleted. Use this tab to view those settings, and to add or remove your own keyword groups with customized characteristics.

File Type

A drop down list of the file types for which keywords are or can be defined.

Chapter 1: Getting Started Setup Options

Font Allows you to set the typeface (Face Name) and point Size in which

a given keyword group will appear.

Paragraph Allows you to set the increment, in spaces, of the Tab Size used by

the text editor.

Groups Displays the keyword groups defined for the active file type. Use **Add**

to enter the name of a new keyword group. Use **Edit** to enter the keywords belonging to a group. Use **Remove** to delete a keyword

group.

Keyword Group• Use **Add** to enter the name of a new keyword group.

• Use **Edit** to enter the keywords belonging to a group.

• Use **Remove** to delete an entire keyword group.

Colors Use Foreground and Background to set the respective colors for a

keyword group.

Adding Keywords to a Group

Edit keyword groups opens the **Keywords** dialog, which allows you to enter keywords and to specify whether the case is evaluated (**Case sensitive keyords** checkbox enabled) when highlighting is applied.

External Programs

This tab is used to configure external executables used by T-Spice. In particular, the diff program that can compare two (or three) text files is specified here.

Command-Line Options

T-Spice supports command-line options that allow you to alter simulation commands or options without changing the input netlist. There are two ways to use command-line options in T-Spice:

- You can use any command-line option in conjunction with the tspcmd.exe executable to run simulations in a command-line environment, such as DOS or Unix.
- Most command-line options are also available within the T-Spice user interface; you can type them
 in the Simulation > Run Simulation dialog before you begin a simulation.

Command descriptions follow these conventions:

- Variables to be replaced by actual names, numbers, or expressions are indicated by italics.
- Square brackets [] enclose items that are not required. The brackets should not be typed on the command line.

Some command-line options allow you to specify an included or referenced file. Use the following rules to specify filenames in the command line:

- Specify filenames relative to the working directory, or using a fully qualified pathname. The
 working directory is the one that contains the main input file.
- Filenames containing spaces must be enclosed in single or double quotes.

T-Spice supports the following command-line options:

Option	When on	When off (default)
-batch batchfile (Not available in T-Spice GUI.)	Processes the simulations listed in the text file <i>batchfile</i> in series. See "Running T-Spice From the Command-Line" on page 26 for <i>batchfile</i> syntax. This option is only available with the tspcmd.exe executable.	
-c	Estimate MOSFET drain and source areas and perimeters from MOSFET lengths and widths. Equivalent to ".options" (page 106) moscap=1.	Set drain and source areas (if not specified in MOSFET statements) to zero.
-C	Disable the connectivity check.	Enable the connectivity check.
-d [probefile]	Turns on probing and optionally specifies the binary output filename. This option is equivalent to adding the following commands to the input netlist: .probe .probe noise dn(*,tot) [.options probefilename=filename] If a filename is specified, it will override the command .options probefilename in the netlist.	No probing commands are specified, unless explicitly stated in the input netlist.
-dll <i>dllfile</i> (Not available in T-Spice GUI.)	Runs the current simulation using the specified DLL dllfile. See "Running T-Spice From the Command-Line" on page 26 for a description. This option is only available with the tspcmd.exe executable.	Use the default DLL (recommended).
-h headerfile	Specify a header file to be processed at the start of T-Spice simulation.	Parse only the contents of the current T-Spice input file.
-i "TSCommand"	Executes the T-Spice command enclosed in double quotes. Input commands added with -i are parsed after the header file, but before other input files.	
-1	Echoes all parsed input lines to the Simulation Status window or stderr output. This is equivalent to setting .options echo=1.	Input lines are not shown in simulation output.

Option	When on	When off (default)
-m <i>modelfile</i>	Include model definitions from <i>mfile</i> . Equivalent to the .model <i>mfile</i> command.	Use model parameters specified in the input file, if available.
-n	Disables splash screen.	Splash screen appears on application startup.
-o outfile	Print results to ofile .	Print results to standard output (the screen or the Simulation Window).
-P parameter =value	Assign a <i>value</i> (a plain number or an expression enclosed by single quotes) to <i>parameter</i> . Parameter assignments made with this option override assignments made with the ".param" (page 113) command in the input file. This option can be used as many times as desired.	Use parameters specified in the input file, if any.
-q	"Quiet" mode: disable the simulation status display.	Enable the simulation status display.
-U	Print a usage message and quit.	_
-V	Print the version number and acknowledgments and quit.	_
netlistfile	Use <i>netlistfile</i> as the circuit description. Netlists generally have the extension .sp or .cir.	[The argument is required when running tspcmd.exe .]

Running T-Spice From the Command-Line

The **tspcmd.exe** executable file allows you to run the T-Spice engine, without a graphical interface, from a command-line environment such as DOS or Unix. To run T-Spice from a command-line, use the following syntax:

```
tspcmd [-aqlCUV] [-dll dllfile] [-batch batchfile]
        [-d [probefile]] [-P parameter=value]
        [-m modelfile] [-o outfile] [-i "command"] netlistfile
```

The options **-batch** and **-dll**, are available *only* in command-line environments; you cannot use these options in the T-Spice **Run Simulation** dialog.

Batch Simulations from the Command Line

The command-line option:

```
-batch batchfile
```

allows you to pass a list of simulations to T-Spice for serial execution. The **batchfile** specifies a text file that contains a list of simulations and accompanying command-line options. Each simulation and its associated options must be listed on a separate line, using the following syntax:

[-acqruCMTUV] [-dll dllfile] [-d probefile]
[-P param=value][-m modelfile][-o outfile]
[-i "TScommand"] netlistfile

2 Simulation Concepts

Simulation Algorithms

T-Spice is designed to solve a wide variety of circuit problems. Its flexibility is due to robust *algorithms* which can be optimized by means of user-adjustable *parameters*. This chapter contains an overview of T-Spice's algorithms and parameters.

In what follows, when reference is made to an "option" (such as the **numnd** option) it means that the corresponding quantity is controlled with the **.options** command. For information on the **.options** command, see "Simulation Commands" on page 59.

Kirchoff's Current Law

T-Spice uses Kirchoff's Current Law (KCL) to solve circuit problems. To T-Spice, a *circuit* is a set of *devices* attached to *nodes*. The circuit's state is represented by the voltages at all the nodes. T-Spice solves for a set of node voltages that satisfies KCL (implying that the sum of the currents flowing into each node is zero).

In order to evaluate whether a set of node voltages is a solution, T-Spice computes and sums all the currents flowing out of each device into the nodes connected to it (its *terminals*). The relationship between the voltages at a device's terminals and the currents through the terminals is determined by the *device model*. For example, the device model for a resistor of resistance R is $i = \Delta v / R$, where Δv represents the voltage difference across the device.

DC Analysis

Most T-Spice simulations start with a DC operating point calculation. A circuit's *DC operating point* is its steady state, which would in principle be reached after an infinite amount of time if all inputs were held constant. In DC analysis, capacitors are treated as open circuits and inductors as short circuits.

Because many devices, such as transistors, are described by nonlinear device models, the KCL equations that T-Spice solves in DC analysis are nonlinear and must therefore be solved by iteration. On each iteration, T-Spice tries to find a set of node voltages that satisfies KCL more closely than the previous set. When the KCL equations are satisfied "well enough" (the sums of currents into nodes are small enough), the process stops.

The **abstol** and **reltol** options determine how closely KCL must be satisfied. The **numnd** option imposes a limit on the number of iterations. If **numnd** iterations are reached without a solution being found, then nonconvergence is declared.

T-Spice sometimes uses a technique called *source stepping* to find a circuit's DC operating point. In source stepping, all voltage and current sources are ramped up from zero to their final values. This allows T-Spice to find the DC operating points of difficult-to-converge circuits. Source stepping is used only in non-converging cases of initial DC operating point calculations, and not during DC analysis sweeps. The smallest source step that T-Spice will take is controlled by the **minsrcstep** option.

g_{min} Stepping

Some non-convergence errors can be eliminated by ensuring a sufficient conductance across capacitors. The option **gmindc** specifies a conductance that is added in parallel with all *pn* junctions during DC analysis. T-Spice applies the **gmindc** conductance to various elements as follows:

- diode—conductance is added across the positive/negative terminals.
- BJT—conductance is added across the base/emitter and the base/collector terminals.
- MOSFET—conductance is added across the source/bulk, drain/bulk, and the source/drain terminals.
- MESFET—conductance is added across the source/gate, drain/gate, and source/drain terminals.

The default value for **gmindc** is 10^{-12} .

When a DC operating point non-convergence occurs, T-Spice can begin a g_{min} stepping algorithm to find the minimum conductance that yields a convergent solution. The g_{min} stepping algorithm is triggered when a non-convergence occurs and the value of option **gramp** is greater than zero. Together, the options **gmindc** and **gramp** specify a search range for the minimum required conductance, g_{min} :

```
\mathbf{gmindc} \leq g_{min} \leq \mathbf{gmindc} \cdot 10^{\mathbf{gramp}}
```

T-Spice's g_{min} stepping algorithm searches the specified conductance range in two steps. First, T-Spice performs a binary search between **gmindc** and **gmindc**· 10^{gramp} . T-Spice searches for the smallest value of g_{min} that results in a converged solution. T-Spice automatically ends the binary search when it reaches a Δg_{min} that is less than or equal to a factor of 10.

Starting with binary search results, T-Spice then begins reducing the value of g_{min} by a factor of 10 in each iteration. Once a non-convergence occurs, the previous convergent iteration provides the final solution.

Transient Analysis

In transient analysis, T-Spice solves for a circuit's behavior over some time interval. In this mode, T-Spice takes small time steps, solving for the circuit's state at each step. At each time step, two approximations are made.

First, a small error — the *discretization* error — is introduced because T-Spice cannot take infinitely small time steps. The **chargetol** and **relchargetol** options determine the acceptable limits of discretization error. In general, taking smaller time steps decreases the discretization error, so tightening the tolerances has the effect of higher accuracy at the expense of smaller time steps and therefore longer simulation times and larger output files. The discretization error is also affected by the order of the time integration method used, adjusted with the **maxord** option.

Second, just as in DC analysis, T-Spice solves the nonlinear KCL equations iteratively at each time step. The accuracy is affected by an iteration stopping criterion. The same tolerances as in DC analysis — **abstol** and **reltol** —affect this solution process. The iteration count limit for a transient analysis time step is **numnt**, which is typically much smaller than **numnd**; the previous time step always provides a good initial guess for a transient analysis Newton iteration, so that fewer iterations are typically required than for DC analysis, where a good initial guess is usually not available. Another iteration limit, **numntreduce**, affects time step selection after a successful time step. If T-Spice took less than **numntreduce** iterations to find the solution at a time step, the next time step is adjusted (often increased) according to the discretization error tolerances **chargetol** and **relchargetol**. But if the number of iterations required is between **numntreduce** and **numnt**, then the time step is always decreased on the next step (even if the step was successful).

As in DC analysis, some non-convergence errors can be avoided by adding a small conductance across capacitors. For transient analysis, the option **gmin** specifies a conductance that is added in parallel with all pn junctions. The default value of **gmin** is 10^{-12} .

Trapezoidal Integration Method

T-Spice's default method for transient analysis uses trapezoidal integration with the lvltim=1 delta-voltage time step control algorithm.

The trapezoidal formula calculates the average slope of the present and next time point to approximate the value of the integral of the differential equations used in the time range calculations, as follows in simplified form. The following approximation is used to discretize the differential equation:

$$V_{n+1} = V_n + \frac{h}{2} \left(\frac{dV_{n+1}}{dt} + \frac{dV_n}{dt} \right)$$
 (0.1)

where

$$V_{n+1}$$
 = present unknown voltage value
 V_n = previous time-point solution
 h = time step length
 n = time interval (0.2)

Gear's BDF Method

T-Spice's alternate method for transient analysis uses Gear's backward differentiation formulas (BDF). In this method, the time derivative of charge in the KCL equations is replaced by an approximation involving the solution at the last few time points. The first-order BDF method uses only one previous time point, and it is equivalent to the well-known Backward Euler method. In this method, the discretization error is a linear function of the step size. The second order method uses two previous time points, and its discretization error is proportional (for small time step sizes) to the time step size squared. In general, the kth order BDF method uses k previous time points.

T-Spice uses a variable-step-size, variable-order, and variable-coefficient implementation of the BDF method. T-Spice automatically adjusts the time step size and BDF order (between 1 and 4) to minimize the number of time steps required to meet the given error tolerances. The maximum order used can be adjusted with the **maxord** option. The variable-coefficient implementation was chosen over the fixed-coefficient and fixed-leading-coefficient methods because it offers the best stability properties, especially with frequently varying time step sizes.

At each time step, the BDF discretization results in a nonlinear system of equations (representing KCL) which is solved iteratively as described above. If the iteration succeeds, the discretization error is examined (by comparison with an explicit predictor). For example, in the order 1 case, the difference between the Forward Euler predictor and the computed BDF (Backward Euler) solution provides a bound on the discretization error. If the error is within the prescribed tolerance (defined by **chargetol** and **relchargetol**), the step is accepted, and the error is used to adjust the step size for the next time step. If the error is too large, the time step is rejected and reattempted with a smaller step size. This will produce answers which approach a more stable numerical solution. Gear integration often produces superior results for power circuitry simulations, due to the fact that high frequency ringing and long simulation periods are often encountered.

Small-Signal Analysis

Some of T-Spice's analysis commands use *small-signal* models. Small-signal analysis linearizes the KCL equations about an operating point. Subsequent computations are performed on the linearized circuit, which can be solved in one matrix-vector operation. In AC analysis, for example, one matrix-vector solve is done at each frequency point to find the AC solution; no iteration is necessary. The linearized small-signal model is valid *only locally*, so if the operating point changes, then a new linearized model has to be computed.

Tolerances

T-Spice's simulation speed and accuracy are controlled by various tolerance values. Computer-based simulators like T-Spice solve circuit equations using finite precision arithmetic. This means that numerical approximations are made at several steps of the solution process. The errors introduced by these approximations in T-Spice are bounded by tolerance settings.

Each approximation is controlled by a relative tolerance trel and an absolute tolerance tabs. In most cases, the relative tolerance is used — the approximation error may not exceed $trel \times |v|$, where v is the value of the quantity to be approximated. The absolute tolerance is used when the approximated quantity's value is close to zero; in that case, the error may not exceed tabs. In general, the error must be less than the maximum of $trel \times |v|$ and tabs.

abstol — reltol

Corresponding to each node in a circuit is an equation which expresses Kirchoff's Current Law (KCL), according to which the branch currents flowing into the node must be zero. The actual sum of these branch currents at a node is called the "residual current" for that node, and it is a function of all node voltages. In a sense, then, the value of this current at a given node is a measure of how well KCL holds at that node. T-Spice attempts to find a solution (a set of node voltages) that causes KCL to be satisfied at all nodes. The correctness of the solution is measured by the norm of the vector of residual currents at all nodes.

In general, the KCL equations are complicated and nonlinear, and T-Spice solves them by numerical iteration. Each iteration results in an improved approximation of the true solution of the KCL equation, in the sense that the norm of the residual currents decreases with each iteration. However, it is often impossible to make the residual current exactly zero, because of the finite precision arithmetic used. Even if infinite precision arithmetic were available, it might take infinitely many iterations to make the residual current zero. Therefore, the iteration is considered to have converged to a solution when the residual current is within the tolerances defined by **abstol** and **reltol**. Thus, **abstol** and **reltol** control how small the residual currents must be — how far from satisfying KCL the nodes can be — before the system is considered solved.

To be more precise, **reltol** and **abstol** are applied as relative and absolute tolerances, as described above, to the residual currents at each node. The tolerance used at a particular node is max(**abstol**, **reltol**×*imax*), where *imax* is the largest branch current (in absolute value) flowing into the node in question. The **abstol** and **reltol** tolerances are used whenever T-Spice solves the KCL equations for a DC solution or a transient analysis time step.

The default value for **reltol** is 1×10^{-4} , or 0.01%. The default value of **abstol** is 0.5 nanoamps. These values should be reduced for sensitive analog designs.

numnd — numnt — numntreduce

numnd defines the maximum number of iterations allowed during the solution of the KCL equations during a DC analysis. If, after **numnd** iterations, the **abstol/reltol** tolerances have not been satisfied, the iteration is considered to have failed and nonconvergence is declared. T-Spice then stops the iteration and reacts appropriately:

- On initial DC operating point calculations, source stepping is invoked.
- During DC transfer analysis, the transfer step size is reduced.

During source stepping, the maximum number of iterations for each source step is **numnd** /10. If **numnd** /10 iterations are exceeded during source stepping, the source step size is reduced. If the minimum source step size (**minsrcstep** option) is violated, then nonconvergence is declared for the DC operating point computation.

If the initial DC operating point computation fails at the beginning of a transient analysis, T-Spice attempts a powerup simulation. In a powerup simulation, all voltage and current sources are slowly ramped up from zero to their actual values. The default ramp period is 0.1% of the transient simulation final time, and it can be overridden using the **poweruplen** option.

numnt determines the maximum number of iterations allowed during the solution of the KCL equations for a transient analysis time step. Another option, **numntreduce**, is used in the time step size after a successful time step. Together, **numnt** and **numntreduce** work as follows. If a time step requires more than **numnt** iterations, the iteration is considered to have failed, and the same time step is reattempted with a smaller step size. If fewer than **numntreduce** iterations are needed for a time step, the next time step is adjusted (often increased) according to the discretization error tolerances (**chargetol** and **relchargetol**). If the number of iterations required is between **numntreduce** and **numnt**, the step size for the next time step is always reduced.

The number of iterations it takes to converge to a circuit solution depends heavily on the circuit to be simulated. Stable circuits with well-defined, steady-state conditions generally require fewer iterations, whereas circuits with poorly defined or unstable steady-state conditions require more iterations. Convergence is also sensitive to the starting point (initial guess) of the iteration. If the starting point is close enough to the operating point, then the iteration will eventually converge (although it might take many iterations in some cases). But if the starting point is not close to the solution, then the iteration may not converge at all. Different starting points (initial guesses) may be specified with the **.nodeset** command. For information on the **.nodeset** command, see "Simulation Commands" on page 59.

chargetol — relchargetol

Kirchoff's Law contains a term that represents the time derivative (rate of change) of charge. In transient simulations, T-Spice must replace this derivative by a divided difference approximation. The approximation becomes more accurate as the time step size decreases. T-Spice chooses its time step size so that the error caused by this approximation remains below another tolerance called the "charge tolerance." You can specify both an *absolute* and a *relative* charge tolerance with the **chargetol** and **relchargetol** options. By decreasing (or increasing) these tolerances, you can force T-Spice to take smaller (or larger) time steps if you believe that the results of transient simulation are not accurate enough (or too accurate for your time constraints).

The value of **relchargetol** is by default the same as **reltol**, so that **reltol** controls the overall relative simulation accuracy. For example, if you would like 0.001% accuracy, simply set **reltol** to 1×10^{-5} ; this also sets **relchargetol** to 1×10^{-5} . The **relchargetol** option should be used only to override the general relative tolerance **reltol**.

In general, the KCL tolerances **abstol** and **reltol**, as well as the charge tolerances **chargetol** and **relchargetol**, trade off speed for accuracy such that tightening these tolerances increases simulation accuracy at the expense of speed. However, if the KCL tolerances are too loose relative to the charge tolerances, the simulator may take small time steps because of numerical noise introduced by residual currents. These residual currents exist only because the KCL equations are not being solved exactly, but they may cause the charge tolerances to be violated, leading to excessively small time steps. If this happens, reducing **abstol** and/or **reltol** will result in larger time steps and faster (as well as more accurate) simulation.

Device Model Evaluation

T-Spice can evaluate device models with any of the following methods. Direct model evaluation is the default.

Evaluation Methods

- In direct model evaluation, data points (the charges and currents at device terminals) are computed "directly" at each step from terminal voltages using analytical model equations. This method typically produces the most accurate results, but also typically takes the most time, because values must be repeatedly recomputed from very complex equations.
- In *table-based* model evaluation, data points are read or interpolated from precomputed tables stored in memory. When the simulation requires the charge or current value (output) corresponding to a given voltage (input) for a particular device, T-Spice uses the voltage to look up the appropriate value in the device table, interpolating if necessary to arrive at the needed charge or current. This method is considerably faster than direct model evaluation. By default, T-Spice uses analytical models to generate cached, or internal, tables for use during a simulation. At the conclusion of the simulation these internal tables are discarded. Large circuits with many equally-sized devices benefit most from table-based evaluation.
- Another mode of table-based evaluation is *external tables* (see "External Tables" on page 499). In this mode, "external" tables are generated and stored *prior* to running a simulation. External tables can be used in multiple simulations without having to be regenerated each time; they can be constructed from existing analytical models or associated with *macromodel* elements to simulate

The tables are *internal* because T-Spice creates and maintains them during the course of a simulation and discards them at the end, without user intervention. When a simulation begins, T-Spice starts to construct charge and current tables point by point. By default, tables are computed at resolutions predefined for various device types, but these default resolutions may be overridden by **.gridsize** commands in the input file. T-Spice requires separate tables for devices of different types, devices of the same type with different physical characteristics, or devices of the same type using different models. As T-Spice requires device charges and currents during simulation, it looks them up (or interpolates them from nearby data) in the charge and current tables.

Table Resolution

Table resolution is measured by the number and spacing of the table's *grid points*. Grid point spacing is adjusted dynamically, with new values computed analytically when necessary, and other values interpolated between existing ones. However, it is possible to force an inappropriate number of grid points or equal spacing between grid points, or to use externally generated tables over whose resolution and accuracy T-Spice has no control. Poorly chosen table parameters can result in inaccurate interpolation and degraded simulation results.

A simple example of the differences in results obtained from various table resolutions is shown in the figure below. The input file described a current mirror and used a Level 2 *n*-channel MOSFET model. The DC operating point was computed by direct evaluation to provide a standard against which the table-based results were compared. Each bar in the figure represents the percentage difference between the table-simulated result (at a given number of grid points) and the direct-evaluation standard — in every case, well under one-quarter of one percent.

Parametric Analysis

Under many circumstances, T-Spice will be required to study the effects on circuit performance of variations in parameter values. For example, parametric analysis can be used to evaluate multidimensional trends in the output over defined ranges of input values, or the sensitivity of circuit behavior to random fluctuations in fabrication conditions.

A large range of parameters may be systematically and automatically varied:

- External parameters (such as temperature)
- Simulation parameters (such as tolerances)
- Device parameters (such as input voltage level)
- Model parameters (such as transistor length)

Three types of parametric analysis are made possible by T-Spice: *parameter sweeping*, *Monte Carlo analysis*, and *optimization*. Discussions of T-Spice syntax and corresponding examples are included for all three analysis types in the chapter titled "Parametric Analysis" on page 510

In a *parameter sweep*, a specified parameter is held or initialized at a given value, on the basis of which all analyses requested by the input file are performed, and the results recorded. Then the parameter is incremented by a set amount, and the same analyses are repeated. This cycle is continued while the parameter is incremented through a defined range of values.

Parameter values may be swept *linearly* — in identical increments, typically through a limited range — or *logarithmically* — in exponential increments, typically through a range spanning multiple orders of magnitude.

An example illustrating T-Spice input for parameter sweeping is given in "Parameter Sweeps" on page 511.

Monte Carlo Analysis

Monte Carlo analysis generates "random" variations in parameter values by drawing them *probabalistically* from a defined distribution. For each value thus chosen, all analyses requested by the input file are performed, and the results recorded. Monte Carlo analysis is performed using the keyword **sweep**; syntax is described in ".step" (page 138).

Parameter values may be drawn from tunable uniform, Gaussian, or random limit distributions.

For a more detailed description of Monte Carlo analysis, see "Monte Carlo Analysis" on page 514.

If an aspect (or aspects) of the desired circuit performance can be specified quantitatively, T-Spice can search through a multidimensional "space" of parameters — that is, vary several parameters systematically and simultaneously — to determine the combination of parameter values that *optimizes* the specified performance measure (or set of measures).

Each run, using a particular combination of parameter values, produces a new value for each performance measure studied. Optimization is achieved by varying parameters in an attempt to minimize

$$\sum_{i} \left[w_i \frac{(G_i - R_i)}{G_i} \right]^2 \tag{0.3}$$

where G_i is the *goal* or desired value of the *i*th performance measure; R_i is the *result* or actual value of the *i*th performance measure, for a particular combination of parameters; and w_i is the *weight* or importance assigned to the *i*th performance measure relative to the other measures used. The quantity $w_i(G_i - R_i)/G_i$ is also called the *error*.

The choice of the *next* combination of parameters to test after each run, on the basis of the current total error, is the heart of the optimization algorithm. The algorithm employs *gradient descent*; that is, it attempts to find the steepest (fastest) "path" through the "space" of parameters that will lead to the minimum, by estimating the gradient in various directions.

For a description of T-Spice input needed to set up and invoke optimization, see "Optimization" on page 517. This section also includes a tutorial example illustrating optimization (see "Example 3: Optimization" on page 518).

Error Types and Correction

The highly compressed, text-based nature of the SPICE circuit description language, while rendering it efficient, portable, and flexible, also makes it prone to user errors of various kinds — errors that, while they will seldom crash the program, often result in wrong answers or problems with convergence.

T-Spice makes some corrections automatically, replacing improbable values with default ones or ignoring improper commands and specifications. In other cases, the Simulation Window shows the line number of the input file on which the error was found, or the name of the device whose specification

T-Spice could not parse properly, and a brief description of the error. The most common errors can be divided into several categories.

Syntax Errors

- Unsupported commands or statements.
- Wrong spelling of commands, statements, or options.
- Failure to abide by conventions for names, comments, line continuation, numeric formats, unit abbreviations, or expressions.
- Wrong number or order of arguments on a simulation command or device statement.
- Numbers out of range.

Connectivity Errors

- Floating (unconnected) nodes.
- Nodes connected to only one device (except power supply and output nodes).
- Identical nodes referenced by different names.
- Different nodes referenced by identical names.
- Devices referred to that have not been previously defined.

Unless naming inconsistencies interfere with proper connectivity — producing floating nodes or devices with unconnected terminals — they will not be caught by T-Spice; it will simply assume that what is written is what is meant, and will produce misleading, implausible, or impossible results.

Convergence Errors

- Wrong metric prefix (order-of-magnitude error). For example, forgetting the **p** on a number intended to represent picofarads will not be caught by the syntax or connectivity checks but will probably lead to wildly wrong results.
- Ill-chosen tolerances.

To help prevent errors, use a *schematic export tool* to automate part of the process of writing a circuit description. These translate a *graphical* description of the circuit into a *textual* (SPICE-format) description. As long as the schematic has been drawn consistently (and this is easier to do graphically than textually), connections will be specified and nodes and devices named properly.

In addition, *use comments liberally*. Take advantage of the multiple ways by which comments can be indicated in a T-Spice input file to add structure and clarity to the circuit description. This will make later use of the file, whether for further study or for debugging, much simpler.

To deal with a *syntax error*, note the line number or device name in the input file at which T-Spice found the error, and check the syntax there.

To deal with a *connectivity error*, check the structure of the circuit, as described in the input file, carefully against the original schematic or plan. (This will be easier if T-Spice's own connectivity checker detected the error and provided the appropriate line number or device name.)

To deal with a *convergence error*, check the input file carefully, making sure that any metric prefixes used are plausible. Adjust the tolerances if necessary.

For information on comments, see "Input Conventions" on page 51. For information on syntax specifications, see "Simulation Commands" on page 59 and "Device Statements" on page 151.

Multi-Threaded Processing

T-Spice offers multi-threading options to provide accelerated performance on shared memory multiprocessor or multiple core computers.

Traditional SPICE simulation runtimes are dominated by two major computational areas: first, the transistor and device model evaluations, in which all terminal currents, charges, and derivatives are computed as a function of the device terminal voltages. Secondly, a sparse linear system is formed and solved, in order to compute iterates to the Newton-Raphson solution of the overall nonlinear algebraic circuit equations.

The model evaluations and linear system solutions comprise well over 95% of the solution time for T-Spice. For medium size circuits, the model evaluation time will be greater than the linear system solution time, but with larger circuits the linear solution component will grow to dominate the overall solution time. The multi-threading feature of T-Spice provides for computational operations to be decomposed and solved in parallel during both stages of processing.

Model evaluation parallel processing is controlled via a single option, **.option threads=0 | 1.** When the threads option is enabled, T-Spice will automatically decompose the workload into small tasks, and dynamically distribute these tasks to multiple threads for processing. The number of threads and size of the tasks are controlled via internal variables, and are outside of user control. The linear system solution, or matrix factorization and solve, is performed using a multi-threaded sparse linear solver.

3 Running Simulations

Input Files

At the heart of T-Spice's operation is the *input file* (also known as the *circuit description*, the *netlist*, or the *input deck*). This is a plain text file that contains the *device statements* and *simulation commands*, drawn from the SPICE *circuit description language*, with which T-Spice constructs a model of the circuit to be simulated. Input files can be created and modified with any text editor, though the text editor integrated with T-Spice is ideal as it includes default and fully-customized syntax highlighting.

Input files can be very long and complex, but they do not have to be written from scratch; they can be efficiently created using the export facility of a schematic editor (such as S-EditTM), or the extraction facility of a layout editor (such as L-EditTM). In addition, T-Spice includes a "Command Tool" (page 15) that automates error-free SPICE language entry.

Any number of text files can be open at once, each in its own window in the display area. However, only one window can be "active" at any given time, and only an input file displayed in an *active* window can be edited and simulated.

File Synchronization

T-Spice has file synchronization features that allow you to control how files are saved and updated.

For input files, you can set an application-level default (auto-load) so that text files open within T-Spice are automatically reloaded if they are modified outside of T-Spice. You can also set a default for text files that have been modified inside T-Spice so that prior to being used they are automatically saved (or not, or with a prompt). Similarly, you can set a gobal default for output files so that they will always be overwritten without a prompt (see "Setup Options" on page 20).

If the file synchronization feature poses an inconvenience due to a network configuration or other issues, you can disable it by starting T-Spice with the **-y** command-line flag (see "Command-Line Options" on page 24).

Opening SPICE Files

You can use **File > New** or **File > Open** to launch the text editor window in T-Spice. There is also a special command **File > Open Folder Containing {filename}**, that opens a browser window directly to the folder containing the result files for the active SPICE file as well as the folder path..

Editing Text Files

When the pointer is in an active text window, it becomes an I-beam. The position in the input file at which text is to be added is marked by a *blinking cursor*, and the status bar displays the cursor position, editing mode, and other information as described in "Status Bar" on page 13. You can toggle between the two editing modes by pressing the **Ins** key. In Insert mode, text is added *between* the characters separated by the blinking cursor. In Overwrite mode, text is added *in place* of the character to the right of the blinking cursor.

The cursor can be moved by clicking the pointer at the desired location. Sections of text can be selected by clicking and dragging the pointer. Double-clicking selects a word.

Alternatively, all these functions are accessible from the keyboard, as follows.

Keys	Functions
\uparrow \downarrow \leftarrow \rightarrow	Move the cursor in the indicated direction
Home / End	Move the cursor to the beginning or end of the line
PgUp / PgDn	Move the cursor up or down one page (scrolling the window with it)
Shift $+ \uparrow \downarrow \leftarrow \rightarrow$	Extend the selection in the indicated direction
Shift + Home / End	Extend the selection to the beginning or end of the line
Shift + PgUp / PgDn	Extend the selection up or down one page
Shift + Ctrl + Home / End	Extend the selection to the beginning or end of the file

Selections of text can be manipulated with the **Cut**, **Copy**, **Paste**, and **Clear** commands in the **Edit** menu (or, in the case of the first three, by clicking , and in the toolbar). The **Cut** and **Copy** commands put deleted or duplicated text onto the clipboard, and from there the text can be placed elsewhere with the **Paste** command. The **Clear** command simply deletes text without adding it to the Clipboard.

Comment Delimiters

T-Spice allows several different characters to be used as comment delimiters, including the asterisk (*), dollar sign (\$), semicolon (;), and C-language style slash (*/* or */*). However, the T-Spice text editor will only color-code comment text when:

- An asterisk (*) used as delimiter is placed in the first column of the text editor
- A dollar sign (\$) is used as delimiter in any column of the text editor

C-style comments delimited by */ or /* and midline comments delimited by an asterisk will not be color-coded. The T-Spice simulation engine will correctly interpret them as comments, however.

Undo and Redo

The **Edit > Undo** command (**Ctrl+Z** or) reverses changes made to the text of the input file.

Undo reverses the most recent of the editing operations stored in the undo buffer. The previous 100 editing operations are stored in the undo buffer; they are of the following types:

- Typing, including delete and backspace keystrokes.
- Edits made with the Cut, Copy, Paste, or Clear commands.
- Edits made with Insert Command (see "Simulation Commands" on page 17).

Undo is unavailable under the following circumstances:

- Immediately after T-Spice is launched.
- Immediately after an input file is created or opened.

The **Edit > Redo** command (**Ctrl+Y** or) restores changes reversed with a previous **Undo** command. Each of the events stored in the undo buffer can be redone one at a time in reverse order.

Search and Replace

The T-Spice text editor supports string and regular expression search and replace operations.

Edit > Goto Line

Prompts for a line number, then places the cursor at the beginning of the corresponding line in the active window.

Edit > Find

The **Edit > Find** (**Ctrl+F**) command opens the **Find** dialog which prompts for text to be searched for (the *target string*)

Find what String to be searched for in the text file. Use the button to insert

the special character codes used to search for a manual line break, tab

break, white space, or the carat (^) character.

Match whole word only

T-Spice searches only for whole words that match the specified

search string.

Match case Causes T-Spice to find only strings whose case matches that of the

search string.

Regular expression Activates Unix-style regular expression searching in the target string.

The Match whole word only option is not available in Regular expression mode. See "Regular Expression Rules," below for

further information.

Opens a submenu of special character codes that can be inserted in the target string. These codes are prefixed by the caret character (^) unless they are UNIX-style regular expressions. Options include:

Manual Line Break

Tab Break

White Space

Caret Character

Direction • **Up**—searches backward in the active window.

■ **Down**—searches forward in the active window.

Find Next Finds the next occurrence of the target string in the active window

and closes the dialog.

Replace Opens the "Edit > Replace" (page 43) dialog.

Regular Expression Rules

(Special)

The **Regular expression** option in the **Find Item** or **Replace** dialogs causes T-Spice to interpret the search string as a Unix-style regular expression. Instead of interpreting the caret combinations **^t**, **^l**, and **^w** as special sequences, T-Spice replaces them with Unix-style combinations that use the backslash (1) escape character.

The following table lists the rules T-Spice will follow when searching in regular expression mode:

Syntax	Description	Example
\n	Line break.	
\t	Tab character.	
^	Beginning of line.	
\$	End of line.	
	Any character except line break.	p.n matches pin and pan.
[]	One of the characters enclosed in the brackets.	p[ai]n matches pin and pan but not pun .
[^set]	Any character not enclosed in square brackets.	p[^i]n matches pan but not pin.
[sef]	A set of characters including any character from the set enclosed in square brackets.	[0-9] matches any digit. [spice] matches any of the characters (s p i c e).
[sef]*	Zero or more occurrences of the set enclosed in square brackets.	[0-9]*1 matches 1 and 11 and 381.
[sef]+	One or more occurrences of the set enclosed in square brackets.	[0-9]+ matches 2 and 4532.
-	Optional match.	12- matches 1 and 12 .
V	Begin tag.	A\([0-9]+\) matches A123 and substitutes 123 for the first tag (\1) in the replacement string.
\)	End tag.	
\ <i>n</i>	Text matching the <i>n</i> th parenthesized component of the regular expression, where <i>n</i> is a single digit.	If the search string is \(ab\)\(cd\) and the replacement string is \(2\1\), T-Spice will replace abcd with cdab .
&	The entire matched regular expression.	If the search string is Windows and the replacement string is MS-& , T-Spice will replace Windows with MS-Windows .
\0	The entire matched regular expression.	
"	Literal backslash	a\\n matches a\n.
.	Literal ampersand, to avoid expression substitution	If the search string is 123 and the replacement string is &\&& , T-Spice will replace 123 with 123&123 .

Edit > Replace

Prompts for text to be searched for (the *target string*) and replaced (the *replace string*) in the active window. The **Replace** dialog provides one input field and two options additional to the fields in the **Find** dialog (see "**Edit > Find**" (page 41)):

Replace with

The replace string, which can include *character codes from the* **b** *submenu*.

Replace

Replace All

Replace in

Replaces the next instance of the search string with the replace string.

Replaces every instance of the search string with the replace string.

- **Selection** replaces only the instances of the search string in the text that is selected.
- Whole file replaces all instances of the search string in the file.

Command Tool

The **Command Tool** automates the insertion of T-Spice commands and device statements, in correct SPICE format, into the active window. You also can use it to specify filenames and command-line options before launching a T-Spice simulation.

Edit > Insert Command

This command opens the **T-Spice Command Tool**, which lists the T-Spice simulation commands in a hierarchical arrangement, with general categories that expand into individual commands for each category.

You expand or collapse a category by double-clicking it or clicking the plus or minus sign next to the category. When you click on a category name in the left-hand tree, fields representing individual commands open in the right-hand pane of the dialog.

Commands are inserted to the right of the cursor position or replacing highlighted text (above the current line if nothing is selected and below the current line if something is selected.)

Setting Simulation Options

Simulation > Simulation Settings

Also accessible from the toolbar button (), the **Simulation Settings** command allows the user to specify options that will be used for all subsequent simulations. A multi-tab dialog is used to configure these options:

Options

Command line arguments

Use this field to enter command-line options, which modify a simulation without altering the input file. You can enter as many options as desired, separating each with a space. Refer to "Command-Line Options" on page 24 for a description of available options and their proper syntax.

Include path

A semicolon-separated list of folders, used to search for include files, model files, and subcircuit definitions.

Additional SPICE commands

Commands that are prepended to the user's spice deck. These are often useful for setting simulator options, and/or including specific header files

Verilog-A Include path

A semicolon-separated list of folders, used to search for Verilog-A model source code

Output

Output folder

The output file(s) are created in the specified directory. This directory can be an absolute path, or a path relative to the input file

Automatically create a subfolder...

If this option is selected, each simulation run creates a new subfolder in the output folder; output files for that simulation run are placed in this subfolder. The subfolder name is based on the input file name, and includes additional timestamp information.

This option allows the user to preserve all results from every simulation. A copy of the input file is also kept in this subfolder

Always overwrite T-Spice output files without promptin

This option is available if the "create subfolder" option is not enabled. If this option is selected, preexisting output files will be overwritten without asking for confirmation from the user.

W-Edit

W-Edit waveform display

Options for displaying simulation progress in W-Edit. Check an option to make it active.

- Show during simulation—displays traces in W-Edit while the simulation is running.
- Show after simulation completes—displays traces in W-Edit once the simulation is complete.
- **Do not show**—does not open W-Edit.

Launching a Simulation

Simulation > Run Simulation

The **Simulation > Run Simulation** command (shortcut F5 or toolbar button), launches a T-Spice simulation on the currently active document. If a simulation is already in progress, the new simulation is added to the queue of jobs awaiting simulation. This queue is displayed in the **Simulation Manager** window.

Simulation Manager

The Simulation Manager allows you to control and monitor all T-Spice simulations. It queues files for simulation, displays their processing status, and allows you to stop or pause a simulation. You can also highlight one or more files in this window to view simulation results in the **Simulation Status** window or the W-Edit waveform viewer.

You can right-click ion any simulation entry to access the pop-up menu with shortcuts to the controls described above, as well as additional menu items that open a new file (**New**), specify whether the Simulation Manager will be visible (**Hide**) and whether it will be docked (**Docking view**).

There is only one **Simulation Status** window, and all simulations display their output in this window. When you select a simulation in the Simulation Manager, the Simulation Status window displays the results for that simulation.

View > Simulation Manager

Use **View > Simulation Manager** to display or hide the Simulation Manager. This window can be displayed using a docked or undocked view (see "Docking and Undocking the Simulation Manager" on page 47.) Each simulation occupies one row, and each row has fiveattributes.

Status	Input file	Output file	Start Date/Time	Elapsed Time
failed	Y:\My Documents\\InverterDC.sp	InverterDC.out	March 12, 2008 16:29:44	00:00:02
failed	Y:\My Documents\\InverterOP.sp	InverterOP.out	March 12, 2008 16:30:12	00:00:03
failed	Y:\My Documents\\InverterOP.sp	InverterOP.out	March 12, 2008 16:30:27	00:00:02
finished	Y:\My Documents\\InverterTRAN.sp	InverterTRAN.out	March 12, 2008 16:30:47	00:00:02
running	Y:\My Documents\\RingOscillatorTRAN.sp	RingOscillatorTRAN.out	March 12, 2008 16:31:05	00:00:03

Status

Simulation status. Possible states include:

- Queued—the simulation is in the queue and will run when the simulation engine is available.
- Running—the simulation is underway.
- Paused—simulation has been suspended by the user.
- **Finished**—the simulation ran and output is available.
- Stopped—the simulation was stopped by the user.
- **Failed**—the simulation failed to run.

Input file Full pathname of the input file

Output file Full pathname of the output file

Start Date/Time The date and time at which the simulation began execution.

Elapsed Time The total simulation run time in **hh:mm:ss** format. Pausing a simulation will not interrupt the measurement of elapsed time.

Docking and Undocking the Simulation Manager

The Simulation Manager can also be docked or undocked by right-clicking in any field and checking or unchecking **Docking view** in the pop-up menu. When it is docked, you can double-click on any edge of the dialog box or click-and-drag one of the sides to undock it.

Simulation Manager Commands

When the Simulation Manager is undocked, the following commands are available to control queued simulations.

Run Simulation Invokes "Edit > Replace" (page 43). If a file is highlighted, the

appropriate file and path names will automatically populate the Input

file and Output file fields.

Stop Stops simulation processing for the highlighted file. Once a

simulation is stopped, it cannot be resumed.

Pause/Resume Pauses simulation when the status of the highlighted file is Running,

and resumes simulation when the status of the highlighted file is

Paused.

Delete Removes the highlighted file from the simulation queue. If the

simulation is running or paused, you will be prompted to stop

processing on the file before it is deleted.

Empty List Removes all files from the simulation queue. If any simulations are

running or paused, you will be prompted to stop processing before

they are deleted.

Show Waveform Invokes the W-Edit waveform viewer for the selected simulation. If

the active window is a file that has been previously simulated and the file is still in the **Simulation Manager** queue, the corresponding **.out**

file will be displayed when W-Edit opens.

Show Netlist Opens a window with the selected input file. If the selected file is

already open, makes that window active.

Show Output Opens a window with the output file (.out) corresponding to the

selected simulation. If already open, makes that window active.

Simulation Manager Context Menu

Right-clicking in any field of the Simulation Manager (either docked or undocked) opens a pop-up menu with the following options:

New... Creates a new file

Setup Simulation... Brings up the Setup Simulation dialog. Options selected here will

apply to subsequent simulation jobs.

Delete Removes the line from the Simulation Manager. No files are deleted.

Empty List Removes all lines from the Simulation Manager

Show Waveform... Show the output data file in W-Edit

Show Netlist... Open the input netlist file

Show Output... Open the output data file in a T-Spice text editor

Diff Copied Inputs... You can compare two input files by selecting both rows in the

Simulation Manager, then right-clicking on **Diff Copied Inputs**. This option is only available if the files are located in different directories. In the case where simulation output subfolders are automatically created, the diff runs on the copied input files that are created in each

folder.

For this option to work, either two or three lines must be selected in the Simulation Manager, and a Diff program must have been specified in the Setup... Application... External Programs dialog.

Diff Output... Textually compare the output files of two simulations.

For this option to work, either two or three lines must be selected in the Simulation Manager, and a Diff program must have been specified in the Setup... Application... External Programs dialog.

Hide Show the Simulation Manager

Docking view If selected, the Simulation Manager is docked at the bottom of the T-

Spice window frame

Simulation Status

The **Simulation Status** window shows simulation statistics and progress information, as well as any warnings or error messages, for the currently running or most recently completed simulation

View > Simulation Status

Use **View > Simulation Status** to toggle visibility of the **Simulation Status** window.

Input file Name of the input file.

Output file Name of the output file.

Progress The type of simulation, duration in nanoseconds, and percentage of

the simulation completed.

Total number of nodes simulated.

Total devices Total number of devices simulated.

Active devices Total number of active devices simulated.

Passive devices Total number of passive devices simulated.

Independent sources Total number of independent sources simulated.

Controlled sources Total number of controlled sources simulated.

4 Input Conventions

When a simulation is run, the input file is interpreted by the T-Spice parser. For T-Spice to function efficiently and as compatibly as possible with other versions of SPICE, the parser must enforce a number of language conventions. This chapter summarizes those conventions. (For more information, see "Simulation Commands" on page 59 and "Device Statements" on page 151.)

Names

All nodes and devices in the circuit must be identified uniquely by their *names*. Node and device names have the following features.

- Their length is unlimited (except by hardware constraints).
- They can include all characters except tabs, spaces, semicolons (;), single quotes ('), curly braces ({}), parentheses, forward slashes (/), and equal signs (=).
- The dollar sign (\$) can appear in names, but cannot be a name by itself.
- They are *case sensitive*. For example, the name **VDD** is different from **Vdd** and **vdd**.

Model names cannot start with digits.

The following examples are all valid names:

n Alpha16 ONE[21]3 72

Reserved Names

T-Spice uses *reserved* node names for the default system ground: **gnd**, **GND**, **Gnd**, and **0** (zero). All instances of these nodes are connected and treated as the same node, which is fixed at a potential of 0.0 volts.

The following *keywords* (in any combination of uppercase and lowercase letters) cannot be used as names:

ac	bit	biti	bus
busi	dc	exp	inoise
off	onoise	params	pie
piei	pwl	pwlfile	poly
pulse	r	repeat	round
rounding	sffm	sin	sini
transfer			

Device Names

Most device statements are of the form

Chapter 4: Input Conventions Comments

```
Zxxx ...
```

where the variable **Z** represents the required key letter which uniquely specifies the device type, and the variable **xxx** represents a user-supplied alphanumeric string.

For example, MOSFET statements have a form following this example:

```
mtran1 d g s b nmos l=2um w=2um
```

In this example, **m** is the required key letter and **tran1** is the user-supplied string. The device's name is **mtran1** (not **tran1**).

A particular device may be indicated in the input file by either case, for example, \mathbf{m} or \mathbf{M} , of the key letter — but the case must remain constant for the same device throughout the file.

Hierarchical Names

Hierarchical node names are used to refer to nested subcircuit nodes. Each level in the name of a node is separated by a period (.).

For example, the internal node **ing** in the **xnand** subcircuit contained in the **xadder** subcircuit is specified as

```
xadder.xnand.ing
```

Subcircuit Pin Name Aliasing

T-Spice recognizes subcircuit pin node names by their internal names as well as their global names.

For example, the netlist

```
.subckt test a b
r1 a c 100
r2 c b 100
.ends
x1 a1 b1 test
```

creates three nodes: **a1**, **b1**, and **x1.c**. **a1** and **b1** are globally recognized node names; but they may also be referred to by aliases **x1.a** and **x1.b**, respectively —for example, within a command such as .print dc v(x1.a).

Comments

Comments provide information about the circuit, but are not processed as part of the formal circuit description. Comments are generally indicated by the presence of special characters called *delimiters*.

However, T-Spice always treats the first line of the input file as a comment, even without comment delimiters.

Other comments may be placed anywhere in the circuit description.

Several comment styles are allowed, for compatibility with other versions of SPICE:

• An asterisk (*), dollar sign (\$), or semicolon (;) in the first column of a line indicates that the entire line is a comment.

- A dollar sign or semicolon, but *not* an asterisk, anywhere in a line *other* than in the first column indicates that the rest of the line is a comment.
- C-style comments, enclosed by the delimiters /* and */, can be used anywhere, except in the middle of multi-word commands (such as .print tran) or arguments. A C-style comment is not restricted to one line.

The comments in the following examples are highlighted:

```
* Lines beginning with asterisks,

$ or dollar signs,

; or semicolons are ignored.

r1 node1 node2 4k $ This comment can follow a command

c2 node3 node4 100f; This is like a '$' comment

v1 node5 GND /* This is a

C-style comment */ 3volt
```

A C-style comment that interrupts a command or argument may cause an error message. However, comments may appear *between* arguments.

The first two lines in the following examples would cause error messages:

```
.print /* wrong */ tran v(1) .options prtdel /* wrong */ = 0.01 .options abstol=le-8 /* OK */ reltol=le-4
```

Line Continuation

Input file lines may be of any length; however, it is often convenient to break up long lines for readability.

A plus sign (+) in the first column denotes line continuation. For example:

```
.model nmes NMF
+ vto=-2.5 rs=100 rd=200 pb=0.7
+ alpha=2.0 cgs=500.0f cgd=100.0f
```

Comments in Continued Lines

Comments may appear between continued lines. However, blank lines may *not* appear between continued lines.

A continued line may include a dollar sign (\$) or semicolon (;) comment symbol, in which case the rest of the line is ignored.

No plus sign is needed for a comment line, a line continuing a C-style comment, or a line continuing an expression (see "Parameters" on page 55).

For example:

```
.options
```

Chapter 4: Input Conventions Numbers and Units

Expressions and Continued Lines

Plus signs cannot be used to indicate addition in the first column within multi-line expressions.

For example:

```
.options numnd = '7 +
log(10.1)  $ will be added to previous term
+ 2'  $ will NOT be added - '+' is ignored
```

Numbers and Units

Some commands and statements require arguments representing physical quantities with attached units (such as seconds or volts). Such numbers can be expressed in floating point, scientific, or fixed-point notation, and can be followed by metric abbreviations indicating order of magnitude.

The base units (**s**, **v**, **a**, **f**, **h**) are implicit from the context and are optional.

For example, the following expressions can all specify 12 nanoseconds in the appropriate context:

12ns 12e-9 .012u 12000p

Acceptable metric abbreviations are as follows.

Abbreviation	Prefix	Meaning
t or T	tera-	10^{12}
g or G	giga-	109
meg or MEG	mega-	10^{6}
x or X	mega-	10^{6}
k or K	kilo-	10^{3}
m or M	milli-	10^{-3}
'u or U	micro-	10-6
${f n} \ { m or} \ {f N}$	nano-	10 ⁻⁹
p or P	pico-	10 ⁻¹²
f or F	femto-	10^{-15}

The abbreviation **f** is ambiguous because it can mean either the scale indicator "femto-" or the unit "farad." T-Spice employs the following convention: **f** by itself means "femto-." Thus **100f** means "100 femto-," where the unit is clear from the context. Where **f** precedes a base unit, as in **ff** and **fs**, or follows a metric abbreviation, as in **uf**, there is no ambiguity. When "farad" by itself is meant, no unit should be used.

Chapter 4: Input Conventions Parameters

A commonly used unit abbreviation is **mil** (or **MIL**), representing 10^{-3} inch.

Parameters

You can declare parameters and assign them values with the .param command. Parameters cannot be reassigned values within an input file.

Parameter names can contain any characters except tabs, spaces, commas, curly braces, parentheses, single quotes, square brackets, equal signs, and algebraic operators $(+ - *I^{\wedge})$.

Expressions

Any number in a command or statement may be replaced by an algebraic *expression*. Expressions must conform to the following conventions.

- They must be enclosed by single quotes (').
- They may span several lines. The plus sign (+) is *ignored* if it appears in the first column of a continued expression.
- They may include comments that do not interrupt numeric values or parameter names.

Expressions may involve any valid combination of numbers, parameters (".param" (page 113)), operations, algebraic functions, and user-defined functions. T-Spice evaluates expressions according to a standard mathematical operator precedence, shown below. Level 1 has the highest operator precedence, and level 10has the lowest.

Priority	Operation	Description
Level 1	(x)	Parentheses
Level 2	f(x)	Function call
Level 3	<i>x</i> ^ <i>y</i>	Exponentiation
Level 4	- x	Unary negation
Level 5	x×y x/y	Multiplication Division
Level 6	<i>x</i> + <i>y</i> <i>x</i> − <i>y</i>	Addition Subtraction
Level 7	<, <=, >, >=	Relational operators
Level 8	==, !=	equality and inequality
Level 9	x && y	logical AND
Level 10	$x \parallel y$	logical OR

Chapter 4: Input Conventions Expressions

The operations and functions available in T-Spice are summarized in the following tables (in which the variables \mathbf{x} and \mathbf{y} represent numbers, parameter names, or subexpressions). All angles are in radians.

Operation	Description
(x)	Parentheses — to override operator precedence
<i>x</i> + <i>y</i>	Addition
x – y	Subtraction
x * y	Multiplication
x / y	Division
x^y, x**y	Exponentiation (x^y)
- x	Unary negation
x < y, x <= y, x > y, x >= y	Relational operators - return 1 if the relation is true, otherwise $\boldsymbol{0}$
x == y, x != y	Equality operators - return 1 if the (in)equality is true, otherwise 0
x && y	Logical AND - returns 1 if x and y are true (non-zero), otherwise 0
x y	Logical OR - returns 1 if x or y is true (non-zero), otherwise 0

Built-in Functions

Function	Description
abs(x)	Absolute value of x (same as fabs)
acos(x)	inverse cosine of x (error if $ x > 1$)
asin(x)	Inverse sine of x (domain error if $ x > 1$)
atan(x)	Inverse tangent of x (range: $[-\pi/2, \pi/2]$)
atan2(x,y)	Inverse tangent of y/x (range: $[-\pi, \pi]$)
ceil(x)	Smallest integer not less than x
cos(x)	Cosine of x
cosh(x)	Hyperbolic cosine of x
db(x)	x in decibels: (sign of x) \cdot 20 \cdot 10g ₁₀ (x)
err(x,y)	error analysis; $abs(x-y) / max(x,y)$
exp(x)	e^x
fabs(x)	Absolute value of <i>x</i> (same as abs)
floor(x)	Largest integer not greater than x
fmod(x,y)	Remainder of x/y (error if $y = 0$)
$ if(c,a,b) \\ or \\ c ? a : b $	conditional statement, if c is true, then a , else b . Two syntax variations are supported for the conditional statement - the if () function call, and the C style of conditional expression
int(x)	Convert x to an integer, removing the fractional portion
ldexp(x,y)	$x \times 2y$ for integer y

Chapter 4: Input Conventions Expressions

Function	Description
log(x)	Natural logarithm of x (error if $x \le 0$)
log10(<i>x</i>)	Logarithm (base 10) of x (error if $x \le 0$)
log2(x)	Logarithm (base 2) of x (error if $x \le 0$)
$\max(x1, x2)$	Evaluates to the maximum of the two arguments.
$\min(x1, x2)$	Evaluates to the minimum of the two arguments.
pow(<i>x</i> , <i>y</i>)	Exponentiation (x^y)
pwr(<i>x</i> , <i>y</i>)	In HSPICE compatibility mode (default): (sign of x)· $ x/y$ In PSPICE compatibility mode (.option spice=pspice) exponentiation (x^y), equivalent to $\mathbf{pow}(\mathbf{x},\mathbf{y})$
pwrs(x,y)	signed power function, (sign of x)· x / y
sgn(x)	Sign of x : -1 if $x < 0$ 0 if $x = 0$ 1 if $x > 0$
sign(x,y)	(sign of y)· $ x $
sin(x)	Sine of <i>x</i>
sinh(x)	Hyperbolic sine of x
sqrt(x)	Square root of x (-sqrt($ x $) if $x < 0$)
stp(expression) or stp(expression1, expression2)	The first syntax evaluates to 0 if expression is negative, and 1 otherwise. The second syntax evaluates to 0 if expression1 is less than -expression2, to 1 if expression1 is greater than expression2, and to (expression1+expression2)/(2*expression2) otherwise. The second syntax thus provides a continuous approximation to a step function.
table (x, x1, y1, x2, y2,, xn, yn)	All arguments of the table function may themselves be subexpressions. The table function evaluates the piecewise linear function defined by the points $x1, y1, x2, y2, \ldots, xn, yn$, connected by straight lines. The function value is the y-value of that function at x . The points are automatically sorted in ascending order of x values to form the piecewise linear function. If x is less than the smallest x_k , then the return value is the y-value corresponding to the smallest x_k . Similarly, if x is greater than the largest x_k , then the return value is the y-value corresponding to the largest x_k .
tan(x)	Tangent of x
tanh(x)	Hyperbolic tangent of <i>x</i>

Differentiation and Integration functions

In addition to the Standard math library functions, T-Spice provides a set of functions for computing integrals and derivatives of data.

The ddt(f), d2dt(f), and idt(f) (aka sdt(f)) functions compute the time derivatives and integrals of transient simuation data.

Chapter 4: Input Conventions Expressions

The ddx(f,x), d2dx(f,x), and idx(f,x) (aka sdx(f,x)) functions compute the derivatives and integrals of the variable or expression f with respect to the independent variable or expression x.

The time-based integration and differentiation functions, and the generic x dependent forms of the functions, both use polynomial fits to the data for computing the integrals and derivatives. In the case of the transient functions, the order of the polynomial tracks that of the transient simulation engine, which is controlled by the "maxord" (page 244) option. The generic x dependent functions use a second-order polynomial fit, by default.

The order of the function equations can be changed using the **const_dt_maxord**, and **const_dx_maxord** options:

```
.options const\_dt\_maxord=[0-4] ;default value is 0, selecting transient order .options const\_dx\_maxord=[1-4] ;default value is 2
```

Note:

The quality of integrals is highly dependent upon the order of the fitting polynomial. It is important to select an order of equations which is an appropriate fit to the data. If the dependent function f is highly irregular or is a square-shaped digital signal, then a 1st or 2nd order integration is best. Higher order equations should only be used for very smooth data.

If the integration solutions are suspicious, perhaps containing very large integral values, then the solutions should be verified by re-running the simulation with the function integral order set to 1, which results in a piecewise summation of integrands, without higher order effects.

Function	Description
ddt(f)	Derivative of \boldsymbol{f} with respect to time
d2dt(f)	Second derivative of f with respect to time
idt(f) sdt(f)	Integrate f in time
ddx(f,x)	Derivative of \boldsymbol{f} with respect to \boldsymbol{x}
d2dx(f,x)	Second derivative of \boldsymbol{f} with respect to \boldsymbol{x}
$idx(f,x) \mid sdx(f,x)$	Integrate f in x

5 Simulation Commands

Introduction

This chapter describes features, outlines syntax, and gives examples for the *simulation commands* of the T-Spice circuit description language.

The commands are listed in alphabetical order. Many commands have *options*, which branch to different modes, and *arguments*, which indicate expressions, nodes, or devices to be operated on. Options and arguments must be separated by spaces or new lines (with line continuation).

The Syntax sections follow these conventions:

- *Italics* indicate variables to be replaced by actual names, numbers, or expressions.
- Curly braces { } indicate alternative values for the same option or argument.
- Square brackets [] enclose items that are *not required*.
- Vertical bars | separate alternative values for the same option or argument.
- Ellipses ... indicate items that may be repeated as many times as needed.

Brackets, vertical bars, and ellipses are *not* typed in the input file. All other characters are typed as shown. For further information, see: "Input Conventions" on page 51; "Device Statements" on page 151.

.ac

Performs AC analysis to characterize the circuit's dependence on small-signal input frequency: the DC operating point is computed, a linearized small-signal model is constructed at the DC operating point, and the circuit's response over a range of frequencies is measured.

- Small-signal parameters are reported to the main simulation output file. You can disable this
 reporting or specify a different output file using the command ".acmodel" (page 63). Reporting is
 automatically disabled if the simulation contains more than 1000 nodes.
- AC analysis results can be reported with the commands .print ac, .probe ac (for binary output), or .measure ac. For additional information on these commands, see ".print" (page 119), ".probe" (page 133), and ".macro /.eom" (page 88).
- The frequency can be varied linearly, by octaves, or by decades, by specifying a total number of test points, or by listing specific test frequencies.

Syntax

```
.ac {lin|oct|dec} num start stop [sweep swinfo] [analysisname=name]
or
.ac list f1 f2 ...fn [sweep swinfo] [analysisname=name]
or
.ac poi num f1 f2 ...fn [sweep swinfo] [analysisname=name]
```

Parameters

lin | oct | dec

Frequency variation mode.

- lin: linear sweep.
- oct: logarithmic sweep by octaves.
- **dec**: logarithmic sweep by decades.

list

Using the **list** keyword with .ac allows the user to specify a list of frequencies (*values*) for which the analysis is to be performed.

poi

Using the **poi** keyword with .ac allows the user to specify a list of frequencies (*values*) for which the analysis is to be performed. The **poi** mode of processing is the same as the **list** mode, except that the syntax for **poi** requires that the number of frequencies, **N**, be specified next.

nıım

Frequency count.

- Linear mode: Number of frequencies between start and stop.
- Octave mode: Number of frequencies per octave between start and stop.
- Decade mode: Number of frequencies per decade between start and stop.
- **poi** mode: Total number of frequency values.

start

First frequency. (Unit: Hertz.)

stop

Last frequency. (Unit: Hertz.)

sweep

Specifies the parameter values of the sweep for which analysis will be performed. The **sweep** keyword is equivalent to ".step" (page 138) and uses the same parameter syntax. However, sweep applies only to one analysis command, while .step applies to all analysis commands in the input file. If sweep is specified on an analysis command and .step is present, the sweep sweep is nested inside the .step sweep. The parameter sweep may be used to specify a parametric sweep, Monte Carlo analysis, or optimization.

analysisname

Specifies an analysis name that will be referenced by an **.optimize** simulation command. For further information, see "**.optimize**" (page 104).

Examples

.ac DEC 5 1MEG 100MEG

Defines a frequency sweep from 1 MHz to 100 MHz by decades, with 5 points per decade.

.ac LIN 100 10K 100MEG

Defines a linear frequency sweep from 10 kHz to 100 MHz with 100 equally spaced points.

.ac list 5 50 500 5000 sweep rval dec 10 1 1000

Performs a logarithmic sweep of the parameter **rval** from 1 to 1000, using 10 points per decade; also performs an AC analysis at the four specified frequencies for each value of **rval**.

.acmodel

Modifies reporting of small-signal model parameters and operating points for specified devices in conjunction with AC analysis or DC operating point analysis. Small-signal parameters are automatically reported to the main simulation output file with the use of either .ac or .op in the input file.

- If ".ac" (page 60) and ".op" (page 102) are missing from the input file, .acmodel is ignored.
- No small-signal data is reported if the simulation model has more than 1000 nodes.
- Small-signal data are available for diodes, resistors, BJTs, JFETs, MESFETs, MOSFETs, and devices modeled with user-defined external models.

Syntax

```
.acmodel [output file ] { [device [[,] device ...]]}
```

output file Output filename. If no filename is specified, then the output will be

reported to the main simulation output file.

device Device(s) for which small-signal model parameters and operating

points are to be given. If no devices are specified, then no small-

signal data is reported.

Examples

```
.acmodel {mt1 mt2}
```

Prints data for devices mt1 and mt2.

```
.acmodel {}
```

Turns off all small-signal parameter reporting.

.alter

Causes a simulation to be repeated with slight changes as specified after the .alter command. Multiple .alter commands can appear in the same netlist. T-Spice performs the first simulation with all commands that occur before the first .alter command; the second simulation incorporates changes between the first and second .alter commands; the third simulation incorporates changes between the second and third .alter commands, and so on. The optional altername string identifies the .alter block that follows and is used to identify the corresponding simulation output in output files.

A .alter block can contain any legal T-Spice statement. This command occurs at the end of a complete input file.

- Elements, option values, parameter values, and ".connect" (page 66) and ".model" (page 96) statements in a .alter block replace equivalent statements in the main netlist if the name of the element, parameter, option, data set, or model parameter set matches. If no name match can be made, the statement in the .alter block is simply added to the simulation.
- Statements are cumulative and progressive from one .alter block to the next such that any additions or changes made in block N will also occur (unless superseded) in block N+1.
- Initial conditions (".hdl" (page 79)) and ".nodeset" (page 100) replace equivalent commands that operate on the same nodes or devices. If no equivalent command is found in the main netlist, the command is simply added.
- If a .alter block contains a ".temp" (page 145) command, any .temp commands in the original netlist are replaced with the new .temp command.
- The commands ".lib" (page 85) and ".if ... / .elseif ... / .else / .endif" (page 82) can be used within ".alter" (page 64) blocks to include command and element statements.
- The ".del lib" (page 70) command can be used to delete a library section included in the original input file. All commands and elements in the library section are ignored during the "altered" simulation.
- Simulation commands such as ".ac" (page 60), ".tran" (page 147), and ".step" (page 138) do not replace commands in the original input file, but are simply added on as new commands.

Syntax

.alter [altername]

Examples

```
v1 1 0 1
r1 1 2 1k
r2 2 0 1k
.op
.alter
r1 1 2 2k
.alter r2_4k
r2 2 0 4k
.end
```

This performs three simulations:

The first uses r1=1k, r2=1k, and is identified by alter=0; the output is v(2)=0.5.

The second uses r1=2k, r2=1k, and is identified by alter=1; the output is v(2)=0.333333 (1/3).

The third uses r1=2k, r2=4k, and is identified by alter=r2_4k; the output is v(2)=0.666667 (2/3).

The abbreviated output would be:

```
*SEDIT: Alter=0
*SEDIT: Analysis types DCOP 1 ACMODEL 0 AC 0 TRANSIENT 0 TRANSFER 0 NOISE 0
* BEGIN NON-GRAPHICAL DATA
DC ANALYSIS - alter=0
v(2) = 5.0000e-001
v(1) = 1.0000e+000
i(v1) = -5.0000e-004
* END NON-GRAPHICAL DATA
*SEDIT: Alter=1
*SEDIT: Analysis types DCOP 1 ACMODEL 0 AC 0 TRANSIENT 0 TRANSFER 0 NOISE 0
* BEGIN NON-GRAPHICAL DATA
DC ANALYSIS - alter=1
v(2) = 3.3333e-001
v(1) = 1.0000e+000
i(v1) = -3.3333e-004
* END NON-GRAPHICAL DATA
*SEDIT: Alter=2
*SEDIT: Analysis types DCOP 1 ACMODEL 0 AC 0 TRANSIENT 0 TRANSFER 0 NOISE 0
* BEGIN NON-GRAPHICAL DATA
DC ANALYSIS - alter=r2_4k
v(2) = 6.6667e-001
v(1) = 1.0000e+000
i(v1) = -1.6667e-004
* END NON-GRAPHICAL DATA
```

.connect

This command will connect two nodes in your circuit, so that the two nodes will be simulated as only one node. In essence, one node name becomes an alias for another node name.

Both nodes must be at the same level in the circuit design that you are simulating: you cannot connect nodes that belong to different subcircuits

Syntax

.connect node1 node2

If you connect node2 to node1, you can then refer to either node1 or node2 in other simulation commands, and it will refer to the same node.

Examples

```
vcc 0 cc 5v
r1 0 1 5k
r2 1 cc 5k
.tran 1n 10n
.print i(vcc) v(1)
.alter
.connect cc 1
.end
```

The first .tran simulation includes two resistors. Later simulations have only one resistor, because r2 is shorted by connecting cc with 1.

You may also use multiple .connect statements to connect several nodes together:

```
.connect node1 node2 .connect node2 node3
```

connects both node2 and node3 to node1. The T-Spice simulation evaluates node voltages and related terms only for node1; node2, and node3 are the same node as node1.

Note:

If you set .option node, T-Spice prints out a node connection table.

.data

Used to incorporate external numerical data into simulations. The data can be used to specify reference data for error measurements, which is often used in conjunction with optimization for model parameter extraction. Also used to specify parametric sweeps in which several variables are swept simultaneously.

Syntax

```
.data dataname
+ colname [colname [...]]
+ value [value [...]]
+ value [value [...]]
...
.enddata
```

The number of columns is equal to the number of values per row.

dataname Name assigned to the data set.

colname Name assigned to a column of data within the data set.

Value Numeric parameter value. These values may be expressions, but

must not depend on other parameter values.

A data set can be used with the ".macro /.eom" (page 88) command to compute differences between simulation output curves and corresponding external data.

A data set can also be used to define a parameter sweep on an ".ac" (page 60), ".dc" (page 69), ".step" (page 138), or ".tran" (page 147) command.

The syntax for the **sweep** parameter on those commands is as follows:

data=dataname

where **dataname** refers to a **.data** statement of the same name. Each row of numbers in the **.data** statement corresponds to a sweep step, and each column refers to a sweep parameter (which must be a global parameter defined using **.param**) and the values which the parameter takes on. The **colname** strings identify the parameters to be swept. For each sweep step, the sweep parameters take on the values listed in a row of data.

Examples

This example computes the difference between the externally supplied data curve v1dat and the simulated transient analysis response voltage v(1).

```
.data idsdata
+ vds
               ids
+ 0.0000e+00
               0
               4.8565e-10
+ 5.0000e-01
+ 1.0000e+00
               2.2752e-06
+ 1.5000e+00
               1.2558e-05
+ 2.0000e+00
               3.1509e-05
              5.9462e-05
+ 2.5000e+00
+ 3.0000e+00 9.6027e-05
+ 3.5000e+00 1.4135e-04
+ 4.0000e+00 1.9569e-04
+ 4.5000e+00
               2.5978e-04
+ 5.0000e+00
               3.2942e-04
.enddata
.param vds=0 ids=0
vd drain source vds
m1 drain gate source bulk nmos 1=2u w=2u
.dc data=idsdata
.measure dc idsfit errl ids id(m1)
```

This example computes the (relative) difference between the externally supplied data curve **ids** and the simulated MOSFET drain current **id(m1)**. This is particularly useful in conjunction with optimization for model parameter extraction, where the purpose of the simulation is to select model parameter values which yield the best match between simulated and measured data curves.

.dc

Performs DC transfer analysis to study the voltage or current at one set of points in a circuit as a function of the voltage or current at another set of points. Can also be used for linear or logarithmic sweeps of DC voltage or current; for sweeps of parameters other than voltage and current source values; and for Monte Carlo analysis or optimization.

- Transfer analysis is done by sweeping the source variables over specified ranges, and recording the output.
- Up to three parameters can be specified per .dc command.
- When two or more sources are specified, the last-named source "controls" the sweeping process (see "Examples," below).
- The specified current or voltage sources must exist—that is, be defined by i or v device statements elsewhere in the input file.
- DC transfer analysis results can be reported with the ".print" (page 119) dc, ".probe" (page 133) dc, and ".macro /.eom" (page 88) dc commands.

Syntax

```
.dc swinfo [[sweep] swinfo [[sweep] swinfo]]
```

Refer to ".step" (page 138) for a syntax description of swinfo.

Examples

```
.dc isrc 0 1e-6 0.1e-6
```

Current source **isrc** is swept from 0 to 1 microampere in 0.1-microampere steps.

```
.dc vin 0 5 0.05 VCC 4 6 0.5
```

Names two voltage sources: **vin**, to be swept from 0 to 5 volts in 0.05-volt steps, and **VCC**, to be swept from 4 to 6 volts in 0.5-volt steps. The second source "controls" the sweep: **VCC** is initially set to 4 volts, while **vin** is swept over its specified range. Then **VCC** is incremented to 4.5 volts, and **vin** is again swept over its range. This process is repeated until **VCC** reaches the upper limit of its specified range.

This example performs a DC sweep defined using a .data statement. There are three sweep steps, and the parameters vds, r2, and length are varied in the sweep. On the first sweep step, vds=0, r2=1000, and length=10u; on the second sweep step, vds=1, r2=500, and length=12u; on the third sweep step, vds=2, r2=100, and length=14u.

.del lib

Used to delete a section from a library file previously included using the ".lib" (page 85) command. The .del lib command is used in ".alter" (page 64) blocks, typically to replace a library section with a different one.

Syntax

.del lib filename section

filename Name of the referenced library file. If the referenced filename or path

contains a space, enclose the entire path in single or double quotation

marks.

section Name of the library section in *filename* that is to be deleted.

Examples

```
.lib bsim3model.md typical
.alter
.del lib bsim3model.md typical
.lib bsim3model.md fast
.alter
.del lib bsim3model.md fast
.lib bsim3model.md slow
.end
```

T-Spice input such as shown above might be used to run a simulation three times, first with **typical**, then with **fast**, and finally with **slow** model parameters. First, the library section called **typical** is loaded for the first simulation. The second simulation incorporates changes between the first and second .alter commands, so that the **typical** library section is deleted and replaced with the **fast** library section. Similarly, the third simulation replaces the **fast** library section with the **slow** one.

.end

Signifies the end of the circuit description.

- Any text in the input file after the .end command is ignored.
- The .end command is optional in T-Spice but is included for compatibility with generic SPICE.

Syntax

.end [comment]

.enddata

Signifies the end of a .data statement.

■ The .enddata command *must* accompany a ".data" (page 67) command.

Syntax

.enddata [comment]

.endl

Signifies the end of a library definition.

■ The .endl command *must* accompany a ".lib" (page 85) command.

Syntax

.endl [comment]

.ends

Signifies the end of a subcircuit definition.

■ The .ends command *must* accompany a ".subckt" (page 142) command.

Syntax

.ends [comment]

.four

Performs Fourier analysis on transient analysis data.

- Fourier components (magnitude and phase) are computed for a given fundamental frequency and corresponding to a specified number of integer multiples of the fundamental frequency.
- The DC Fourier component is computed, as well as the total harmonic distortion, defined as

$$\frac{1}{R_1} \cdot \left(\sum_{m=2}^{nfreqs} R_{m^2} \right) \tag{0.4}$$

where Rm is the magnitude of the mth Fourier component.

• The .four command is ignored if no .tran command is found.

Syntax

<pre>.four F list [nfreqs=N</pre>	<pre>[interpolate=I]</pre>
F	Fundamental frequency.
list	Output variables for which the analysis is to be performed. Each of these can be any valid output item from a ".print" (page 119) tran command, including output expressions.
N	Number of frequencies for which Fourier components are determined. (Default: 9.)
P	Number of points over which transient analysis data is interpolated to fit. These points equally divide the analysis interval $(T-J,T)$, where T is the final time specified on the corresponding ".tran" (page 147) command, and $J = 1/F$. Increasing P improves accuracy but increases simulation time and memory use. (Default: 100.)
1	If 0, T-Spice inserts an actual computed time point at each place where a Fourier analysis time point is needed without interpolating transient data to fit on <i>np</i> . If 1, Fourier analysis is based on interpolated data. (Default: 1.)

Examples

```
v1 2 0 sin (4 10 9e6 0 0 20)
v2 1 2 sin (0 3 3e6 0 0 -50)
.tran 1u 10u
.four 3e6 v(1) npoints=1000
```

The formula for v(1) is:

$$v(1) = 4 +$$

$$10\sin[2\pi(9 \times 10^{6}t + 20/360)] +$$

$$3\sin[2\pi(3 \times 10^{6}t - 50/360)]$$
(0.5)

The analytic Fourier response for this formula is as follows:

- The DC component is 4.
- The first harmonic (at a frequency of 3 MHz) has a magnitude of 3 and a phase of -50 degrees.
- The third harmonic (at a frequency of 9 MHz) has a magnitude of 10 and a phase of 20 degrees.
- All other harmonics have a zero Fourier component.

The output will be:

```
* BEGIN NON-GRAPHICAL DATA
FOURIER ANALYSIS RESULTS
Fourier components of transient response v(1)
DC component =
                4.0011e+000
                                               Normalized FC
Harmonic no
              Frequency<Hz>
                               Fourier comp
                                                               Phase<deg>
                                                                            Normalized phase
                3.0000e+006
                                2.9989e+000
                                                 1.0000e+000 -4.9651e+001
                                                                                 0.0000e+000
          2
                6.0000e+006
                                2.4224e-002
                                                 8.0777e-003
                                                              3.5132e+001
                                                                                 8 4783e+001
         3
                9.0000e+006
                                9.9949e+000
                                                 3.3328e+000
                                                              2.0564e+001
                                                                                 7.0215e+001
                1.2000e+007
                                3.4401e-002
                                                 1.1471e-002 -1.6494e+002
                                                                                -1.1529e+002
          5
                1.5000e+007
                                1.8803e-002
                                                 6.2701e-003 -1.6786e+002
                                                                                -1.1821e+002
                1.8000e+007
                                1.3374e-002
                                                 4.4595e-003
                                                             -1.6966e+002
                                                                                -1.2001e+002
                2.1000e+007
                                1.0534e-002
                                                 3.5126e-003
                                                              -1.7085e+002
                                                                                -1.2120e+002
          8
                2.4000e+007
                                8.7570e-003
                                                 2.9201e-003
                                                             -1.7169e+002
                                                                                -1.2204e+002
                2.7000e+007
                                7.5266e-003
                                                 2.5098e-003 -1.7229e+002
                                                                                -1.2264e+002
Total harmonic distortion =
                                    333.3 percent
```

* END NON-GRAPHICAL DATA

where the DC component is 4.0011e+000, the first harmonic has a magnitude of 2.9989 and a phase of 4.9651e+001, the third harmonic has a magnitude of 9.9949e+000 and a phase of 2.0564e+.001.

Note that harmonics one and three have the exponent e+000, while the magnitude of the other harmonics—e-002 or even e-003—is quite small in comparison.

.global

Specifies nodes with global scope.

- Global node names refer to the *same* nodes both inside and outside subcircuit definitions.
- Ground (**0**, **gnd**, **Gnd**, or **GND**) is automatically defined to be a global node.

Syntax

```
.global node1 [[,] node2 ...]
```

.gridsize

Specifies the number of gridpoints contained in each dimension of a device type's internal tables. (See "Evaluation Methods" on page 33, and also ".vrange" on page 150 regarding internal tables.)

- Charge and current tables for a given device type have the same gridsize.
- All devices of the same type within a simulation have the same gridsize.
- Increasing gridsize tends to increase time and memory requirements as well as accuracy.

Syntax

.gridsize type A [B [C]]

type Device type (see below).

ABC Numbers of gridpoints in all table dimensions (see below). All

dimensions for a given device must be included. Extra values are

ignored.

Each device type has a certain *number* of dimensions, an *order* in which the dimensions must be listed, and a *default* gridsize if the **.gridsize** command is not given for that type. The possible values of *type*, with the corresponding dimension orders and default number of gridpoints (in parentheses), are as follows:

Device	type	Α	В	С
MOSFET	mos	Vds (64)	Vgs (128)	Vbs (10)
MESFET	mes	Vds (30)	Vgs (60)	<i>Vbs</i> (6)
JFET	jfet	Vds (20)	Vgs (20)	_
Diode	diode	<i>Vpn</i> (35)	_	_

.hdl

Loads a Verilog-A module into the simulator, and optionally declares that the module will be used to simulate all devices of a specified type, level, and version.

When the **type**, **level**, and **version** parameters are used in the **.hdl** command, T-Spice will use the Verilog-A module as the modeling code for all matching devices, i.e. devices of the specified type which reference a **.model** of the specified level and version. This capability may be used to either introduce new model levels and versions into T-Spice, or to replace the existing built-in T-Spice models with your own.

Syntax

The Verilog-A file to be loaded. It must exist in the current directory or in the T-SpiceVerilog-A search path. Absolute or relative path names (according to the conventions of the operating system) can be used. If the referenced filename or path contains a space, enclose the entire path in single or double quotation marks.

modulename

The name of a specific module within the file. Only this one module will be loaded into the simulator, and other modules within the file will be ignored.

The type of devices that will use this module

.hdl filename [modulename [type=type [level=level [version=version]]]]

The level number of the models that will use this module

version

The version number of the models that will use this module

The device **type** keyword is limited to the following:

Type keyword	Device	
C or capacitor	Capacitors	
D or diode	Diodes	
J or jfet	JFETs	
R or resistor	Resistors	
M or mosfet	MOSFETs	
Q or bipolar	BJTs	
Z or mesfet	MESFETs	

Examples

.hdl pll.va

type

.hdl bsim3v34.va bsim3 type=mosfet level=49 version=3.4

The second of the above examples demonstrates how a Verilog-A module can be used instead of the built-in device evaluation code. In this case, a Verilog-A representation of the BSIM3 model will be used instead of T-Spice's internal BSIM3 analysis code for those MOSFETs which reference a model that is level 49 and version 3.4.

Note:

If the **level** or **version** is not specified or has a value of zero, then all levels and versions will be matched and simulated using the Verilog-A module

.ic

Sets node voltages or inductor currents for the duration of a DC operating point calculation.

- DC operating points are calculated by the ".ac" (page 60), ".dc" (page 69), ".op" (page 102), ".tf" (page 146), and ".tran" (page 147) commands.
- The .ic command adds a voltage source present only in DC (not transient) simulations.
- The specified nodes are allowed to float if a transient analysis is subsequently requested in the input file. For further information on transient analysis, see ".tran" (page 147).
- Nodes and devices within subcircuits can be accessed with hierarchical notation in the form xinstance.xinstance.node.
- To set initial guesses for node voltages, use the ".nodeset" (page 100) command.
- .ic commands within subcircuit definition (".subckt" (page 142)/".ends" (page 74)) blocks are replicated for each subcircuit instance.

Syntax

```
.ic node=X [[,] node=X ...]
.ic v(node [,node])=X [[,] v(node [,node])=X ...]
.ic i(inductor)=X [[,] i(inductor)=X ...]

node

Node whose voltage is to be initialized. (Default reference node: ground.)

inductor

Inductor whose current is to be initialized.

X

Node-to-node or node-to-ground voltage or inductor current value. (Unit: volts or amperes.)
```

Examples

```
.ic a=5, b=5, c=5
```

Assigns initial voltages of 5 volts (relative to ground) to nodes **a**, **b**, and **c**.

```
.ic v(a,b)=5
```

Sets the initial voltage between nodes **a** and **b** to 5.

.if ... / .elseif ... / .else / .endif

The .if, .elseif, .else, and .endif conditional statements may be used in a netlist to control which simulation commands, device statements, and device models will be included in the simulation.

The .if and .elseif commands have required conditional statements which will be evaluated to either true or false (non-zero or zero). Processing will then proceed, according to the conditional value. The first condition block which evaluates to true will be the selected block, or the .else block will be evaluated if no other blocks are true.

- Conditional statements may be nested.
- You can have an unlimited number of .elseif statements in your conditional.
- Parameter assignments that are contained within a condition's statement block do not effect the condition evaluation.
- Statements that are part of a condition statement block are only evaluated if and when the containing condition statement is evaluated to true.

Syntax

condition A value or an expression, enclosed in parentheses or quotes, which

will be evaluated to control the selection of one of the statement

blocks.

Any non-zero expression value will be considered **true**, and a zero

value is false.

statement block Any valid T-Spice statements

Examples

The simplest example of a conditional statement has a single conditional **.if** block:

An example which demonstrates all types of conditional statements:

.include

Includes the contents of the specified file in the input file.

• The .include command can be nested (included files can include other files, and so on) as deeply as hardware and operating system constraints permit.

Syntax

.include filename

filename

The file to be included. It must exist in the current directory or in the T-Spice search path. Absolute or relative path names (according to the conventions of the operating system) can be used. If the referenced filename or path contains a space, enclose the entire path in single or double quotation marks.

.lib

Within a SPICE or included file, specifies a library file or section to be included. Within a library file, indicates the beginning of a library section.

T-Spice accepts two different library file formats. The **.lib** command is used to access library files of both formats. It is also used to delimit library sections within library files if the first library format is used. Specific model and subcircuit definitions are read in only if needed.

Syntax

Library File Format I:

The first T-Spice library file format is a sequence of library sections. Each library section begins with a **.lib** command and ends with a **.endl** command. The **.lib** command assigns a name to each section. Within each library section any sequence of SPICE circuit elements or commands may occur.

When .lib is used with both a file name and section name, it is equivalent to .include except that only the part of the file within the specified library section is included.

```
.lib filename [section]
```

The file to be included. It must exist in the current directory or in the

T-Spice search path. If the referenced filename or path contains a space, enclose the entire path in single or double quotation marks.

section If specified, designates a section of the library file to be searched.

Examples

A file **test.lib** might contain:

```
.lib sub1
.subckt s1 a b
r1 a b 1k
.ends
.endl
.lib sub2
.subckt s2 a b
r1 a b 2k
.ends
.endl
.lib sub3
.subckt s3 a b
r1 a b 3k
.ends
.ends
```

The command:

.lib test.lib sub2

would cause T-Spice to include the library section sub2 and therefore the definition for subcircuit s2.

Library file format II:

The second T-Spice library file format consists simply of a sequence of **.model** commands and **.subckt** definition blocks. A library file of this second format may be included in a simulation by using the **.lib** command in a main input file or included file. T-Spice will search the specified file for device model and subcircuit definitions if they are not found in the main input file or included files, and read in only those that are needed.

.lib filename

filename

The library file to be searched for ".model" (page 96), ".param" (page 113), and ".subckt" (page 142) definitions. The file must exist in the current directory or in the T-Spice search path. If the referenced filename or path contains a space, enclose the entire path in single or double quotation marks.

Examples

A file **test2.lib** might contain:

```
.subckt s1 a b r1 a b 1k .ends
.subckt s2 a b r1 a b 2k .ends
.subckt s3 a b r1 a b 3k .ends
```

Suppose the main input file contains:

```
.lib test2.lib x1 1 0 s3
```

The .lib command would cause the file **test2.lib** to be searched for model and subcircuit definitions. The instance **x1** references subcircuit **s3**, causing T-Spice to read and include the subcircuit definition for **s3** in **test2.lib**. Assuming that subcircuits **s1** and **s2** are not referenced elsewhere, their definitions in **test2.lib** would not be read in.

.load

Input the contents of the specified file. The file presumably was created using the ".save" (page 135) command, and contains either ".hdl" (page 79) or ".nodeset" (page 100) commands for restoring the bias point of the circuit. The .save and .load commands can be used in combination to reduce simulation time by performing a compute-intensive operating point calculation once, saving the bias information, and then using the .load command in subsequent simulations to initialize the circuit to that state.

Syntax

.load [file=filename]

filename

Name of the file to be read. If the **file** parameter is not entered, then the filename is derived from the simulation input filename, with a **.ic** file extension.

Examples

.load file=baseline.ic

.macro /.eom

.macro is synonymous with .subckt, and .eom is synonymous with .ends.

The .macroeom naming convention for defining subcircuits is provided for compatibility with other simulators which use this syntax rather than .subcktends.

Note:

Prior to version 10.0 of T-Spice, the .macro command was used for creating table-based devices.

This usage of the .macro command is no longer supported.

Old circuit files which contain **.macro** table-based device definitions can be converted to the new syntax by replacing **.macro** statements with **xname** statements so that, for example,

.macro mname tablename node1 node2 node3 ... noden

becomes:

xmname node1 node2 node3 ... noden tablename

.measure

Used to compute and print electrical specifications of a circuit, such as delay between signals, rise and fall times, and minimum and maximum values of a signal. Also used for optimization in conjunction with the following commands:

- ".ac" (page 60)
- ".dc" (page 69)
- ".connect" (page 66)
- **".step"** (page 138)
- **".tran**" (page 147)

For parameter sweeps, T-Spice generates a separate output section plotting measurement results versus swept parameter values. A data set can be used with the error measurement syntax of .measure to compute differences between simulation output curves and corresponding external data. In this case, out1 or out2 in the error function measurement syntax may refer to a column name of a .data statement.

A .measure command within a .subckt block is replicated for each instance of the subcircuit.

For optimization, you can use **.optgoal** instead of **.measure** with the **goal** and **minval** parameters to set the minimum value for the denominator in the error expression and the scalar value that specifies the relative importance of two or more measurements.

Note:

When the ".options" (page 106) autostop field is set to 1, T-Spice automatically terminates any transient analysis when all .measure results have been found. The autostop option does not affect preview transient analyses.

Syntax

The .measure command syntax has several formats, each of which is described below. Each .measure command should be used in conjunction with DC transfer, AC, data, step, or transient analysis.

The general syntax of the .measure command is:

```
.measure {dc|ac|tran} result list [goal=goal]
+ [minval=minval] [weight=weight] [off]
```

dc | ac | tran Denotes the analysis type (dc, ac, or tran) for which the

measurement is to be done. For **dc** analysis, the independent variable is a swept parameter. For **ac** analysis, the independent variable is frequency. For transient analysis (**tran**), the independent variable is

time.

result Name of the measurement result. This name is used to identify the

measurement result in the output file, and it can also be used in

subsequent equation evaluation measurements.

list List of keywords and parameters whose syntax depends on the type of measurement to be made. Possible measurement types include: "Trigger/Target Measurements" on page 90 "Signal Statistics Measurements" on page 91 "Find-When and Derivative Measurements" on page 92 "Expression Evaluation Measurements" on page 94 "Error Function Measurements" on page 94 Desired value of the measurement, for use in optimization. In goal optimization, T-Spice attempts to minimize the relative error, (goalresult)/goal. For error measurement optimizations, T-Spice minimizes simply (**goal-result**), because in that case **result** is itself a relative value, and *goal* is usually zero. Default value: zero. minval Minimum value for the denominator in the error expression above. Default: 1.0e-12. weight Scalar value that is multiplied by the relative error. This value is used to specify the relative importance of two or more measurements in optimization. Default: 1.

this .measure command.

Note:

off

The .measure keyword can be abbreviated to .meas.

Trigger/Target Measurements

The trigger/target format of the .measure command is used to make independent variable (time, frequency, or swept parameter) difference measurements. The *trigger* and *target* specifications determine the beginning and end, respectively, of the measurement. The value of the measurement is the difference in the independent variable value between the trigger and the target. Common examples of trigger/target measurements include delay time, rise time, fall time, and bandwidth measurements.

Optional keyword that prevents T-Spice from printing output from

The syntax of the *parameters* field for trigger/target measurements is:

```
trig outvar val=val [td=td] {cross=cross | rise=rise |
    fall=fall}
+    targ outvar val=val [td=td] {cross=cross | rise=rise | fall=fall}
or
trig at=at_value targ outvar val=val [td=td] {cross=cross | rise=rise |
    fall=fall}
```

Specifies an explicit independent variable value for the trigger.

at_value

outvar	Specifies an output signal on which the trigger or target measurement
	is performed. This can be any output plot item that is legal on a .print

command for the appropriate analysis type. For .measure ac commands, .print noise plot items are allowed. outvar may be an

output expression enclosed in single quotes.

val Specifies the value of **outvar** at which the trigger or target counter

for cross, rise, or fall is incremented.

td Specifies a time delay before the measurement is enabled and

crossings, rises, and falls are counted. Default: 0.

cross Indicates which occurrence of the trigger or target crossing is to be

used for the measurement. A crossing occurs when the trigger or target *outvar* takes on the value *val*. The special syntax **cross=last**

indicates that the last crossing is to be used.

rise Indicates which occurrence of the trigger or target rise crossing is to

be used for the measurement. A rise crossing occurs when the trigger or target **outvar** takes on the value **val** while increasing. The special syntax **rise=last** indicates that the last rise crossing is to be used.

fall Indicates which occurrence of the trigger or target fall crossing is to

be used for the measurement. A fall crossing occurs when the trigger or target **outvar** takes on the value **val** while decreasing. The special syntax **fall=last** indicates that the last fall crossing is to be used.

Note:

For a particular trigger or target, only one of cross, rise, or fall may be specified.

Trigger/target measurement output reports the independent variable value difference between the trigger and the target, as well as the independent variable values at the trigger and target. The measurement result may be negative if the target independent variable value is less than the trigger independent variable value.

For syntax examples, see "Trigger/Target Example" on page 95.

Signal Statistics Measurements

Signal statistics measurements are used to perform data reduction operations on signals. T-Spice can compute average, RMS (root-mean-square), minimum, maximum, and peak-to-peak values for a signal. In addition, T-Spice can report the independent variable (argument) value at the minimum or maximum of a signal.

The syntax of the *parameters* field for signal statistics measurements is:

type outvar [from=from] [to=to] [output=output]

type Specifies the type of measurement, and is one of the following:

 amax computes the independent variable value at the point where the signal's maximum value is reached.

- amin computes the independent variable value at the point where the signal's minimum value is reached. If the minimum value occurs more than once, amin reports the first instance.
- avg computes the average value of the signal, defined as the integral of the signal divided by the length of the measurement interval.
- **integral** computes the integral of the signal over the measurement interval. Can be abbreviated to **integ**.
- max computes the maximum value of the signal.
- **min** computes the (global) minimum value of the signal. The computation is independent of signal derivative (*i.e.*, **min** may be a signal endpoint).
- **pp** reports the difference between the maximum and minimum values of the signal (peak-to-peak measurement).
- **rms** computes the root-mean-square value of the signal, defined as the square root of the integral of the signal squared, divided by the length of the measurement interval.

Specifies the output signal on which the measurement is to be performed. It can be any output plot item that is legal on a .print command for the appropriate analysis type. For .measure ac commands, .print noise plot items are allowed. outvar may be an output expression enclosed in single quotes.

Specifies the value of the independent variable (time, frequency, or sweep parameter) at the beginning of the measurement. The default is the beginning of the analysis.

Specifies the value of the independent variable (time, frequency, or sweep parameter) at the end of the measurement. The default is the end of the analysis.

For **max** and **min** type measurements, specifies the output signal to be evaluated at the point at which the maximum or minimum is reached.

For syntax examples, see "Signal Statistics Example" on page 95.

Find-When and Derivative Measurements

Find-when measurements are used to measure values of dependent or independent output variables when some specific event occurs. The event specification is similar to the trigger specification in trigger/target measurements: the event occurs when a signal crosses a value, or a signal crosses another signal, or when a certain independent variable "at" value is reached. If a "find" signal is specified, the measurement output is the value of the find signal at the event. If no "find" signal is given, then the measurement result is the independent variable value at the event.

Find-when measurements can also be used to compute derivatives of functions. If the **find** keyword is replaced with **derivative**, the derivative of **outvar1** is computed as the measurement result.

The syntax of the *list* field for find-when measurements is:

outvar

from

to

output

```
[find outvar1 | derivative outvar1] when outvar2=val [td=td] {cross=cross |
    rise=rise | fall=fall}

or
[find outvar1 | derivative outvar1] when outvar2=outvar3 [td=td]
    {cross=cross | rise=rise | fall=fall}

or
{find outvar1 | derivative outvar1} at=at_value
```

Note:

For a particular trigger or target, only one of cross, rise, or fall may be specified.

at_value	Specifies an explicit independent variable value for the event.
outvar1	Specifies the output signal to be evaluated as the measurement result at the event of interest. This can be any output plot item that is legal on a .print command for the appropriate analysis type. For .measure ac commands, .print noise plot items are allowed. outvar1 may be an output expression enclosed in single quotes.
outvar2	Specifies an output signal to be evaluated for locating the measurement event. This can be any output plot item that is legal on a .print command for the appropriate analysis type. For .measure ac commands, .print noise plot items are allowed. outvar2 may be an output expression enclosed in single quotes.
val	Specifies the value of outvar2 at which the event counter for crossings, rises, or falls is incremented.
outvar3	Specifies a second output signal to be evaluated for locating the measurement event. This can be any output plot item that is legal on a .print command for the appropriate analysis type. For .measure ac commands, .print noise plot items are allowed. outvar3 may be an output expression enclosed in single quotes.
td	Specifies a time delay before the measurement is enabled and crossings, rises, and falls are counted. Default: 0.
cross	Indicates which occurrence of the event crossing is to be used for the measurement. A crossing occurs when outvar2 takes on the value val or the value of outvar3 . The special syntax cross=last indicates that the last crossing is to be used.
rise	Indicates which occurrence of the trigger or target rise crossing is to be used for the measurement. A rise crossing occurs when outvar2 takes on the value val or the value of outvar3 while increasing. The special syntax rise=last indicates that the last rise crossing is to be used.
fall	Indicates which occurrence of the trigger or target fall crossing is to be used for the measurement. A fall crossing occurs when outvar2

used.

takes on the value *val* or the value of *outvar3* while decreasing. The special syntax *fall=last* indicates that the last fall crossing is to be

For syntax examples, see "Find-When and Derivative Example" on page 95.

Expression Evaluation Measurements

T-Spice can compute expressions that are functions of previous **.measure** command results. The syntax of the *parameters* field for expression evaluation measurements is:

param='expression'

where **expression** is an algebraic expression involving **.param** parameter values, subcircuit parameter values, and previous **.measure** result names. The expression may not contain plot items such as node voltages or branch currents. The expression may contain the same operators and functions as used in **.print** output expressions.

Error Function Measurements

The error function measurement reports a relative difference between two output variables. Four methods for calculating this error are available.

The syntax of the *parameters* field for error function measurements is:

errtype out1 out2 [from=from] [to=to]

errtype Specifies the method of computing the total error. Must be one of

err, err1, err2, err3.

out1, out2 Specifies the output signals to be compared. These can be any output

plot items that are legal on a **.print** command for the appropriate analysis type. For **.measure ac** commands, **.print noise** plot items are allowed. **out1** and **out2** may be output expressions enclosed in

single quotes.

from Specifies the value of the independent variable (time, frequency, or

sweep parameter) at the beginning of the measurement. The default

is the beginning of the analysis.

to Specifies the value of the independent variable (time, frequency, or

sweep parameter) at the end of the measurement. The default is the

end of the analysis.

The error computation depends on the *errtype* and is as follows:

err, err1 The error is the RMS value of the relative difference between the two

signals, normalized to the length of the measurement interval.

err2 The error is the integral over the measurement interval of the

absolute value of the relative difference of the two signals.

err3 The error is the integral over the measurement interval of the relative

difference of the logs of the two signals.

The relative difference of the two signals is defined as:

 $(out1-out2)/\max(minval, |out1|+|out2|)$

The relative difference of their logs is defined as the absolute value of:

```
log(|out1|/max(minval, |out2|))/log(max(minval, |out1|+|out2|))
```

For syntax examples, see "Error Function Example" on page 95.

Examples

Trigger/Target Example

```
.measure tran delaytime trig v(1) val=2.5 fall=3 + targ v(2) val=2.5 rise=3
```

measures the time delay from the third falling edge of signal v(1) to the third rising edge of signal v(2). The measurement begins when v(1) falls through 2.5V for the third time, and ends when v(2) rises through 2.5V for the third time.

```
.measure tran risetime trig v(1) val=0.5 rise=1 + targ v(1) val=4.5 rise=1
```

measures the first rise time of the voltage at node 1.

Signal Statistics Example

```
.measure ac maxgain max vm(out)
```

measures the maximum value of **vm(out)** over the frequency range covered during an AC analysis.

```
.measure ac resfreq amax vm(out)
```

measures the frequency at which the maximum value of vm(out) is achieved.

```
.measure ac phase_at_resonance max vm(out) output=vp(out)
```

measures the phase **vp(out)** at the frequency where **vm(out)** is at its maximum.

Find-When and Derivative Example

```
.measure tran v1 find v(1) when v(2)=2 cross=1
```

measures the voltage at node 1 when the voltage at node 2 crossed 2V for the first time.

```
.measure ac f1 when vm(out)=1
```

measures the frequency at which the voltage gain at node **out** is 1.

```
.measure tran d1 derivative v(1) at=100ns
```

measures the derivative of v(1) with respect to time at 100ns.

Error Function Example

```
.measure tran v1v2 err1 v(1) v(2)
```

measures the difference between the signals v(1) and v(2).

.model

Specifies device model parameters to be used by one or more devices.

Syntax

.model modelname type [level=L][parameter=value [parameter=value [...]]]
[ako: akomodel]

modelname Model name.

type Device type (see below).

L Model level, required for device models with multiple levels.

parameter The **parameter** list is predefined for each standard device model.

(See the chapter "Device Models" on page 332.)

type is one of the following:

c Capacitor

cpl Coupled transmission line.

csw Current-controlled switch element.

d P-N diode.

npn NPN-type BJT.

pnp PNP-type BJT.

njf N-type JFET.
pjf P-type JFET.

nmf N-type MESFET.

opt Controls the optimization algorithm. For additional information, see

"Optimization Algorithm Parameters," below.

pmf P-type MESFET.

nmos N-type MOSFET.

pmos P-type MOSFET.

Two-terminal resistor (or three-terminal resistor if a capacitance is

specified).

sw Voltage-controlled switch element.

external

External model. The parameter list of a **.model** command of type **external** must specify the name of the file that contains the external model. These special model parameters vary according to platform and take the following form:

- winfile=file (Windows)
- solfile=*file* (Solaris 2.x)
- sunfile=*file* (SunOS 4.x)
- sgifile=file (SGI IRIX)
- hpfile=file (HPUX)

If the external model filename has a **.c** extension, T-Spice will interpret the model file. If it has any other extension, T-Spice will treat it as a compiled DLL or shared library.

External model parameters can be numbers or strings. Strings and filenames must be enclosed in double quotes (" ").

Optimization Algorithm Parameters

The T-Spice optimization algorithm is controlled using the **.model** command with a model type of **opt**. The syntax is:

 model name opt
 [parameter=value [parameter=value [...]]] [ako: akomodel]

 modelname
 Model name matched with the model name specified in an analysis command

 parameter
 Model parameter name

 value
 Value assigned to the model parameter

 akomodel
 Another opt model statement. If akomodel is specified, this model is considered to be "a kind of" the model defined with name akomodel; that is, all model parameters defined in the akomodel .model statement are included in this model unless overridden in this model.

Valid alternatives for value are listed below:

Parameter	Description	Default
cendif	Gradient value below which more accurate derivative computation methods are used to compute the gradient.	1e-9
close	Estimate of how close the optimization parameters' initial value estimates are to the solution. close is a multiplier for computing new parameter estimates. Larger values result in larger steps toward the solution.	0.001

cut	Modifies close from one iteration to the next. If an iteration was unsuccessful, close is divided by cut ; if an iteration is successful, close is multiplied by cut squared.	2
difsiz	Determines the increment in a parameter value used to compute numerical derivatives. The increment used is difsiz*max(value, parmin), where value is the parameter value. If delta is specified on the .param command, then delta is used as the increment.	1e-3
grad	Convergence tolerance for the gradient. If the gradient is less than <i>grad</i> , then convergence may have been achieved, depending on the outcome of the additional relin and relout tests.	1e-6
itropt	Maximum number of optimization loop iterations.	20
level	Optimization method used. Level=1 selects a modified Levenberg-Marquardt algorithm.	1
max	Upper limit for close	600,000
parmin	Used in increment selection for derivative computation; see difsiz parameter, above	0.1
relin	Relative input parameter variation for convergence. If all optimization parameters (defined with .param) vary by less than this amount (0.1% by default) from one iteration to the next, convergence is declared	0.001
relout	Relative output parameter variation for convergence. If the total error defined by measurement results varies by less than this amount from one iteration to the next, convergence is declared.	0.001

Note:

When no model parameters are specified, all models take on their default values.

Examples

```
.model nmos nmos
                                      Tox=225.00E-10
+ Level=2
                   Ld=0.0u
+ Nsub=1.066EV+16 Vto=0.622490
                                      Kp=6.326640E-05
+ Gamma=.639243
                  Phi=0.31
                                      Uo=1215.74
+ Uexp=4.612355E-2 Ucrit=1746677
                                      Delta=0.0
+ Vmax=177269
                  Xj=.9u
                                      Lambda=0.0
+ Nfs=4.55168E+12 Neff=4.68830
                                      Nss=3.00E+10
+ Tpg=1.000
                  Rsh=60
                                      Cgso=2.89E-10
+ Cgdo=2.89E-10
                   Cj=3.27E-04
                                      Mj=1.067
+ Cjsw=1.74E-10
                  Mjsw=0.195
```

Specifies the parameters for an *n*-type MOSFET model called **nmos**.

```
.model resmodel external winfile="res.dll" solfile="res.sl" a=20 b="name"
```

Defines a model called **resmodel** that can be referred to by an instance (**x**) statement. In Windows, **res.dll** is loaded as a DLL; under Solaris **res.sl** is loaded as a shared library. Under all other platforms, an error message is issued because no external model name is specified. The numeric parameter **a=20** and the string parameter **b="name"** are passed to the external model as model parameters.

.nodeset

Sets an "initial guess" for the iterative DC operating point calculation.

- DC operating points are calculated by the ".ac" (page 60), ".dc" (page 69), ".op" (page 102), ".tf" (page 146), and ".tran" (page 147) commands.
- DC operating points are calculated by iteration, and .nodeset sets starting points for iteration. Convergence properties can be very sensitive to the initial guess; .nodeset can be used (1) to enable convergence for difficult-to-converge circuits and (2) to cause T-Spice to converge to one particular solution if more than one solution exists.
- After numndset iterations, or when the convergence criteria have been met, the specified nodes are allowed to float.
- Nodes and devices within subcircuits can be accessed with hierarchical notation in the form xinstance.xinstance.node.
- To set node voltages for the duration of the operating point calculation, use the ".hdl" (page 79) command
- nodeset commands inside subcircuit definition blocks are replicated for each subcircuit instance.

Syntax

```
.nodeset node=X [[,] node=X ...]
.nodeset v(node)=X [[,] v(node)=X ...]

node

Node to be initialized.

X

Node voltage relative to ground. (Unit: volts.)
```

Examples

```
.nodeset n1=5V n2=2
.nodeset v(n1)=5V v(n2)=2
```

The two examples are identical except for syntax.

.noise

Computes the effect of circuit noise on output voltage in conjunction with AC analysis.

- If the ".ac" (page 60) command is missing from the input file, the .noise command is ignored.
- Noise analysis is performed at the same frequencies as specified by the ".ac" (page 60) command.
- Noise models take the form of frequency-dependent mean-square currents (since the underlying phenomena are "random") generated by adding a current source to the circuit for each modeled noise source.
- Noise sources at different points in the circuit are uncorrelated.
- Noise models are available for resistors and semiconductor devices (diodes, BJTs, JFETs, MESFETs, and MOSFETs). Semiconductor device models may contain noise model parameters which affect the size of noise sources.
- External model devices may also contain noise sources.
- Noise analysis results can be reported with the ".print" (page 119) noise command.

Syntax

.noise v(node1 [[,] node2]) source interval

node1 Output node.

node2 Reference node. (Default: ground.)

source Input voltage or current source, at which noise can be considered to

be concentrated for the purposes of estimating the equivalent noise

spectral density.

interval Report interval. A noise report will be printed to the simulation log

which lists every device and the noise contribution and noise components. This report will be printed for the first frequency and

each interval frequency. (Default: 0)

.op

Performs a DC operating point calculation and outputs all node voltages and voltage source currents.

- DC operating points are calculated on the assumption that there are no charge effects in the system: capacitors are open and inductors are shorted.
- The ".hdl" (page 79) command can be used to impose initial conditions on nodes. Initial conditions are represented by voltage sources present for the duration of the DC operating point calculation, and removed for transient simulations.
- The ".nodeset" (page 100) command can be used to set initial guesses for the iterative solution process for DC operating points.
- The results of the **.op** command are written automatically to the specified output file. Other results can be reported with the "**.print**" (page 119) **dc** command.
- Small-signal transfer function data can be reported with the ".tf" (page 146) command.
- Small-signal parameters are automatically reported to the output file. You can specify a separate output file for small-signal data with the ".acmodel" (page 63) command. The command .acmodel (a disables small-signal parameter reporting. Reporting is also disabled if the simulation model has more than 1000 nodes.

Syntax

.op [noprint]

noprint

Turns off automatic **.op** output.

.optgoal

Sets optimization goals. Allows the same measurement to be used in different optimization runs with different goals and weight values.

Note that during an optimization run, all **.optgoal** commands with the same **optname** are used as optimization results, in addition to any measurements specified in the results list on the sweep optimize syntax of a **.step** or one of the analysis commands. (See the following example.)

If the .measure command does not exist in the netlist, an error message will be returned.

The formula for optimization functions is:

$$\sum_{k} \left(W_k \cdot \frac{(G_k - M_k)}{max(minval, |G_k|)} \right)^2 \tag{0.6}$$

where Wk is the weight, Gk is the goal, and Mk is the measurement value.

Syntax

.optgoal optname measname=goal [minval=minval] [weight=weight]

optname Name of the optimization run.

measname A .measure result to be used as the goal.

goal Optimization goal value.

minval The minimum denominator value for the optimization error

computation. Defaults to the value in the **.measure** command identified by **measname**, or if not specified there, to 1.0e-12.

weight A relative importance of the optimization goal with respect to other

goals for the same optimization run. Defaults to the value in the .measure command identified by *measname*, or if not specified

there, to1.

Examples

.ac dec 10 1 100k sweep optimize=opt1 results=gain model=optmod

.measure ac gain max vdb(out) goal=30

.measure ac bandwidth when vdb(out)=10

.optgoal opt1 bandwidth=5k

results in both the gain and bandwidth measurements contributing to the overall optimization goal.

.optimize

Invokes an optimization run using parameters and goals specified using **.paramlimits** and **.optgoal** commands with the same **optname**.

.ac, .dc, .step and .tran use the parameter analysis to identify analysis commands from the .optimize command. However, it is possible to avoid assigning an analysis name. If the analysis name on the .optimize command is the name of an analysis type ("ac", "tran", "dc", or "step",) and no analysis of that name exists, T-Spice will perform the optimization on the first analysis of that type. (See "Examples" on page 104.)

Syntax

.optimize optname model=modelname analysis=analysisname

optname Name of the optimization run.

modelname Refers to a .model command of type opt which specifies

optimization algorithm parameters such as iteration count limits and

convergence tolerances.

analysisname Identifies a .step, .ac, .dc, or .tran command of the same name that

will be performed to evaluate the measurements for the optimization.

Examples

```
.ac dec 10 1 100k analysisname=ac1
.optimize opt1 model=optmod analysisname=ac1
```

invokes an optimization around an AC analysis. This AC analysis optimization syntax is equivalent to:

```
.ac dec 10 1 100k
.optimize opt1 model=optmod analysisname=ac
.param r=1k c=1u
r1 1 0 'r'
c1 1 0 'c'
.options autostop reltol=1e-6
.ic v(1)=1
.tran 0.1m 100m
.print tran v(1)
.measure tran decaytime when v(1)=0.5
```

Optimization commands:

```
.optimize opt1 model=optmod analysisname=tran .model optmod opt level=1 itropt=40 .optgoal opt1 decaytime=300u .paramlimits opt1 r minval=10 maxval=100k .paramlimits opt1 c minval=0.01u maxval=100u .end
```

This is a transient analysis of a simple RC circuit. The .measure command measures the amount of time it takes for the voltage at node 1 to decay to half its initial value. Theoretically, this decay time is equal to R*C*In(2). The .optimize command invokes an optimization run called opt1. The .optgoal

command sets the optimization goal (300usec) for the decay time, and the .paramlimits commands specify ranges for the R and C parameters.

During the optimization run, **R** and **C** can be varied within their ranges in order to achieve the decay time goal of 300 microseconds. The output for this simulation is as follows:

Optimized parameter values:

```
6.5783e+02
   r =
        6.5775e-07
   C =
* END NON-GRAPHICAL DATA
              0.0001
*WEDIT: .tran
                           0.1
TRANSIENT ANALYSIS - OPTIMIZE=opt1
Time<s>
               v(1)<V>
   0.0000e+00 1.0000e+00
   1.9207e-08 9.9996e-01
   1.8027e-06 9.9584e-01
    3.4447e-06
               9.9207e-01
    1.7692e-05
               9.5994e-01
    2.6271e-05
               9.4109e-01
    3.4134e-05
                9.2415e-01
    4.2453e-05
                9.0655e-01
    5.3935e-05
                8.8281e-01
    7.0558e-05
               8.4953e-01
    8.9536e-05
               8.1308e-01
   1.2194e-04
               7.5440e-01
    1.5149e-04
               7.0461e-01
    1.8663e-04
               6.4965e-01
    2.2571e-04
                5.9354e-01
    2.6455e-04
                5.4257e-01
    3.0212e-04
                4.9745e-01
* BEGIN NON-GRAPHICAL DATA
MEASUREMENT RESULTS - OPTIMIZE=opt1
decaytime = 3.0000e-04
```

* END NON-GRAPHICAL DATA

Note that the optimized **R** and **C** values achieve the optimization goal of **300u**. This is consistent with theoretical prediction: for the optimized **R** and **C** values of 657.83 Ohms and 657.75 nanofarads, the theoretically predicted decay time is 299.92 microseconds.

.options

Sets global simulation options.

Syntax

```
.options field=X [field=X ...]
```

Fields that toggle actions on or off can be specified as **true/false**, **t/f**, **1/0**, or **yes/no**. Specifying a **true/false** field without a value automatically sets the field to **true**.

Option fields are described in detail in the following chapter, "Simulation Options" on page 204. The following tables list a summary of simulation options; click on the option name for a full description.

Accuracy and Convergence Options

Field	Description	Default
"absi abstol" (page 206)	$\label{eq:maximum} \begin{tabular}{ll} Maximum allowed RMS of residual branch currents when \\ \textbf{kcltest} = \textbf{true}. \\ \end{tabular}$	$1 \times 10^{-10} \mathrm{A}$
"absv vntol" (page 207)	Maximum absolute node voltage change allowed between iterations when $\mathbf{kvltest} = \mathbf{true}$.	$1 \times 10^{-6} \text{ V}$
"accurate" (page 208)	Triggers changes to other option settings to maximize simulation accuracy.	false
"bypass " (page 209)	Controls the diode and transistor bypass algorithm	true
"bytol" (page 210)	Sets the relative tolerance for the bypass algorithm terminal voltage values	0.0
"cshunt" (page 211)	Capacitance added from each node to ground.	0.0 F
"dchomotopy" (page 212)	Algorithm used to correct DC operating point non- convergences. Can be set to none , source , gmin , pseudo , or all .	all
"dcmethod" (page 214)	Default method for solving a DC operating point problem. Can be set to standard , source , gmin , or pseudo .	standard
"dcstep" (page 215)	Controls the conductance added across the terminals of each capacitor during DC operating point computation. $(g=c/dcstep)$, where c is the device capacitance.)	0.0
"extraiter[ations] newtol" (page 216)	Number of additional iterative steps to calculate after convergence criteria have been met.	0
"fast" (page 217)	Triggers changes to other options settings to maximum simulation speed.	false
"gmin" (page 218)	Conductance added in parallel with all <i>pn</i> junctions during transient analysis.	$1\times 10^{\text{-}12}\Omega^{\text{-}1}$
"gmindc" (page 219)	Conductance added in parallel with all <i>pn</i> junctions during DC operating point analysis.	$1\times 10^{\text{-}12}\Omega^{\text{-}1}$

Field	Description	Default
"gramp" (page 220)	Specifies the range over which the gmindc variable is swept during g_{min} stepping. $(\mathbf{gmindc} \leq g_{min} \leq \mathbf{gmindc} \times 10^{\mathbf{gramp}})$	4
"gshunt" (page 221)	Conductance added from every node to ground.	$0.0~\Omega^{\text{-}1}$
"kcltest" (page 222)	Enables the current tolerance test for convergence.	true
"kvltest" (page 223)	Enables the voltage tolerance test for convergence in transient analysis (always true for DC analysis).	false
"maxdcfailures" (page 224)	Maximum number of non-convergence failures allowed in a DC sweep simulation.	4
"mindcratio" (page 225)	Minimum fractional step size allowed in source ramping for DC sweep analysis.	1 × 10 ⁻⁴
"minsrcstep" (page 226)	Minimum fractional step size for source stepping in DC operating point analysis.	1 × 10 ⁻⁸
"numnd itl1" (page 227)	Newton iteration limit for DC operating point computation.	250
"numndset" (page 228)	The maximum number of Newton iterations during which the .nodeset nodes will be held at their user-specified voltage values.	numnd / 10
"numns itl6" (page 229)	Newton iteration limit for source stepping attempts in DC operating point analysis.	50
"numnx itl2" (page 230)	Newton iteration limit for DC sweep computation.	100
"numnxramp" (page 231)	Newton iteration limit for DC sweep computation during source ramping.	50
" precise " (page 232)	Triggers changes to other options settings to maximize simulation precision.	false
"reli reltol" (page 234)	Maximum relative change in RMS branch current allowed between iterations when kcltest = true .	5 × 10 ⁻⁴
"relv" (page 235)	Maximum relative change in node voltage allowed between iterations when kvltest = true .	1 × 10 ⁻³
"tolmult" (page 236)	Multiplicative scaling factor for absi , absv , reli , and relv .	1.0

Timestep and Integration Options

Field	Description	Default
"absdv absvar" (page 238)	Threshold absolute voltage change between two consecutive time steps; used to calculate voltage variance when $\mbox{lvltim}=1\mid 3\mid 4$.	0.5 V
"absq chgtol" (page 239)	Minimum capacitor charge or inductor flux used to compute Local Truncation Error for timestep control (IvItim=2).	$1 \times 10^{-4} \mathrm{C}$

Field	Description	Default
"ft" (page 240)	Fraction by which the timestep is reduced if a transient analysis solution does not converge within <i>numnt</i> iterations.	0.4
"Ivltim" (page 241)	Algorithm used to control timestep sizes in transient analysis: 1 = Iteration count algorithm with voltage variance test 2 = Local Truncation Error algorithm 3 = Iteration count algorithm with voltage variance and timestep reversal 4 = voltage variance test for timestep prediction plus Local Truncation Error algorithm for timestep reversal (hybrid of lvltim 1 and 2)	1
"maxord" (page 244)	Maximum time integration order for Gear's BDF calculation.	2
"method" (page 245)	Method of numerical integration for estimating time derivatives of charge during transient analysis.	trap
"mintimeratio rmin" (page 246)	Relative minimum timestep size for transient simulations.	1 × 10 ⁻⁹
"mu xmu " (page 247)	Coefficient for varying integration between the backward Euler formula and the trapezoidal formula. Used when method = trap .	0.5
"numnt itl4 imax" (page 248)	Newton iteration limit for transient analysis solutions.	10
"numntreduce itl3" (page 249)	Threshold number of Newton iterations for controlling decrease or increase of the next timestep.	3
"poweruplen" (page 250)	Length of the powerup ramp during powerup transient analysis.	0.1% total .tran time
"reldv relvar" (page 251)	Maximum relative voltage change between time steps; used to calculate the voltage variance when $\textbf{lvltim} = 1 \mid 3$.	0.35
"relq relchgtol" (page 252)	Maximum relative error in predicted charge; used to adjust timestep sizes in the LTE algorithm (IvItim = 2).	5 × 10 ⁻⁴
"rmax" (page 253)	Maximum allowed timestep, given as a multiple of the timestep specified with .tran.	2
"trextraiter[ations] trnewtol" (page 254)	Number of additional iterative steps to calculate at each timestep after convergence criteria have been met	0
"trtol" (page 255)	Corrective factor for estimation of the local truncation error (LTE) when lvltim =2.	10

Model Evaluation Options

Field	Description	Default
"dcap" (page 257)	Model selector for calculating depletion capacitances.	2
"dccap" (page 258)	Flag to compute device charge and capacitance values in DC analysis	false

Field	Description	Default
"defad" (page 259)	Default MOSFET drain diode area.	0.0 m^2
"defas" (page 260)	Default MOSFET source diode area.	$0.0~\mathrm{m}^2$
"defl" (page 261)	Default MOSFET channel length.	$1 \times 10^{-4} \mathrm{m}$
"defnrd" (page 262)	Default number of diffusion squares for a MOSFET drain resistor.	0.0
"defnrs" (page 263)	Default number of diffusion squares for a MOSFET source resistor.	0.0
" defpd " (page 264)	Default MOSFET drain diode perimeter.	0.0 m
"defps" (page 265)	Default MOSFET source diode perimeter.	0.0 m
"deftables" (page 266)	Selects use of table-based evaluation of models instead of direct model evaluation. See also modelmode .	false
" defw " (page 267)	Default MOSFET channel width.	$1 \times 10^{-4} \mathrm{m}$
"deriv" (page 268)	Selects the method for computing dq/dv and di/dv derivatives.	0
"minresistance resmin" (page 269)	Minimum (floor) resistance value for all resistors.	$1 \times 10^{-5} \Omega$
"modelmode" (page 270)	Model evaluation method (direct , uniform , or cache).	direct
"moscap" (page 271)	Enables automatic source/drain area/perimeter estimation for MOSFETs.	false
"mosparasitics" (page 272)	Controls explicit modeling of diodes during table-based model evaluation mode.	true
"scale" (page 273)	Scales the physical dimensions of capacitors, MESFETs, MOSFETs, and resistors.	1.0
"scalm" (page 274)	Default scaling factor for resistors and capacitors.	1.0
"tnom" (page 275)	Nominal temperature.	25 deg. C
"wl " (page 276)	Reverses MOSFET length and width specifications.	false

Linear Solver Options

Field	Description	Default
"linearsolver" (page 278)	Selects the linear equation solver — best , sparse , or superlu .	best
" pivtol " (page 279)	Minimum pivoting tolerance for real matrices.	1×10^{-14}
"zpivtol" (page 280)	Minimum pivoting tolerance for complex matrices.	1×10^{-6}

General Options

Field	Description	Default
"autostop" (page 282)	Terminates transient analysis after all .measure results have been found.	false
"casesensitive" (page 283)	Case sensitivity for names of models, subcircuits, library sections, parameters, and nodes.	false
"compatibility" (page 284)	Specifies input syntax and option setting compatibility with other simulators - Berkeley SPICE, HSPICE, or PSPICE.	HSPICE
"conncheck" (page 285)	Enables connectivity checking.	true
"parhier" (page 286)	Establishes the scoping algorithm for selection of parameter values in a hierarchical design.	local
"persist" (page 288)	Instructs T-Spice to continue simulation when the specified levels of warnings or errors are generated.	1
"search" (page 289)	Search path for library and include files.	
" spice " (page 290)	Changes other option settings to be compatible with Berkeley SPICE.	false
"threads" (page 291)	Enables parallel processing.	0
"vasearch" (page 292)	Search path for locating Verilog-A files.	

Output Options

Field	Description	Default
"acct" (page 294)	Tracks and reports iteration counts and other accounting statistics.	false
"acout" (page 295)	Calculation method for AC magnitude/phase differences.	1
"brief " (page 296)	Minimizes the amount of diagnostics printout which is written to the simulation status window.	false
"captab" (page 297)	Lists capacitances for each node in the netlist.	false
"csdf" (page 298)	Generates output in CSDF mode.	false
"dnout" (page 299)	Selects noise spectral density units.	0
"echo" (page 300)	Causes T-Spice to print each line of input to the error log as it is read.	false
"expert" (page 301)	Produces a listing of node and device convergence residual information.	false
"ingold " (page 302)	Controls the format of numbers printed in the AC small-signal output and the device listings. (0=engineering format, 1=g format, 2=e format)	0
"list" (page 303)	Produces a listing of all circuit devices.	false
"maxmsg" (page 304)	Sets the maximum number of duplicate warning message printouts.	5
"node" (page 305)	Prints a node cross-reference table.	false
"nomod" (page 306)	Controls the printout of diode and transistor models. Set nomod to 1 (true) to disable printout.	1
"numdgt" (page 307)	Minimum number of decimal places included in each .print output value.	4
"nutmeg" (page 308)	Generates output compatible with the <i>Nutmeg</i> graphics program.	false
"opts" (page 309)	Prints the settings of all control options.	false
"outputall" (page 310)	Causes all listings of nodes, devices, or options to include items that are internal or normally hidden to the user.	false
"pathnum" (page 311)	Prefixes subcircuit node and element names with a number rather than the full subcircuit path name.	false
"prtdel" (page 312)	Fixed time delay between output points in transient analysis.	0.0 s
"prtinterp" (page 313)	Determines how solutions are calculated at time intervals set by prtdel .	0
"statdelay" (page 314)	Minimum delay (real time) between status display updates in the T-Spice GUI.	0.5 s
"tabdelim" (page 315)	Toggles tab-delimited output columns.	false
"verbose" (page 316)	Level of circuit and simulation detail printed to the Simulation Window.	1

Field	Description	Default
" xref " (page 317)	Generates a listing of various circuit cross-reference information: conditional statement tree, symbol definitions, subcircuit listings.	false

Probing Options

Field	Description	Default
"binaryoutput" (page 319)	Specifies the form of binary output created with .probe.	3
"probei " (page 320)	Includes device terminal current values in the output data from .probe and .print (when used without arguments).	false
"probeq" (page 321)	Includes device terminal charge values in the output data from .probe and .print (when used without arguments).	false
" probev " (page 322)	Includes node voltage values in the output data from .probe and .print (when used without arguments).	false
"probefilename" (page 323)	Filename for binary output produced by .probe .	outputfile.dat

.param

Defines and assigns values to parameters, or creates a user-defined function.

- Parameters can be used in expressions to replace numeric values.
- .param statements are sequential. A parameter must be defined before it is used in the expression of another parameter value.
- User-defined functions are very similar to the set of built-in algebraic functions. User-defined functions may take any number of arguments, and are defined using an algebraic expression which performs operations on the function arguments.
- The scope of defined parameters extends to files referenced by ".if ... / .elseif ... / .else / .endif" (page 82) commands.
- Parameters placed in subcircuit definition blocks are valid only within that subcircuit definition, and override global parameters of the same name.
- Parameters placed outside subcircuit definition blocks are valid globally.

param parameter={X | mc_distribution | opt_limits}[[,]

Note:

To view a listing of all parameters that are defined in the input files, use the command .option xref.

Syntax

User-Defined Functions

The syntax for defining a function is:

Monte Carlo Parameters

For each Monte Carlo iteration, T-Spice will report the values of all expressions evaluated using probability distributions defined by the following syntax:

```
.param parameter=unif(nominal_val, rel_variation [, multiplier])
or
.param parameter=aunif(nominal_val, abs_variation [, multiplier])
or
.param parameter=gauss(nominal_val, rel_variation, sigma [, multiplier])
.param parameter=agauss(nominal_val, abs_variation, sigma [, multiplier])
or
.param parameter=limit(nominal_val, abs_variation)
parameter
                             Name of the parameter to be varied in the Monte Carlo analysis.
unif
                            Selects a uniform distribution with relative variation specification.
                            Selects a uniform distribution with absolute variation specification
aunif
                            Selects a Gaussian distribution with relative variation specification.
gauss
agauss
                            Selects a Gaussian distribution with absolute variation specification.
limit
                            Selects a random limit distribution function using absolute variation.
                            The result is either nominal_val-abs_variation or
                             nominal_val+abs_variation, with 50% probability for each.
nominal_val
                            Nominal value for the parameter.
abs variation
                            Largest deviation from nominal_val that can be obtained from a
                             uniform or limit distribution, or the standard deviation multiplied by
                             sigma for a Gaussian distribution.
rel_variation
                             Relative variation specification. The corresponding absolute
```

variation is rel_variation* nominal_val.

sigma Sigma-level at which the absolute or relative variation is specified

for a Gaussian distribution. For example, if sigma=3, the standard

deviation is **abs_variation**/3.

multiplier Number of times the distribution function is evaluated. The largest

> deviation from the nominal value of all evaluations is the one that is used as the result. The resulting distribution is bimodal. (*Default*: 1.)

Note:

Multiple parameters can be assigned on the same .param command. Probability distributions are reevaluated with every use of *paramname* in expressions.

Optimization Parameters

When **.param** is used to define optimization parameters, the **parameter** argument uses the following syntax:

.param parameter=optname(guess, min, max [, delta])

parameter Global parameter name.

name References a particular optimization run name.

guess Initial (nominal) value for the parameter.

min Minimum values the parameter can take on.

max Maximum values the parameter can take on.

delta Used for discrete optimization. The final parameter values must

differ from the initial guess by an integer multiple of *delta*. This is useful for optimizing quantities that can only take on discrete values,

such as transistor lengths and widths.

Note:

Multiple optimization parameters can be assigned on the same .param command.

The parameter **parameter** is allowed to vary within its range when an optimization of the appropriate **name** is invoked on an analysis command. During such an optimization, the parameter is initially assigned its **guess** value, but is allowed to vary within its range (defined by **min** and **max**) during subsequent optimization iterations.

For additional information on the optimization syntax for individual analysis commands, see ".ac" (page 60), ".dc" (page 69), or ".tran" (page 147).

Examples

```
.param pi='4*atan(1)' tf='1E-6*sin(pi/2))'
.tran 'tf*0.01' 'tf'
```

The .param command defines and assigns a value to parameter **tf**, which is subsequently used (enclosed by single quotes) in place of a numeric value in the ".tran" (page 147) command.

```
.param res=agauss (100, 10, 1)
```

Specifies that the resistance is chosen from a normal distribution of mean 100 and standard deviation 10

```
.param w1=opt1 (10u, 2u, 20u, 0.25u)
```

Specifies that **w1** is to be varied in optimization run **opt1** within the limits 2×10^{-6} and 20×10^{-6} . The initial guess for **w1** in the optimization is 10×10^{-6} , and the final value will be a multiple of 0.25×10^{-6} .

```
.param safedivision(a,b)='if(abs(b)<1e-100, 1e100, a/b)'
.print tran impedance='safedivision(v(n1), i1(dev1))'</pre>
```

Creates a function named safedivision which divides one number by another without a *division by zero* error. This function is then used in a print expression.

.paramlimits

Sets optimization parameter ranges. Allows the same parameter to be varied in multiple optimizations with different optimization run names.

This command specifies that the parameter **paramname** (specified using **.param** elsewhere) is to be varied and optimized during an optimization run **optname**. Multiple instances of **.paramlimits** may not exist in the netlist for the same optimization run and the same parameter name, but are allowed for the same **optname** but for different **paramname** values.

Note:

T-Spice supports sequential optimization—multiple optimizations may be performed in series from one input file, and the optimization results used in subsequent optimizations.

Syntax

.paramlimits optname paramname [guessval=guess] minval=min maxval=max
[delta=delta]

optname Name of the optimization run.

paramname References a particular parameter.

guess Initial (nominal) parameter value for the optimization. If not used,

the initial value defaults to the value specified in the .param

command.

min Minimum value of the range in which the parameter may vary.

max Maximum value of the range in which the parameter may vary.

delta If specified, the parameter can change only in integer multiples of

this value. This is useful for optimizing quantities which can only take on discrete values, such as transistor lengths and widths.

Examples

```
.paramlimits opt1 r minval=10 maxval=100k
```

[.]paramlimits opt1 mlwidth minval=1u maxval=10u delta=0.25u

.power

Computes power dissipation in conjunction with transient analysis.

- If the ".tran" (page 147) command is missing from the input file, the .power command is ignored.
- The average power consumption, the instantaneous maximum power, and the instantaneous minimum power (in watts) and the times of maximum and minimum power consumption (in seconds) are reported at the end of the transient simulation.
- The instantaneous power P(t) dissipated by a voltage source at time t is the current through the source multiplied by the voltage drop across the source. The average power P for a time interval (t1,t2) is computed by using the trapezoidal rule approximation to evaluate the integral

$$\overline{P}(t_1, t_2) = \frac{1}{t_1 - t_2} \int_{t_1}^{t_2} P(\tau) d\tau \tag{0.7}$$

- Multiple .power commands can be used in a single simulation.
- Power results can also be reported with the ".print" (page 119) tran command.

Syntax

```
Voltage source whose power consumption is to be computed.

A Time at which power recording begins. (Unit: seconds. Default: simulation start time.)

Z Time at which power recording ends. (Unit: seconds. Default: simulation end time.)
```

Examples

```
.power vtest 3e-7
```

.power source [A [Z]]

Computes the power dissipated by voltage source **vtest** between the given time (0.3 microsecond) and the end of the simulation. It might produce the following sample output:

```
Power Results vtest from time 0 to 3e-007 Average power consumed -> 1.249948e-002 watts Max power 2.490143e-002 at time 9.76e-006 Min power 2.282279e-030 at time 1e-005
```

.print

Reports simulation results.

- If an output filename is not specified, the output file specified in the Start Simulation dialog is used. (If that file cannot be opened, the results are written to the Simulation Window.)
- Multiple .print commands can be used to direct different types of output to separate files.
- Transient analysis results are printed in columns, with time values in the first column.
- AC and noise analysis results are printed in columns, with frequency values in the first column.
- DC transfer analysis results are printed in columns, with sweep values from the first source listed on the ".dc" (page 69) command in the first column.
- DC operating point analysis results are printed line by line, each argument to a line.
- Expressions can be printed by themselves, with or without reference to physical quantities at specific nodes.
- Nodes and devices within subcircuits can be accessed with hierarchical notation in the form xinstance.xinstance.node.
- .print commands inside subcircuit definition blocks are replicated for each instance.
- If no arguments are given, all node voltages and source currents are printed. If neither mode or arguments are given, .print applies to all analysis types. If arguments are given, a mode must also be specified.
- Wildcards may be entered as part of the .print command node names, devices names, terminal names, or terminal numbers. Wildcards are expanded to match any available elements which match the name specification.
- Device State print statements are a means of obtaining very detailed information about devices and device internal states. Data such as the current, charge, capacitance, and voltage values can be listed, as well as certain model evaluation variable (threshold voltage, beta, etc.).

Syntax

.print [mode] ["filename"] [arguments]

mode Analysis mode (see below).

filename Output filename. Must be enclosed by double quotes.

arguments Information to be printed (see below). arguments may include valid

expressions involving other arguments or global parameters.

mode is one of the following:

tran Print results from transient analysis.

dc Print results from DC transfer analysis and DC operating point

analysis.

ac Print results from AC analysis.

noise Print results from noise analysis.

arguments take one or more of a number of values, depending on **mode**. When no arguments are given, all node voltages and source currents are printed.

When an argument includes an expression, the expression must be enclosed by single quotes (''). A string can also be used as a column heading in the output file, and the string can be followed by an optional unit specifier, enclosed by angle brackets (<>). The unit is then displayed on the W-Edit y-axis.

Some entries in the argument tables below involve the variable **z**, to be replaced by a key letter or number representing a device terminal. The key letters and numbers corresponding to particular device terminals are as follows (alternatives are separated by slashes):

- Diodes: anode = P/1; cathode = N/2.
- **BJTs**: collector = C/1; base = B/2; emitter = E/3; substrate = S/4.
- JFETs/MESFETs: drain = **D/1**; gate = **G/2**; source = **S/3**.
- MOSFETs: drain = D/1; gate = G/2; source = S/3; bulk = B/4.

Wildcards provide an easy and compact method of printing a large number of node or device values which have related names. The T-Spice **.print** command supports several types of wildcards in the specification of the node name, device name, terminal number, and terminal name. The '* character (asterisk) will be expanded to match any combination of alpha-numeric characters. The '?' character (question mark) will be expanded to match any single alpha-numeric character. And, '[...]' will be expanded to match any single character enclosed within the square brackets.

The arguments for transient, transfer, and DC analysis (.print tran, .print dc) are as follows.

n	Voltage at node <i>n</i> relative to ground.
i(<i>d</i> , <i>n</i>)	Current at node \mathbf{n} of device \mathbf{d} (inward current positive).
iz(<i>d</i>)	Current at terminal z of device d (inward current positive).
p(<i>d</i>)	Power consumed by voltage source <i>d</i> . This result can also be reported with the .power command.
q(<i>d</i> , <i>n</i>)	Charge at node n of device d .
qz(<i>d</i>)	Charge at terminal z of device d .
v(<i>n1</i> [[,] <i>n2</i>])	Voltage at node n1 relative to node n2 . (Default reference node: ground.)
'time()'	Simulation time. Must be or be part of an expression enclosed by single quotes. (Transient analysis only.)

The *arguments* for AC analysis mode (**.print ac**) are as follows.

idb(<i>d</i> , <i>n</i>)	Current magnitude at node n of device d . (Unit: decibels.)
idb <i>z</i> (<i>d</i>)	Current magnitude at terminal \boldsymbol{z} of device \boldsymbol{d} . (Unit: decibels.)
ii(<i>d</i> , <i>n</i>)	Imaginary component of the complex current at node \boldsymbol{n} of device \boldsymbol{d} .
iiz(a)	Imaginary component of the complex current at terminal z of device

im(d,n)Current magnitude at node n of device d.imz(d)Current magnitude at terminal z of device d.

ip(d,n) Current phase at node n of device d.

ipz(d) Current phase at terminal z of device d.

ir(d,n) Real component of the complex current at node n of device d.

ir z(d) Real component of the complex current at terminal z of device d.

vdb(n1[[,]**n2**]) Voltage magnitude at node **n1** relative to node **n2** (Unit: decibels.

Default reference node: ground.)

vi(n1[[,]n2]) Imaginary component of the complex voltage at node n1 relative to

node **n2**. (Default reference node: ground.)

vm(n1[[,]**n2**]) Voltage magnitude at node **n1** relative to node **n2**. (Default reference

node: ground.)

vp(n1[[,]n2]) Voltage phase at node **n1** relative to node **n2**. (Default reference

node: ground.)

vr(n1[[,]**n2**]) Real component of the complex voltage at node **n1** relative to node

n2. (Default reference node: ground.)

'frequency()' AC frequency. Must be or be part of an expression enclosed by single

quotes.

The *arguments* for noise analysis mode (**.print noise**) include *any* of the arguments for AC analysis mode *in addition* to the following:

dn(d[,t]) Output noise spectral density contributions corresponding to the

noise sources associated with device **d**. If the noise type **t** (see below) is not specified, then results for all applicable noise types are printed.

inoise Equivalent input noise spectral density magnitude.

(Unit: volts $/\sqrt{\text{Hertz}}$.)

inoise(db) Equivalent input noise spectral density magnitude. (Unit: decibels.)

inoise(tot) Total input noise—the integral of the input noise spectral densities

over the analysis frequency interval. (Unit: volts.)

onoise Output noise spectral density magnitude (Unit: volts √Hertz.)

onoise(db) Output noise spectral density magnitude. (Unit: decibels.)

onoise(tot)Total output noise—the integral of the output noise spectral densities

over the analysis frequency interval. (Unit: volts.)

transfer AC transfer function between input and output. As the frequency

approaches zero, this value approaches the result from the .tf command. (Unit: volts/ampere, for transresistance; or no unit, for

voltage gain.)

The units for the **.print noise dn(d, t)** command are volts $\sqrt{\text{Hertz}}$ by default. However, this can be chabged to Volts²/Hertz by use of the option "dnout" (page 299).

The noise types t available for the **.print noise dn(d, t)** command vary according to the device type (BJT, Diode, JFET, etc.) as shown in the following tables:

noise type	BJT (Gummel-Poon) Noise Types description
FN	Flicker noise due to base current
IB	Shot noise due to base current.
IC	Shot noise due to collector current.
RB	Thermal noise due to base resistance.
RC	Thermal noise due to collector resistance.
RE	Thermal noise due to emitter resistance.
RX	Transresistance from flicker noise source to output.
тот	Total device output noise.

noise type	BJT (VBIC) Noise Types description
IBE	Base-Emitter shot noise
IBEFN	Base-Emitter flicker noise
IBEP	Parasitic base-emitter shot noise
IBEPFN	Parasitic base-emitter flicker noise
ICCP	Parasitic base-collector shot noise
ITZF	Forward transport current shot noise
RBI	Thermal noise due to intrinsic base resistance
RBP	Thermal noise due to parasitic base resistance
RBX	Thermal noise due to extrinsic base resistance
RCI	Thermal noise due to intrinsic collector resistance
RCX	Thermal noise due to extrinsic collector resistance
RE	Thermal noise due to emitter resistance
RS	Thermal noise due to source resistance
RX	Transresistance from flicker noise source to output.
тот	Total device output noise.

noise type	Diode Noise Types description
FN	Flicker noise
ID	Shot noise.
RX	Transresistance from flicker noise source to output.
тот	Total device output noise.

JFET and MESFET Noise Types description
Flicker noise.
Thermal noise due to channel.
Thermal noise due to drain resistance.
Thermal noise due to gate resistance.
Thermal noise due to source resistance.
Transresistance from flicker noise source to output.
Total device output noise.

noise type	MOSFET Noise Types description
FN	Flicker noise.
ID	Thermal noise due to channel.
RD	Thermal noise due to drain resistance.
RG	Thermal noise due to gate resistance.
RS	Thermal noise due to source resistance.
RX	Transresistance from channel or flicker noise source to output.
тот	Total device output noise.

Examples

.print tran in out i1(r2) id(M2)

Prints transient analysis results: the voltages at nodes in and out and the currents into terminal 1 of device $\bf r2$ and the drain terminal of device $\bf M2$.

.print dc I10/in, I10/out, I11/in, I11/out

Prints DC analysis results at various subcircuit nodes.

```
.print ac "acdata" im(M2,g1) vm(out) vdb(out)
```

Writes AC analysis results to output file **acdata**: the magnitude of the current flowing into node **g1** of device **M2**, the magnitude of the voltage at node **out**, and the same magnitude expressed in decibels.

```
.print noise inoise transfer dn(mn1) onoise(tot)
```

Prints noise analysis results: the equivalent input noise spectral density, the input/output transfer function, all noise information corresponding to device **mn1**, and the total output noise.

```
.print tran 'v(out)*sin(time()*sf)'
```

Prints the transient value of an expression involving the voltage at node **out**, the simulation time **time()**, and parameter **sf** (defined elsewhere with a **.param** command).

```
.print tran diff<V>='v(2)-v(1)'
```

Prints the transient value of an expression subtracting the voltage at node 1 from the voltage at node 2. The string **diff** is used as a column heading with the letter V as a unit designation.

```
.print
```

Prints all node voltages and voltage source currents for all analyses to a text file.

```
.print tran
```

Prints all node voltages and voltage source currents for transient analysis to a text file.

```
.print v(n*)
```

Prints the voltages for all nodes whose name begins with the letter 'n'.

```
.print i[12](m*) i?(q*)
```

Prints the drain and gate currents (terminals 1 and 2) for every MOSFET device, and each terminal current for every BJT.

Device State variables are not available for all types of analysis or for all devices. In general, the state plots are only relevant to DC and transient analysis.

The format of the device state plot request is always state(d), where state is the state data identifier, and d is the device name.

The device state data which is available for each device type is as follows:

BJT (Gummel-Poon) Device State printout identifiers

description

state identifier	description	
cap_be	cbe capacitance	
cap_ibc	internal base-collector capacitance	
cap_sbc	csc/csb substrate-collector/substrate-base capacitance	
cap_xbc	external base-collector capacitance	
cbo	base current	
cco	collector current	
cexbc	base-collector equivalent current	
cqbc	current due to the base-collector charge	
cqbe	current due to the base-emitter charge	
cqbx	current due to the base-internal base charge	
cqcs	current due to the collector-substrate charge	
g0	∂ic/∂vce	
gm	∂ic/∂vbe	
gpi	∂ib/∂vbe	
gu	∂ib/∂vbc	
isub	substrate current	
qbc	base-collector charge	
qbe	base-emitter charge	
qbx	base-internal base charge	
qcs	collector-substrate charge	
rb	base resistance	
rgn	operating region: -2=inverse, -1=saturation, 0=off, 1=on	
vbc	base-collector voltage	
vbci	rb and rc offset internal base-collector voltage	
vbe	base-emitter voltage	
vbei	rb and re offset internal base-emitter voltage	
vsub	substrate voltage	

state identifier	BJT (VBIC) Device State printout identifiers description
cbco	parasitic Base-Collector overlap capacitance (fixed)
cbeo	parasitic Base-Emitter overlap capacitance (fixed)
cqbc	Base-Collector charge current
cqbco	currents from Cbco charge
cqbcp	currents from Cbcp charge
cqbcx	currents from Cbcx charge
cqbe	Base-Emitter charge current
cqbeo	currents from Cbeo charge
cqbep	currents from Cbep charge
cqbex	currents from Cbex charge
cqcxf	currents from Ccxf charge
flxf	Excess phase circuit flux
ibc	intrinsic Base-Collector current
ibcp	parasitic Base-Collector current
ibe	intrinsic Base-Emitter current
ibep	parasitic Base-Emitter current
ibex	extrinsic Base-Emitter current
igc	weak avalanche current
irbi	intrinsic Base resistor modulated current
irbp	parasitic Base resistor modulated current
irbx	external Base resistor current
irci	intrinsic Collector resistor modulated current
irex	external Collector resistor current
ire	external Emitter resistor current
ith	thermal (heat generation) source, power dissipation
itxf	forward transport current, with excess phase
itzf	forward transport current, zero phase
itzr	reverse transport current, zero phase
ixxf	forward transport current, with excess phase
ixzf	forward transport current, with excess phase
qbc	Base-Collector charge
qbco	parasitic Base-Collector charge (depletion)

BJT (VBIC) Device State printout identifiers

state identifier	BJT (VBIC) Device State printout identifiers description
qbcp	parasitic Base-Collector charge (depletion)
qbex	parasitic Base-Collector charge (depletion)
qbe	Base-Emitter charge
qbeo	parasitic Base-Emitter charge (depletion and diffusion)
qbep	parasitic Base-Emitter charge (depletion and diffusion)
qbex	extrinsic Base-Emitter charge (depletion)
qcxf	Excess phase circuit capacitance
rbi	intrinsic Base resistance (modulated)
rbip	parasitic Base resistance (modulated)
rbx	extrinsic Base resistance (fixed)
rci	intrinsic Collector resistance (modulated)
rex	extrinsic Collector resistance (fixed)
re	Emitter resistance (fixed)
rgn	operating region
rs	Substrate resistance (fixed)
vb	Base voltage
vbc	Base-Collector voltage
vbci	Rb and Rc offset internal Base-Collector voltage
vbe	Base-Emitter voltage
vbei	Rb and Re offset internal Base-Emitter voltage
vbi	Bi internal Base voltage
vbp	Bp parasitic Base voltage
vbx	Bx external Base voltage
vc	Collector voltage
vci	Ci internal Collector voltage
vcx	Cx external Collector voltage
ve	Emitter voltage
vei	Ei internal Emitter voltage
vs	Substrate voltage
vsi	Si internal Substrate voltage

•	D •	α_{4}	• 4 4	• 1 4•0•
Canacitor	I Jevice	State	nrintalit	identifiers
Capacitoi	DUTTE	Dunc	printout	iuciiuiicis

state identifier	description
ceff	effective capacitance
curr	current
dq	∂q/∂v
q	charge
volt	voltage potential

f element (CCCS) Device State printout identifiers

state identifier	description
curr	source current
di or di1	derivative of source current w.r.t. first control
di2	derivative of source current w.r.t. second control
di3	derivative of source current w.r.t. third control
volt	voltage potential across the CCCS

h element (CCVS) Device State printout identifiers

state identifier	description
curr	source current
dv or dv1	derivative of source voltage w.r.t. first control
dv2	derivative of source voltage w.r.t. second control
dv3	derivative of source voltage w.r.t. third control
volt	voltage potential across the CCVS

Diode Device State printout identifiers

state identifier	description
c	total diode capacitance
curr	current through the diode
di	∂i/∂v
dq	∂q/∂v
gd	conductance
id	current, excluding the series resistor

state identifier	description current through the series resistor	
ir		
qd	charge	
rgn	operating region: -1=breakdown, 0=reverse, 1=forward	
vd	voltage potential, excluding the series resistor	
volt	voltage across the diode	
vr	voltage across the series resistor	

Inductor Device State printout identifiers

state identifier	description
curr	current through the inductor
ic	current through the component capacitor
ir	current through the component resistor
leff	effective inductance
vc	voltage across the component capacitor
volt	voltage across the inductor
vr	voltage across the component resistor

MOSFET Device State printout identifiers

state identifier	description	
betaeff	effective beta	
cap_bd	bulk-drain capacitance	
cap_bs	bulk-source capacitance	
cbdbo	∂Qb/∂Vd	
cbdo	DC drain-bulk diode current	
cbgbo	∂Qb/∂Vg	
cbsbo	∂Qb/∂Vs	
cbso	DC source-bulk diode current	
cddbo	∂Qd/∂Vd	
cdgbo	∂Qd/∂Vg	
cdo	DC drain current	
cdsbo	∂Qd/∂Vs	
cgdbo	∂Qg/∂Vd	

MOSFET Device State printout identifiers

state identifier	SFET Device State printout identifiers description
cggbo	∂Qg/∂Vg
cgsbo	∂Qg/∂Vs
cqb	current due to the intrinsic bulk charge
cqd	current due to the intrinsic drain charge
cqg	current due to the intrinsic gate charge
cqs	current due to the intrinsic source charge
deltal	channel length modulation
gammaeff	effective gamma
gbdo	Conductance of the drain diode
gbso	conductance of the source diode
gdso	DC drain-source transconductance
gmbso	DC substrate transconductance
gmo	DC gate transconductance
qbi	intrinsic bulk charge
qbd	bulk-drain diode charge
qbs	bulk-source diode charge
cqbd	current due to bulk-drain diode charge
cqbs	current due to bulk-source diode charge
qdi	intrinsic drain charge
qgi	intrinsic gate charge
qsi	intrinsic source charge
rgn	operating region: -1=subthreshold, 0=linear, 1=saturation
ueff	effective mobility
vbs	bulk-source voltage
vbsi	Rs offset internal bulk-source voltage
vds	drain-source voltage
vdsat	saturation voltage
vdsi	Rd and Rs offset internal drain-source voltage
vfbeff	effective Vfb
vgs	gate-source voltage
vgsi	Rs offset internal gate-source voltage
vth	Threshold voltage

Resistor	Device	State	printout	identifiers
----------	---------------	-------	----------	-------------

state identifier	description
cap1	capacitance of the first capacitor
cap2	capacitance of the second capacitor
curr	current through the resistor
di	∂l/∂V
g	conductance
ic1	current through the first capacitor
ic2	current through the second capacitor
qc1	charge of the first capacitor
qc2	charge of the second capacitor
r	effective resistance
vc1	voltage across the first capacitor
vc2	voltage across the second capacitor
volt	voltage across the resistor

g element (VCCS) Device State printout identifiers

state identifier	description
curr	VCCS source current
di or di1	derivative of source current w.r.t. the first control
di2	derivative of source current w.r.t. the second control
di3	derivative of source current w.r.t. the third control
dq or dq1	derivative of source charge w.r.t. the first control
dq2	derivative of source charge w.r.t. the second control
dq3	derivative of source charge w.r.t. the third control
q	VCCS source charge
volt	voltage across the VCCS

e element (VCVS) Device State printout identifiers

state identifier	description
curr	VCVS source current
dv or dv1	derivative of source voltage w.r.t. the first control
dv2	derivative of source voltage w.r.t. the second control

e element (VCVS) Device State printout identifiers

state identifier	description
dv3	derivative of source voltage w.r.t. the third control
volt	voltage across the VCVS

.probe

Reports simulation results in binary format. **.probe** exactly as **.print**, except that output is binary instead of text. If **arguments** are given, the **mode** must be specified.

The file specified with the ".options" (page 106) probefilename command becomes the default for the .probe output file. If an output filename is not specified, T-Spice uses an ASCII output file name with no extension.

Syntax

```
.probe [mode] ["filename"] [arguments]
```

mode Analysis type (see below). If *mode* is omitted, the **.probe** command

applies to all analysis types.

filename Specifies the binary output filename. The suggested extension is

.dat. Must be enclosed by double quotes.

arguments Specifies plot variables to be included in the output file. If

arguments is omitted, T-Spice includes all node voltages and voltage source currents in the output. The format and types of **arguments** are the same as for the ".print" (page 119) command.

mode is one of the following:

tran Print results from transient analysis.

dc Print results from DC transfer analysis and DC operating point

analysis.

ac Print results from AC analysis.

noise Print results from noise analysis.

Examples

.probe

Saves all node voltages and voltage source currents for all analyses to a binary file.

.probe tran

Saves all node voltages and voltage source currents for transient analysis to a binary file.

.probe tran v(2)

Saves the transient voltage at node 2 to a binary file.

.probe tran Output<v> = 'v(2) - v(1)'

Saves the transient value of an expression subtracting voltage at node 1 from voltage at node 2 and prints it in a column with the heading **Output**.

.protect / .unprotect

The .protect and .unprotect commands are used for temporarily turning input file echoing off and on. Input file echoing is initially turned on with the command .option echo. Subsequent use of .protect will turn off the echoing, until the .unprotect command is encountered. In this manner sensitive data, such as model libraries, can be protected from distribution, or excessive amounts of netlist echoing can be trimmed down.

Syntax

.protect

•••

.unprotect

.save

Saves bias point information to a file. All of the non-internal node voltage values will be saved to the file using either the .ic or the .nodeset T-Spice command syntax. Subsequent simulations may use the .load command to read the file and execute the .nodeset or the .ic commands.

Syntax

.save [file=filename] [type=ic | nodeset] [time=time]

filename Name of the file to be written. If the file parameter is not entered,

then the filename is derived from the simulation output filename,

with a .ic file extension.

type Denotes the type of node initialization command which will be

written to the file for each non-internal circuit node. Either ic, to have

.ic commands generated, or **nodeset**, for .nodeset commands.

(Default: nodeset)

time The transient analysis time at which the bias information should be

saved. Ordinarily, the **.save** command saves the DC operating point bias information. If a **time** parameter has been specified, and the simulation performs a transient analysis, then the bias at the specified

timepoint will be saved.

Examples

.save type=ic time=50n

.savebias

Saves bias point information to a file. Node voltage values will be saved to the file using either the .ic or the .nodeset T-Spice command syntax. Subsequent simulations may use the .load command to read the file and execute the .nodeset or the .ic commands.

Note:

The .save and the .savebias commands perform essentially the same task, but use a different syntax and have different options.

.save is provided for HSPICE command compatibility, while .savebias provides PSPICE command compatibility.

The *saved* file from either command can be loaded into a subsequent simulation using the .load command.

Syntax

```
.savebias filename [op | dc | tran] [alter = alternum] [dc = dcvalue]
  [step = stepvalue] [temp = temperature] [ time = timevalue [ repeat ] ]
  [ic | nodeset] [internal] [nosubckt]
```

filename	Name of the file to be written.
op dc tran	Indicates the type of analysis for which voltage values will be saved. (Default: op)
alternum	Identifies the alter block index number for which data should be saved. (Default: 0)
dcvalue	Identifies the DC sweep value for which data should be saved. (Default: all)
stepvalue	Identifies the .step value for which data should be saved. (Default: all)
temperature	Identifies the .temp temperature for which data should be saved. (Default: all)
timevalue	Identifies the transient timepoint at which data should be saved. (Default: 0)
repeat	For transient timepoint saving, indicates that the output file should repeatedly be overwritten for each timepoint which is an integral multiple of <i>timevalue</i> .
ic	Indicates that the node initialization command which is written should be the .ic command.
nodeset	Indicates that the node initialization command which is written should be the .nodeset command.
internal	Indicates that all internal node values should be included in the output. Internal nodes are those nodes which were not in the input circuit, but were automatically generated internal to devices.
nosubckt	Indicates that only the top level circuit nodes, excluding subcircuit

nodes, should be written.

Examples

- .savebias ring.ic tran ic time=100n repeat
- .savebias dc alter=2 dc=2.5 temp=75 internal

.step

Performs a parametric sweep of a sweep variable, performing all analyses in the input file for all parameter values in the sweep.

The .step command produces a separate output section for each parameter value of the sweep. For example, an input file with .step and ".tran" (page 147) produces one transient analysis output section for each parameter value in the sweep. In addition, all ".macro /.eom" (page 88) results are plotted as traces with the swept variable as the x-axis. The output format for this is similar to that of the ".dc" (page 69) command.

Note:

The .step command can be abbreviated to .st.

Syntax

```
.step sweep [[sweep] sweep [[sweep]]
where sweep is in one of the following formats:
[lin] variable start stop inc
or
dec oct variable start stop npoints
or
variable lin dec oct npoints start stop
or
variable list value [value [...]]
or
list variable value [value [...]]
or
variable poi npoints [value [...]]
or
data=dataname
monte=mcruns [seed=seedval]
or
optimize=optname results=measname [measname [...]] model=optmodelname
```

variable specifies the parameter whose value is to be swept. It is one of the following:

temp Specifies a temperature sweep.

Note: Use .dc to to plot voltage/current vs. temperature, not .temp

and .step temp.

param paramname Sweeps a global parameter named paramname defined using the

.param command.

source sourcename Sweeps the DC value of a voltage or current source value named

sourcename.

[modparam]

paramname

Sweeps the value of model parameter *parname* for the device model *modelname*.

parname(modelname)

Sweeps a global parameter (as with **param**) or DC source value (as

with source). T-Spice first looks for a matching .param parameter,

and then for a source name.

Other parameters include the following:

start Specifies the beginning of a linear or logarithmic sweep.

stop Specifies the end of a linear or logarithmic sweep.

inc Specifies the increment for a linear sweep.

npoints Specifies the total number of points for a linear or **poi** sweep, or the

number of points per decade or octave for a logarithmic sweep.

value Specifies a single value which **variable** takes on for one step of the

sweep.

mcruns Specifies the number of runs to be performed for Monte Carlo

analysis.

seedval An integer specifying a seed for initializing the random number

sequence for Monte Carlo analysis. If **seedval** is negative, T-Spice uses the system clock to generate a different seed each time the simulation is run. A **seedval** of zero is equivalent to not specifying a

seed value at all.

dataname Specifies the name of a ".connect" (page 66) statement to be used

for the sweep. The column names in the .data statement must correspond to global ".param" (page 113) parameters. For each sweep step, those parameters are assigned the values found in one

row of data produced by the .data statement.

sweep Specifies that analysis be performed for all parameter values of the

sweep and indicates the beginning of the next nested sweep variable specification. The **sweep** keyword can be omitted if the previous sweep is not of the **list** or **poi** type or if one of the keywords **lin**, **dec**,

oct, list, poi, temp, param, source, or modparam follows

immediately.

lin Specifies a linear sweep.

dec Specifies a logarithmic sweep by decades.

oct Specifies a logarithmic sweep by octaves.

list Specifies a sweep over a list of values (P-Spice compatible syntax).

poi Specifies a sweep over a list of values (HSPICE compatible syntax).

data Specifies a sweep defined using a .data statement.

monte Specifies a Monte Carlo sweep. For each Monte Carlo run, random

circuit parameter values are generated from probability distributions. A Monte Carlo sweep must be the outermost sweep if sweeps are

nested.

optimize Specifies an optimization sweep. During an optimization sweep,

T-Spice runs many analyses in an attempt to optimize a circuit performance objective. The user may specify a set of parameters to be varied and a set of measurements to be included in the

optimization goal. Optimization sweeps may not be nested within other optimization sweeps. For further information on setting up an

optimization run, see "Optimization" on page 517.

optname Selects a set of parameters to be varied in an optimization run. The

parameters to be optimized are specified using ".param" (page 113)

with a matching **optname**.

results=**measname** Specifies circuit measurement results to be used for defining an

optimization goal. Each *measname* refers to a ".macro /.eom" (page 88) command of the same name and contributes to the optimization

goal. The complete optimization goal is the RMS of all

measurements listed. For further information on specifying circuit measurement results, see "Defining Optimization Goals" on page

518.

model=**optmodelname** Specifies an optimization algorithm model name. It is matched with a

".model" (page 96) statement of type opt and name modelname. That .model statement specifies parameters for the optimization algorithm. For further information on specifying an optimization

algorithm, see "Optimization" on page 517.

Examples

```
.step vin 0 5 0.1
```

sweeps the DC value of voltage source vin from 0 to 5V with 0.1V increments.

```
.step lin param ml 2 3 0.5 sweep vdd 3 5 0.1
```

performs a nested linear sweep of the parameter **ml** and the voltage source **vdd**.

```
.step list temp 0 27 100 150 -50
```

sweeps the circuit operating temperature over the five values listed.

```
.step optimize=opt1 results=bandwidth,delay model=optmod
.param p1=opt1(1e-3,1e-5,1) p2=opt1(150,100,200)
.model optmod opt level=1 itropt=40
.measure ac bandwidth trig vm(out) val=0.5 cross=1
+ targ vm(out) val=0.5 cross=2
+ goal=2kHz
```

.measure tran delay when v(1)=2.5 goal=10ns

invokes an optimization of parameters **p1** and **p2**. T-Spice will attempt to find values for **p1** and **p2** which result in a bandwidth of 2 kHz and a delay of 10 ns. An AC and a transient analysis would be performed for each optimization function evaluation.

.subckt

Defines a hierarchical set of devices and nodes to be used repeatedly in a higher-level circuit.

- Subcircuits are replicated by means of the instance (x) statement.
- When invocations of the following commands appear within subcircuit definitions and refer to nodes inside the subcircuit, the commands are executed for each instance of the node: ".acmodel" (page 63), ".hdl" (page 79), ".macro /.eom" (page 88), ".nodeset" (page 100), ".noise" (page 101), ".print" (page 119), and ".probe" (page 133), and ".tf" (page 146).
- Node and device names have local scope in subcircuits unless global node names (defined elsewhere with the ".global" (page 77) command) are used.
- Subcircuit blocks cannot be nested: after one .subckt command, the ".ends" (page 74) command must appear before another .subckt command can be used.

Syntax

```
.subckt name node1 [node2 ...] [parameter=X ...]
subcircuit
.ends
```

name Name of subcircuit.

node1 node2 Nodes used as "external" connections to the subcircuit.

parameter Parameter(s), with default value(s) assigned. **X** can be a number or an

expression. Subcircuit parameters have local scope. Parameters can be written in any order in both definition and instances. Parameter values specified in the definition are used as defaults when not specified in instances. Within the definition, parameter values are referenced (in place of numbers) by enclosing their names in single quotes. Alternatively, the ".param" (page 113) command may be used within the definition, with the same results. Parameters created outside the definition with the ".param" (page 113) command may be used inside the definition, but an assignment made with the .subckt command to an externally defined parameter always

overrides its external value.

subcircuit Subcircuit definition (may be multiple lines).

Examples

```
.subckt inv in out Vdd length=1.25u nwidth=2u pwidth=3u mt1 out in GND GND nmos l='length' w='nwidth' mt2 out in Vdd Vdd pmos l='length' w='pwidth' c2 out GND 800f .ends inv
```

This subcircuit could be instanced as follows:

xinv1 a1 a2 Vdd inv nwidth=4u pwidth=6u

.table

Links a table reference name (used by simulated devices) with external charge and current table filenames.

The table which is imported from the named file can define the behavior of a standard device, such as a MOSFET, resistor, diode, etc., and takes the place of the *modelname* (from a .model definition) in the device declaration.

The table data may also be used to define a generic "black box" device which is created by the **xname** method of instantiating a subcircuit. When the **.table** and the **xname** commands are used in combination to define a generic table-based device, the **.table** model takes the place of a **.subckt** subcircuit definition. You use the **.table** command instead of the **.subckt** command to define your device characteristics.

Syntax

.table tablename current charge

tablename Table reference name.

current File containing steady-state current table. The file should have

extension .f (binary) or .ftx (ASCII). If the referenced filename or path contains a space, enclose the entire path in single or double

quotation marks.

charge File containing charge table. The file should have extension .q

(binary) or **.qtx** (ASCII). If the referenced filename or path contains a space, enclose the entire path in single or double quotation marks.

Examples

MOSFET table example:

```
.table nmos1x3 n1x3.ftx n1x3.qtx
```

Establishes a relationship between the table reference name nmos1x3 and the table files n1x3.ftx and n1x3.qtx. The input file is searched for any device statements—MOSFET (m) statements or xname commands—which include the table reference name nmos1x3. The corresponding devices use the charge and current tables in n1x3.ftx and n1x3.qtx.

A table-based MOSFET device can then be created by (for example):

mnmos1x3 n1 n5 GND GND nmos1x3

Inverter table example:

xinv in out invtable
.table invtable invcirc.ftx invcirc.qtx

Illustrates how a CMOS inverter can be defined as a macromodel. Rather than explicitly constructing a description of the inverter with its component transistors, the circuit description names the inverter's input and output nodes. The input/output behavior of the inverter is approximated by current (invcirc.ftx) and charge (invcirc.qtx) tables that are referenced with the name invtable.

Resistor table example:

```
v1 1 0 1000
.table an_ftx_qtx_pair resistor.ftx resistor.qtx
xr1 1 0 an_ftx_qtx_pair
.op
where resistor.ftx is:
```

```
1 2 1 0
-1 +1
-1e-3
+1e-3
```

and resistor.qtx is:

```
1 2 1 0
-1 +1
0
```

Illustrates a resistor defined as a macromodel where the circuit description names the resistor's input and output nodes. The input/output behavior of the resistor is approximated by a table referenced with the tablename <code>an_ftx_qtx_pair</code>

.temp

Specifies the temperatures at which the circuit is to be simulated.

- Changing the temperature affects the behavior of diode, resistor, BJT, JFET, MESFET, and MOSFET models. It may also affect the behavior of user-defined external models.
- The .temp command has no effect on external tables, which should be regenerated to reflect the new temperature.

Syntax

```
.temp temperature [temperature [...]]]
temperature
Temperature. (Unit: °C. Default: 25.)
```

Using .TEMP and .STEP displays voltage vs. voltage plots with different temperatures displaying as different traces. For example,

```
.DC vin 0 5 0.1
.TEMP 25 30 35 40 50
```

To plot voltage vs. temperature, use the following so that the first sweep variable in the DC analysis will become the X axis:

```
.DC temp 25 40 5 VIN 0 5 0.1
```

.tf

Computes and reports the value of the small-signal DC transfer function between the specified output and input, and the corresponding input and output resistances, at the DC operating point.

- The .tf command automatically performs (but does not report the results from) a DC operating point calculation.
- Results are reported under the heading SMALL-SIGNAL TRANSFER FUNCTION (to the specified output file or in the Simulation Window).
- The transfer function value corresponds to a voltage $(V \ N)$ or current $(I \ A)$ gain, a transconductance $(I \ N)$, or a transresistance $(V \ A)$.

Syntax

.tf arguments source

arguments Any arguments appropriate for the ".print" (page 119) dc command.

source Voltage or current input source.

Examples

.tf i(mb1,out1) ii1

Computes transfer function results between node out1 of device mb1 and current source ii1.

.tran

Performs large-signal time-domain (transient) analysis of the circuit to determine its response to initial conditions and time-dependent stimuli.

- The time step is adaptively varied throughout the simulation to ensure accuracy.
- Results for nodes selected by the .print tran, .probe tran, and .measure tran commands will be output for every time step, unless otherwise specified by the .options prtdel command. For additional information on these commands, see ".print" (page 119), ".probe" (page 133), ".macro /.eom" (page 88) and ".options" (page 106).

Syntax

.tran[/mode] S L [start=A] [UIC] [sweep sweep]

mode Analysis mode (see below). This parameter must immediately follow the keyword .tran and be preceded by a slash (/). S Maximum time step allowed. By default, the time step is dynamically adapted to resolve the output values. (Unit: seconds.) L Total simulation time. (Unit: seconds.) Α Output start time. Execution of the .print tran command will not start until this time. (Unit: seconds. Default: 0.) UIC Instructs T-Spice to skip the DC operating point analysis for determining the time=0 circuit state. Instead, only the initial conditions specified using .ic commands are used to set the time=0 voltages. Voltages which cannot be determined using .ic commands are set to zero.

mode takes one of the following values:

sweep

op Performs a DC operating point calculation before simulation to determine initial steady-state node voltages. The commands

".nodeset" (page 100) or ".hdl" (page 79) can be used to impose

For a description of the syntax for this field, see ".step" (page 138).

initial conditions.

powerup Performs a "powerup" simulation. All nodes are at the same potential

at time zero, and the voltage sources are ramped gradually to their

final values.

preview Steps through the input signals without simulating the circuit. Input

waveforms will be reported as specified by the ".print" (page 119)

tran command.

If **mode** is not specified, T-Spice first performs a DC operating point analysis, without printing the DC operating point analysis results.

sweep indicates the beginning of the next nested sweep variable specification. The **sweep** keyword can be omitted if the previous sweep is not of the **list** or **poi** type or if one of the keywords **lin**, **dec**, **oct**, **list**, **poi**, **temp**, **param**, **source**, or **modparam** follows immediately.

Using the **sweep** option with .tran or ".ac" (page 60) causes that analysis to be performed for all parameter values of the sweep. It is equivalent to ".step" (page 138), except that it applies only to one analysis command, while .step applies to all analysis commands in the input file. If **sweep** is specified on an analysis command and .step is present, the **sweep** sweep is nested inside the .step sweep. The **sweep** parameter may be used to specify a parametric sweep, Monte Carlo analysis, or optimization.

Examples

```
.tran 0.5n 100n
```

Defines a transient simulation lasting 100 nanoseconds, using time steps of at most 0.5 nanosecond. By default, a DC operating point calculation will first be performed to define a starting condition.

```
.tran/preview 4n 4000n
```

The input waveforms are reported for 4000 nanoseconds; the rest of the circuit is ignored.

```
.tran 1ns 100ns
```

Specifies a maximum time step of 1 nanosecond and a total simulation time of 100 nanoseconds.

```
.tran/powerup 1ns 100 ns
```

Specifies a powerup simulation with no operating point computation.

```
.tran 1ns 100 ns start=50ns
```

Produces output starting at time 50 nanoseconds.

```
.tran 1n 100n sweep temp list 0 27 100 150 -50
```

Performs five transient analysis runs, one for each temperature listed. The keyword **temp** specifies the sweep *variable*, as defined in ".step" (page 138).

```
.tran 1n 400n sweep temp -50 150 50
```

This performs five transient analyses at temperatures -50, 0, 50, 100, and 150 degrees Celsius.

```
.tran 0.5u 100u sweep monte=20
```

This performs 20 transient simulations as part of a Monte Carlo analysis. The keyword **monte** defines one of the many **sweep** options described in ".step" (page 138)). For each of the 20 transient analyses, values are randomly chosen for circuit variables, which are assigned probability distributions according to the specified "Monte Carlo Parameters" (page 114).

For a demonstration of Monte Carlo analysis in T-Spice, see "Example 2: Monte Carlo Analysis" on page 515.

```
.tran 1n 200n sweep temp list 0 25 75 150
```

This example performs four transient analysis runs at temperatures 0, 25, 75, and 150 degrees Celsius.

.vector

Names a bus and specifies how many bits the bus will contain.

- The bus is connected to a vector-valued current or voltage source, defined by a i or v statement with the bus keyword.
- The input source generates signals composed of bit strings of the length specified in the .vector command.

Syntax

```
.vector bus {node1 [[,] node2 ...]]}
```

bus

Bus name.

node1 node2

Input nodes. If there are n nodes in a bus, the rightmost n bits of the input waveform (a binary number) are assigned one by one to these nodes. The last-named (nth) node is assigned the least-significant (rightmost) bit; the (n-1)th node is assigned the next bit to the left; and so on. Extra bits are discarded. Extra nodes are set to zero.

Examples

```
.vector bus1 {b7 b6 b5 b4 b3 b2 b1 b0}
```

Defines a bus **bus1** and lists its eight input nodes. The input waveform to these nodes is specified as some number or numbers, convertible to a binary string with at least eight bits, in the accompanying voltage or current source statement.

.vrange

Sets the voltage range used for all table dimensions of a specific device type.

 Changing the voltage range of a table does not change the number of points in each dimension of the table. Increasing the voltage range will compromise accuracy unless the gridsize is also increased.

Syntax

.vrange type V

type Type of device (see below).

V Maximum table voltage (volts). Only one value is required; tables

range from -V to V.

MOSFET

type is one of the following:

diode DIODE

jfet JFET

mes MESFET

Examples

.vrange mos 15

mos

Causes MOSFET tables to range, for the purposes of interpolation, from -15 to +15 V in all dimensions. (Values outside the range are extrapolated.)

6 Device Statements

Introduction

This chapter documents the device statements of the T-Spice circuit description language.

The *device types* are listed in alphabetical order; each type is associated with a *key letter* (in parentheses). Many statements have "options," which branch to different modes, and "arguments," which indicate expressions, nodes, or devices to be used. In the input file, a device statement must begin with its key letter in the first column of the line containing it (no leading spaces). Options and arguments must be separated by spaces or new lines (with line continuation).

Syntax sections in this documentation follow these conventions:

- *Italics* indicate variables to be replaced by actual names, numbers, or expressions.
- Curly brackets {} indicate alternative values for the same option or argument.
- Square brackets [] enclose items that are *not required*.
- Vertical bars | separate alternative values for the same option or argument.
- Ellipses ... indicate items that may be repeated as many times as needed.

These characters are *not* typed in the input file. All other characters are typed as shown.

For more information, see "Input Conventions" on page 51 and "Simulation Commands" on page 59.

Chapter 6: Device Statements BJT (q)

BJT (q)

A transistor with up to four terminals: collector, base, emitter, and (optional) substrate. (BJT stands for *bipolar junction transistor*.)

Several types of bipolar models are supported in T-Spice:

SPICE Gummel-Poon model (level 1) Vertical Bipolar Inter-Company (VBIC) (level 9) Philips MEXTRAM (levels 6, 503, and 504) Philips Modella (level 10 and 500)

The substrate is optional so that both discrete and IC BJTs may be modeled correctly.

Syntax

qname collector base emitter [substrate] model [[area=]A] [areab=B]
 [areac=C] [M=M] [SCALE=S] [tables=T]

Parameter	Symbol	Description	Default
name		BJT name	
collector		Collector terminal	
base		Base terminal	
emitter		Emitter terminal	
substrate		Substrate terminal	
model		BJT model name. The model is specified elsewhere in the input file in the form .model name npn pnp [parameters].	

The following device options are available for Gummel-Poon models. Note that the tables parameter default is determined by the global modelmode option, which defaults to direct mode (tables=0).

Parameter	Symbol	Description	Default
area	A	Area scale factor	1
areab	В	Base area scale factor	A
areac	C	Collector area scale factor	A
М	M	Multiplicity - the number of devices to be placed in parallel.	1
tables	T	Toggle internal tables. When internal tables are on, T-Spice will build a table of current and charge values to speed device evaluation.	1

VBIC device statements are different from the Gummel-Poon bipolars. The VBIC model does not contain any terms for explicitly defining geometry or junction areas.

qname collector base emitter [substrate] [tmode] model [M=M] [SCALE=S] [tnodeout]

Chapter 6: Device Statements BJT (q)

Instead, the device **SCALE** parameter is provided for linearly scaling the device currents and charges. For compatibility with Gummel-Poon devices, the VBIC device statement will also accept the **M** multiplicity factor as a synonym for the **SCALE** parameter.

Parameter	Symbol	Description	Default
scale	S	Scale factor	1

Examples

```
qout1 r32 r23 gnd sub1 npnmod
qout2 r32 r23 gnd sub1 npnmod area=2
```

The area factor scales the generated current; thus, qout2 generates twice as much current as qout1.

Chapter 6: Device Statements Capacitor (c)

Capacitor (c)

A two-terminal capacitor. A nonlinear capacitor can be created using the **g**- element with an expression and the **chg** keyword. See "Nonlinear Capacitor" on page 194.

Syntax

```
cname node1 node2 CapValue | C=CapValue [=C] [M=M] [scale=scale] [tc1=T1]
        [tc2=T2] [dtemp=dtemp]

.or
cname node1 node2 POLY c0 [c1 [...]] [M=M]

or
cname node1 node2 modelname [c=C] [M=M] [scale=scale] [tc1=T1] [tc2=T2]
        [dtemp=dtemp] [1=length] [w=width]

or
cname node1 node2 modelname C [T1 [T2 ]] [M=M] [scale=scale] [dtemp=dtemp]
        [1=length] [w=width]
```

Parameter	Symbol	Description	Default	Units
name		Capacitor name.		
node1		Positive terminal		
node2		Negative terminal.		
С	C	Capacitance.		F
POLY		Keyword indicating that the capacitance is a polynomial function.		
c0, c1,	C ₀ , C ₁ ,	Coefficients of the polynomial function for capacitance.		
М	M	Multiplicity - the number of devices to be placed in parallel.	1	
scale	S	Element scale factor	1	
T1	T_1	First temperature coefficient for capacitance.	0	1/deg
T2	T_2	Second temperature coefficient for capacitance.	0	$(1/\text{deg}^2)$
dtemp	D _{temp}	Difference between the capacitor and the circuit temperatures.	0	deg
1	L	Length of capacitor.		m
w	W	Width of capacitor		m

Chapter 6: Device Statements Capacitor (c)

Equations

If the first syntax is employed the capacitance is calculated as

$$C = M \cdot S[1 + T_1(\Delta T) + T_2(\Delta T)^2] \cdot C_0$$
 (0.8)

where

$$\Delta T = T_{circuit} + D_{temp} - T_{nom} \tag{0.9}$$

where $T_{circuit}$ is set in .temp and T_{nom} in .options tnom.

If the second syntax is employed, capacitance is calculated as

$$C = c_0 + c_1 V + c_2 V^2 + \dots ag{0.10}$$

where *V* denotes the voltage between *node1* and *node2*.

If the third or fourth syntax is employed, there must be a matching ".model" (page 96).

Note:

When the calculated capacitance is greater than 0.1 F, T-Spice issues a warning message.

Examples

cwire w1 gnd 82f

The example defines a capacitor with a value of 82 femtofarads. A common error is to omit the metric abbreviation on the capacitance value, which can lead to unexpected results.

cxx 1 0 poly 0.08 2.08 3.08

This example defines a capacitor \mathbf{cxx} connected between nodes 1 and 0. The capacitance of \mathbf{cxx} is described as

$$C = 0.08 + 1.08V + 2.08V^2 + 3.08V^3$$
(0.11)

where V is the voltage between nodes 1 and 0.

A capacitor exhibiting polynomial dependence on its applied voltage can be modeled using the **POLY** keyword:

c1 n+ n- POLY c0 'c0*vcc'

The waveform for this capacitor is illustrated in "Nonlinear Capacitor" on page 194.

c1 10 20 capxx 0.02 1.5e-2 5.0e-4 dtemp=20

Chapter 6: Device Statements Capacitor (c)

This example illustrates the fourth syntax. The capacitor is named **c1**. Its terminals are connected to nodes **10** and **20**. Its model name is **capxx**. It has two temperature coefficients, **tc1** = **1.5e-2** and **tc2** = **5.0e-4**. Its **dtemp** = **20**. As the model name is **capxx**, the corresponding **.model** statement must also contain the word **capxx**.

Coupled Transmission Line (u)

A set of coupled transmission lines.

There is no limit (besides physical memory) on the number of transmission lines that can be coupled.

Syntax

uname in1 [in2 [...]] in0 out1 [out2 [...]] out0 model length=L [lumps=X]
 [lumptype=Y]

Parameter	Symbol	Description	Default	Units
name		Coupled transmission line name.		
in1 in2		Input terminals (as many as needed).		
out1 out2		Output terminals (as many as needed);.		
 in0		Input reference terminal.		
out0		Output reference terminal.		
model		CPL coupling model name. The model is specified elsewhere in the input file in the form .model name cpl level=l [[r]={matrix}] [c]={matrix} [l]={matrix} [[g]={matrix}]		
length	L	Physical length.		m
lumps	X	Number of lumps used for iterative ladder circuit (ILC) expansion.	1	
lumptype		Type of lumps used for ILC expansion. Y is one of the following: 0 = "Gamma" type lumps 1 = "Tee" type symmetric lumps 2= "Pi" type symmetric lumps 3= Hybrid RGT lumps	3	1/deg

Examples

```
ufine in1 in2 in3 refin out1 out2 out3 refout
+ cplmod l=1m lumps=3 lumptype=1
```

Current Source (i)

A two-terminal ideal current supply.

Exponential, pulse, piecewise linear, frequency-modulated, sinusoidal, and customizable (vectorized) waveforms can be specified.

To specify a current source with an equation, use the "Voltage-Controlled Current Source (g)" (page 191) with an expression that may involve the time() function.

Syntax

```
iname node1 node2 [[DC] I] [AC M [P]] [waveform]
```

name Voltage source name.

node1 Positive terminal—or bus named by an associated **.vector** command.

node2 Negative terminal.

I DC level. (Unit: A)

M AC Magnitude. (*Unit*: A)

P AC Phase (*Unit*: degrees. *Default*: 0.)

waveform Waveform identifier and parameters (see below).

DC, AC, and transient values can be specified independently and in any order.

waveform is one of the following:

Exponential Waveform

```
Initial current. (Unit: amperes.)

Peak current. (Unit: amperes.)

Proper Rise time delay. (Unit: seconds. Default: 0.)

Trope Rise time constant. (Unit: seconds. Default: 0.)

Fall time delay. (Unit: seconds. Default: 0.)

Fall time constant. (Unit: seconds. Default: 0.)
```

The formula used is:

$$I_{i} \qquad 0 \le t \le D_{r}$$

$$I(t) = I_{i} + (I_{p} - I_{i}) \left(1 - \exp\left(\frac{-(t - D_{r})}{T_{r}}\right)\right) \qquad D_{r} \le t \le D_{f}$$

$$I_{i} + (I_{i} - I_{p}) \left(1 - \exp\left(\frac{-(t - D_{f})}{T_{f}}\right)\right) \qquad D_{f} \le t$$

$$(0.12)$$

Pulse Waveform

pulse (Ii Ip [D [Tr [Tf [Pw [Pp]]]]]) [ROUND=RND]

Initial current. (Unit: amperes.)

Peak current. (Unit: amperes.)

D Initial delay. (*Unit:* seconds. *Default:* 0.)

Tr Rise time. (*Unit:* seconds. *Default:* time step from .tran.)

Tf Fall time. (*Unit:* seconds. *Default:* time step from .tran.)

Pw Pulse width. (*Unit:* seconds. *Default:* stop time from .tran.)

Pp Pulse period. (*Unit:* seconds. *Default:* stop time from .tran.)

RND Rounding half-interval. A corner at time T is replaced by a smoothly

differentiable polynomial in the interval (T–RND). The maximum RND is half the distance to the nearest neighboring corner.

(*Default:* 0—no rounding.)

Note that beginning with version 11, T-Spice interprets rise time as the time to go from the initial voltage to the pulse voltage, regardless of which is larger.

Piecewise Linear Waveform

pwl (T1 I1 [T2 I2 ...])[ROUND=RND] [REPEAT[=Tr]] [TD=DELAY]

Time at corner 1, 2, and so on. (*Unit:* seconds.)

Current at corner 1, 2, and so on. (*Unit:* amperes.)

ROUND Rounding half-interval. A corner at time *T* is replaced by a smoothly

differentiable polynomial in the interval (T-RND,T+RND). The maximum RND is half the distance to the nearest neighboring corner.

(*Default:* 0—no rounding.)

REPEAT Starting time within the specified waveform for an infinite number of

repetitions of the subwaveform. If *Tr* is not specified, the entire waveform repeats indefinitely (i.e., *Tr*=0). *Tr* must be less than or equal to the duration of the waveform. Waveforms can only repeat if the start and end points match. If they do not match, the repeat option is ignored. The **REPEAT** keyword can be abbreviated to **R**.

TD Time delay added to the beginning of the waveform. If you specify

corners *T1*, *T2*, *etc*. and **TD**=*DELAY*, then the defined current values will actually be applied at effective corner times *T1*+*DELAY*,

T2+**DELAY**, etc.

Piecewise Linear Waveform File

pwlfile filename [ROUND=RND] [REPEAT[=Tr]] [TD=DELAY]

filename Input file which contains the piecewise linear waveform definition in

a series of time, current pairs, one per line.

ROUND Same meaning as with pwl waveforms

REPEAT Same meaning as with pwl waveforms

TD Same meaning as with pwl waveforms

Frequency-Modulated Waveform

sffm (Io Ip [Fc [Xm [Fs]]])

Offset current. (*Unit:* amperes.)

Peak current. (Unit: amperes.)

Fc Carrier frequency (*Unit:* Hertz. *Default:* 1/T, where T is the stop

time from .tran.)

Xm Modulation index. (*Default:* 0.)

Fs Signal frequency. (*Unit:* Hertz. *Default:* 1/T, where T is the stop

time from .tran.)

The formula used is:

$$I(t) = I_o + I_p \cdot \sin[(2\pi \cdot F_c \cdot t) + Xm \cdot \sin(2\pi \cdot F_s \cdot t)] \tag{0.13}$$

Sinusoidal Waveform

sin (Io Ip [Fr [De [Da [Ph]]]])

Offset current. (*Unit*: amperes.)

Ip Peak current. (*Unit:* amperes.)

Fr Frequency. (*Unit:* Hertz. *Default:* 1/T, where T is the stop time from

.tran.)

Del Delay time. (*Unit:* seconds.)

Damping factor. (*Unit:* 1/seconds.)

Ph Phase advance. (*Unit*: degrees.)

The formula used is:

$$I(t) = I_o + I_p \cdot \sin\left(2\pi \cdot \left(F_r \cdot (t - t_d) + \frac{P}{360}\right)\right) \cdot \exp(-((t - t_d) \cdot D))$$

$$\tag{0.14}$$

Vectorized Waveform

bit|bus ({pattern} [on=A] [off=Z] [delay=D] [pw=P] [rt=R] [ft=F] [lt=L]
 [ht=H]) [ROUND=RND]

pattern	An expression consisting of one or more string or string-multiplier combinations (see below).
Α	On current (Unit: amperes. Default: 0.001.)
Z	Off current. (Unit: amperes. Default: 0.)
D	Delay time. (Unit: seconds. Default: 0.)
P	Pulse width: $\mathbf{P} = \mathbf{R} + T_A = \mathbf{F} + T_Z$, where T_A is the time during a pulse where the current is "on" $(V = \mathbf{A})$ and $T\mathbf{Z}$ is the time during a pulse where the current is "off" $(V = \mathbf{Z})$. (<i>Unit:</i> seconds. <i>Default:</i> 10×10^{-9} .)
R	Rise time. (<i>Unit:</i> seconds. <i>Default:</i> 1×10^{-9} .)
F	Fall time. (<i>Unit</i> : seconds. <i>Default</i> : 1×10^{-9} .)
L	Low time: $\mathbf{L} = \mathbf{F} + T_{\mathbf{Z}}$, where $T_{\mathbf{Z}}$ is the time during a pulse where the current is "off" $(V = \mathbf{Z})$. (<i>Unit</i> : seconds. <i>Default</i> : 10×10^{-9} .)
н	High time: $\mathbf{H} = \mathbf{R} + T_A$, where T_A is the time during a pulse where the current is "on" $(V = \mathbf{A})$. (<i>Unit:</i> seconds. <i>Default:</i> 10×10^{-9} .)
RND	Rounding half-interval. A corner at time T is replaced by a smoothly differentiable polynomial in the interval $(T-RND,T+RND)$. The maximum RND is half the distance to the nearest neighboring corner. (<i>Default:</i> 0—no rounding.)

A bit pattern consists of a set of numbers (possibly associated with multiplier factors) whose binary representations sequentially specify the "on"/"off" structure of the waveform. The pattern takes the form $a(b(x) c(y) \dots)$, where a, b, and c are the optional multiplier factors and c and c are the numbers.

A bus pattern consists of a set of numbers (possibly associated with multiplier factors) whose binary representations—"bit strings"—are grouped together as a waveform bus and treated as a single input. The length of the bit strings is specified by the .vector command. If there are n nodes in a vector, then T-Spice assigns the first n bits of each bit string to those nodes. Extra bits are discarded. If there are not enough bits, the highest-order bits are set to zero. The leftmost node name in the .vector command takes the most significant bit.

Numbers are specified on the device statement in binary, hexadecimal (suffixed by \mathbf{h}), octal (suffixed by \mathbf{o}), or decimal (suffixed by \mathbf{d}) notation. (For decimal representations the number of lower-order bits to be collected is also given.)

Examples

```
il a b 4.5u AC 1.0m 0.0
```

i1 has a DC value of 4.5 microamps, an AC magnitude of 1 milliampere, and an AC phase shift of 0 degrees.

```
i2 n2 GND pwl (0n 0 100n 0 101n 5 300n 5 301n 0 + 500n 0 680n 5 700n 0 880n 5 900n 0)
```

i2 generates a pwl (piecewise linear) input: a single pulse followed by a pair of sawtooth cycles.

```
i3 n3 GND bit ({01010 11011} on=5.0u off=0.0 pw=50n rt=10n ft=30n)
```

i3 generates a **bit** input. Enclosed in braces { } are two binary-valued five-bit patterns specifying the waveform. The two patterns alternate in time. The **on** current value is 5.0 microamps; the **off** current value is zero. The pulse width (**pw**), 50 nanoseconds, is the time the wave is either (ramping up and) on, or (dropping down and) off. The rise time (**rt**), 10 nanoseconds, is the time given for the wave to ramp from off to on; and the fall time (**ft**), 30 nanoseconds, the time given for the wave to drop from on to off.

```
i4 n4 GND bit ({5(01010 5(1))} pw=10n on=5.0u off=0.0)
```

14 generates a *repeating* **bit** input. Two distinct patterns are given again, but now *multiplier factors* are included. The wave consists of two alternating patterns: the first pattern contains five bits, the second is a single bit. The five-bit pattern is followed by five successive repetitions of the single-bit pattern, and this combination is repeated five times. (The same pattern could be described by **{5(3(01) 4(1))}**.) The pulse width and on and off voltages are again specified, but the rise and fall times take default values.

```
.vector bb \{n5\ n6\ n7\ n8\} ib bb GND bus (\{50(Ah)\ 30(7d4)\ 20(1000)\}\ pw=5n\ on=5.0u\ off=0.0)
```

The .vector command defines the bus waveform generated by current source ib. The command assigns the bus a name (bb) and specifies by name the number of bits the bus waveform will have (four: n5 through n8). The current source statement, which contains the bus keyword, specifies waveforms with one or more patterns, along with pulse width and level information.

- The first pattern is **Ah** (hex) = 1010 (binary). Thus, using the names given on the .vector command, n5=1, n6=0, n7=1, and n8=0. The pattern is repeated 50 times (that is, maintained for a time period equal to the pulse width multiplied by 50).
- The next pattern is **7d4**—that is, 7 (decimal) = 111 (binary), or, to four lower-order bits, 0111. So **n5**=0, **n6**=1, **n7**=1, and **n8**=1. The pattern is repeated 30 times.
- The last pattern is **1000** (binary), so **n5**=1, **n6**=0, **n7**=0, and **n8**=0. The pattern is repeated 20 times.

Current-Controlled Current Source (f)

A two-terminal ideal DC current supply with a level that is a function of one or more control currents.

Syntax

Linear

fname node1 node2 vname1 K [Options]

Polynomial

fname node1 node2 **POLY(N)** vname1 [vname2 [vname3]] P_0 P_1 P_2 ... [Options]

fname Current-controlled current source name. Must begin with "f".

node1 Positive terminal. Positive current flows into node1.node2 Negative terminal. Positive current flows out of node2.

Current gain—the ratio of the output current to the control current.POLYKeyword indicating that the output current is a polynomial function

of the control currents.

N Number of control currents (valid values 1-6).

vname1 vname2 ... Name(s) of the voltage source(s) supplying the control current(s).

 $P_0 P_1 P_2 \dots$ Coefficients of the control polynomial.

Options

[MAX=value] [MIN=value] [ABS =[0 | 1]] [TC1=value] [TC2=value] [SCALE=value]

MAX Maximum output voltage value.

MIN Minimum output voltage value.

ABS Output is absolute value if ABS=1.

TC1, **TC2**, First- and second-order temperature coefficients.

SCALE Element value multiplier.

Current is reckoned positive if it enters a voltage source at its first terminal. A similar convention holds for the **current-controlled current source**.

The first statement creates a current source with a level equal to **K** multiplied by the current through voltage source **vname1**.

The second statement creates a current source whose level is a nonlinear polynomial function of the currents through up to three voltage sources. Let:

• x = current through voltage source vname1;

- $y = \text{current through voltage source } vname2 \text{ (if } N \ge 2\text{);}$
- $z = \text{current through voltage source } vname3 \text{ (if } N \ge 3\text{)}.$

Then the controlled current source's level is defined as follows:

If N = 1:

$$P_0 + P_1 x + P_2 x^2 + P_3 x^3 + \dots ag{0.15}$$

If N = 2:

$$P_0 + P_1 x + P_2 y + P_3 x^2 + P_4 x y + P_5 y^2 + P_6 x^3 + P_7 x^2 y + P_8 x y^2 + P_9 y^3 + \dots \tag{0.16}$$

If N = 3:

$$P_{0} + P_{1}x + P_{2}y + P_{3}z + P_{4}x^{2} + P_{5}xy + P_{6}xz + P_{7}y^{2} + P_{8}yz + P_{0}z^{2} + P_{10}x^{3} + P_{11}x^{2}y + P_{12}x^{2}z + P_{13}xy^{2} + P_{14}xyz + P_{15}xz^{2} + P_{16}y^{3} + P_{17}y^{2}z + P_{18}yz^{2} + P_{10}z^{3} + \dots$$

$$(0.17)$$

If N = 1 and only one polynomial coefficient is specified, it is assumed to be P_I , to facilitate the specification of linearly-controlled sources.

Examples

ftest in gnd vin 1.0

Current-controlled current source **ftest** has a gain of 1 and is controlled by the current through **vin**.

f1 0 1 vcntrl 2.0

This defines a current source with a level equal to $2 \times i(\mathbf{ventrl})$, that is, twice the current through \mathbf{ventrl} .

f2 0 1 POLY(1) vcntrl 1m 0 2

This defines a current source with a level equal to $10^{-3} + (2 \times i(\mathbf{vcntrl})^2)$.

f3 0 1 POLY(2) v1 v2 0 1 2 3

This defines a current source with a level equal to $i(\mathbf{v1}) + (2 \times i(\mathbf{v2})) + (3 \times i(\mathbf{v1}) \times i(\mathbf{v2}))$.

f4 0 1 POLY(3) v1 v2 v3 0 1 0 3 0 4

This defines a current source with a level equal to $i(\mathbf{v1}) + (3 \times i(\mathbf{v3})) + (4 \times i(\mathbf{v1}) \times i(\mathbf{v2}))$.

Current-Controlled Voltage Source (h)

A two-terminal ideal DC voltage supply with a level that is a function of one or more controlling currents.

Syntax

Linear

hname node1 node2 vname1 K [Options]

Polynomial

hname node1 node2 POLY(N) vname1 [vname2 [vname3]] P_0 P_1 P_2 ... [Options]

hname Current-controlled voltage source name. Must begin with "h".

node1 Positive terminal.node2 Negative terminal.

K Transresistance—the ratio of the output voltage to the control

current.

POLY Keyword indicating that the output voltage is a polynomial function

of the control currents.

N Number of control currents (valid values 1-6).

vname1 vname2 ... Name(s) of the voltage source(s) supplying the control current(s).

 $P_0 P_1 P_2 \dots$ Coefficients of the control polynomial. Current is reckoned positive

if it enters a voltage source at its first terminal.

Options

[MAX=value] [MIN=value] [ABS =[0 | 1]] [TC1=value] [TC2=value] [SCALE=value]

MAX Maximum output voltage value.

MIN Minimum output voltage value.

ABS Output is absolute value if ABS=1.

TC1, TC2, First- and second-order temperature coefficients.

SCALE Element value multiplier.

The first statement creates a voltage source with a level equal to **K** multiplied by the current through voltage source **vname1**.

The second statement creates a voltage source whose level is a nonlinear polynomial function of the currents through up to three voltage sources. Let

- x = current through voltage source vname1;
- $y = \text{current through voltage source } vname2 \text{ (if } N \ge 2);$

• $z = \text{current through voltage source } vname3 \text{ (if } N \ge 3\text{)}.$

Then the controlled voltage source's level is defined as follows:

If N = 1:

$$P_0 + P_1 x + P_2 x^2 + P_3 x^3 + \dots ag{0.18}$$

If N = 2:

$$P_0 + P_1 x + P_2 y + P_3 x^2 + P_4 x y + P_5 y^2 + P_6 x^3 + P_7 x^2 y + P_8 x y^2 + P_0 y^3 + \dots$$
 (0.19)

If N = 3:

$$P_{0} + P_{1}x + P_{2}y + P_{3}z + P_{4}x^{2} + P_{5}xy + P_{6}xz + P_{7}y^{2} + P_{8}yz + P_{0}z^{2} + P_{10}x^{3} + P_{11}x^{2}y + P_{12}x^{2}z + P_{13}xy^{2} + P_{14}xyz + P_{15}xz^{2} + P_{16}y^{3} + P_{17}y^{2}z + P_{18}yz^{2} + P_{10}z^{3} + \dots$$

$$(0.20)$$

If N = 1 and only one polynomial coefficient is specified, it is assumed to be P1, to facilitate the specification of linearly-controlled sources.

Examples

htest in gnd vin 1.23e4

Current-controlled voltage source **htest** has a transresistance of 12.3 kilohms and is controlled by the current through **vin**.

h1 0 1 vcntrl 2.0

This defines a voltage source with a level equal to $2 \times i(\mathbf{ventrl})$, that is, twice the current through \mathbf{ventrl} .

h2 0 1 POLY(1) vcntrl 1m 0 2

This defines a voltage source with a level equal to $10^{-3} + (2 \times i(\mathbf{vcntrl})^2)$.

h3 0 1 POLY(2) v1 v2 0 1 2 3

This defines a voltage source with a level equal to $i(\mathbf{v1}) + (2 \times i(\mathbf{v2})) + (3 \times i(\mathbf{v1}) \times i(\mathbf{v2}))$.

h4 0 1 POLY(3) v1 v2 v3 0 1 0 3 0 4

This defines a voltage source with a level equal to $i(\mathbf{v1}) + (3 \times i(\mathbf{v3})) + (4 \times i(\mathbf{v1}) \times i(\mathbf{v2}))$.

Chapter 6: Device Statements Diode (d)

Diode (d)

A two-terminal *p-n* junction diode.

Syntax

name	Diode name.
node1	Positive terminal (<i>p</i> side).
node2	Negative terminal (<i>n</i> side).
model	Diode model name. This is specified elsewhere in the input file in the form .model name d [parameters] Schottky barrier diodes may be simulated using an appropriate model specification.
A	Area of the diode. (Units: unitless for level 1, square meters for level 3. <i>Default</i> : 1.)
М	Multiplicity—the number of devices to be placed in parallel. (<i>Default:</i> 1.)
Τ	Toggle internal tables. When internal tables are on, T-Spice will build a table of current and charge values to speed device evaluation. (<i>Default:</i> 0.)
L	Length of the diode
W	Width of the diode
PJ	Junction periphery. Overrides the model PJ value. (Units: Unitless for level 1, meters for level 3.)
LM	Length of metal capacitor. Overrides the model LM value. (Units: meters, for level 3 only)
WM	Width of metal capacitor. Overrides the model WM value. (Units: meters, for level 3 only)
LP	Length of polysilicon capacitor. Overrides the model LP value. (Units: meters, for level 3 only)
WP	Width of polysilicon capacitor. Overrides the model WP value. (Units: meters, for level 3 only)

Examples

dpn2 n1 n2 dmodel
D3 n3 n4 dmodel 3

The **area** factor scales the diode current; thus, **D3** provides three times as much current as **dpn2**, given the same bias conditions.

Chapter 6: Device Statements Inductor (I)

Inductor (I)

A two-terminal inductor.

Coupled (mutual) inductors can be defined with the ${\bf k}$ statement.

Syntax

lname node1 node2 POLY C0 C1 ... [M=M]

Parameter	Symbol	Description
name		Inductor name.
node1		Positive terminal.
node2		Negative terminal.
L	L_0	Inductance. (Unit: henries. Default: 0.)
POLY		Keyword indicating that the inductance is a polynomial function.
C0 C1	<i>c</i> ₀ , <i>c</i> ₁ , <i>c</i> ₂	Coefficients of the polynomial. The inductance is $\mathbf{C0} + (\mathbf{C1} \times i) + (\mathbf{C2} \times i^2)$, where i is the current through the inductor.
М	M	Multiplicity—the number of devices to be placed in parallel. (<i>Default:</i> 1.)
scale	S	Element scale factor. (Default: 1.)
Гс1	T_{c1}	First temperature coefficient for inductance. (<i>Unit</i> : (1/deg C) ²). (<i>Default</i> : 0.)
Tc2	T_{c2}	Second temperature coefficient for inductance. (<i>Unit:</i> (1/deg C)2). (<i>Default:</i> 0.)
Dtemp	D_{temp}	Difference between the inductor and the circuit temperatures. (<i>Unit:</i> Deg C). (<i>Default:</i> 0.)
R	R_0	Parasitic resistance of the inductor. (<i>Unit:</i> ohm). (<i>Default:</i> 0.)

The formula for inductance is:

$$L = MS[1 + T_{c1}(\Delta T) + T_{c2}(\Delta T)^{2}]L_{0}$$
(0.21)

Chapter 6: Device Statements Inductor (I)

where

$$\Delta T = T_{circuit} + D_{temp} - T_{nom} \tag{0.22}$$

where $T_{circuit}$ is set in .temp and T_{nom} in .options tnom.

The formula for parasitic resistance is:

$$R_{parasitic} = R_0/M. ag{0.23}$$

Note:

When the calculated inductance is greater than or equal to 0.1 H, T-Spice issues a warning message.

Examples

L1 na nb 10u

The example specifies an inductor with a value of 10 microhenries.

L1 a c 25 m=10scale=20R=10 dtemp=20 tc1=1.5e-2 tc2=5e-4

Chapter 6: Device Statements Instance (x)

Instance (x)

An instantiation of a subcircuit definition, a Verilog-A device, or an external model device.

Subcircuit must be defined elsewhere in the input file with a .subckt/.ends block.

Nodes several levels deep within a subcircuit hierarchy are named using hierarchical notation in the form **xinstance.xinstance.node**.

The \mathbf{x} key letter is also used to instance devices that are defined by Verilog-A modules and by external user-defined models.

Syntax

name Subcircuit instance name.

node1 node2 ... Specific instance nodes. The order of nodes named corresponds to

the order specified by the .subckt command.

parameter=X Parameter(s) from the subcircuit definition or external model whose

default value(s) are to be *overridden* by the assignment(s) made here. **X** can be a number or an expression. Subcircuit parameters have local scope. Parameters can be written in any order in both definition and instances. Parameters not specified here take their default values.

subcircuit Original subcircuit definition name.

modulename A Verilog-A module name

modelname External model name. T-Spice matches this device with a model

defined using a .model command with a matching modelname and

whose type is **external**.

M Multiplicity—the number of representations of parallel instances of

the subcircuit. T-Spice multiplies the subcircuit terminal currents and charges by **M**. **M** can be any positive integer or decimal. (*Default:* 1.)

Examples

```
.subckt inv in out Vdd length=1.25u nwidth=2u pwidth=3u
mt1 out in GND GND nmos l='length' w='nwidth'
mt2 out in Vdd Vdd pmos l='length' w='pwidth'
c2 out GND 800f
.ends inv
...
xinv1 a1 a2 Vdd inv nwidth=2.5u
```

The .subckt/.ends block creates a three-terminal subcircuit (an inverter) and names it inv. The subcircuit consists of two MOSFETs (one *n*-type and one *p*-type) and an 800-femtofarad capacitor. The instance statement defines an instance, named inv1, of the inverter subcircuit inv. Following the instance name are the three terminals of the instance (in order corresponding to that of the original

Chapter 6: Device Statements Instance (x)

subcircuit definition); the name of the subcircuit to which it refers; and a new assignment for parameter **nwidth**, which overrides the default value assigned in the definition.

```
x1 1 0 resmodel res=1k
```

This statement instantiates a device with terminals attached to nodes $\bf 0$ and $\bf 1$ and matches it to a model defined using

```
.model resmodel external winfile="res.dll"
```

The parameter **res=1k** is passed to the external model.

JFET (j)

A transistor with drain, gate, and source terminals and an optional fourth terminal. (JFET stands for *junction field effect transistor*.)

Syntax

jname drain gate source model [[area=]A] [M=M] [tables=T]

nameJFET name.drainDrain terminal.gateGate terminal.sourceSource terminal.

model JFET model name. This is specified elsewhere in the input file in the

form

.model name njf|pjf [parameters]

A Area scale factor. (Default: 1.)

M Multiplicity—the number of devices to be placed in parallel.

(Default: 1.)

Toggle internal tables. When internal tables are on, T-Spice will

build a table of current and charge values to speed device evaluation.

(Default: 0.)

Examples

```
jout 4 8 6 jfet2
j1 vdd in out jfet2 3
```

The **area** factor scales the generated currents; thus, the currents at the terminals of **j1** are three times those at the terminals of **jout**.

MESFET (z)

A transistor with three or four terminals: drain, gate, and source. (MESFET stands for *metal semiconductor field effect transistor.*)

Syntax

```
zname drain gate source [bulk] model [[area=]A] [1=L] [w=W] [M=M] [tables=T]
```

For HSPICE compatibility, you can create a MESFET device in T-Spice using a device name **jname** instead of **zname**. The syntax for these MESFET device statement is the same.]

name MESFET name. drain Drain terminal. Gate terminal. gate source Source terminal. bulk Bulk terminal. model MESFET model name. This is specified elsewhere in the input file in the form .model name nmf | pmf | njf | pjf [parameters] Α Area scale factor. (Default: 1.) L Device length. (*Unit:* meters.) W Device width. (Unit: meters.) М Multiplicity—the number of devices to be placed in parallel. (Default: 1.)

Toggle internal tables. When internal tables are on, T-Spice will build a table of current and charge values to speed device evaluation.

Examples

T

```
zout 4 8 6 mfet2
z1 vdd in out mfet2 3
ztest drain gate source vbg nmes1 w=20u 1=2u
```

(Default: 0.)

The **area** factor scales the generated current; thus, the currents at the terminals of **z1** are three times those at the terminals of **zout**. The third example shows specification of the bulk terminal and of width and length. The area is fixed by the given width and length; any **area** specification is overridden by this computed area.

MOSFET (m)

A transistor with four terminals: drain, gate, source, and bulk. (MOSFET stands for *metal oxide semiconductor field effect transistor*.)

Refer to Additional Model Documentation for complete documentation of the model parameter variations for each MOSFET level.

Unique T-Spice device model parameters can be found in "MOSFET Levels 8, 49 and 53 (BSIM3 Revision 3.3)" on page 418, "Variables for which equations are not given here are as follows." on page 426, "MOSFET Levels 44 and 55 (EKV Revision 2.6)" on page 447, and "MOSFET Level 57 (BSIM3SOI)" on page 453.

Syntax

mname drain gate source bulk model [l=L] [w=W] [ad=Ad] [pd=Pd] [as=As]
 [ps=Ps] [nrd=Nrd] [nrs=Nrs] [rdc=Rdc] [rsc=Rsc] [rsh=Rsh] [geo=Geo] [M=M]
 [tables=T]

name	MOSFET name.
drain	Drain terminal.
gate	Gate terminal.
source	Source terminal.
bulk	Bulk terminal.
model	MOSFET model name. The model is declared elsewhere in the input file in the form: .model name nmos pmos level=1 2 3 4 5 9 13 20 28 30 31 40 47 49 52 100 [parameters]
L	Channel length. (<i>Unit:</i> meters. <i>Default:</i> set by the .options defl command.)
W	Channel width. (<i>Unit:</i> meters. <i>Default:</i> set by the .options defw command.)
Ad	Drain area. (<i>Unit:</i> square meters. <i>Default:</i> see "Drain area" on page 176.)
Pd	Drain perimeter. (<i>Unit:</i> meters. <i>Default:</i> see "Drain perimeter" on page 177.)
As	Source area. (<i>Unit:</i> square meters. <i>Default: see</i> "Source area" on page 176.)
Ps	Source perimeter. (<i>Unit:</i> meters. <i>Default:</i> see "Source perimeter" on page 177.)
Nrd	Number of squares of diffusion—drain. (<i>Default:</i> set by the .options defnrd command.)
Nrs	Number of squares of diffusion—source. (<i>Default:</i> set by the .options defnrs command.)

Rdc	Additional contact resistance, which overrides the rdc model parameter value—drain. (<i>Unit</i> : Ohms. <i>Default</i> : 0.0)
Rsc	Additional contact resistance, which overrides the rsc model parameter value—source. (<i>Unit</i> : Ohms. <i>Default</i> : 0.0)
Rsh	Source-Drain sheet resistance, which overrides the rsh model parameter. (<i>Unit</i> : Ohms/square. <i>Default</i> : 0.0)
Geo	Selector for source/drain sharing of stacked devices (Default: 0)
М	Multiplicity—the number of devices to be placed in parallel. (<i>Default:</i> 1.)
T	Toggle internal tables. When internal tables are on, T-Spice will build a table of current and charge values to speed device evaluation. (<i>Default:</i> 0.)

Default values for **Ad**, **Pd**, **As**, and **Ps** depend on the **acm** model parameter. Default value for **T** depends on the global modelmode option, which defaults to direct mode (tables=0).

Parasitic diodes are always addes for MOSFETs in direct model evaluation mode. For table based model evaluation, the diodes are replaced with nonlinear capacitors when the option **mosparasitics** is turned off. One diode is placed between the bulk and the source, and another between the bulk and the drain.

The parasitic diode characteristics are determined by the MOSFET device parameters **as**, **ad**, **pd**, **ps**, and **geo**, as well as the MOSFET model parameters **acm**, **cj**, **cjsw**, **cjgate**, **js**, **jsw**, **is**, **n**, **nds**, **vnds**, and **hdif**. The quantity **weff** also plays a role in determining default values for source and drain areas and perimeters for some values of **acm**.

The parasitic diode equations have been modified from the standard diode equations, in an effort to improve compatibility with other SPICE simulators and to improve simulator convergence. The diode charge/capacitance equations are unchanged; they are the same as for regular diodes. The DC current equations for MOSFET parasitic diodes are as follows.

If the MOSFET bulk-source voltage **vbs** is positive (the bulk-source diode is forward-biased), then the bulk-source diode's DC current is given by

$$ibs = isatbs \times (exp(vbs/(n \times vt) - 1))$$
 (0.24)

where $\mathbf{vt} = kT/q$ (the thermal voltage), and the diode's saturation current **isatbs** is

$$isatbs = (js \times aseff) + (jsw \times pseff)$$
 (0.25)

if that value is positive, or is zero otherwise. The effective source area **aseff** and perimeter **pseff** are computed as described below, depending on the value of the **acm** parameter.

Similarly, if the MOSFET bulk-drain voltage **vds** is positive (the bulk-drain diode is forward-biased), the bulk-drain diode's DC current is

$$ibd = isatbd \times (exp(vbd/(n \times vt) - 1))$$
 (0.26)

where the diode saturation current isatbd is

$$isatbd = (js \times adeff) + (jsw \times pdeff)$$
 (0.27)

if that value is positive, or is otherwise. The effective drain area **adeff** and perimeter **pdeff** are computed as described below.

The exponential function in both diodes is replaced by a linear extension when the current is larger than the value of the **expli** model parameter. The linear extension is chosen such that the diode current function is continuously differentiable at the transition point where the diode current equals **expli**.

The *n* parameter is now supported for MOSFET parasitic diodes.

When a MOSFET parasitic diode with saturation current **isat** is reverse-biased with a negative voltage **vdi**, then its current **idi** behaves as follows.

If 0 > vdi > vnds:

$$idi = isat \times vdi$$
 (0.28)

If vdi < vnds:

$$idi = isat \times (vnds + (vdi - vnds)/nds)$$
 (0.29)

The effective source and drain areas and perimeters are computed as in the table below, depending on the value of the **acm** parameter.

If **acm** = 3, the **geo** device parameter affects these calculations. The **geo** parameter is used to handle stacked MOSFET devices properly, and it can have the following values:

- **geo = 0** (default): the drain and the source are not shared by other devices.
- **geo = 1**: the drain is shared with another device.
- **geo = 2**: the source is shared with another device.
- geo = 3: the drain and the source are shared with other devices.

The **geo** parameter may be specified on the MOSFET device statement, at any point after the model name.

Each parasitic diode inherits its multiplicity factor **m** from its "parent" MOSFET. The values of **defas**, **defad**, and **moscap** are specified using **.options**.

	acm = 0	acm = 1	acm = 2	acm = 3
Source area				
with as	$\text{as} \times \text{wmlt}^2$	$\text{weff} \times \text{wmlt}$	$\text{as} \times \text{wmlt}^2$	$\mathbf{as} \times \mathbf{wmlt}^2$
without as	I × w (if moscap=1) defas (otherwise)	weff \times wmlt	$2\times \text{hdifeff}\times \text{weff}$	$2 \times \text{hdifeff} \times \text{weff}$ (if $\text{geo} = 0 \text{ or } 1$) $\text{hdifeff} \times \text{weff}$ (otherwise)
Drain area				
with ad	$\text{ad} \times \text{wmlt}^2$	$\text{weff} \times \text{wmlt}$	$\text{ad} \times \text{wmlt}^2$	$\text{ad} \times \text{wmlt}^2$

	acm = 0	acm = 1	acm = 2	acm = 3
without ad	I × w (if moscap = 1) defad (otherwise)	weff × wmlt	$2 \times \text{hdifeff} \times \text{weff}$	2 × hdifeff × weff (if geo = 0 or 2) hdifeff × weff (otherwise)
Source perimeter				
with ps	$\mathbf{ps} \times \mathbf{wmlt}$	weff	$\textbf{ps} \times \textbf{wmlt}$	$\mathbf{ps} \times \mathbf{wmlt}$
without ps	$2 \times (l+w)$ (if moscap = 1) defps (otherwise)	weff	$\begin{array}{l} 4 \times \text{hdifeff} + \\ 2 \times \text{weff} \end{array}$	$4 \times \text{hdifeff} + \text{weff}$ (if $\text{geo} = 0 \text{ or } 1$) $2 \times \text{hdifeff}$ (otherwise)
Drain perimeter				
with pd	$\mathbf{pd} \times \mathbf{wmlt}$	weff	$\text{pd} \times \text{wmlt}$	$\mathbf{pd} \times \mathbf{wmlt}$
without pd	$2 \times (l+w)$ (if moscap = 1) defpd (otherwise)	weff	$\begin{array}{l} 4 \times \text{hdifeff} + \\ 2 \times \text{weff} \end{array}$	$4 \times \text{hdifeff} + \text{weff}$ (if $\text{geo} = 0 \text{ or } 2$) $2 \times \text{hdifeff}$ (otherwise)

The parasitic drain/source diodes' sidewall capacitance now makes use of the new **cjgate** parameter, which describes the sidewall capacitance per unit length along the gate edge. If **cjgate** is specified and the MOSFET's effective width **weff** is not greater than the diode's perimeter, then the total sidewall capacitance is given by:

$$csw = cjsw \times (p - weff) + (cjgate \times weff)$$
 (0.30)

where \boldsymbol{p} is \boldsymbol{ps} for a source diode or \boldsymbol{pd} for a drain diode. Otherwise, if **cjgate** is not specified or $\boldsymbol{weff} > \boldsymbol{p}$, the total sidewall capacitance is:

$$\mathbf{csw} = \mathbf{cjsw} \times \mathbf{p} \tag{0.31}$$

Examples

m12 n1 n2 GND GND ndep l=10u w=5u ad=100p as=100p pd=40u ps=40u

Chapter 6: Device Statements Mutual Inductor (k)

Mutual Inductor (k)

A coupled pair of inductors.

Syntax

kname inductor1 inductor2 K

name Mutual inductor name.

inductor1 First inductor.

*inductor*2 Second inductor.

K Coefficient of coupling $(0 < K \le 1)$.

Examples

k1 La Lb 10u

The example illustrates coupling between two inductors La and Lb, defined elsewhere in the input file:

La nodela node2a 10m Lb node1b node2b 20m

The *order* of node naming on the inductor statements determines the relative directions of current flow in the mutual inductor. The current flow from **node1a** to **node2a** (inductor **La**) is in the same direction as from **node1b** to **node2b** (inductor **Lb**). To reverse the current flow in either inductor, reverse the node order on the appropriate inductor statement.

Chapter 6: Device Statements Resistor (r)

Resistor (r)

A two-terminal resistor.

The resistance R is influenced by the temperature as follows:

```
R = N(1 + AT + BT^2)T = Ta - Tn
```

where N, A, B are device parameters described below; Ta (the "ambient" temperature) is set by the .temp command; and Tn (the "nominal" temperature) is set by the .options thom command.

Resistors can be specified using geometric and physical parameters such as *I*, *w*, and *rsh*. For a description of how resistance is calculated using these parameters, refer to the device model "Resistor" on page 463.

Optional capacitors may be included between the terminals and a bulk node (usually ground) to obtain a simple transmission line model.

Syntax

```
rname node1 node2 r=r [resistor_parameters]
or
rname node1 node2 r [tc1[tc2]] [resistor_parameters]
or
rname node1 node2 modelname + [[r=r] [resistor_parameters]
or
rname node1 node2 modelname r [tc1[tc2]] [resistor_parameters]
```

nameResistor name.node1Positive terminal.node2Negative terminal.

modelname Name of resistor model. Must match .model name when type is r.

For additional information, see ".model" (page 96).

r=resistance Nominal resistance. (*Unit:* ohms.)

In the first syntax and the third syntax, the **resistor_parameters** field is of the form:

```
[tc1=tc1] [tc2=tc2] [noise=noise] [m=mult] [scale=devscale] [ac=acres] [dtemp=dtemp] [1=1] [w=w] [c=c]
```

In the second syntax and the fourth syntax, the **resistor_parameters** field is of the form:

Chapter 6: Device Statements Resistor (r)

[noise=noise] [\mathbf{m} =mult] [\mathbf{scale} =scale] [\mathbf{ac} =acres] [\mathbf{dtemp} =dtemp] [\mathbf{l} =1] [\mathbf{w} =w] [\mathbf{c} =c]

Parameter	Description
tc1	First-order temperature coefficient. (Default: resistor model parameter <i>tc1r</i> , 0 if no model is specified.)
tc2	Second-order temperature coefficient. (Default: resistor model parameter <i>tc2r</i> ; 0 if no model is specified.)
noise	Noise source multiplier. noise=0 eliminates resistor noise. (Default: resistor model parameter <i>noise</i> ; 1 if no model is specified.)
mult	Multiplicity—the number of devices to be placed in parallel. (<i>Default:</i> 1.)
devscale	Multiplies resistance and capacitance of device. (Default: 1.)
acres	Specifies device resistance during AC analysis. (<i>Default:</i> resistor model parameter <i>rac</i> ; if no model is specified, default is DC resistance.)
dtemp	Specifies the difference between the device temperature and the general circuit operating temperature. (<i>Default:</i> 0.)
1	Resistor length. Scaled length is obtained by multiplying <i>I</i> by .options scale (not the element parameter <i>devscale</i> , above) or the resistor model parameter <i>shrink</i> . (<i>Default:</i> resistor model parameter <i>I</i> .)
w	Resistor width. Scaled width is obtained by multiplying w by .options scale (not the element parameter devscale , above) or the resistor model parameter shrink . (<i>Default:</i> resistor model parameter w .)
С	Capacitance between node2 and a bulk node specified as a model parameter. Multiplied by .options scale . (<i>Default:</i> resistor model parameter <i>cap</i> .)

Note:

If T-Spice calculates the effective resistance, R_{eff} , to be less than $10^{-5} \Omega$, then a warning message is issued and the effective resistance is automatically assigned a value of $10^{-5} \Omega$. See the model description "Resistor" on page 463 for calculation of R_{eff} .

Examples

```
r1 2 1 30K TC=1e-2,1e-4
```

This produces a resistor of resistance 30 kilohms at the nominal temperature tnom. If the temperature T is different from **tnom**, the resistance is 30,000*(1+0.01*(T-tnom)+0.0001*(T-tnom)*(T-tnom)). For example, if the circuit temperature is 127 degrees and **tnom** is 27 degrees, the resistance is 30,000*(1+0.01*100+0.0001*100*100) = 90,000 Ohms.

```
r1 n1 n2 rmod l=5u w=10u
.model rmod r rsh=1k cap=10pf cratio=0.5
```

Chapter 6: Device Statements Resistor (r)

This example creates a resistor between nodes **n1** and **n2** of size 500 Ohms ($r = l^* r s h/w$) as well as two capacitors, 5 picofarads each, one between **n1** and **Gnd**, the other between **n2** and **Gnd**.

Voltage- or Current-Controlled Switch (s)

A switch is implemented as a resistor between **node1** and **node2**, whose resistance is controlled by the controlling voltage or current. (See also the device model "Switch" on page 466.)

Syntax

The general syntax for T-Spice's voltage-controlled switch element is:

sname node1 node2 control1 control2 modelname

The syntax for a current-controlled switch is:

sname node1 node2 vsourcename modelname

name Switch name.node1 Positive terminal.node2 Negative terminal.

control1 Name of the voltage source supplying the control voltage.

control2 Name of the voltage source supplying the control voltage.

vsourcename Controlling current for a current-controlled switch.

modelname Name of resistor model. Must match .model modelname when type

is **sw** or **csw**. For additional information, see ".model" (page 96).

Resistance is **roff** when the switch is off and **ron** when the switch is on. The switch is on when the control voltage or current for the switch is greater than its threshold voltage or current.

The **ron**, **roff**, and threshold values for the switch are specified in a **.model** statement whose model name matches the **modelname** on the device statement.

T-Spice switch elements can display hysteresis, so that the threshold value is different when the control voltage/current is increasing than when it is decreasing. For a voltage-controlled switch, the threshold voltage is **vt** when **v(control1, control2)** is increasing, and **vt-vh** when **v(control1, control2)** is decreasing. For a current-controlled switch the threshold current is **it** when **i(vsourcename)** is increasing, and **it-ih** when **i(vsourcename)** is decreasing. The switch is on when the control voltage or current is greater than the threshold value.

The **dv** and **di** parameters define a small interval around the threshold in which a smooth transition between **ron** and **roff** is made.

Examples

Voltage-Controlled Switch

The following two examples would both produce voltage-controlled switches:

```
s1 n1 n2 c1 c2 swmod
.model swmod sw ron=1 roff=1e12 vt=2.5
```

and

```
s1 out 0 0 in swmod
.model swmod sw vt=0 dv=0.2
```

The waveform for this switch is illustrated in "Voltage-Controlled Resistor" on page 194.

Current-Controlled Switch

The following example demonstrates the modeling of a current-controlled switch:

```
s1 out 0 vin swmod
.model swmod csw it=0.7 di=0.1
```

This switch would produce the following waveform:

Chapter 6: Device Statements Transmission Line (t)

Transmission Line (t)

A mechanism for "lossless" or "lossy" signal propagation.

The "lossless" transmission line is described by characteristic impedance and delay; the "lossy" transmission line is described by RLCG parameters.

Syntax

"Lossless" Transmission Line

tname node1 node2 node3 node4 z0=Z [td=D] [f=F [nl=N]]

name	Transmission line name.
node1 node4	Terminals. node1 (+) and node2 (-) are at one end of the transmission line, node3 (+) and node4 (-) at the opposite end.
Z	Impedance. (Unit: ohms.)
D	Transmission delay. The delay may instead be specified indirectly from ${\it F}$ and ${\it N}$. (<i>Unit:</i> seconds.)
F	Line frequency. (<i>Unit</i> : Hertz. <i>Default</i> : 1×10^9 .)
N	Normalized number of wavelengths. The transmission delay is the ratio of the wavelength number N to the line frequency F . (<i>Default:</i> 0.25.)

"Lossy" Transmission Line

tname node1 node2 node3 node4 r=R l=L c=C g=G length=W [lumps=X] [lumptype=Y]

name	Transmission line name.
node1 node4	Terminals. node1 (+) and node2 (-) are at one end of the transmission line, node3 (+) and node4 (-) at the opposite end.
R	Distributed resistance. (Unit: ohms/meter.)
L	Distributed inductance. (<i>Unit:</i> henries/meter.)
С	Distributed capacitance. (Unit: farads/meter.)
G	Distributed conductance. (Unit: siemens/meter.)
W	Physical length. (<i>Unit</i> : meters.)
X	Number of lumps used for iterative ladder circuit (ILC) expansion. (<i>Default:</i> 1.)
Υ	Type of lumps used for ILC expansion (see below). (Default: 3.)

Chapter 6: Device Statements Transmission Line (t)

Y is one of the following:

0	"Gamma" type lumps.
1	"Tee" type symmetric lumps.
2	"Pi" type symmetric lumps.
3	Hybrid RGT lumps (default).

Examples

tline2 pad2 GND pin2 GND z0=100 td=10ns tline3 drive GND out GND z0=300 f=100meg nl=.1 $\,$

Voltage Source (v)

A two-terminal ideal voltage supply.

Exponential, pulse, piecewise linear, frequency-modulated, sinusoidal, and customizable (vectorized) waveforms are available.

Voltage sources whose waveform is described using an expression can be created using the **e**-element with an expression and the **time()** function.

Syntax

```
vname node1 node2 [[DC] V] [AC M [P]] [waveform]
```

name Voltage source name.

node1 Positive terminal—or bus named by an associated **.vector** command.

node2 Negative terminal.

V DC level between **node1** and **node2**. (Unit: volts. Default: 0.)

waveform Waveform identifier and parameters (see below).

M AC magnitude. (*Unit*: volts.)

P AC phase. (*Unit:* degrees. *Default:* 0.)

DC, AC, and transient values can be specified independently and in any order.

waveform is one of the following:

Exponential Waveform

```
exp (Vi Vp [Dr [Tr [Df [Tf]]])
```

Vi Initial voltage. (Unit: volts.)Vp Peak voltage. (Unit: volts.)

Dr Rise time delay. (Unit: seconds. Default: 0.)
Tr Rise time constant. (Unit: seconds. Default: 0.)
Df Fall time delay. (Unit: seconds. Default: 0.)
Tf Fall time constant. (Unit: seconds. Default: 0.)

Pulse Waveform

```
pulse (Vi Vp [D [Tr [Tf [Pw [Pp]]]]]) [ROUND=RND]
```

Vi Initial voltage. (Unit: volts.)

Vp Peak voltage. (*Unit:* volts.)

D Initial delay. (*Unit:* seconds. *Default:* 0.)

Tr Rise time. (*Unit:* seconds. *Default:* time step from .tran.)

Tf Fall time. (*Unit:* seconds. *Default:* time step from .tran.)

Pw Pulse width. (*Unit:* seconds. *Default:* stop time from .tran.)

Pp Pulse period. (*Unit:* seconds. *Default:* stop time from .tran.)

RND Rounding half-interval. A corner at time T is replaced by a smoothly

differentiable polynomial in the interval (T–RND). The maximum RND is half the distance to the nearest neighboring corner.

(*Default:* 0—no rounding.)

Note that rise time is not necessarily a 'rise' time, but is the time to go from the initial voltage to the pulse voltage, regardless of whether it's smaller or larger.

Piecewise Linear Waveform

pwl (T1 V1 [T2 V2 ...]) [ROUND=RND] [REPEAT[=Tr]] [TD=DELAY]

Time at corner 1, 2, and so on. (*Unit:* seconds.)

Voltage at corner 1, 2, and so on. (*Unit:* volts.)

ROUND Rounding half-interval. A corner at time T is replaced by a smoothly

differentiable polynomial in the interval (T–RND,T+RND). The maximum RND is half the distance to the nearest neighboring corner.

(*Default:* 0—no rounding.)

REPEAT Starting time within the specified waveform for an infinite number of

repetitions of the subwaveform. If *Tr* is not specified, the entire waveform repeats indefinitely (i.e., *Tr*=0). *Tr* must be less than or equal to the duration of the waveform. Waveforms can only repeat if the start and end points match. If they do not match, the repeat option is ignored. The **REPEAT** keyword can be abbreviated to **R**.

TD Time delay added to the beginning of the waveform. If you specify

corners **71**, **72**, etc. and **TD**=**DELAY**, then the defined voltage values

will actually be applied at effective corner times T1+DELAY,

T2+DELAY, etc.

Piecewise Linear Waveform File

pwlfile filename [ROUND=RND] [REPEAT[=Tr]] [TD=DELAY]

filename Input file which contains the piecewise linear waveform definition in

a series of time, voltage pairs, one per line.

ROUND Same meaning as with pwl waveforms

REPEAT Same meaning as with pwl waveforms

TD Same meaning as with pwl waveforms

Frequency-Modulated Waveform

sffm (Vo Vp [Fc [Xm [Fs]]])

Vo Offset voltage. (Unit: volts.)

Vp Peak voltage. (*Unit:* volts.)

Fc Carrier frequency (*Unit:* Hertz. *Default:* 1/T, where T is the stop

time from .tran.)

Xm Modulation index. (*Default*: 0.)

Fs Signal frequency. (*Unit:* Hertz. *Default:* 1/T, where T is the stop

time from .tran.)

Sinusoidal Waveform

sin (Vo Vp [Fr [De [Da [Ph]]]])

Vo Offset voltage. (Unit: volts.)

Vp Peak voltage. (*Unit*: volts.)

Frequency. (*Unit:* Hertz. *Default:* 1/T, where T is the stop time from

.tran.)

Delay time. (*Unit:* seconds.)

Damping factor. (*Unit:* 1/seconds.)

Ph Phase advance. (*Unit:* degrees.)

Vectorized Waveform

bit|bus ({pattern} [on=A] [off=Z] [delay=D] [pw=P] [rt=R] [ft=F] [lt=L]
 [ht=H]) [ROUND=RND]

pattern An expression consisting of one or more string or string-multiplier

combinations (see below).

A On voltage (Unit: volts. Default: 0.001.)

Z Off voltage (*Unit*: volts. *Default*: 0.)

D Delay time. (*Unit:* seconds. *Default:* 0.)

P Pulse width: $P = R + T_A = F + T_Z$, where T_A is the time during a pulse

where the voltage is "on" $(V = \mathbf{A})$ and $T\mathbf{Z}$ is the time during a pulse where the voltage is "off" $(V = \mathbf{Z})$. (*Unit:* seconds. *Default:* $10 \times 10^{-}$

⁹.)

R Rise time. (*Unit*: seconds. *Default*: 1×10^{-9} .)

Fall time. (*Unit*: seconds. *Default*: 1×10^{-9} .)

Low time: $L = F + T_Z$, where T_Z is the time during a pulse where the

voltage is "off" ($V = \mathbf{Z}$). (*Unit*: seconds. *Default*: 10×10^{-9} .)

H High time: $\mathbf{H} = \mathbf{R} + T_A$, where T_A is the time during a pulse where the voltage is "on" $(V = \mathbf{A})$. (*Unit*: seconds. *Default*: 10×10^{-9} .)

RND Rounding half-interval. A corner at time T is replaced by a smoothly differentiable polynomial in the interval (T-RND,T+RND). The

maximum RND is half the distance to the nearest neighboring corner.

(Default: 0—no rounding.)

A bit pattern consists of a set of numbers (possibly associated with multiplier factors) whose binary representations sequentially specify the "on"/"off" structure of the waveform. The pattern takes the form $a(b(x) c(y) \dots)$, where a, b, and c are the optional multiplier factors and c and c are the numbers.

A *bus* pattern consists of a set of numbers (possibly associated with multiplier factors) whose binary representations—"bit strings"—are grouped together as a waveform bus and treated as a single input. The length of the bit strings is specified by the **.vector** command. If there are *n* nodes in a vector, then T-Spice assigns the first *n* bits of each bit string to those nodes. Extra bits are discarded. If there are not enough bits, the highest-order bits are set to zero. The leftmost node name in the **.vector** command takes the most significant bit.

Numbers are specified on the device statement in binary, hexadecimal (suffixed by \mathbf{h}), octal (suffixed by \mathbf{o}), or decimal (suffixed by \mathbf{d}) notation. (For decimal representations the number of lower-order bits to be collected is also given.)

Examples

```
v1 n1 GND sin (2.5 2.5 30MEG 100n)
```

v1 generates a **sin** (sinusoidal) input. It has an amplitude of 2.5 volts, a frequency of 30 MHz, an offset of 2.5 volts from system ground, and a time delay of 100 nanoseconds after the start of the simulation before the wave begins.

```
v2 n2 GND bit ({01010 11011} on=5.0 off=0.0 pw=50n rt=10n ft=30n)
```

v2 generates a **bit** input. Enclosed in braces { } are two binary-valued five-bit patterns specifying the waveform. The two patterns alternate in time. The **on** voltage value is 5.0 volts; the **off** voltage value is zero. The pulse width (**pw**), 50 nanoseconds, is the time the wave is either (ramping up and) on, or (dropping down and) off. The rise time (**rt**), 10 nanoseconds, is the time given for the wave to ramp from off to on; and the fall time (**ft**), 30 nanoseconds, the time given for the wave to drop from on to off.

```
v3 n3 GND bit ({5(01010 5(1))} pw=10n on=5.0 off=0.0)
```

v3 generates a *repeating* **bit** input. Two distinct patterns are given again, but now *multiplier factors* are included. The wave consists of two alternating patterns: the first pattern contains five bits, the second is a single bit. The five-bit pattern is followed by five successive repetitions of the single-bit pattern, and this combination is repeated five times. (The same pattern could be described by **{5(3(01) 4(1))}**.) The pulse width and on and off voltages are again specified, but the rise and fall times take default values.

```
.vector bb \{n7 \ n6 \ n5 \ n4\} vb bb GND bus (\{50(Ah) \ 30(7d4) \ 20(1000)\} pw=5n on=5.0 off=0.0)
```

The .vector command defines the bus waveform generated by voltage source vb. The command assigns the bus a name (bb) and specifies by name the number of bits the bus waveform will have (four: n7 through n4). The voltage source statement, which contains the bus keyword, specifies waveforms with one or more patterns, along with pulse width and level information.

■ The first pattern is **Ah** (hex) = 1010 (binary). Thus, using the names given on the .vector command, n7=1, n6=0, n5=1, and n4=0. The pattern is repeated 50 times (that is, maintained for a time period equal to the pulse width multiplied by 50).

- The next pattern is **7d4**—that is, 7 (decimal) = 111 (binary), or, to four lower-order bits, 0111. So **n7**=0, **n6**=1, **n5**=1, and **n4**=1. The pattern is repeated 30 times.
- The last pattern is **1000** (binary), so **n74**=1, **n6**=0, **n5**=0, and **n4**=0. The pattern is repeated 20 times

Voltage-Controlled Current Source (g)

A two-terminal ideal DC current supply with a level that is a function of one or more controlling voltages. This device can be utilized to model a wide variety of elements, including voltage-controlled resistors, nonlinear capacitors, voltage-controlled capacitors, switch-level MOSFETs, and diodes. See "Examples" on page 193.

Syntax

Linear

gname node1 node2 na1 nb1 K [Options]

Polynomial

gname node1 node2 POLY(N) na1 nb2 [na2 mb2 ...] P_0 P_1 P_2 ... [Options]

LaPlace Transform

gname node1 node2 LAPLACE na1 nb1 $a_1 a_2 \ldots a_m [b_1 b_2 \ldots b_m]$ [Options]

Nonlinear | Behavioral

gname node1 node2 [cur='expression'] [chg='expression'] [Options]

gname Voltage-controlled current source name. Must begin with "g".

node1 Positive terminal. Positive current flows into **node1**.

node2 Negative terminal. Positive current flows out of **node2**.

K Transconductance—the ratio of the output current to the control

voltage.

POLY Keyword indicating that the output current is a polynomial function

of the control voltages.

N Number of control voltages (valid values 1-6).

LAPLACE Keyword indicating that the output current is described via a Laplace

transform function

cur Keyword indicating an expression **expression** that defines current

flowing through the device.

chg Keyword indicating an expression **expression** that defines terminal

charges of the device. Used to define the capacitance of a nonlinear

capacitor.

expression Expression involving any node voltages and source currents.

na1 nb2... Node pairs whose voltages control the level of the **g** element.

 $P_0 P_1 P_2 \dots$ Coefficients of the control polynomial.

 $\mathbf{a}_0 \mathbf{a}_1 \mathbf{a}_2 \dots \mathbf{a}_m$ Numerator of Laplace transfer function.

 $b_0 b_1 b_2 \dots a_n$ Denominator of Laplace transfer function.

Options

[MAX=value] [MIN=value] [ABS =[0 | 1]] [TC1=value] [TC2=value] [SCALE=value]

MAX Maximum output voltage value.

MIN Minimum output voltage value.

ABS Output is absolute value if ABS=1.

TC1, **TC2**, First- and second-order temperature coefficients.

SCALE Element value multiplier.

Current is reckoned positive if it enters the **g** element at its first terminal.

Linear Functions

The first form of voltage-controlled current sources creates a current source with a level equal to **K** multiplied by the voltage across the node pair **na1 nb1**.

Polynomial Functions

The second form creates a current source whose level is a nonlinear polynomial function of the voltages across one or more node pairs. Let

- x = voltage across node pair na1 nb1;
- $y = \text{voltage across node pair } \textbf{na2 nb2} \text{ (if } \textbf{N} \ge 2\text{);}$
- $z = \text{voltage across node pair } \textbf{na3 nb3} \text{ (if } \textbf{N} \ge 3\text{)}.$

Then the controlled voltage source's level is defined as follows:

If N = 1:

$$P_0 + P_1 x + P_2 x^2 + p_3 x^3 + \dots ag{0.32}$$

If N = 2:

$$P_0 + P_1 x + P_2 y + P_3 x^2 + P_4 x y + P_5 y^2 + P_6 x^3 + P_7 x^2 y + P_8 x y^2 + P_0 y^3 + \dots$$
 (0.33)

If N = 3:

$$\begin{split} P_0 + P_{1}x + P_{2}y + P_{3}z + P_{4}x^2 + P_{5}xy + P_{6}xz + P_{7}y^2 + P_{8}yz + P_{9}z^2 + P_{10}x^3 + P_{11}x^2y + P_{12}x^2z + P_{13}xy^2 + P_{14}xyz + P_{15}xz^2 + P_{16}y^3 + P_{17}y^2z + P_{18}yz^2 + P_{19}z^3 + \dots \end{split} \tag{0.34}$$

If N = 1 and only one polynomial coefficient is specified, it is assumed to be P1, to facilitate the specification of linearly-controlled sources.

Laplace Functions

With the Laplace keyword, the current source is implemented as a Laplace transfer function.

(0.35)

$$H(s) = \frac{a_0 + a_1 s + a_2 s^2 + \dots + a_m s^m}{b_0 + b_1 s + b_2 s^2 + \dots + b_n s^n}$$

Expression-Controlled Functions

The fourth form of voltage controlled current sources uses mathematical expressions ("Expressions" (page 55)) to define the output current and charge functions. At least one of the keywords **cur** or **chg** must be specified.

Examples

Gtest is a **g** element. Its terminals are connected to nodes in and out. The voltage across the node pair **n10** and **n17** control the level of **gtest**. The level of **gtest** equals $(-2.314)\{v(n10) - v(n17)\}$. If this is a positive number, current flows in this direction: node in-gtest -node out.

g1 is a g element. It terminals are connected to nodes 0 and 1. The level of g1 is a polynomial in one variable. The one variable is the voltage across the node pair n10 and n17. The level of g1 is computed as

$$g1 = 10^{-3} + 2\{v(n10) - v(n17)\}^{2}$$
(0.36)

If this is a positive number, current flows in this direction: node **0**–**g1**–node **1**.

```
G3  01 poly(3)
+ nkingnkong
+ npingnpong
+ nsingnsong
+ 01  03  0 4
```

g3 is a g element. Its terminals are connected to nodes 0 and 1. The level of g3 is a polynomial in three variables. The three variables are the voltages across the three node pairs nking and nkong, nping and npong, nsing and nsong. The level of g3 is computed as

$$g3 = \{v(nking) - v(nkong)\} + 3\{v(nsing) - v(nsong)\}$$

$$+ 4\{v(nking) - v(nkong)\}\{v(nping) - v(npong)\}$$

$$(0.37)$$

If this is a positive number, current flows in this direction: node **0–g3**–node **3**.

Laplace Transforms

For examples of Laplace transforms, please refer to the analogous examples of Laplace transforms in the voltage-controlled voltage source section ("Voltage-Controlled Voltage Source (e)" (page 197)).

Voltage-Controlled Resistor

```
gswitch out 0 cur='v(out)*table(v(in), -1,1e-12, -0.1,1e-12, 0.1,1, 1,1)'
```

The switch's resistance between nodes **out** and **ground** is controlled by the voltage at node **in**. The switch is off when $\mathbf{v(in)}$ is less than -0.1 V, and on when $\mathbf{v(in)}$ is greater than 0.1 V. The interval -0.1V< $\mathbf{v(in)}$ <0.1V serves as a smooth transition between the on and off states. Note the use of the table function to describe the conductance characteristics of the switch: the conductance is 10^{-12} (corresponding to a resistance of 10^{+12}) when the switch is off, while the conductance is 1 when the switch is on. The chart below shows the switch's output current as a function of input voltage (holding the voltage at node out fixed at 1V).

Nonlinear Capacitor

The following example models a nonlinear capacitor whose capacitance is a function of applied voltage. A capacitor is described by specifying a charge function that depends on the voltage across the device. The device's capacitance is the derivative of the charge function with respect to the voltage. For example, a CMOS capacitor might be modeled as follows:

```
.param c0=10p vcc=1 gcmoscap n+ n- chg='c0*v(n+,n-) * (1 + 0.5*vcc*v(n+,n-))'
```

The capacitance of the device **gcmoscap** is then given by:

$$C = c0 * (1 + vcc * v(n+,n-))$$
(0.38)

where c0 represents the capacitance at zero applied voltage, and vcc measures the sensitivity of the capacitance with respect to input voltage.

The capacitor's charge depends on applied voltage, as shown in the chart below.

Voltage-Controlled Capacitor

A voltage-controlled capacitor is a two-terminal device whose capacitance is a function of node voltages elsewhere in the circuit. Such an element can be modeled in T-Spice with the expression-controlled g-element, using the **chg** parameter.

For example, the capacitance of a vertically moving parallel plate capacitor, a device used in the design of microelectromechanical systems (MEMS) might be modeled as follows:

```
gvccap n+ n- chg='v(n+,n-)*k/v(gapdistance)'
```

where **gapdistance** refers to a state variable which represents the distance between the capacitor's plates and **k** is a proportionality constant defined using ".param" (page 113).

Switch-Level MOSFET

The T-Spice **stp()** and **table()** functions can be used to create a switch-level model for a MOSFET. An example of such a model for an N-type MOSFET is as follows:

```
gmos d s cur='v(d,s) * table(v(g,s)*stp(v(d,s)) + v(g,d)*(1-stp(v(d,s))), + 0,1e-12, 0.4,1e-12, 1,1e-7, 2,2e-5, + 3, 1e-4, 5, 4e-4)'
```

Note that the use of the **stp()** function allows for a model that is symmetric with respect to source and drain.

Diode

The T-Spice **g**-element can be used to model any device for which analytic equations are available. When the equations have different forms for different regions of operation, the T-Spice **stp()** function can be useful. The following example models the current and capacitance of a diode. Note that the capacitance equation has different forms for the forward and reverse bias regions, but the **stp()** function allows us to describe the entire model using a single charge expression.

```
.param vt=0.02586 is=1e-14 tt=30n cjo=1e-12 vj=1 m=0.5
```

This example would produce the following waveform for current:

and the following waveform for charge:

Voltage-Controlled Voltage Source (e)

A two-terminal ideal DC voltage supply with a level that is a function of one or more controlling voltages.

Syntax

Linear

ename node1 node2 na1 nb1 K [Options]

Polynomial

ename node1 node2 POLY(N) na1 nb1 [na2 nb2...] P_0 P_1 P_2 ... [Options]

LaPlace Transform

ename node1 node2 **LAPLACE** na1 nb1 $\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_m \ [\ / \ \mathbf{b}_1 \ \mathbf{b}_2 \ \dots \ \mathbf{b}_n] \ [\mathrm{Options} \]$

Nonlinear | Behavioral

ename node1 node2 vol='expression' [Options]

Parameter	Description
ename	Voltage-controlled voltage source name. Must begin with "e".
node1	Positive terminal.
node2	Negative terminal.
κ	Voltage gain—the ratio of the output voltage to the control voltage.
POLY	Keyword indicating that the output voltage is a polynomial function of the control voltages.
N	Number of control voltages (valid values 1-6).
LAPLACE	Keyword indicating that the output current is described via a Laplace transform function
vol	Keyword indicating that the source voltage is specified by an expression.
expression	Expression specified by the vol keyword.
na1 nb2	Node pairs whose voltages control the level of the e element.
$P_0 P_1 P_2 \dots$	Coefficients of the control polynomial.
$\mathbf{a}_0 \ \mathbf{a}_1 \ \mathbf{a}_2 \dots \mathbf{a}_m$	Numerator of Laplace transfer function.
$b_0 b_1 b_2 \dots a_n$	Denominator of Laplace transfer function.

Options

[MAX=value] [MIN=value] [ABS =[0 | 1]] [TC1=value] [TC2=value] [SCALE=value]

MAX Maximum output voltage value.

MIN Minimum output voltage value.

ABS Output is absolute value if ABS=1.

TC1, **TC2**, First- and second-order temperature coefficients.

SCALE Element value multiplier.

Linear Functions

The first statement creates a voltage source with a level equal to **K** multiplied by the voltage across node pair **na1 nb1**.

Polynomial Functions

The second statement creates a voltage source whose level is a nonlinear polynomial function of the voltages supplied by up to three voltage sources. Let

- x = voltage across node pair na1 nb1;
- $y = \text{voltage across node pair } \textbf{\textit{na2 nb2}} \text{ (if } \textbf{\textit{N}} \ge 2);$
- $z = \text{voltage across node pair } \textbf{na3 nb3} \text{ (if } \textbf{N} \ge 3\text{)}.$

Then the controlled voltage source's level is defined as follows:

If N = 1:

$$P_0 + P_1 x + P_2 x^2 + P_3 x^3 + \dots ag{0.39}$$

If N=2:

$$P_0 + P_1 x + P_2 y + P_3 x^2 + P_4 x y + P_5 y^2 + P_6 x^3 + P_7 x^2 y + P_8 x y^2 + P_0 y^3 + \dots$$
 (0.40)

If N = 3:

$$P_{0} + P_{1}x + P_{2}y + P_{3}z + P_{4}x^{2} + P_{5}xy + P_{6}xz + P_{7}y^{2} + P_{8}yz + P_{9}z^{2} + P_{10}x^{3} + P_{11}x^{2}y + P_{12}x^{2}z + P_{13}xy^{2} + P_{14}xyz + P_{15}xz^{2} + P_{16}y^{3} + P_{17}y^{2}z + P_{18}yz^{2} + P_{10}z^{3} + \dots$$
 (0.41)

If N = 1 and only one polynomial coefficient is specified, it is assumed to be P1, to facilitate the specification of linearly-controlled sources.

Laplace Functions

With the Laplace keyword, the current source is implemented as a Laplace transfer function. The three transform equations supported by the Laplace transform source types in T-Spice are shown in the

equation below and several of the examples ("Integrator element" on page 200, "Differentiator element" on page 200, "Single Pole / Residue" on page 201).

(0.42)

$$H(s) = \frac{a_0 + a_1 s + a_2 s^2 + \dots + a_m s^m}{b_0 + b_1 s + b_2 s^2 + \dots + b_n s^n}$$

Expression-Controlled Functions

The fourth form of voltage controlled current sources uses mathematical expressions ("Expressions" (page 55)) to define the output current and charge functions. At least one of the keywords **cur** or **chg** must be specified.

Examples

Etest is an **e** element. Its nodes are connected to nodes in and out. The voltage across the node pair **n10** and **n17** control the level of **etest**. The level of **etest** equals $(-2.314)\{v(n10) - v(n17)\}$.

e1 is an **e** element. It terminals are connected to nodes **0** and **1**. The level of **e1** is a polynomial in one variable. The one variable is the voltage across the node pair **n10** and **n17**. The level of **e1** is computed as

$$e1 = 10^{-3} + 2\{v(n10) - v(n17)\}^{2}$$
(0.43)

```
E3 0 1 poly(3)
+ nking nkong
+ nping npong
+ nsing nsong
+ 0 1 0 304
```

e3 is an **e** element. Its terminals are connected to nodes **0** and **1**. The level of **e3** is a polynomial in three variables. The three variables are the voltages across the three node pairs **nking** and **nkong**, **nping** and **npong**, **nsing** and **nsong**. The level of **e3** is computed as

$$e3 = \{v(nking) - v(nkong)\} + 3\{v(nsing) - v(nsong)\}$$

+
$$4\{v(nking) - v(nkong)\}\{v(nping) - v(npong)\}$$
 (0.44)

Ideal OpAmp

The expression-controlled e-element (voltage-controlled voltage source) can be used with the table function to model an ideal voltage amplifier. The following circuit element implements a voltage amplifier with a gain of 5, and minimum and maximum output voltages of -5V and 5V, respectively.

```
eamp out 0 vol='table(v(in), -1, -5, 1, 5)'
```

This example would produce the following waveform:

Integrator element

You can model an integrator using the **e** element with the Laplace transformation function.

Consider the behavior of an integrator. In the frequency domain, the integrator is modeled as:

$$V_{out} = \frac{k}{s} V_{in} \tag{0.45}$$

And, in the time domain the integrator is modeled as:

$$V_{out} = k \int V_{in} dt \tag{0.46}$$

The transfer function for the voltage gain is:

$$H(s) = \frac{V_{out}}{V_{in}} = \frac{k}{s} \tag{0.47}$$

This is equivalent to the Laplace transfer function with the coefficient assignments: $a_0 = k$, $a_1 = 0$, $b_0 = 0$, $b_1 = 1$

The voltage-controlled voltage source element which implements this function is:

einteg out in laplace cpos cneg k 0.0 / 0.0 1.0

Differentiator element

You can also use the e element with the Laplace transformation function to model a voltage differentiator.

Consider the behavior of a differentiator. In the frequency domain, the differentiator is defined by:

$$V_{out} = ksV_{in} (0.48)$$

And, in the time domain the differentiator is defined by:

$$V_{out} = k \frac{dV_{in}}{dt} \tag{0.49}$$

The transfer function for the voltage gain is:

$$H(s) = \frac{V_{out}}{V_{in}} = ks \tag{0.50}$$

This is equivalent to the Laplace transfer function with the coefficient assignments: $a_0 = 0$, $a_1 = k$, $b_0 = 1$

The voltage-controlled voltage source element to implement this function is:

ediff out in laplace cpos cneg 0.0 k / 1.0

Single Pole / Residue

A single pole/residue element is modeled using a transfer function which is:

$$H(s) = \frac{a_0}{b_0 + b_1 s} \tag{0.51}$$

A representative single pole element is:

epole out in laplace cpos cneg 1.0 / 0.5 3.0

Zero-Delay Inverter Gate

The same technique used to produce the ideal amplifier, above, could be used to create a simple model of a zero-delay inverter:

einvert out 0 vol='table(v(in), 0.6, 5, 1, 4.9, 1.5, 0.1, 1.9, 0)'

This example would produce the following waveform:

Zero-Delay AND Gate

The following example implements a simple model for a zero-delay digital AND gate:

eand out 0 vol='table(
$$min(v(a),v(b))$$
, 0, 0, 1, 0.5, 4, 4.5, 5, 5)'

This example would produce the following waveform:

Other logic gates can also be modeled using the same technique:

NAND gate:

```
enand nand 0 vol='table( min(v(a),v(b)), 0, 5, 1, 4.5, 4, 0.5, 5, 0)'
```

OR gate:

```
eor or 0 vol='table( \max(v(a), v(b)), 0, 0, 1, 0.5, 4, 4.5, 5, 5)'
```

NOR gate:

```
enor nor 0 vol='table( \max(v(a),v(b)), 0, 5, 1, 4.5, 4, 0.5, 5, 0)'
```

Voltage-Controlled Oscillator (VCO)

A voltage-controlled oscillator model can be built using a combination of expression-controlled sources. The following example implements a VCO whose output voltage is a sine wave of frequency f0+k0*(vcontrol - vc), where vcontrol is the control voltage, and f0, k0, and vc are fixed parameters. The amplitude and offset of the VCO's output sine wave are controlled by the parameters amp and offset, respectively.

```
.param offset=2.5 amp=2.5 pi=3.141592654 .param f0=10k k0=3k vc=2.5 evco out 0 vol='offset+amp*sin(2*pi*(f0*time()+k0*v(theta)))' gtheta theta 0 cur='vc-v(control)' chg='v(theta)' .ic v(theta)=0
```

Note that a state variable called **theta** has been introduced to track the phase of the VCO. Without this additional state variable, the VCO might have been modeled using:

```
evco2 out 0 vol='offset+amp*sin(2*pi*(k0*(v(control)-vc)+f0)*time())'
```

but this would result in phase discontinuities of the VCO's output sine wave. The initial condition for **theta** is necessary to define a DC value for the phase, which would otherwise be arbitrary. The **gtheta** element implements the equation

$$\frac{d\theta}{dt} = v(control) - vc \tag{0.52}$$

The chart below shows the behavior of a VCO modeled as in the five SPICE lines above. The VCO's frequency ranges from 2.5kHz when the control voltage is zero to 17.5kHZ when the control voltage is 5V.

7 Simulation Options

This section provides a reference to the T-Spice simulation options that can be set with the ".options" (page 106) command.

Options are grouped in the following categories:

- "Accuracy and Convergence Options" (page 205)
- "Timestep and Integration Options" (page 237)
- "Model Evaluation Options" (page 256)
- "Linear Solver Options" (page 277)
- "General Options" (page 281)
- "Output Options" (page 293)
- "Probing Options" (page 318)

Accuracy and Convergence Options

```
"absi | abstol" (page 206)
                                                "absv | vntol" (page 207)
"accurate" (page 208)
                                                "bypass" (page 209)
"bytol" (page 210)
                                                "cshunt" (page 211)
"dchomotopy" (page 212)
                                                "dcmethod" (page 214)
"dcstep" (page 215)
                                                "extraiter[ations] | newtol" (page 216)
"fast" (page 217)
                                                "gmin" (page 218)
"gmindc" (page 219)
                                                "gramp" (page 220)
"gshunt" (page 221)
                                                "kcltest" (page 222)
"kvltest" (page 223)
                                                "maxdcfailures" (page 224)
"mindcratio" (page 225)
                                                "minsrcstep" (page 226)
"numnd | itl1" (page 227)
                                                "numndset" (page 228)
"numns | itl6" (page 229)
                                                "numnx | itl2" (page 230)
"numnxramp" (page 231)
                                                "precise" (page 232)
"reli | reltol" (page 234)
                                                "relv" (page 235)
"tolmult" (page 236)
```

absi | abstol

.options absi = absi

where **absi** > 0

Default Value

$$1 \times 10^{-10} \,\mathrm{A}$$

Description

Specifies a convergence criterion that limits the total RMS (root mean square) of residual branch currents at all nodes in the circuit. The current test for convergence is applied when **kcltest** = **true**.

When the current tolerance test is applied, the system of equations is determined to be converged if:

$$reli > \sqrt{\sum_{i=0}^{n} (\Delta I')^2}$$
 and $absi > \sqrt{\sum_{i=0}^{n} I^2}$

where I is the residual branch current at each node. The quantity ΔI ' represents the change in relative residual branch current between two consecutive iterations:

$$\Delta I' = \left(\frac{I_j}{imax_j}\right) - \left(\frac{I_{j-1}}{imax_{j-1}}\right)$$

where $imax_j$ is the largest branch current (in absolute value) flowing into the node in question in the j^{th} Newton iteration.

See Also

"reli | reltol" (page 234), "kcltest" (page 222)

absv | vntol

.options absv = absv

where absv > 0

Default Value

 $1 \times 10^{-6} \,\mathrm{V}$

Description

Specifies a convergence criterion limiting the absolute change in node voltage between two Newton iterations. The voltage test for convergence is applied when $\mathbf{kvltest} = \mathbf{true}$.

The voltage tolerance at each node is calculated as follows:

 $voltage\ tolerance = \max(absv, relv \times V),$

where V is the node voltage value. If the voltage variation at each node is less than the calculated voltage tolerance for that node, then the iteration is considered to be converged.

See Also

"relv" (page 235), "kvltest" (page 223)

accurate

.options accurate = { true | false }

Default Value

false

Description

Triggers changes to other option settings to maximize simulation accuracy:

Option	Default	Accurate
"Ivltim" (page 241)	1	3
"numnd itl1" (page 227)	250	500
"numndset" (page 228)	numnd / 10 (25)	numnd / 5 (100)
"numns itl6" (page 229)	50	100
"numnx itl2" (page 230)	100	200
"numnxramp" (page 231)	50	100
"reldv relvar" (page 251)	0.35	0.3
"reli reltol" (page 234)	5×10^{-4}	1×10^{-4}
"rmax" (page 253)	2	1

Specifying any of the above fields individually will override the value set by accurate.

See Also

"fast" (page 217), "precise" (page 232)

bypass

.options bypass = { true | false }

Default Value

true

Description

Enables or disables the diode and transistor evaluation bypass algorithm. If the terminal voltage values for a device have a relative change that is less than or equal to **bytol** since the previous evaluation, then this evaluation will be skipped, and the previous solutions used.

See Also

"bytol" (page 210)

bytol

.options bytol = bytol where bytol ≥ 0

Default Value

0.0

Description

Sets the relative tolerance for the bypass algorithm terminal voltage values.

See Also

"bypass" (page 209)

cshunt

.options cshunt = cshunt

where **cshunt** $\ge 0.0 \text{ F}$

Default Value

0.0 F

Description

Adds a capacitor with the specified capacitance from each node to ground. A small *cshunt* value will sometimes resolve transient analysis "timestep too small" values that are caused by small, high-frequency oscillations within the circuit.

See Also

"gmin" (page 218), "gshunt" (page 221)

dchomotopy

.options dchomotopy = { none | source | gmin | pseudo | all }

Default Value

all

Description

Specifies the algorithm used to correct DC operating point non-convergences. When a non-convergence occurs during DC operating point analysis, the selected form of homotpy will be used to try to obtain a valid, converged solution.

Options include:

none

Do not attempt any homotopy methods.

source

Source stepping. All voltage and current sources are ramped up from zero to their final values. The smallest source step that T-Spice will take is controlled by "minsrcstep" (page 226).

gmin

Gmin stepping. T-Spice uses the g_{min} stepping algorithm to find the minimum conductance value that yields a convergent solution. The options **gmindc** and **gramp** specify a search range for the minimum required conductance, g_{min} :

$$gmindc \le g_{min} \le gmindc \times 10^{gramp}$$

pseudo

Pseudotransient solution. In the pseudotransient solution method, T-Spice uses homotopy methods to approximate a solution, then removes the homotopies for the final solution. T-Spice obtains a pseudotransient solution as follows:

- T-Spice first enables pseudotransient simulation values for gmindc and cshunt, which are determined internally. The source values are then ramped up to their final values.
- T-Spice then performs a time-stepping simulation. When this simulation converges, T-Spice removes the homotopy devices (*gmindc* and *cshunt*), one at a time, until the final solution is reached.

all

If a non-convergence occurs, T-Spice attempts homotopy methods in the following order:

- source stepping
- gmin stepping
- pseudotransient solution

As soon as a converged solution is achieved, the simulation completes without attempting the next homotopy algorithm.

Note:

If you know that a specific homotopy is required to reach a convergent solution, you can reduce simulation time by setting this as the default method with **dcmethod**. Using **dcmethod** automatically skips the standard solution (no homotopy) and only attempts to calculate the solution using the method specified.

See Also

"dcmethod" (page 214), "minsrcstep" (page 226), "gmindc" (page 219), "gramp" (page 220)

dcmethod

.options dcmethod = {standard | source | gmin | pseudo }

Default Value

standard

Description

Specifies the default method for solving a DC operating point problem. This option is useful when you have prior knowledge that the circuit can only reach a convergent solution when a particular homotopy is required. In this case, you can reduce simulation time by setting the **dcmethod** option to the appropriate method, thus skipping attempts to solve the problem using either the standard method or the other homotopy methods. The settings for **dcmethod** are:

standard Default setting. If a non-convergence is	s reached using the standard
--	------------------------------

method, T-Spice will then apply the homotopy methods specified by

dchomotopy to try to reach a convergent solution.

source Source stepping. All voltage and current sources are ramped up from

zero to their final values. The smallest source step that T-Spice will

take is controlled by the minsrcstep option.

gmin Gmin stepping. T-Spice finds the minimum conductance value that yields a convergent solution. The options gmindc and gramp

specify a search range for the minimum required conductance, g_{min} :

 $gmindc \le g_{min} \le (gmindc \times 10^{gramp})$

Pseudo Pseudotransient solution. In the pseudotransient solution method, T-Spice uses homotopy methods to approximate a solution, then removes the homotopies for the final solution. T-Spice obtains a

pseudotransient solution as follows:

T-Spice first enables pseudotransient simulation values for gmindc and cshunt, which are determined internally. The source values are then ramped up to their final values.

T-Spice then performs a time-stepping simulation. When this simulation converges, T-Spice removes the homotopy devices (*gmindc* and *cshunt*), one at a time, until the final solution is reached.

Note:

If you do not know the best solution method for your circuit, then do not set dcmethod. Instead, set **dhomotopy** to the default value of **all**. In this case, T-Spice will automatically cycle through the homotopies as necessary to achieve convergence.

See Also

"dcstep" (page 215), "minsrcstep" (page 226), "gmindc" (page 219), "gramp" (page 220)

dcstep

.options dcstep = dcstep

where $dcstep \ge 0$

Default Value

0.0

Description

Adds a conductance across the terminals of each capacitor during DC operating point computation. If a non-zero value is specified, T-Spice computes the additional conductance for each capacitor as:

$$g = \frac{c}{\textit{dcstep}}$$

where g is the applied conductance and c is the device capacitance.

See Also

"cshunt" (page 211), "gmindc" (page 219)

extraiter[ations] | newtol

.options extraiter = extraiter

where extraiter is a non-negative integer

Default Value

0

Description

Instructs T-Spice to compute the specified number of Newton solver iterative steps after convergence criteria have been met. This option is used to improve the accuracy of the solution, and is applicable to DC operating point, DC sweep, and AC simulations. For transient analysis, use the **trnewtol** option.

When **precise** = **true**, the default value of **extraiter** is 10.

See Also

"precise" (page 232), "trextraiter[ations] | trnewtol" (page 254)

fast

.options fast = { true | false }

Default Value

false

Description

Triggers changes to other options settings to maximum simulation speed:

Option	Default	Fast
"absi abstol" (page 206)	$1\times10^{-10}\mathrm{A}$	$5 \times 10^{-10} \mathrm{A}$
"bytol " (page 210)	0	1×10^{-13}
"modelmode" (page 270)	direct	cachetable
"reldv relvar" (page 251)	0.35	0.4
"reli reltol" (page 234)	5×10^{-4}	1×10^{-3}
"relq relchgtol" (page 252)	reli (5×10^{-4})	reli (1×10^{-3})

Specifying any of the above fields individually will override the value set by fast.

See Also

"accurate" (page 208), "precise" (page 232)

gmin

.options gmin = gmin

where **gmin** ≥ 0

Default Value

$$1 \times 10^{-12} \, \Omega^{-1}$$

Description

Specifies a conductance added in parallel with all pn junctions during transient analysis. When gmin > 0, T-Spice generates a gmin conductance across two terminals by adding a resistor with resistance R

$$R = \frac{1}{gmin}$$

T-Spice applies the **gmin** conductance to various elements as follows:

- diode—conductance is added across the positive/negative terminals.
- —conductance is added across the base/emitter and the base/collector terminals.
- MOSFET—conductance is added across the source/bulk, drain/bulk, and the source/drain terminals.
- MESFET—conductance is added across the source/gate, drain/gate, and source/drain terminals.
- JFET—conductance is added across the source/gate, drain/gate, and source/drain terminals.

See Also

"gmindc" (page 219), "gshunt" (page 221)

gmindc

.options gmindc = gmindc

where **gmindc** ≥ 0

Default Value

$$1 \times 10^{\text{-}12}\,\Omega^{\text{-}1}$$

Description

Specifies a conductance that is added in parallel with all pn junctions during DC operating point analysis. When gmindc > 0, T-Spice generates a gmindc conductance across two terminals by adding a resistor with resistance R

$$R = \frac{1}{\mathbf{gmindc}}$$

T-Spice applies the **gmindc** conductance to various elements as follows:

- diode—conductance is added across the positive/negative terminals.
- —conductance is added across the base/emitter and the base/collector terminals.
- MOSFET—conductance is added across the source/bulk, drain/bulk, and the source/drain terminals.
- MESFET—conductance is added across the source/gate, drain/gate, and source/drain terminals.
- JFET—conductance is added across the source/gate, drain/gate, and source/drain terminals.

Note:

When a DC operating point non-convergence occurs, T-Spice can begin a g_{min} stepping algorithm to find the minimum conductance that yields a convergent solution. The g_{min} stepping algorithm is triggered when a non-convergence occurs and the **dchomotopy** option is set to **all** or **gmin**.

See Also

"gramp" (page 220), "dchomotopy" (page 212)

gramp

.options gramp = gramp

where $0 < gramp < (-\log 10 (100 \times gmindc))$

Default Value

4

Description

Specifies the range over which the **gmindc** value will be swept in g_{min} stepping for DC analysis. The g_{min} stepping algorithm is triggered when a non-convergence occurs and **dchomotopy** is set to **all** or **gmin**. Together, the options **gmindc** and **gramp** specify a search range for the minimum required conductance, g_{min} :

 $gmindc \le g_{min} \le gmindc \cdot 10^{gramp}$

T-Spice's g_{min} stepping algorithm searches the specified conductance range in two steps. First, T-Spice performs a binary search between **gmindc** and **gmindc**· 10^{gramp} . T-Spice searches for the smallest value of g_{min} that results in a converged solution. T-Spice automatically ends the binary search when it reaches a Δg_{min} that is less than or equal to a factor of 10.

Starting with binary search results, T-Spice then begins reducing the value of g_{min} by a factor of 10 in each iteration. Once a non-convergence occurs, the previous convergent iteration provides the final solution.

See Also

"gmindc" (page 219)

gshunt

.options gshunt = gshunt

where $gshunt \ge 0$

Default Value

 $0.0~\Omega^{-1}$

Description

Specifies a conductance to be added between every node and ground. When gshunt > 0, T-Spice generates a gshunt conductance from each node to ground by adding a resistor with resistance R

$$R = \frac{1}{gshunt}$$

See Also

"cshunt" (page 211), "gmin" (page 218)

kcltest

.options kcltest = {true | false }

Default Value

true

Description

Enables the current tolerance test for convergence. When the current tolerance test is applied, the system of equations is determined to be converged if:

$$reli > \sqrt{\sum_{i=0}^{n} (\Delta I')^2}$$
 and $absi > \sqrt{\sum_{i=0}^{n} I^2}$

where I is the residual branch current at each node. The quantity ΔI represents the change in relative residual branch current between two consecutive iterations:

$$\Delta I' = \left(\frac{I_j}{imax_j}\right) - \left(\frac{I_{j-1}}{imax_{j-1}}\right)$$

where $imax_j$ is the largest branch current (in absolute value) flowing into the node in question in the jth Newton iteration.

See Also

"absi | abstol" (page 206), "reli | reltol" (page 234), "kvltest" (page 223)

kvltest

.options kvltest = { true | false }

Default Value

false

Description

Enables the voltage tolerance test for convergence during transient analysis. The voltage tolerance test is always performed during DC, DC sweep, Transfer, and AC analysis. The **kvltest** option is used for enabling this test during transient analysis also.

The voltage tolerance is calculated as follows:

```
voltage\ tolerance = \max(absv, relv \times V),
```

where V is the node voltage value. If the voltage variation at each node is less than the calculated voltage tolerance for that node, then the iteration is considered to be converged.

See Also

"absv | vntol" (page 207), "relv" (page 235), "kcltest" (page 222)

maxdcfailures

.options maxdcfailures = n

where n is a non-negative integer

Default Value

4

Description

Maximum number of non-convergence failures allowed in a DC sweep simulation before T-Spice ends processing with a "too many nonconvergences" error.

See Also

"mindcratio" (page 225), "numnx | itl2" (page 230)

mindcratio

.options mindcratio = mindcratio where 0 < mindcratio < 1

Default Value

 1×10^{-4}

Description

Minimum fractional step size allowed in source ramping for DC sweep analysis:

$$\Delta dc_{min} =$$
 mindcratio $\times \Delta dc$

where Δdc is the step size specified in the netlist **sweep** statement. If the step size falls below Δdc_{min} , T-Spice will declare a non-convergence error.

T-Spice applies source ramping when a fixed source step fails to converge. In source ramping, the source variable is gradually ramped up from the previous sweep value to the next sweep value.

See Also

"maxdcfailures" (page 224), "numnx | itl2" (page 230)

minsrcstep

.options minsrcstep = minsrcstep where minsrcstep > 0

Default Value

 1×10^{-8}

Description

Minimum fractional step size for source stepping:

 $min\ step\ size = minsrcstep \times (Source\ value)$

In source stepping, all voltage and current sources are ramped up from zero to their final values. This allows T-Spice to find the DC operating points of difficult-to-converge circuits. Source stepping is used only in non-converging cases of initial DC operating point computations when **dchomotopy** is set to **source** or **all**.

See Also

"numns | itl6" (page 229), "dchomotopy" (page 212)

numnd | itl1

.options numnd = numnd

where *numnd* is a positive integer

Default Value

250

Description

Newton iteration limit for DC operating point computation. If a solution does not converge within *numnd* iterations, T-Spice applies the homotopy method specified by **dchomotopy** to attempt to reach a convergent solution. If **dchomotopy** = **none**, T-Spice declares a non-convergence error.

See Also

"dchomotopy" (page 212)

numndset

.options numndset = numndset where numndset is a positive integer

Default Value

numnd / 10

Description

This option is used during DC operating point computations when the user has specified node voltage guesses using the **.nodeset** command. **Numndset** is the number of Newton iterations during which the **.nodeset** nodes will be held at their user-specified voltage values. After **numndset** iterations, or when the circuit convergence criteria have been met, these node voltages are allowed to vary for the remainder of the computation

See Also

".nodeset" (page 100)

numns | itl6

.options numns = *numns*

where *numns* is a positive integer

Default Value

50

Description

Newton iteration limit for each source stepping attempt in DC operating point analysis. In source stepping, all voltage and current sources are ramped up from zero to their final values. This allows T-Spice to find the DC operating points of difficult-to-converge circuits. Source stepping is used only in non-converging cases of initial DC operating point computations when **dchomotopy** is set to **source** or **all**

See Also

"numnd | itl1" (page 227), "dchomotopy" (page 212)

numnx | itl2

.options numnx = *numnx*

where *numnx* is a positive integer

Default Value

100

Description

Newton iteration limit for DC sweep computation. If a convergent solution is not reached within *numnx* iterations, T-Spice begins source ramping. In source ramping, the source variable is gradually ramped up from the previous sweep value to the next sweep value. The Newton iteration limit for source ramping is specified by *numnxramp*.

See Also

"numnxramp" (page 231)

numnxramp

.options numnxramp = numnxramp where numnxramp is a positive integer

Default Value

50

Description

Newton iteration limit for DC sweep computation during source ramping. T-Spice applies source ramping when a fixed source step fails to converge within *numnx* iterations. In source ramping, the source variable is gradually ramped up from the previous sweep value to the next sweep value.

See Also

"numnx | itl2" (page 230), "minsrcstep" (page 226)

precise

.options precise = {true | false}

Default Value

false

Description

Triggers changes to other options for extreme simulation precision. This option should only be used for single transistor characterizations, or for very simple circuits.

The following option settings will be used:

Option	Default	Precise
"absdv absvar" (page 238)	0.5 V	0.3 V
"absi abstol" (page 206)	$1 \times 10^{-10} \mathrm{A}$	$5 \times 10^{-11} \text{ A}$
"absq chgtol" (page 239)	$1 \times 10^{-14} \mathrm{C}$	$1 \times 10^{-14} \mathrm{C}$
"absv vntol" (page 207)	$1 \times 10^{-6} \text{ V}$	$1 \times 10^{-7} \text{ V}$
"extraiter[ations] newtol" (page 216)	0	10
"gmin" (page 218)	$1\times 10^{\text{-}12}\Omega^{\text{-}1}$	$1\times 10^{\text{-}14}\Omega^{\text{-}1}$
"gmindc" (page 219)	$1\times 10^{\text{-}12}\Omega^{\text{-}1}$	$1\times 10^{\text{-}14}\Omega^{\text{-}1}$
"kvltest" (page 223)	false	true
"Ivltim" (page 241)	1	3
"extraiter[ations] newtol" (page 216)	0	10
"numnd itl1" (page 227)	250	500
"numndset" (page 228)	numnd / 10 (25)	numnd / 5 (100)
"numns itl6" (page 229)	50	100
"numnx itl2" (page 230)	100	200
"numnxramp" (page 231)	50	100
"pivtol " (page 279)	1×10^{-14}	1×10^{-16}
"reldv relvar" (page 251)	0.35	0.25
"reli reltol" (page 234)	5×10^{-4}	1×10^{-4}
"relq relchgtol" (page 252)	<i>reli (</i> 5×10^{-4})	reli (1×10^{-4})
"relv" (page 235)	1×10^{-3}	1×10^{-4}
"rmax" (page 253)	2	1

Option	Default	Precise
"trextraiter[ations] trnewtol" (page 254)	0	1

Specifying any of the above fields individually will override the value set by **precise**.

See Also

"accurate" (page 208), "fast" (page 217)

reli | reltol

.options reli = reli

where reli > 0

Default Value

$$5 \times 10^{-4}$$

Description

Specifies a convergence criterion limiting the relative change in total RMS branch current for all nodes in the circuit between consecutive iterations. The current test for convergence is applied when **kcltest** = **true**.

When the current tolerance test is applied, the system of equations is determined to be converged if:

$$reli > \sqrt{\sum_{i=0}^{n} (\Delta I')^2}$$
 and $absi > \sqrt{\sum_{i=0}^{n} I^2}$

where I is the residual branch current at each node. The quantity ΔI ' represents the change in relative residual branch current between two consecutive iterations:

$$\Delta I' = \left(\frac{I_j}{imax_j}\right) - \left(\frac{I_{j-1}}{imax_{j-1}}\right)$$

where $imax_j$ is the largest branch current (in absolute value) flowing into the node in question in the j^{th} Newton iteration.

See Also

"absi | abstol" (page 206), "kcltest" (page 222)

relv

.options relv = relv

where relv > 0

Default Value

 1×10^{-3}

Description

Specifies a convergence criterion limiting the relative change in node voltage at any node in the circuit between consecutive iterations. The voltage test for convergence is applied when **kvltest** = **true**.

The voltage tolerance test uses both the **absv** and **relv** options to calculate tolerance:

 $voltage\ tolerance = \max\ (absv,\ relv \times V),$

where V is node voltage. If the voltage change at each node is less than the voltage tolerance for that node, then the iteration is considered to be converged.

See Also

"absv | vntol" (page 207), "kvltest" (page 223)

tolmult

.options tolmult = tolmult where tolmult > 0

Default Value

1.0

Description

Multiplicative scaling factor for absolute and relative tolerance values used in the current and voltage tolerance tests for convergence. The following option values are multiplied by tolmult:

- "absi | abstol" (page 206)
- "absv | vntol" (page 207)
- "reli | reltol" (page 234)
- "relv" (page 235)

Timestep and Integration Options

"trextraiter[ations] | trnewtol" (page 254)

 "absdv | absvar" (page 238)
 "absq | chgtol" (page 239)

 "ft" (page 240)
 "lvltim" (page 241)

 "maxord" (page 244)
 "method" (page 245)

 "mintimeratio | rmin" (page 246)
 "mu | xmu" (page 247)

 "numnt | itl4 | imax" (page 248)
 "numntreduce | itl3" (page 249)

 "poweruplen" (page 250)
 "reldv | relvar" (page 251)

 "relq | relchgtol" (page 252)
 "rmax" (page 253)

"trtol" (page 255)

absdv | absvar

.options absdv = absdv

where **absdv** > 0

Default Value

0.5 V

Description

For transient analysis, **absdv** specifies the threshold absolute voltage change between two consecutive time steps. This quantity is used with *reldv* to calculate the voltage variance error measurement:

$$variance = \left| \frac{V_{n+1} - V_n}{reldv \cdot max(absdv, V_n)} \right|$$

Voltage variance is used to scale time step sizes when "Ivltim" (page 241) is equal to 1, 3, or 4.

See Also

"lvltim" (page 241)

absq | chgtol

.options absq = absq

where absq > 0

Default Value

$$1 \times 10^{-14}$$
 C

Description

Minimum capacitor charge or inductor flux used to predict a timestep in the Local Truncation Error timestep algorithm (lvltim = 2 or 4). The **absq** option sets a floor on charge values to prevent the time step size from becoming too small.

The value of **absq** is used to calculate Local Truncation Error (LTE) as follows:

$$LTE = \frac{Q - Q_{predicted}}{\textit{trtol} \times max(\textit{absq}, (\textit{relq} \times Q))}$$

When lvltim=2 or 4, and LTE > 1, T-Spice recalculates the solution at a smaller timestep. See "lvltim" (page 241) for a description of the LTE algorithm.

See Also

"Ivltim" (page 241), "relq | relchgtol" (page 252)

ft

.options
$$ft = ft$$

where
$$0 < \mathbf{ft} < 1$$

Default Value

0.25

Description

Fraction by which the internal timestep is decreased if a transient analysis solution does not converge within *numnt* iterations. T-Spice recalculates the solution for a smaller timestep:

$$\Delta t_n = \Delta t_n ' (1-ft)$$

where Δt_n ' is the size of the failed or non-converged nth timestep.

The **ft** option also determines the fraction by which the next timestep (Δt_{n+1}) is decreased if the nth timestep solution requires more than **numntreduce** iterations to converge:

$$\Delta t_{n+1} = \Delta t_n (1-\mathbf{ft})$$
.

For more information about timestep reduction algorithms, see "Ivltim" (page 241).

See Also

"numnt | itl4 | imax" (page 248), "numntreduce | itl3" (page 249), "lvltim" (page 241)

lvltim

options lvltim = {1 | 2 | 3 | 4}

Default Value

1

Description

Specifies the algorithm used to control timestep sizes in transient analysis simulation:

lvltim = 1	Iteration count algorithm with voltage variance test.
lvltim = 2	Local Truncation Error timestep control algorithm.
lvltim = 3	Modified iteration count with voltage variance test and timestep reversal.
lvltim = 4	Combines lvltim=1 voltage variance test, prior to the timestep, with lvltim=2 local truncation error control of timestep reversal

Iteration Count with Voltage Variance Test (IvItim = 1, 3, or 4)

All three algorithms require that the solution at each time step converge within *numnt* iterations. If a convergent solution is not found within *numnt* iterations, T-Spice recalculates the solution at a smaller timestep:

$$\Delta t_n' = \Delta t_n (1-\mathbf{ft})$$

where Δt_n is the original size of the nth timestep. When **IvItim** = 1, no further conditions are placed on the current timestep solution.

When **lvltim**=3, the timestep solution must also have an error value less than or equal to 1, where error is calculated as the voltage variance between time steps

$$error = \left| \frac{V_{n+1} - V_n}{max(absdv, (reldv \cdot V_n))} \right|$$

If **lvltim**=3 and the error is greater than 1, T-Spice recalculates the solution for a smaller timestep. The smaller timestep is obtained by scaling the current timestep by the error (voltage variance):

$$\Delta t_n' = \Delta t_n \cdot \left(\frac{0.9}{error}\right)$$

T-Spice continues the timestep reversal algorithm until it reaches a convergent solution within *numnt* iterations, such that *error* < 1.

Local Truncation Error Algorithm (IvItim = 2 or 4)

The Local Truncation Error (LTE) algorithm adjusts the timestep size according to the discretization error generated by integration. The amount of truncation error introduced by integration increases with the rate-of-change in the circuit. Local truncation error is calculated as the ratio between the error in predicted charge and the charge tolerances **relq** and **absq**. The value of "**trtol**" (page 255) is included as a corrective factor in the LTE calculation::

$$error = \frac{Q - Q_{predicted}}{\textit{trtol} \cdot max((\textit{relq} \cdot Q), \textit{absq})}$$

If the calculated local truncation error (*LTE*) is greater than 1, then T-Spice recalculates the solution for a smaller time step:

$$\Delta t' = \Delta t \cdot \left(\frac{0.9}{error}\right)$$

Note:

The LTE algorithm is error-prone in high-current devices, because the rapidly changing charge values will generate large local truncation error values. This can cause T-Spice to use extremely small timesteps, leading to slow simulations and/or "timestep too small" errors. In high-current circuits, a voltage-based timestep algorithm (**IvItim** = 1 or 3) is often the preferred choice.

Determining the Next Timestep (IvItim = 1, 2, 3, or 4)

All three algorithms use both iteration count and an error measurement to determine the size of the next timestep. After a convergent solution is found at the current timestep, T-Spice applies the following rules to determine the next timestep size:

If the solution required more than numntreduce iterations, T-Spice reduces the next timestep by the fraction ft:

$$\Delta t_{n+1} = \Delta t_n (1-ft)$$
.

■ If the solution converged in fewer than numntreduce iterations, T-Spice uses the appropriate error measurement to scale the next timestep. (Error is equal to voltage variance when lvltim = 1 or 3, and LTE when lvltim = 2 or 4.)

$$\Delta t_{n+1} = \Delta t_n \cdot \left(\frac{0.9}{error}\right)$$

The following chart summarizes the three timestep control algorithms:

See Also

"mintimeratio | rmin" (page 246), "numnt | itl4 | imax" (page 248), "numntreduce | itl3" (page 249), "absdv | absvar" (page 238), "reldv | relvar" (page 251), "ft" (page 240)

maxord

.options maxord = {1 | 2 | 3 | 4 }

Default Value

2

Description

Maximum time integration order for variable-order Gear's BDF calculation in transient analysis. Gear's BDF integration is used when method = gear.

See Also

"method" (page 245)

method

.options method = { gear | trap }

Default Value

trap

Description

Method of numerical integration for estimating the time derivative of the system's charge components during a .tran simulation. Possible settings are:

gear Variable order Gear's backward differential formula (see "Gear's

BDF Method" on page 30). The order of integration is controlled by

the option maxord.

trap Trapezoidal integration. This method is faster than gear but may

introduce non-physical oscillations in nodal responses. (see

"Trapezoidal Integration Method" on page 30).

See Also

"maxord" (page 244)

mintimeratio | rmin

.options mintimeratio = mintimeratio where mintimeratio > 0

Default Value

 1×10^{-9}

Description

Relative minimum timestep size for transient simulations. The minimum timestep for transient simulation is equal to *mintimeratio* \times *tstep*, where *tstep* is the timestep size listed on the .tran statement.

If the timestep size falls below *mintimeratio* \times *tstep*, T-Spice ends processing with a "timestep too small" error.

mu | xmu

.options mu = mu

where $0 \le mu \le 0.5$

Default Value

0.5

Description

Coefficient for varying the integration between the backward Euler formula and the Trapezoidal formula. Valid values of \mathbf{mu} are between 0 and 0.5, with 0 yielding a backward Euler integration, 0.5 yielding Trapezoidal integration, and intermediate values producing a hybrid integration of the specified proportional weighting. Trapezoidal integration is used when $\mathbf{method} = \mathbf{trap}$.

See Also

"method" (page 245)

numnt | itl4 | imax

.options numnt = *numnt*

where *numnt* is a positive integer

Default Value

10

Description

Newton iteration limit for transient analysis solutions.

If a solution does not converge within *numnt* iterations, T-Spice recalculates the solution for a smaller time step. The fraction by which the time step is decreased after a non-convergence is specified by "ft" (page 240).

See Also

"ft" (page 240)

numntreduce | itl3

.options numntreduce = numntreducewhere numntreduce is a positive integer

Default Value

3

Description

For transient analysis, the threshold number of Newton iterations that controls the next time step size.

If more than *numntreduce* iterations are needed to reach a convergent solution at the nth time step, then the next time step size is reduced by the fraction *ft*:

$$\Delta t_{n+1} = \Delta t_n (1 - ft)$$

If the nth time step converges with fewer than *numntreduce* iterations, then T-Spice increases or decreases the next time step by scaling with a calculated error value:

$$\Delta t_{n+1} = \Delta t_n \cdot \left(\frac{0.9}{error}\right)$$

The error calculation is dependent on the algorithm specified by "Ivltim" (page 241).

See Also

"ft" (page 240), "lvltim" (page 241)

poweruplen

.options poweruplen = poweruplen

Default Value

0.1% of the total transient simulation time.

Description

Length of the powerup ramp (seconds) during powerup transient analysis.

See Also

".tran" (page 147)

reldv | relvar

.options reldv = reldv

where reldv > 1

Default Value

0.35

Description

For transient analysis, **reldv** specifies the maximum relative voltage change between two consecutive time steps. This quantity is used with **absdv** to calculate the voltage variance error measurement:

$$variance = \left| \frac{V_{n+1} - V_n}{reldv \cdot max(absdv, V_n)} \right|$$

Voltage variance is used to scale time step sizes when "Ivltim" (page 241) is equal to 1, 3, or 4.

See Also

"absdv | absvar" (page 238), "lvltim" (page 241)

relq | relchgtol

.options relq = relq

where relq > 0

Default Value

$$5 \times 10^{-4}$$

Description

Maximum relative error in predicted capacitor charge or inductor flux. The error between predicted and actual charges is used to adjust timestep sizes in the Local Truncation Error timestep algorithm (Ivltim = 2 or 4).

The value of relq is used to calculate Local Truncation Error (LTE) as follows:

$$LTE = \frac{Q - Q_{predicted}}{\textit{trtol} \times max(\textit{absq}, (\textit{relq} \times Q))}$$

When lvltim=2 or 4, and LTE > 1, T-Spice recalculates the solution at a smaller timestep. See "lvltim" (page 241) for a description of the LTE algorithm.

See Also

"Ivltim" (page 241), "absq | chgtol" (page 239)

rmax

.options rmax = rmax

where $rmax \ge 1$

Default Value

2

Description

Defines the maximum allowed timestep in transient simulation, specified as a ratio. The maximum timestep is defined as:

$$\Delta t_{max} = \mathbf{rmax} \times \Delta t_{tran}$$

where Δt_{tran} is the timestep specified in the netlist .tran statement.

See Also

"fast" (page 217), "accurate" (page 208), "precise" (page 232)

trextraiter[ations] | trnewtol

.options trextraiter = trextraiter where $trextraiter \ge 0$

Default Value

0

Description

Instructs T-Spice to compute the specified number of Newton solver iterative steps after convergence criteria have been met. This option is used to improve the accuracy of the solution, and is applicable to transient analysis only. For increasing the iterations of non-transient simulations use the **newtol** option.

When **precise** = **true**, the default value of **trextraiter** is 1.

See Also

"extraiter[ations] | newtol" (page 216), "precise" (page 232)

trtol

.options trtol = trtol

Default Value

10

Description

Corrective factor for estimation of the local truncation error in the LTE algorithm:

$$LTE = \frac{Q - Q_{predicted}}{\textit{trtol} \cdot max((\textit{relq} \cdot Q), \textit{absq})}$$

See "Ivltim" (page 241) for a description of the LTE algorithm.

Note:

The default value of **trtol** has been calculated to minimize error in the estimation of LTE. Changing the value of **trtol** is generally not recommended.

See Also

"absq | chgtol" (page 239), "relq | relchgtol" (page 252), "trtol" (page 255)

Model Evaluation Options

"dcap" (page 257)	"dccap" (page 258)
" defad " (page 259)	"defas" (page 260)
" defl " (page 261)	"defnrd" (page 262)
"defnrs" (page 263)	" defpd " (page 264)
" defps " (page 265)	"defw" (page 267)
"deriv" (page 268)	"minresistance resmin" (page 269)
"modelmode" (page 270)	"moscap" (page 271)
"mosparasitics" (page 272)	"scale" (page 273)
"scalm" (page 274)	" tnom " (page 275)
"wl" (page 276)	

dcap

.options dcap = {1 | 2 }

Default Value

2

Description

Selects the model used to calculate depletion capacitance for BJTs, diodes, and MOS parasitic diodes. Possible settings are:

dcap = 1 Berkeley SPICE diode equations.

dcap = 2 Revised equations. See the device model documentation for "BJT"

Level 1 (Gummel-Poon)" (page 338) and "Diode" (page 368).

See Also

"BJT Level 1 (Gummel-Poon)" (page 338), "Diode" (page 368)

dccap

.options dccap = {true | false}

Default Value

false

Description

Controls the computation of charges and capacitances in DC simulations. Charge and capacitance values are not normally computed for DC operating point, DC sweep, and DC transfer analyses. Enabling this flag will permit the user to print out charge values for capacitors, diode, and transistors, without affecting the DC solutions.

defad

.options defad = defad

where **defad** ≥ 0.0

Default Value

 0.0 m^2

Description

Default MOSFET drain diode area.

See Also

defas

.options defas = defas

where **defas** ≥ 0.0

Default Value

 0.0 m^2

Description

Default MOSFET source diode area.

See Also

defl

.options defl = defl

where $defl \ge 0.0$

Default Value

1e-4 m

Description

Default MOSFET channel length.

See Also

defnrd

.options defnrd = defnrd

where **defnrd** ≥ 0.0

Default Value

0.0

Description

Default number of diffusion squares for a MOSFET drain resistor.

See Also

defnrs

.options defnrs = defnrs

where **defnrs** ≥ 0.0

Default Value

0.0

Description

Default number of diffusion squares for a MOSFET source resistor.

See Also

defpd

.options defpd = defpd

where $defpd \ge 0.0$

Default Value

0.0 m

Description

Default MOSFET drain diode perimeter.

See Also

defps

.options defps = defps

where **defps** ≥ 0.0

Default Value

0.0 m

Description

Default MOSFET source diode perimeter.

See Also

deftables

.options deftables = {true | false}

Default Value

false

Description

Enables table-based model evaluation mode instead of direct model evaluation.

Note:

deftables has been replaced with the **modelmode** option, and is documented and maintained only for purposes of backward compatibility.

See Also

"modelmode" (page 270)

defw

.options defw = defw

where $\textit{defw} \times 0.0$

Default Value

1e-4 m

Description

Default MOSFET channel width.

See Also

Chapter 7: Simulation Options Model Evaluation Options

deriv

.options deriv = { 0 | 1 }

Default Value

0

Description

Selects the default method for computing all device dq/dv and di/dv derivatives:

0 Computes analytical derivatives where possible. (Available for most

MOSFETs, diodes, and BJTs.)

1 Only uses numerical, finite-difference derivatives.

minresistance | resmin

.options minresistance = minresistance

Default Value

1e-5 Ω

Description

Minimum resistance value for all resistors, including parasitics and inductor values, as well as resistors defined in the netlist. Any resistance that is specified or computed to be less than *minresistance* is reset to *minresistance*.

modelmode

.options modelmode = {direct | uniform | cache}

Default Value

direct

Description

Specifies the model evaluation method used in T-Spice simulation:

direct Direct model evaluation.

uniform | uniform tableTable-based evaluation with uniform grid spacing.cache | cachetableTable-based evaluation with adaptive grid generation.

Note: Not all models support table-based evaluation.

Note: The **modelmode** option replaces the **deftables** and **adaptivegrid** options found in previous versions of

T-Spice. For backward compatibility, the old options are still supported.

moscap

.options moscap = {true | false}

Default Value

false

Description

Enables automatic source/drain area/perimeter estimation for MOSFETs.

When the ACM model parameter is set to 0 (default) or 10, then: The default AD and AS values will be $\mathbf{I} \times \mathbf{w}$ The default PD and PS values will be $2 \times (\mathbf{I} + \mathbf{w})$

See Also

mosparasitics

.options mosparasitics = { true | false }

Default Value

true

Description

For table-mode simulations (**modelmode=uniform** or **cache**), **mosparastics** enables explicit addition of MOSFET source/bulk drain/bulk parasitic diodes. When **mosparastics** is disabled, then the diode behavior is approximated using nonlinear capacitors, for improved speed.

See Also

"modelmode" (page 270), **"MOSFET (m)"** (page 174)

scale

.options scale = scale

where **scale** ≥ 0.0

Default Value

1.0

Description

Scales the physical dimensions of capacitors, MESFETs, MOSFETs, and resistors. Lengths and widths are multiplied by *scale*, and areas are multiplied by *scale*².

See Also

"scalm" (page 274), "Capacitor (c)" (page 154), "MESFET (z)" (page 173), "MOSFET (m)" (page 174), "Resistor (r)" (page 179)

scalm

.options scalm = scalm

where **scalm** ≥ 0.0

Default Value

1.0

Description

Default scaling factor for resistors and capacitors. The **scalm** option is overridden by setting the model parameter **scale**. The scaling factor affects lengths, widths, and drawn lengths and widths.

See Also

"scale" (page 273), "Capacitor" (page 365), "Resistor" (page 463)

tnom

.options tnom = tnom

Default Value

25 °C

Description

Nominal temperature in $^{\circ}$ C. This is the temperature at which all device and model parameters are assumed to be measured.

Note:

Differences in the nominal and the simulation temperatures may account for some variations in solutions when using different SPICE simulators. Many Berkeley SPICE derivatives use $27~^{\circ}$ C as the baseline temperature.

wl

.options wl = { true | false }

Default Value

false

Description

Reverses MOSFET length and width specifications. If $\mathbf{wl} = \mathbf{true}$, then length specifications apply to width, and width specifications apply to length.

See Also

"defl" (page 261), "defw" (page 267)

Chapter 7: Simulation Options

Linear Solver Options

Linear Solver Options

"linearsolver" (page 278)

"pivtol" (page 279)

"**zpivtol**" (page 280)

linearsolver

.options linearsolver = {best | klu | pardiso | sparse | superlu }

Default Value

best

Description

Specifies how linear equations are solved. Possible settings are:

best Allows T-Spice to select a solver based on the number of

independent nodes in the system (sparse for less than 100, klu

otherwise).

klu A sparse solver for circuit simulators, developed by Tim Davis and

the University of Florida. This is the default solver for systems with

more than 100 independent nodes (equation unknowns).

pardiso Intel MKL (Math Kernel Library) sparse linear solver which

supports multi-threading, and is appropriate for solving very large

linear systems.

sparse The original Berkeley SPICE direct solver for a system with fewer

than 100 independent nodes (equation unknowns).

superlu A direct solver which is typically faster than sparse for large dense

systems.

Chapter 7: Simulation Options

Linear Solver Options

pivtol

.options pivtol = pivtol

where pivtol > 0.0

Default Value

 1×10^{-14}

Description

Minimum pivoting tolerance for real matrices.

Chapter 7: Simulation Options

Linear Solver Options

zpivtol

.options zpivtol = zpivtol

where **zpivtol** > 0.0

Default Value

 1×10^{-6}

Description

Minimum pivoting tolerance for complex matrices.

"tnom" (page 275)

General Options

"autostop" (page 282)

"compatibility" (page 284)

"parhier" (page 286)

"search" (page 289)

"threads" (page 291)

"casesensitive" (page 283)

"conncheck" (page 285)

"persist" (page 288)

"spice" (page 290)

autostop

.options autostop = { true | false }

Default Value

false

Description

Instructs T-Spice to terminate transient analysis after all ".macro /.eom" (page 88) results have been found. The autostop option does not affect transient analyses run in preview mode.

See Also

".macro /.eom" (page 88), ".tran" (page 147)

casesensitive

.options casesensitive = { true | false }

Default Value

false

Description

Controls case sensitivity for names of models, subcircuits, library sections, parameters, and nodes.

Note:

This option only controls case sensitivity for names that appear after the .options casesensitive command in the input file.

compatibility

.options compatibility = { spice | hspice | pspice }

Default Value

hspice

Description

Selects a compatibility mode for the input netlist syntax and for simulation settings.

T-Spice can natively read about 99% of Berkeley SPICE, HSPICE, and PSPICE input statements. There are, however, some incompatibilities and some irreconcilable syntax distinctions across the various simulators. By assigning a simulator compatibility mode, these input syntax ambiguities can be resolved and appropriately parsed.

In addition to providing syntax parsing support, the compatibility command sets certain simulator settings in order to mimic the behavior of the target simulator. The most notable of these settings is the default temperature, which is 25 °C in HSPICE, and 27 °C in other simulators. Other differences, such as the default MOSFET **nrd** and **nrs** values, and output format settings, may sometimes be the source of subtle or surprising differences in simulator solutions.

HSPICE compatibility mode settings:

HSPICE compatibility mode is the default setting. Therefore, the default T-Spice settings are used.

SPICE compatibility mode settings:

■ The command for assigning Berkeley SPICE compatibility, .options compat=spice, is equivalent to the .options spice command, described in "spice" (page 290).

PSPICE compatibility mode settings:

- The default temperature and tnom setting are 27 °C
- The "acout" (page 295) option is set to 0
- The **pwr()** function is evaluated as a signed power function in expressions

conncheck

.options conncheck = { true | false }

Default Value

true

Description

Toggles connectivity checking, which tests for common connectivity problems such as "No dc path to ground from node X" and "Node X is attached to only one device."

parhier

.options parhier={local | global}

Default value

global

Description

Establishes the scoping algorithm for selection of parameter values in a hierarchical design. Parameters can obtain their values in a number of different methods, and the varying methods must have an extablished precedence for resolving which value assignment to select when a parameter value is assigned in multiple ways or at multiple levels of hierarchy. The ways in which parameters can be set are:

- .param statements example:.param cap=600f
- subckt parameter declaration, which establish default values example:.subckt inverter in out v cap=800f
- subckt instances (calls) with parameter assignment example:xinverter n1 n2 vdd inverter cap=200f
- step and DC sweep simulations example:.step cap 200f 1000f 200f

The **parhier** option controls whether global .**param** statements will override the local (subcircuit) parameter assignments. With global scoping the highest level (outermost) parameter assignment will be selected. With local scoping the lowest level (innermost) parameter assignment will be selected. The rules of scoping vary according to the parhier setting, as depicted in the following chart:

parhier=local	parhier=global
sweep assignments	sweep assignments
subckt call assignment	.param assignment
subckt declaration assignment	subckt call assignment
.param assignment	subckt declaration assignment

The following example demonstrates how the **parhier** setting can effect the final parameter value.

```
.param cap=600f
.subckt inverter in out v cap=800f
...
cap1 n3 gnd C=cap
.ends
xinverter1 1 5 vdd cap=400f
```

If parhier is set to **local**, then xinverter.c1 will have a capacitance of 400f. If parhier is set to **global**, then xinverter.c1 will have a capacitance of 600f.

Note:

To get a listing of all parameter names, values, and the type of assignment, use the \mathbf{xref} option: $.\mathbf{options}$ $\mathbf{xref=true}$

persist

.options persist = { 0 | 1 | 2 | 3 }

Default Value

1

Description

Instructs T-Spice to continue simulation when the specified levels of warnings or errors are generated. In the default mode, a severe warning encountered during execution causes the simulation to exit with a terminal error message.

O Stop simulation when a warning or error occurs.

1 Ignore warning messages.

2 Ignore severe warnings.

3 Ignore error messages.

Fatal error messages cannot be ignored; these always cause the simulation to exit.

Note:

The **persist** option should be used with discretion, as some warnings or errors may cause T-Spice to generate incorrect answers or to execute for a long period of time and ultimately fail.

search

.options search = pathname

where **pathname** specifies a valid directory path. If the path contains spaces, **pathname** must be enclosed in quotes.

Default Value

None

Description

Sets the search path for libraries and include files. T-Spice uses the search path as follows:

- If T-Spice encounters an undefined subcircuit, it automatically searches *pathname* for a file named *subckt.*inc, where *subckt* is the name of the subcircuit.
- If .include or .lib statements reference files that are not in the current directory, T-Spice automatically looks for these files in the *pathname* directory.

See Also

".if ... / .elseif ... / .else / .endif" (page 82), ".lib" (page 85)

spice

.options spice = { true | false }

Default Value

false

Description

Changes other option settings to be compatible with Berkeley SPICE:

Option	Default	spice	
"acout" (page 295)	1	0	
"dcap" (page 257)	2	1	
"defnrd" (page 262)	0.0	1.0	
"defnrs" (page 263)	0.0	1.0	
"ingold" (page 302)	0	2	
"tnom" (page 275)	25 °C	27 °C	

Specifying any of the above fields individually will override the value set by **spice.**

threads

.options threads = { 0 | 1 }

Default Value

0 on single processor computers

1 on multiprocessor and multicore computers.

Description

Controls parallel processing of model evaluation in T-Spice simulation. When the value is set to 1, T-Spice will automatically decompose the workload into small tasks, and dynamically distribute these tasks to multiple threads for processing. The number of threads and size of the tasks are controlled via internal variables, and are outside of user control.

0 Disables threading. This is the default on single processor computers.

Enables threading. This is the default on multiprocessor and multicore computers.

See Also

"Multi-Threaded Processing" on page 37

vasearch

.options vasearch = pathname

pathname is one or more directories. If the path contains spaces, **pathname** must be enclosed in quotes.

Multiple directory names should be separated with semi-colons.

Default Value

None

Description

Sets the search path for Verilog-A files.

See Also

".hdl" (page 79)

Output Options

"acct" (page 294)	"acout" (page 295)
"brief" (page 296)	"captab" (page 297)
"csdf" (page 298)	"dnout" (page 299)
"echo" (page 300)	"expert" (page 301)
"ingold" (page 302)	"list" (page 303)
"maxmsg" (page 304)	"node" (page 305)
"nomod" (page 306)	"numdgt" (page 307)
"nutmeg" (page 308)	" opts " (page 309)
"outputall" (page 310)	"pathnum" (page 311)
"prtdel" (page 312)	"prtinterp" (page 313)
"statdelay" (page 314)	"tabdelim" (page 315)
"verbose" (page 316)	"xref" (page 317)

acct

.options acct = { true | false }

Default Value

false

Description

Tracks and reports simulation iteration counts and other accounting statistics. This information is written to the Simulation Window, and is also recorded in the output file.

acout

.options acout = { 0 | 1 }

Default Value

1

Description

Calculation method for AC magnitude or phase differences requested in .print and .probe statements (e.g., vm(x,y)).

- If **acout** = 0, T-Spice performs subtraction first, then calculates the magnitude or phase of the difference, e.g., vm(x,y) = vm(x-y).
- If **acout** = 1, T-Spice first calculates the magnitudes or phases and then takes the difference, e.g., vm(x,y) = vm(x) vm(y).

Note:

Use **acout** = 0 for compatibility with Berkeley SPICE, and **acout** = 1 for compatibility with H-Spice.

See Also

".print" (page 119), ".probe" (page 133)

brief

.options brief = { true | false }

Default Value

false

Description

Turns off most of the printout which is sent to the Simulation Status window.

The **brief** option is equivalent to the **verbose=0** setting.

captab

.options captab = { true | false }

Default Value

false

Description

Lists the capacitances for each node in the netlist, and identifies the node with the greatest capacitance.

csdf

.options csdf = { true | false }

Default Value

false

Description

Causes T-Spice to generate output in CSDF (Common Simulation Data Format) mode for compatibility with ViewLogic Tools.

If probing has been requested in the input T-Spice netlist (see ".probe" on page 133), then the output probe file will be written in CSDF binary file format. If probing has not been requested, then the standard T-Spice output file will be written in CSDF text format.

dnout

.options dnout = $\{0 | 1\}$

Default Value

0

Description

Selects the units that T-Spice uses to measure all input and output noise spectral density magnitudes.

T-Spice reports noise spectral density contributions in units of

Volts/sqrt(Hz).

T-Spice reports noise spectral density contributions in units of

Volts²/Hz.

Note:

Use **dnout** = 1 for compatibility with H-Spice computations.

echo

.options echo = { true | false }

Default Value

false

Description

Causes T-Spice to print each line of input to the error log as it is read. The error log is the T-Spice GUI output window, or the specified file when the **-e** *filename* commandline option is used.

When **echo** = **true**, T-Spice lists each input next to the line number on which it occurs. For example:

```
Initializing parser with command line options
line 00001: .options verbose=2
End-of-input
line 00003: .param pres=100
line 00004: .param ptc1=0.1
line 00005: .param ptc2=0.4
line 00006:
line 00007: .options precise
line 00008:
line 00009: v1 1 0 0.01 sin(0.01 12 1e8)
...
```

expert

.options expert = { true | false }

Default Value

false

Description

Activates the printout of detailed information about non-convergent nodes and devices when a simulation, or a stage of a simulation, fails.

ingold

.options ingold = { 0 | 1 | 2 }

Default Value

0

Description

Controls the format of all real numeric data which is written to the AC Small-Signal output (".acmodel" (page 63)) and to the device listings ()..

ingold value	Format	Examples
0	engineering format	-2.875u
1	g format - combined fixed and exponential format	6.234
2	e format - constant width exponential format	-1.7428e-005

For the engineering format, exponents between the value of 1e-18 and 1e15 are expressed as a single character appended to the end of the real data. Numbers which are smaller then 1e-18 or greater than 1e15 are printed in the exponential format. The characters used to express the exponential value are:

Character suffix	Value	
T	10 ¹²	
G	10 ⁹	
X	10 ⁶	
K	10 ³	
m	10 ⁻³	
u	10 ⁻⁶	
n	10 ⁻⁹	
p	10-12	
f	10 ⁻¹⁵	
a	10 ⁻¹⁸	

list

.options list = { true | false }

Default Value

false

Description

Directs T-Spice to printout detailed information about every element in the netlist. The information will include nodal connectivity, the device values (resistance, capacitance, etc.), and other pertinent device parameter and device geometry settings.

maxmsg

.options maxmsg = maxmsg

where *maxmsg* is a non-negative integer

Default Value

4

Description

Sets the maximum number of times that a duplicate warning message will be printed. A value of 0 specifies that all warning messages should be printed an unlimited number of times.

node

.options node = { true | false }

Default Value

false

Description

Prints a node cross-reference table listing each node and all the elements connected to it. Each element is listed as **element**: *term*, where *term* identifies the element terminal as follows.

Device Type	Terminal identifiers
Diode	+ = anode - = diode
	 B = base C = collector E = emitter S = substrate
MOSFET or JFET	B = bulk D = drain S = source G = gate
All other devices	1 = terminal 1 2 = terminal 2 etc.

nomod

.options nomod = { true | false }

Default Value

true

Description

Suppresses printout of all model parameters.

numdgt

.options numdgt = *numdgt*

where *numdgt* is a non-negative integer

Default Value

4

Description

Minimum number of digits after the decimal point to be printed to the output file for each requested (.print) output value.

nutmeg

.options nutmeg = { true | false }

Default Value

false

Description

Generates output files in a format compatible with the *Nutmeg* graphics program.

opts

.options opts = { true | false }

Default Value

false

Description

Prints the current settings of all control options. The default behavior (**opts** = **false**) is to list only those option values that have been changed.

outputall

.options outputall = { true | false }

Default Value

false

Description

Causes all commands that list nodes, devices, or options to include internal listings. Internal nodes, devices, and options are normally hidden to the user.

The **outputall** option affects the following commands:

.options node Includes all internal nodes.

.options list Includes all internal nodes and devices.

.options opts Includes all hidden and undocumented options.

.print Tests internal devces and nodes for wildcard matching. When .print

is used without arguments, includes all internal nodes and devices in

the output.

.probe Tests internal nodes and devices for wildcard matching. When

.probe is used without arguments, includes all internal nodes and

devices in the output.

See Also

"node" (page 305), "xref" (page 317), "opts" (page 309), ".print" (page 119), ".probe" (page 133)

pathnum

options pathnum = { true | false }

Default Value

false

Description

The pathnum option converts all node and element names in the output listings so that the subcircuit pathname portion of each name is converted to a number. An accompanying cross-reference will be printed to show the correspondence of these numbers to the fully qualified subcircuit pathnames.

prtdel

.options prtdel = *prtdel*

where **prtdel** ≥ 0.0

Default Value

0.0 s

Description

Fixed time delay between output points in transient analysis. This does not affect the internal time step calculations needed to ensure solution accuracy.

prtinterp

.options prtinterp = { true | false }

Default Value

false

Description

When the **prtdel** option is set, **prtinterp** determines how solutions are calculated at the output time intervals.

- **prtinterp=0**—In addition to the internal time steps, the T-Spice simulator takes time steps at the output intervals and calculates those solutions directly.
- **prtinterp=1**—Output solutions are computed using linear interpolation of the T-Spice engine's internal time step solutions.

statdelay

.options statdelay = statdelay

Default Value

0.5 s

Description

Minimum delay in real time between updates of status display in the T-Spice user interface (GUI).

tabdelim

.options tabdelim = { true | false }

Default Value

false

Description

Toggles tab-delimited output columns.

verbose

.options verbose = { 0 | 1 | 2 | 3 | 4 }

Default Value

1

Description

Level of detail of circuit and simulation information printed to the Simulation Window.

0	Prints only the processing phase and final runtimes.
1	Prints node and device counts and major runtime statistics. Lists options whose values have been modified from the default.
2	Prints all option settings (equivalent to $opts = true$) and all runtime statistics (equivalent to $acct = true$).
3	Prints node connectivity (equivalent to node = true), lists devices (equivalent to list = true), and prints conditional statement, subcircuit, and parameter cross reference listings (equivalent to xref = true).
4	Lists hidden or internal devices, nodes, and options (equivalent to outputall = true), and lists convergence residual statistics (equivalent to expert = true). If the input file contains .alter statements, then all log (listing) printouts will be given for each alter section.

See Also

"opts" (page 309), "acct" (page 294), "node" (page 305), "outputall" (page 310)

xref

.options xref = { true | false }

Default Value

false

Description

Generates extensive cross-referencing information listings about the input circuit and simulation commands. The information includes:

- A list of all subcirctuit instances;
- A tree outline of all conditional statements (.if ()endif);
- A listing of all parameters (.param definitions or subcircuit parameters) that are defined and used in the circuit.

Probing Options

"binaryoutput" (page 319)

"probei" (page 320)

"probeq" (page 321)

"probev" (page 322)

"probefilename" (page 323)

binaryoutput

.options binaryoutput = { 0 | 1 | 2 | 3 }

Default Value

3

Description

Specifies the form of binary output created with ".probe" (page 133).

0	Text format.
1	Binary format with no compression.
2	Binary format using constant waveform compression.
3	Binary format using linear extrapolation compression.

probei

.options probei = { true | false }

Default Value

false

Description

Instructs T-Spice to include device terminal current values in the output data generated by .probe and .print (when used without arguments).

probeq

.options probeq = { true | false }

Default Value

false

Description

Instructs T-Spice to include device terminal charge values in the output data generated by .probe and .print (when used without arguments).

probev

.options probev = { true | false }

Default Value

false

Description

Instructs T-Spice to include node voltage values in the output data generated by .probe and .print (when used without arguments).

probefilename

.options probefilename = filename

Default Value

fname.dat, where fname is the text output filename.

Description

Specifies the filename for binary output produced by the .probe command.

Chapter 7: Simulation Options Verilog-A Options

Verilog-A Options

"vaverbose" (page 325)

"vacache" (page 327)

"vaopts" (page 329)

"vaexprtol" (page 331)

"vasearch" (page 326)

"vaalwayscompile" (page 328)

"vatimetol" (page 330)

vaverbose

.option vaverbose [= { true | false | 1 | 0 }]

Default Value

0

Description

Enables or disables verbose printing of Verilog-A compiler settings, search paths, loaded modules, etc. This information is displayed in the Simulation Status window.

Possible settings are:

0 or **false** Do not print information.

1 or true Print information.

vasearch

.option vasearch = path1 [; path2 [; ...]]

Default Value

None

Description

Adds directories to the search path for Verilog-A files. Pathnames containing spaces must be enclosed in quotes.

T-Spice looks for Verilog-A files in the following default order:

- 1. Current working directory (directory containing the T-Spice input file)
- 2. Path(s) specified in the Simulation Settings dialog
- 3. Path(s) specified by the .option vasearch command
- 4. .\verilogA\models subdirectory of the local T-Spice installation

vacache

.option vacache [= { true | false | 1 | 0 }]

Default Value

0

Description

Enables or disables the Verilog-A CML (compiled model library) file-caching mechanism.

Possible settings are:

0 or **false** Do not cache CML files.

1 or true Cache CML files.

Verilog-A modules are automatically compiled when loaded, and the CML files resulting from compilation are cached for future use.

When **vacache** is set to **false** or **0**, CML files are placed in .**llib.win32**, a subdirectory of the current working directory (directory containing the T-Spice input file).

When vacache is set to true or 1, CML files are placed in C:\Documents and Settings\ username\Application Data\Tanner EDA\.tanner-model-cache.

See Also

"vaalwayscompile" (page 328)

vaalwayscompile

.option vaalwayscompile [= { true | false | 1 | 0 }]

Default Value

0

Description

Enables or disables forced recompilation of each Verilog-A file, even when the CML (compiled model library) file is up-to-date.

Possible settings are:

0 or **false** Do not recompile Verilog-A files when the CML file is up-to-date.

1 or true Always recompile Verilog-A files.

When **vaalwayscompile** is set to **false** or **0**, a new simulation recompiles the Verilog-A module code only if (a) the code has changed, (b) the include files have changed, (c) the **vacomp** compiler version has changed, or (d) the CML cache directory or file has been deleted.

See Also

"vacache" (page 327)

vaopts

.option vaopts = "options"

Default Value

None

Description

Passes options to the vacomp compiler.

Note that the default **vacomp** options are adequate for almost all situations. The ability to set **vacomp** options with the **.option vaopts** command is provided for advanced users only, and should be used with caution.

Strings of multiple options must be enclosed in quotes. For example: .option vaopts="-strict -G".

The options are:

-f Disable run-time floating point checking

-o *file* Specify compiled model library file name (defaults to **inputfile.cml**)

-strict Reject non-compliant language extensions

-B Force state variable creation for named branches

-D x
 -D x=y
 Define preprocessor macro x with value y

-E Run preprocessor; output to **stdout**

-G Make all variables available for output

-I *directory* Prepend *directory* to include search path

-M Generate dependency file-N Suppress banner reporting

-P file Run preprocessor; output to **file**

-U depth Unroll genvar loops to level depth (0 .. no unrolling)

-V level Status message reporting level; **level** = 0..2 (default 1)

-W level Warning message reporting level; **level** = 0..2 (default 1)

vatimetol

.option vatimetol = tolerance

Default Value

10* mintimestep

Description

Sets the default time tolerance (time_tol) for the Verilog-A cross(), timer(), and above() functions.

See Also

mintimestep

vaexprtol

.option vaexprtol = tolerance

Default Value

absv

Description

Sets the default expression tolerance (**expr_tol**) for the Verilog-A **cross()** and **above()** functions.

See Also

"absv | vntol" (page 207)

8 Device Models

Introduction

This chapter describes the predefined analytical device models. Original documentation from the developers of the models is provided with T-Spice for further reference, in the **docs/models** folder of the installation directory, and at **Additional Model Documentation**.

The T-Spice built-in device models are distributed as a collection of external dynamically linked libraries (DLLs) located in the **tspicemodels** subdirectory of the installation. This modularization improves the performance, quality and features of all built-in device models.

BIPOLAR Level/Model Cross Reference

T-Spice supports a number of different bipolar models, which are selectable using the **level** parameter in the **.model** statement. The association between model levels and the model type is shown in the following table.

Bipolar level	Model	Further Documentation	
1	Gummel-Poon	BJT Level 1 (Gummel-Poon) (page 338)	
6	Philips Mextram	BJT Level 6 (Mextram) (page 358)	
9	VBIC	BJT Level 9 (VBIC) (page 359)	
10	Philips Modella Lateral PNP	BJT Level 10 (Modella) (page 364)	

Diode Level/Model Cross Reference

The diode models which are supported by T-Spice, together with their model **level** associations, are shown in the following table.

Diode level	Model	Further Documentation
1	Non-geometric Junction Diode	Diode (page 368)

Diode level	Model	Further Documentation	
2	Fowler-Nordheim	Diode (page 368)	
3	Geometric Junction Diode	Diode (page 368)	
4	Philips Juncap 2	Diode (page 368)	
200	Philips Advanced Diode	Diode (page 368)	

JFET & MESFET Level/Model Cross Reference

The diode models which are supported by T-Spice, together with their model **level** associations, are shown in the following table.

JFET/ MESFET level	Model	Further Documentation	
0	Schichmann and Hodges JFET	JFET (page 382)	
1	Curtice MESFET	MESFET (page 385)	
2	Statz MESFET	MESFET (page 385)	
3	Curtice GaAs MESFET	MESFET (page 385)	

MOSFET Level/Model Cross Reference

Particular MOSFET models are selected by use of the **level** parameter in the **.model** statement. The association between model levels and the model type is shown in the following table.

Note:

Some models can be referenced using more than one level number. This does not imply that the models are different. It is usually the case that the additional level is added for compatibility of input files from other simulators (Berkeley SPICE, HSPICE®, PSPICE®, etc.). For example, the EKV model can be selected as either MOSFET level 44, for SmartSpice compatibility, or as level 55, for HSPICE compatibility.

MOSFET level	Model	Further documentation
1	SPICE level 1	MOSFET Levels 1/2/3 (Berkeley SPICE 2G6) (page 395)

MOSFET level	Model	Further documentation
2	SPICE level 2	MOSFET Levels 1/2/3 (Berkeley SPICE 2G6) (page 395)
3	SPICE level 3	MOSFET Levels 1/2/3 (Berkeley SPICE 2G6) (page 395)
4	BSIM1	MOSFET Levels 4 and 13 (BSIM1) $(page\ 412)$
5	proprietary Maher-Mead model	MOSFET Level 5 (Maher-Mead) (page 416)
8	BSIM3 v3.3 — strict Berkeley implementation without extensions	$ \begin{tabular}{ll} \be$
9	Philips MOS 9 (identical to level 50)	MOSFET Level 20 (Philips MOS 20) $(page 439)$
11	Philips MOS 11 (identical to level 63)	MOSFET Levels 11 and 63 (Philips MOS 11) $(page\ 428)$
13	BSIM1	MOSFET Levels 4 and 13 (BSIM1) $(page 412)$
14	BSIM4 v4.5 (identical to level 54)	Variables for which equations are not given here are as follows. $(page\ 426)$
15	RPI Amorphous-Si TFT Model	$ \begin{tabular}{ll} {\bf MOSFET\ Levels\ 15\ and\ 61\ (RPI\ Amorphous-Si\ TFT\ Model)} \\ (page\ 432) \end{tabular} $
16	RPI Poly-Si TFT Model (equivalent to AimSpice level 16 PSIA2)	MOSFET Levels 16 and 62 (RPI Poly-Si TFT Model, 1.0 and 2.0) $(page\ 435)$
20	Philips MOS 20	$ \textbf{MOSFET Level 20 (Philips MOS 20)} \ (page \ 439) $
28	BSIM1 with extensions	MOSFET Level 28 (Extended BSIM1) $(page\ 440)$
30	Philips MOS 30	$\textbf{MOSFET Level 40 (Philips MOS 40)} \ (page \ 446)$
31	Philips MOS 31	MOSFET Level 31 (Philips MOS 31) $(page 445)$
40	Philips MOS 40	MOSFET Level 40 (Philips MOS 40) (page 446)
44	EKV v2.6 (identical to level 55)	.MOSFET Levels 44 and 55 (EKV Revision 2.6) $(page\ 447)$
47	BSIM3 v2	MOSFET Level 47 (BSIM3 Revision 2) (page 448)
49	BSIM3 v3.3 with HSPICE extensions	MOSFET Levels 8, 49 and 53 (BSIM3 Revision 3.3) $(page\ 418)$
53	BSIM3 v3.3 with limited HSPICE extension support (ACM, tnom, etc.)	$ \begin{tabular}{ll} \be$
54	BSIM4 v4.5 (identical to level 14)	Variables for which equations are not given here are as follows. $(page\ 426)$
55	EKV v2.6 (identical to level 44)	$ \begin{tabular}{ll} {\bf MOSFET\ Levels\ 44\ and\ 55\ (EKV\ Revision\ 2.6)}\ (page\ 447) \end{tabular} $
57	BSIM3SOI v3.2	MOSFET Level 57 (BSIM3SOI) (page 453)
100	PSP	MOSFET Level 100 (Penn State & Philips PSP Model) (page 456)

Philips Model Cross Reference

T-Spice supports most of the models that are available in the Philips SiMKit compact transistor model library. The SiMKit library contains a variety of diode, bipolar, and MOSFET models, and has been made freely available to the circuit and model design community.

Note:

The Philips models do not support table-based model evaluation, or HSPICE extensions (ACM, HSPICE diodes, etc.)

In order to facilitate easy selection of Philips models, an additional parameter has been added to the **.model** statement: **model**=modelname. The modelname value will determine the Philips model which will be selected, and will override the **level** and **version** parameter values in the **.model** statement, if they are present. The possible values for modelname are listed in the following table. In this table, the **e/g** column notes whether the model is electrical or geometrical; the **thermal** column states whether the model includes self-heating equations; and the **substrate** column states whether it is a bipolar model which includes the substrate current and charge terms.

Model	Type	Level	Modelname	e/g	Ther mal	Subs trate
Juncap Level 1	d	1	juncap	e		
Juncap2 Level 200	d	200	juncap200	e		
Advanced Diode Level 500	d	500	dio500	e		
Modella	pnp	500	bjt500	e		yes
			bjt500t	e	yes	yes
Mextram Level 503	npn/pnp	503	bjt503	e		yes
			bjtd503	e		
Mextram Level 504	npn/pnp	504	bjt504	e		yes
			bjt504t	e	yes	yes
			bjtd504	e		
			bjtd504t	e	yes	
PSP Level 100.1	nmos/pmos	100	psp100 or psp100e	e		
		1000	psp1000 or psp100g	g		
Mos 11 Level 1100	nmos/pmos	1100	mos1100e	e		
			mos1100	g		

Chapter 8: Device Models Model Descriptions

Model	Type	Level	Modelname	e/g	Ther Subs mal trate
Mos 11 Level 1101	nmos/pmos	1101	mos1101e	e	
			mos1101et	e	yes
		11010	mos11010	g	
			mos11010t	g	yes
	(binning)	11011	mos11011	g	
			mos11011t	g	yes
Mos 11 Level 1102	nmos/pmos	1102	mos1102e	e	
			mos1102et	e	yes
			mos11020	g	
			mos11020t	g	yes
	(binning)	11021	mos11021	g	
			mos11021t	g	yes
Mos 20 Level 2001	nmos/pmos	2001	mos2001e	e	
			mos2001et	e	yes
			mos2001	g	
			mos2001t	g	yes
Mos 31 Level 3100	nmos/pmos	3100	mos3100	e	
			mos3100t	e	yes
Mos 40 Level 40	nmos/pmos	40	mos40	e	
			mos40t	e	yes
Mos 30 Level 3002	nmos/pmos	3002	mos3002	e	
Mos 9 Level 902	nmos/pmos	902	mos902e	e	
			mos902	g	
Mos 9 Level 903	nmos/pmos	903	mos903e	e	
			mos903	g	

Model Descriptions

For each model class, the following information is typically given.

Chapter 8: Device Models Model Descriptions

• The .model command to be used in the input file. The .model command initializes the model by specifying its name, type, level, and parameter values.

- The parameters that determine the model's characteristics. These are given in a table of parameter names (as used in the code), symbols (as used in the equations), descriptions, default values, and units.
- The circuit underlying the large-signal behavior of the model.
- The analytical equations that constitute the model.

The following abbreviations and conventions are employed.

	(Vertical bar.) In syntax paradigms, separates alternative values. In parameter tables, separates alternative names (<i>aliases</i>).
Computed.	Indicates a parameter whose value is computed, not fixed or assigned.
[n]	Indicates the NMOS value of a parameter.
[p]	Indicates the PMOS value of a parameter.
	Symbol for square.
DIBL	Abbreviation for drain-induced barrier lowering.
LDD	Abbreviation for <i>lightly-doped drain</i> .

Constants

The following physical constants are used in parameter and equation evaluation.

Constant	Description	Value	Units
ε0	Dielectric permittivity of vacuum	8.85421×10^{-12}	F/m
<i>EOX</i>	Relative dielectric permittivity of ${ m SiO}_2$	3.9	_
εsi	Relative dielectric permittivity of silicon	11.7	_
ni	Intrinsic carrier concentration at 300 K	1.45×10^{16}	m^{-3}
q	Elementary electron charge	$1.6021918 \times 10^{-19}$	С
π	Pi	3.1415926	_
k	Boltzmann's constant	$1.3806226 \times 10^{-23}$	V·C/K
_	0 °C	273.15	K
Tnom	Default nominal model temperature	Specified by .options tnom (default: 25)	°C
e	Base of natural logarithms	2.7182818	_

BJT Level 1 (Gummel-Poon)

The level 1 bipolar junction transistor model uses a modified version of the Gummel-Poon charge-control model that was implemented in the original SPICE. The model simplifies to the Ebers-Moll model when certain parameters are not specified. It also includes high-bias and temperature effects.

Note:

Gummel-Poon is the default model which will be used for all bipolar models (type **npn** or **pnp**) which do not have the **level** model parameter set.

Parameters

The BJT model uses the following syntax.

```
.model name npn | pnp [level=1] [parameters]
```

The following tables describe all of the Gummel-Poon BJT parameters that T-Spice supports. Parameters that are not specified in the Ebers-Moll model are marked with an asterisk (*).

DC Current Parameters

Parameter (alias)	Symbol	Description	Default	Units
level		Model selector	1.0	_
subs		Substrate connection selector	1 (npn); -1 (pnp)	_
update		Equation selector for base charge.	0	_
dcap		Equation selector for depletion capacitance.	2	_
bf	βf	Ideal forward maximum current gain.	100.0	_
br	β_{r}	Ideal reverse maximum current gain.	1.0	_
ibc	I_{bc}	Reverse saturation current between base and collector.	0.0	A
ibe	I _{be}	Reverse saturation current between base and emitter.	0.0	A
iss	I_{ss}	Reverse saturation current between bulk and collector for vertical geometry , or between bulk and base for lateral geometry	0.0	A
is	I_s	Transport saturation current.	1.0×10^{-16}	A
c2 (jle)	C_2	Non-ideality factor for base-emitter leakage saturation current.*	0.0	_
c4	C_4	Non-ideality factor for base-collector leakage saturation current.*		_
ise	I_{se}	Base-emitter leakage saturation current.*	c2×is	A
isc	I_{sc}	Base-collector leakage saturation current.*	c4×is	A
nf	$\eta_{\rm f}$	Forward current emission coefficient.*	1.0	_
nr	$\boldsymbol{\eta}_r$	Reverse current emission coefficient.*	1.0	_
ns	$\boldsymbol{\eta}_s$	Substrate current emission coefficient.	1.0	_
nc (nlc)	η_{c}	Base-collector leakage emission coefficient.*	2.0	_
ne (nle)	$\boldsymbol{\eta}_{e}$	Base-emitter leakage emission coefficient.*	1.5	_
expli	EXPLI	Current explosion model parameter. The PN junction characteristics above the explosion current area are linear, with the slope at the explosion point.	1.0×10 ¹⁵	A

Base Charge Parameters

Base charge parameters are not specified for the Ebers-Moll model.

Parameter (alias)	Symbol	Description	Default	Units
vaf (vbf)	Vaf	Forward early voltage.*	0.0 (indicates infinite value)	V
var (vb, vbb)	V _{ar}	Reverse early voltage.*	0.0 (indicates infinite value)	V
ikf (ik, jbf)	I_{kf}	Corner for forward Beta high current roll-off.*	0.0 (indicates infinite value)	A
ikr (jbr)	I_{kr}	Corner for reverse Beta high current roll-off.*	0.0 (indicates infinite value)	A
nkf	η_{kf}	Exponent for high current Beta roll-off.*	0.5	

Parasitic Resistor Parameters

Parameter (alias)	Symbol	Description	Default	Units
irb (jrb,iob)	Irb	Base current, where base resistance falls halfway between r_b and $rbm.*$	0.0 (indicates infinite value)	A
rb	r_b	Base resistance.*	0.0	Ω
rbm	r_{bm}	Minimum high current base resistance.*	rb	Ω
re	r_{e}	Emitter resistance.	0.0	Ω
rc	r_c	Collector resistance.	0.0	Ω

Parasitic Capacitance Parameters

Parasitic capacitances are only used in the direct evaluation method of circuit analysis. They do not contribute to analysis in table mode.

Parameter	Symbol	Description	Default	Units
cbcp	СВСР	External base-collector constant capacitance.	0.0	F
cbep	CBEP	External base-emitter constant capacitance.	0.0	Φ
ccsp	CCSP	External collector-substrate (vertical) or base- substrate (lateral) constant capacitance.	0.0	Φ

Junction Capacitance Parameters

Parameter (alias)	Symbol	Description	Default	Units
cjc	Cjc	Base-collector zero-bias depletion capacitance.	0.0	F
cje	C_{je}	Base-emitter zero-bias depletion capacitance.	0.0	Φ
cjs (ccs, csub)	C_{js}	Zero-bias collector-substrate capacitance.	0.0	Φ
fc	FC	Coefficient for forward bias depletion capacitance.	0.5	
mjc (mc)	m_{jc}	Base-collector junction exponent (grading factor).	0.33	
mje (me)	m _{je}	Base-emitter junction exponent (grading factor).	0.33	
mjs (esub)	m_{js}	Substrate junction exponent (grading factor).	0.5	
vjc (pc)	V_{jc}	Base-collector built-in potential.	0.75	V
vje (pe)	V_{je}	Base-emitter built-in potential.	0.75	V
vjs (psub)	V_{js}	Substrate junction built-in potential.	0.75	V
xcjc (cdis)	X_{cjc}	Internal base fraction of base-collector depletion capacitance.	1.0	

Transit Time parameters

Parameter (alias)	Symbol	Description	Default	Units
ptf	P_{tf}	Frequency multiplier to determine excess phase.	0.0	deg.
tf	$\boldsymbol{\tau}_f$	Base forward transit time.	0.0	S
tr	$\tau_{\rm r}$	Base reverse transit time.	0.0	S
vtf	V_{tf}	Voltage for V_{bc} dependence of τ_f	0.0 (indicates infinite value)	ς
xtf	X_{tf}	Coefficient for bias dependence of τf .	0.0	
itf (jtf)	Itf	Parameter for high-current effect on τ_f .	0.0	A

Noise Parameters

Parameter	Symbol	Description	Default
af	AF	Flick noise exponent.	1.0
kf	KF	Flick noise exponent.	0.0

Temperature Effect Parameters

Parameter (alias)	Symbol	Description	Default	Units
tnom (tref)	T_{nom}	Nominal temperature	global tnom (25.0)	deg
tlev	tlev	Temperature equation selector	0	
tlevc	tlevc	Temperature equation selector for junction capacitances and potentials	0	
bex	Bex	V0 temperature exponent. (Level 2 only.)	2.42	
bexv	B_{exv}	<i>Rc</i> temperature exponent. (tlev=2 only.)	1.90	
ctc	C _{tc}	Temperature coefficient for zero-bias base-collector capacitance.	0.0	1/deg
cte	C _{te}	Temperature coefficient for zero-bias base- emitter capacitance.	0.0	1/deg
cts	C _{ts}	Temperature coefficient for zero-bias substrate capacitance.	0.0	1/δεγ
eg	$E_g(0)$	Energy gap at 0°K for tlev = 2 (default): for tlev = 0, 1, or 3:	1.16 1.11	eV
gap1	GAP1	Coefficient in energy gap temperature equation	7.02×10 ⁻⁴	eV/deg
gap2	GAP2	Coefficient in energy gap temperature equation	1108.0	deg
tbf1 tbf2	$\begin{array}{c} {\rm TBF}_1 \\ {\rm TBF}_2 \end{array}$	First order and second order temperature coefficients for β_{f}	0.0 0.0	$1/\deg^2$
tbr1 tbr2	${\rm TBR}_1 \\ {\rm TBR}_2$	First order and second order temperature coefficients for βr .	0.0 0.0	$1/\text{deg}$ $1/\text{deg}^2$
tikf1 tikf2	${{\rm TIKF}_1}\atop{{\rm TIKF}_2}$	First order and second order temperature coefficients for <i>Ikf</i> .	0.0 0.0	$1/\text{deg}$ $1/\text{deg}^2$
tikr1 tikr2	${{\rm TIKR}_1}\atop{{\rm TIKR}_2}$	First order and second order temperature coefficients for <i>Ikr</i> .	0.0 0.0	$1/\text{deg}$ $1/\text{deg}^2$
tirb1 tirb2	${\rm TIRB}_1 \\ {\rm TIRB}_2$	First order and second order temperature coefficients for <i>Irb</i> .	0.0 0.0	$1/\text{deg}$ $1/\text{deg}^2$

Parameter (alias)	Symbol	Description	Default	Units
tisc1 tisc2	TISC ₁ TISC ₂	First order and second order temperature coefficients for <i>Isc</i> . (tlev=3 only.)	0.0 0.0	$1/\text{deg}$ $1/\text{deg}^2$
tis1 tis2	${{\operatorname{TIS}}_1} \atop {{\operatorname{TIS}}_2}$	First order and second order temperature coefficients for <i>Is</i> or <i>Ibe</i> and <i>Ibc</i> . (tlev=3 only).	0.0 0.0	$\frac{1/deg}{1/deg^2}$
tise1 tise2	TISE1 TISE2	First order and second order temperature coefficients for <i>Ise</i> . (tlev=3 only)	0.0 0.0	$\frac{1/\text{deg}}{1/\text{deg}^2}$
tiss1 tiss2	$\begin{array}{c} {\rm TISS}_1 \\ {\rm TISS}_2 \end{array}$	First order and second order temperature coefficients for <i>Iss</i> (tlev=3 only).	0.0 0.0	$\frac{1/\text{deg}}{1/\text{deg}^2}$
titf1 titf2	$\begin{array}{c} {\rm TITF}_1 \\ {\rm TITF}_2 \end{array}$	First order and second order temperature coefficients for <i>Itf</i> .	0.0 0.0	$1/\text{deg}$ $1/\text{deg}^2$
tmjc1 tmjc2	$\begin{array}{c} \mathrm{TMJC}_1 \\ \mathrm{TMJC}_2 \end{array}$	First order and second order temperature coefficients for <i>mjc</i> .	0.0 0.0	$1/\deg^2$
tmje1 tmje2	$\begin{array}{c} \mathrm{TMJE}_1 \\ \mathrm{TMJE}_2 \end{array}$	First order and second order temperature coefficients for <i>mje</i> .	0.0 0.0	$1/\deg^2$
tmjs1 tmjs2	$\begin{array}{c} \text{TMJS}_1 \\ \text{TMJS}_2 \end{array}$	First order and second order temperature coefficient for <i>mjs</i> .	0.0 0.0	$\frac{1/deg}{1/deg^2}$
tnc1 tnc2	${ m TNC}_1 \ { m TNC}_2$	First order and second order temperature coefficients for ηc .	0.0 0.0	$1/\deg^2$
tne1 tne2	$\begin{array}{c} TNE_1 \\ TNE_2 \end{array}$	First order and second order temperature coefficients for ηe .	0.0 0.0	$1/\text{deg}$ $1/\text{deg}^2$
tnf1 tnf2	$\begin{array}{c} {\rm TNF}_1 \\ {\rm TNF}_2 \end{array}$	First order and second order temperature coefficients for $\eta_{f^{\!$	0.0 0.0	$1/\deg^2$
tnr1 tnr2	$\frac{TNR_1}{TNR_2}$	First order and second order temperature coefficients for ηr .	0.0 0.0	$1/\deg^2$
tns1 tns2	$\frac{TNS_1}{TNS_2}$	First order and second order temperature coefficients for ηs .	0.0 0.0	$1/\text{deg}$ $1/\text{deg}^2$
trb1 trb2	${TRB}_1 \\ TRB_2$	First order and second order temperature coefficients for <i>rb</i> .	0.0 0.0	$1/\text{deg}$ $1/\text{deg}^2$
trc1 trc2	${{\rm TRC}_1}\atop{{\rm TRC}_2}$	First order and second order temperature coefficients for <i>rc</i> .	0.0 0.0	$1/\deg^2$
tre1 tre2	$\begin{array}{c} \mathrm{TRE}_1 \\ \mathrm{TRE}_2 \end{array}$	First order and second order temperature coefficients for <i>re</i> .	0.0 0.0	$1/\text{deg}$ $1/\text{deg}^2$
trm1 trm2	${\rm TRM}_1 \\ {\rm TRM}_2$	First order and second order temperature coefficients for <i>rbm</i> .	trb1 trb2	$1/\deg^2$
ttf1 ttf2	$\begin{array}{c} {\rm TTF}_1 \\ {\rm TTF}_2 \end{array}$	First order and second order temperature coefficients for τf .	0.0 0.0	$1/\deg^2$
ttr1 ttr2	$\begin{array}{c} \mathrm{TTR}_1 \\ \mathrm{TTR}_2 \end{array}$	First order and second order temperature coefficients for τr .	0.0 0.0	$\frac{1/\text{deg}}{1/\text{deg}^2}$

Parameter (alias)	Symbol	Description	Default	Units
tvaf1 tvaf2	TVF ₁ TVF ₂	First order and second order temperature coefficients for <i>Vaf</i> .	0.0 0.0	$1/\text{deg}$ $1/\text{deg}^2$
tvar1 tvar2	$\begin{array}{c} {\rm TVR}_1 \\ {\rm TVR}_2 \end{array}$	First order and second order temperature coefficients for <i>Var</i> .	0.0 0.0	$1/\deg^2$
tvjc	$T_{\rm vjc}$	Temperature coefficient for Vjc.	0.0	V/deg
tvje	$T_{\rm vje}$	Temperature coefficient for V_{je} .	0.0	V/deg
tvjs	T_{vjs}	Temperature coefficient for Vjs.	0.0	V/deg
xtb (tb, tcb)	X_{tb}	Forward and reverse Beta temperature exponent.	0.0	
xti	X_{ti}	Saturation current temperature exponent. (Use <i>Xti</i> =3.0 for Silicon diffused junction, and <i>Xti</i> =2.0 for Schottky barrier diode.)	3.0	

Large-Signal Model

Equations

The Gummel-Poon model includes four "second-order" current effects:

The low-current drop in current gain β is due to extra components of base current IB. The parameters I_{se} , η_e (the low current drop in β_f) and I_{sc} , η_c (the low current drop in β_r) describe this effect, and two non-ideal diodes are included in the Large-Signal Model, above as shown.

■ Base-width modulation, affecting the BJT output conductance, is described by V_{ar} (reverse Early voltage) and V_{af} (forward Early voltage).

- High-level injection, modifying the slope of the log(IC) vs. V_{be} characteristic, is described by two "knee" currents, I_{kf} and I_{kr} , for the forward and reverse regions of operation.
- **B** Base resistance is current dependent and is modeled by a combination of r_b , r_{bm} , and I_{rb} .

The Gummel-Poon large-signal model for transient simulations is topologically identical to the Ebers-Moll large-signal model except for the inclusion of the distributed base-collector capacitance. In addition, the effect of τ_f modulation (transit time) is handled.

Geometry Consideration

The BJT model has two geometric configurations based on physical layout: vertical and lateral. The geometric configuration is specified by the substrate connection selector parameter, **subs**. Set **subs** equal to 1 to specify vertical geometry or to -1 to specify lateral geometry. The default value of **subs** is 1 for **npn** transistors and -1 for **pnp** transistors.

The instance parameters **area**, **areab**, **areac**, and **M** specify geometric scaling for current and charge values in the Gummel-Poon BJT. (See "BJT (q)" on page 152 for more information about these parameters.)

Scaling: Both Vertical and Lateral Geometry

(0.53)

$$\begin{split} I_{s_{eff}} &= area \cdot M \cdot I_{s} \\ I_{be_{eff}} &= area \cdot M \cdot I_{be} \\ I_{se_{eff}} &= area \cdot M \cdot I_{se} \\ I_{kf_{eff}} &= area \cdot M \cdot I_{kf} \\ I_{kr_{eff}} &= area \cdot M \cdot I_{kr} \\ I_{rb_{eff}} &= area \cdot M \cdot I_{rb} \\ I_{ss_{eff}} &= area \cdot M \cdot I_{ss} \quad \text{if both } I_{be} \text{ and } I_{bc} \text{ are NOT specified} \\ I_{tf_{eff}} &= area \cdot M \cdot I_{tf} \end{split}$$

$$EXPLI_{eff} = area \cdot M \cdot EXPLI$$
 (0.54)

$$\begin{split} C_{bcp_{eff}} &= area \cdot M \cdot C_{bcp} \\ C_{bep_{eff}} &= area \cdot M \cdot C_{bep} \\ C_{csp_{eff}} &= area \cdot M \cdot C_{csp} \\ C_{je_{eff}} &= area \cdot M \cdot C_{je} \end{split} \tag{0.55}$$

$$r_{b_{eff}} = \frac{r_b}{area \cdot M}$$

$$r_{bm_{eff}} = \frac{r_{bm}}{area \cdot M}$$

$$r_{e_{eff}} = \frac{r_e}{area \cdot M}$$

$$r_{c_{eff}} = \frac{r_c}{area \cdot M}$$

$$(0.56)$$

Scaling: Vertical Geometry (subs=1)

$$\begin{split} I_{bc_{eff}} &= areab \cdot M \cdot I_{bc} \\ I_{sc_{eff}} &= areab \cdot M \cdot I_{sc} \\ I_{ss_{eff}} &= areab \cdot M \cdot I_{ss} & \text{if both } I_{be} \text{ and } I_{bc} \text{ are specified} \\ C_{js_{eff}} &= areab \cdot M \cdot C_{js} \\ C_{jc_{eff}} &= areab \cdot M \cdot C_{jc} \end{split} \tag{0.57}$$

Scaling: Lateral Geometry (subs=-1)

$$\begin{split} I_{bc_{eff}} &= areac \cdot M \cdot I_{bc} \\ I_{sc_{eff}} &= areac \cdot M \cdot I_{sc} \\ I_{ss_{eff}} &= areac \cdot M \cdot I_{ss} & \text{if both } I_{be} \text{ and } I_{bc} \text{ are specified} \\ C_{js_{eff}} &= areac \cdot M \cdot C_{js} \\ C_{jc_{eff}} &= areac \cdot M \cdot C_{jc} \end{split} \tag{0.58}$$

Current Equations (Level 1)

The following current equations are used when **level**=1, specifying that either the Gummel-Poon or Ebers-Moll model will be used. T-Spice chooses appropriate current equations according to which parameters were specified. The reverse saturation currents between base and collector and between base and emitter (I_{bc} and I_{be}) are optional parameters. If they are not specified, T-Spice uses the transport saturation current I_s in current equations.

There are no explicit switches between the different regions of device operation. Equations (0.59) through (0.71) describe currents in the normal active, inverse, saturation, and cut-off regions of operation. This means that the β roll-off at high collector current is slightly less pronounced in T-Spice.

Base Charge Equations

In order to determine BJT currents, T-Spice must first calculate base charge. There are two sets of base charge equations; you can specify which equations T-Spice will use by changing the model selector **update**.

The base charge q_b is calculated from the following equation:

$$q_b = \frac{q_1}{2} (1 + (1 + 4q_2)^{\eta_{kf}}), \qquad (0.59)$$

where q_2 and q_1 are calculated as follows.

$$q_{2} = \frac{I_{se_{eff}}}{I_{kf_{eff}}} \left(e^{\frac{V_{be}}{\eta_{f}V_{t}}} - 1 \right) + \frac{I_{se_{eff}}}{I_{kr_{eff}}} \left(e^{\frac{V_{bc}}{\eta_{r}V_{t}}} - 1 \right)$$
(0.60)

The thermal voltage V_t is defined as:

$$V_t = kT/q, \tag{0.61}$$

where k is Boltzmann's constant, T is temperature, and q is the elementary electron charge.

If **update=1** and
$$\frac{V_{bc}}{V_{af}} + \frac{V_{be}}{V_{ar}} \geq 0$$
 , then

$$q_1 = 1 + \frac{V_{bc}}{V_{af}} + \frac{V_{be}}{V_{ar}}. (0.62)$$

If **update=0**
$$or$$
 $\frac{V_{bc}}{V_{af}} + \frac{V_{be}}{V_{ar}} < 0$, then

$$q_1 = \left(1 - \frac{V_{bc}}{V_{af}} - \frac{V_{be}}{V_{ar}}\right)^{-1}. (0.63)$$

Collector and Base Current Equations

If only the saturation current I_s is specified, T-Spice uses the following equations to calculate collector current (I_c) and base current (I_b) :

$$I_{c} = \frac{I_{s_{eff}}}{q_{b}} \left(e^{\frac{V_{BE}}{\eta_{f}V_{t}}} \right) - \frac{I_{s_{eff}}}{q_{b}} \left(e^{\frac{V_{BC}}{\eta_{r}V_{t}}} \right) - \frac{I_{s_{eff}}}{\beta_{r}} \left(e^{\frac{V_{bc}}{\eta_{r}V_{t}}} - 1 \right) - I_{sc_{eff}} \left(e^{\frac{V_{bc}}{\eta_{c}V_{t}}} - 1 \right)$$

$$(0.64)$$

$$I_{b} = \frac{I_{s_{eff}}}{\beta_{f}} \left(e^{\frac{V_{be}}{\eta_{f}V_{t}}} - 1 \right) - \frac{I_{s_{eff}}}{\beta_{r}} \left(e^{\frac{V_{bc}}{\eta_{r}V_{t}}} - 1 \right) + I_{se_{eff}} \left(e^{\frac{V_{be}}{\eta_{e}V_{t}}} - 1 \right) + I_{sc_{eff}} \left(e^{\frac{V_{bc}}{\eta_{c}V_{t}}} - 1 \right)$$
(0.65)

If I_{be} and I_{bc} are both specified, T-Spice uses the following current equations:

$$I_{c} = \frac{I_{be_{eff}}}{q_{b}} \left(e^{\frac{V_{be}}{\eta_{r}V_{t}}} - 1 \right) - \frac{I_{bc_{eff}}}{q_{b}} \left(e^{\frac{V_{bc}}{\eta_{r}V_{t}}} - 1 \right) - \frac{I_{bc_{eff}}}{\beta_{r}} \left(e^{\frac{V_{bc}}{\eta_{r}V_{t}}} - 1 \right) - I_{sc_{eff}} \left(e^{\frac{V_{bc}}{\eta_{c}V_{t}}} - 1 \right)$$

$$(0.66)$$

$$I_{b} = \frac{I_{be_{eff}}}{\beta_{f}} \left(e^{\frac{V_{be}}{\eta_{f}V_{t}}} - 1 \right) + \frac{I_{bc_{eff}}}{\beta_{r}} \left(e^{\frac{V_{bc}}{\eta_{r}V_{t}}} - 1 \right) + I_{se_{eff}} \left(e^{\frac{V_{be}}{\eta_{e}V_{t}}} - 1 \right) + I_{sc_{eff}} \left(e^{\frac{V_{bc}}{\eta_{c}V_{t}}} - 1 \right)$$
(0.67)

where q_b is the normalized base charge, β_r and β_f are the ideal maximum reverse and forward current gains, η_f and η_r are the forward and reverse current emission coefficients, and η_c and η_e are the base-collector and emitter-collector leakage emission coefficients.

The last two terms in the I_b expression represent recombination in the base-emitter and base-collector surfaces and depletion regions. The last term in the I_c expression represents recombination in the base-collector junction.

The emitter current, I_e , is simply the sum of base and collector currents:

$$I_{e} = I_{b} + I_{c}. \tag{0.68}$$

Excess Phase Equation

Excess phase represents the extra degrees of phase delay introduced by the BJT as a function of frequency, due to the distributed phenomena in the base region. T-Spice calculates excess phase in AC and transient analyses of the BJT. At any given frequency, the phase multiplier parameter **ptf** determines the relationship between excess phase and the base forward transit time, **tf**.

excess phase =
$$\left(2\pi \cdot P_{tf} \cdot \frac{\tau_f}{360}\right) \cdot 2\pi f$$
 (0.69)

In AC analysis, T-Spice applies excess phase as a linear phase delay in the transconductance generator, g_m . See the small-signal reference for "BJT Level 1 (Gummel-Poon)" on page 473 for a description of g_m .

In transient analysis, excess phase affects how T-Spice calculates collector current (I_c) . When excess phase is present (*i.e.*, $ptf\neq 0$), T-Spice calculates the collector current as a cumulative function using time step dependent backward Euler integration. Otherwise, if ptf is not specified, collector current is simply a function of the current time step.

Substrate Current Equations

Substrate current is defined according to the geometric configuration of the BJT. The substrate current flows from substrate to collector for vertical BJTs (**subs=1**) and from substrate to base for lateral BJTs (**subs=-1**).

For vertical transistors (**subs=1**),

$$I_{sc} = I_{ss_{eff}} \left(e^{\frac{V_{sc}}{\eta_s V_t}} - 1 \right) \quad \text{when } V_{sc} > -10 \cdot \eta_s \cdot V_t ,$$

$$I_{sc} = -I_{ss_{eff}} \quad \text{when } V_{sc} \le -10 \cdot \eta_s \cdot V_t$$

$$(0.70)$$

where I_{sseff} is the effective reverse saturation current between bulk and collector.

For lateral transistors (**subs=-1**),

$$I_{bs} = I_{ss_{eff}} \left(e^{\frac{V_{bs}}{\eta_s V_t}} - 1 \right) \quad \text{when} \quad V_{bs} > -10 \cdot \eta_s \cdot V_t,$$

$$I_{bs} = -I_{ss_{eff}} \quad \text{when} \quad V_{bs} \le -10 \cdot \eta_s \cdot V_t$$

$$(0.71)$$

where I_{sseff} is the effective reverse saturation current between bulk and base.

Variable Base Resistance Equations

The following equations describe the calculation of the base resistance, r_{bb} . Base resistance varies with current and depends on two parameters, the low-current maximum resistance (r_b) and the high-current minimum resistance (r_{bm}) . There are two ways that T-Spice can calculate r_{bb} , either with or without the parameter I_{rb} . I_{rb} is the base current that occurs when r_{bb} is equal to $0.5 \times (r_b - r_{bm})$, or the midpoint between minimum and maximum resistance values.

If *Irb* is not specified, T-Spice uses the following equation:

$$r_{bb} = r_{bm_{eff}} + \frac{r_{b_{eff}} - r_{bm_{eff}}}{q_b}$$
 (0.72)

If I_{rb} is specified,

$$r_{bb} = r_{bm_{eff}} + 3(r_{b_{eff}} - r_{bm_{eff}}) \frac{\tan(z) - z}{z \tan(z) \tan(z)},$$
(0.73)

where

$$z = \frac{-1 + \sqrt{1 + \frac{144 \cdot I_b}{\pi^2 \cdot I_{rb_{eff}}}}}{\frac{24}{\pi^2} \cdot \sqrt{\frac{I_b}{I_{rb_{eff}}}}}.$$
 (0.74)

Capacitance Equations

Base-Emitter Capacitance

The total base-emitter capacitance consists of contributions from diffusion capacitance and depletion capacitance:

$$C_{be} = C_{be_{diff}} + C_{be_{dep}} agen{(0.75)}$$

The diffusion capacitance is determined as follows:

$$C_{be_{diff}} = \frac{\partial}{\partial V_{beb}} \left(\tau_f \cdot \frac{i_{be}}{q_b} \right) \qquad \text{when} \quad i_{be} \leq 0$$

$$C_{be_{diff}} = \frac{\partial}{\partial V_{be}} \left(\tau_f \cdot (1 + \arg \tau_f) \cdot \frac{i_{be}}{q_b} \right) \quad \text{when} \quad i_{be} > 0$$

$$(0.76)$$

where

$$\arg \tau_f = X_{tf} \left(\frac{i_{be}}{i_{be} + I_{tf}} \right)^2 \cdot e^{\frac{V_{bc}}{1.44 \cdot V_{tf}}}$$
 (0.77)

and

$$i_{be} = I_{s_{eff}} \left(e^{\frac{qV_{be}}{\eta_f kT}} - 1 \right). \tag{0.78}$$

T-Spice supports two different models for depletion capacitance. You can specify the depletion capacitance equations using the **dcap** model selector.

If dcap=1,

$$C_{be_{dep}} = C_{je_{eff}} \left(1 - \frac{V_{be}}{V_{je}} \right)^{-m_{je}} \qquad when \quad V_{be} < FC \cdot V_{je}$$

$$C_{be_{dep}} = C_{je_{eff}} \cdot \frac{1 - FC(1 + m_{je}) + m_{je} \cdot \frac{V_{be}}{V_{je}}}{\left(1 - FC \right)^{1 + m_{je}}} \qquad when \quad V_{be} \ge FC \cdot V_{je}$$

$$(0.79)$$

If dcap=2 (default),

$$\begin{split} C_{be_{dep}} &= C_{je_{eff}} \left(1 - \frac{V_{be}}{V_{je}}\right)^{-m_{je}} & when \quad V_{be} < 0 \\ C_{be_{dep}} &= C_{je_{eff}} \left(1 + m_{je} \cdot \frac{V_{be}}{V_{je}}\right) & when \quad V_{be} \ge 0 \end{split} \tag{0.80}$$

Base-Collector Capacitance

The total base-collector capacitance consists of contributions from diffusion capacitance and depletion capacitance:

$$C_{bc} = C_{bc_{diff}} + C_{bc_{dep}} (0.81)$$

The base-collector diffusion capacitance is determined as follows:

$$C_{bc_{diff}} = \frac{\partial}{\partial V_{bc}} (\tau_r \cdot i_{bc}) \tag{0.82}$$

where

$$i_{bc} = I_{s_{eff}} \left(e^{\frac{V_{bc}}{\eta_r V_t}} - 1 \right).$$
 (0.83)

T-Spice offers two different models for base-collector depletion capacitance. Use **dcap** to select a set of equations.

For dcap=1:

$$C_{bc_{dep}} = X_{cjc} \cdot C_{jc_{eff}} \left(1 - \frac{V_{bc}}{V_{jc}} \right)^{-m_{jc}} \qquad when \quad V_{bc} < FC \cdot V_{jc}$$

$$C_{bc_{dep}} = X_{cjc} \cdot C_{jc_{eff}} \cdot \frac{1 - FC(1 + m_{jc}) + m_{jc} \cdot \frac{V_{bc}}{V_{jc}}}{\left(1 - FC \right)^{1 + m_{jc}}} \qquad when \quad V_{bc} \ge FC \cdot V_{jc}$$

$$(0.84)$$

For dcap=2:

$$C_{bc_{dep}} = X_{cjc} \cdot C_{jc_{eff}} \left(1 - \frac{V_{bc}}{V_{jc}} \right)^{-m_{jc}} \qquad when \quad V_{bc} < 0$$

$$C_{bc_{dep}} = X_{cjc} \cdot C_{jc_{eff}} \left(1 + m_{jc} \cdot \frac{V_{bc}}{V_{jc}} \right) \qquad when \quad V_{bc} \ge 0$$

$$(0.85)$$

where *Xcjc* is the partition parameter specifying the ration of base-collector junction capacitance distribution between internal base-internal collector and external base-internal collector.

If Xcjc<1, the external base-internal collector capacitance has to be considered:

For dcap=1:

$$C_{bcx} = (1 - X_{cjc}) \cdot C_{jc_{eff}} \left(1 - \frac{V_{bcx}}{V_{jc}}\right)^{-m_{jc}} \qquad when \quad V_{bcx} < FC \cdot V_{jc}$$

$$C_{bcx} = (1 - X_{cjc}) \cdot C_{jc_{eff}} \cdot \frac{1 - FC(1 + m_{jc}) + m_{jc} \cdot \frac{V_{bcx}}{V_{jc}}}{(1 - FC)^{1 + m_{jc}}} \qquad when \quad V_{bcx} \ge FC \cdot V_{jc}$$

$$(0.86)$$

For dcap=2:

$$C_{bcx} = (1 - X_{cjc}) \cdot C_{jc_{eff}} \left(1 - \frac{V_{bcx}}{V_{jc}} \right)^{-m_{jc}} \qquad when \quad V_{bcx} < 0$$

$$C_{bcx} = (1 - X_{cjc}) \cdot C_{jc_{eff}} \left(1 + m_{jc} \cdot \frac{V_{bcx}}{V_{ic}} \right) \qquad when \quad V_{bcx} \ge 0$$

$$(0.87)$$

where *Vbcx* is the voltage between the external base node and the internal collector node.

Substrate Capacitance

The definition of substrate capacitance varies with BJT geometry. For vertical transistors (**subs=1**), substrate capacitance is defined for the base to substrate diode. For lateral transistors (**subs=-1**), it is defined as the capacitance of the substrate to collector diode.

For vertical BJTs,

$$C_{sc} = C_{js_{eff}} \left(1 - \frac{V_{sc}}{V_{js}} \right)^{-m_{js}} \qquad when \quad V_{sc} < 0$$

$$C_{sc} = C_{js_{eff}} \left(1 + m_{js} \cdot \frac{V_{sc}}{V_{is}} \right) \qquad when \quad V_{sc} \ge 0$$

$$(0.88)$$

For lateral BJTs,

$$C_{bs} = C_{js_{eff}} \left(1 - \frac{V_{bs}}{V_{js}} \right)^{-m_{js}} \qquad when \quad V_{bs} < 0$$

$$C_{bs} = C_{js_{eff}} \left(1 + m_{js} \cdot \frac{V_{bs}}{V_{is}} \right) \qquad when \quad V_{bs} \ge 0$$

$$(0.89)$$

Temperature Dependence

Below is a list of parameters that T-Spice modifies when one or more corresponding temperature coefficients are specified, regardless of **TLEV** values. When neither first nor second order coefficients

are specified for a given parameter, the **TLEV**-dependent equations in "Saturation Current and Beta" on page 354 take precedence.

Forward and reverse current gain

(0.90)

$$\beta_f(T) = \beta_f \cdot (1 + TBF_1 \cdot \Delta T + TBF_2 \cdot \Delta T^2)$$

$$\beta_r(T) = \beta_r \cdot (1 + TBR_1 \cdot \Delta T + TBR_2 \cdot \Delta T^2)$$

Voltage and current parameters

(0.91)

$$\begin{aligned} V_{af}(T) &= V_{af} \cdot (1 + TVAF_1 \cdot \Delta T + TVAF_2 \cdot \Delta T^2) \\ V_{ar}(T) &= V_{ar} \cdot (1 + TVAR_1 \cdot \Delta T + TVAR_2 \cdot \Delta T^2) \\ I_{tf}(T) &= I_{tf} \cdot (1 + TITF_1 \cdot \Delta T + TITF_2 \cdot \Delta T^2) \end{aligned}$$

Transit time parameters

(0.92)

$$\begin{split} \tau_f(T) &= \tau_f \cdot (1 + TTF_1 \cdot \Delta T + TTF_2 \cdot \Delta T^2) \\ \tau_r(T) &= \tau_r \cdot (1 + TTR_1 \cdot \Delta T + TTR_2 \cdot \Delta T^2) \end{split}$$

Emission coefficients

(0.93)

$$\begin{split} \eta_f(T) &= \eta_f \cdot (1 + TNF_1 \cdot \Delta T + TNF_2 \cdot \Delta T^2) \\ \eta_r(T) &= \eta_r \cdot (1 + TNR_1 \cdot \Delta T + TNR_2 \cdot \Delta T^2) \\ \eta_e(T) &= \eta_e \cdot (1 + TNE_1 \cdot \Delta T + TNE_2 \cdot \Delta T^2) \\ \eta_c(T) &= \eta_c \cdot (1 + TNC_1 \cdot \Delta T + TNC_2 \cdot \Delta T^2) \\ \eta_s(T) &= \eta_s \cdot (1 + TNS_1 \cdot \Delta T + TNS_2 \cdot \Delta T^2) \end{split}$$

Junction exponents (0.94)

$$\begin{split} m_{je}(T) &= m_{je} \cdot (1 + TMJE_1 \cdot \Delta T + TMJE_2 \cdot \Delta T^2) \\ m_{jc}(T) &= m_{jc} \cdot (1 + TMJC_1 \cdot \Delta T + TMJC_2 \cdot \Delta T^2) \\ m_{is}(T) &= m_{is} \cdot (1 + TMJS_1 \cdot \Delta T + TMJS_2 \cdot \Delta T^2) \end{split}$$

Parasitic resistor parameters

$$\begin{split} r_e(T) &= r_e \cdot (1 + TRE_1 \cdot \Delta T + TRE_2 \cdot \Delta T^2) \\ r_b(T) &= r_b \cdot (1 + TRB_1 \cdot \Delta T + TRB_2 \cdot \Delta T^2) \\ r_{bm}(T) &= r_{bm} \cdot (1 + TRM_1 \cdot \Delta T + TRM_2 \cdot \Delta T^2) \\ r_c(T) &= r_c \cdot (1 + TRC_1 \cdot \Delta T + TRC_2 \cdot \Delta T^2) \end{split}$$

Energy Gap

The calculation of energy gap is dependent on **TLEV**. For **TLEV=0**, 1, or 3, energy gap is always calculated as follows:

$$E_g(T_{nom}) = 1.16 - (7.02 \times 10^4) \frac{T_{nom}^2}{T_{nom} + 1108.0}$$
 (0.96)

If **TLEV=2**, the energy gap is calculated as a function of model parameters $E_g(0)$, GAP1, and GAP2:

$$E_g(T_{nom}) = E_g(0) - GAP1 \cdot \frac{T_{nom}^2}{T_{nom} + GAP2}.$$
 (0.97)

Saturation Current and Beta

The following equations show the temperature effects for transport saturation current, base-emitter reverse saturation current, and base-collector reverse saturation current.

$$I_{s}(T) = I_{s} \cdot e^{facLN} \qquad I_{s}^{(1+TIS_{1}\Delta T + TIS_{2}\Delta T^{2})}$$

$$I_{be}(T) = I_{be} \cdot e^{facLN} \qquad I_{be}^{(1+TIS_{1}\Delta T + TIS_{2}\Delta T^{2})}$$

(0.95)

$$I_{bc}(T) = I_{bc}(T) = I_{cb}(T) = I_{c$$

Temperature-effect equations for leakage saturation currents, bulk-to-collector (or base) saturation current, and beta parameters are shown below.

$$TLEV=0 \text{ or } 2 \qquad TLEV=1 \qquad TLEV=3$$

$$I_{se}(T) = \frac{I_{se}}{\left(\frac{T}{T_{nom}}\right)^{X_{tb}}} \cdot e^{\frac{facLN}{\eta_e}} \qquad \frac{I_{se}}{1 + X_{tb}\Delta T} \cdot e^{\frac{facLN}{\eta_e}} \qquad I_{se}^{(1 + TISE_1\Delta T + TISE_2\Delta T^2)}$$

$$I_{se}(T) = \frac{I_{sc}}{\left(\frac{T}{T_{nom}}\right)^{X_{tb}}} \cdot e^{\frac{facLN}{\eta_c}} \qquad \frac{I_{sc}}{1 + X_{tb}\Delta T} \cdot e^{\frac{facLN}{\eta_c}} \qquad I_{sc}^{(1 + TISC_1\Delta T + TISC_2\Delta T^2)}$$

$$I_{ss}(T) = \frac{I_{ss}}{\left(\frac{T}{T_{nom}}\right)^{X_{tb}}} \cdot e^{\frac{facLN}{\eta_s}} \qquad I_{ss}^{(1 + TISS_1\Delta T + TISS_2\Delta T^2)} \qquad I_{ss}^{(1 + TISS_1\Delta T + TISS_2\Delta T^2)}$$

$$\beta_f(T) = \beta_f \cdot \left(\frac{T}{T_{nom}}\right)^{X_{tb}} \qquad \beta_f \cdot (1 + X_{tb}\Delta T) \qquad \beta_f \cdot \left(\frac{T}{T_{nom}}\right)^{X_{tb}}$$

$$\beta_f \cdot \left(\frac{T}{T_{nom}}\right)^{X_{tb}} \qquad \beta_f \cdot (1 + X_{tb}\Delta T) \qquad \beta_f \cdot \left(\frac{T}{T_{nom}}\right)^{X_{tb}}$$

$$(\text{if } TBF_1, TBF_2 \text{ are not specified})$$

$$(\text{if } TBR_1, TBR_2 \text{ are not specified})$$

For TLEV=0 and 1

$$facln = \frac{E_g(0)}{V_t(T_{nom})} - \frac{E_g(0)}{V_t(T)} + XTI \cdot ln\left(\frac{T}{T_{nom}}\right)$$
(0.98)

For TLEV=2

$$facln = \frac{E_g(T_{nom})}{V_t(T_{nom})} - \frac{E_g(T)}{V_t(T)} + XTI \cdot ln\left(\frac{T}{T_{nom}}\right)$$
(0.99)

For TLEV=3

$$facln = \frac{V_{SB}}{V_t(T_{nom})} - \frac{V_{SB}}{V_t(T)} + XTI \cdot ln\left(\frac{T}{T_{nom}}\right)$$
(0.100)

Note:

If TBF_1 or TBF_2 is specified, then β_f will be calculated using the equation for **tlev=3**, regardless of the actual value of **tlev**. Similarly, the **tlev=3** equation for β_r will always take precedence if either TBR_1 or TBR_2 is specified.

Capacitance

Capacitance equations are selected by the parameter **TLEVC**.

The following capacitance equations are used when **TLEVC=0**:

$$C_{je}(T) = C_{je} \cdot \left\{ 1 + m_{je} \cdot \left(4.0 \times 10^{-4} \cdot \Delta T - \frac{V_{je}(T)}{V_{je}} + 1 \right) \right\}$$

$$C_{jc}(T) = C_{jc} \cdot \left\{ 1 + m_{jc} \cdot \left(4.0 \times 10^{-4} \cdot \Delta T - \frac{V_{jc}(T)}{V_{jc}} + 1 \right) \right\}, \tag{0.101}$$

$$C_{js}(T) = C_{js} \cdot \left\{ 1 + m_{js} \cdot \left(4.0 \times 10^{-4} \cdot \Delta T - \frac{V_{js}(T)}{V_{is}} + 1 \right) \right\}$$

where contact voltages are determined by

$$V_{je}(T) = V_{je} \cdot \left(\frac{T}{T_{nom}}\right) - V_{t}(T) \cdot \left\{ 3 \ln \left(\frac{T}{T_{nom}}\right) + \frac{E_{g}(T_{nom})}{V_{t}(T_{nom})} - \frac{E_{g}(T)}{V_{t}(T)} \right\}$$

$$V_{jc}(T) = V_{jc} \cdot \left(\frac{T}{T_{nom}}\right) - V_{t}(T) \cdot \left\{ 3 \ln \left(\frac{T}{T_{nom}}\right) + \frac{E_{g}(T_{nom})}{V_{t}(T_{nom})} - \frac{E_{g}(T)}{V_{t}(T)} \right\}$$

$$V_{js}(T) = V_{js} \cdot \left(\frac{T}{T_{nom}}\right) - V_{t}(T) \cdot \left\{ 3 \ln \left(\frac{T}{T_{nom}}\right) + \frac{E_{g}(T_{nom})}{V_{t}(T_{nom})} - \frac{E_{g}(T)}{V_{t}(T)} \right\}$$

$$(0.102)$$

If TLEVC=1,

$$C_{je}(T) = C_{je} \cdot (1 + C_{te} \cdot \Delta T)$$

$$C_{jc}(T) = C_{jc} \cdot (1 + C_{tc} \cdot \Delta T)$$

$$C_{is}(T) = C_{is} \cdot (1 + C_{ts} \cdot \Delta T)$$

$$(0.103)$$

and contact voltages are determined by

$$\begin{aligned} V_{je}(T) &= V_{je} - T_{vje} \cdot \Delta T \\ V_{jc}(T) &= V_{jc} - T_{vjc} \cdot \Delta T \\ V_{js}(T) &= V_{js} - T_{vjs} \cdot \Delta T \end{aligned} \tag{0.104}$$

If TLEVC=2,

$$C_{je}(T) = C_{je} \cdot \left(\frac{V_{je}}{V_{je}(T)}\right)^{m_{je}}$$

$$C_{jc}(T) = C_{jc} \cdot \left(\frac{V_{jc}}{V_{jc}(T)}\right)^{m_{jc}}$$

$$C_{js}(T) = C_{js} \cdot \left(\frac{V_{js}}{V_{js}(T)}\right)^{m_{js}}$$

$$(0.105)$$

where

$$\begin{aligned} V_{je}(T) &= V_{je} - T_{vje} \cdot \Delta T \\ V_{jc}(T) &= V_{jc} - T_{vjc} \cdot \Delta T \\ V_{js}(T) &= V_{js} - T_{vjs} \cdot \Delta T \end{aligned} \tag{0.106}$$

Note: Use mje, mjc, and mjs instead of mje(T), mjc(T), and mjs(T) in the above equations.

When TLEVC=3:

$$C_{je}(T) = C_{je} \cdot \left(1 - 0.5 \cdot dvjedt \cdot \frac{\Delta T}{V_{je}}\right)$$

$$C_{jc}(T) = C_{jc} \cdot \left(1 - 0.5 \cdot dvjcdt \cdot \frac{\Delta T}{V_{jc}}\right)$$

$$C_{js}(T) = C_{js} \cdot \left(1 - 0.5 \cdot dvjsdt \cdot \frac{\Delta T}{V_{is}}\right)$$

$$(0.107)$$

and

$$\begin{split} V_{je}(T) &= V_{je} + dvjedt \cdot \Delta T \\ V_{jc}(T) &= V_{jc} + dvjcdt \cdot \Delta T \\ V_{is}(T) &= V_{is} + dvjsdt \cdot \Delta T \end{split} \tag{0.108}$$

where

$$dvjedt = -\frac{E_g(T_{nom}) + 3 \cdot V_t(T_{nom}) + [E_g(0) - E_g(T_{nom})] \cdot \left(2 - \frac{T_{nom}}{T_{nom} + GAP2}\right) - V_{je}}{T_{nom}}$$

$$dvjedt = -\frac{E_g(T_{nom}) + 3 \cdot V_t(T_{nom}) + [E_g(0) - E_g(T_{nom})] \cdot \left(2 - \frac{T_{nom}}{T_{nom} + GAP2}\right) - V_{jc}}{T_{nom}}$$

$$dvjedt = -\frac{E_g(T_{nom}) + 3 \cdot V_t(T_{nom}) + [E_g(0) - E_g(T_{nom})] \cdot \left(2 - \frac{T_{nom}}{T_{nom} + GAP2}\right) - V_{js}}{T_{nom}}$$

$$dvjedt = -\frac{E_g(T_{nom}) + 3 \cdot V_t(T_{nom}) + [E_g(0) - E_g(T_{nom})] \cdot \left(2 - \frac{T_{nom}}{T_{nom} + GAP2}\right) - V_{js}}{T_{nom}}$$

Chapter 8: Device Models BJT Level 6 (Mextram)

BJT Level 6 (Mextram)

The level 6 bipolar junction transistor model is the Philips Mextram model.

Parameters

The Mextram model uses the following syntax.

.model name npn | pnp level=[6 | 503 | 504] | model=modelname [parameters]

The Mextram model is fully described in the document Bipolar Transistor Level 504.

For additional detailed information about the Mextram model, please refer to the Philips Compact Model Webpage:

http://www.semiconductors.philips.com/Philips_Models/bipolar/mextram

T-Spice includes support for Mextram versions 503 and 504. The version 504 model provides optional support for modeling the extrinsic substrate and the self-heating effects. Selection of an appropriate model is accomplished by using the **model**=*modelname* parameter. If no specific model is specified via the **model** parameter, the **bjt503** model will be selected when level=503 or version=503, otherwise the **bjt504** model will be used.

The available *modelname* values for the Mextram model selection are:

Modelname	Description
bjt503	Mextram version 503 with substrate
bjtd503	Mextram version 503 without substrate
bjt504 (default)	Mextram version 504 with substrate
bjtd504	Mextram version 504 without substrate
bjt504t	Mextram version 504 with substrate, self-heating
bjtd504t	Mextram version 504 without substrate, self-heating

Chapter 8: Device Models BJT Level 9 (VBIC)

BJT Level 9 (VBIC)

In addition to the standard Gummel-Poon BJT model, T-Spice supports the Vertical Bipolar Inter-Company model (VBIC) as the level 9 BJT.

Note:

If you specify VBIC Level 4 in T-Spice it will use the VBIC 1999 version 1.2 model.

Parameters

The VBIC model uses the following syntax.

.model name npn | pnp level=9 [parameters]

The T-Spice VBIC model is based upon release 1.2 of the VBIC code, and includes certain enhancements for improved convergence and stability.

The following tables describe all of the VBIC BJT parameter.

Parameter (alias)	VBIC Model Parameters Description	Default	Units
afn	base-emitter flicker noise exponent	1.0	
ajc	base-collector capacitance smoothing factor	5	
aje	base-emitter capacitance smoothing factor	5	
ajs	substrate-collector capacitance smoothing factor	5	
art	base-collector reach-through limiting voltage (0 means infinity)	0.1	V
avc1	base-collector weak avalanche parameter 1	0.0	1/V
avc2	base-collector weak avalanche parameter 2	0.0	1/V
bfn	base-emitter flicker noise 1/f dependence	1.0	
cbco (cbc0)	extrinsic base-collector overlap capacitance	0.0	C
cbeo (cbe0)	extrinsic base-emitter overlap capacitance	0.0	C
ccso	Fixed collector-substrate capacitance	0	C
cjc	base-collector intrinsic zero bias capacitance	0.0	C
сјср	substrate-collector zero bias capacitance	0.0	C
cje	base-emitter zero bias capacitance	0.0	C
cjep	base-collector extrinsic zero bias capacitance	0.0	C
cth	thermal capacitance	0.0	A
dear	Activation energy shift for ISRR (HBTs)	0	V

Chapter 8: Device Models BJT Level 9 (VBIC)

Parameter (alias)	VBIC Model Parameters Description	Default	Units
dtemp (dtmp)	local temperature rise	0	deg C
ea	activation energy for IS	1.12	eV
eaic	activation energy for IBCI/IBEIP	1.12	eV
eaie	activation energy for IBEI	1.12	eV
eais	activation energy for IBCIP	1.12	eV
eanc	activation energy for IBCN/IBENP	1.12	eV
eane	activation energy for IBEN	1.12	eV
eans	activation energy for IBCNP	1.12	eV
eap	Activation energy for ISP	1.12	V
fc	forward bias depletion capacitance limit	0.9	
gamm (gamma)	epi doping parameter	0.0	
hrcf	high current RC factor	0.0	
ibbe	Base-Emitter breakdown current	1e-6	
ibci	ideal base-collector saturation current	1.0E-16	A
ibcip	ideal parasitic base-collector saturation current	0.0	A
ibcn	non-ideal base-collector saturation current	0.0	A
ibcnp	non-ideal parasitic base-collector saturation current	0.0	A
ibei	ideal base-emitter saturation current	1.0E-18	A
ibeip	ideal parasitic base-emitter saturation current	0.0	A
iben	non-ideal base-emitter saturation current	0.0	
ibenp	non-ideal parasitic base-emitter saturation current	0.0	A
ikf	forward knee current (zero means infinity)	0.0	A
ikp	parasitic knee current (zero means infinity)	0.0	A
ikr	reverse knee current (zero means infinity)	0.0	A
is	transport saturation current	1.0E-16	Amps
isp	parasitic transport saturation current	0.0	A
isrr	Reverse saturation current factor (HBTs)	1.0	
itf	coefficient of TF dependence in Ic	0.0	
kfn	base-emitter flicker noise constant	0.0	
mc	base-collector grading coefficient	0.33	
me	base-emitter grading coefficient	0.33	

Chapter 8: Device Models

BJT Level 9 (VBIC)

Parameter (alias)	VBIC Model Parameters Description	Default	Units
ms	substrate-collector grading coefficient	0.33	
nbbe	Base-Emitter breakdown emission coefficient	1.0	
nci	ideal base-collector emission coefficient	1.0	
ncip	ideal parasitic base-collector emission coefficient	1.0	A
ncn	non-ideal base-collector emission coefficient	2.0	
ncnp	non-ideal parasitic base-collector emission coefficient	2.0	
nei	ideal base-emitter emission coefficient	1.0	
nen	non-ideal base-emitter emission coefficient	2.0	
nf	forward emission coefficient	1.0	
nfp	parasitic fwd emission coefficient	1.0	
nkf	High current roll-off coefficient	0.5	
nr	reverse emission coefficient	1.0	
pc	base-collector built-in potential	0.75	V
pe	base-emitter built-in potential	0.75	V
ps	substrate-collector built-in potential	0.75	V
qbm	Selector for SGP qb formulation	0	
qco (qc0)	epi charge parameter	0.0	C
qtf	variation of TF with base-width modulation	0.0	S
rbi	intrinsic base resistance	0.0	Ω
rbp	parasitic base resistance	0.0	Ω
rbx	extrinsic base resistance	0.0	Ω
rci	intrinsic collector resistance	0.0	Ω
rcx	extrinsic collector resistance	0.0	Ω
re	emitter resistance	0.0	Ω
rs	substrate resistance	0.0	Ω
rth	thermal resistance	0.0	Ω
tavc	temperature coefficient of AVC2	0.0	
td	forward excess-phase delay time	0.0	S
tf	forward transit time	0.0	S
tnbbe	Temperature coefficient of NBBE	0	
tnf	temperature coefficient of NF	0.0	

Chapter 8: Device Models

BJT Level 9 (VBIC)

Parameter (alias)	VBIC Model Parameters Description	Default	Units
tnom (tref)	nominal measurement temperature of parameters	global tnom (25.0)	deg. C
tr	reverse transit time	0.0	S
tvbbe1	First temperature coefficient of VBBE	0	
tvbbe2	Second temperature coefficient of VBBE	0	
vbbe	Base-Emitter breakdown voltage (zero means infinity)	0	V
vef	forward Early voltage (zero means infinity)	0.0	V
ver	reverse Early voltage (zero means infinity)	0.0	V
vers (version)	Version	1.2	
vo (v0)	epi drift saturation voltage	0.0	V
vrev	Revision	0	
vrt	base-collector reach-through limiting voltage (0 means infinity)	0	V
vtf	coefficient of TF dependence on Vbc	0.0	
wbe	portion of IBEI from Vbei (1-WBE from Vbex)	1.0	
wsp	portion of ICCP from Vbep (1-WSP from Vbci)	1.0	
xii	temperature exponent of IBEI/IBCI/IBEIP/IBCIP	3.0	
xikf	Temperature exponent of IKF	0	
xin	temperature exponent of IBEN/IBCN/IBENP/IBCNP	3.0	
xis	temperature exponent of IS	3.0	
xisr	Temperature exponent of ISRR (HBTs)	0	
xrb (xrbi)	temperature exponent of base resistance	0.0	
xrbp	Temperature exponent of extrinsic resistance RBP	0	
xrbx	Temperature exponent of extrinsic resistance RBX	0	
xrc (xrci)	temperature exponent of collector resistance	0.0	
xrcx	Temperature exponent of extrinsic resistance RCX	0	
xre	temperature exponent of emitter resistance	0.0	
xrs	temperature exponent of substrate resistance	0.0	
xtf	coefficient of TF bias dependence	0.0	
xvo (xv0)	temperature exponent of VO	0.0	

Chapter 8: Device Models BJT Level 9 (VBIC)

The following VBIC model parameters are T-Spice extensions to the standard model.

level	model selector	4	V
ismin	Minimum permissible value of IS	1e-19	A
ispmin	Minimum permissible value of ISP	1e-19	A
mcmin	Minimum permissible value of MC	.01	
memin	Minimum permissible value of ME	.01	
msmin	Minimum permissible value of MS	.01	
rbpmin	Minimum permissible value of RBP	.001	Ω

Equations

For a thorough description of the VBIC model and equations, please refer to the following website:

http://www.designers-guide.org/VBIC/index.html

Note:

Please keep in mind that the default operating temperature and model reference temperature in T-Spice is 25 degrees Celsius, whereas many simulaters use 27 degrees.

When performing simulation comparisons against these simulators, you may want to set the default reference temperature option, "tnom" (page 275), and the operating temperature, ".temp" (page 145), to 27.

Chapter 8: Device Models

BJT Level 10 (Modella)

BJT Level 10 (Modella)

The level 10 bipolar junction transistor model is the Philips Modella model, a lateral PNP bipolar model.

Parameters

The Modella model uses the following syntax.

.model name pnp level=[10|500] | model=modelname [parameters]

The complete user manual for the Modella model is located at Bipolar PNP Transistor Level 500.

For additional detailed information about the Modella model, please refer to the Philips Compact Model Webpage:

http://www.semiconductors.philips.com/Philips_Models/bipolar/modella

T-Spice includes support for the Modella model version 500 with and without self-heating effects. When the self-heating model is used, the device statement should include an additional temperature node following the substrate node name.

The available *modelname* values for the Modella model selection are:

Modelname Description

bjt500 (default) Modella version 500 with substrate

bjt500t Mextram version 500 with substrate, self-heating

Chapter 8: Device Models Capacitor

Capacitor

Indicates the capacitance of a planar diffused region from geometric and process information.

Parameters

.model modelname c [parameter =X]

Parameter	Symbol	Description	Value	Unit
Сар	<i>C0</i>	Capacitance	0	F
Capsw	Csw	Sidewall capacitance	0	F/m
Cox	Cox	Bottomwall capacitance	0	F/m^2
Del	δ	Difference between drawn and actual widths or lengths	0	m
Di	κ	Dielectric constant or relative permittivity	0	-
L	L	Length of the capacitor	0	m
Shrink	Sshrink	Shrink factor	1	-
Tc1	Tc1	The first temperature coefficient for capacitance	0	1/deg C
Tc2	Tc2	The second temperature coefficient for capacitance	0	1/(deg C) ²
Thick	τ	Insulator thickness	0	m
Tnom Tref	tref	Reference temperature	global tnom (25.0)	Deg C
W	W	Width of capacitor	0	m

Equations

The statement ".model" (page 96) must be associated with an element statement; see the third syntax example in "Capacitor (c)" (page 154).

$$C = MS_{scale}[1 + (T_{c1}\Delta T) + (T_{c2}\Delta T)^{2}]C_{0}$$
(0.110)

Note:

When the calculated capacitance is greater than 0.1 F, T-Spice issues a warning message.

The user supplies the multiplicity factor M and the scale factor Scale in the element statement. See "Capacitor" (page 365). The user can supply Tc1, Tc2, and Dtemp in the element statement, model statement, or both. In the last case, element values override model values. C0 will be determined in one of 3 ways, which are listed in order of selection:

i) C0 in the element statement.

ii) C0x in the model statement; C0 will be computed using equation 0.111.

iii) C0 in the model statement.

Chapter 8: Device Models Capacitor

When C0x is supplied in the model description, T-Spice would then compute C0 as follows:

$$C_0 = L_{eff} W_{eff} C_{ox} + 2(L_{eff} + W_{eff}) C_{sw}$$
 (0.111)

where

$$L_{eff} = L_{scaled} - 2\Delta_{eff} \tag{0.112}$$

$$W_{eff} = W_{scaled} - 2\Delta_{eff} \tag{0.113}$$

If L is supplied in the element statement:
$$L_{scaled} = LS_{shrink}S'_{scale}$$
 (0.114)

If L is supplied in the model statement:
$$L_{scaled} = LS_{shrink}S'_{scalm}$$
 (0.115)

If W is supplied in the element statement:
$$W_{scaled} = WS_{shrink}S'_{scale}$$
 (0.116)

If W is supplied in the model statement:
$$W_{scaled} = wS_{shrink}S'_{scale}$$
 (0.117)

The user supplies S'_{scale} and S'_{scalm} using .options scale or .options scalm. For further information, see ".options" (page 106).

$$\Delta = \delta S'_{scalm} \tag{0.118}$$

If τ is supplied, T-Spice would compute Cox from

If
$$\kappa \neq 0$$
: $C_{ox} = \kappa(\varepsilon_0/\tau)$ (0.119)

If
$$\kappa = 0$$
: $C_{ox} = \varepsilon_{0x} / \tau$ (0.120)

The quantities ε_0 , $\varepsilon_0 x$ are 8.8542149e-12 and 3.453148e-11, respectively. After this, T-Spice would compute C0 using the formulas above. If τ is not supplied, T-Spice sets C0 = 0.

Examples

```
V1 a d AC 150 0
R1 a b 10
L1 b c 50
.model
              capxx
                                                 cox=0.25
                                                 capsw=1/3.0
                                                 del=0.1
                                                 shrink=0.5
C1
                            d
              С
                                   capxx
                                                 scale= 0.02/2.5
                                                 1 = 2*1.2/27.7
                                                 w = 2*2.2/27.7
.options scale = 27.7
.AC LIN 1 0.5/3.14159 0.5/3.14159
.PRINT AC IM(V1) IP(V1)
```

Coupled Transmission Line (Level 1)

The coupled transmission line model employs variable electrical parameters.

Parameters

```
.model name cpl level=1 [[r]={matrix}] [l]={matrix} [c]={matrix} [g]={matrix}]
```

Matrices are entered as follows.

```
[r]={r11, r12, r13, ...
+ {r21, r22, r23, ...
+ {r31, r32, r33, ...
}
```

Parameter	Description	Default	Units
[r]	Optional per unit length resistance matrix. Must be positive definite.	[Zero matrix]	Ω/m
[1]	Per unit length inductance matrix. Must be positive definite. Off-diagonal elements must be non-negative. n and p metric prefixes may be used.	[Zero matrix]	H/m
[c]	Per unit length capacitance matrix. Must be positive definite. Off-diagonal elements must be zero or negative. n and p metric prefixes may be used.	[Zero matrix]	F/m
[g]	Optional per unit length conductance matrix. Must be positive definite.	[Zero matrix]	S/m

Example

An example using lossless symmetrical coupled lines:

```
.model exCPL CPL level=1
+ [1]={494.6n, 63,3n,
+ 63.3n, 494.6n }
+ [c]={62.8p, -4.94p,
+ -4.94p, 62.8p }
```

Diode

There are five types of diode models in T-Spice.

 Level 1 describes the Non-Geometric Junction diode model. It is used to model discrete diode devices such as standard and Zener diodes.

- Level 2 describes the Fowler-Nordheim model that is generally used to characterize the tunneling current flow through thin insulator in nonvolatile memory devices.
- Level 3 describes the Geometric Junction diode model. It is used to model IC-based standard silicone-diffused diodes, Schottky barrier diodes and Zener diodes.
- Level 4 describes the Philips Juncap version 2 diode. Note level 200 and level 9 are also the Juncap model, with different level numbers provided for compatibility with various simulators.
- Level 500 describes the Philips Advanced diode.

Parameters

The Philips Juncap2 model is fully described in the document Philips Juncap.

The Philips Advanced Diode is fully described in the document Philips Diode 500.

The following model parameter and equation descriptions pertain to Diode levels 1-3.

.model name d [parameters]

Model Selectors

Parameter	Symbol	Description	Default	Unit
level	level	Diode model selector	1	_
dcap	dcap	Capacitance model selector	2	_
tlev	tlev	Temperature equation selector (<i>tlev</i> ≡3 for Schottky barrier diode)	0	_
tlevc	tlevc	Temperature equation selector for junction capacitance and contact potential (<i>tlevc</i> =1 and 2 for Schottky barrier diode)	0	_

Geometric and Scaling Parameters

Parameter	Symbol	Description	Default	Unit
area	area	Junction area (unitless in level=1)	1.0	m^2
PJ	PJ	Junction periphery (unitless in level=1)	0.0	m
М	M	Multiplier factor to simulate multiple diode in parallel	1	
SCALE	SCALE	Scaling factor for geometric parameters	1	
SCALM	SCALM	Scaling factor for model parameters	1	

Parameter	Symbol	Description	Default	Unit
SHRINK	SHRIN K	Shrink factor	1	
L	L	Length of diode	0.0	m
W	W	Width of diode	0.0	m
xw	XW	Masking and etching effects	0.0	m
LM	LM	Length of metal capacitor	0.0	m
WM	WM	Width of metal capacitor	0.0	m
XM	XM	Masking and etching effects for LM and WM	0.0	m
LP	LP	Length of polysilicon capacitor	0.0	m
WP	WP	Width of polysilicon capacitor	0.0	m
XP	XP	Masking and etching effects for LP and WP	0.0	m
DC Parar	meters			
Parameter	Symbol	Description	Default	Unit
IS JS	IS	Saturation current (per unit area). Use calculated <i>IS</i> value for Schottky barrier diode if <i>IS</i> is not specified; see "Application Notes—Schottky Barrier Diodes" on page 380.	1.0×10 ⁻¹⁴	A
JSW	JSW	Side wall saturation current (per unit length)	0.0	A
RS	RS	Ohmic resistance	0.0	Ω
N	N	Emission coefficient (<i>N</i> =1for Schottky barrier diode)	1.0	
BV VB VA R VRB	BV	Breakdown voltage	∞	V
IBV IB	IBV	Current at breakdown voltage	1.0×10 ⁻³	A
IK IKF IBF	IKF	Forward knee current (per unit area)	0.0	A
IKB IKR IBR	IKB	Reverse knee current (per unit area)	0.0	A
EXPLI	EXPLI	Current explosion model parameter. The PN junction characteristics above the explosion current area are linear, with the slope at the explosion point.	1.0×10 ⁻¹⁵	A
Capacitai	nce Para	ameters		
Parameter	Symbol	Description	Default	Unit
CJA CJ0 CJ	Cj0	Zero-bias bottom wall junction capacitance (per unit area)	0.0	F

Parameter	Symbol	Description	Default	Unit
CJP CJSW	Cjp0	Zero-bias side wall/periphery junction capacitance (per unit length)	0.0	F
FC	FC	Coefficient for forward-bias depletion area capacitance	0.5	
FCS	FCS	Coefficient for forward-bias depletion periphery capacitance	0.5	
MJ M EXA	mj	Area junction grading coefficient (<i>mj</i> =0.5 for Schottky barrier diode)	0.5	
MJSW EXP	mjsw	Periphery junction grading coefficient	0.33	
PB PHI VJ PHA	PB	Area junction contact potential. Use Schottky barrier height as default <i>PB</i> value for Schottky barrier diode if PB is not specified.	0.8	V
PHP VJSW	PHP	Periphery junction contact potential	PB	V
π	τ	Transit time (minority carrier storage time) (τ=0 for Schottky barrier diode)	0.0	S
XOI	XOP	Thickness of oxide contacted on polysilicon	1.0×10^4	Å
ХОМ	XOM	Thickness of oxide contacted on metal	1.0×10^4	Å

Noise Parameters

Parameter	Symbol	Description	Default	Unit
AF	AF	Flick noise exponent	1.0	
KF	KF	Flick noise exponent	0.0	

Temperature Parameters

Parameter	Symbol	Description	Default	Unit
TNOM TREF	Tnom	Reference temperature	global tnom (25.0)	deg
EG	Eg(0)	Energy gap at 0° K for tlev = 2: for tlev = 0, 1, 3:	1.16 1.11	eV
VSB	VSB	Schottky barrier height (tlev=3 only)	0.8	V
GAP1	GAP1	Coefficient in energy gap temperature equation (Si: 4.73×10^{-4} , Ge: 4.77×10^{-4} , and GaAs: 5.41×10^{-4})	7.02×10 ⁻⁴	eV/deg
GAP2	GAP2	Coefficient in energy gap temperature equation (Si: 636, Ge: 235, and GaAs: 204)	1108	deg
TCV	TCV	Breakdown voltage temperature coefficient	0.0	1/deg

Parameter	Symbol	Description	Default	Unit
TTT1	τ <i>t1</i>	First-order temperature coefficient for $\boldsymbol{\tau}$	0.0	1/deg
TTT2	τ <i>t</i> 2	Second-order temperature coefficient for $\boldsymbol{\tau}$	0.0	$1/deg^2$
TPB	TPB	Temperature coefficient for PB	0.0	1/deg
TPHP	TPHP	Temperature coefficient for PHP	0.0	1/deg
CTA CTC	CTA	Temperature coefficient for CJ	0.0	1/deg
СТР	CTP	Temperature coefficient for CJP	0.0	1/deg
TM1	TM1	First order temperature coefficient for mj ($TM \equiv 1$ for Schottky barrier diode)	0.0	1/deg
TM2	TM2	Second order temperature coefficient for <i>mjsw</i> (<i>TM</i> ≡2 for Schottky barrier diode)	0.0	1/deg ²
TRS	TRS	Resistance temperature coefficient	0.0	1/deg
ХТІ	XTI	Saturation current temperature exponent (for Schottky barrier diode)	3.0	

Fowler-Nordheim Model Parameters (level=2)

Parameter	Symbol	Description	Default	Unit
EF	EF	Forward critical electric field	1.0×10^{8}	V/cm
ER	ER	Reverse critical electric field	EF	V/cm
JF	JF	Forward Fowler-Nordheim current coefficient	1.0×10 ⁻¹⁰	A/V^2
JR	JR	Reverse Fowler-Nordheim current coefficient	JF	A/V^2
тох	τοχ	Thickness of oxide layer	100.0	Å
L	L	Length of diode	0.0	m
w	W	Width of diode	0.0	m
XW	XW	Masking and etching effects	0.0	m

Current Equations

Level 1 and Level 3

In levels 1 and 3, the diodes are modeled in forward bias, reverse bias, and breakdown regions.

In forward and reverse bias regions: Vd > -BVeff,

$$I_d = I_{seff} \cdot \left(\exp\left(\frac{V_d}{N \cdot V_t} - 1\right) \right) \tag{0.121}$$

where where Vt is thermal voltage, Vt = kTnom/q, Vd is the voltage across the diode, Vd = Vnode1-Vnode2, BVeff is the adjusted breakdown voltage, and N is emission coefficient (N=1 for Schottky barrier diode).

BVeff can be determined by

$$BV_{eff} = BV - (N \cdot V_t \cdot In) \left(\frac{IBV_{eff}}{I_{break}}\right)$$
 (0.122)

when IBVeff>Ibreak.

and

$$IBVeff = BV$$
, when $IBVeff \le Ibreak$. (0.123)

where

$$I_{break} = -I_{seff} \cdot \left(\exp\left(\frac{BV}{N \cdot V_t} - 1\right) \right) \tag{0.124}$$

In breakdown region: BV <- BVeff

$$I_d = I_{seff} \cdot \left(\exp\left(\frac{V_d + BV_{eff}}{N \cdot V_t}\right) \right) \tag{0.125}$$

In all the above equations we assume that the diode has a finite breakdown voltage, that is $BV \neq \infty$. When BV is not given, or the diode has an infinite breakdown voltage,

$$I_d = I_{seff} \cdot \left(\exp\left(\frac{V_d}{N \cdot V_t} - 1\right) \right) \tag{0.126}$$

Vd>0 is the forward-bias region and Vd<0 is the reverse-bias region. There is no breakdown region in this case.

If the high-level injection effects are considered, the current equations are

in forward-bias region (Vd>0):

$$I^*_d = \frac{I_d}{1 + \left(\frac{I_d}{I_{KF}}\right)^{\frac{1}{2}}}$$
 (0.127)

when $IKF \neq 0$.

$$I*D=ID (0.128)$$

when IKF=0.

and in reverse-bias region (Vd < 0)

$$I^*_d = \frac{I_d}{1 + \left(\frac{I_d}{I_{KR}}\right)^{\frac{1}{2}}}$$
 (0.129)

when $IKR \neq 0$.

$$I*D=ID (0.130)$$

when IKR=0.

Diode Capacitance Equations

The diode capacitance CD consists of the contributions from diffusion capacitance Cd, junction capacitance (depletion capacitance) Cj, metal (contact electrode) capacitance Cm, and polysilicon (contact electrode) capacitance Cp.

Diffusion Capacitance

$$C_d = \pi \cdot \frac{\partial I_d}{\partial V_d} \tag{0.131}$$

Note:

For Schottky barrier diodes, Cd=0 ($\pi=0$) because the Schottky barrier diode is a majority carrier device and minority carrier effect can be ignored.

Junction Capacitance (Depletion Capacitance)

The junction capacitance has two components: the junction bottom area capacitance Cja and the junction periphery capacitance Cjp.

$$Cj = Cja + Cjp$$
.

There are two sets of junction capacitance equations selected by the parameter **dcap**.

For **dcap=1**, the junction bottom area capacitance is given by

$$C_{ja} = C_{j0eff} \cdot \left(1 - \frac{V_d}{PB}\right)^{-m_j} \tag{0.132}$$

when $Vd > FC \times PB$

$$C_{ja} = C_{j0eff} \cdot \frac{1 - FC \times (1 + m_j) + m_j \times \frac{V_d}{PB}}{(1 - FC)^{1 + m_j}}$$
(0.133)

when $Vd > FC \times PB$

The junction periphery capacitance is given by

$$C_{jp} = C_{jp0eff} \cdot \left(1 - \frac{V_d}{PHP}\right)^{-m_{jsw}} \tag{0.134}$$

when $Vd > FCS \times PHP$

$$C_{ja} = C_{j0eff} \cdot \frac{1 - FCS \times (1 + m_{jsw}) + m_{jsw} \times \frac{V_d}{PB}}{(1 - FCS)^{1 + m_{jsw}}}$$
(0.135)

when $Vd > FCS \times PHP$

The total junction capacitance is

$$C_j = C_{ja} + C_{jp} (0.136)$$

For dcap=2 (default), the total junction capacitance is given by

$$C_{j} = C_{j0eff} \cdot \left(1 - \frac{V_{d}}{PB}\right)^{-m_{j}} + C_{jp0eff} \cdot \left(1 - \frac{V_{d}}{PHP}\right)^{-m_{jsw}}$$
(0.137)

when Vd < 0.

$$C_{j} = C_{j0eff} \cdot \left(1 + m_{j} \cdot \frac{V_{d}}{PR}\right) + C_{jp0eff} \cdot \left(1 + m_{sjw} \cdot \frac{V_{d}}{PHP}\right)$$

$$(0.138)$$

when Vd > 0.

Metal (Contact Electrode) Capacitance

For **level=3** only

$$C_{m} = \frac{\varepsilon_{ox}}{X_{OM}} \cdot (W_{Meff} + X_{Meff}) \cdot (L_{Meff} + X_{Meff})$$
(0.139)

Polysilicon (Contact Electrode) Capacitance

For level=3 only

$$C_{p} = \frac{\varepsilon_{ox}}{X_{OP}} \cdot (W_{Peff} + X_{Peff}) \cdot (L_{Peff} + X_{Peff})$$
(0.140)

Geometric Scaling Effect

Level 1

Scaling for **level=1** involves the use of the junction area (area), junction periphery (PJ), and the dimensionless multiplier factor (M) to simulate multiple diodes.

Geometric parameters include

$$area_{eff} = area \cdot M$$
 (0.141)

$$PJ_{eff} = PJ \cdot M \tag{0.142}$$

Element and model parameters include:

$$I_{KEeff} = I_{KF} \cdot area_{eff} \tag{0.143}$$

$$I_{KREeff} = I_{KR} \cdot area_{eff} \tag{0.144}$$

$$IBV_{eff} = IBV \cdot area_{eff} \tag{0.145}$$

$$I_{Seff} = I_{S} \cdot area_{eff} + JSW \cdot PJ_{eff}$$
 (0.146)

$$JSW_{eff} = JSW \cdot PJ_{eff} \tag{0.147}$$

$$EXPLI = EXPLI \cdot area_{eff} \tag{0.148}$$

$$C_{i0eff} = C_{i0} \cdot area_{eff} \tag{0.149}$$

$$C_{ip0eff} = C_{ip0} \cdot PJ_{eff} \tag{0.150}$$

$$R_{Seff} = R_s / (area_{eff}) (0.151)$$

Level 3

Level 3 model scaling is affected by the parameters SCALE, SCALM, SHRINK, and M.

When both L and W are specified, geometric parameters include

$$area_{eff} = W_{eff} \cdot L_{eff} \cdot M \tag{0.152}$$

$$PJ_{eff} = (2 \cdot W_{eff} + 2 \cdot L_{eff}) \cdot M \tag{0.153}$$

where

 $Weff = W \times SCALE \times SHRINK + XWeff$

 $Leff = L \times SCALE \times SHRINK + XWeff$

and

 $XWeff = XW \times SCALM$

otherwise

 $areaeff = area \times M \times SCALE2 \times SHRINK2$

 $PJeff = PJ \times M \times SCALE \times SHRINK$

Geometric parameters for polysilicon and metal capacitance include

 $LMeff = LM \ SCALE \times SHRINK$

 $WMeff = WM \ SCALE \times SHRINK$

 $XMeff = XM \times SCALM$

 $LPeff = LP \ SCALE \times SHRINK$

 $WPeff = WP \ SCALE \times SHRINK$

 $XPeff = XP \times SCALM$

Element and model parameters include

$$I_{KEeff} = I_{KF} \cdot area_{eff} \tag{0.154}$$

$$I_{KREeff} = I_{KR} \cdot area_{eff} \tag{0.155}$$

$$IBV_{eff} = (IBV \cdot area_{eff})/(SCALM^2)$$
 (0.156)

$$I_{Seff} = I_S \cdot area_{eff} / SCALM^2 + JSW \cdot PJ_{eff} / SCALM$$
 (0.157)

$$JSW_{eff} = (JSW \cdot PJ_{eff})/(SCALM)$$
 (0.158)

$$EXPLI = EXPLI \cdot area_{eff} \tag{0.159}$$

$$R_{Seff} = R_s / (area_{eff} \cdot SCALM^2)$$
 (0.160)

$$C_{j0eff} = C_{j0} \cdot area_{eff} / SCALM^2$$
 (0.161)

$$C_{ip0eff} = C_{ip0} \cdot PJ_{eff} / (SCALM)$$
 (0.162)

Temperature Effects

Energy Gap

The calculation of energy gap is dependent on **TLEV**. For **TLEV=0**, **1**, or **3**, energy gap is always calculated as follows:

$$E_g(T_{nom}) = 1.16 - (7.02 \times 10^4) \frac{T_{nom}^2}{T_{nom} + 1108.0}$$
 (0.163)

If **TLEV=2**, the energy gap is calculated as a function of model parameters $E_g(0)$, GAP1, and GAP2:

$$E_g(T_{nom}) = E_g(0) - GAP1 \cdot \frac{T_{nom}^2}{T_{nom} + GAP2}.$$
 (0.164)

Saturation Current

$$I_S(T) = I_S \cdot e^{\frac{facln}{N}} \tag{0.165}$$

$$JSW(T) = JSW \cdot e^{\frac{facln}{N}}$$
 (0.166)

For TLEV=0 and 1

$$facln = \frac{E_g(0)}{V_t(T_{nom})} - \frac{E_g(0)}{V_t(T)} + XTI \cdot ln\left(\frac{T}{T_{nom}}\right)$$
(0.167)

For *TLEV*=2

$$facln = \frac{E_g(T_{nom})}{V_t(T_{nom})} - \frac{E_g(T)}{V_t(T)} + XTI \cdot ln\left(\frac{T}{T_{nom}}\right)$$
(0.168)

For TLEV=3

$$facln = \frac{V_{SB}}{V_t(T_{nom})} - \frac{V_{SB}}{V_t(T)} + XTI \cdot ln\left(\frac{T}{T_{nom}}\right)$$
(0.169)

Breakdown Voltage

For TLEV=0

$$BV(T) = BV - TCV \cdot \Delta T \tag{0.170}$$

For *TLEV*=1, 2, or 3

$$BV(T) = BV \cdot (1 - TCV \cdot \Delta T) \tag{0.171}$$

where $\Delta T = T - Tnom$

Transit Time

$$\tau(T) = \tau \cdot (1 + \tau_{t1} \cdot \Delta T + \tau_{t2} \cdot \Delta T^2) \tag{0.172}$$

Contact Potential

For TLEV=0

$$PB(T) = PB \cdot \left(\frac{T}{T_{nom}}\right) - V_t(T) \cdot \left\{3 \cdot \ln\left(\frac{T}{T_{nom}}\right) + \frac{E_g(T_{nom})}{V_t(T_{nom})} - \frac{E_g(T)}{V_t(T)}\right\}$$
(0.173)

$$PHP(T) = PHP \cdot \left(\frac{T}{T_{nom}}\right) - V_t(T) \cdot \left\{3 \cdot \ln\left(\frac{T}{T_{nom}}\right) + \frac{E_g(T_{nom})}{V_t(T_{nom})} - \frac{E_g(T)}{V_t(T)}\right\}$$
(0.174)

For TLEV=1 or 2

$$PB(T) = PB - TPB \times \Delta T \tag{0.175}$$

$$PHP(T) = PHP - TPHP \times \Delta T \tag{0.176}$$

For TLEV=3

$$PB(T) = PB + dpbdt \times \Delta T \tag{0.177}$$

$$PHP(T) = PHP - dphpdt \times \Delta T \tag{0.178}$$

where

TLEV=2

$$dpbdt = \frac{E_g(T_{nom}) + 3 \cdot V_t(T_{nom}) + [E_g(0) - E_g(T_{nom})] \cdot \left(2 - \frac{T_{nom}}{T_{nom} + GAP2}\right) - PB}{T_{nom}}$$

$$\frac{dphpdt = }{\frac{E_g(T_{nom}) + 3 \cdot V_t(T_{nom}) + [E_g(0) - E_g(T_{nom})] \cdot \left(2 - \frac{T_{nom}}{T_{nom} + GAP2}\right) - PHP}{T_{nom}}$$

and

TLEV=0 or 1

Eg(0) and GAP2 take their default values in the above equations:

Eg(0) = 1.16

GAP2 = 1108.0

Junction Capacitance

TLEV=0

$$C_{j}(T) = C_{j0} \cdot \left\{ 1 + m_{j} \cdot \left(4.0 \times 10^{-4} \cdot \Delta T - \frac{PB(T)}{PB} + 1 \right) \right\}$$
 (0.181)

$$C_{jsw}(T) = C_{jsw0} \cdot \left\{ 1 + m_j \cdot \left(4.0 \times 10^{-4} \cdot \Delta T - \frac{PHP(T)}{PHP} + 1 \right) \right\}$$
 (0.182)

TLEV=1

$$C_i(T) = C_{i0} \cdot (1 + CTA \cdot \Delta T) \tag{0.183}$$

$$C_{jsw}(T) = C_{jsw0} \cdot (1 + CTP \cdot \Delta T) \tag{0.184}$$

TLEV=2

$$C_j(T) = C_{j0} \cdot \left(\frac{PB}{PB(T)}\right)^{m_j} \tag{0.185}$$

$$C_{jsw}(T) = C_{jsw0} \cdot \left(\frac{PHP}{PHP(T)}\right)^{m_{jsw}} \tag{0.186}$$

Note:

Use mj instead of mj(T) in the above equation.

TLEV=3

$$C_j(T) = C_{j0} \cdot 1 - 0.5 \cdot dpbdt \cdot \frac{\Delta T}{PB}$$

$$(0.187)$$

$$C_{jsw}(T) = C_{jsw0} \cdot \left(1 - 0.5 \cdot dphpdt \cdot \frac{\Delta T}{PHP}\right) \tag{0.188}$$

Grading Coefficient

$$m_i(T) = m_i \cdot (1 + TM1 \cdot \Delta T + TM2 \cdot \Delta T^2) \tag{0.189}$$

Resistance

$$R_S(T) = R_S \cdot (1 + TRS \cdot \Delta T) \tag{0.190}$$

Fowler-Nordheim Model (Level 2)

The Fowler-Nordheim model is used to characterize the tunneling current flow through thin insulators in nonvolatile memory devices such as the floating gate devices and the MIOS (metal-insulator-oxide-

semiconductor) devices. The insulators in these devices are sufficiently thin (about 100 Å) to permit tunneling of carriers.

Current Equations

$$I_d = area_{eff} \cdot J_F \cdot \left(\frac{v_d}{t_{ox}}\right)^2 \cdot e^{\frac{E_F \cdot t_{ox}}{V_d}}$$
(0.191)

when $Vd \ge 0$

$$I_{d} = -area_{eff} \cdot J_{R} \cdot \left(\frac{v_{d}}{t_{ox}}\right)^{2} \cdot e^{-\frac{E_{R} \cdot t_{ox}}{V_{d}}}$$

$$(0.192)$$

when Vd < 0

where

 $areaeff = Weff \times Leff \times M$

and

 $Weff = W \times SCALM \times SHRINK + XWeff$

 $Leff = L \times SCALM \times SHRINK + XWeff$

 $XWeff = XW \times SCALM$

Capacitance

$$C_D = area_{eff} \cdot \frac{\varepsilon_{ox}}{t_{ox}} \tag{0.193}$$

Application Notes—Schottky Barrier Diodes

The Schottky barrier diode is not explicitly modeled in T-Spice, but it can be simulated using the PN junction diode model provided extra attention is paid to the differences between the PN junction diode and Schottky barrier diode.

Schottky barrier diodes and PN junction diodes have a similar I-V relation, but their saturation current expressions are quite different. For Schottky barrier diode, the saturation current is given by

$$I_S = A_{RC} \cdot K_{RC} \cdot T_{nom}^2 \cdot \exp\left(-\frac{V_{sb}}{V_t}\right) \tag{0.194}$$

where $A_{RC}=1.2\times 10^6 (A\cdot m^{-2}\cdot K^{-2})$ is the Richardson constant, KRC is the ratio of the effective Richardson constant to the Richardson constant, VSB is the Schottky barrier height, and $V_t=(kT_{nom})/q$ is the thermal voltage. Use this calculated IS value for Schottky barrier diode if IS is not specified.

Some typical KRC values are:

Type	Si	Ge	GaAs	
p-type	0.66	0.34	0.62	
n-type	(111) : 2.2	• (111): 1.11	0.068	
	(100): 2.1	(100): 1.19		

Some other parameter values intended for Schottky barrier diodes are indicated in the diode parameter list. Use these values instead of default in the simulation of Schottky barrier diode if these parameters are not specified.

JFET

The junction field-effect transistor model uses the basic FET model of Schichmann and Hodges. The DC characteristics are modeled by the threshold voltage and the gain factor, and charge storage is modeled by two reverse-biased PN junctions. Source and drain series resistances are included. JFET models are always level 0.

Parameters

.model name njf|pjf [parameters]

Parameter	Symbol	Description	Default	Units
vto	Vt0	Threshold voltage	-2.0	V
beta	β	Transconductance parameter	1.0×10^{-4}	AN^2
lambda	λ	Channel length modulation parameter	0.0	1/V
rd	Rd	Drain series resistance	0.0	Ω
rs	Rs	Source series resistance	0.0	Ω
cgs	Cgs	Zero-bias gate-source junction capacitance	0.0	F
cgd	Cgd	Zero-bias gate-drain junction capacitance	0.0	F
pb	PB	Gate junction potential	1.0	V
is	IS	Gate junction saturation current	1.0×10^{-14}	A
fc	FC	Forward-bias depletion capacitance coefficient	0.5	_

Large-Signal Model

Equations

Currents

In the normal or forward region of operation, the DC currents are described by the following equations, based on the quadratic FET model of Shichmann and Hodges.

For $(VGS - VTO) \le 0$,

$$I_{DS} = 0 \tag{0.195}$$

For $0 < (VGS - VTO) \le VDS$,

$$I_{DS} = \beta (V_{GS} - V_{TO})^2 (1 + \lambda V_{DS})$$
 (0.196)

For 0 < VDS < (VGS - VTO),

$$I_{DS} = \beta V_{DS} [2(V_{GS} - V_{TO}) - V_{DS}] (1 + \lambda V_{DS})$$
(0.197)

For the inverse or reverse region of operation where VDS < 0, the same set of equations is used, with VGS replaced by VGD and the signs on the VDS terms reversed.

For $(VGD - VTO) \le 0$,

$$I_{DS} = 0 ag{0.198}$$

For $0 < (VGD - VTO) \le VDS$,

$$I_{DS} = \beta (V_{CD} - V_{TO})^2 (1 - \lambda V_{DS}) \tag{0.199}$$

For 0 < VDS < (VGD - VTO),

$$I_{DS} = \beta V_{DS} [2(V_{GD} - V_{TO}) - V_{DS}] (1 - \lambda V_{DS})$$
(0.200)

The gate-to-drain and gate-to-source leakage currents are:

$$I_{GD} = I_S \cdot \left(e^{\frac{qV_{GD}}{kT}} - 1 \right) \tag{0.201}$$

$$I_{GS} = I_S \cdot \left(e^{\frac{qV_{GS}}{kT}} - 1 \right) \tag{0.202}$$

The total currents are then:

$$I_D = I_{DS} - I_{GD} (0.203)$$

$$I_G = I_{GD} + I_{GS} (0.204)$$

$$I_S = -(I_{DS} + I_{GS}) (0.205)$$

Charges

The charge equations corresponding to CGD and CGS are based on reverse-biased P-N step junctions.

For $VGX < FC \cdot PB$,

$$Q_{GX} = 2C_{GX} \cdot PB \left(1 - \sqrt{1 - \frac{V_{GX}}{PB}} \right) \tag{0.206}$$

For $VGX \ge FC \cdot PB$,

$$Q_{GX} = \frac{C_{GX} \left[\left(1 - \frac{3}{2} FC \right) (V_{GX} - FC \cdot PB) + \frac{1}{4PB} (V_{GX}^2 - (FC \cdot PB)^2) \right]}{(1 - FC)\sqrt{1 - FC}} +$$
(0.207)

$$C_{GX} \cdot PB \cdot (1 - \sqrt{1 - FC})$$

X denotes either source (S) or drain (D). The junction charge equations are identical to those used by the BJT and MOSFET models, except that the grading coefficient has been fixed at 0.5.

MESFET

Parameters

.model name nmf | pmf | njf | pjf [parameters]

For HSPICE compatibility, you can create a MESFET device in T-Spice using a name which begins with the letter j. The syntax for the MESFET device statement is exactly as documented in "MESFET (z)" on page 173, except that the device name is **jname** instead of **zname**.

Additionally, the MESFET model can use either the .model name [nmf | pmf] naming convention or .model name [njf | pjf].

Submodel Selectors

Parameter	Symbol	Description	Default	Units
level	LEVEL	Level selector (1, 2 or 3)	1	
sat	SAT	Model selector	0	_
сарор	CAPOP	Capacitance model selector	0	_
dcap	DCAP	Forward-biased diode equation selector (<i>CAPOP</i> =0)	2	_
tlev	TLEV	Temperature model selector	0	_
tlevc	TLEVC	Junction capacitance temperature model selector	0	_
nlev	NLEV	Channel thermal noise equation selector	2	_

DC Parameters

Parameter	Symbol	Description	Default	Units
alpha	α	Saturation voltage factor	2.0	V^{-1}
b	b	Doping tail extending parameter	0.3	V^{-1}
beta	β	Transconductance parameter	2.5×10^{-3}	AN^2
d	D	Channel dielectric constant	11.7 (Si)	_
gamma gamds	γds	Drain-induced VT0 lowering	0.0	A
is	Isat	Gate saturation current	1.0×10^{-14}	A
k 1	<i>k1</i>	Body effect on VTO	0.0	V^{-1}
lambda	λ	Channel length modulation parameter	0.0	V^{-1}
nchan	ND	Channel doping concentration	1.552×10^{16}	cm^{-3}
rd	Rd	Drain ohmic resistance	0.0	Ω
rg	Rg	Gate resistance	0.0	Ω

Parameter	Symbol	Description	Default	Units
rs	Rs	Source ohmic resistance	0.0	Ω
rsh	Rsh	Source/drain sheet resistance	0.0	$\Omega /\! m^2$
rshg	Rshg	Gate sheet resistance	0.0	$\Omega /\! m^2$
rshl	Rshl	Channel sheet resistance	0.0	$\Omega /\! m^2$
satexp	nvds	Drain voltage exponent for sat =3	3.0	_
ucrit	Ec	Critical mobility degradation field	0.0	V/cm
vbi	Vbi	Gate diode built-in voltage	1.0	V
vgexp	nvgst	Gate voltage exponent for sat =3	2.0	_
vp	Vp	Channel pinch-off voltage	Computed.	V
vto	VT0	Threshold voltage	Computed.	V

Capacitance Parameters

Parameter	Symbol	Description	Default	Units
cgs	Cgs	Zero bias G-S capacitance	0.0	F
cgd	Cgd	Zero bias G-D capacitance	0.0	F
crat	CRAT	Source fraction of GCAP	0.666	_
fc	FC	Forward bias depletion capacitance coefficient	0.5	_
gcap	GCAP	Total zero bias gate capacitance	_	F
interr	Eint	Integration error bound (CAPOP=1)	0.01	_
m	m	Junction grading coefficient (CAPOP=0)	0.5	_
pb	ϕsO	Gate junction potential	0.8	V
tt	τ	Transit time (CAPOP=0)	0.0	S
vdel	δ	Transition width for Vgs (CAPOP=1)	0.2	V
vmax	Vmax	Vn limiting value (CAPOP=1)	0.5	V

Noise Parameters

Parameter	Symbol	Description	Default	Units
af	Af	Flicker noise exponent	1.0	_
gdsnoi	GDSNO I	Thermal channel noise coefficient (<i>NLEV</i> =3)	1.0	_
kf	Kf	Flicker noise coefficient	0.0	_

Geometry Parameters

Parameter	Symbol	Description	Default	Units
acm	ACM	Area calculation method selector	0	_
align	ALIGN	Misalignment of gate	0.0	m
hdif	Hdif	Space between S/D contacts and junction	0.0	m
1	L	Default gate length	0.0	m
ldel	Ldel	Delta between drawn and optical gate length	0.0	m
ldif	Ldif	Distance from junction to gate edge	0.0	m
w	W	Default gate width	0.0	m
wdel	Wdel	Delta between drawn and optical gate width	0.0	m

Area Calculation Method (ACM) Parameters

	ACM=0	ACM=1
AREAeff	$rac{Weff}{Leff} \cdot M$	$Weff \cdot Leff \cdot M$
RDeff	$\frac{RD}{AREAeff}$	If RD=0: $\frac{RD}{M}$ If RD=0:
RSeff	$rac{RS}{AREAeff}$	$\frac{DIF}{eff \cdot M} + RSHL \cdot \frac{LDIF + ALIGN}{Weff \cdot M}$ If RS \neq 0: $\frac{RS}{M}$ If RS=0:

$$\begin{split} RSH \cdot \frac{HDIF}{Weff \cdot M} \\ + RSHL \cdot \frac{LDIF - ALIGN}{Weff \cdot M} \end{split}$$

RGeff
$$RG \cdot \frac{AREAeff}{M^2} \hspace{1cm} \text{If RG} \neq \textbf{0}: \\ \frac{RG}{M} \\ \text{If RG=0}: \\ RSHG \cdot \frac{Weff}{Leff \cdot M}$$

	ACM=0	ACM=1
ISeff	$\mathit{IS} \cdot \mathit{AREAeff}$	$IS \cdot AREAeff$
CGSeff	$CGS \cdot AREAeff$	$CGS \cdot AREAeff$
CGDeff	$CGD \cdot AREAeff$	$CGD \cdot AREAeff$
BETAeff	$BETA \cdot rac{Weff}{Leff} \cdot M$	$BETA \cdot \frac{Weff}{Leff} \cdot M$

Note that the model parameters *IS*, *CGS*, and *CGD* are unitless when **ACM=0** and per square meter when **ACM=1**. For example, when **ACM=0**, $CGS = 5 \times 10^{-12}$, $CGD = 1.4 \times 10^{-11}$, and $IS = 1 \times 10^{-14}$; for **ACM=1**, however, CGS = 5, CGD = 14, and $IS = 1 \times 10^{-2}$.

Temperature Dependence Parameters

Parameter	Symbol	Description	Default	Units
bex	BEX	Mobility temperature exponent	0.0	_
ctd	CTD	Temperature coefficient for Cgd	0.0	deg^{-1}
cts	CTS	Temperature coefficient for Cgs	0.0	deg^{-1}
eg	Eg	Energy gap for G-D and G-S diodes	1.16	eV
gap1	GAP1	First-order bandgap correction	7.02e-4	eV/deg
gap2	GAP2	Second-order bandgap correction	1108	deg
n	N	G-S and G-D diode emission coefficient	1.0	_
tcv	TCV	Temperature coefficient for VTO	0.0	deg^{-1}
tpb	TPB	Temperature coefficient for pb	0.0	deg^{-1}
trd	TRD	Temperature coefficient for Rd	0.0	deg^{-1}
trg	TRG	Temperature coefficient for Rg	0.0	deg^{-1}
trs	TRS	Temperature coefficient for Rs	0.0	deg^{-1}
xti	XTI	<i>Isat</i> temperature exponent	0.0	_

Large-Signal Model

Equations

There are three levels of the T-Spice MESFET model.

- Level 1. The Curtice model—a diode-based capacitance model and a simplified *Ids* calculation.
- Level 2. The Statz model (Statz et al. 1987)—a revision of the Curtice model, with an improved capacitance model and a more sophisticated *Ids* calculation.
- *Level 3*. An HSPICE-compatible model—highly customizable.

Currents

For all three levels,

$$I_{ds} = \beta \cdot \frac{(V_{gst})^{VGEXP}}{A} \cdot B \cdot (1 + \lambda V_{ds})$$
(0.208)

where

$$V_{gst} = V_{gs} - V_{T0} - \gamma_{ds} \cdot V_{ds} \tag{0.209}$$

A is the doping profile extension factor. At level 1, A = 0; otherwise:

$$A = 1 + bV_{gst} ag{0.210}$$

VGEXP can be varied only at level 3; at levels 1 and 2, it is fixed at 2.0.

B is the saturation term; its form depends on the value of SAT.

When SAT = 0:

$$B = \tanh(\alpha V_{ds}) \tag{0.211}$$

This form is fixed (that is, SAT can only take a value of 0) at level 1.

When SAT = 1:

$$B = \tanh\left(\alpha \cdot \frac{V_{ds}}{V_{gst}}\right) \tag{0.212}$$

When SAT = 2:

$$B = 1 - \left(1 - \alpha \cdot \frac{V_{ds}}{3}\right)^3 \tag{0.213}$$

When $Vds > 3/\alpha$, B = 1. This form is fixed (that is, SAT can only take a value of 2) at level 2.

When SAT = 3 and $Vds < SATEXP/\alpha$:

$$B = 1 - \left(1 - \alpha \cdot \frac{V_{ds}}{SATEXP}\right)^{SATEXP} \tag{0.214}$$

Otherwise, B = 1.

Capacitances

There are two capacitance models, one at level 1 (a "diode-like" model) and one at level 2 (the Statz model). The *CAPOP* parameter selects between the models.

When CAPOP = 0:

When the junctions are reverse-biased ($Vgd < FC \cdot \phi sO$):

$$C_{gd} = C_{gd}(0) \cdot \left(1 - \frac{V_{gd}}{\phi_{s0}}\right)^{-m}$$
 (0.215)

$$C_{gs} = C_{gs}(0) \cdot \left(1 - \frac{V_{gs}}{\phi_{s0}}\right)^{-m}$$
 (0.216)

When the junctions are forward-biased, two models are available; the DCAP parameter selects between them. When DCAP = 1:

$$C_{gd} = \tau \cdot \frac{\partial I_{gd}}{\partial V_{gd}} + C_{gd}(0) \cdot \frac{1 - FC(1 + m) + m \frac{V_{gd}}{\phi_{s0}}}{(1 - FC)^{m+1}}$$
(0.217)

$$C_{gs} = \tau \cdot \frac{\partial I_{gs}}{\partial V_{gs}} + C_{gs}(0) \cdot \frac{1 - FC(1 + m) + m \frac{V_{gs}}{\phi_{s0}}}{(1 - FC)^{m+1}}$$
(0.218)

When DCAP = 2 (default):

$$C_{gd} = \tau \cdot \frac{\partial I_{gd}}{\partial V_{gd}} + C_{gd}(0) \cdot \left(1 + m \frac{V_{gd}}{\phi_{s0}}\right)$$
(0.219)

$$C_{gs} = \tau \cdot \frac{\partial I_{gs}}{\partial V_{gs}} + C_{gs}(0) \cdot \left(1 + m \frac{V_{gs}}{\phi_{s0}}\right)$$
(0.220)

When CAPOP = 1:

The basic Statz capacitance equations are:

$$C_{gs,gd} = \frac{1}{4} \frac{C_{gs}(0)}{\sqrt{1 - \frac{V_n}{\phi_{s0}}}} \times \left[1 + \frac{V_{eff} - V_{T0}}{\sqrt{(V_{eff} - V_{T0})^2 + \delta^2}} \right] \left[1 \pm \frac{V_{gs} - V_{gd}}{\sqrt{(V_{gs} - V_{gd})^2 + (\alpha)^{-2}}} \right] + \frac{1}{2} \times C_{gd}(0) \left[1 \mp \frac{V_{gs} - V_{gd}}{\sqrt{(V_{gs} - V_{gd})^2 + (\alpha)^{-2}}} \right]$$
(0.221)

where

$$V_{eff} = \frac{1}{2} [V_{gs} + V_{gd} + \sqrt{(V_{gs} - V_{gd})^2 + (\alpha)^{-2}}]$$
 (0.222)

$$V_n = \frac{1}{2} \left[V_{eff} + V_{T0} + \sqrt{(V_{eff} - V_{T0})^2 + (\delta)^2} \right]$$
 (0.223)

If $V_n > V_{max}$, then Vn is limited to Vmax. In the plus/minus signs (\pm) above, the top signs hold for Cgs, the bottom ones for Cgd.

Temperature Dependence Equations

In the following, $\Delta T = T - T_{ref}$. T_{ref} is the temperature at which the user-supplied parameters are valid, which defaults to 25° C. All temperatures in the following equations are assumed to be in Kelvin.

 E_g temperature dependence. For all values of TLEV, the energy gap E_g at the reference and simulation temperatures is calculated using

$$E_g(T) = EG - GAP1 \times \frac{T}{T + GAP2} \tag{0.224}$$

For *TLEV* 0 and 1, *EG*, *GAP1*, and *GAP2* are held fixed at 1.16, 7.02×10^{-4} , and 1108.0, respectively, regardless of what values the user specifies for these parameters.

Saturation current temperature dependence. The saturation current temperature extrapolation is calculated by the following general equation:

$$I_s(T) = IS \cdot \exp\left\{\frac{e}{k_B N} \left(\frac{E_g(T_{ref})}{T_{ref}} - \frac{E_g(T)}{T} + XTI \cdot In\left(\frac{T}{T_{ref}}\right)\right)\right\}$$
(0.225)

For TLEV 0 and 1, the user-supplied EG is used in place of $E_g(T)$ for all T. For TLEV=2, $E_g(T) = E_g(T)$, as calculated above.

Capacitance parameters temperature dependence. A separate selection parameter, TLEVC, is used to choose one of four methods of temperature-adjusting the gate capacitance values. This parameter also influences the temperature compensation of ϕ_{s0} .

For TLEVC=0, the gate junction potential (θ_{s0}) is temperature-adjusted as follows:

$$\phi_{s0}(T) = \Phi_{s0} \cdot \frac{T}{T_{ref}} - \frac{3k_B}{e} T \ln \left(\frac{T}{T_{ref}} \right) - E_g(T_{ref}) \cdot \frac{T}{T_{ref}} + E_g(T)$$
 (0.226)

The gate capacitances are calculated by

$$C_{gs}(T) = C_{gs} \cdot \left[1 + m \cdot \left(4.0 \times 10^{-4} \cdot \Delta T - \frac{\phi_{s0(T)}}{\phi_{s0(T_{ref})}} + 1 \right) \right]$$
 (0.227)

$$C_{gd}(T) = C_{gs} \cdot \left[1 + m \cdot \left(4.0 \times 10^{-4} \cdot \Delta T - \frac{\phi_{s0(T)}}{\phi_{s0(T_{ref})}} + 1 \right) \right]$$
 (0.228)

For TLEVC=1, the junction potential is temperature-adjusted with

$$\phi_{s0}(T) = \phi_{s0} - TPB \cdot \Delta T \tag{0.229}$$

The gate capacitances are calculated by

$$C_{gs}(T) = C_{gs} \cdot (1 + CTS + \Delta T) \tag{0.230}$$

$$C_{ed}(T) = C_{ed} \cdot (1 + CTS \cdot \Delta T) \tag{0.231}$$

For TLEVC=2, the junction potential is calculated as it is for TLEVC=1. The gate capacitances are calculated by

$$C_{gs}(T) = C_{gs} \cdot \left(\frac{\phi_{s0}}{\phi_{s0}^{T}}\right)^{m} \tag{0.232}$$

$$C_{gs}(T) = C_{gd} \cdot \left(\frac{\phi_{s0}}{\phi_{s0}}\right)^m \tag{0.233}$$

For TLEVC=3, the junction potential calculation attempts to estimate the term $d\phi_{s0}/(dT)$ (*dpbdt*) using the following equations, depending on TLEV.

For TLEV=0 or 1,

$$dpbdt = -\left(\frac{1}{T_{ref}}E_g(T_{ref}) + \frac{3k_B}{e}T_{ref} + (1.16 - E_g(T_{ref})) \cdot \left(2 - \frac{T_{ref}}{T_{ref} + 1108}\right)(-\phi_{s0})\right)$$
(0.234)

For TLEV=2,

$$dpbdt = -\left(\frac{1}{T_{ref}}E_g(T_{ref}) + \frac{3k_B}{e}T_{ref} + (EG - E_g(T_{ref})) \cdot \left(2 - \frac{T_{ref}}{T_{ref} + GAP2}\right)(-\phi_{s0})\right)$$
(0.235)

The gate capacitances are then calculated by

$$C_{gs}(T) = C_{gs} \cdot \left(1 - 0.5 \cdot dpbdt \times \frac{\Delta T}{\phi_{s0}}\right)$$
 (0.236)

$$C_{gc}(T) = C_{gd} \cdot \left(1 - 0.5 \cdot dpbdt \times \frac{\Delta T}{\phi_{s0}}\right)$$
 (0.237)

Note that $C_{gs,\,gd}$ becomes what is referred to elsewhere as $C_{gs,\,gd}(0)$, the zero-bias gate capacitances.

 ${\cal V}_{TO}$ temperature dependence. The threshold voltage is temperature-compensated with a simple linear model

$$V_{TO}(T) = V_{TO} - TCV \times \Delta T \tag{0.238}$$

Transconductance temperature dependence. The temperature compensation of the transconductance factor (β) is calculated as follows

$$\beta(T) = \beta \cdot \left(\frac{T}{T_{ref}}\right)^{BEX} \tag{0.239}$$

Parasitic resistance temperature dependence. The source, drain, and gate parasitic resistances are temperature-compensated by the following equations

$$R_d(T) = R_d \cdot (1 + TRD \times \Delta T) \tag{0.240}$$

$$R_s(T) = R_s \cdot (1 + TRS \times \Delta T) \tag{0.241}$$

$$R_g(T) = R_g \cdot (1 + TRG \times \Delta T) \tag{0.242}$$

MOSFET Levels 1/2/3 (Berkeley SPICE 2G6)

Parameters

.model name $nmos \mid pmos level=1 \mid 2 \mid 3$ [parameters]

Also see "Additional MOSFET Parameters" on page 457.

Parameter	Symbol	Description	Default	Units	
level	LEVEL	Model selector	1	_	000
vto	Vt0	Zero-bias threshold voltage	Computed	V	000
kp	KP	MOSFET transconductance	Computed	A/V^2	000
gamma	γ	Bulk threshold parameter	Computed	$V^{1/2}$	000
phi	ф	Surface potential	Computed	V	000
lambda	λ	Channel length modulation	Computed	V^{-1}	00
tox	Tox	Gate oxide thickness	Computed.	If $< 1, m;$ if $> 1, Å$	000
nsub dnb nb	Nsub	Bulk doping concentration	0.0	cm ⁻³	000
nss	NSS	Surface state density	0.0	cm^{-2}	0 0
nfs dnf nf dfs	NFS	Fast surface state density	Computed	cm ⁻²	000
хj	Xj	Junction depth	0.0	m	000
ld	LD	Lateral diffusion	$0.75 \times xj$	m	000
wd	WD	Width diffusion	0.0	m	000
xl dl ldel	Xl	Mask and etching length change	0.0	m	000
xw dw wdel	Xw	Mask and etching width change	0.0	m	000
uo	$\mu \theta$	Electron or hole mobility	600.0	$cm^2/V \cdot s$	000
ucrit	UCRIT	Critical field mobility degradation coefficient	1.0×10^{-4}	V/cm	0
uexp	UEXP	Critical field mobility degradation exponent	0.0	_	0
vmax	VMAX	Maximum carrier drift velocity	0.0	m/s	9 6
neff	NEFF	Total channel charge coefficient	1.0	_	0
delta	δ	Width effect on threshold voltage	0.0	_	9 6
tpg	TPG	Type of gate material:	1	_	000
		■ Doping type same as source-drain (tpg=1)			000
		Doping type reverse of source-drain (tpg=-1)			000

Parameter	Symbol	Description	Default	Units	
		■ Aluminum gate (tpg=0)			008
theta	θ	Mobility modulation	0.0	V-1	€
eta	η	Static feedback	0.0	_	€
kappa	κ	Saturation field factor	0.2	_	€
del		Channel length reduction per side	0.0	m	000

Large-Signal Model

This schematic represents the Level 2 model. The Level 1 model has the same configuration, without the junction diodes.

The terminals (G, D, S, B) represent the gate, drain, source, and bulk connections, respectively, of the MOSFET. Id is the current flowing from the drain to the source as a function of (Vgs, Vds, Vbs). The ohmic resistance of the drain and source diffusion junctions are represented by Rd and Rs. A P-channel MOSFET can be modeled by reversing the polarity of (Vgs, Vds, Vbs), the current source Id, and the junction diodes.

When **nrs** and **nrd** are not given as options on the MOSFET device statement, T-Spice computes them by calculating the number of squares from the geometry of the junction and then multiplying them by **RSH** to obtain the drain and source resistors *Rd* and *Rs*.

Level 1 Equations

The Level 1 model is included for SPICE compatibility, but it is inaccurate when simulating circuits with analog characteristics. The original intent of the model was to provide an approximation for digital circuits that could be evaluated quickly, reducing the simulation time by as much as a factor of two. However, T-Spice generally precalculates current and charge tables and does not gain from this speedup. The Level 1 model should be avoided for most circuits.

Current

Current behavior is modeled by three equations, representing the three regions of MOSFET operation: *cutoff, linear*, and *saturation*.

Cutoff region: Vgs ð Vth

$$I_{ds} = 0 ag{0.243}$$

Linear region: Vgs > Vth and (Vgs - Vth) > Vds

$$I_{ds} = \frac{\beta}{2} V_{ds} (2(V_{gs} - V_{th}) - V_{ds}) (1 + \lambda V_{ds})$$
 (0.244)

Saturation region: Vgs > Vth and $(Vgs - Vth) \le Vds$

$$I_{ds} = \frac{\beta}{2} (V_{gs} - V_{th})^2 (1 + \lambda V_{ds})$$
 (0.245)

In equations (0.244) and (0.245),

$$\beta = \frac{W - (2 \cdot WD)}{L - (2 \cdot LD)} \cdot KP \tag{0.246}$$

Charge

$$Q_g = C_{gb}V_{gb} + C_{gd}V_{gd} + C_{gs}V_{gs} (0.247)$$

$$Q_d = C_{gd} V_{gd} + \int C_{db}(v) dv {(0.248)}$$

$$Q_{s} = C_{gs}V_{gs} + \int C_{sb}(v)dv {(0.249)}$$

$$Q_b = -(Q_g + Q_d + Q_s) (0.250)$$

Capacitance

The Meyer gate capacitance model was replaced by a simplified model that provides conservation of charge.

$$C_{gb} = C_{gs} = C_{gd} = \frac{1}{3}WL\frac{\varepsilon_{ox}}{T_{ox}}$$
 (0.251)

The junction capacitance for the drain and source is dependent on the drain-bulk and drain-source voltages.

$$C_{db} = C_{pn}(V_{bd}, AD, PD) (0.252)$$

$$C_{sb} = C_{pn}(V_{bs}, AS, PS) \tag{0.253}$$

For reverse bias $Vpn < FC \cdot PB$,

$$C_{pn}(V_{pn}, A, P) = \left(CJ \cdot \frac{A}{\left(1 - \frac{V_{pn}}{PB}\right)^{MJ}}\right) + \left(CJSW \cdot \frac{P}{\left(1 - \frac{V_{pn}}{PB}\right)^{MJSW}}\right)$$
(0.254)

For forward bias $Vpn \ge FC \cdot PB$,

$$C_{pn}(V_{pn}, A, P) = CJ\left(\frac{A}{(1 - FC)^{(1 + MJ)}}\right)\left(1 - FC1 + MJ + \frac{V_{pn}}{PB}MJ\right) + CJ\left(\frac{P}{(1 - FC)^{(1 + MJSW)}}\right)\left(1 - FC1 + MJSW + \frac{V_{pn}}{PB}MJSW\right)$$
(0.255)

In equations (0.254) and (0.255), A denotes area and P denotes perimeter.

The charge can be calculated using

$$Q = \int C(V)dV \tag{0.256}$$

Threshold Voltage

An increase in the threshold voltage is due to a reverse bias from the gate to the substrate called the *body effect*, which causes degradation in the current drive of a transistor.

$$V_{to} = V_{FB} + (\gamma \sqrt{\phi} + \phi) \tag{0.257}$$

$$\gamma = \frac{\sqrt{2\varepsilon_0 \varepsilon_{si} q N_{sub}}}{C_{ox}} \tag{0.258}$$

$$C_{ox} = \frac{\varepsilon_0 \varepsilon_{ox}}{T_{ox}} \tag{0.259}$$

$$KP = \mu_0 C_{ox} \tag{0.260}$$

$$V_{FB} = \left(-TPG \cdot \frac{E_q}{2}\right) - \frac{\phi}{2} - \frac{qN_{ss}}{C_{ox}} \tag{0.261}$$

Equation (0.257) is dependent on Vbs and is implemented as follows:

$$V_{th} = V_{to} + \gamma (bodyterm - \sqrt{2\phi_F})$$
 (0.262)

When $Vbs \leq 0.0$,

$$bodyterm = \sqrt{2\phi_F - V_{bs}}$$
 (0.263)

When Vbs > 0.0,

$$bodyterm = \max(\left(\sqrt{2\phi_F} - \frac{V_{bs}}{2\sqrt{2\phi_F}}\right), 0)$$
 (0.264)

In Equations (0.262) through (0.264),

$$2\phi_F = \phi = 2\frac{kT}{q}ln\left(\frac{N_{sub}}{n_i}\right) \tag{0.265}$$

Level 2 Equations

The Level 2 model uses two current equations. Since the MOSFET is not an ideal switch, the current begins to flow before the transistor reaches the turn-on voltage. This region is called *weak* inversion. As the voltage on the gate approaches the threshold voltage, it conducts current much more vigorously. At this point the channel is in the *strong* inversion region. The strong inversion region includes the linear and saturation regions. Many second-order effects that control the amount of current are calculated in the Level 2 model, including backgate bias and short and narrow channel effects. The Level 2 current equations are similar to the Grove equation for a MOSFET. These equations insure the continuity of current at *Von* (threshold point) through the transistor regions.

Subthreshold Region

The weak inversion current equation is used when the transistor is in the subthreshold region, Vgs < Von.

$$I_{ds} = \beta \left(\left(V_{on} - V_{bin} - \frac{\eta V_{on}}{2} \right) V_{on} - \frac{2}{3} \gamma_s ((2\phi_F - V_{bs} + V_{on})^{3/2} - (2\phi_F - V_{bs})^{3/2}) \right) e^{\frac{q}{nkT} (V_{gs} - V_{on})}$$
(0.266)

The strong inversion current equation is used to calculate the current when $Vgs \ge Von$:

$$I_{ds} = \beta \left(\left(V_{gs} - V_{bin} - \frac{\eta V_{ds}}{2} \right) V_{ds} - \frac{2}{3} \gamma_s ((2\phi_F - V_{bs} + V_{ds})^{3/2} - (2\phi_F - V_{bs})^{3/2}) \right)$$

$$(0.267)$$

where Vds = Vdsat for Vds > Vdsat.

The voltages calculated to determined the second order effects of the transistor currents are defined as:

$$V_{th} = V_{bin} + \gamma_s \sqrt{2\phi_F - V_{bs}} \tag{0.268}$$

$$V_{bin} = V_{bi} + \delta \left(\frac{\pi \varepsilon_0 \varepsilon_{si}}{4C_{ox} W_{eff}}\right) (2\phi_F - V_{bs})$$
(0.269)

$$V_{bi} = V_{fb} + 2\phi_F (0.270)$$

$$2\phi_F = \phi = 2\frac{kT}{q} \ln\left(\frac{N_{sub}}{n_i}\right) \tag{0.271}$$

$$V_{fb} = \phi_{ms} - \frac{q \cdot NSS}{C_{ox}} \tag{0.272}$$

The voltage *Von* is used to switch between the weak and strong inversion model regions. When *NFS* is not specified,

$$V_{on} = V_{th} \tag{0.273}$$

$$n = \infty \tag{0.274}$$

However, a more accurate cut-on point can be modeled by using a curve fitting parameter *NFS* in the evaluation of *Von*:

$$V_{on} = V_{th} + \frac{nkT}{q} \tag{0.275}$$

where

$$n = 1 + \frac{C_{FS}}{C_{ox}} + \frac{C_D}{C_{ox}}$$
 (0.276)

$$C_{FS} = q \cdot NFS \tag{0.277}$$

$$C_{D} = \frac{\partial Q_{B}}{\partial V_{bs}} = C_{ox} \left(-\gamma_{s} \left(\frac{d\sqrt{2\phi_{F} - V_{bs}}}{dV_{bs}} \right) - \left(\frac{\partial \gamma_{s}}{\partial V_{bs}} \right) \sqrt{2\phi_{F} - V_{bs}} + \delta \frac{\pi \varepsilon_{\theta} \varepsilon_{si}}{4C_{ox} W_{eff}} \right)$$

$$(0.278)$$

Taking the partial derivatives and applying the chain rule yields

$$C_{D} = C_{ox} \left[\frac{1}{2} \gamma_{s} \frac{1}{\sqrt{2\phi_{F} - V_{bs}}} - \gamma_{s} \sqrt{2\phi_{F} - V_{bs}} \left(\frac{X_{D}}{4L} \cdot \frac{1}{\left(1 + \frac{2X_{D} \sqrt{2\phi_{F} - V_{bs}}}{X_{j}} \right)^{1/2}} \cdot \frac{1}{\sqrt{2\phi_{F} - V_{bs}}} \right) \right]$$

$$+ \left(\frac{X_{D}}{4L} \cdot \frac{1}{\left(1 + \frac{2X_{D} \sqrt{2\phi_{F} - V_{bs} + V_{ds}}}{X_{j}} \right)^{1/2}} \cdot \frac{1}{\sqrt{2\phi_{F} - V_{bs} + V_{ds}}} \right) + \delta \frac{\pi \varepsilon_{0} \varepsilon_{si}}{4C_{ox} W_{eff}}$$

$$(0.279)$$

Equation (0.279) assumes that Vbs is negative. When Vbs is positive, $\sqrt{2\phi_F - V_{bs}}$ should be replaced with

$$\frac{\sqrt{2\phi_F}}{1 + \frac{V_{bs}}{4\phi_F}} \tag{0.280}$$

Linear and Saturation Regions

The saturation voltage *Vdsat* can be computed with either of two methods. Which method is chosen depends on whether the input parameter *VMAX* has been defined.

Method 1. When *VMAX* is *not* defined, the model computes *Vdsat* assuming that the channel is pinched off at the drain:

$$V_{dsat} = \frac{V_{gs} - V_{bin}}{\eta} + \frac{1}{2} \left(\frac{\gamma_s}{\eta}\right)^2 \left(1 - \sqrt{1 + 4\left(\frac{\eta}{\gamma_s}\right)^2 \left(\frac{V_{gs} - V_{bin}}{\eta} + 2\phi_F - V_{bs}\right)}\right)$$
(0.281)

If the parameter λ is not defined while using the pinch-off method, then it can be computed as

$$\lambda = \frac{X_D}{L_1 V_{ds}} \sqrt{\frac{V_{ds} - V_{dsat}}{4} + \sqrt{1 + \left(\frac{V_{ds} - V_{dsat}}{4}\right)^2}}$$
(0.282)

The channel length becomes smaller due to the pinch-off of the channel. The effective channel length is

$$L_{eff} = L_l(1 - \lambda V_{ds}) \tag{0.283}$$

Method 2. When VMAX is defined as Vdsat and the channel length modulation is calculated using the carrier scattering limited velocity model, this method appropriately models saturation current for short-

channel MOSFETs as charge carriers reaching their maximum scattering limited velocity before the pinch-off effect comes into play.

$$VMAX = \frac{\mu_{s} \left(\left(V_{gs} - V_{bin} - \frac{\eta V_{dsat}}{2} \right) V_{dsat} - \frac{2\gamma_{s}}{3} \left(\left(V_{dsat} + 2\phi_{F} - V_{bs} \right)^{3/2} - \left(2\phi_{F} - V_{bs} \right)^{3/2} \right) \right)}{L_{eff} \left(V_{gs} - V_{bin} - \eta V_{dsat} - \gamma \sqrt{V_{dsat} + 2\phi_{F} - V_{bs}} \right)}$$
(0.284)

The effective channel length is dependent on VMAX and Vdsat and computed as

$$L_{eff} = L_I - X_D \left(\left(\frac{X_D V M A X}{2 \mu_s} \right)^2 + (V_{ds} - V_{dsat}) \right)^{1/2} + \frac{(X_D)^2 V M A X}{2 \mu_s}$$
 (0.285)

Solving for *Vdsat* is difficult because it requires the simultaneous solution of the nonlinear equations (0.284) and (0.285). A less computationally expensive approach is desirable:

Assume that Leff and L1 in equation (0.285) are equal. Then by selecting parameter NEFF, adjust the value of XD to obtain a good fit to the I-V characteristics of the MOSFET.

$$X_D = \sqrt{\frac{2\varepsilon_0 \varepsilon_{si}}{q N_{sub} NEFF}} \tag{0.286}$$

Equation (0.285) can be solved using Ferrari's method. There will be 2 or 4 real roots. The smallest positive real root is the correct value of *Vdsat*.

If λ is not defined, then it can be computed using *Vdsat* and equations (0.284) and (0.287):

$$\lambda = \frac{X_D}{L_t V_{ds}} \left(\left(\left(\frac{X_D V M A X}{2 \mu_s} \right)^2 + (V_{ds} - V_{dsat}) \right)^{1/2} + \frac{X_D V M A X}{2 \mu_s} \right)$$
(0.287)

Then Leff can be computed as

$$L_{eff} = L_l(1 - \lambda V_{ds}) \tag{0.288}$$

Thus the value of *Leff* is available from either of the two current saturation methods—channel pinch-off or carrier scattering limited velocity. If *Leff* is smaller than the zero-bias depletion layer width $WB = XD\sqrt{PB}$, then *Leff* must be recomputed as

$$L_{eff} = \frac{W_B}{1 + \frac{\Delta L - L_{max}}{W_B}} \tag{0.289}$$

where

$$\Delta L = \lambda V_{do} L_I \tag{0.290}$$

$$L_{max} = L_I - W_R \tag{0.291}$$

Equation (0.289) prevents numerical non-convergence, but does not model the punch-through effect.

The voltage *Vdsat* is compared with *Vds*. If *Vds* is greater than *Vdsat*, then *Vds* is set equal to *Vdsat*, thus clamping the drain-to-source voltage to *Vdsat* in the saturation region.

The result is a potential drop (Vds) across the saturated transistor and a smaller effective transistor gate length that increases the gain (β).

$$\beta = \frac{W_{eff}}{L_{eff}} KP \tag{0.292}$$

$$KP = \mu_s C_{ox} \tag{0.293}$$

KP is the transconductance of the MOSFET. If it is not specified, it will take the calculated value.

Second-Order Effects

Other variables, coefficients, and modified input parameters that are used in the model are defined as follows:

$$\phi_{ms} = -\left(\frac{2\phi_F}{2} + \frac{E_g}{2}\right) \tag{0.294}$$

$$C_{ox} = \frac{\varepsilon_0 \varepsilon_{ox}}{T_{ox}} \tag{0.295}$$

$$L_l = L - (2 \cdot LD) \tag{0.296}$$

$$W_{eff} = W - (2 \cdot WD) \tag{0.297}$$

$$\eta = 1 + \delta \left(\frac{\pi \varepsilon_0 \varepsilon_{si}}{4 C_{ox} W_{eff}} \right) \tag{0.298}$$

$$\mu_{s} = U_{0} \left(\frac{UCRIT\varepsilon_{0}\varepsilon_{si}}{C_{ox}(V_{es} - V_{on})} \right)^{UEXP}$$
(0.299)

$$\gamma_s = \gamma (1 - \alpha_s - \alpha_d) \tag{0.300}$$

$$\gamma = \frac{\sqrt{2q\varepsilon_0\varepsilon_{si}N_{sub}}}{C_{ox}} \tag{0.301}$$

$$\alpha_S = \frac{1}{2} \cdot \frac{X_j}{L_l} \cdot \left(\sqrt{1 + 2\frac{W_S}{X_J}} - 1 \right) \tag{0.302}$$

$$\alpha_D = \frac{1}{2} \cdot \frac{X_j}{L_l} \cdot \left(\sqrt{1 + 2\frac{W_D}{X_J}} - 1 \right) \tag{0.303}$$

$$W_S = X_D \sqrt{2\phi_F - V_{bs}} \tag{0.304}$$

$$W_D = X_D \sqrt{2\phi_F - V_{bs} + V_{ds}} ag{0.305}$$

$$X_D = \sqrt{\frac{2\varepsilon_0 \varepsilon_{si}}{q N_{sub}}} \tag{0.306}$$

Ward-Dutton Charge Model

The Ward-Dutton charge model was used to replace the shortcomings of the Meyer capacitance model. It has been shown that assuming capacitance reciprocity leads to non-conservation of charge. This non-conservation of bogus charge can cause various charge-dependent circuits to be simulated incorrectly.

The Ward-Dutton model derives equations based on charge instead of capacitance and conserves charge through all regions of the transistor. This model applies to Level 2 and Level 3 MOSFET models only.

The following table lists the parameters used by the equations describing the Ward-Dutton charge model (see "MOSFET Levels 4 and 13 (BSIM1)" on page 412).

Symbol	Description	Unit	
Idc	DC drain current	A	
Vd	Drain voltage	V	
Vg	Gate voltage	V	
Vs	Source voltage	V	
Vdsat	Saturation voltage	V	
Qb	Total bulk charge	C	
Qg	Total gate charge	C	
Qs	Total source charge	C	
Qd	Total drain charge	C	
Qgi	Intrinsic gate charge	C	
Qsi	Intrinsic source charge	C	
Qdi	Intrinsic drain charge	C	
Qgo	Overlap gate charge	C	
Qso	Overlap source charge	C	
Qdo	Overlap drain charge	C	
Qsj	Junction source charge	C	
Qdj	Junction drain charge	C	

The Ward-Dutton model defines these normalized voltages as:

$$V_g = V_{gs} - V_{bs} - V_{fb} (0.307)$$

$$V_d = V_{ds} - V_{bs} + 2\phi_F (0.308)$$

$$V_s = -V_{bs} + 2\phi_F \tag{0.309}$$

The charge on the gate, drain, and source of a transistor is the total charge due to the overlap, junction, and intrinsic channel charge.

$$Q_g = Q_{gi} + Q_{go} (0.310)$$

$$Q_d = Q_{di} + Q_{do} + Q_{dj} (0.311)$$

$$Q_s = Q_{si} + Q_{so} + Q_{si} (0.312)$$

The overlap capacitors are due to the gate edges overlapping the substrate and diffusion junctions.

$$Q_{go} = C_{gso}W_{eff}V_{gs} + C_{gso}W_{eff}(V_{gs} - V_{ds}) + 2C_{gbo}L_{l}(V_{gs} - V_{bs})$$
(0.313)

$$Q_{do} = C_{gdo} W_{eff} (V_{ds} - V_{gs}) (0.314)$$

$$Q_{so} = -C_{gso}W_{eff}V_{gs} (0.315)$$

The Ward-Dutton model addresses only the intrinsic channel charge. Two sets of equations model the regions of transistor charge.

Cut-off region. The charge model is in the cut-off region when the gate voltage is less than the threshold voltage.

When Vgs < Vth and (Vgs - Vbs) < Vfb,

$$Q_{di} = 0 (0.316)$$

$$Q_{si} = 0 \tag{0.317}$$

$$Q_{gi} = C_{ox}W_{eff}L_{l}V_{g} (0.318)$$

When Vgs < Vth and (Vgs - Vbs) > Vfb,

$$Q_{di} = 0 ag{0.319}$$

$$Q_{si} = 0 \tag{0.320}$$

$$Q_{gi} = C_{ox}WL_{l} \cdot \frac{1}{2}\gamma_{s}\sqrt{\gamma_{s}^{2} + 4V_{g}}$$
 (0.321)

Linear and saturation regions. The model uses the same equation for the linear and saturation regions. In the saturation region the voltage *Vd* is clamped at the saturation voltage *Vdsat* when the following condition is true:

$$V_d + \gamma_s \sqrt{V_d} \ge V_o \tag{0.322}$$

Then

$$2\sqrt{V_{dsat}} = -\gamma_s + \sqrt{\gamma_s^2 + 4V_o} \tag{0.323}$$

$$V_d = (\sqrt{V_{dsat}})^2 \tag{0.324}$$

The intrinsic charge for the linear or saturation region is computed as

$$Q_{si} = \frac{3}{5}Q_{CSAT} + \frac{3}{10}(Q_C - Q_{CSAT}) \tag{0.325}$$

$$Q_{di} = \frac{23}{5}Q_{CSAT} + \frac{7}{10}(Q_C - Q_{CSAT}) \tag{0.326}$$

$$Q_C = -(Q_{gi} + Q_{hi}) (0.327)$$

$$Q_{CSAT} = -\frac{2}{3}C_{ox}W_{eff}L_{I}(V_g - V_s - \gamma_s\sqrt{V_s})$$

$$(0.328)$$

$$Q_{gi} = C_{ox}W_{eff}L_{I}\left[V_{g} - \frac{1}{I_{do}}\left(V_{g}\frac{1}{2}(V_{d}^{2} - V_{s}^{2}) - \frac{2}{5}\gamma_{s}(V_{d}^{5/2} - V_{s}^{5/2}) - \frac{1}{3}(V_{d}^{3} - V_{s}^{3})\right)\right]$$
(0.329)

$$Q_{bi} = -\frac{C_{ox}W_{eff}L_1}{I_{dc}} \left[V_g \frac{2}{3} \gamma_s (V_d^{3/2} - V_s^{3/2}) - \gamma_s^2 \frac{1}{2} (V_d^2 - V_s^2) - \frac{2}{5} \gamma_s (V_d^{5/2} - V_s^{5/2}) \right]$$
(0.330)

$$I_{dc} = V_g(V_d - V_s) - \frac{2}{3}\gamma_s(V_d^{3/2} - V_s^{3/2}) - \frac{1}{2}(V_d^2 - V_s^2)$$
(0.331)

The diffusion junction capacitance equations for the drain and source are the same as in the Level 1 model. The capacitance is dependent on the drain to bulk or drain to source voltage.

For reverse bias $Vbs < FC \cdot PB$,

$$C_{bd} = CJ \left(\frac{AS}{\left(1 - \frac{V_{bs}}{PB}\right)^{MJ}} \right) + CJSW \left(\frac{PS}{\left(1 - \frac{V_{bs}}{PB}\right)^{MJSW}} \right)$$
(0.332)

For forward bias $Vbs > FC \cdot PB$,

$$C_{bd} = CJ \left(\frac{AS}{(1 - FC)^{(1 + MJSW)}} \right) \left[1 - FC(1 + MJ) + \frac{V_{bs}}{PB} MJ \right] +$$

$$CJSW \left(\frac{PS}{(1 - FC)^{(1 + MJSW)}} \right) \left[1 - FC(1 + MJSW) + \frac{V_{bs}}{PB} MJSW \right]$$
(0.333)

To obtain the charge function at the junction of the drain or source, integrate the junction capacitance over the range of *Vbs*:

$$Q = \int C(v)dv \tag{0.334}$$

Now integrate the reverse bias region from *Vbs* to ($FC \cdot PB$).

For reverse bias $Vbs < FC \cdot PB$,

$$Q_{Dj} = \int_{V_{bs}}^{FC \cdot PB} C_{bd} V_{bs} dv \tag{0.335}$$

$$Q_{Dj} = (CJ \cdot AS \cdot PB) \left(\left(\frac{1.0 - V_{bs}}{PB} \right)^{(1 - MJ)} - \frac{(1.0 - FC)^{(1 - MJ)}}{(1 - MJ)} \right) +$$

$$(CJSW \cdot PS \cdot PB) \left(\left(\frac{1.0 - V_{bs}}{PB} \right)^{(1 - MJSW)} - \frac{(1.0 - FC)^{(1 - MJSW)}}{(1 - MJSW)} \right)$$

$$(0.336)$$

For forward bias $Vbs > FC \cdot PB$,

$$Q_{Dj} = \int_{FC \cdot PB}^{V_{bs}} C_{bd} V_{bs} dv \tag{0.337}$$

$$Q_{Dj} = \frac{CJ \cdot AS \cdot PB}{(10 - FC)^{2 - MJ}} \cdot \left[(V_{bs} - (FC \cdot PB))(1.0 - FC(2 - MJ)) + \frac{1}{2} \left(\frac{V_{bs}^{2}}{PB} - FC^{2}PB \right) (1 - MJ) \right] - \frac{CJ \cdot SW \cdot PS \cdot PB}{(1.0 - FC)^{2 + MJSW}} \cdot \left[(V_{bs} - (FC \cdot PB))(1.0 - FC(2 - MJSW)) + \frac{1}{2} \left(\frac{V_{bs}^{2}}{PB} - FC^{2}PB \right) (1 - MJ) \right]$$
(0.338)

Level 3 Equations

The Level 3 MOSFET model is a semi-empirical model developed to handle small-geometry devices.

The drain current in the linear and saturation regions (for Vgs > Vth) is calculated using

$$I'_{ds} = \beta \cdot \left[\frac{1}{1 + V_{ds} \left(\frac{\mu_s V_{max}}{L_1} \right)} \right] \cdot \left[V_{gs} - V_{th} - \left(\frac{1 + F_B}{2} \right) V_{ds} \right] \cdot V_{ds}$$

$$(0.339)$$

where Vds = Vdsat for Vds > Vdsat and Vdsat is defined as follows:

If $Vmax \leq 0.0$,

$$V_{dsat} = \frac{V_{gs} - V_{th}}{1 + F_{P}} \tag{0.340}$$

If Vmax > 0.0,

$$V_{dsat} = \frac{V_{gs} - V_{th}}{1 + F_B} + \frac{V_{max} \cdot L_I}{\mu_s} - \sqrt{\left(\frac{V_{gs} - V_{th}}{1 + F_B}\right)^2 + \left(\frac{V_{max} \cdot L_I}{\mu_s}\right)^2}$$
(0.341)

and

$$\mu_s = \frac{\mu_0}{1 + \theta(V_{gs} - V_{th})} \tag{0.342}$$

$$\beta = \frac{W_{eff}}{L_I} \mu_s C_{ox} \tag{0.343}$$

$$F_B = \frac{\gamma F_s}{4\sqrt{2\phi_F - V_{bs}}} - F_n \tag{0.344}$$

$$F_{s} = 1 - \frac{X_{j}}{L_{1}} \left(\frac{LD + W_{c}}{X_{j}} \sqrt{1 - \left(\frac{W_{p}}{X_{j} + W_{p}} \right)^{2}} - \frac{LD}{X_{j}} \right)$$
(0.345)

$$W_p = X_d \sqrt{2\phi_F - V_{bs}} \tag{0.346}$$

$$X_d = \sqrt{\frac{2\varepsilon_{si}\varepsilon_0}{qN_A}} \tag{0.347}$$

$$\frac{W_c}{X_j} = 0.0631353 + 0.8013292 \frac{W_p}{X_j} - 0.01110777 \left(\frac{W_p}{X_j}\right)^2$$
 (0.348)

$$F_n = \frac{\varepsilon_{si}\varepsilon_0\delta\pi}{2C_{ox}W_{eff}} \tag{0.349}$$

$$V_{th} = V_{FB} + 2\phi_F - \sigma V_{ds} + \gamma F_s \sqrt{2\phi_F - V_{bs}} + F_n(2\phi_F - V_{bs})$$
(0.350)

$$\sigma = \eta \cdot \frac{8.15 \times 10^{-22}}{C_{ox}L_I} \tag{0.351}$$

Channel length modulation is calculated for *Vds* > *Vdsat* as follows:

$$I_{dsat} = I'_{ds} \left(V_{ds} = V_{dsat} \right) \tag{0.352}$$

$$G_{dsat} = \frac{\partial I'_{ds}}{\partial V_{ds}} (V_{ds} = V_{dsat})$$
 (0.353)

$$I_{ds} = \frac{I_{dsat}}{1 - \left(\frac{L_I - L'}{L_I}\right)} \tag{0.354}$$

where

$$L_{I} - L' = \sqrt{\left(\frac{E_{p}X_{D}^{2}}{2}\right)^{2} + KX_{D}^{2}(V_{ds} - V_{dsat})} - \left(\frac{E_{p}X_{D}^{2}}{2}\right)$$
(0.355)

$$E_p = \frac{I_{dsat}}{G_{dsat}L_I} \tag{0.356}$$

For *Vgs* < *Von*, *Ids* is modified to included the weak inversion component of the drain current.

$$V_{on} = V_{th} + \frac{kT}{q} \cdot N \tag{0.357}$$

$$N = 1 + \frac{q}{C_{ox}} + \frac{\gamma F_s \sqrt{2\phi_F - V_{bs}} + F_n(2\phi_F - V_{bs})}{2(2\phi_F - V_{bs})}$$
(0.358)

$$I'_{ds} = I_{ds} \cdot e^{\frac{q}{NkT} \cdot (V_{gs} - V_{on})}$$

$$(0.359)$$

Temperature Dependence

The MOSFET model at Levels 1, 2, and 3 contains temperature-dependent model parameters. If a new temperature is specified with the **.temp** command, then these parameters must be modified before they are used in the current equations. The default temperature is 25 °C, which is equivalent to 300.15 K. The parameters affected by temperature changes are: ϕF (Fermi potential), Eg (energy gap), PB (built-in potential of the drain and source), μO (mobility), and Is (reverse current of the diffused junctions).

The energy gap between the conduction band and the valence band for polysilicon at Tref = 300.15 K and at the new temperature Tnew is:

$$E_{g,ref} = 1.16 - \left(\frac{7.02 \times 10^{-4} \cdot (T_{ref})^2}{1108 + T_{ref}}\right) \tag{0.360}$$

$$E_{g,new} = 1.16 - \left(\frac{7.02 \times 10^{-4} \cdot (T_{new})^2}{1108 + T_{new}}\right)$$
 (0.361)

The intrinsic doping is adjusted by different equations depending whether the parameter *PHI* is defined. When *PHI* is *not* defined,

$$n_{i,new} = n_i \left(\frac{T_{new}}{T_{ref}}\right)^{3/2} \left(e^{\frac{q}{k} \left(\frac{E_{g,ref}}{T_{ref}} - \frac{E_{g,new}}{T_{new}}\right)}\right)^{1/2}$$
(0.362)

When PHI is defined,

$$n_{i,new} = N_{sub} \left(\frac{T_{new}}{T_{ref}}\right)^{3/2} \left(e^{\frac{q}{k} \left(\frac{E_{g,ref}}{T_{ref}} - \frac{E_{g,new}}{T_{new}} - \frac{2\phi_F}{T_{ref}}\right)}\right)^{1/2}$$
(0.363)

PHI for the new temperature is computed using *ni,new*:

$$\phi_{new} = 2\phi_{F,new} = \left(\frac{2kT_{new}}{q}\right) \ln\left(\frac{N_{sub}}{n_{i,new}}\right)$$
(0.364)

The conduction factor KP and the mobility vary with temperature as

$$\frac{\mu_{0,new}}{\mu_{0,ref}} = \left(\frac{T_{new}}{T_{ref}}\right)^{-3/2} \tag{0.365}$$

The parameter KP or β contains the temperature adjustment when computed from $\mu 0$; however, when KP is entered from the model statement, the value is modified as

$$\frac{\beta_{new}}{\beta_{ref}} = \left(\frac{T_{new}}{T_{ref}}\right)^{-3/2} \tag{0.366}$$

The MOSFET substrate junction diode saturation current varies as

$$\frac{I_{s,new}}{I_{s,ref}} = \left(\frac{T_{new}}{T_{ref}}\right)^3 \left(e^{\frac{q}{k}\left(\frac{E_{g,ref}}{T_{ref}} - \frac{E_{g,new}}{T_{new}}\right)}\right)$$
(0.367)

The built-in potential PB is adjusted as

$$PB = PB\left(\frac{T_{new}}{T_{ref}}\right) - \left(\frac{2kT_{new}}{q}\right)\ln\left(\frac{T_{new}}{T_{ref}}\right)^{3/2} + \left[\left(\frac{T_{new}}{T_{ref}}\right)E_{g,ref} - E_{g,new}\right]$$
(0.368)

MOSFET Levels 4 and 13 (BSIM1)

Parameters

.model name nmos | pmos level= 4 | 13 [parameters]

Based on the Berkeley short-channel IGFET model, ©1990 Regents of the University of California. Also see "Additional MOSFET Parameters" on page 457.

Parameter	Description	Default	Units
vfb	Flat band voltage	-0.3	V
lvfb	Length sensitivity of vfb	0.0	$\mu m \cdot V$
wvfb	Width sensitivity of vfb	0.0	$\mu m \cdot V$
pvfb	WL-product sensitivity of vfb	0.0	$\mu m^2 \cdot V$
phi	Surface potential (double the Fermi potential)	0.7	V
lphi	Length sensitivity of phi	0.0	$\mu m \cdot V$
wphi	Width sensitivity of phi	0.0	$\mu m \cdot V$
pphi	WL-product sensitivity of phi	0.0	$\mu m^2 \cdot V$
k1	$\sqrt{V_{sb}}$ threshold coefficient	0.5	$V^{1/2}$
lk1	Length sensitivity of k1	0.0	$\mu m \cdot V^{1/2}$
wk1	Width sensitivity of k1	0.0	$\mu m \cdot V^{1/2}$
pk1	WL-product sensitivity of k1	0.0	$\begin{array}{c} \mu m^2 \cdot \\ V^{1/2} \end{array}$
k2	Linear Vsb threshold coefficient	0.0	_
lk2	Length sensitivity of k2	0.0	μm
wk2	Width sensitivity of k2	0.0	μm
pk2	WL-product sensitivity of k2	0.0	μm^2
eta	Linear Vds threshold coefficient	0.0	_
leta	Length sensitivity of eta	0.0	μm
weta	Width sensitivity of eta	0.0	μm
peta	WL-product sensitivity of eta	0.0	μm^2
muz	Low drain field first-order mobility	600	$cm^2/$ $(V \cdot s)$
lmuz	Length sensitivity of muz	0.0	$\begin{array}{c} \mu m \cdot cm^2 \\ /(V \cdot s) \end{array}$
wmuz	Width sensitivity of muz	0.0	$\begin{array}{c} \mu m \cdot cm^2 \\ /(V \cdot s) \end{array}$
pmuz	WL-product sensitivity of muz	0.0	$\mu m^2 \cdot cm^2$ /(V · s)

Parameter	Description	Default	Units
dl	Channel length reduction	0.0	μm
dw	Channel width reduction	0.0	μm
u 0	Gate field mobility reduction	0.0	1/V
lu0	Length sensitivity of u0	0.0	$\mu m/V$
wu0	Width sensitivity of u0	0.0	$\mu m/V$
pu0	WL-product sensitivity of u0	0.0	$\mu m^2 N$
u1	Drain field mobility reduction	0.0	1/V
lu1	Length sensitivity of u1	0.0	$\mu m/V$
wu1	Width sensitivity of u1	0.0	$\mu m/V$
pu1	WL-product sensitivity of u1	0.0	$\mu m^2 N$
x2mz	Vsb correction to low-field 1st-order mobility	0.0	$cm^2/$ $(V^2 \cdot s)$
lx2mz	Length sensitivity of x2mz	0.0	$\mu m \cdot cm^2 \\ / (V^2 \cdot s)$
wx2mz	Width sensitivity of x2mz	0.0	$\mu m \cdot cm^2 \\ / (V^2 \cdot s)$
px2mz	WL-product sensitivity of x2mz	0.0	$\mu m^2 \cdot cm^2$ /(V ² · s)
x2e	Vsb correction to linear Vds threshold coefficient	0.0	1/V
lx2e	Length sensitivity of x2e	0.0	$\mu m/V$
wx2e	Width sensitivity of x2e	0.0	$\mu m/V$
px2e	WL-product sensitivity of x2e	0.0	$\mu m^2 / V$
х3е	Vds correction to linear Vds threshold coefficient	0.0	1 /V
lx3e	Length sensitivity of x3e	0.0	$\mu m/V$
wx3e	Width sensitivity of x3e	0.0	$\mu m/V$
рх3е	WL-product sensitivity of x3e	0.0	$\mu m^2/V$
x2u0	Vsb reduction to gate field mobility reduction	0.0	$1/V^2$
lx2u0	Length sensitivity of x2u0	0.0	$\mu m /\!V^2$
wx2u0	Width sensitivity of x2u0	0.0	$\mu m {\cal N}^2$
px2u0	WL-product sensitivity of x2u0	0.0	$\mu m^2/V^2$
x2u1	Vsb reduction to drain field mobility reduction	0.0	$1/V^2$
lx2u1	Length sensitivity of x2u1	0.0	$\mu m /\!V^2$
wx2u1	Width sensitivity of x2u1	0.0	$\mu m /\!V^2$
px2u1	WL-product sensitivity of x2u1	0.0	$\mu m^2 {N^2}$

Parameter	Description	Default	Units
mus	High drain field mobility	600	$cm^2/$ $(V \cdot s)$
Imus	Length sensitivity of mus	0.0	$\mu m \cdot cm^2 / (V \cdot s)$
wmus	Width sensitivity of mus	0.0	$\mu m \cdot cm^2 / (V \cdot s)$
pmus	WL-product sensitivity of mus	0.0	$\mu m \cdot cm^2 / (V \cdot s)$
x2ms	Vbs reduction to high drain field mobility	0.0	$cm^2/$ $(V^2 \cdot s)$
lx2ms	Length sensitivity of x2ms	0.0	$\begin{array}{c} \mu m \cdot cm^2 / \\ (V^2 \cdot s) \end{array}$
wx2ms	Width sensitivity of x2ms	0.0	$\begin{array}{c} \mu m \cdot cm^2 / \\ (V^2 \cdot s) \end{array}$
px2ms	WL-product sensitivity of x2ms	0.0	$\mu m \cdot cm^2 / (V \cdot s)$
x3ms	Vds reduction to high drain field mobility	5.0	$cm^2/$ $(V^2 \cdot s)$
lx3ms	Length sensitivity of x3ms	0.0	$\frac{\mu m \cdot cm^2}{(V^2 \cdot s)}$
wx3ms	Width sensitivity of x3ms	0.0	$\frac{\mu m \cdot cm^2}{(V^2 \cdot s)}$
px3ms	WL-product sensitivity of x3ms	0.0	$\mu m^2 \cdot cm^2 / (V^2 \cdot s)$
x3u1	Vds reduction to drain field mobility reduction	0.0	$1/V^2$
lx3u1	Length sensitivity of x3u1	0.0	$\mu m \mathcal{N}^2$
wx3u1	Width sensitivity of x3u1	0.0	$\mu m \mathcal{N}^2$
px3u1	WL-product sensitivity of x3u1	0.0	$\mu m^2 /\!\! V^2$
tox	Gate oxide thickness	0.02	μm; Å if >1
temp	Temperature	25.0	°C
vdd	Critical voltage for high drain field mobility reduction	5.0	V
cgdo	Gate/drain parasitic capacitance per unit channel width	1.5×10^{-9}	F/m
cgso	Gate/source parasitic capacitance per unit channel width	1.5×10^{-9}	F/m
cgbo	Gate/bulk parasitic capacitance per unit channel length	2.0×10^{-10}	F/m
xpart	Flag for channel charge partitioning	1	_

Parameter	Description	Default	Units
n0	Low-field weak inversion gate drive coefficient. A value $\square \ge 200$ disables weak inversion calculation.	0.5	_
In0	Length sensitivity of n0	0.0	μm
wn0	Width sensitivity of n0	0.0	μm
pn0	WL-product sensitivity of n0	0.0	μm^2
nb	Vsb reduction to n0	0.0	_
Inb	Length sensitivity of nb	0.0	μm
wnb	Width sensitivity of nb	0.0	μm
pnb	WL-product sensitivity of nb	0.0	μm^2
nd	Vds reduction to n0	0.0	_
Ind	Length sensitivity of nd	0.0	μm
wnd	Width sensitivity of nd	0.0	μm
pnd	WL-product sensitivity of nd	0.0	μm^2
xl dl ldel	Mask and etching length change	0.0	m
xw dw wdel	Mask and etching width change	0.0	m

MOSFET Level 5 (Maher-Mead)

The Maher-Mead MOSFET model is accurate, physically based, continuous over all transistor regions of operation, including subthreshold, and scales to submicron channel lengths.

Parameters

.model name nmos | pmos level=5 [parameters]

Also see "Additional MOSFET Parameters" on page 457.

Parameter	Symbol	Description	Default	Unit
solver	solver	Nonlinear system solver selector: bisection: solver=0 secant: solver=1	1	_
tox	Tox	Oxide thickness	1.0e-7	m
vmax	Vmax	Saturated velocity of electrons or holes	0	m/s
mu0	μO	Zero gate field mobility	Computed.	$cm^2 \mathcal{N} \! \cdot \! s$
nsub	Nsub	Substrate doping	_	cm^{-3}
vfb	Vfb	Flat band voltage	0.0	V
eghalf	Eghalf	Electric field where mobility = mu0	1.0×10^{10}	V/m
ld	Ld	Length adjustment parameter	$0.75 \times xj$	m
wd	Wd	Width adjustment parameter	0.0	m
xl dl ldel	Xl	Mask and etching length change	0.0	m
xw dw wdel	Xw	Mask and etching width change	0.0	m
хj	Xj	Junction depth	0.0	m
del	del	Channel length reduction per side	0.0	m
tnom tref	Tref	Reference temperature	global tnom (25.0)	°C
qstol	qstol	Tolerance for nonlinear solution of source charge	1.0×10^{-8}	
qdtol	qdtol	Tolerance for nonlinear solution of drain charge	1.0×10^{-8}	
qdmindydx		Lower bound on derivative in nonlinear solution of drain charge	0.01	

Characteristics

The Maher-Mead model is a physically based, charge-controlled model for the DC current, the intrinsic terminal charges, and the transcapacitances in the MOSFET.

The model expresses the current in the MOSFET in terms of the mobile charge per unit area in the channel, and uses a complete set of natural units for velocity, voltage, length, charge, and current. The

current-flow equation for the transistor includes both a drift term and a diffusion term, so that the formulation applies equally over the subthreshold, saturation, and "ohmic" regions of transistor operation and includes the effect of velocity saturation.

The model uses physical parameters derived from the fabrication process by direct measurement and from the dimensions of the device. The model agrees closely with measurements on the scaling of current with channel length down to submicron channel lengths.

MOSFET Levels 8, 49 and 53 (BSIM3 Revision 3.3)

Parameters

.model name nmos | pmos level=8 | 49 | 53 [parameters]

Levels 49 and 53 are based upon the 3.3 version of Berkeley SPICE. They contain the most commonly used HSPICE ACM, parasitic resistor, and parasitic diode extensions. These extensions are described in "Additional MOSFET Parameters" on page 457.

Level 8 is a strict Berkeley v3.30 implementation with the addition of the HSPICE Effective area and Perimeter calculations and parasitic resistor equations, but not the diode equations.

Refer to the Berkeley manual BSIM3v330.pdf for further model parameters and equations.

Model Selectors

Parameter	Symbol	Description	Default
binflag	binflag	Flag for use of xwref and xlref parameters	0 (Off)
capmod	capmod	Flag for short channel capacitance model	1 [v3.0] 0 [v3.1] 3 [≥v3.2]
mobmod	mobmo d	Mobility model selector.	1
nqsmod	nqsmod	Flag for NQS model. This turns the non- quasistatic model equations on or off, and overrides the model parameter value.	0
		Note: This option applies to BSIM3 v3.2 and v3.3 only.	
		nqsmod is a device parameter as well as a device statement.	
version	version	Select version of Berkeley BSIM3: 3.0, 3.1. 3.2, or 3.3.	3.3

Basic Model Parameters

Parameter	Symbol	Description	Default	Units
a1	A1	Non-saturation factor 1	0.0 [n] 0.23 ¹ [p]	V-1
a2	A2	Non-saturation factor 2	1.0 [n] 0.08 [p]	
ags	Ags	Gate bias coefficient of Abulk	0.0	V ⁻¹
alpha0	$\alpha \theta$	1st parameter of impact ionization current	0	m/V

Parameter	Symbol	Description	Default	Units
b0	<i>B0</i>	Bulk charge effect coefficient for channel width	0.0	m
b1	B1	Bulk charge effect width offset	0.0	m
beta0	β <i>0</i>	2nd parameter of impact ionization current	30	V
cdsc	Cdsc	Drain/source and channel coupling capacitance	2.4×10^{-4}	F/m ²
cdscb	Cdscb	Body effect coefficient of cdsc	0.0	$F/V \cdot m^2$
cdscd	Cdscd	Drain-bias sensitivity of cdsc	0.0	$F/V \cdot m^2$
cit	Cit	Interface state capacitance	0.0	F/m ²
delta	δ	Effective Vds parameter	0.01	_
drout	DRout	DIBL effect on Rout coefficient	0.56	_
dsub	Dsub	DIBL effect coefficient in subthreshold region	drout	
dvt0	Dvt0	Short channel effect coefficient 0	2.2	
dvt0w	Dvt0w	1st coefficient of narrow width effect on \mathbf{vth} at small L	0	
dvt1	Dvt1	Short channel effect coefficient 1	0.53	
dvt1w	Dvt1w	2nd coefficient of narrow width effect on \mathbf{vth} at small L	5.3×10^{6}	m ⁻¹
dvt2	Dvt2	Short channel effect coefficient 2	-0.032	V-1
dvt2w	Dvt2w	Body-bias coefficient of narrow width effect on ${\bf vth}$ at small L	-0.032	V-1
eta0	ηO	Subthreshold region DIBL coefficient	0.08	
etab	η b	Subthreshold region DIBL coefficient	-0.07 V ⁻¹	V ⁻¹
is	I_s	Bulk saturation current	1.0×10^{-14}	A
k1	K1	1st order bulk effect coefficient	0.53	V ^{1/2}
k2	K2	2 nd order bulk effect coefficient	-0.0186	
k3	<i>K3</i>	Narrow width effect coefficient	80.0	
k3b	K3b	Body effect coefficient of k3	0.0	V-1
keta	K_{η}	Body bias coefficient of non-uniform depletion width effect	-0.047	V-1

Parameter	Symbol	Description	Default	Units
nch npeak	Nch	Peak doping concentration	1.7×10^{17}	cm ⁻³ Note: T-Spice assigns units of m ⁻³ to values > 10^{23} .
nfactor	Nfactor	Subthreshold swing coefficient	1	_
ngate	Ngate	Poly gate doping concentration	0	cm ⁻³
nlx	Nlx	Lateral non-uniform doping effect	1.74×10^{-7}	m
nsub	Nsub	Doping concentration	6.0×10^{16}	cm ⁻³ Note: T-Spice assigns units of m ⁻³ to values > 10^{23} .
pclm	Pclm	Channel-length modulation effect coefficient	1.3	_
pdiblc1	Pdiblc1	1st output resistance DIBL effect correction parameter	0.39	_
pdiblc2	Pdiblc2	2nd output resistance DIBL effect correction parameter	0.0086	_
pdiblcb	Pdiblcb	Body effect coefficient of DIBL correction parameters	0.0	V ⁻¹
prwb	Prwb	Body effect coefficient of rdsw	0	V ^{1/2}
prwg	Prwg	Gate bias coefficient of rdsw	0	V-1
pscbe1	Pscbe1	Substrate current body effect coefficient 1	4.24×10^{8}	V/m
pscbe2	Pscbe2	Substrate current body effect coefficient 2	1.0×10^{-5}	V/m
pvag	Pvag	Vg dependence of Rout coefficient	0.0	V
rdsw	Rdsw	Source/drain resistance per unit width	0.0	Ω⁄μm
tox	Tox	Gate oxide thickness	1.50×10^{-8}	m
u0	μ0	Low-field mobility at tnom	670 [n] 250 [p]	$cm2/V \cdot s$ (≥ 1) $m2/V \cdot s$ (<1)

Parameter	Symbol	Description	Default	Units
ua	Ua	Linear Vgs dependence of mobility	2.25×10^{-9}	m/V
ub	Ub	Quadratic Vgs dependence of mobility	5.87×10^{-18}	m^2/V^2
uc	Uc	Body-bias dependence of mobility	-4.65× 10 ⁻¹¹	V-1
vbm	Vbm	Maximum body voltage	v3.0: -5.0 ≥v3.1: -3.0	V
vfb	vfb	DC flatband voltage.	-1	V
vfbcv	vfbcv	Flatband voltage used in charge/capacitance equations when vfbflag=1 and capmod=0 .	-1	V
vfbflag	vfbflag	Selects vfb for capmod=0 . (Vers. 3.2+)	0	_
voff	Voff	Threshold voltage offset	-0.08	V
voffcv	Voffcv	C-V parameter for weak to strong inversion transition	0	_
vsat	vsat	Saturation velocity at tnom	8.0×10^4	m⁄s
vtho vth0	Vth0	Threshold voltage.	0.7 [n] -0.7 [p]	V
w0	WO	Narrow width effect coefficient	2.5×10^{-6}	m
wr	Wr	Width offset from Weff for Rds calculation	1.0	_
хj	Xj	Junction depth	1.5×10^{-7}	m

AC and Capacitance Parameters

Parameter	Symbol	Description	Default	Units
cf	Cf	Fringing field capacitance	Computed,	F/m
cgbo	Cgbo	Gate/bulk overlap capacitance per unit channel length	0.0	F/m
cgdl	Cgdl	Light doped drain-gate region overlap capacitance	0.0	F/m
cgdo	Cgdo	Gate/drain overlap capacitance per unit channel width	0.0	F/m
cgsl	Cgsl	Light doped source-gate region overlap capacitance	0.0	F/m
cgso	Cgso	Gate/source overlap capacitance per unit channel width	0.0	F/m
ckappa	C_{κ}	Coefficient for lightly doped region overlap capacitance	0.6	F/m
clc	CLC	Constant term for short-channel model	0.1 ×10 ⁻⁶	m
cle	CLE	Exponential term for short-channel model	0.6	_
xpart	Xpart	Flag for channel charge partitioning	0	_

Length and Width Parameters

Parameter	Symbol	Description	Default	
dlc	DLC	Length offset fitting parameter from C-V	lint	m
dwb	dWb	Coefficient of <i>Weff</i> substrate body bias dependence	0.0	$(mV)^{1/2}$
dwc	DWC	Width offset fitting parameter from C-V	wint	m
dwg	dWg	Coefficient of Weff gate dependence	0.0	m⁄V
lint	Lint	Length offset fitting parameter from I-V without bias	0.0	m
II	Ll	Coefficient of length dependence for length offset	0.0	m^{lln}
llc	Llc	Coefficient of length dependence for C-V channel width offset	II	m^{lln}
lln	Lln	Power of length dependence for length offset	1.0	_
lw	Lw	Coefficient of width dependence for length offset	0.0	m^{lwn}

Parameter	Symbol	Description	Default	
lwc	Lwc	Coefficient of width dependence for C-V channel length offset	lw	m^{lwn}
lwl	Lwl	Coefficient of length and width cross terms for length offset	0.0	$m^{lln+lwn}$
lwlc	Lwlc	Coefficient of length and width cross terms for C-V channel length offset	lwic	$m^{lln+lwn}$
lwn	Lwn	Power of width dependence for length offset	1.0	_
wint	Wint	Width offset fitting parameter from I-V without bias	0.0	m
wl	Wl	Coefficient of length dependence for width offset	0.0	m ^{wln}
wlc	Wlc	Coefficient of length dependence for C-V channel width offset	wl	m ^{wln}
wln	Wln	Power of length dependence for width offset	1.0	_
ww	Ww	Coefficient of width dependence for width offset	0.0	m^{wwn}
wwc	Wwc	Coefficient of width dependence for C-V channel width offset	ww	m^{wwn}
wwl	Wwl	Coefficient of length and width cross terms for width offset	0.0	$m^{wwn+wln}$
wwlc	Wwlc	Coefficient of length and width cross terms for C-V channel width offset	wwl	$m^{wwn+wln}$
wwn	Wwn	Power of width dependence for width offset	1.0	_
xl dl ldel	Xl	Mask and etching length change	0.0	m
xw dw wdel l	Xw	Mask and etching width change	0.0	m

Temperature Parameters.

Parameter	Symbol	Description	Default	
at	At	Temperature coefficient of vsat	3.3×10^{4}	m⁄s
CTA CTC	CTA / CTC	Temperature coefficient for Cj	0.0	deg ⁻¹
СТР	CTP	Temperature coefficient for <i>Cjsw</i>	0.0	deg ⁻¹
EG	Eg(0)	Energy gap at 0° K (Si: 1.166, Ge: 0.74, and GaAs: 1.52)	1.16	eV
GAP1	GAP1	Coefficient in energy gap temperature equation (Si: 4.73×10^{-4} , Ge: 4.77×10^{-4} , and GaAs: 5.41×10^{-4})	7.02 × 10 ⁻⁴	eV/deg

Parameter	Symbol	Description	Default	
GAP2	GAP2	Coefficient in energy gap temperature equation (Si: 636, Ge: 235, and GaAs: 204	1108	deg
kt1	Kt1	Temperature coefficient of Vth	-0.11	V
kt1l	Kt1l	Channel length sensitivity of kt1	0.0	$V\!\cdot\! m$
kt2	Kt2	Body bias coefficient of kt1	0.022	_
prt	Prt	Temperature coefficient for rdsw	0.0	$\Omega\!\cdot\!\mu m$
PTA	PTA	Temperature coefficient for Pb	0.0	deg ⁻¹
PTP	PTP	Temperature coefficient for <i>Pbsw</i>	0.0	deg ⁻¹
tlev	tlev	Temperature equation selector	0	_
tlevc	tlevc	Temperature equation selector for junction capacitance and contact potential	0	_
tnom tref	T_{ref}	Reference temperature	global tnom (25.0)	deg
TRD	TRD	Temperature coefficient for Rd	0.0	deg ⁻¹
TRS	TRS	Temperature coefficient for Rs	0.0	deg ⁻¹
ua1	Ua1	Temperature coefficient of ua	4.31×10^{-9}	m/V
ub1	Ub1	Temperature coefficient of ub	-7.61×10^{-18}	m^2/V^2
uc1	Uc1	Temperature coefficient of uc	-5.6e-11	V-1
ute	μte	Temperature coefficient of mobility	-1.5	_
XTI	XTI	Saturation current temperature exponent	0.0	_

Bin Description Parameters.

Parameter	Symbol	Description	Default
binunit	binunit	Bin unit selector	1

Process Parameters

Parameter	Symbol	Description	Default	Units	
em	Em	Maximum electric field	4.1×10^{7}	V/m	

Parameter	Symbol	Description	Default	Units
gamma1	γΙ	Vth coefficient 1	Computed	V ^{1/2}
gamma2	γ2	Vth coefficient 2	0.0	V ^{1/2}
vbx	Vbx	Vth transition body voltage	Computed	V
xt	Xt	Doping depth	1.55×10^{-7}	m

NonQuasi-Static Parameters

Parameter	Symbol	Description	Default
elm	elm	Elmore constant	5

Equations

For the complete set of equations describing the Level 49 model, see the *BSIM3v3 Manual* (Ko et al. 1995).

Drain Current

$$I_{ds} = \frac{I_{dso(V_{ds,eff})}}{1 + \frac{R_{ds}I_{dso(V_{ds,eff})}}{V_{ds,eff}}} \left(1 + \frac{V_{ds} - V_{ds,eff}}{V_{A}}\right) \left(1 + \frac{V_{ds} - V_{ds,eff}}{V_{ASCBE}}\right)$$
(0.369)

where

$$I_{dso} = \frac{W_{eff} \mu_{eff} C_{ox} V_{gst,eff} \left(1 - A_{bulk} \frac{V_{ds,eff}}{2(V_{gst,eff} + 2\nu_t)}\right) V_{ds,eff}}{L_{eff} \left(1 + \frac{V_{ds,eff}}{E_{sat} L_{eff}}\right)}$$
(0.370)

$$V_{ds,eff} = V_{dsat} - \frac{1}{2} (V_{dsat} - V_{ds} - \delta + \sqrt{(V_{dsat} - V_{ds} - \delta)^2 + 4\delta V_{dsat}})$$
(0.371)

$$E_{sat} = \frac{2\nu_{sat}}{\mu_{eff}} \tag{0.372}$$

$$v_t = \frac{kT}{q} \tag{0.373}$$

Variables for which equations are not given here are as follows.

 V_A Early voltage

 V_{ASCRE} Early voltage due to substrate current-induced body effect

 $V_{gst,eff}$ Effective Vgs - Vth (Vth: effective threshold voltage)

 $\mu_{\it eff}$ Effective mobility

 A_{bulk} Bulk charge effect factor V_{dsat} Drain saturation voltage

Gate Charge

$$Q_{g} = -(Q_{acc} + Q_{sub0} + \delta Q_{sub} + Q_{inv})$$
 (0.374)

Variables for which equations are not given here are as follows.

 Q_{acc} Channel majority or accumulation charge

 Q_{sub0} Substrate charge at Vds = 0

 Q_{sub} Non-uniform substrate charge in presence of drain bias

 Q_{inv} Qs + Qd = channel minority or inversion charge

MOSFET Levels 9 and 50 (Philips MOS 9)

Philips MOS Model 9 is a compact MOS-transistor model, intended for the simulation of circuit behaviour with emphasis on analog applications. The model gives a complete description of all transistor-action related quantities: nodal currents and charges, noise-power spectral densities and weak-avalanche currents. The equations describing these quantities are based on the gradual-channel approximation with a number of first-order corrections for small-size effects. The consistency is maintained by using the same carrier-density and electrical-field expressions in the calculation of all model quantities. MOS Model 9 only provides a model for the intrinsic transistor. Junction charges and leakage currents are not included. They are covered by the separate Juncap model.

The MOS 9 model is fully documented in **Philips MOS 9**.

For further detailed information about the MOS 9 model, please refer to the Philips Compact Model Webpage:

http://www.semiconductors.philips.com/Philips Models/mos models/model9

Parameters

The MOS 9 model uses the following syntax.

.model name nmos | pmos level=[9|50] | model=modelname [parameters]

T-Spice includes support for MOS 9 versions 902 and 903, and for both geometrical and electrical based model parameter sets.

The available *modelname* values for the MOS 9 model selection are:

Modelname	Description
mos902	Mos 9 level 902, geometrical
mos902e	Mos 9 level 902, electrical
mos903 (default)	Mos 9 level 903, geometrical
mos903e	Mos 9 level 903, electrical

MOSFET Levels 11 and 63 (Philips MOS 11)

MOS Model 11 has been developed as the successor of MOS Model 9. It is a symmetrical, surface-potential-based model, giving an accurate physical description of the transition from weak to strong inversion. MOS 11 includes an accurate description of all physical effects important for modern and future CMOS technologies, such as:

mobility reduction
bias-dependent series resistance
velocity saturation
conductance effects (CLM, DIBL, etc.)
gate leakage current
gate-induced drain leakage
gate depletion
quantum-mechanical effects
bias-dependent overlap capacitances

The description of the source-bulk and drain-bulk junction diode is not included in MOS Model 11. The behaviour of these junction diodes is modelled by the Juncap model. This model has to be added between the source and bulk node and between the drain and bulk node. The MOS 11 model is fully documented in Philips MOS 11.

The MOS 11 model is fully documented in **Philips MOS 11**.

For further detailed information about the MOS 11 model, please refer to the Philips Compact Model Webpage:

http://www.semiconductors.philips.com/Philips Models/mos models/model11

Parameters

The MOS 11 model uses the following syntax.

```
.model name nmos | pmos level=[11 | 63] | model=modelname [parameters]
```

T-Spice includes support for Mos 11 versions 1100, 1101, and 1102. Each of these versions, in turn, offers a selection of electrical or geometrical based parameterization, modeling of self-heating effects, and model binning

The available *modelname* values for the Mos 11 model are:

Modelname	Description
mos1100	Mos 11 level 1100, geometrical
mos1100e	Mos 11 level 1100, electrical
mos1101	Mos 11 level 1101, electrical
mos1101t	Mos 11 level 1101, electrical, self-heating
mos11010	Mos 11 level 1101, geometrical
mos11010t	Mos 11 level 1101, geometrical, self-heating
mos11011	Mos 11 level 1101, geometrical, binning

mos11011t Mos 11 level 1101, geometrical, binning, self-heating

mos1102 Mos 11 level 1102, electrical

mos1102t Mos 11 level 1102, electrical, self-heating

mos11020 (default) Mos 11 level 1102, geometrical

mos11020t Mos 11 level 1102, geometrical, self-heating

mos11021 Mos 11 level 1102, geometrical, binning

mos11021t Mos 11 level 1102, geometrical, binning, self-heating

MOSFET Levels 14 and 54 (BSIM4 Revision 5)

Parameters

```
.model name nmos | pmos level=14 | 54 [parameters]
```

Levels 14 and 54 are fully compliant with the original UC Berkeley release of BSIM4 Revision 5. For standard model parameters and equations, refer to the Berkeley manual **BSIM450.pdf**. Specific device instance statements and their parameters are shown in the following section.

Syntax

General MOSFET device parameters (length, width, drain, source, etc.) are described in the device statement chapter under "MOSFET (m)" on page 174. In the case of device values which have corresponding model values, the device settings override the model settings.

Device instance parameters for BSIM4 are as follows:

```
mname drain gate source bulk model [l=L] [w=W] [ad=Ad] [pd=Pd] [as=As]
    [ps=Ps] [nrd=Nrd] [nrs=Nrs] [M=M] [acnqsmod=acnqsmod] [geomod=geomod]
    [min=min] [nrd=nrd] [nrs=nrs] [rbdb=rbdb] [rbodymod=rbodymod] [rbpb=rbpb]
    [rbpd=rbpd] [rbps=rbps] [rbsb=rbsb] [rgatemod=rgatemod] [rgeomod=rgeomod]
    [trnqsmod=trnqsmod] [sa=sa] [sb=sb] [sd=sd]
```

acnqsmod AC small-signal NQS model selector

geomod Geometry-dependent parasitics model selector - specifying how the

end S/D diffusions are connected

min Wheter to minimize the number of drain or source diffusions for

even-number finger devices

nf Number of device fingers

nrd Number of drain diffusion squares
nrs Number of source diffusion squares

rbdb Resistance connected between dbNode and bNode

rbodymod Substrate resistance network model selector

rbpbResistance connected between bNodePrime and bNoderbpdResistance connected between bNodePrime and dbNoderbpsResistance connected between bNodePrime and sbNode

rbsb Resistance connected between sbNode and bNode

rgatemod Gate resistance model selector

rgeomod Source/drain diffusion resistance and contact model selector -

specifying the end S/D contact type: point, wide or merged, and how

S/D parasitics resistance is computed

trnqsmod Transient NQS model selector

Sa Distance between OD edge to Poly from one side

Note:

Distance between neighboring fingers
j

MOSFET Levels 15 and 61 (RPI Amorphous-Si TFT Model)

Level 15 is a thin-film transistor (TFT) amorphous silicon (a-Si) model developed at Rensselaer Polytechnic Institute (RPI).

This model is based on the universal charge control concept, which allows for currents and the large and small-signal parameters to be written as continuous functions of the applied bias, providing smooth transitions between the different operating regimes. Interpolation techniques are applied to the equations to unify the model.

Note that contrary to devices such as SOI MOSFETs, self-heating in a-Si TFT leads to an increase in current, since the carrier mobility increases with the temperature.

Physical effects included in MOS Model 15 include:

Above threshold:

Modified charge control model; induced charge trapped in localized states

Field effect mobility becoming a function of gate bias

Band mobility dominated by lattice scattering

Below threshold:

Fermi level located in deep localized states

Relate position of Fermi level, including the deep DOS back to the gate bias

Empirical expression for current at large negative gate biases for hole-induced leakage current.

Interpolation techniques are applied to the equations to unify the model.

Note:

The T-Spice implementation of the RPI a-Si TFT model supports model binning. The additional model parameters for this are **Imin**, **Imax**, **wmin**, **wmax**, **xl**, **xlref**, **xw**, and **xwref**, described in the section "Additional MOSFET Parameters" on page 457.

Parameters

This is a 3-terminal model. Because no bulk node exists, no parasitic drain-bulk or source-build diodes are appended to the model. You can specify a fourth node but it will not affect simulation results. The drain and source areas and perimeters are not used either, since the model equation is based solely upon the width and length.

Device instance parameters for MOS level 15 are as follows:

mname drain gate source model [L=1] [W=w] [M=m][TEMP=t]

The parameter definitions (L, W, and M) are the MOSFET standards (see "MOSFET (m)" on page 174), and TEMP is the device temperature (C).

For further detailed information please refer to the Rensselaer Polytechnic Institute research papers in the T-Spice models folder.

Parameter	Description	Default	Units	
ALPHASAT	Saturation modulation parameter	0.6	_	
CGDO	Gate-drain overlap capacitance per meter channel width	0.0	F/m	

Parameter	Description	Default	Units
CGSO	Gate-source overlap capacitance per meter channel width	0.0	F/m
DEFO	Dark Fermi level position	0.6	eV
DELTA	Transition width parameter	5	-
EL	Activation energy of the hole leakage current	.35	eV
EMU	Field effect mobility activation energy	0.06	eV
EPS	Relative dielectric constant of substrate	11	-
EPSI	Relative dielectric constant of gate insulator	7.4	-
GAMMA	Power law mobility parameter	0.4	-
GMIN (GO, G0)	Minimum density of deep states	1E23	m ⁻³ eV ⁻¹
IOL	Zero bias leakage current parameter	3E-14	A
KASAT	Temperature coefficient of ALPHASAT	0.006	1/° C
KVT	Threshold voltage temperature coefficient	-0.036	V/° C
LAMBDA	Output conductance parameter	0.0008	1/V
M (MSAT)	Knee shape parameter	2.5	-
MUBAND	Conduction band mobility	0.001	m^2/Vs
RD	Drain resistance	0.0	μ
RS	Source resistance	0.0	μ
SIGMA0 (sigma0)	Minimum leakage current parameter	1E-14	A
TNOM (TREF)	Parameter measurement temperature	global Tnom	oC
тох	Thin-oxide thickness	1E-7	m
V0	Characteristic voltage for deep states	0.12	V
VAA	Characteristic voltage for field effect mobility	7.5E3	V
VDSL	Hole leakage current drain voltage parameter	7	V
VFB	Flat band voltage	-3	V
VGSL (VGL)	Hole leakage current gate voltage parameter	7	V
VMIN	Convergence parameter	0.3	V
VTO (VT0)	Zero-bias threshold voltage 0.0		V

Equivalent Circuit

MOSFET Levels 16 and 62 (RPI Poly-Si TFT Model, 1.0 and 2.0)

Level 16 is a thin-film transistor (TFT) poly-silicon (Poly-Si) model developed at Rensselaer Polytechnic Institute (RPI).

MOS level 16 improves on existing devices models by including the necessary dependencies to make it scalable from long-channel to short-channel devices.

This model accounts for some effects that are specific to poly-Si TFTs, including the kink effect, the increase of the field-effect mobility as the gate voltage is increased in moderate inversion, the off-current, the DIBL (Drain Induced Barrier Lowering) and velocity saturation effects, as well as series resistances. The DIBL effect is more pronounced in poly-Si TFTs than in crystalline MOSFETs and cannot be neglected even for long-channel devices.

More specifically,

- Field effect mobility becomes a function of gate bias
- Effective mobility that accounts for trap states, for low V gs using a power law, for high V gs a
 constant.
- A unified DC model that includes all four regimes for channel lengths down to 4 m—leakage (thermionic emission), subthreshold (diffusion-like model), above threshold (c-Si-like, with mFet) and kink (impact ionization with feedback).
- An AC model that accurately reproduces C_{gc} frequency dispersion
- An automatic scaling of model parameters to accurately model a wide range of device geometries

Note:

The T-Spice implementation of the RPI Poly-Si TFT model supports model binning. The additional model parameters for this are **Imin**, **Imax**, **wmin**, **wmax**, **xl**, **xlref**, **xw**, and **xwref**, described in the section "Additional MOSFET Parameters" on page 457.

Parameters

This is a 3-terminal model. MOS level 16 does not use a bulk node; there are no corresponding drainbulk or source-bulk diodes to be modeled. You can specify a fourth node but it does it not affect simulation results.

Device instance parameters for MOS level 16 are as follows:

mname drain gate source model [L=1] [W=w] [NRS=nrs] [NRD=nrd] [M=m] [TEMP=t]

The parameter definitions (L, W, NRS, NRD, M, etc.) are the MOSFET standard ones (see "MOSFET (m)" on page 174). TEMP is the device temperature (C).

For further detailed information please refer to the Rensselaer Polytechnic Institute papers in the T-Spice models folder.

Parameter	Description	Default	Units
ASAT	Proportionality constant of Vsat	1	-
AT	DIBL parameter 1	3E-8	m/V

Parameter	Description Default		Units
BLK	Leakage barrier lowering constant 0.001 -		-
ВТ	DIBL parameter 2	1.9E-6	$m{\cdot}V$
CAPMOD	Capacitance model selector 0		-
CGDO	Gate-drain overlap capacitance per meter 0.0 channel width		F/m
CGSO	Gate-source overlap capacitance per meter channel width	0.0	F/m
DASAT	Temperature coefficient of ASAT	0	1/°C
DD	Vds field constant	1400 Å	m
DELTA	Transition width parameter	4.0	-
DG	Vgs field constant	2000 Å	m
DMU1	Temperature coefficient of MU1	0	cm ² /Vs° C
DVT	The difference between VON and the threshold voltage	0	V
DVTO	Temperature coefficient of VTO	0	V/°C
EB	Barrier height of diode	0.68	EV
ETA (ETAI)	Subthreshold ideality factor	7	-
ETAC0	Capacitance subthreshold ideality factor at zero drain bias	ETA	-
ETAC00	Capacitance subthreshold coefficient of drain bias	0	1/V
10 (CLK)	Leakage scaling constant	6.0	A/m
100	Reverse diode saturation current	150	A/m
LASAT	Coefficient for length dependence of ASAT	0	M
LKINK	Kink effect constant	19E-6	M
MC	Capacitance knee shape parameter	3.0	-
MK (MKINK)	Kink effect exponent	1.3	-
MMU (M)	Low field mobility exponent	1.7	-
MU0	High field mobility	100	cm ² /Vs
MU1	Low field mobility parameter	0.0022	cm^2/Vs
MUS	Subthreshold mobility	1.0	cm^2/Vs
RD	Drain resistance	0.0	W
RDX	Resistance in series with Cgd (RF)	0	W
RS	Source resistance	0.0	W
RSH	Sheet resistance	0	Ω/sq
RSX (RI)	Resistance in series with Cgs	0	W

Parameter	Description	Default	Units
TNOM (TREF)	Parameter measurement temperature	27	°C
тох	Thin-oxide thickness	1.0e-7	m
VFB	Flat band voltage	-0.1	V
VKINK	Kink effect voltage	9.1	V
VON	On-voltage	0	V
VTO	Zero-bias threshold voltage		V

Version 2.0 Parameters

Version 1.0 is the standard release of the Poly-Si model, equivalent to the AimSpice level 16 PSIA2 model. Version 2.0 (selected using the model parameter VERSION=2.0) is a newer release, and includes an intrinsic resistance model, alternate channel length modulation equations, and DIBL (drain induced barrier lowering) equations.

Parameter	Description	Default	Units
INTDSNOD	Extrinsic resistance mode selector	0	-
ISUBMOD	Channel length modulation equation selector	0	-
LAMBDA	Channel length modulation parameter	.048	m/V
LS	Channel length modulation parameter	35e-9	m/V
ME (MS)	Long channel saturation transition parameter 2.5		-
META	Eta floating body parameter	1.0	-
MSS	Vdse transition parameter	1.5	-
THETA	Mobility degradation parameter	0	1/V
VMAX	Saturation velocity 4e4		m/s
VP	Channel length modulation parameter 0.2 V		V
VSIGMA	Above threshold DIBL parameter 0.2 V		V
VSIGMAT	Above threshold DIBL parameter 1.7		V

Equivalent Circuit

MOSFET Level 20 (Philips MOS 20)

MOS Model 20 is a compact LDMOS model, which combines the MOSFET operation of the channel region with that of the drift region under the thin gate oxide. As such, it is aimed as a successor of MOS Model 9 in series with MOS Model 31. MOS Model 20 has especially been developed to improve the convergence behaviour during simulation, by having the voltage at the transition from the channel region to the drift region calculated inside the model itself.

The MOS 20 model is fully documented in **Philips MOS 20**.

For further detailed information about the MOS 20model, please refer to the Philips Compact Model Webpage:

http://www.semiconductors.philips.com/Philips_Models/high_voltage/model20

Parameters

The MOS 20 model uses the following syntax.

.model name nmos | pmos level=20 | model=modelname [parameters]

T-Spice includes support for MOS 20 version 2001 with geometrical and electrical model parameterization, and self-heating effects.

The available *modelname* values for the MOS 20 model selection are:

Modelname	Description
mos2001 (default)	Mos 20 level 2001, geometrical
mos2001e	Mos 20 level 2001, electrical
mos2001et	Mos 20 level 2001, electrical, self-heating

MOSFET Level 28 (Extended BSIM1)

.model name nmos | pmos level=28 [parameters]

T-Spice supports MOSFET model level 28, based on the Berkeley short-channel IGFET models. The Extended BSIM1 level 28 model is a proprietary Tanner Research extension to the core BSIM1 model developed at Berkeley. The extensions attempt to fix many of the problems in the original model equations, including:

- Negative output conductance in the saturation region of operation.
- Discontinuities in the output conductance at the transition between the linear and saturation regions of operation.
- Discontinuities in the subthreshold current and transconductance characteristics near threshold.

In addition, the core equations have been enhanced to correct deficiencies in the original model equations:

- Temperature compensation equations have been added for proper handling of temperature effects.
- Effective length-width product scaling factors have been added for use with the BSIM3 revision 3 scaling equations.

Note:

T-Spice accepts BSIM1 model parameters entered in the level 13 and level 28 conventions used by HSPICE^{TM*}.

Level 13 model parameters are translated to standard BSIM1 model (see "MOSFET Levels 4 and 13 (BSIM1)" on page 412.)

Level 28 model parameters are automatically translated to the extended BSIM1 model as shown below.

Parameters

Following are the Tanner Extended BSIM1 MOSFET model parameters.

Parameter	Description	Default	Units
tempmod	Temperature model selector. tempmod=0 disables the temperature compensation equation. tempmod>0 enables the temperature compensation equation.	0	_
ute	Temperature exponent for mobility	1.5	_
lute	Length sensitivity of ute	0.0	_
wute	Width sensitivity of ute	0.0	_
pute	WL-product sensitivity of ute	0.0	_
kt1	Temperature coefficient for flat band voltage	0.0	V
lkt1	Length sensitivity of kti	0.0	$\mu m\!\cdot\! V$
wkt1	Width sensitivity of kti	0.0	$\mu m \cdot V$
pkt1	WL-product sensitivity of kti	0.0	$\mu m^2\!\cdot\! V$

^{*} HSPICE(®) is a registered trademark of Synopsys, Inc.

Parameter	Description	Default	Units
submod	Subthreshold current model selector	0	_
voffset	Subthreshold offset voltage above threshold	0.0	V
lvoffset	Length sensitivity of voffset	0.0	$\mu m \!\cdot\! V$
wvoffset	Width sensitivity of voffset	0.0	$\mu m\!\cdot\! V$
pvoffset	WL-product sensitivity of voffset	0.0	$\mu m^2\!\cdot\! V$
iratio	Subthreshold current factor	e^{-2}	_
liratio	Length sensitivity of iratio	0.0	_
wiratio	Width sensitivity of iratio	0.0	_
piratio	WL-product sensitivity of iratio	0.0	_
satmod	Saturated drain current model selector	0	_
alpha	Saturated drain current knee parameter	1.0	_
lalpha	Length sensitivity of alpha	0.0	_
walpha	Width sensitivity of alpha	0.0	_
palpha	WL-product sensitivity of alpha	0.0	_
gamma	Saturated drain current output conductance parameter	0.0	_
Igamma	Length sensitivity of gamma	0.0	_
wgamma	Width sensitivity of gamma	0.0	_
pgamma	WL-product sensitivity of gamma	0.0	_
xj	Junction depth	0.0	m
wmlt	Width shrink factor	1.0	_

Equations

Process Parameters

Process parameters express the sensitivity of the BSIM1 electrical parameters to device length, width, and the product of length and width (*WL*-product). The SPICE names of process parameters are derived from the related electrical parameter names by prefixing the letters **I**, **w**, and **p**.

The actual value of an electrical parameter P is

$$P = P_0 + \frac{P_L}{L_i - \Delta L} + \frac{P_W}{W_i - \Delta W} + \frac{P_P}{(L_i - \Delta L)(W_i - \Delta W)}$$
(0.375)

where PL, PW, and PP denote P's length, width, and product sensitivity parameters, respectively.

Drain Current

Drain current is modeled by three equations, representing the three regions of MOSFET operation: *cutoff, linear*, and *saturation*.

Cutoff region: $Vgs \leq Vth$

$$I_{ds} = 0 ag{0.376}$$

Linear region: Vgs > Vth and 0 < Vds < Vd, sat

$$I_{ds} = \frac{\mu_0}{1 + U_0(V_{gs} - V_{th})} \cdot \frac{C'_{ox} \frac{W_{eff}}{L_{eff}}}{\left(1 + \frac{U_I}{L_{eff}} V_{ds}\right)} \cdot \left[(V_{gs} - V_{th}) V_{ds} - \frac{a}{2} V_{ds}^2 \right]$$
(0.377)

where

$$a = \frac{1 + gK_I}{2\sqrt{\phi_s - V_{bs}}} > 1 \tag{0.378}$$

and

$$g = 1 - \frac{1}{1.744 + 0.8364(\phi_s - V_{hs})} \tag{0.379}$$

Saturation region: Vgs > Vth and $Vds \ge Vd$, sat

$$I_{ds} = \frac{\mu_0}{1 + U_0(V_{os} - V_{th})} \cdot \frac{C'_{ox} \frac{W_{eff}}{L_{eff}}}{2aK} \cdot (V_{gs} - V_{th})^2$$
(0.380)

where

$$K = \frac{1 + v_c + \sqrt{1 + 2v_c}}{2} \tag{0.381}$$

and

$$v_c = \frac{U_I}{L_{eff}} \cdot \frac{(V_{gs} - V_{th})}{a} \tag{0.382}$$

In the linear and saturation regions,

$$V_{d,sat} = \frac{V_{gs} - V_{th}}{a \sqrt{K}} \tag{0.383}$$

$$U_0(V_{ds}, V_{bs}) = U_{0z} + U_{0b}V_{bs} (0.384)$$

$$U_{I}(V_{ds}, V_{bs}) = U_{Iz} + U_{Ib}V_{bs} + U_{Id}(V_{ds} - V_{dd})$$
(0.385)

 $\mu 0$ is computed by quadratic interpolation given three conditions:

$$\mu_0(V_{ds} = 0) = \mu_z + \mu_{zb}V_{bs} \tag{0.386}$$

$$\mu_0(V_{ds} = V_{dd}) = \mu_s + \mu_{sb}V_{bs} \tag{0.387}$$

and the sensitivity of $\mu 0$ to the drain bias at Vds = Vdd.

Subthreshold Current

The total drain current is modeled as the sum of two components: the *strong inversion* component *Ids*,*s*, equivalent to the drain current modeled in equations (0.376) through (0.387), and the weak inversion component *Ids*,*w*:

$$I_{ds,w} = \frac{I_{exp}I_{limit}}{I_{exp} + I_{limit}}$$
(0.388)

where

$$I_{exp} = \mu_0 C'_{ox} \frac{W_{eff}}{L_{eff}} \left(\frac{kT}{q}\right)^2 e^{1.8} e^{q(V_{gs} - V_{th})/nkT} (1 - e^{-qV_{ds}/kT})$$
(0.389)

and

$$I_{limit} = \frac{\mu_0 C'_{ox}}{2} \frac{W_{eff}}{L_{eff}} \left(\frac{3kT}{q}\right)^2 \tag{0.390}$$

The subthreshold parameter n is modeled as

$$n(V_{ds}, V_{bs}) = n_0 + n_b V_{bs} + n_d V_{ds} > 0.5 (0.391)$$

MOSFET Level 30 (Philips MOS 30)

MOS Model 30 is a long channel JFET/MOSFET model developed to describe the drift region of LDMOS, EPMOS and VDMOS devices.

Note:

MOS Model 30 has been replaced with the MOS 31 model, and is provided for historical and compatibility purposes only. It's use is not recommended.

The MOS 30 model is fully documented in **Philips MOS 30**.

Parameters

The MOS 30 model uses the following syntax.

.model name nmos | pmos level=30 | model=mos3002 [parameters]

T-Spice includes support for MOS 30 version 3002 with electrical model parameterization.

MOSFET Level 31 (Philips MOS 31)

MOS Model 31 is a physics based transistor model to be used in circuit simulation and IC-design of analog high-voltage applications. The model describes the electrical behaviour of a junction-isolated accumulation/depletion-type MOSFET. The model is used as the drain extension of high-voltage MOS devices, like the Lateral Double-diffused MOS (LDMOS), the Vertical Double-diffused MOS (VDMOS), and the Extended MOS transistors. Physical effects included in MOS Model 31:

Both accumulation and depletion underneath the gate oxide;

Depletion from the substrate (a pn-junction);

Pinch-off effects;

Velocity saturation; and

Temperature scaling.

The MOS 31 model is fully documented in **Philips MOS 31**.

For further detailed information about the MOS 31 model, please refer to the Philips Compact Model Webpage:

http://www.semiconductors.philips.com/Philips Models/high voltage/model31

Parameters

The MOS 31 model uses the following syntax.

.model name nmos | pmos level=31 | model=modelname [parameters]

T-Spice includes support for MOS 31 version 3100 with and without self-heating effects.

The available *modelname* values for the MOS 31 model selection are:

Modelname Description

mos3100 (default) Mos 31 level 3100, electrical

mos3100t Mos 31 level 3100, electrical, self-heating

MOSFET Level 40 (Philips MOS 40)

MOS Model 40 is a physics based transistor model to be used in circuit simulation and IC-design of analogue high-voltage applications processed in Silicon-on-Insulator (SOI). The model describes the electrical behavior of an accumulation/depletion-type MOSFET in SOI. The model is used as drain extension of high-voltage MOS devices, like the Lateral Double-diffused MOS (LDMOS), the Vertical Double-diffused MOS (VDMOS), and the Extended MOS transistors.

Physical effects in MOS Model 40 include:

Both accumulation and depletion underneath the gate oxide;

Both accumulation and depletion from the substrate (an oxide layer);

Pinch-off effects;

Velocity saturation; and

Temperature scaling.

The MOS 40 model is fully documented in Philips MOS 40.

For further detailed information about the MOS 40 model, please refer to the Philips Compact Model Webpage:

http://www.semiconductors.philips.com/Philips_Models/high_voltage/model40

Parameters

The MOS 40 model uses the following syntax.

.model name nmos | pmos level=40 | model=modelname [parameters]

T-Spice includes support for MOS 40 version 40 with and without self-heating effects.

The available *modelname* values for the MOS 40 model selection are:

Modelname Description

mos40 (default) Mos 40 level 40, electrical

mos40t Mos 40 level 40, electrical, self-heating

MOSFET Levels 44 and 55 (EKV Revision 2.6)

Parameters

.model name nmos | pmos level=44 | 55 [parameters]

For model parameters, model equations and device instance statements and their parameters, refer to the Swiss Federal Institute of Technology manual **EKV_v262.pdf**.

Note:

Table-based model analysis is not supported for EKV.

MOSFET Level 47 (BSIM3 Revision 2)

Parameters

.model name nmos | pmos level=47 [parameters]

Based on the Berkeley short-channel IGFET model, ©1990 Regents of the University of California.]

Also see "Additional MOSFET Parameters" on page 457.

Parameter	Symbol	Description	Default	Units
subthmod	subthmo d	Subthreshold model selector	2	_
satmod	satmod	Saturation model selector	2	_
bulkmod	bulkmo d	Bulk charge effect model selector	1 [n] 2 [p]	_
mobmod	mobmo d	Mobility model selector	1	_
tox	Tox	Gate oxide thickness	1.50×10^{-8}	m
cdsc	Cdsc	Drain/source and channel coupling capacitance	2.4×10^{-4}	F/m^2
cdscb	Cdscb	Body effect coefficient of cdsc	0.0	$F/\!V\!\cdot\! m^2$
cit	Cit	Interface state capacitance	0.0	F/m^2
nfactor	Nfactor	Swing coefficient	1	_
хj	Xj	Junction depth	1.50e-7	m
vsat	vsat	Saturation velocity at tnom	8.0×10^{-6}	cm/s
at	At	Temperature coefficient of vsat	3.3×10^{-4}	m/s
а0	A0	Non-uniform depletion width effect coefficient	$\begin{array}{c} 1.0\\ \textbf{[bulkmod} = 1]\\ 4.4\\ \textbf{[bulkmod} = 2] \end{array}$	_
a1	A1	Non-saturation factor 1	0.0 [n] 0.23 [p]	1/V
a2	A2	Non-saturation factor 2	1.0 [n] 0.08 [p]	_
keta	Keta	Body bias coefficient of non-uniform depletion width effect	-0.047	1/V
vghigh	Vghigh	High bound of transition region	0.12	V
vglow	Vglow	Low bound of transition region	-0.12	V
nsub	Nsub	Doping concentration	6.0×10^{16}	$\begin{array}{l} cm^{-3} \\ (\leq 10^{20}) \\ m^{-3} \\ (> 10^{20}) \end{array}$

Parameter	Symbol	Description	Default	Units
nch npeak	Npeak	Peak doping concentration	1.7×10^{17}	cm ⁻³ (≤10 ²³) m ⁻³ (>10 ²³)
ngate	Ngate	Gate doping concentration	0.0	cm^{-3}
gamma1	γI	Vth coefficient	0.0	$V^{1/2}$
gamma2	γ2	Vth coefficient 2	0.0	$V^{1/2}$
vbx	Vbx	Vth transition body voltage	0.0	V
vbi	Vbi	Drain/source junction built-in potential	0.0	V
vbm	Vbm	Maximum body voltage	-5.0	V
xt	Xt	Doping depth	1.55×10^{-7}	m
phi	ф	Strong inversion surface potential	Computed	V
litl	Litl	Depth of current path	0.0	m
em	Em	Maximum electric field	4.1×10^7	V/m
k1	K1	Bulk effect coefficient 1	0.0	$V^{1/2}$
kt1	Kt1	Temperature coefficient of Vth	-0.11	V
kt1l	Kt1l	Channel length sensitivity of kt1	0.0	$V\!\cdot\! m$
kt2	Kt2	Body bias coefficient of kt1	0.022	_
k2	K2	Bulk effect coefficient 2	0.0	_
k3	<i>K3</i>	Narrow width effect coefficient	80.0	_
k3b	K3b	Body effect coefficient of k3	0.0	1/V
w0	WO	Narrow width effect coefficient	2.5×10^{-6}	m
nlx	Nlx	Lateral non-uniform doping effect	1.74×10^{-7}	m
dvt0	Dvt0	Short channel effect coefficient 0	2.2	_
dvt1	Dvt1	Short channel effect coefficient 1	0.53	_
dvt2	Dvt2	Short channel effect coefficient 2	-0.032	1/V
drout	DRout	DIBL effect on Rout coefficient	0.56	_
dsub	Dsub	DIBL effect coefficient in subthreshold region	drout	_
vtho vth0	Vth	Threshold voltage	0.7 [n] -0.7 [p]	V
ua	Ua	Linear Vgs dependence of mobility	2.25×10^{-9}	m/V
ua1	Ua1	Temperature coefficient of ua	4.31×10^{-9}	m/V
ub	Ub	Quadratic Vgs dependence of mobility	5.87×10^{-19}	$m^2 {\cal N}^2$
ub1	Ub1	Temperature coefficient of ub	-7.61×10^{-18}	$m^2 {\cal N}^2$
uc	Uc	Body-bias dependence of mobility	0.0465	1/V
uc0	Uc0	Mobility coefficient	0.0	V^2/m^2

Parameter	Symbol	Description	Default	Units
uc1	Uc1	Temperature coefficient of uc	-0.056	1/V
u0	μ0	Low-field mobility at tnom	670.0 [n] 250.0 [p]	$cm^{2}/V \cdot s$ (≥ 1) $m^{2}/V \cdot s$ (< 1)
ute	μte	Temperature coefficient of mobility	-1.5	_
voff	Voff	Threshold voltage offset	-0.11	V
vfb	Vfb	Flat band voltage	-1.0	V
dl ld	Dl	Channel length reduction	0.0	m
dw wd	Dw	Channel width reduction	0.0	m
lmlt	Lmlt	Length shrink factor	1.0	_
wmlt	Wmlt	Width shrink factor	1.0	_
xi di idel	Xl	Mask and etching length reduction factor	0.0	_
xw dw wdel	Xw	Mask and etching width reduction factor	0.0	_
tnom tref	Tnom	Temperature	25.0	°C
cgso cgsom	Cgso	Gate/source overlap capacitance per unit channel width	0.0	F/m
cgdo cgdom	Cgdo	Gate/drain overlap capacitance per unit channel width	0.0	F/m
cgbo cgbom	Cgbo	Gate/bulk overlap capacitance per unit channel length	0.0	F/m
xpart	Xpart	Flag for channel charge partitioning	0.0	_
rdsw	Rdsw	Source/drain resistance per unit width	0.0	$\Omega\!\cdot\!\mu m$
rds0	Rds0	Source/drain contact resistance	0.0	Ω
ldd	LDD	Total source/drain LDD region length	0.0	m
eta	Eta	Effective drain voltage coefficient	0.3	_
eta0	Eta0	Subthreshold region DIBL coefficient	0.08	_
etab	Etab	Subthreshold region DIBL coefficient	-0.07	1/V
pclm	Pclm	Channel-length modulation effect coefficient	1.3	_
pdibl1	Pdibl1	DIBL effect coefficient 1	0.39	_
pdibl2	Pdibl2	DIBL effect coefficient 2	0.0086	_
pscbe1	Pscbe1	Substrate current body effect coefficient 1	4.24×10^{8}	V/m
pscbe2	Pscbe2	Substrate current body effect coefficient 2	1.0×10^{-5}	m/V
pvag	Pvag	Vg dependence of Rout coefficient	0.0	_

Equations

For the complete equations describing the Level 47 model, refer to J. H. Huang, Z. H. Liu, M. C. Jeng, K. Hui, M. Chan, P. K. Ko, and C. Hu, BSIM3 Manual (Version 2.0). Berkeley, CA: University of California, 1994.).

Drain Current

In the linear region:

$$I_{ds} = \frac{I_{dslin0}}{1 + \frac{R_{ds}I_{dslin0}}{V_{ds}}} \tag{0.392}$$

where

$$I_{dslin0} = \mu_{eff} C_{ox} \left(\frac{W}{L}\right) \left(\frac{1}{1 + \frac{V_{ds}}{E_{sut}L}}\right) \left(V_{gst} - A_{bulk} \frac{V_{ds}}{2}\right) V_{ds}$$

$$(0.393)$$

In the saturation region:

$$I_{ds} = I_{dsat} \left(1 + \frac{V_{ds} - V_{dsat}}{V_A} \right) \left(1 + \frac{V_{ds} - V_{dsat}}{V_{ASCBE}} \right)$$
 (0.394)

where

$$I_{dsat} = W v_{sat} C_{ox} (V_{est} - A_{bulk} V_{dsat})$$

$$(0.395)$$

In the subthreshold region:

If subthmod = 0:

$$I_{ds} = 0$$
 (0.396)

If subthmod = 1:

$$I_{ds} = \frac{I_{limit}I_{exp}}{I_{limit} + I_{exp}} (1 - e^{-V_{ds}/V_{lm}})$$

$$(0.397)$$

where

$$I_{limit} = \frac{9}{2} \mu_0 C_{dep} \left(\frac{W}{L}\right) V_{tm}^2 \cdot e^{\left(\frac{\left(E_{ta0} + E_{tab} \cdot V_{bs}\right) \Theta_{dibl} V_{ds}}{n V_{tm}}\right)}$$
(0.398)

$$I_{exp} = \mu_0 C_{dep} \left(\frac{W}{L} \right) V_{tm}^2 \cdot e^{\left(\frac{V_{gs} - V_{th} - V_{off} + (E_{ta0} + E_{tab} \cdot V_{bs}) \theta_{dibl} V_{ds}}{n V_{tm}} \right)}$$
(0.399)

If subthmod = 2:

$$I_{ds} = I_{s0}(1 - e^{-V_{ds}/V_{tm}}) \cdot e^{\left(\frac{V_{gst} - V_{off} + (E_{ta0} + E_{tab} \cdot V_{bs})\theta_{dibl}V_{ds}}{nV_{tm}}\right)}$$
(0.400)

where

$$I_{s0} = \mu_0 \frac{W}{L} \sqrt{\frac{q \varepsilon_{si} N_{peak}}{2 \phi_s}} \cdot V_{tm}^2$$
 (0.401)

In the transition region:

$$I_{ds} = (1-t)^2 I_{dslow} + 2(1-t)tI_p + t^2 I_{dshigh}$$
 (0.402)

where

$$t = \left(\frac{V_p - V_{gslow}}{V_{gslow} - 2V_p + V_{gshigh}}\right) \times$$

$$\left(\sqrt{1 + \frac{(V_{gslow} - 2V_p + V_{gshigh})(V_{gst} - V_{gslow})}{(V_p - V_{gslow})^2}} - 1\right)$$

Variables for which equations are not given here are as follows.

VA Early voltage

VASCBE Early voltage due to substrate current-induced body effect

μ*eff* Effective mobility

Abulk Bulk charge effect factor

Vdsat Drain saturation voltage

MOSFET Level 57 (BSIM3SOI)

BSIMSOI is an international standard model for silicon-on-insulator (SOI) circuit design, adjunct to the BSIM3v3 framework.

Parameters

```
.model name nmos | pmos level=57 [parameters]
```

For standard model parameters and equations, refer to the Berkeley manuals **BSIMSOI3p1.pdf** and **BSIMSOI3p2.pdf**. Specific device instance statements and their parameters are shown in the following section.

Syntax

General MOSFET device parameters (length, width, drain, source, etc.) are described in the device statement chapter under "MOSFET (m)" on page 174. In the case of device values which have corresponding model values, the device settings override the model settings.

Device instance parameters for the BSIMSOI MOSFET model are as follows:

```
mname d g s e [p] [b] [t] model [L=1] [W=w] [P=p] [B=b] [T=t] [AD=ad]
    [AS=as] [PD=pd] [PS=ps] [NRS=nrs] [NRD=nrd] [NRB=nrb] [M=M]
    [OFF][BJTOFF=bjtoff] [IC=ds gs bs es ps initial voltages] [RTH0=rth0]
    [CTH0=cth0] [NBC=nbc] [NSEG=nseg] [PDBCP=pdbcp] [PSBCP=psbcp]
    [AGBCP=agbcp] [AEBCP=aebcp] [VBSUSR=vbsusr] [TNODEOUT]
    [RGATEMOD=rgatemod] [SOIMOD=soimod] [FRBODY=frbody]
```

d	Drain node	
g	Front gate node	
s	Source node	
е	Back gate or substrate node	
p	Optional external body contact node	
b	Optional internal body node	
t	Optional temperature node	
ad	Drain diffusion area	
aebcp	Parasitic gate-to-body overlap area for body contact	
agbcp	Parasitic perimeter length for body contact at drain side	
as	Source diffusion area	
bjtoff	Turn off BJT current if equal to 1	
cth0	Thermal capacitance per unit width:	
	• if not specified, CTH0 is extracted from model card	
	• f specified, it will override the one in model card	

Layout-dependent body resistance coefficient

frbody

Chapter 8: Device Models MOSFET Level 57 (BSIM3SOI)

ic Initial guess in the order of (Vds, Vgs, Vbs, Ves, Vps). (Vps will be

ignored in the case of a 4-terminal device.)

Channel length

nbc Number of body contact isolation edge

nrb Number of squares in body series resistance
nrd Number of squares in drain series resistance
nrs Number of squares in source series resistance

nseg Number of segments for channel width partitioning. (The effective

channel width may change due to the body contact, please refer to the

equations in BSIMSOI3p1.pdf and BSIMSOI3p2.pdf.

off Device initial conditions off in DC operating point calculations

pd Drain diffusion perimeter area

pdbcp Parasitic perimeter length for body contact at drain side

ps Drain diffusion perimeter length

psbcp Parasitic perimeter length for body contact at source side

rgatemod Gate resistance model selector

rsh Number of squares in drain series resistance

rth0 Thermal resistance per unit width:

if not specified, RTH0 is extracted from model card if specified, it will override the one in model card

soimod SOI model selector for PD/FD operation

Soimod=0: BSIMPD (partially depleted)

Soimod=1: unified model for PD&FD

Soimod=2: ideal FD (fully depleted)

tnodeout Flag indicating external temperature node

vbsusr Optional initial value of Vbs specified by user for transient analysis

w Channel width

SOI Modes

There are three modes in BSIMSOI, soimod = 0, 1 or 2. BSIMPD (soimod = 0) can be used to model the PD SOI device, where the body potential is independent of DVbi (VBS > DVbi). Therefore the calculation of DVbi is skipped in this mode. On the other hand, the ideal FD model (soimod = 2) is for the FD device with body potential equal to DVbi. Hence the calculation of body current/charge, which is essential to the PD model, is skipped. For the unified SOI model (soimod = 1), however, both DVbi and body current/charge are calculated to capture the floating-body behavior exhibited in FD devices. This unified model covers both BSIMPD and the ideal FD model.

Chapter 8: Device Models MOSFET Level 57 (BSIM3SOI)

Body and Temperature Nodes

There are three optional nodes, P, B and T nodes. Nodes P and B are used for body contact devices. If the TNODEOUT flag is not set, when you specify four nodes, this element is a four terminal device, i.e., floating body. If you specify five nodes, the fifth node represents the external body contact node (P). There is a body resistance between the internal body node and the P node. In both these cases, an internal body node is created, but it is not accessible in the circuit deck. However, if you specify six nodes, the fifth node will represent the P node and the sixth node will represent the internal body node (B). This configuration is useful for distributed body resistance simulation.

If the TNODEOUT flag is set, the last node is interpreted as the temperature node. In this case, when you specify five nodes, it is a floating body. If you specify six nodes, it is a body-contacted case. Finally, if you specify seven nodes, it is a body-contacted case with an accessible internal body node. The temperature node is useful for thermal coupling simulation.

Note:

Table-based model analysis is not supported for BSIMSOI.

MOSFET Level 100 (Penn State & Philips PSP Model)

The PSP model is a new compact MOSFET model, which has been jointly developed by Philips Research and Penn State University, and is able to accurately model present-day and upcoming deep-submicron bulk CMOS technologies.

The PSP model is a symmetrical, surface-potential-based model, giving an accurate physical description of the transition from weak to strong inversion. The PSP model includes an accurate description of all physical effects important for modern and future CMOS technologies, such as:

mobility reduction
bias-dependent series resistance
velocity saturation
conductance effects (CLM, DIBL, etc.)
lateral doping gradient effect
mechanical stress related to STI
gate leakage current
gate-induced drain leakage
gate depletion
quantum-mechanical effects bias-dependent overlap capacitances

In addition, it gives an accurate description of charges and currents and their first-order derivatives (transconductance, conductance, capacitances), but also of their higher-order derivatives. In other words, it gives an accurate description of MOSFET distortion behaviour, and as such the PSP model is suitable for digital, analog as well as RF circuit design.

The PSP model is fully documented in Penn State & Philips PSP Model.

For further detailed information about the PSP model, please refer to the Philips Compact Model Webpage:

http://www.semiconductors.philips.com/Philips_Models/high_voltage/model40

Parameters

The PSP model uses the following syntax.

.model name nmos | pmos level=100 | 1000 | model=modelname [parameters]

T-Spice includes support for PSP version 100.1 with both electrical and geometrical model parameterization.

The available *modelname* values for the PSP model selection are:

Modelname	Description
psp100 or psp100e (default)	PSP model version 100.1, electrical
psp1000 or psp100g	PSP model version 100.1, geometrical

Additional MOSFET Parameters

This section describes additional parameters, including parasitics, used by the equations describing MOSFET levels 1-3 and BSIM (levels 1, 2, 3, 14, 28, 47, 49, 53, and <math>54).

Parameters

Parameter	Symbol	Description	Default	Units
acm	ACM	Source/drain area calculation method	0	_
cj cjm	Cj	Source/drain bottom junction capacitance	5.7911×10 ⁻⁴ [level 49] 5.0×10 ⁻⁴ [else]	F/m ²
cjgate	Cj,gate	Zero-bias gate edge sidewall junction capacitance	0.0	F/m
cjsw cjw	Cjsw	Source/drain sidewall junction capacitance	0.0	F/m
expli	EXPLI	Current limit	1.0×10^{15}	A
hdif	Hdif	Length of heavily doped diffusion from contact to lightly doped region	0.0	m
is	Is	Bulk saturation current	0.0 [level 49] 1.0×10 ⁻¹⁴ [else]	A
js ijs	Js	Source/drain junction reverse saturation current density	0.0	A/m ²
jsw∣jssw	Jsw	Source/drain sidewall junction reverse saturation current density	0.0	A/m
ld dlat latd	Ld	Lateral diffusion into channel from source/drain diffusion	0.75 · xj	_
ldif	Ldif	Length of lightly doped diffusion adjacent to gate	0.0	m
lmax	Lmax	Maximum channel length	0.0	m
lmin	Lmin	Minimum channel length	0.0	m
meto	Meto	Fringing field factor for overlap capacitance calculation	0.0	m
mj mj0	Mj	Source/drain bottom junction capacitance grading coefficient	0.5	_
mjsw mjw	Mjsw	Source/drain sidewall junction capacitance grading coefficient	0.33	_
n	N	Emission coefficient	1.0	_

Parameter	Symbol	Description	Default	Units
nds	Nds	Reverse bias slope coefficient	1.0	_
pb pj	Pb	Source/drain junction built-in potential	0.8 [level 49] 1.0 [else]	V
pbsw pjw php	Pbsw	Source/drain sidewall junction capacitance built-in potential	pb	V
prdt	Prdt	Drain resistance temperature coefficient	0.0	_
prst	Prst	Source resistance temperature coefficient	0.0	_
rd	Rd	Drain resistance (rsh override)	0.0	Ω
rdc	Rdc	Drain contact resistance	0.0	Ω
rs	Rs	Source resistance (rsh override)	0.0	Ω
rsc	Rsc	Source contact resistance	0.0	Ω
rsh rshm	Rsh	Source/drain sheet resistance	0.0	Ω⁄□
vnds	Vn,ds	Reverse diode current transition point	-1	V
wmax	Wmax	Maximum channel width	1.0	m
wmin	Wmin	Minimum channel width	0.0	m
wmlt	Wmlt	Width diffusion layer shrink reduction factor	1.0	_
xl	Xl	Difference between the drawn and the actual length	0.0	m
xIref	Xlref	Difference between physical and drawn reference channel length	0.0	m
xw	Xw	Difference between the drawn and the actual width	0.0	m
xwref	Xwref	Difference between physical and drawn reference channel width	0.0	m

Equations

Parasitic Resistances

MOSFET parasitics are simulated as resistances in series with the source $(R_{s_{eff}})$ and drain $(R_{d_{eff}})$. How these resistances are computed depends on the area calculation method (**acm**) specified.

acm rseff rdeff

0, 10

$$\begin{split} R_{s_{eff}} &= N_{rs} \cdot R_{sh} + R_{sc} & \text{ if } N_{rs} \cdot R_{sh} \neq 0 \\ R_{s_{eff}} &= R_{s} + R_{sc} & \text{ otherwise} \\ \end{split} \qquad \begin{split} R_{d_{eff}} &= N_{rd} \cdot R_{sh} + R_{dc} & \text{ if } N_{rd} \cdot R_{sh} \neq 0 \\ R_{d_{eff}} &= R_{s} + R_{dc} & \text{ otherwise} \\ \end{split}$$

1, 11

$$R_{s_{eff}} = \frac{(L_d + L_{dif}) \cdot R_s}{W_{eff}} + N_{rs} \cdot R_{sh} + R_{sc} \qquad R_{d_{eff}} = \frac{(L_d + L_{dif}) \cdot R_d}{W_{eff}} + N_{rd} \cdot R_{sh} + R_{dc}$$

2, **3**, **12**, **13** If N_{rs} is specified:

If N_{rd} is specified:

$$R_{s_{eff}} = \frac{(L_{d} + L_{dif}) \cdot R_{s}}{W_{eff}} + N_{rs} \cdot R_{sh} + R_{sc} \quad R_{d_{eff}} = \frac{(L_{d} + L_{dif}) \cdot R_{d}}{W_{eff}} + N_{rd} \cdot R_{sh} + R_{dc}$$

Otherwise:

Otherwise:

$$R_{s_{eff}} = \frac{(L_d + L_{dif}) \cdot R_s + R_{sh} \cdot H_{dif_{eff}}}{W_{eff}} \qquad R_{d_{eff}} = \frac{(L_d + L_{dif}) \cdot R_d + R_{sh} \cdot H_{dif_{eff}}}{W_{eff}}$$

Parasitic Diodes

Parasitic diodes are added for each MOSFET that uses direct model evaluation, and for all MOSFETs if the **mosparasitics** option is on.

One diode is placed between the MOSFET's bulk and source terminals, and the other between the bulk and drain.

Diode characteristics are determined by the device parameters **as**, **ad**, **pd**, **ps**, and **geo**, as well as the model parameters **acm**, **cj**, **cjsw**, **cjgate**, **js**, **jsw**, **is**, **n**, **nds**, **vnds**, and **hdif**. The quantity **weff** also plays a role in determining default values for source and drain areas and perimeters for some values of **acm**.

If the MOSFET bulk-source voltage **vbs** is positive (the bulk-source diode is forward biased), then the bulk-source DC current **ibs** is

$$ibs = isatbs \cdot exp(vbs/(n \cdot vt) - 1)$$
 (0.404)

where $\mathbf{vt} = kT/q$ (the thermal voltage), and **isatbs** is the saturation current:

$$isatbs = js \cdot aseff + jsw \cdot pseff$$
 (0.405)

aseff and pseff are described below.

If this computed value of isatbs is zero, then isatbs will be set to the **is** parameter value.

If the MOSFET bulk-drain voltage **vds** is positive (the bulk-drain diode is forward biased), then the bulk-drain DC current is

$$ibd = isatbd \cdot exp(vbd/(n \cdot vt) - 1)$$
 (0.406)

where **isatbd** is the saturation current:

$$isatbd = js \cdot adeff + jsw \cdot pdeff$$
 (0.407)

adeff and pdeff are described below.

If this computed value of isatbd is zero, then isatbd will be set to the **is** parameter value.

The exponential function in both diodes is replaced by a linear extension when the current is larger than the value of **expli**. The linear extension is chosen such that the diode current function is continuously differentiable at the transition point where the diode current equals **expli**.

When a MOSFET parasitic diode with saturation current **isat** is reverse-biased with a negative voltage **vdi**, then its current **idi** behaves as follows.

If 0 > vdi > vnds, then

$$idi = isat \cdot vdi$$
 (0.408)

If vdi < vnds, then

$$idi = isat \cdot (vnds + (vdi - vnds) / nds)$$
 (0.409)

Effective Areas and Perimeters

Effective source and drain areas and perimeters depend on the value of parameter **acm** (and, if **acm** = 3, on parameter **geo**). The parameter names are:

aseff Effective source area

adeff Effective drain area

pseff	Effective source perimeter
pdeff	Effective drain perimeter

The values of **geo** are:

0	Drain and source not shared by other devices (default)
1	Drain shared with another device
2	Source shared with another device
3	Drain and source shared with other devices

The area and perimeter values are computed as follows. The first table lists the equations used when acm=0, 1, 2, or 3. The second table lists equations for acm=10, 11, 12, or 13. The parameter CALCACM can only be invoked when acm=12. The values of defas, defad, and moscap are specified with the .options command.

	acm=0 or 10 with as	acm=0 without as	acm=10 without as
$A_{_{S_{eff}}}$	$A_s \cdot (W_{mlt})^2$	l·w if moscap=1 defas otherwise	0
$A_{d_{\it eff}}$	$A_d \cdot (W_{mlt})^2$	$l \cdot w$ if moscap=1 defad otherwise	0
$P_{s_{\it eff}}$	$P_s \cdot W_{mlt}$	$2 \cdot (l+w)$ if moscap=1 0 otherwise	0
$P_{d_{\it eff}}$	P_{d} · W_{mlt}	$2 \cdot (l+w)$ if moscap=1 0 otherwise	0

For acm=1 or 11:

	acm=1 or 11 with as	acm=1 without as	acm=11 without as	
$A_{s_{eff}}$	$W_{e\!f\!f^{'}}W_{mlt}$	$W_{\it eff}$ $W_{\it mlt}$	$W_{\it eff}W_{mlt}$	
$A_{d_{\it eff}}$	$W_{\it eff}$ $W_{\it mlt}$	$W_{e\!f\!f}$ W_{mlt}	$W_{e\!f\!f}W_{mlt}$	
$P_{s_{e\!f\!f}}$	$W_{ m eff}$	$W_{ m eff}$	$\mathrm{W}_{\mathrm{eff}}$	
$P_{d_{\it eff}}$	$W_{ m eff}$	$\mathrm{W}_{\mathrm{eff}}$	$\mathrm{W}_{\mathrm{eff}}$	

For acm=2 or 12:

	acm=2 or 12 with as	acm=2 without as	acm=12 without as	
$A_{s_{\it eff}}$	$A_s \cdot (W_{mlt})^2$	$2 \cdot H_{dif_{eff}} \cdot W_{eff}$	$\begin{array}{c} 2 \cdot H_{dif_{\it eff}} \cdot W_{\it eff} \\ 0 \end{array}$	if calcacm=1 otherwise

	acm=2 or 12 with as	acm=2 without as	acm=12 without as	
$A_{d_{\it eff}}$	$A_{d}\cdot(W_{mlt})^2$	$2 \cdot H_{dif_{eff}} \cdot W_{eff}$	$\begin{array}{c} 2 \cdot H_{dif_{eff}} \cdot W_{eff} \\ 0 \end{array}$	if calcacm=1 otherwise
$P_{_{S_{eff}}}$	$P_s \cdot W_{mlt}$	$4 \cdot H_{dif_{eff}} + 2 \cdot W_{eff}$	$\begin{array}{l} 4 \cdot H_{dif_{eff}} + 2 \cdot W_{eff} \\ 0 \end{array}$	if calcacm=1 otherwise
$P_{d_{\it eff}}$	$P_d \cdot W_{mlt}$	$4 \cdot H_{dif_{eff}} + 2 \cdot W_{eff}$	$\begin{array}{l} 4 \cdot H_{dif_{eff}} + 2 \cdot W_{eff} \\ 0 \end{array}$	if calcacm=1 otherwise

For acm=3 or 13:

	acm=3 or 13 with as	acm=3 without as		acm=13 without as
$A_{s_{\it eff}}$	$A_s \cdot (W_{mlt})^2$	$\begin{array}{c} 2 \cdot H_{dif_{eff}} \cdot W_{eff} \\ H_{dif_{eff}} \cdot W_{eff} \end{array}$	if geo=0 or 1 otherwise	0
$A_{d_{\it eff}}$	$A_{d} \cdot (W_{mlt})^2$	$\begin{array}{c} 2 \cdot H_{dif_{eff}} \cdot W_{eff} \\ H_{dif_{eff}} \cdot W_{eff} \end{array}$	if geo=0 or 1 otherwise	0
$P_{s_{\it eff}}$	$P_s \cdot W_{mlt}$	$\begin{array}{l} 4 \cdot H_{dif_{eff}} + W_{eff} \\ 2 \cdot H_{dif_{eff}} + W_{eff} \end{array}$	if geo=0 or 1 otherwise	0
$P_{d_{\it eff}}$	$P_d \cdot W_{mlt}$	$\begin{array}{l} 4 \cdot H_{dif_{eff}} + W_{eff} \\ 2 \cdot H_{dif_{eff}} + W_{eff} \end{array}$	if geo=0 or 1 otherwise	0

Chapter 8: Device Models Resistor

Resistor

Parameters

.model name \mathbf{r} [parameter=X]

Parameter	Description	Default	Units
bulk	Name of the node used as the bulk node for capacitance.	Gnd	
сар	Default capacitance.	0	F
capsw	Sidewall fringing capacitance.	0	F/m
cratio	Specifies how capacitance is distributed between input and output nodes. The capacitor between <i>node1</i> and the bulk node has the value cratio × <i>Ceff</i> , while the capacitor between node2 and the bulk node has the value (1-cratio)× <i>Ceff</i> . <i>Ceff</i> is the effective capacitance as described below.	0.5	
cox	Bottomwall capacitance.	0	F/m
di	Relative dielectric constant.	0	
dlr	Difference between the drawn resistor length and its actual length. Multiplied by .options scalm . For further information, see " .options " (page 106).	0	m
dw	Difference between the drawn resistor width and its actual width. Multiplied by .options scalm . For further information, see " .options " (page 106).	0	m
I	Default length. Multiplied by shrink and .options scalm to obtain the scaled length. For further information, see " .options " (page 106).	0	m
level	Model selector—not used.		
noise	Default noise multiplier.	1	
rac	Default AC resistance.	DC resistance	Ohm
res	Default resistance.	0	Ohm
rsh	Sheet resistance per square.	0	
shrink	Shrink factor.	1	
tc1c	First-order temperature coefficient for capacitance.	0	deg^{-1}
tc2c	Second-order temperature coefficient for capacitance.	0	deg^{-2}
tc1r	First-order temperature coefficient for resistance.	0	deg^{-1}

Chapter 8: Device Models Resistor

Parameter	Description	Default	Units
tc2r	Second-order temperature coefficient for resistance.	0	deg^{-2}
thick	Dielectric thickness.	0	m
tnom tref	Reference temperature for temperature compensation.	global tnom (25.0)	deg
w	Default width. Multiplied by shrink and .options scalm to obtain the scaled width. For further information, see ".options" (page 106).	0	m

Large-Signal Model

Equations

Resistance

Effective length is calculated as

$$L_{eff} = L_{scaled} - (2 \cdot dlr \cdot scalm) \tag{0.410}$$

Effective width is calculated as

$$W_{eff} = W_{scaled} - (2 \cdot dw \cdot scalm) \tag{0.411}$$

If element resistance is specified, the effective resistance is

$$R_{eff} = resistance \times devscale \tag{0.412}$$

Otherwise, if $W_{eff} \cdot L_{eff} \cdot rsh = 0$, then $R_{eff} = res \cdot devscale$.

Or if $W_{eff} \cdot L_{eff} \cdot rsh \neq 0$, then $R_{eff} = L_{eff} \cdot rsh \cdot (devscale) / W_{eff}$.

In AC analysis, the device's resistance is

$$RAC_{eff} = acres \cdot devscale$$
 (0.413)

if acres is given.

$$RAC_{eff} = rac \cdot devscale$$
 (0.414)

Chapter 8: Device Models Resistor

if acres is not given and model parameter rac is given.

$$RAC_{eff} = R_{eff} ag{0.415}$$

if neither acres nor rac is given.

Note:

If T-Spice calculates the effective resistance ($R_{e\!f\!f}$ or $RAC_{e\!f\!f}$) to be less than $10^{\text{-}5}~\Omega$, then a warning message is issued and the effective resistance is automatically assigned a value of $10^{\text{-}5}~\Omega$.

For additional information on *devscale*, see the device statement "Resistor (r)" on page 179.

Capacitance

Effective length is calculated as

$$L_{eff} = L_{scaled} - (2 \cdot dlr \cdot scalm) \tag{0.416}$$

Effective width is calculated as

$$W_{eff} = W_{scaled} - (2 \cdot dw \cdot scalm) \tag{0.417}$$

If element capacitance is specified, the effective capacitance is

$$C_{eff} = c \times devscale$$
 (0.418)

If cap is the only model parameter specified

$$C_{eff} = cap \cdot devscale \tag{0.419}$$

Otherwise,

$$C_{eff} = devscale \cdot (Leff \cdot Weff \cdot cox + 2(L_{eff} + W_{eff}) \times capsw)$$
 (0.420)

If **cox** is not specified, it is computed in one of two ways.

If **di** is specified:
$$cox = di \cdot \frac{8.8542149 \cdot 10^{-12}}{thick}$$
 (0.421)

If If **di** is not specified:
$$cox = \frac{3.453148 \cdot 10^{-11}}{thick}$$
 (0.422)

Note: If **c**, **cap**, **cox**, and **thick** are not specified, no capacitor is created.

Chapter 8: Device Models Switch

Switch

A current- or voltage-controlled switch.

Syntax

.model modelname sw csw [parameter=value [parameter=value [...]]]

Name	Model	Description	Default	Unit
vt	sw	Threshold voltage	0	V
it	csw	Threshold current	0	A
vh	sw	Hysteresis voltage	0	V
ih	csw	Hysteresis current	0	A
ron	sw, csw	ON resistance	1	Ohm
roff	sw, csw	OFF resistance	1e12	Ohm
dv	sw	Threshold transition width	0.01	V
di	csw	Threshold transition width	1e-8	A
hdt	sw, csw	Threshold transition time	1e-10	S

The T-Spice switch is essentially a controlled resistor. The resistance is **ron** when the switch is on, and **roff** when the switch is off. The switch changes state between on and off when the controlling voltage or current is at its threshold value.

The following figure shows the resistance of the switch as a function of the controlling variable:

The T-Spice switch elements can display hysteresis, so that the threshold value is different when the control voltage/current is increasing than when it is decreasing. For a voltage-controlled switch, the threshold voltage is **vt** when v(control1, control2) is increasing, and **vt-vh** when v(control1, control2) is decreasing. For a current-controlled switch, the threshold current is **it** when i(vsource_name) is increasing, and **it-ih** when i(vsource_name) is decreasing. The switch is on when the control voltage or current is greater than the threshold value.

Chapter 8: Device Models Switch

The **dv** and **di** parameters define a small interval around the threshold in which a smooth transition between **ron** and **roff** is made.

Examples

The following example creates a voltage-controlled switch:

```
.model swmod sw vt=0.7 dv=0.1
```

The following example creates a current-controlled switch:

```
.model swmod csw it=0.7 di=0.1
```

Chapter 8: Device Models Transmission Line

Transmission Line

T-Spice supports two transmission line models:

 Lossless line, defined by characteristic impedance and delay. This model is described by Branin 1967.

• Lossy line, defined by RLCG parameters. This model is described here.

Equations

The lossy transmission line is modeled with equivalent circuits consisting of cascaded cells or *lumps*, typically comprising discrete resistors, inductors, and capacitors. Lumps essentially discretize the transmission line wave equations over the length of the line. Distributed RLCG values are converted to non-distributed (lumped element) values:

$$Rlump = R \cdot l/n \tag{0.423}$$

$$Llump = L \cdot l/n \tag{0.424}$$

$$Clump = C \cdot l/n \tag{0.425}$$

$$Glump = G \cdot l/n \tag{0.426}$$

where l is the physical length of the transmission line and n is the number of lumps.

Typically, many lumps are needed to model a transmission line accurately. The number of lumps is specified by the **lumps** parameter on the device statement. A cascade ladder network—the *iterative ladder circuit*—is constructed with the specified number of lumps.

The "gamma" lump type is the most common implementation.

Chapter 8: Device Models Transmission Line

The "tee" lump type is a symmetrical alternative that includes an additional series resistance and inductance per lump.

The "pi" lump type is formed by adding identical shunt elements at the input and output of each lump.

Low-loss transmission lines need not be modeled with RLCG lumps. An alternative approach is to use lossless transmission line sections separated by lumped resistances and conductances. The "hybrid RGT" lump type consists of an ideal transmission line section with series resistances and shunt conductances at input and output. This equivalent circuit defaults to the lossless transmission line when R and G values are zero, and is therefore the default **lumptype** option.

9 Small-Signal and Noise Models

Introduction

Small-Signal Models

The linear small-signal models for diodes, BJTs, JFETs, MESFETs, and MOSFETs described in this chapter are derived from T-Spice's nonlinear device representations.

Instead of using simplified equations to compute the small-signal model parameters, which can introduce errors at low and high frequencies, T-Spice generates linearized small-signal models directly from the device equations, with the most accurate small-signal results available.

Small-signal parameters are evaluated at the DC operating point. The currents and voltages appearing in the equations in this chapter are all DC values. In addition, the voltages are measured at the "intrinsic" terminals, *inside* the parasitic resistances connected to the external terminals.

Small-signal data are available with the ".acmodel" (page 63) command.

Noise Models

The following parameters are used by many of T-Spice's noise models.

Parameter	Symbol	Description	Default	Unit
noiselevel nlev	_	Noise equation selector (JFET, MESFET, MOSFET only)	2	_
gdsnoise gdsnoi	GDSn	Channel noise coefficient (JFET, MESFET, MOSFET only)	1.0	_
af	Af	Flicker noise exponent	1.0	_
kf	Kf	Flicker noise coefficient	0.0	_

Noise models add RMS noise current sources to small signal models in order to simulate noise power densities (NPDs) in the device. The NPDs are calculated from model parameter values and DC operating point conditions.

For example, each of the resistors in a circuit, including the parasitic resistances in models, generates thermal noise, whose NPD is inversely proportional to the resistance:

$$\overline{|i_{th}|^2} = \frac{4kT}{R} \cdot \Delta f \tag{0.427}$$

where k is Boltzmann's constant, T is the temperature in Kelvins, R is the resistance, and Δf is the width of the frequency band over which the noise is measured (1 Hz in T-Spice). The corresponding noise current source has a magnitude of $\sqrt{|i_{th}|^2}$ and units of A/\sqrt{Hz} , and is placed in parallel with the resistor.

The following sections show the NPD calculation for intrinsic noise sources in the models. These sources represent shot and/or flicker noise.

Shot noise is typically computed as

$$\overline{|i_{shot}|^2} = 2q|I_x| \cdot \Delta f \tag{0.428}$$

where q is the electron charge and Ix is the DC current into terminal x at the operating point of the device.

Flicker noise is usually modeled by

$$\overline{|i_{flicker}|^2} = \frac{K_f |I_x|^{A_f}}{f} \cdot \Delta f \tag{0.429}$$

where f is the center frequency of the band over which the noise is being measured.

Where appropriate, alternate formulations for shot and flicker noise are presented for individual models.

The noise source corresponding to the NPD, $\sqrt{|i_{XY_n}|^2}$, is connected between the intrinsic *X* and *Y* nodes in the noise model.

Diode

Small-Signal Model

The conductance gD is the partial derivative of the forward current ID with respect to the voltage VD across the intrinsic diode.

$$g_D = \frac{\partial I_D}{\partial V_D}\Big|_{\text{op}} \tag{0.430}$$

The small-signal capacitance CD across the diode is

$$C_D = \frac{\partial Q_D}{\partial V_D}\bigg|_{\text{op}} \tag{0.431}$$

rD models the diode's linear parasitic resistance.

Noise Model

In addition to the thermal noise associated with rD, this model includes a PN junction noise source that includes shot and flicker noise:

$$\overline{\left|i_{AB_{n}}\right|^{2}} = 2qI_{A} \cdot \Delta f + \frac{K_{f}\left|I_{A}\right|^{A_{f}}}{f} \cdot \Delta f \tag{0.432}$$

BJT Level 1 (Gummel-Poon)

Small-Signal Model

The bipolar conductances are denoted by gm, go, g_{π} , and g_{μ} .

$$g_m = \frac{\partial I_C}{\partial V_{BE}} \bigg|_{\text{op}} \tag{0.433}$$

$$g_o = \frac{1}{r_o} = \frac{\partial I_C}{\partial V_{CE}} \bigg|_{\text{op}} \tag{0.434}$$

$$g_{\pi} = \frac{1}{r_{\pi}} = \frac{\partial I_B}{\partial V_{BE}} \bigg|_{\text{op}} \tag{0.435}$$

$$g_{\mu} = \frac{1}{r_{\mu}} = \frac{\partial I_B}{\partial V_{BC}} \bigg|_{\text{op}} \tag{0.436}$$

The capacitances CBE and CBC are denoted by C_{π} and C_{μ} respectively.

$$C_{\pi} = \frac{\partial Q_B}{\partial V_{BE}}\Big|_{\text{op}} \tag{0.437}$$

$$C_{\mu} = \frac{\partial Q_B}{\partial V_{BC}}\Big|_{\text{op}} \tag{0.438}$$

Other parameters computed are the transistor gain at DC operating point βDC , the AC signal gain βAC , and the gain-band-width product fT.

$$\beta_{DC} = \frac{I_C}{I_B} \Big|_{\text{op}} \tag{0.439}$$

$$\beta_{AC} = \frac{\partial I_C}{\partial I_B}\Big|_{\text{op}} = g_m r_{\pi} \tag{0.440}$$

$$f_T = \frac{g_m}{2\pi (C_\pi + C_\mu)} \bigg|_{\text{op}}$$
 (0.441)

Gummel-Poon Noise Model

T-Spice uses the equations in this section to simulate thermal, shot, and flicker noise power densities in the BJT Gummel-Poon device model.

Thermal Noise

T-Spice uses the following equations to calculate thermal noise power density (nd_{therm}) of the base resistor (r_b) , collector resistor (r_c) , and emitter resistor (r_e) noise currents, respectively:

$$\begin{split} nd_{therm}(r_b) &= \frac{4kT}{r_{bb}} \\ nd_{therm}(r_c) &= \frac{4kT}{r_{c_{eff}}}, \\ nd_{therm}(r_e) &= \frac{4kT}{r_{e_{eff}}} \end{split} \tag{0.442}$$

where k is Boltzmann's constant, T is temperature, and r_{bb} , r_{ceff} , and r_{eeff} are the effective base, collector, and emitter resistances.

Shot Noise

The following equations give the shot noise density (nd_{shot}) of the base current (I_b) and collector current (I_c) , respectively:

$$nd_{shot}(I_b) = 2qI_b$$

$$nd_{shot}(I_c) = 2qI_c,$$
(0.443)

where q is the elementary electron charge.

Flicker Noise

The flicker noise density (nd_{flick}) of the base current (I_b) is:

$$nd_{flick}(I_b) = \frac{KF \cdot (I_b)^{AF}}{f}, \qquad (0.444)$$

where f represents frequency.

JFET/MESFET

Small-Signal Model

The transconductance is denoted by gm and the output conductance by gDS.

$$g_m = \frac{\partial I_D}{\partial V_{GS}}\Big|_{\text{op}} \tag{0.445}$$

$$g_{DS} = \frac{\partial I_D}{\partial V_{DS}} \bigg|_{\text{op}} \tag{0.446}$$

The gate junction conductances are denoted by gGS and gGD. These are usually very small, since the junctions are reverse-biased in normal operation.

$$g_{GS} = \frac{\partial I_{GS}}{\partial V_{GS}} \bigg|_{\text{op}} \tag{0.447}$$

$$g_{GD} = \frac{\partial I_{GD}}{\partial V_{GD}}\Big|_{\text{op}} \tag{0.448}$$

The gate junction capacitances are denoted by CGS and CGD.

$$C_{GS} = \frac{\partial Q_G}{\partial V_{GS}}\Big|_{\text{op}} \tag{0.449}$$

$$C_{GD} = \frac{\partial Q_G}{\partial V_{GD}}\Big|_{\text{op}} \tag{0.450}$$

rD and rS are constant linear resistances.

Noise Model

In addition to the thermal noise associated with rD, rS, and rG, this model includes the intrinsic noise source

$$\overline{\left|i_{DS_n}\right|^2} = \overline{\left|i_{ch}\right|^2} + \frac{K_f \left|I_D\right|^{A_f}}{f} \cdot \Delta f \tag{0.451}$$

where *ID* is the DC operating point drain current.

Channel noise is modeled in two ways, depending on the parameter **noiselevel**. When **noiselevel** < 3,

$$\overline{|i_{ch}|^2} = \frac{8}{3}kTg_m \cdot \Delta f \tag{0.452}$$

When **noiselevel** = 3,

$$\overline{|i_{ch}|^2} = \frac{8}{3}kT\beta \cdot (V_{GS} - V_{t0}) \cdot G_{DS_n} \cdot \left(\frac{1 + \alpha + \alpha^2}{1 + \alpha}\right) \cdot \Delta f \tag{0.453}$$

where k is Boltzmann's constant, T is the current temperature in Kelvins, gm is the transconductance, β is the gain at the operating point, and

$$\alpha = \begin{cases} 1 - \frac{V_{DS}}{V_{GS} - V_{t0}} & (linear\ region) \\ 0 & (saturation\ region) \end{cases}$$
 (0.454)

MOSFET

Small-Signal Model

The MOSFET conductances are denoted by gm, gDS, and gmbs.

$$g_m = \frac{\partial I_{DS}}{\partial V_{GS}}\Big|_{\text{op}} \tag{0.455}$$

$$g_{DS} = \frac{\partial I_{DS}}{\partial V_{DS}} \bigg|_{\text{op}} \tag{0.456}$$

$$g_{mbs} = \frac{\partial I_{DS}}{\partial V_{BS}}\Big|_{\text{op}}$$
 (0.457)

The gate junction conductances are denoted by gBD and gBS. These are usually very small, since the junctions are reverse-biased in normal operation.

$$g_{BD} = \frac{\partial I_{BD}}{\partial V_{BD}} \bigg|_{\text{op}} \tag{0.458}$$

$$g_{BS} = \frac{\partial I_{BS}}{\partial V_{BS}} \bigg|_{\text{op}} \tag{0.459}$$

The bulk junction capacitances are denoted by CBS and CBD.

$$C_{BD} = \frac{\partial Q_B}{\partial V_{BD}} \bigg|_{\text{op}} \tag{0.460}$$

$$C_{BS} = \frac{\partial Q_B}{\partial V_{BS}} \bigg|_{\text{op}} \tag{0.461}$$

The gate-to-junction and gate-to-bulk capacitances are denoted by CGS, CGD, and CGB.

$$C_{GS} = \frac{\partial Q_G}{\partial V_{GS}} \bigg|_{\text{op}} \tag{0.462}$$

$$C_{GD} = \frac{\partial Q_G}{\partial V_{GD}}\Big|_{\text{op}} \tag{0.463}$$

$$C_{GB} = \frac{\partial Q_G}{\partial V_{GB}}\Big|_{\text{op}} \tag{0.464}$$

Since these parameters are computed directly from the MOSFET equations, the model is valid for low-and high-frequency simulations.

Noise Model

In addition to the thermal noise associated with *rD* and *rS*, this model includes *channel* and *flicker* noise sources.

$$\overline{|i_{DS_{\bullet}}|^2} = \overline{|i_{ch}|^2} + \overline{|i_{flicker}|^2}$$
(0.465)

Channel noise is modeled in two ways, depending on the parameter **noiselevel**. When **noiselevel** < 3,

$$\overline{|i_{ch}|^2} = \frac{8}{3}kTg_m \cdot \Delta f \tag{0.466}$$

When **noiselevel** = 3,

$$\overline{|i_{ch}|^2} = \frac{8}{3}kT\beta \cdot (V_{GS} - V_{th}) \cdot G_{DS_n} \cdot \left(\frac{1 + \alpha + \alpha^2}{1 + \alpha}\right) \cdot \Delta f \tag{0.467}$$

where β is the gain at the operating point and

$$\alpha = \begin{cases} 1 - \frac{V_{DS}}{V_{Dsat}} & (linear\ region) \\ 0 & (saturation\ region) \end{cases}$$
 (0.468)

Flicker noise is modeled in three ways, depending on **noiselevel**. When **noiselevel** = 0,

$$\overline{|i_{flicker}|^2} = \frac{K_f \cdot (i_{DS})^{A_f}}{C_{ox} L_{eff}^2 f} \cdot \Delta f$$
(0.469)

When **noiselevel** = 1,

$$\overline{|i_{flicker}|^2} = \frac{K_f \cdot (i_{DS})^{A_f}}{fC_{ox}L_{eff}W_{eff}} \cdot \Delta f$$
(0.470)

When noiselevel = 2 or noiselevel = 3,

$$\overline{|i_{flicker}|^2} = \frac{K_f \cdot g_m^2}{f^{A_f} C_{ox} L_{eff} W_{eff}} \cdot \Delta f$$
(0.471)

References

- L. W. Nagel, *SPICE2: A Computer Program to Simulate Semiconductor Circuits*. Electronics Research Laboratory Memorandum ERL-M520. Berkeley, CA: University of California, 1975.
- P. Antognetti and G. Massobrio (eds.), *Semiconductor Device Modeling with SPICE*, 2nd ed. New York: McGraw-Hill, 1993.
- Y. P. Tsivids, Operation and Modeling of the MOS Transistor. New York: McGraw-Hill, 1987.

10 User-Defined External Models

Introduction

The devices that are components of circuits simulated by T-Spice are described by *device models*. In essence, models are mathematical functions that evaluate a device's terminal currents and charges, given its terminal voltages (and in some cases other state variables).

While many "hard-coded" models are included with T-Spice, representing a wide range of devices commonly used in circuit design, the need may arise for special models not already available. Such models may represent improvements over existing models for standard devices (such as transistors), or they may describe devices not included in T-Spice (such as mechanical devices used by MEMS designers, or macro-devices to be described in a behavioral way).

The *user-defined external model* feature allows users to code custom-designed device models using C or C++. The code can be compiled into DLLs (Windows) or shared objects (Unix) and then dynamically linked to T-Spice simulations. Alternatively, the raw code can be interpreted by T-Spice *during* simulation, eliminating the compilation step with faster turnaround time for writing and debugging, at the expense of slower performance.

Creating External Models

Templates

T-Spice simulates user-defined external models with information from either of two sources:

- DLL (dynamically linked library) or shared object files, generated before T-Spice is run by compiling C program files. (See "Compiling External Models" on page 483.)
- Uncompiled C program files, interpreted by T-Spice at runtime.

The original C code must be written in any case. A basic framework for this code can be found in the file **template.c**. This file contains comment lines describing the functions and actions required of the code for a typical external model.

The heart of the code is the **ExternalModelMain()** function. This function is called whenever information about the external model is required during simulation—both for initializing and instancing a model and for evaluating devices that are instances of the model. (See "Initializing the Definition" on page 485 and "Instancing a Device" on page 485.)

ExternalModelMain() typically consists of a call to the **GetModelInfo()** function—to specify the device and/or model and the information required—and a **switch(action)** statement—to call other functions based on the value of **action** (see "External Model Actions" on page 491).

Examples

Five example external models are provided. Each example consists of three commented files: a C program (.c) file, a DLL (.dll) file, and a T-Spice input (.sp) file illustrating the use of the model (see "Using External Models" on page 484).

File base name	Model description
diode	A model incorporating most of the features of the standard SPICE diode model, with parameters analogous to those of T-Spice's internal diode model.
mos1	An implementation of the level 1 MOSFET model, with parasitic diodes and resistors, noise models, and support for table-based calculation.
resist	A simple linear resistor model.
switch	A switch model implemented as a voltage-controlled resistor with a hysteresis loop. This model is an extension of the SPICE3 voltage-controlled switch.
vco	A voltage-controlled oscillator (VCO) model.

Compiling External Models

To be used in DLL or shared object form, external models must be compiled from the original C code.

The (required) C compiler and (provided) make file, make script, and object file names for each supported platform are as follows.

Platform	Compiler	Make file	Make script	Object file
Windows	Visual C++ 4.0 or later	model.mak	makemodl.bat	tspmodel.lib
Solaris	gcc	Makefile	makemodel_sol	tspmodel_sol.o

Example files and instructions for these platforms are also provided.

To compile from a DOS command line, you must first configure your DOS environment for Microsoft Visual C++. Visual C++ includes a batch file that you can execute from autoexec.bat. This will establish the environment variables needed to run the C tools from the DOS command prompt. Generally, you can set up this environment by adding the following line to your autoexec.bat file:

C:\Progra~1\Micros~1\VC98\Bin\vcvars32.bat

To compile from the command line (Unix or DOS), type the following at the prompt:

script model

where **script** is the name of the appropriate make script (e.g., **mademodel.bat** on Windows) and **model** is the base name of the C file that contains the external model (for example, **resistor** for a model contained in **resistor.c**).

Using Microsoft Developer

To compile an external model using Microsoft Visual C++ Developer:

- With Visual C++ Developer launched, use the File > New command to create a new project: in the dialog, select Projects. Select Win32 Dynamic Link Library. Give the project a name and choose a location: use the file browser to navigate to the directory if it already exists; if not, then a new directory will be created. Click OK.
- When asked What kind of DLL would you like to create?, choose An empty DLL project. Click Finish. When the New Project Information dialog displays, click OK.
- Use the File > New command to create a program file: in the dialog, select C++ Source File.
 Choose a file name and click OK.

Note:

The file name you choose must be either a C file (*.c) or a C++ file (*.cpp). If you choose a C++ file, you will have to wrap all T-Spice interface declarations with extern "C"{...}.

- Copy the text of program template.c and paste it into the editing space. Save the file.
- Use the Tools > Options command to add search paths to the T-Spice external C header and library files: in the dialog, click the Directories tab.
- In the Show directories for pull-down menu, select Include files. In the Directories: list, enter the fully qualified path to the extmod\win32 directory. (If you used the default installation of T-Spice Pro, this will be C:\Tanner\TSpice70\extmod\win32.)
- In the Show directories for pull-down menu, select Library files. In the Directories: list, enter the same path as in the previous step.
- Use the Project > Settings command and perform the following actions:
- Set Settings for to All Configurations.
- Click the Debug tab. In the field Executable for debug session, enter the fully qualified path to tspice.exe. (C:\Tanner\TSpice91\tspice.exe by default.)
- In the **Working directory** field, enter the path to your T-Spice netlist.
- In the **Program arguments** field, enter the name of your T-Spice netlist. You can now compile and debug your external C model.
- Click the C/C++ tab. From the Category pull-down menu, select Code Generation. Set processor to Blend. Set Calling convention to __cdecl. Set Struct member alignment to 8 bytes.
- From the Category pull-down menu, select Preprocessor. Add MAKE_DLL to the Preprocessor definitions list. Set Setting for to both the Win32 Debug and Win32 Release versions.
- Click the Link tab. Make sure that Object/library modules includes tspmodel.lib.
- Click OK.
- Use the Build >project.dll command to compile the DLL.

Using External Models

After a user-defined external model has been created and compiled (if it is to be used in DLL or shared object form), it can be used in a simulation. This involves two procedures: initializing the model definition and instancing a device using the model.

Initializing the Definition

An external model definition is initialized from within a T-Spice input file by means of the ".model" (page 96) command with the **external** keyword:

```
.model name external ([parameter=value [...]])
```

name is the string by which the model will be identified in the input file.

Within the parentheses, predefined *parameters* are assigned *values* (as many as necessary) to tune the model's characteristics. Values may be numbers or strings; string values are enclosed in double quotes. Parameter/value pairs are separated by spaces, and are passed to the external model as *model parameters*.

One of the parameter assignments must indicate the name of the file containing the model code (in either raw or compiled form). The *name* of this parameter depends on the platform:

Platform	Parameter	
Windows	winfile	
Solaris	solfile	

The *value* of this parameter is the name of the file containing the model code. T-Spice will attempt to interpret (that is, treat as raw C code) any file whose name has a .c extension. Any other file will be assumed to be already compiled. Compiled files (DLLs or shared objects) typically have extension .dll or .sl.

Instancing a Device

An actual *instance* of a device using an external model is created within a T-Spice input file using the "Instance (x)" (page 170) statement, in the same way that subcircuit instances are created:

```
xname node1 [node2 [...]]] modelname [parameter=value [parameter=value [...]]]
```

Here, **modelname** must match the **modelname** specified by the corresponding ".model" (page 96) command. Because the **x** key letter is also used for subcircuit instances, **modelname** should not conflict with any subcircuit definition name.

As with model initialization, parameters can be assigned values to tune the instantiated device's characteristics. Values may be numbers or strings; string values are enclosed in double quotes. Parameter/value pairs are separated by spaces, and are passed to the external model as *device parameters*.

When interpreted (C) files are used, a path must be set to the directory containing the header files. This is done in either of two ways:

- At the operating system level, set the environment variable **LUPI_INCLUDE** to the appropriate path.
- Include the following command in the input file: ".options" (page 106) cpath=path, where path is the appropriate path.

External Model Features

Simple external models may only require the "EVALUATE_DEVICE" (page 496) and "EVALUATE_DERIVATIVES" (page 497) actions. More complex models may need to take advantage of advanced features, a number of which are described in this section:

- "User-Defined Model and Device Parameters," below
- "Error Handling" on page 486
- "Automatic Model Selection" on page 487
- "Parasitic Effects and Internal Nodes" on page 487
- "Tables" on page 488
- "Noise Analysis" on page 489
- "Current-Controlled Devices" on page 489
- "Voltage Sources" on page 490

User-Defined Model and Device Parameters

When T-Spice parses a ".model" (page 96) command of type external, or a device statement instancing an external model, the model and device parameter names and values are stored for later interpretation.

The model's "PARSE_MODEL_PARAMETERS" (page 492) and "PRECOMPUTE_DEVICE_PARAMETERS" (page 494) actions may use the LookupParameter functions to find specific parameter names and their associated values. These are then typically stored in a model-specific structure.

For example, a resistor model may contain the following type declaration:

```
typedef struct ResistorDevice
{
      double resistance;
      double mult;
} ResistorDevice;
```

The code for the "PRECOMPUTE_DEVICE_PARAMETERS" (page 494) action might be as follows:

No error handling is performed in this code: if malloc() returns NULL, then disaster follows.

Error Handling

If an error occurs in the user-defined model code, T-Spice must be informed of this so that the simulation can be stopped. This is done by setting the **error** field in the **ExternalModel** or **ExternalModelDevice** structures to 1. Whenever an external model action returns to T-Spice, those

error fields are checked, and the simulation is stopped if an **error** field is nonzero. For example, the following code might be inserted in the resistor example above, immediately below the call to **malloc()**:

```
if (r==NULL)
{
      device->error = 1;
      return;
}
```

Automatic Model Selection

T-Spice allows multiple ".model" (page 96) commands in one input file with the same model name and different extensions, such as **nch.1**, **nch.2**, etc., all of which match devices with the model name **nch**. The particular .model command actually used with a device is determined by the *automatic model selector*.

The automatic model selector compares certain device parameter values with model parameter values to determine which model matches the device. For example, T-Spice MOSFET model parameter sets can contain parameters **wmin** and **wmax** which specify a range of transistor widths over which the parameter set is valid. The automatic model selector selects a **.model** command for each device that ensures that the device width **w** falls within the model's width range.

The "MODEL_MATCHES_DEVICE" (page 493) action implements automatic model selection. This action is executed after the "PARSE_MODEL_PARAMETERS" (page 492) action, but before any device parameter parsing. It sets the model->model_matches_device flag to False if the model cannot be matched with the device.

If no model parameter set matches a device, then T-Spice exits with an error message. If multiple model parameters match, then T-Spice selects one of the matching sets.

The following example implements automatic model selection in the case of a MOSFET:

Parasitic Effects and Internal Nodes

Many device models contain *parasitic* effects—effects that account for various phenomena inherent in the physical medium in which devices are used.

The "PARASITIC_SETUP" (page 495) action adds parasitic effects. Several predefined functions ("AddSeriesResistor()" (page 495), "AddParasiticDiode()" (page 495)) add simple standard parasitics. The "AddInternalNode()" (page 495) function adds custom parasitic elements by generating internal state variables. The "EVALUATE_DEVICE" (page 496) action adds the contributions of these elements.

For example, a 100Ω parasitic resistor could be added in series with terminal 0 of a device with the "AddSeriesResistor()" (page 495) function:

```
device->rs_id = AddSeriesResistor(device, 0, 100.0, "RS");
```

Alternatively, the "AddInternalNode()" (page 495) function could be used:

```
d->rs_terminal = AddInternalNode(device, "rs");
```

Using "AddSeriesResistor()" (page 495) is more convenient. However, "AddInternalNode()" (page 495) allows for the addition of arbitrary series parasitic devices.

In the case of the internal node method, the resistor's current would have to be accounted for by the "EVALUATE_DEVICE" (page 496) action as follows:

```
double irs = (device->voltage[0] - device->voltage[d->rs_terminal]) / 100.0;
device->current[0] += irs;
device->current[d->rs_terminal] -= irs;
```

In addition, the "EVALUATE_DERIVATIVES" (page 497) action would need to add the parasitic resistor's derivative (unless numerical derivatives were used):

```
device->current_deriv[0][0] += 1.0/100.0;
device->current_deriv[0][d->rs_terminal] -= 1.0/100.0;
device->current_deriv[d->rs_terminal][0] -= 1.0/100.0;
device->current_deriv[d->rs_terminal] [d->rs_terminal] += 1.0/100.0;
```

If thermal noise modeling for the resistor were desired, then the "NOISE_SETUP" (page 497) action would set up a noise source:

```
AddNoiseSource(device, "RS", 0, d->rs_terminal, 4.0*BOLTZMANN_CONSTANT*(1.0/100.0)*(model->sim_data[SIM_TEMPERATURE]+KELVIN));
```

Tables

For devices with four or fewer terminals (counting internal nodes), *tables* can speed up simulation. Tables are "set up" at the beginning of simulation, but values are not filled in until needed. Thus, CPU time and memory are spent only on table entries that are actually used.

By default, external models do not use tables. To use tables, the "PRECOMPUTE_DEVICE_PARAMETERS" (page 494) action should set the device->table_mode flag to True.

Typically, a model sets the **device->table_mode** flag only if the **deftables** option **model->sim_data[SIM_DEFTABLES]** is set (nonzero). Devices may also specify device parameters which indicate whether or not tables are to be used. Devices with and without tables may be mixed in the same simulation.

Devices which share the same model may or may not be able to share the same table depending on the device parameters. For example, two MOSFETs can share a table only if they have the same length and width. If it is possible that devices may not be able to share a table, then the "TABLE_MATCHES_DEVICE" (page 494) action must be used.

The following example shows a typical "TABLE_MATCHES_DEVICE" (page 494) action:

```
MosfetDevice *d;
MosfetDevice *d_table;
```

If tables are used, then the model has control over table parameters by means of the "TABLE_SETUP" (page 495) action.

By default, the table grid will be uniformly spaced in all table dimensions, using the second terminal (terminal 1) as the reference node. The model can specify the number of grid points (default 10) and table ranges (default 5), which can be different for different table dimensions. If a non-uniform grid is to be used, the "TABLE_SETUP" (page 495) action should set up the grid.

Noise Analysis

Noise analysis is performed in conjunction with an AC analysis frequency sweep. T-Spice's noise analysis computes the effect of "random" phenomena on the circuit output. Examples of such phenomena are resistor thermal noise and semiconductor shot and flicker noise.

Noise generators are modeled as current sources characterized by mean-square values in A^2 / Hz . Instantaneous noise source values are not available, since the effects are considered random.

The "NOISE_SETUP" (page 497) action calls the "AddNoiseSource()" (page 497) function to add a noise current source of specified mean-square value between two device terminals.

The ".print" (page 119) command with the **noise** parameter can be used (in the T-Spice input file) with the noise source name to plot the effects of such noise sources on the circuit output.

The following example adds a typical thermal noise source for a resistor:

```
AddNoiseSource(device, "RS", 0, d->rs_terminal, 4.0*BOLTZMANN_CONSTANT*(1.0/100.0)*(model->sim_data[SIM_TEMPERATURE]+KELVIN));
```

The following T-Spice command outputs the effect of this noise source (assuming the input file contains ".noise" (page 101) and ".ac" (page 60) commands, and a device called x1 which uses the external model):

```
.print noise dn(x1, RS)
```

If all noise sources are frequency independent, no more code needs to be written in the external model. Otherwise, the "NOISE_EVALUATE" (page 497) action can be used to set a noise source's mean-square value at each frequency point. This is done by calling the "SetNoiseSourceValue()" (page 498) function. The noise source is identified by the name given to it by the "AddNoiseSource()" (page 497) function.

The following example sets the flicker noise source value for a diode:

```
SetNoiseSourceValue(device, "FN", dm->kf * pow(fabs(device->current[0]),
    dm->af)/ device->model->sim_data[SIM_FREQUENCY]);
```

Current-Controlled Devices

While most T-Spice models set terminal currents and charges as functions of terminal voltages, it is sometimes desirable to use devices which use a current (instead of a voltage) as an input state variable. An example of this is the standard SPICE current-controlled current source.

T-Spice's external models allow for current-controlled devices. The **x** device statement syntax allows on its pin list either node names or voltage source currents of the form **i(vsource)**. For example, the declarations

```
x1 n1 n2 i(v1) mymodel v1 n2 n3 0
```

generate a three-terminal device **x1**, with the third terminal representing the current through the voltage source **v1**.

The voltage source current can be accessed by **device->voltage[2]**.

The **device->terminal_type** array can be examined to differentiate between node voltage and voltage source current type terminals. If terminal *i* is a node voltage, then **device->terminal_type[i]** equals **TERMINAL_NODE_VOLTAGE**; if it is a voltage source current, then **device->terminal_type[i]** equals **TERMINAL_VSOURCE_CURRENT**.

It is illegal to set the **device->current** and **device->charge** values of a **TERMINAL_VSOURCE_CURRENT** terminal.

Voltage Sources

Voltage sources, instead of setting terminal currents and charges, specify the potential difference between two terminal nodes. The current through the device is computed internally. This requires the addition of an internal node which represents the voltage source current.

Voltage sources can be inserted between any two terminals. To set up such a voltage source, either of the "PRECOMPUTE_DEVICE_PARAMETERS" (page 494) or "PARASITIC_SETUP" (page 495) actions can call the "VoltageSource()" (page 494) function. This declares a voltage source, and internally creates the extra terminal needed to represent the voltage source current.

The following example creates a voltage source between the first two terminals:

```
d->vsid = VoltageSource(device,0,1);
```

The return value is an identification number which is later used when setting the voltage source value. The first terminal is considered the positive terminal; that is, the voltage source value is defined to be the second terminal's voltage subtracted from the first terminal's voltage.

The "EVALUATE_DEVICE" (page 496) action sets the voltage source's value by calling the "SetVoltageSourceValue()" (page 497) function.

The following example sets a constant 5 V voltage source:

```
SetVoltageSourceValue(device, d->vsid, 5);
```

A voltage source may be controlled by other terminals' voltage (or current) values. The following example generates a linear voltage-controlled voltage source (VCVS):

```
SetVoltageSourceValue(device, d->vsid, d->k*(device->voltage[2]-
    device->voltage[3]));
```

Unless numerical differentiation is used, the "EVALUATE_DERIVATIVES" (page 497) action must calculate and set a voltage source's derivatives. For independent voltage sources, that derivative is always zero, so that no model code needs to be written. But for controlled voltage sources, such as the

VCVS above, the derivatives must be set. For the VCVS example above, the derivatives would be set by:

```
SetVoltageSourceDerivative(device, d->vsid, 2, d->k);
SetVoltageSourceDerivative(device, d->vsid, 3, -d->k);
```

External Model Actions

Short descriptions of the predefined actions executed by **ExternalModelMain()** are given below. Each action is treated in more detail following. The actions are listed in the order in which they are executed. The actual *code* implementing each relevant action must, of course, be developed by the user.

"PARSE_MODEL_PARAMETERS" (page 492)

Read model parameter names and values and allocate memory.

"MODEL_MATCHES_DEVICE" (page 493)

Decide whether or not a requested model/device pair matches. Used in automatic model selection. (See "Automatic Model Selection" on page 487.)

"PRECOMPUTE_MODEL_PARAMETERS" (page 494)

Check model parameter names and values, precompute constant quantities to speed up model evaluations, and allocate memory.

"PRECOMPUTE_DEVICE_PARAMETERS" (page 494)

Check device parameter names and values, precompute constant quantities to speed up device evaluations, and allocate memory.

"TABLE_MATCHES_DEVICE" (page 494)

Decide whether or not a device may use a table which was set up for a different device.

"PARASITIC_SETUP" (page 495)

Add parasitics (typically series resistors, parallel diodes, or internal nodes).

"TABLE_SETUP" (page 495)

Compute table grid points and other parameters.

"EVALUATE_DEVICE" (page 496)

Given node voltages and state information, compute terminal currents and charges. *This action is required*.

"EVALUATE_DERIVATIVES" (page 497)

Compute all partial derivatives of the terminal currents and charges with respect to the terminal voltages. *This action is required*.

"NOISE_SETUP" (page 497)

Set up noise sources and make frequency-independent computations.

"NOISE_EVALUATE" (page 497)

Evaluate frequency-dependent noise sources at a particular frequency.

"PRINT_SMALL_SIGNAL_PARAMS" (page 498)

Compute and print small-signal parameter values.

"CLEANUP_DEVICE" (page 498)

Free memory associated with a device.

"CLEANUP_MODEL" (page 498)

Free memory associated with a model.

PARSE_MODEL_PARAMETERS

The **PARSE_MODEL_PARAMETERS** action processes the parameter list specified by ".model" (page 96) in the input file.

The purpose of the **.model** command is to introduce a model into the simulation. At the code level, this means initializing a data structure of type **ExternalModel**.

Most parameter names and values from the .model command are stored in a linked list. The pointer to this list is the parameter_list member of the ExternalModel structure.

The values from **parameter_list** must be stored as separate items of data; they are typically placed in fields of a user-defined structure whose pointer is stored by the **info** member of the **ExternalModel** structure.

Thus, the code for **PARSE_MODEL_PARAMETERS** generally involves:

- Allocating the memory needed to store specific parameter values in the particular ExternalModel structure being initialized. This is typically done with malloc().
- Looking through (parsing) the parameter list to identify and store the specified parameter values in the appropriate locations. This is done with the **LookupParameter...()** functions.

Look up Parameter Double() Look up parameters of type **double**. The return value is a **double**.

LookupParameterInt() Look up parameters of type int. The return value is an int.

LookupParameterString() Look up parameters of type char. The return value is a char *, a

pointer to the string array.

The **LookupParameter...()** functions all have the same arguments:

Type	Argument
TspParamListElem *	paramlist

Type	Argument	
	The pointer to the model's parameter list (the parameter_list member of the ExternalModel structure).	
char *	parameter_name	
	The name(s) of the parameter to be extracted from the parameter list, enclosed in double quotes. The search is case-insensitive. Multiple names for the same parameter may be searched simultaneously by separating them with a vertical bar in the parameter_name string.	
char *	default_value	
	The value assigned to the requested parameter if it is not found in parameter_list , enclosed in double quotes. If necessary, this string is converted to the appropriate numeric type using atoi() or atof() . The result becomes the function's return value.	
TspBoolean *	parameter_found	
	This Boolean, passed by reference, is set to True if the parameter was found, and False otherwise.	

PARSE_MODEL_PARAMETERS is executed for each .model command in the input file, whether the model referred to is instanced as a device or not. This is to support automatic model selection, which requires that model parameter values be known before models and devices are matched. (See "Automatic Model Selection" on page 487.)

PARSE_MODEL_PARAMETERS acts on model parameter sets *only*. Thus, for this action, the device (d) passed to **ExternalModelMain()** is **NULL**.

If **malloc()** is used to allocate the memory pointed to by **info**, then the memory should be freed by the "CLEANUP_MODEL" (page 498) action.

"Unused" model parameters—items in **parameter_list** which were never looked up—can be listed by the "**PRECOMPUTE_MODEL_PARAMETERS**" (page 494) action.

For models that are actually instanced as devices, any remaining initialization tasks can be performed by the "PRECOMPUTE_MODEL_PARAMETERS" (page 494) action.

MODEL MATCHES DEVICE

The MODEL_MATCHES_DEVICE action compares model and device parameter values to find a match.

- Model parameter values are looked up in model->info if they have been stored there (if the "PARSE_MODEL_PARAMETERS" (page 492) action has been performed already).
- Device parameter values have not been stored; they are found with the LookupParameter functions.

If the comparison fails, then the **model_matches_device** member of the **ExternalModel** structure is set to **False**.

MODEL_MATCHES_DEVICE supports automatic model selection. Several **.model** commands in one input file can specify the same model name (with different extensions), and a device can have its model chosen automatically. This is done by comparing parameters between the device and the candidate models. (See "Automatic Model Selection" on page 487.)

If automatic model selection is not used for a model, then MODEL MATCHES DEVICE can be omitted.

PRECOMPUTE_MODEL_PARAMETERS

The **PRECOMPUTE_MODEL_PARAMETERS** action performs preparatory computations on a model parameter set.

PRECOMPUTE_MODEL_PARAMETERS can use the following function.

PrintUnusedParameterMe List "unused" model parameters—items in parameter_list which

ssage() were never looked up.

PARSE_MODEL_PARAMETERS acts on model parameter sets *only*. Thus, for this action, the device (d) passed to **ExternalModelMain()** is **NULL**.

PRECOMPUTE_DEVICE_PARAMETERS

The PRECOMPUTE_DEVICE_PARAMETERS action parses and precomputes a device parameter set.

At this point, the device has been matched with a model, and that model is passed to **ExternalModelMain()**. (A pointer to the model is also available in the model field of the **ExternalModelDevice** structure.) Like **ExternalModel**, **ExternalModelMain()** has a **parameter_list** field and an **info** field, and their use is analogous to their **ExternalModel** counterparts.

PRECOMPUTE_DEVICE_PARAMETERS can use the following functions.

Look up device parameter values.

PrintUnusedParameterMe

ssage()

List unused device parameters.

VoltageSource() Set up voltage sources.

If the device is to be used in table mode, **PRECOMPUTE_DEVICE_PARAMETERS** should set **device->table_mode** to **True**. By default, **device->table_mode** is **False**.

PRECOMPUTE_DEVICE_PARAMETERS can also check model->sim_data[SIM_DEFTABLES] to determine the value of the deftables simulation option.

The maximum number of terminals for a device in table mode is four. If the device has more than four terminals, then table mode for that device is automatically turned off.

TABLE_MATCHES_DEVICE

The **TABLE_MATCHES_DEVICE** action checks whether or not a device table can be reused on another device.

Before this action, the **device->model->table** field is temporarily assigned a table. **TABLE_MATCHES_DEVICE** must decide if that table can be used with the device. The device for which the table was originally made is **device->model->table->device**.

If the **device->model->table->device** and device cannot share the table, then **TABLE_MATCHES_DEVICE** should set **model->table_matches_device** to **False**.

PARASITIC_SETUP

The **PARASITIC_SETUP** action adds parasitic devices and internal nodes.

Parasitic devices are added after all device and model parameters have been resolved. Standard MOSFET models require at least parasitic resistors and diodes.

Parasitic devices can be added in parallel (between existing nodes), or in series with a device's terminal (requiring the addition of a new node).

If the device is a MOSFET, one of T-Spice's standard MOSFET parasitic models may be used.

Care must be taken to ensure that ".print" (page 119) commands account for parasitics properly.

PARASITIC_SETUP can use the following functions.

Add a resistor in series with a given terminal. The return value is an

ID number which can be used later to refer to the resistor. The noise modeling for series resistors is automatic if the **noise_source_name**

field is not NULL.

Add a diode in parallel with two given terminals. The return value is

an ID number which can be used later to refer to the diode. A diode

model must be given as well, with a call to the "NewParasiticDiodeModel()" (page 495) function.

NewParasiticDiodeModel() Return a required diode *model* in conjunction with

"AddParasiticDiode()" (page 495), setting all parameters to typical

values.

The parameter values can be modified as needed before the call to "AddParasiticDiode()" (page 495); they are the standard MOSFET parasitic diode parameters (see "Additional MOSFET Parameters"

on page 457).

Add a terminal to the device. The return value is the terminal number

of the new terminal. The new terminal can be used to hold internal

state information for the device.

For example, a series resistor can be created by **AddInternalNode()** instead of "**AddSeriesResistor()**" (page 495) (see "Parasitic Effects

and Internal Nodes" on page 487). It is then the model's

responsibility to compute the resistor current.

TABLE_SETUP

The **TABLE_SETUP** action sets quantities for a device table.

If the device is used in table mode (restricted to devices with 4 or fewer terminals), a table grid is computed before simulation begins. A uniform grid may be chosen, which is based simply on the number of grid points and table range (set by this action). The table grid sizes and voltage ranges are under control of the model author, and may depend on model parameter values.

Table parameters, all fields of the **device->table** structure, include:

reference_terminal Identifies the terminal used as the potential reference (1 by default).

Terminals are numbered from 0.

The table axes are the voltages at the remaining terminals with respect to the reference terminal voltage. An *n*-terminal device uses

an (n-1) dimensional table.

For example, a 4-terminal device with reference terminal 1 uses $(v_0 - v_1, v_2 - v_1, v_3 - v_1)$ as its independent variables for the table, where v_0 , v_1 , v_2 , and v_3 are the voltages at terminals 0, 1, 2, and 3, respectively.

grid_type An array over the table dimensions (maximum 3) whose elements

indicate what type of grid is to be used.

The options are **GRIDTYPE_UNIFORM** (uniform spacing) or **GRIDTYPE_NONUNIFORM** (non-uniform spacing, specified by the

model).

number_of_points An array over the table dimensions, each element indicating the

number of table points used in the grid for a table dimension.

max_voltage An array over the table dimensions, each element indicating the

voltage range used in a uniform grid for a table dimension.

grid An array (double *) over the table dimensions containing pointers to

the grid points for a non-uniform grid. If a non-uniform grid is computed, then the grid point values must be sorted in increasing

order.

output_type An array over the device terminals indicating which output variables

need to be saved.

The options are **OUTPUT_NORMAL** (save outputs in table), **OUTPUT_ALWAYS_ZERO** (output is always zero, no need to save in table), and **OUTPUT_COMPUTE** (output variable is computed

from other output variables).

Only one terminal can be of the **OUTPUT_COMPUTE** type: this terminal's current and charge is computed by assuming that all

terminals' currents and charges must sum to zero.

current_symmetry and charge_symmetry

Arrays over the table dimensions and terminals indicating which terminals' outputs have symmetry over which table dimensions. This

information is used to save memory occupied by the table.

The options are **SYMMETRY_NONE**, **SYMMETRY_ODD** (f(x) = -f(-x)), and **SYMMETRY_EVEN** (f(x) = f(-x)). To save memory in a given table dimension, all outputs (both currents and charges) of a device must have symmetry (although not necessarily of the same type).

EVALUATE DEVICE

The **EVALUATE_DEVICE** action evaluates a device's terminal currents and charges, given terminal voltage values.

The terminal voltages are stored in **device->voltage**. In the case of current-controlled sources, one of the **device->voltage** values actually represents the current through the controlling voltage source.

EVALUATE_DEVICE sets the contents of **device->current** and **device->charge**.

EVALUATE_DEVICE can use the following function.

Set Voltage Source Value() Set the voltage value(s), if the device to be evaluated is or contains

one or more voltage sources. One of the arguments is a voltage source ID number, which is the return value of a "VoltageSource()"

(page 494) function call.

EVALUATE DERIVATIVES

The **EVALUATE_DERIVATIVES** action evaluates the partial derivatives of the device's terminal currents and charges, with respect to its terminal voltages.

EVALUATE_DERIVATIVES can use the following functions.

Compute Numerical Derivat Compute derivatives by differences.

ives()

(Otherwise, if derivatives are available in analytic form, then they can be directly assigned to the matrices **device->current deriv** and

device->charge_deriv.)

SetVoltageSourceDerivati

ve()

Set the derivative of a voltage value with respect to a particular device terminal voltage, if the device to be evaluated is or contains

one or more voltage sources.

EVALUATE_DERIVATIVES may assume that the "**EVALUATE_DEVICE**" (page 496) action was performed just before with the same voltages.

If the device is in table mode, then **EVALUATE_DERIVATIVES** is never called.

NOISE_SETUP

The **NOISE_SETUP** action performs one-time initializations for noise analysis.

NOISE_SETUP can use the following function.

AddNoiseSource() Define noise sources with assigned values.

The device's voltage, current, and charge fields contain the appropriate values at the operating point at which the noise analysis is to be performed.

At the beginning of a noise analysis, noise sources are identified for each device, and any one-time frequency-independent precomputations are performed.

NOISE_SETUP can be ignored if the model does not contain any noise source models.

NOISE_EVALUATE

The **NOISE_EVALUATE** action re-evaluates frequency-dependent noise source contributions at each frequency point of a noise analysis.

NOISE_EVALUATE can use the following function.

SetNoiseSourceValue() Set a noise source's mean-square value.

Any frequency-dependent noise source values are set by **NOISE_EVALUATE**; if no such noise sources are present, then **NOISE_EVALUATE** can be omitted.

PRINT_SMALL_SIGNAL_PARAMS

The **PRINT_SMALL_SIGNAL_PARAMS** action defines small-signal parameters to be printed with the ".acmodel" (page 63) command.

PRINT_SMALL_SIGNAL_PARAMS can use the SmallSignalParameter...() functions.

SmallSignalParameterStri Defines a string parameter (**char***) for printing.

ng()

SmallSignalParameterDou Defines a floating point (**double**) parameter for printing.

ble()

SmallSignalParameterInt() Defines an integer parameter (**int**) for printing.

CLEANUP_DEVICE

The **CLEANUP_DEVICE** action frees any memory that has been allocated for the device structure, such as the **device->info** field.

CLEANUP_MODEL

The **CLEANUP_MODEL** action frees any memory that has been allocated for the model structure, such as the **model->info** field.

CLEANUP_MODEL is called *after* "CLEANUP_DEVICE" (page 498) has been performed for every instance of the model.

11 External Tables

Introduction

Evaluation of device models in T-Spice is based by default on "internally" generated tables, which are computed and stored during a simulation and are discarded when the simulation is over.

It is also possible to use "externally" generated tables, which are created independently, instead of within a simulation run, and can be saved for later use.

For example, tables representing commonly simulated transistors can be created once and then used in the future without having to be regenerated during each simulation run.

External table-based evaluation, while not quite as accurate as direct model evaluation, can be significantly faster; and, while not as convenient as default (internal) table-based evaluation, can provide you with more freedom and flexibility in choosing sources for table data.

For example, a device for which no model is available, but only charge and current data based on experiments, can be simulated by means of an external table incorporating that data.

The commands related to the creation and manipulation of external tables have different Windows and DOS/Unix names.

Function	Windows	DOS/Unix
Generate external tables	" Table > Generate Table " (page 502)	" tv " (page 508)
Convert tables between ASCII and binary formats	"Table > Convert Table" (page 503)	"table" (page 508)
Check table monotonicity	"Table > Monotonicity Check" (page 503)	"mc" (page 509)

Generating Tables From Presupplied Models

Where a presupplied device model is available, an external table is created with the **Table > Generate Table** command.

Generate Table takes a T-Spice input file in *table-generating* format and creates charge and current tables by (1) evaluating a model in terms of a representative device and (2) recording the results.

The table-generating input file contains information about the *model* and the *representative device*. For example, the tutorial file **p125x3.sp** looks like this:

```
* P-channel MOSFET model
.model penh pmos
                                        Tox=225.000e-10
+ Level=2
                    Ld=.0300000u
+ Nsub=6.575441e+16 Vto=-0.63025
                                        Kp=2.635440E-05
+ Gamma=0.618101 Phi=.541111
                                        Uo=361.941
+ Uexp=8.886957e-02 Ucrit=637449
                                        Delta=0.0
                                        Lambda=0.0
+ Vmax=63253.3
                Xj=0.112799u
+ Nfs=1.668437e+11 Neff=0.64354
                                        Nss=3.000000E+10
+ Tpg=-1.00000
                   Rsh=150
                                        Cgso=3.35e-10
                    Cj=4.75e-04
+ Cgdo=3.35e-10
                                        Mj = .341
+ Cjsw=2.23e-10
                    Mjsw=.307
md1 n1 n2 n3 n4 penh l=1.25u w=3.0u
```

This file reproduces the p-channel MOSFET model parameters contained in the model file **m125cn.md**. The last line, beginning with the key letter **m**, specifies the representative MOSFET device for which the tabular data will be computed and saved.

Generate Table, using **p125x3.sp** as input, creates charge and current tables for a *p*-channel MOSFET with a length of 1.25 microns and a width of 3 microns. (The tables for a 1.25 micron-long, 2-micron-wide *n*-channel MOSFET are created in an analogous manner; the table-generating input file in the tutorial directory is **n125x2.sp**.) Devices that are of the same type but that differ in physical size (length or width) still require separate tables.

External tables are stored in either ASCII text (user-readable) or binary (machine-readable) format. The following chart compares the two formats.

Format	Filename extensions	Advantages	Comments
ASCII text	.ftx (current) .qtx (charge)	Portability across operating systems and platforms.	This is the default format for tables generated with the Table > Generate Table command.
Binary	.f (current) .q (charge)	Smaller (less storage space required); faster- loading; more precise (floating- point numbers are not truncated).	This is the default format for tables generated with the tv utility program.

To generate external tables from **p125x3.sp**:

Windows		DOS/Unix	
•	Make sure p125x3.sp is open, active, and saved.	Type:	
•	Select Table > Generate Table .	tv -o p125x3 -a p125x3.sp The -a option generates ASCII files (the default is binary).	
	The dialog suggests a table file basename, p125x3 , which can be changed.		
•	Choose either ASCII Text (default) or Binary format.		
•	Press Return or click OK .		

Tables can be converted between ASCII and binary formats with the **Table > Convert Table** command.

Generating Tables From User-Supplied Data

External tables do not have to be generated from presupplied models. Table values can be *user-supplied* from various external sources:

- Experimentally measured charge and current data. If you do not have an analytical model for the
 device that you want to simulate, directly measuring the charge and current values across various
 voltage drops and constructing tables is the only solution.
- An analytical device model you have developed or acquired which may not have an equivalent in the presupplied model library. Charge and current tables can be generated by writing a short program which solves your model equations using your parameters, and outputs charge and current values.
- The results of a T-Spice simulation on a device or circuit that you would like to define as a *macromodel* in future simulations. Transfer analysis can be used to create charge and current tables. In future simulations, the device will be seen at a high level as a "box" with certain transfer characteristics, instead of at a low level as being composed of simpler, separately modeled elements such as transistors and capacitors.

User-supplied tables must conform to the required format (see "Table Format" on page 504).

Using Tables

Input files using external tables differ slightly from those using internal tables. Internal tables are accessed by *model* names, while external tables are accessed by *reference* names.

For example, the MOSFET definition statements from the tutorial file **invert1.sp** are:

Chapter 11: External Tables Table Commands

```
mt1 out in GND GND nenh l=1.25u w=2u
mt2 out in Vdd Vdd penh l=1.25u w=3u
```

These statements specify model names, **nenh** and **penh**, to be used in the generation of *internal* tables. *External* tables, which already exist when the simulation begins, are specified by reference names — for example, **nmost** and **pmost** (any legal names could be used). If **invert1.sp** were modified to use external tables, the corresponding lines would be:

```
mt1 out in GND GND nmost l=1.25u w=2u mt2 out in Vdd Vdd pmost l=1.25u w=3u
```

Of course, T-Spice needs to know *where* to find the appropriate tabulated data when a particular reference name is given. This information is supplied by the **.table** command. The following lines would be added to the modified **invert1.sp**:

```
.table nmost n125x2.ftx n125x2.qtx .table pmost p125x3.ftx p125x3.qtx
```

The .table command associates the reference names (nmost and pmost, used by the MOSFET device statements) with existing table files (n125x2.qtx, n125x2.ftx, p125x3.qtx, and p125x3.ftx). The reference names need not resemble the *file* names. When the associations have been made, T-Spice searches the input file for device statements which call the same reference names, and so pairs specific devices with appropriate charge and current tables.

Table Commands

Table > Generate Table

Prompts for the basename of a set of external table files to be generated from the (active) input file.

The input file must contain at least one model and one device (MESFET, MOSFET, JFET, or diode) definition. It may also contain table control commands such as ".vrange" (page 150) and ".gridsize" (page 78), for customizing generated tables. The generated tables can be used with the ".table" (page 143) command as device models.

Table file basename A table file basename related to the input file name is automatically

suggested.

ASCII Text Generate tables in ASCII (human-readable) format (.ftx, .qtx

format).

Binary Generate tables in binary (machine-readable) format (.f, .q format).

Table > Evaluate Table

Prompts for terminal voltages to use when evaluating an external table generated from the (active) input file.

The input file must contain at least one model and one device (MESFET, MOSFET, JFET, or diode) definition. It may also contain table control commands such as ".vrange" (page 150) and ".gridsize"

Chapter 11: External Tables Table Commands

(page 78), for customizing the generated table. The generated table is evaluated at the specified terminal voltages. Current and charge values corresponding to the specified voltages are reported in the **Simulation Status** window.

Terminal ... **voltage** Input voltages for each terminal.

Table > Convert Table

Prompts for the name and path of an external table file to be converted from ASCII (.ftx, .qtx) to binary (.f, .q) format or vice versa. Files that have been converted are added to the **Simulation Manager** queue and can be viewed in the **Simulation Status** window.

File name The name of the table file to be converted. The wildcard character *

can be used. However, only one file can be converted at a time. The

scrolling window lists all files in the source directory.

Files of type Select from the menu to limit the types of files displayed.

Open The name of the table file to be converted.

Table > Monotonicity Check

Prompts for the name and path of an external table file to be checked for monotonicity. (Lack of monotonicity can cause severe convergence problems during simulation.)

File name The name of the table file to be checked. The wildcard character *

can be used. However, only one file can be checked at a time. The

scrolling window lists all files in the source directory.

Files of type Select from the menu to limit the types of files displayed.

Open The name of the table file to be checked.

When you select a file for checking, T-Spice opens the **Save Output to File** dialog, prompting you for the name and path of an output file.

Output file name (with a .prt extension) based on the input file

name is automatically suggested.

Table > Print Table

Prompts for the name and path of an external table file to be printed to a .prt format file in user-readable form.

File name The name of the table file to be printed. The wildcard character * can

be used. However, only one file can be printed at a time. The

scrolling window lists all files in the source directory.

Files of type Select from the menu to limit the types of files displayed.

Chapter 11: External Tables Table Format

Open

The name of the table file to be printed.

When you select a file for printing, T-Spice opens the **Save Output to File** dialog, prompting you for the name and path of an output file.

Output file name

An output file name (with a .prt extension) based on the input file name is automatically suggested.

Table Format

A T-Spice external device table lists either charge or current values which vary according to the different voltages between terminals on the device.

Tables have one or more *input dimensions*. Each input dimension consists of a set of voltages at one of the device terminals with respect to the *reference terminal*. (In the case of tables used in macromodeling, the reference terminal is the *second* terminal named on the **Xinstance** command.)

For example, the tables for a device with three terminals **a**, **b**, and **c**, with **a** as the reference terminal, would have two input dimensions, corresponding to $V(\mathbf{b}, \mathbf{a})$ and $V(\mathbf{c}, \mathbf{a})$. Thus, one column in the charge table would list charges as a function of the voltage between **b** and **a**; the other column, between **c** and **a** (and similarly for the current table).

Tables contain other information as well. The example below — the steady-state current table for a linear resistor — is followed by a detailed description of the format and order of entries in a table. Entries in the table are separated by spaces, tabs, or new lines.

Input dimensions [integer]. This must be the first entry. The number of input dimensions is the number of pairwise combinations of terminals with the reference terminal, or (n-1) dimensions for an n-terminal device. (The reference terminal itself is not counted, since the corresponding voltage is always zero.)

Table resolutions [integer]. One resolution value is required for each dimension; it is the number of voltage (input) values, or *grid points*, the table will list in that dimension. (These entries are equivalent in function to the **.gridsize** command in input files.)

Chapter 11: External Tables Table Format

Output dimensions [integer]. The number of output dimensions is the number of distinct charge or current (output) values needed to characterize the device's behavior. This is usually one fewer than the number of terminals on the device, due to charge/current conservation: once (n-1) currents or charges are known for an n-terminal device, the final terminal's values can be readily computed.

Table type [integer]. The table type indicates the device type, as follows:

Table type	Device type	Description
0	MACRO	A device whose table is not generated from a predefined model but by some other means, such as macromodeling.
1	NMOS	N-channel MOSFET
2	PMOS	P-channel MOSFET
3	D	Diode
4	NPN	npn
5	PNP	pnp
6	NJF	N-channel JFET
7	PJF	P-channel JFET
10	NMF	N-channel MESFET
11	PMF	P-channel MESFET

Grid points [float]. The list of voltage (input) values used to determine the charge and current (output) values. The full set of grid points for the first input dimension is listed first, then the next, and so on. The total number of grid points is the sum of the table resolution values.

Table values [float]. The list of charge and current (output) values corresponding to the voltage (input) values. The table values are sorted into vertical columns, one column per output dimension. The order of the columns is specified in the input file by the device statement: the first terminal listed there uses the first (leftmost) column, the second terminal uses the second column, and so on. (The last terminal's charges and currents are computed, not tabulated.) Each column lists currents or charges as if the voltages were being *swept* through their grid ranges (see "Multiple Input Dimensions," below). The total number of table values *per column* is the product of the table resolutions.

Grid Point Resolution

Grid points need not be evenly spaced. A higher density of grid points can be taken around areas where device behavior is non-linear, for higher accuracy.

Table Value Monotonicity

For DC and transfer analyses, steady-state currents must be monotonic as a function of voltage. For transient analyses, charges must be monotonic in voltage as well.

The **Table > Monotonicity Check** command helps to locate areas of non-monotonicity. **Monotonicity Check** determines whether or not the table values for each combination of indices in each dimension are monotonic. Any non-monotonicities found are counted, and the table coordinates at which they were

Chapter 11: External Tables Table Format

found are reported (Windows: to a specified output file; DOS/Unix: to standard output unless redirected).

Multiple Input Dimensions

In the case of more than one input dimension, the table values are listed as follows: Each output column lists table values as if the voltages were being *swept* through their ranges, so that a table value is given for *each* combination of voltages. For example, suppose that a device's table has *three* input dimensions (V1, V2, V3), each with *two* grid points (denoted by subscripts **a** and **b**). Then the currents in *each* column, computed from combinations of the three voltages, are listed in the following order:

```
I(V1a,V2a,V3a)
I(V1b,V2a,V3a)
I(V1a,V2b,V3a)
I(V1b,V2b,V3a)
I(V1a,V2a,V3b)
I(V1b,V2a,V3b)
I(V1a,V2b,V3b)
I(V1b,V2b,V3b)
```

MOSFET Tables

The format for MOSFET tables is slightly different to reduce storage and access time.

- Only the drain and source steady-state currents are stored as table (output) values.
- Charge and current values are listed only for certain ranges of Vds (voltage between drain and source). The drain and source terminals are defined arbitrarily, so it is redundant to store both positive and negative Vds grid points.
- Only positive values for NMOS and negative values for PMOS are stored. The table type indicates
 whether the table is for a NMOS or a PMOS transistor.

Otherwise the format is standard. For example, NMOS charge tables take the following form, where \boldsymbol{A} , \boldsymbol{B} , \boldsymbol{C} denote the numbers of grid points in the three input dimensions (Vds, Vgs, Vbs, respectively), \boldsymbol{V} denotes voltage, and \boldsymbol{Q} denotes charge:

The steady-state current file is similarly structured, except that the values for the gate are excluded and the number of output dimensions is two instead of three. The default input dimensions are: A(Vds) = 9, B(Vgs) = 15, and C(Vbs) = 4. These dimensions can be modified with the **.gridsize** command. The default voltage range is [0.0,+5.0] for NMOS and [-5.0,0.0] for PMOS. These ranges can also be modified with the **.vrange** command. Examples of PMOS and NMOS charge and current tables (p125x3.ftx, p125x3.qtx, n125x2.ftx, n125x2.qtx) are included.

The charge and current tables for a transistor should have the same grid points (to lower lookup times); if this is not the case, then the transistor will be treated as a general four-terminal device. T-Spice will

Chapter 11: External Tables Table Format

automatically reduce the dimensionality of a transistor table if the drain or source is connected to the bulk (to lower lookup and interpolation times).

The ordering of the nodes on a table *Xinstance* command corresponds to the ordering of the columns in the table. If a node has only zero values for all regions of operation — for example, if the current at a gate is zero — then the .ftx table should be modified as follows: (1) list the gate last; (2) reduce the number of output dimensions by one; (3) omit the table values for the gate.

A Simple Example

The following example is the steady-state current table, **res.ftx**, for a linear resistor (10 kilohms).

```
1 2 1 0
-5.0 5.0
-.005
```

The first line of the table contains the first four required entries.

- The number of *input dimensions* is **1**, since a resistor has two terminals, and one is used as the reference. (In other words, the only voltage of interest is the one across the resistor's two terminals.)
- One *table resolution* value, corresponding to the single input dimension, is given: the table's first (and only) dimension contains **2** grid points.
- The number of *output dimensions* is **1**, since currents need to be specified at only one terminal of the resistor (the current at the other terminal can be computed from the first).
- The table type, 0, indicates a device which is not represented in the T-Spice model library.

The *grid points*, **-5.0** and **5.0** volts, establish fixed points from which the current at any other voltage can be computed by linear interpolation and extrapolation. The full set of grid points in the first input dimension is listed first, then the second (if there is a second input dimension), and so on.

Following the grid points is a column of *table values*. Two values are given, corresponding to the two input voltages in the first (and only) dimension, and representing the current at one of the terminals given those voltages.

The resistor's charge table is stored in another file, **res.qtx**. The resistor does not have charge associated with it, but a charge table is still required, one that contains zero values:

```
1 2 1 0
-5.0 5.0
0.0
0.0
```

Since the standard resistor device statement does not include an option for specifying an alternate model, this resistor would be implemented as a *macromodel* (see below) by including the .table command in the circuit description using the tabulated resistor. Then, an instance of a table device is created using the *Xname* subcircuit-device command.

```
.table myres res.ftx res.qtx
xr1 in out myres
```

where **xr1** is the name of the resistor in the circuit, **myres** is the table reference name, and **in** and **out** are the resistor's two terminals.

Chapter 11: External Tables Utility Programs

Utility Programs

Several utility programs are included with T-Spice; these aid in the creation and manipulation of external tables. Giving the name of any of the utility programs (**tv**, **table**, **mc**) *without* arguments at the command prompt produces a usage message.

tv

tv, a *table generator*, generates external charge and current tables from an input file consisting of a **.model** command with parameters and a statement specifying a representative device.

tv [-aEUV] -o output input

Option	When on	When off (default)
-a	Generates tables in ASCII text format.	Generates tables in binary format.
-E	Evaluation mode. Prompts for a set of (input) terminal voltages, and returns the (output) terminal charges and currents at those voltages.	
-U	Prints a usage message and quits the program.	_
-V	Prints the version number and acknowledgments and quits the program.	_
-o output	Prints results to table files with base name <i>output</i> .	[This argument is required.]
input	Uses file <i>input</i> to generate tables. Input files typically have the extension .sp.	[This argument is required.]

table

table, a *table format converter*, converts external charge and current tables between ASCII text (user-readable) and binary (machine-readable) formats.

table [-UV] input output

Option	When on	When off (default)
-U	Prints a usage message and quits the program.	_
-V	Prints the version number and acknowledgments and quits the program.	_

Chapter 11: External Tables Utility Programs

Option	When on	When off (default)
input	Looks in file <i>input</i> for the table to be converted. ASCII table files must have extension .ftx or .qtx; binary table files must have extension .f or .q.	[This argument is required.]
output	Writes the converted table to file output . ASCII table files must have extension .ftx or .qtx; binary table files must have extension .f or .q.	[This argument is required.]

mc

mc, a *monotonicity checker*, determines for a table whether or not the table values for each combination of indices in each input dimension are monotonic. Any non-monotonicities found are counted, and the table coordinates at which they were found are reported to standard output (unless redirected).

mc [-cpUV] input

Option	When on	When off (default)
-c	Continues checking (even if non-monotonicity is found).	Stops checking as soon as non-monotonicity is found.
-p	Prints out grid values along each dimension instead of checking for monotonicity.	_
-U	Prints a usage message and quits the program.	_
-V	Prints the version number and acknowledgments and quits the program.	
input	Looks in file <i>input</i> for the table to be checked. ASCII table files must have extension .ftx or .qtx; binary table files must have extension .f or .q.	[This argument is required.]

12 Parametric Analysis

Introduction

T-Spice is often required to study the effects of *variations* in parameter values on circuit performance. For example, parametric analysis can be used to evaluate multidimensional trends in the output over defined ranges of input values, or the sensitivity of circuit behavior to random fluctuations in fabrication conditions.

A large range of parameters may be systematically and automatically varied:

- External parameters (such as temperature)
- Simulation parameters (such as tolerances)
- Device parameters (such as input voltage level or transistor length)
- Model parameters (such as transistor threshold voltage)

Three types of parametric analysis are supported by T-Spice: parameter sweeping, Monte Carlo analysis, and optimization.

This chapter will guide the T-Spice Pro user through several tutorial problems in order to demonstrate some basic concepts of parametric analysis.

The example files for these tutorials can be found in the **tspice91\examples\input** subdirectory of the T-Spice Pro installation path.

Output File Formats

Results produced by parameter sweeps and Monte Carlo analysis are easily read in T-Spice output files. You can open a T-Spice output file from the T-Spice Simulation Manager by clicking on the **Show Output** button. Alternatively, select **File > Open** and browse within the **Open** dialog to select the output filename. T-Spice output files are text files; they are also readable in the text editor of your choice.

Analysis results for parameter sweeps are reported in table format, with section headings that contain the current values of the swept parameters. For example, if a .step command invokes several transient analyses, each analysis produces its own output section, the header of which shows the parameter values for that analysis (e.g., TRANSIENT ANALYSIS – vdd=3).

Results obtained from **.measure** commands are listed at the end of each output section corresponding to a specific parameter value. These measurements are summarized at the end of the sweep in a table labeled **TRANSFER ANALYSIS**. The use of a **.step** command causes **.measure** results to be plotted in W-Edit, with the sweept variable as the *x*-axis.

Parameter Sweeps

In a *parameter sweep*, a specified parameter is held or initialized at a given value, all analyses requested by the input file are performed, and the results are recorded. Then the parameter is incremented by a set amount, and the same analyses are repeated. The cycle continues as the parameter is incremented through a defined range of values.

Parameter values may be swept *linearly*—in identical increments, typically through a limited range—or *logarithmically*—in exponential increments, typically through a range spanning multiple orders of magnitude. You can also specify a sweep over a list of values.

Parameter sweeping is performed by using the **sweep** option with one of the following commands:

```
.ac (see ".ac" on page 60).dc (see ".dc" on page 69).step (see ".step" on page 138)
```

.tran (see ".tran" on page 147)

Additionally, it is also possible to perform simultaneous parameter sweeps of several different variables using the command .data (see ".connect" on page 66).

Adding the **sweep** option to a **.tran** or **.ac** command instructs T-Spice to perform that analysis for all parameter values of the specified sweep. Using the **sweep** option with an analysis command is similar to using it with **.step**. A single **.step** command causes T-Spice to perform parameter sweeps for *all* analysis commands in the input file. If **sweep** is specified on an analysis command and a **.step** command is present, the **sweep** specified with the analysis command is nested inside the sweep specified with the **.step** command.

All input files listed for this chapter are in the directory <install_dir>\tutorial\input.

Example 1: Parametric Sweep

This example uses a ring oscillator to demonstrate the basic features of a parametric sweep.

T-Spice Input ring2.cir
Output ring2.out

T-Spice Input

```
* Circuit: ring2.sp

*
.SUBCKT inv in out Gnd Vdd
c2 out Gnd cap
mlp out in Vdd Vdd pmos L=5u W=12u
mn1 out in Gnd Gnd nmos L=5u W=8u
.ENDS

* Main circuit: ring2
cinv1 a7 Gnd 400ff
.include ml2_125.md
Xinv1 a1 a2 Gnd Vdd inv
```

```
Xinv2 a2 a3 Gnd Vdd inv
Xinv3 a3 a4 Gnd Vdd inv
Xinv4 a4 a5 Gnd Vdd inv
Xinv5 a5 a6 Gnd Vdd inv
Xinv6 a6 a7 Gnd Vdd inv
Xinv7 a7 a1 Gnd Vdd inv
.measure tran period trig v(a2) val=3.0 fall=2 targ v(a2) val=3.0 fall=3
.measure tran pulsewidth trig v(a2) val=1.5 rise=2 targ v(a2) val=1.5 fall=2
.measure tran timedelay trig v(a2) val=3.0 fall=2 targ v(a1) val=3.0 fall=2
.param cap=800ff
.print tran a1
.step cap 200f 1000f 200f
.tran/powerup 1n 800n
vdd Vdd Gnd 3.0
* End of main circuit: ring2
```

In this example, instead of keeping the load capacitor in the inverter subcircuit constant, the capacitor is defined as a variable **cap** and T-Spice sweeps it over a range of **200fF** to **1000fF**. The **.param** statement sets a nominal value for **cap** and the **.step** command sweeps **cap** linearly from **200fF** to **1000fF** in increments of **200fF**.

The .measure statement measures the period, time delay, and pulse width of the ring oscillator at the different values of capacitance. In this example, period is measured at v(a2)=3V from its second falling edge to its third falling edge. Time delay is measured from the second falling edge of v(a2) at 3V to the second falling edge of v(a1) at 3V. Pulse width is measured from the second rising edge of v(a2) at 1.5V to the second falling edge of v(a2) at 1.5V.

Output

T-Spice reports the transient analysis results in five sections for **cap=200fF**, **400fF**, **600fF**, **800fF**, and **1000fF**.

Following is part of the output section for **cap=200fF**.

```
TRANSIENT ANALYSIS - cap=2e-013
Time<s> v(a1) <V>
0.0000e+000 0.0000e+000
1.0876e-010 1.9456e-002
4.9424e-010 3.3521e-001
8.9842e-010 6.0502e-001
1.2047e-009 7.0183e-001
```

The measurement results are reported at the end of each section.

```
MEASUREMENT RESULTS - cap=2e-013

period = 9.9026e-008
    Trigger = 1.7549e-007
    Target = 2.7452e-007

pulsewidth = 4.8288e-008
    Trigger = 1.3217e-007
    Target = 1.8046e-007

timedelay = 4.1316e-008
    Trigger = 1.7549e-007
    Target = 2.1681e-007
```

Measurement results are summarized in a table at the end of the output file. Because the .step command was used, measurement results will be plotted against the parameter cap in W-Edit.

TRANSFER ANALYSIS cap<> period<> pulsewidth<> timedelay<> 2.0000e-013 9.9026e-008 4.8288e-008 4.1316e-008 4.0000e-013 1.4248e-007 6.9783e-008 5.9662e-008 6.0000e-013 1.8579e-007 9.1213e-008 7.8093e-008 8.0000e-013 2.2913e-007 1.1262e-007 9.6608e-008 1.0000e-012 2.7235e-007 1.3401e-007 1.1505e-007

Waveform

The following two figures show the waveform output for this example. The first displays the output of the ring oscillator vs. time with different capacitance values; the second displays the period, time delay and pulse width in a single chart.

Ring oscillator versus time at different capacitances:

Period (blue), time delay (green) and pulse width (red) charted together:.

Monte Carlo Analysis

In a Monte Carlo analysis, T-Spice performs simulation runs using randomly chosen parameter values. The parameter values for each run are chosen from probability distributions defined by the user.

T-Spice's Monte Carlo analysis will generate a summary output of all simulation run measurement results after all runs are completed. T-Spice will also report, for each Monte Carlo iteration, the values of all expressions evaluated using probability distributions.

Monte Carlo analysis can be invoked using the keywords **sweep monte** with one of the following commands:

- **".ac"** (page 60)
- ".dc" (page 69)
- **".step"** (page 138)
- ".tran" (page 147)

Syntax and options for the keyword **sweep** are defined in the section describing ".step" (page 138).

Probability distributions are assigned to parameters by use of the **.param** command. For a complete description of the syntax of this command, see "**.param**" (page 113).

Example 2: Monte Carlo Analysis

This example demonstrates Monte Carlo Analysis on a CMOS inverter circuit.

Input invert5.cir
Output invert5.out

Input

```
* Main circuit: invert5
c2 out Gnd 800ff
.include ml2_125mc.md
mln out in Gnd Gnd nmos L=5u W=8u
mlp out in Vdd Vdd pmos L=5u W=12u
.measure tran falltime trig v(out) val=2.8 fall=1 targ v(out) val=0.2 fall=1
.param vto_n=unif(0.622490, 0.5, 1) vto_p=unif(-0.63025, 0.5, 1)
.tran 2n 600n sweep monte=10
.print tran in out
vdd Vdd Gnd 3.0
vin in Gnd pwl (Ons OV 100ns OV 105ns 3V 200ns 3V 205ns OV 300ns
+ OV 305ns 3V 400ns 3V 405ns OV 500ns OV 505ns 3V 600ns 3V)
* End of main circuit: invert5
```

A Monte Carlo analysis sweeps parameter values that are chosen based on statistical variations. In this example, T-Spice varies the model parameter **vto** using random values chosen by probability distribution. In model file **ml2_125mc.md**, the **.model** statement specifies the **vto** parameter as two variables: **vto_n** for an n-channel MOSFET and **vto_p** for a p-channel MOSFET.

The .param statement defines the probability distribution, where vto_n=unif(0.622490, 0.5, 1) and vto_p=unif(-0.63025, 0.5, 1) select uniform distributions centered at 0.622490 and -0.63025 with relative variation of 50%. The keyword monte=10 in the .tran statement invokes Monte Carlo analysis with 10 runs. The .measure statement measures the falltime of the output pulse for different values of vto.

Output

T-Spice reports the transient analysis results in ten sections for the ten Monte Carlo runs.

Following is part of the output section for the first run.

```
TRANSIENT ANALYSIS - Monte-Carlo-index=1
Time<s> v(in)<V> v(out)<V>
0.0000e+000 0.0000e+000 2.9996e+000
6.0000e-010 0.0000e+000 2.9996e+000
2.6000e-009 0.0000e+000 2.9996e+000
4.6000e-009 0.0000e+000 2.9996e+000
6.6000e-009 0.0000e+000 2.9996e+000
8.5999e-009 0.0000e+000 2.9996e+000
```

Measurement results are reported at the end of each section.

```
MEASUREMENT RESULTS - Monte-Carlo-index=1
```

```
falltime = 1.2278e-008
  Trigger = 1.0471e-007
  Target = 1.1699e-007
```

At the end of the output file, T-Spice reports the Monte Carlo values for each run The measurement results are summarized along with statistical results from the analysis (minimum, maximum, mean, average deviation, variance, and sigma).

MONTE CARLO PARAMETER VALUES

```
Index 1

parameter Vto for model nmos = 3.1202e-001
parameter Vto for model pmos = -6.7032e-001

Index 2

parameter Vto for model nmos = 4.3157e-001
parameter Vto for model pmos = -8.2483e-001

Index 3

parameter Vto for model nmos = 6.7541e-001
parameter Vto for model pmos = -6.1756e-001
```

TRANSFER ANALYSIS

```
Index<>
            falltime<>
1.0000e+000 1.1738e-008
2.0000e+000 1.2477e-008
3.0000e+000 1.4346e-008
4.0000e+000
            1.3173e-008
5.0000e+000 1.5912e-008
6.0000e+000 1.2399e-008
7.0000e+000 1.5150e-008
8.0000e+000 1.2944e-008
9.0000e+000 1.2069e-008
1.0000e+001 1.2278e-008
   Minimum 1.1738e-008
   Maximum 1.5912e-008
      Mean 1.3249e-008
    Avgdev 1.1325e-009
  Variance 1.9941e-018
     Sigma 1.4121e-009
```

Waveform

Optimization

The T-Spice optimization feature allows circuit parameters to be tuned within given ranges to achieve the best possible circuit performance. T-Spice seeks to minimize the difference between performance measurements and a user-defined optimization goal. In order to specify an optimization, you must supply the following:

- [1] A list of parameters which can be adjusted to optimize performance. Each parameter is assigned a nominal, minimum, and maximum value with **.paramlimits**. The nominal value serves as the initial guess in the optimization process. (For a complete description of the syntax of the **.paramlimits** command, see "**.paramlimits**" (page 117))
- [2] An optimization goal defined in terms of .optgoal commands and .measure results. T-Spice attempts to minimize the deviation of .measure results from their respective goal values defined in .optgoal. If multiple .optgoal commands are used, each .optgoal parameter has a weight value to indicate its relative importance. (For a complete description of the syntaxes, see ".macro /.eom" (page 88) or ".optgoal" (page 103).)
- [3] A **.optimize** command that invokes the optimization run. The optimization model and analysis name are specified using the **.optimize** command. (For a complete description of the **.optimize** command syntax, see "**.optimize**" (page 104).)
- [4] A .model command which defines the optimization algorithm, as well as optimization algorithm parameters and tolerances. (For a complete description of the .model command syntax, see ".model" (page 96).)

Defining Optimization Parameters

Any parameter defined using **.param** can be used as an optimization parameter. Use the **.paramlimits** command to associate such a parameter with an optimization run, so that T-Spice can vary it during the optimization. There is no limit on how many optimization parameters an optimization run can have, but the optimization will be much faster with fewer parameters. The precise syntax for this keyword is described in "**.paramlimits**" (page 117).

Defining Optimization Goals

Optimization goals are defined using **.optgoal**. The function of the **.optgoal** command is to link a **.measure** result to an optimization run and to specify a goal value for the measurement. During each optimization run, T-Spice calculates an optimization function based on the differences between measurements and their corresponding optimization goals. T-Spice uses this calculation to find parameter values that minimize the deviation of measurement results from goal values.

An optimization run can have multiple **.optgoal** commands, each of which is assigned a weight. The value of the optimization function for each run is obtained by summing the weighted individual goals: each **.optgoal** contributes a term of the form $weight \times (goal-result)/goal$.

Curve-fit optimization can be performed by using the error function measurements available on the **.measure** command.

For more information on the relevant commands, see ".macro /.eom" (page 88) and ".optgoal" (page 103).

Invoking Optimization

A .optimize command invokes an optimization run using the parameters and goals specified by .paramlimits and .optgoal when these commands use a matching optimization run name. Only those parameters for which the run name matches are varied during the optimization run. The model keyword defines an optimization model, which is specified using a .model command with optimization algorithm parameters such as iteration count limits and convergence tolerances. The analysisname option identifies the .step, .ac, .dc, or .tran analysis that will be performed to evaluate the measurements for the optimization.

After an optimization, the optimized parameter values are used in all subsequent analyses specified in the same input file. This allows for *incremental optimization*: some parameters can be optimized while others are held fixed; other parameters can then be optimized based on the results of the first optimization. DC analyses are performed first, followed by AC analyses, and then transient analyses. Multiple analyses of the same type are performed in the order in which they are found in the input file.

The T-Spice wizard-style user interface will guide you in setting up optimization commands.

Example 3: Optimization

Input A opamp_ac.cir
Input B myopamp.cir
Output myopamp.out

This tutorial will demonstrate the procedures to be followed in setting up an optimization command. We use the operational amplifier introduced in Example 4 to show how you can optimize output by varying

the output transistor's lengths and widths. We can use the existing netlist by adding optimization commands to the netlist.

This exercise uses the input file **opamp_ac.cir** as a base file to which we will add optimization commands in the course of the tutorial. The modified input file that you create will be named **myopamp.cir**. For reference, we have included a file called **opamp4.cir**, which represents what **myopamp.cir** should look like at the end of the tutorial.

- ☐ Open **opamp.cir** and choose **File > Save As** to rename the file. Name the file **myopamp.cir**.
- For simplicity, remove the statements .print ac vp(out) and .acmodel opamp1m.out (*) in the original netlist.
- Place the cursor at the beginning of any line, such as the line above the .include statement. Choose Edit > Insert Command or click the Insert Command icon in the Command toolbar:

- ☑ In the left-hand pane of the **Command Tool**, click **Settings**. In the right-hand pane, click the **Parameters** button.
- With Parameter type set to General, enter the following values. For each value pair that you add, click Add. T-Spice will add the parameter to the list.

Parameter name	Parameter value
13	6u
w3	20u
14	10u
w4	6u

When you have finished, the Command Tool will look like this:

☐ Click **Insert Command**. T-Spice will insert the following line into the netlist:

.param 13=6u w3=20u 14=10u w4=6u

- Next, edit the lengths and widths of output transistors mp3 and mn4 to optimize the results. For mp3, replace the existing length and width values with parameter names l3 and w3, respectively. Enclose these parameter names in single quotes ('). For mn4, replace the existing length and width values with parameter names l4 and w4, respectively.
- Next, add a .measure command. Place the cursor at the beginning of any line and choose Edit > Insert Command or click the Insert Command icon. Double-click Output, then click Measure under Output (or click the Measure button). The Command Tool will appear in a form suitable for entering a .measure command. Type or select the following values:

Field	Value
Analysis type:	AC
Measurement result name	gain
Measurement type	Signal statistics
Type of measurement	Maximum
Measured signal	vdb(out)

☑ Leave all other fields blank. The **Command Tool** dialog will look like this:

☑ Click **Insert Command** to insert the command in the netlist. T-Spice inserts the following line in the netlist:

.measure ac gain max vdb(out)

For the **bandwidth** measurement, repeat the last step, using the following values:

Field	Value
Analysis type	AC
Measurement result name	bandwidth
Measurement type	Find-when
Find	x-value
When	Signal
Signal (name)	vdb(out)
equals value	15

☑ Leave all other fields blank. The **Command Tool** dialog will look like this:

☑ Click **Insert Command**. T-Spice inserts the following line in the netlist:

.measure ac bandwidth when vdb(out)=15 cross=1

Now, run the simulation. Choose **Simulation > Run Simulation**, press **F5**, or click the Run Simulation icon in the Simulation toolbar. T-Spice displays the Run Simulation dialog.

☑ Under **Waveform options**, select **Show during**, then click **Start Simulation**. T-Spice will simulate the circuit, then invoke W-Edit to display the following waveform:

Note that the amplifier has a gain of 43.1 dB and a bandwidth of 11.4 kHz. In the following procedure, we will use the T-Spice optimization feature to modify this design to achieve a gain of 20 dB while maximizing bandwidth.

Switch back to T-Spice. Choose **Edit > Insert Command** again. T-Spice displays the **T-Spice Command Tool**. In the left-hand tree, double-click **Optimization**; the **Wizard** will appear underneath.

☐ Click Wizard (or the Wizard button) to go to the first dialog, Optimization setup. Type optsize in the Optimization name field and type or select First AC Analysis as the analysis name.

- Click **Continue** to go to the next dialog, **Set optimization goals**. Enter **gain** for the first measurement name, with a target value of **20** (db) and a weight of **5**. Click **Add** to add this in the **List of optimization goals**.
- Repeat these steps to define the second measurement name **bandwidth**, target value **5e3** and weight **1**, and add them to the **List of optimization goals**. The **T-Spice Command Tool** dialog will look like this:

Click **Continue** to go to the next dialog, **Set parameter limits**. First set an optimization goal for **I3**, using the first column of values in the following table:

Field	Values				
Parameter name	13	w3	14	w4	
Minimum value	1u	1u	1u	1u	
Maximum value	20u	30u	20u	20u	
Delta	0.5u	0.5u	0.5u	0.5u	
Guess value	6u	20u	10u	бu	

Click Add to add these values to the List of optimization goals. The optimization goals for w3, I4, and w4 can be set in the same way. When you finish, the T-Spice Command Tool dialog will look like this:

☑ Click **Continue** to go to the next dialog, **Set optimization algorithm**. In the **Name** field, type **optmod**. For all other values, accept the defaults. The **T-Spice Command Tool** dialog will look like this:

Click **Continue** to go to the next dialog, **Insert command.** T-Spice displays your optimization commands in the dialog. Check them to make sure they are correct.

```
.optimize optsize model=optmod analysisname=ac
.paramlimits optsize 13 minval=1u maxval=20u delta=0.5u guess=6u
.paramlimits optsize w3 minval=1u maxval=30u delta=0.5u guess=20u
.paramlimits optsize 14 minval=1u maxval=20u delta=0.5u guess=10u
.paramlimits optsize w4 minval=1u maxval=20u delta=0.5u guess=6u
.optgoal optsize gain=20 minval=1e-12 weight=5
.optgoal optsize bandwidth=5e3 minval=1e-12 weight=1
.model optmod opt cendif=1e-9 close=0.001 cut=2 difsiz=1e-3 grad=1e-6
+ itropt=20 max=600000 parmin=0.1 relin=0.001 relout=0.001
```

- ☑ If you need to change a line, click **Back** to make changes.
- ☐ Click **Insert Command**. T-Spice inserts the optimization commands in the text editor.

Rerun the simulation. This time you will see the following waveform:

Output

The list of optimization model parameters is summarized in the output file, followed by the optimization results and the optimized parameter values for 13, w3, 14, and w4.

```
* BEGIN NON-GRAPHICAL DATA
Optimization model parameters:
  Level=1
  cendif=1e-009
  close=0.001
  cut=2
  difsiz=0.001
  grad=1e-006
  itropt=20
  max=600000
  parmin=0.1
  relin=0.001
  relout=0.001
* END NON-GRAPHICAL DATA
* BEGIN NON-GRAPHICAL DATA
Optimization results:
                   Residual = 0.359805
              Gradient norm = 0.363615
        Marquardt parameter = 16.384
       Function evaluations = 45
       Number of iterations = 16
```

Optimized parameter values:

T-Spice 13 User Guide and Reference

```
13 = 9.5000e-006
w3 = 1.9000e-006
14 = 3.5000e-006
w4 = 1.2000e-006
```

* END NON-GRAPHICAL DATA

AC analysis results are reported in different sections for different optimization runs. In this example, only one optimization run—**optsize**—was performed.

The measurement results are reported at the end of each section. Because of the difference in relative weight, **gain** (weight=5) has higher priority in the optimization than **bandwidth** (weight=1), and **gain** is much closer to its optimization goal.

```
gain = 2.0533e+001
At = 1.0000e+000
bandwidth = 1.4642e+003
```

T-Spice also supports HSPICE-compatible optimization commands, as the following example shows.

Example 4: Optimization Using HSPICE-Compatible Commands

Input	opamp5.cir
Output	opamp5.out

Input

```
* Circuit: opamp5.sp
* Main circuit: opamp5
.ac DEC 5 1 100MEG sweep optimize=optsize
+ results=gain bandwidth model=optmod
.model optmod opt level=1 itropt=20
.param 14=optsize(10u, 1u, 20u,0.5u) 13=optsize(6u, 1u, 20u,0.5u)
+ w4=optsize(6u, 1u, 20u,0.5u) w3=optsize(20u, 1u, 30u, 0.5u)
.measure ac gain max vdb(out) goal=20 weight=5
.measure ac bandwidth when vdb(out)=15 goal=5e3
ccomp vf1 out 2pF
cout out Gnd 2pF
mn1 vn1 vbias Gnd Gnd nmos L=10u W=6u
mn2 vm1 in1 vn1 Gnd nmos L=6u W=6u
mn3 vf1 in2 vn1 Gnd nmos L=6u W=6u
mn4 out vbias Gnd Gnd nmos l='14' w='w4'
.include ml2_125.md
mp1 vm1 vm1 Vdd Vdd pmos L=6u W=6u
```

mp2 vf1 vm1 Vdd Vdd pmos L=6u W=6u
mp3 out vf1 Vdd Vdd pmos l='13' w='w3'
.print ac vdb(out)
vbias vbias Gnd 0.8
Vdd Vdd Gnd 5.0
vdiff in2 in1 -0.0007 AC 1.0 90
vin1 in1 Gnd 2.0
* End of main circuit: opamp5

Output

The output of this example is the same as the output "Example 3: Optimization" on page 518.

13 References

The following references may be consulted for further information on various aspects of circuit design, modeling, and simulation.

- [1] P. Antognetti and G. Massobrio (eds.), *Semiconductor Device Modeling with SPICE*, 2nd ed. New York: McGraw-Hill, 1993.
- [2] M. A. Belkerdid and P. F. Wahid, "Rise time and frequency correlation for crosstalk in high-speed packaging," *IEPS Proc. Tech. Conf.* (Dallas), pp. 617–636, November 1988.
- [3] F. H. Branin, Jr., "Transient analysis of lossless transmission line," *Proc. IEEE (Letters)*, vol. 55, pp. 2012–2013, 1967.
- [4] T. Dhaene and D. De Zutter, "Selection of lumped element models for coupled lossy transmission lines," *IEEE Trans. Computer-Aided Design*, vol. 11, no. 7, pp. 805–815, July 1992.
- [5] D. Divekar, "Comments on GaAsFET Device and Circuit Simulation in SPICE," *IEEE Trans. Electron Devices*, vol. ED-34, no. 12, pp. 2564–2565, December 1987.
- [6] A. R. Djordjevic, T. K. Sakar, and R. G. Harrington, "Time-domain response of multiconductor transmission lines," *Proc. IEEE*, vol. 75, pp. 743–764, June 1987.
- [7] J. H. Huang, Z. H. Liu, M. C. Jeng, K. Hui, M. Chan, P. K. Ko, and C. Hu, *BSIM3 Manual (Version 2.0)*. Berkeley, CA: University of California, 1994.
- [8] P. K. Ko, C. Hu, et al., *BSIM3v3 Manual (Final Version)*. Berkeley, CA: University of California, 1995.
- [9] M. A. Maher, *A Charge-Controlled Model for MOS Transistors*. Department of Computer Science Document 5223:TR:86. Pasadena, CA: California Institute of Technology, 1989.
- [10] M. A. Maher and C. Mead, "A Physical Charge-Controlled Model for MOS Transistors," in *Advanced Research in VLSI*, P. Losleben (ed.). Cambridge, MA: MIT Press, 1987, p. 211.
- [11] C. Mead, Analog VLSI and Neural Systems. Reading, MA: Addison-Wesley, 1989.
- [12] L. W. Nagel, *SPICE2: A Computer Program to Simulate Semiconductor Circuits*. Electronics Research Laboratory Memorandum ERL-M520. Berkeley, CA: University of California, 1975.
- [13] I. W. Smith, H. Statz, A. Hans, and R. A. Pucel, "On Charge Nonconservation in FETs," *IEEE Trans. Electron Devices*, vol. ED-34, no. 12, pp. 2565–2568, December 1987.
- [14] H. Statz et al., "GaAsFET Device and Circuit Simulation in SPICE," *IEEE Trans. Electron Devices*, vol. ED-34, no. 3, pp. 160–169, February 1987.
- [15] Y. P. Tsivids, Operation and Modeling of the MOS Transistor. New York: McGraw-Hill, 1987.
- [16] A. Vladimirescu, *The SPICE Book*. New York: Wiley & Sons, 1994.

- [17] D. E. Ward, *Charge-Based Modeling of Capacitance in MOS Transistors*. Integrated Circuit Laboratory Report G201-11. Stanford, CA: Stanford University, 1981.
- [18] D. E. Ward and R. W. Dutton, "A Charge-Oriented Model for MOS Transistor Capacitances," *IEEE J. Solid State Circuits*, SC-13, 1978.
- [19] W. Liu et al., BSIM3v3.2.2 MOSFET Model Users Manual, Berkeley, CA: University of California, 1999.
- [20] W. Liu, X. Jin, et. al., *BSIM3v3.2.2 MOSFET Model User's Manual*. Berkeley, CA: University of California, 1999.
- [21] Matthias Bucher, Christophe Lallement, et. al., *The EPFL-EKV MOSFET Model Equations for Simulation Technical Report*. Lausanne, Switzerland: Electronics Laboratories, Swiss Federal Institute of Technology (EPFL), 1998.
- [22] P. Su, H. Wan, Z. H. Liu, S. Fung, et. al., *BSIMSOI3.1 MOSFET Model Users' Manual*. Berkeley, CA: University of California, 2003.
- [23] X. Xi, M. Dunga, et. al., BSIM4.4.0 MOSFET Model User's Manual. Berkeley, CA: University of California, 2004.

Index

SYMBOLS	acm, 460–462
OTHIBOLO	.acmodel command
, 57, 58, 82, 119, 123, 453	.ac command, using with, 63
* (wildcard character), 120	described, 63
+121752, 338	examples, 63
.data command	.op command, using with, 63, 102
data command, 511	in subcircuits, 142
.hdl, ??-80	syntax, 63
? (wildcard character), 120	acos(x), 56
^ (caret character), 41	active region of operation, 347
<i>\</i>	active window, 38
	ad device parameter
A	MOSFET, 174, 430, 453
^	adding statements with .alter, 64
abbreviations, metric, 54	addition
abs(x) , 56	expression for, 56
absolute charge tolerance, 32	line continuation and, 54
absolute value of x , 56	operator precedence of, 55
abstol option	additive inverse, 56
DC analysis, impact on, 28	agauss keyword, 114
numnd, relationship to, 32	ako keyword, 96
simulation concepts of, 31	algebraic expressions
speed vs. accuracy, impact on, 33	See expressions
transient analysis, impact on, 29	algorithm, optimization, 518
ac	algorithms
device parameter	backward differentiation, 30
resistor, 179	direct model evaluation, 33
keyword, 89, 158	Fourier transform example, 76
AC analysis	Gear's BDF, 30
examples, 61	gmindc stepping, 29, 212, 214, 220
multiple simulation runs, 64	Levenberg-Marquardt, 98
optimization and, 89, 104	optimization
parameters, 61	described, 35
performing with .ac, 60	parameters for, 97–98
results, printing, 119, 133	specifying with .model, 140
small-signal, 31	table-based model evaluation, 33
AC analysis	time derivative of charge calculation, 32
small-signal output, 63	trapzoidal integration, 30
.ac command, 60–62, 101	aliasing subcircuit pin names, 52
accuracy	.alter command
evaluation methods and, 33	deleting library sections with, 70
Fourier analysis, 75	described, 64
vs speed, trading off, 33	examples, 64–65
table gridsize and, 78	output, 65
table voltage range and, 150	syntax, 64
tolerance for overall, 32	amax keyword, 91
transient analysis, 32	ambient temperature, 179
accurate option, 107	amin keyword, 92

accurate option, 107

Index B

ampersand, literal, 42	base units, 54
analysis	base-width modulation, BJT, 345
DC transfer, 511	batch simulations
Monte Carlo, 514	controlling, 48
analysis keyword, 104	See also Simulation Manager
analysisname keyword, 60–61	beginning
AND gate, zero-delay, 202	of line, specifying, 42
angles, in expressions, 56	of measurement, specifying, 90
anode terminal, notation for, 120	bimodal distribution, 114
area	bin description parameters, 424
calculation method	binary
See acm	converting from ASCII, 503
effective, MOSFET, 175, 460-462	notation, in device statements, 161
area device parameter	output, 133
BJT, 152	table files, 143, 502
diode, 167	bipolar junction transistor
JFET, 172	See BJT
MESFET, 173	bit keyword, 161
areab device parameter	bit patterns, 161
BJT, 152	BJT
areac device parameter	device parameters, 152-??, 152-153
BJT, 152	device statement, 152
arguments	device terminal names, 120
.print command, 120	gmin conductance, in DC analysis, 29
defined, 59	level/model cross reference, 332
interrupting with comments, 53	noise types, 122
reporting, 91	specifying, for .model , 96
arithmetic, finite precision, 31	temperature effects
as device parameter	energy gap, 354
MOSFET, 174, 430, 453	BJT Level 1 (Gummel-Poon)
ASCII table files	capacitance equations, 352
converting to binary, 503	base-collector, 351–352
generating, 502	base-emitter, 350, 351
referencing, 143	substrate, 352
asin(x), 56	temperature-dependent, 356–357
at keyword, 90, 93	current equations
atan(x), 56	base charge, 347, 348
atan2(x,y), 56	collector and base, 348, 349
aunif keyword, 114	emitter, 348
autostop option, 89	substrate, 349
average power consumption, 118	device model, 338, 358, 364
average signal value, 91	device parameters, 152–??
avg keyword, 92	geometry considerations, 345
avy north, 72	large-signal model, 344
	model parameters
D	base charge parameters, 339–340
В	DC current parameters, 339
ho alralach	junction capacitance parameters, 341
backslash	level 2 parameters, 342
literal, 42	optional parameters, 347
in Unix-style expressions, 41	parasitic capacitance parameters, 340
backward differentiation formulas, 30	parasitic capacitance parameters, 340
Backward Euler method, 30	temperature effect parameters, 342–344
backward searching, 41	transit time parameters, 341
bandwidth, 90	noise types, 122
base of natural logarithms, 337	* * * * * * * * * * * * * * * * * * *
base terminal, notation for, 120	regions of operation, 347

Index C

scaling equations, 346	transmission line, distributed, 184
temperature effects	capacitor
capacitance equations, 356-357	conductance, adding for DC analysis, 29
saturation current and Beta, 354-356	device model
variable base resistance, 349	described, 365
BJT Level 10 (Modella)	equations describing, 365–366
device model, 364	.model type, specifying, 96
model documentation, 364	nonlinear example, 194–195
model parameters, 364	as open circuit, 28
BJT Level 6 (Mextram), 358	parallel-plate example, 195
device model, 358	parameters
model documentation, 358	device statement, 154
model parameters, 358	model definition, 365
BJT Level 9 (VBIC)	voltage-controlled, 195
device model, 359–363	caret (^)
device parameters, 152	exponentiation with, 55
equations, 363	in Find command, 41
model parameters, 359-??	searching for, 41
noise types, 122	carrier frequency, current source, 160
temperature, 363	case sensitivity
blank lines, in netlist, 53	of metric prefixes, 54
Boltzmann's constant, 337	of node and device names, 51
Boolean options, 106	cathode terminal, notation for, 120
bounding errors	cdis , 341
See tolerances	ceil(x), 56
braces, in syntax, 59	cendif keyword, 97
brackets, in syntax, 59	character codes, 41
branch current tolerances, 31	charge
BSIM1	effects, assumed for DC analysis, 102
See MOSFET Level 28	elementary electron constant, 337
See MOSFET Level 4/13 (BSIM1)	reporting with .print, 120
bulk terminal, notation for, 120	tolerances, 32–33
bus keyword, 161	charge tables
bus patterns, 161	external, 143
buses, defining, 149	internal, 33
	resolution of, 78
	chargetol option
r	discretization error effects, 29
C	simulation concepts of, 32–33
С	chg device parameter, 191
device parameter	circuit description
capacitor, 154	See netlists
resistor, 179	circuit equations
transmission line, 184	linearizing, 31
key letter, 154	solving
keyword, .model, 96	See algorithms
C files, 97	circuits
cached tables, 33	defined, 28
capacitance	open, 28
as derivative of charge function, 194	short, 28
	close keyword, 97, 98
parameters describing diode model, 369–370	CMOS inverter
	macromodel example, 144
MESFET Lovel 49/53 model, 422	coefficients, 30
MOSFET Level 49/53 model, 422	coefficients, of polynomial, 163
resistor, 180	collector terminal, notation for, 120
sidewall, MOSFET, 177	concetor terminar, notation for, 120

Index D

color coding of T-Spice input files, 40	coupled inductors
columns	See mutual inductor, 178
in .data command, 67	coupled transmission line
in output files, 119	device model, 367
string headings for, 120	device parameters, 157
Command Tool, 15–??, 17	examples, 367
commands	model parameters, 367
inserting, 15	model type specification, 96
comments	cpl keyword, .model, 96
in continued lines, 53	cross keyword, 90, 93
C-style, 40, 53	crossing, defined, 91
delimiters for, 40, 52	C-style comments, 53
at end of netlist, 71	csw
in expressions, 55	keyword, .model, 96
syntax in T-Spice, 52	switch model type, 182
complex voltage, reporting, 121	cur parameter
computations	voltage-controlled current source, 191
AC magnitude/phase differences, 295	current
average, 91	complex, reporting, 121
derivatives, 92, 97	directionality convention for, 120
maximum, 91	gain, reporting, 146
minimum, 91	reporting with .print , 120
noise, 101	second-order effects, BJT, 344
peak-to-peak, 91	subthreshold
root-mean-square, 91	See subthreshold current
conditional commands	current source
syntax, 82	current-controlled
conductance	See current-controlled current source
minimum	device statement, 158–162
transient analysis, 30	nonlinear, 192
stepping, in DC analysis, 29	powerup simulation of, 32
transmission line, distributed, 184	sweeping, 139
.connect command	voltage-controlled
examples, 66	See voltage-controlled curent source
syntax, 66	current tables
described, 66	external, 143
connectivity errors, 36	internal, 33
constants, defined, 337	resolution of, 78
control options	current-controlled
See .options command	current source, 163–164
convergence	switch, 96
enabling with .nodeset, 100	voltage source, 165–166
errors	curve-fit optimization, 518
	cut keyword, 98
See nonconvergence errors	cut-off region of operation, 347
factors influencing, 32 gradient test for, 98	cut-off region of operation, 347
parasitic diode improvements for, 175	_
relative parameter variation test for, 98	D
tolerances for, 31	
corners, rounding	d
pulse waveform, 159	key letter, 167
vectorized current source, 161	keyword, .model, 96
with polynomial, 159	suffix, decimal notation, 161
$\cos(x)$, 56	d2dt(f) , 58
cosh(x), 56	d2dx(<i>f</i> , <i>x</i>) , 58
cosine functions, 56	damping factor

Index D

sinusoidal current source, 160	delay
dashes, in expressions, 55	between signals, measuring, 89
.dat files, 133	time
.data command	See time delay
.alter command with, 64	transmission, 184
in DC sweeps, 69	delay keyword, 161
described, 67	delta keyword, 117
ending with .enddata, 72	derivative keyword, 92
in error measurements, 89	derivatives
examples, 67–68	accuracy, setting, 97
optimization with .measure , 89	algorithm for
parameter sweeps with, 139, 140	described, 30
syntax, 67	computing with .measure, 92
data keyword, 138, 139, 140	convergence tolerance, 98
db(x) , 56	divided difference approximation for, 32
DC	example function, 95
keyword, 158	numerical, 98
.dc command	device keyword, 63
described, 69	device models
,	
examples, 69	nonlinear, 28
optimization with .measure, 89	parameters, 96
optimization with .optimize , 104	See model parameters
syntax, 69	physical constants for, 337
DC analysis	syntax for, 337
operating point calculation	device name syntax, 36, 51
initial conditions, specifying, 81	See also names
initial guess, specifying, 100	device parameters
invoking, 81	BJT
performing with .op , 102	area , 152
simulation concepts, 28–29	areab, 152
output format, 119	areac, 152
results, reporting with .print , 119, 133	M , 152
tolerances affecting, 28	scale, 153
transfer analysis	tables, 152
output format, 119	capacitor
performing, 69	c , 154
DC component, of FFT, 75, 76	dtemp , 154
dc keyword, 89	I, 154
DC transfer analysis, 511	POLY , 154
ddt(f), 58	scale , 154
ddx(<i>f</i> , <i>x</i>), 58	tc1, 154
debugging netlists, 36	tc2, 154
dec keyword	w , 154
.ac syntax, 60	coupled transmission line
.step syntax, 138	length, 157
decade sweeps, 60–61, 139	lumps, 157
decay time, 105	lumptype, 157
decibels, converting to, 56	current source
decimal notation, 161	AC , 158
decreasing crossing, 93	DC , 158
.del lib command	diode
described, 70	area , 167
.del lib command	L, 167
examples, 70	M, 167
syntax, 70	tables, 167
in .alter blocks, 64	W , 167
in latter blocks, or	TT, 107

Index D

in decates	humatuna 194
inductor	lumptype, 184
dtemp, 168	nl , 184
M , 168	r, 184
r, 168	td , 184
scale, 168	z0 , 184
tc1, 168	voltage-controlled current source
tc2, 168	chg , 191
instance	cur , 191
M , 170	Laplace, 191
JFET	POLY , 191
area, 172	voltage-controlled voltage source
M , 172	Laplace, 197
tables, 172	POLY , 197
MESFET	device state printout
area , 173	BJT Level 1 (Gummel-Poon), 125
I, 173	BJT Level 9 (VBIC), 126
M , 173	capacitor, 128
tables, 173	current-controlled current source, 128
w , 173	current-controlled voltage source, 128
MOSFET	described, 125
ad , 174, 430, 453	diode, 128
as , 174, 430, 453	inductor, 129
frbody, 453	MOSFET, 129
geo , 176	resistor, 131
I, 174, 430	voltage-controlled current source, 131
M , 174, 430, 453	voltage-controlled voltage source, 131
min, 453	device statement syntax, 151
nbc , 453	devices
nrd, 174, 430, 453	active, total number of, 50
nrs, 174, 430, 453	noise contributions of, 121
pd , 174, 430, 453	passive, total number of, 50
ps , 174, 430, 453	subcircuit
psbcp, 453	accessing, 81
rth0, 453	scope, 142
tables, 174, 430, 453	total number of, 50
vbsusr, 453	dielectric permittivities, 337
w, 174, 430	difference measurements, 90
resistor	difference program
ac , 179	setting, 49
c , 179	differentiation, 30
dtemp, 179	diffusion capacitance, 373
I, 179	difsiz keyword, 98
m, 179	dimensions, of internal tables, 78
noise, 179	diode
r, 179	added conductance, in DC analysis, 29
scale, 179	capacitance equations
	diffusion, 373
tc1, 179	junction, 373–374
tc2, 179 w, 179	polysilicon (contact electrode), 374
transmission line	current equations, 371–373
c, 184	default gridsize for, 78
f, 184	device model, 368–381
g, 184	device statements, 167
I, 184	device terminal notation, 120
length, 184	equations, 371–380
lumps, 184	Fowler-Nordheim model, 379–380

Index E

capacitance, 380	inductor, 168
current equations, 380	resistor, 179
geometric and scaling effects	duration of simulation
Level 1, 374–375	See simulation time
Level 3, 375–376	See Simulation time
Juncap2 model documentation, 368	
level/model cross reference, 332–333	E
.model type, specifying, 96	E
model parameters	е
capacitance, 369–370	
DC, 369	key letter, 197
Fowler-Nordheim model, 371	e, 56, 337
geometric, 368–369	Ebers-Moll model, 338, 347, 358, 364
model selectors, 368	Edit >
noise, 370	Find, 41
scaling, 368, 369	Goto Line, 40
· · · · · · · · · · · · · · · · · · ·	Replace, 41, 43–??
temperature, 370–371	editing text, 39
noise types, 123	effective areas and perimeters, 460–462
Philips Advanced Diode 500 model documentation,	electrical specifications, computing, 89
368	electron charge, elementary, 337
Schottky barrier, 380, 381	, 82
temperature effects	emitter terminal, notation for, 120
breakdown voltage, 377	.end command, 71
contact potential, 378	end of line, 42
energy gap equation, 376	end of measurement, specifying, 90
grading coefficient, 379	.enddata command, 67, 72
junction capacitance, 379	, 82
resistance, 379	.endl command, 73, 85
saturation current, 377	.ends command, 74, 142
transit time, 377	energy gap
diode keyword, 150	BJT Level 1 (Gummel-Poon), 354
direct model evaluation	diode, 376
described, 33	.eom command
MOSFET parasitics in, 175	defined, 88
vs. table-based, 34	equations, solving
directionality convention, current, 163	See algorithms
directories	equivalent noise spectral density, 101
input files, 511	err, err1, err2, err3 keywords, 94
tutorial, 511	error
discrete optimization, 115, 117	measurements, 94-95
discretization error, 29	messages
BDF methods and, 30	comments as cause of, 53
described, 29	optimization, 103
discretization error tolerance	error function measurements, 95
See also chargetol, relchargetol	errors, 510
discretized differentiation formulas, 30	connectivity, 36
display area, 14	convergence, 36
displaying simulation output, 14, 47	discretization, 29, 32
distributions, in parametric analysis, 35	syntax, 36
divided difference approximation, 32	err <i>x</i> , <i>y</i>), 56
division, 55, 56	evaluation methods
docking the Simulation Manager, 47	compared, 34
documentation conventions, 10	default, 33
drain terminal, notation for, 120	event-triggered measurements
dtemp device parameter	See find-when measurements
capacitor, 154	examples
± / /	champion

Index F

Monte Carlo Analysis, 515–517	fabs(x), 56
Optimization, 518–528	Failed, simulation status, 47
Optimization Using HSPICE-Compatible Commands,	fall crossing, 91, 93
528	fall keyword, 90, 91, 93
Parametric Sweep, 511–??	fall times, measuring, 90
exp keyword, 158	femto-, 54
$\exp(x)$, 56	filcker noise, 122, 123
exponential	file synchronization, 38
parameter sweeps, 34	files
waveform	binary output, 133
current source, 158	including in netlist, 84
voltage source, 186	as model parameters, 97
exponentiation, in expressions, 55–57	text output, 119
exporting	find keyword, 92
schematic files, 38	finding text, 40, 41
expressions	find-when measurements, 92–94, 95
angles in, 56	Finished, simulation status, 47
evaluating with .measure , 94	finite precision arithmetic, 31
frequency, 121	first line, as comment, 52
multiline, 53, 54	fixed-point notation, 54
operator precedence in, 55	flicker noise, 122
parameters in, 113	floating nodes, 36, 81
printing values for, 119, 120	floating point numbers, 54
in signal statistics measurements, 92	floating the Simulation Manager, 47
summarized, 55	floor(x), 56
in trigger/target measurements, 91	fmod(x,y), 56
vectorized waveform, 161	font options, 20
in voltage source definition, 186	Forward Euler predictor, 30
See also operations	.four command, 75–76
external	Fourier analysis
data	described, 75
difference measurements with, 89	output from, 76
	four-terminal transistor, 173, 174
incorporating in simulation, 67	Fowler-Nordheim model
models	
device instances of, 170, 171	capacitance equations, 380
specifying, 97	current equations, 380
tables	parameters, 371
evaluating, 502	frequency
generating, 502	circuit dependence on, 60
monotonicity, checking for, 503	difference measurements of, 90
printing, 503	fundamental, in FFT, 75
referencing with .table, 143	modulating current sources by, 160
external keyword, 97	modulating voltage sources by, 188
external programs	resolution, in FFT, 75
diif options, 49	sinusoidal current source, 160
extraction, from L-Edit, 38	transmission line, 184
	'frequency()', 121
	frequency-modulated waveform, 160
F	from keyword, 92, 94
	ft keyword, 161
f	.ftx files, 143, 502, 503
device parameter, transmission line, 184	functions
key letter, 163	built-in, 56
metric prefix, 54	See also user-defined functions
.f files, 143, 502, 503	fundamental frequency
fabrication conditions, sensitivity to, 34	FFT analysis, 75

Index G

guessval keyword, 117

frequency-modulated waveform, 160

Gummel-Poon model, 338, 344, 358, 364 G Н metric prefix, 54 h device parameter, transmission line, 184 key letter, 165 key letter, 191 suffix, hexadecimal notation, 161 gamma-type lumps, 157, 185 half-interval, rounding, 159, 161 gate models harmonic distortion, in FFT, 75 AND, 202 .hdl command defined, 79-?? NAND, 202 NOR, 202 hexadecimal notation, 161 OR, 202 hierarchical circuits gate terminal, notation for, 120 See subcircuits hierarchical notation, 52, 170 gauss keyword, 114 Gaussian distribution, 114 high-bias effects Gear's BDF Method, 30 BJT model, 338, 358, 364 geo parameter, MOSFET, 176 high-level injection, BJT, 345 geometry and scaling parameters hpfile keyword, 97 BJT Level 1 (Gummel-Poon), 345-347 HSPICE, 528 diode, 368-369 HSPICE compatibility, 284 MESFET, 387 HSPICE compatible sweep syntax, 140 giga-, 54 ht keyword, 161 global hybrid RGT lumps, 157, 185 hyperbolic functions, 57 minimum, computing, 92 names, 52, 77 hyphens, in expressions, 55 parameters hysteresis, in switches, 182 overriding, 113 sweeping, 139 simulation options See .options command .global command, 77, 142 gmin option, 30 key letter, 158 gmindc option, 29 .ic command gmindc stepping, 29 in .alter blocks, 64 **GND**, 77 for DC operating point, 102 goal keyword, 89-90 defined, 81 goal, for optimization, 517, 518 in subcircuits, 142 ideal voltage supply, 186 optimization, 35, 103, 140 idt(f), 58 goto line number, 40 idx(f,x), 58 grad keyword, 98 , 82 gradient descent, 35 if(a,b,c), 56 gradients imaginary components, printing See derivatives complex current, 120 grading coefficient complex voltage, 121 diode, 379 impedance, of transmission line, 184 gramp option, 29, 212, 214, 220 .include command graphical user interface in .alter blocks, 64 See user interface compared with .lib, 85 grid points, table, 33 defined, 84 gridsize, 150 parameter scope in, 113 .gridsize command, 33, 78 including library files, 85 ground, in netlists, 51 increasing crossing, 93

Index

incremental optimization, 518	linear, 313
independent variables	in table-based evaluation, 33
analysis types and, 89	interpreting C files, 97
difference measurements of, 90	intrinsic carrier concentration at 300K, 337
reporting, 91	inverse region of operation, 347
inductance	inverse trigonometric functions, 56
of inductor, 168	inverse, additive, 56
transmission line, distributed, 184	inverter
inductors	CMOS macromodel example, 144
coupled	zero-delay, 201
See mutual inductor	inward current positive, 120
DC analysis treatment of, 28	iss, 349
device statements, 168–169	italics, in syntax, 59
initializing currents in, 81	iterations
parallel, 168	initial conditions, effect on, 32
temperature dependence, 168	limits on
initial	described, 28, 29, 32
conditions	optimization, 98
DC operating point, 102	source stepping, 32
powerup from zero, 32	iterative ladder circuit (ILC) expansion, 157
for transient analysis, 147	itropt keyword, 98
guesses, for DC operating point, 32, 100	
parameter values, optimization, 115, 117	
seed value, for random numbers, 139	J
inoise keyword, 121	0
input deck	j
See netlists	
input files, 511	key letter, 172
comparing, 49	JFET 204
See netlists	charge equations, 384
	current equations, 383–384
input noise spectral density, 121	default gridsize for, 78
input signals	device model, 382–384
previewing, 147	device statements, 172
Insert mode (Ins), 39	device terminal names, 120
instance	equations, 383–384
device statement, 170–171	large signal model, 383
instantaneous power, 118	level/model cross reference, 333
int(x), 56	model parameters, 382
integer expressions, 56	noise types, 123
integral keyword, 92	specifying, for .model , 96
integration	jfet keyword, 150
functions, 57	
simulation concepts, 29, 30	junction field effect transistor
internal tables	See JFET
as evaluation method, described, 33	
resolution of, 33, 78	K
toggling	
capacitor model, 152	k
diode model, 167	key letter, 178
JFT model, 172	metric prefix, 54
MESFET model, 173	k (Boltzmann's constant), 337
MOSFET model, 175	KCL equations, 31–32
interpolate keyword, 75	key letter
interpolation	· · · · · · · · · · · · · · · · · · ·
accuracy of, 33	c , 154
Fourier analysis, 75	d , 167
1 Outlot undigoto, 15	e , 197

Index

f , 163	length device parameter
g , 191	coupled transmission line, 157
h , 165	transmission line, 184
i, 158	length parameters
j, 172	capacitor, 154
k , 178	diodes, 167
I, 168	MESFET device, 173
m, 174	MOSFET Level 49/53, 422–423
q , 152	resistor, 180
r, 179	transmission line, 184
s, 182	level
t, 184	model selector
u, 157	
	.model keyword, 96
v, 186	optimization method selector, 98
x , 170	Levenberg-Marquardt algorithm, 98
z , 173	.lib command
key letters	in .alter blocks, 64
in .print statements, 120	described, 85
defined, 52	ending with .endl , 73
keyword groups, 22	modifying with .del lib, 70
keywords, 22	libraries
reserved, list of, 51	definitions
kilo-, 54	See .lib command, 73
Kirchoff's Current Law, 28, 31	file formats, 85–86
See also KCL equations	omitting sections of, 64
"knee" currents, BTJ, 345	limit keyword, 114
kth order BDF method, 30	lin keyword, 60, 61, 138
	line
	beginning of, as search input, 42
1	breaks
_	searching for, 41, 42
1	continuation
device parameter	in expressions, 54, 55
capacitor, 154	end of, as search input, 42
MESFET, 173	numbers
MOSFET, 174, 430	in debugging syntax, 36
resistor, 179	using, 40
transmission line, 184	linear
key letter, 168	region of operation
L device parameter	MOSFET, 401
diode, 167	MOSFET Level 2, 401–403
language conventions, 51	sweeps
Laplace voltage-controlled current source parameter, 191	AC analysis, 60, 61
Laplace voltage-controlled voltage source parameter, 197	parameter, 34
large-signal models	with .step , 139
MESFET, 389	linear sweep, 511
MOSFET Level 1/2/3, 396	linear system solution
resistor, 464	parallel processing, 37
large-signal time-domain analysis	linearized small-signal models, 60
See transient analysis	linearizing KCL equations, 31
last keyword, 91, 93	list keyword, 60, 61, 138, 140
lateral geometry	list sweep, 511
BJT, 345	.load command
ldexp(x,y), 56	defined, 87
L-Edit, 38	syntax, 87
features, 10	local scope, 170
0.40101.5. 177	

logarithmic expressions, 57	of two expressions, evaluating, 57
logarithmic sweep, 511	maxord option
logarithmic sweeps	simulation concepts, 29, 30
AC analysis, 61	maxval keyword, 117
of parameters, 34	.meas command
with .step, 139	See .measure command
look-up tables, 33	measname, 140
lossless transmission line, 184	.measure command
lossy transmission line, 184	dc , 69
lt keyword, 161	error functions, 89, 94, 95
lumps device parameter	example with .optimize, 105
coupled transmission line, 157	examples, 95
transmission line, 184	expression evaluation, 94
lumptype device parameter	external data, using with, 67
coupled transmission line, 157	find-when and derivative measurements, 92, 94
transmission line, 184	optimization and, 103
	plotting results from, 138
	results
M	expressions involving, 94
IVI	as optimization goal, 140
m	signal statistics, 91, 92
metric prefix, 54	in subcircuits, 142
device parameter, resistor, 179	suppressing output, 90
key letter, 174	syntax, 89–95
M device parameter	trigger/target measurements, 90
BJT, 152	, 512, 517, 518
diode, 167	output, 510
inductor, 168	plotting, 510, 513
	measurement types, 90, 91
instance, 170	meg metric prefix, 54
JFET, 172	mega-, 54
MESFET, 174, 420, 452	memory
MOSFET, 174, 430, 453	updating to most recent file, 22
.macro command	use, table gridsize and, 78
defined, 88	MEMS, 195
magnitude	menu bar, 12
calculation methods, AC analysis, 295	See also user interface
orders of, notation, 54	mes keyword, 150
printing 121	MESFET
current, 121	capacitance equations, 390–391
input noise spectral density, 121	conductance, in DC analysis, 29
output noise spectral density, 121	current equations, 389–390
voltage, 121	default gridsize for, 78
Maher-Mead	device model, 385–394
See MOSFET Level 5	device statements, 173
manual line break, in Find command, 41	device statements, 175 device terminal names, 120
mathematical operator precedence, 55	
matrix-vector operations, 31	equations, 389–394
max keyword, 92, 98	large-signal model, 389
max(expression1, expression2), 57	level/model cross reference, 333
maximum	model parameters, 385, 388
number of iterations	ACM parameters, 387–388
DC analysis, 32	capacitance, 386
optimization, 98	DC, 385–386
source stepping, 32	geometry, 387
optimization parameter value, 115	noise, 386
signal value, 89, 91	submodel selectors, 385

temperature, 388	af , 342
N model type specification, 96	bex , 342
P model type specification, 96	bexv , 342
temperature dependence, 391–394	c2 jle , 339
messages,output	c4 , 339
See Simulation Output window	cbcp , 340
metal oxide semiconductor field effect transistor	cbep , 340
See MOSFET	ccs csub cjs, 341
metal semiconductor field effect transistor	ccsp, 340
See MESFET	cdis xcjc , 341
metric prefixes, 36, 54	cjc , 341
micro-, 54	cje , 341
microelectromechanical systems (MEMS), 195	cjs ccs csub , 341
mil metric prefix, 55	csub cjs ccs , 341
milli-, 54	ctc , 342
min keyword, 92	cte , 342
min(expression1, expression2), 57	cts, 342
minima	eg , 342
multiple occurrances of, 92	esub mjs, 341
minima, finding, 57	expli, 339
minimum	fc, 341
conductance, 29, 212, 214, 220	ga21 , 342
global, 92	gap1, 342
optimization parameter value, 115	ibc , 339
signal value, 89, 91	ibe , 339
source step size, 32	ik ikf jbf, 340
minsrcstep option, 28, 32	ikf ik jbf, 340
minval keyword, 89, 90, 103, 117	ikr jbr, 340
mode, 119, 133, 147	iob irb jrb, 340
model	irb jrb iob , 340
evaluation	is , 339
direct, 33	isc, 339
table-based, 33	ise, 339
names	iss, 339
See names	itf jtf, 341
	jbr ikr, 340
parameters	
extracting, 67	jle c2, 339
specifying, 96	jrb irb iob, 340
selectors	jtf itf, 341
diode, 368	kf , 342
MOSFET Level 49/53, 418	level , 339
temperature, nominal, 337	mc mjc , 341
types, for .model , 96–97	me mje , 341
.model command, 517	mjc mc , 341
in .alter block, 64	mje me , 341
defined, 96, 337	mjs esub , 341
examples, 99	nc nlc, 339
in library files, 86	ne nle , 339
optimization algorithm parameters, 140	nf , 339
type field, 96, 97	nkf, 340
model evaluation	
	nlc nc, 339
parallel processin, 37	nle ne, 339
model keyword, 104, 138, 140, 518	nr, 339
model parameters	ns , 339
BJT Level 1 (Gummel-Poon)	pc vjc , 341
. jbf ikf ik , 340	pe vje , 341

psub vjs, 341	ttf1, 343
ptf, 341	ttf2, 343
rb , 340	ttr1, 343
rbm , 340	ttr 2 , 343
rc, 340	tvaf1, 344
re, 340	tvaf2, 344
tb tcb xtb, 344	tvar1, 344
tbf1, 342	tvar2, 344
tbf2, 342	tvjc, 344
tbr1, 342	tvje, 344
tbr2, 342	tvjs, 344
tcb xtb tb, 344	vaf vbf, 340
tf, 341	var vb vbb, 340
tikf1, 342	vb vbb var , 340
tikf2, 342	vbb vb var , 340
tikr1, 342	vbf vaf , 340
tikr2, 342	vjc pc , 341
tirb1, 342	vje pe , 341
tirb2, 342	vjs psub , 341
tis1, 343	vtf , 341
tis2, 343	xcjc cdis , 341
tisc1, 343	xtb tb tcb, 344
tisc2, 343	xtf , 341
tise1, 343	xti , 344
tise2, 343	BJT Level 9 (VBIC)
tiss1, 343	afn , 359
tiss2, 343	ajc , 359
titf1, 343	aje , 359
titf2, 343	ajs , 359
tlev, 342	art , 359
tlevc, 342	avc1 , 359
tmjc1, 343	avc2, 359
tmjc2, 343	bfn , 359
tmje1, 343	cbco , 359
tmje2, 343	cbeo , 359
tmjs1, 343	ccso , 359
tmjs2, 343	cjc , 359
tnc1, 343	cjcp , 359
tnc2, 343	cje , 359
tne1, 343	cjep , 359
tne2, 343	cth, 359
tnf1, 343	
	dear, 359
tnf2, 343	dtemp, 360
tnom, 342	ea , 360
tnr1, 343	eaic , 360
tnr2, 343	eaie , 360
tns2, 343	eais , 360
tr, 341	eanc , 360
trb1, 343	eane , 360
trb2, 343	eans , 360
trc1, 343	eap , 360
trc2, 343	fc, 360
tre1, 343	gamm , 360
tre2, 343	hrcf, 360
trm1, 343	ibbe, 360
trm2, 343	ibci, 360
umz, Jaj	IDGI, 300

ibcip , 360	tr, 362
ibcn , 360	tref, 362
ibcnp , 360	tvbbe1 , 362
ibei, 360	tvbbe2 , 362
ibeip, 360	vbbe , 362
iben , 360	vef , 362
ibenp, 360	ver , 362
ikf, 360	vers, 362
ikp, 360	version, 362
ikr, 360	vo , 362
is, 360	vrev , 362
ismin, 363	vrt, 362
isp, 360	vtf, 362
ispmin, 363	wbe, 362
isrr, 360	wsp, 362
	• •
itf, 360	xii, 362
kfn, 360	xikf , 362
level, 363	xin , 362
mc, 360	xis , 362
mcmin, 363	xisr , 362
me , 360	xrb , 362
memin, 363	xrbi , 362
ms , 361	xrbp , 362
msmin , 363	xrbx , 362
nbbe , 361	xrc , 362
nci, 361	xrci , 362
ncip, 361	xrcx , 362
ncn, 361	xre , 362
ncnp, 361	xrs , 362
nei, 361	xtf , 362
nen, 361	xvo , 362
nf , 361	capacitor
nfp , 361	Cap , 365
nkf, 361	Capsw , 365
nr, 361	Cox , 365
pc, 361	Del , 365
pe , 361	Di , 365
ps, 361	L, 365
qbm , 361	Shrink , 365
qco, 361	Tc1, 365
qtf, 361	Tc2 , 365
rbi, 361	Thick, 365
rbp, 361	Tref , 365
rbpmin, 363	W , 365
rbx, 361	coupled transmission line
rci, 361	[c], 367
rcx, 361	[g] , 367
re, 361	[I], 367
rs, 361	[r], 367
rth , 361	diode
tavc, 361	AF , 370
td, 361	area , 368
tf , 361	BV VB VAR VRB , 369
tnbbe , 361	CJ CJA CJ0 , 369
tnf, 361	CJ0 CJ CJA , 369
tnom, 362	CJA CJ0 CJ , 369

CJP CJSW, 370	TPHP , 371
CJSW CJS , 370	TREF TNOM , 370
CTA CTC, 371	TRS , 371
CTC CTA, 371	TT , 370
CTP , 371	TTT1 , 371
dcap, 368	TTT2 , 371
EF , 371	VAR VRB BV VB , 369
EG , 370	VB VAR VRB BV , 369
ER , 371	VJ PHA PB PHI , 370
EXA M MJ , 370	VJSW PHP , 370
EXP MJSW , 370	VRB BV VB VAR , 369
EXPLI , 369	VSB , 370
FC , 370	W , 369, 371
FCS, 370	WM , 167, 369
GAP1 , 370	WP , 167, 369
GAP2 , 370	XM , 369
IB IBV , 369	XOI , 370
IBF IK IKF, 369	XOM , 370
IBR IKB IKR, 369	XP , 369
IBV IB, 369	XTI , 371
IK IKF IBF, 369	XW , 369, 371
IKB IKR IBR, 369	JFET
IKF IBF IK, 369	beta , 382
IKR IBR IKB, 369	cgd , 382
IS JS, 369	cgs , 382
JF , 371	fc, 382
JR, 371	is, 382
JS IS, 369	lambda, 382
JSW, 369	pb , 382
KF, 370	rd, 382
L, 369, 371	rs, 382
level, 368	vto, 382
LM, 167, 369	MESFET
LP, 167, 369	acm, 387
M, 368	af , 386
M EXA MJ, 370	al , 380 align , 387
MJ M EXA, 370	alph, 385
MJSW EXP, 370	AREAeff, 387
N, 369	b, 385
PB PHI VJ PHA, 370	bta, 385
PHA PB PHI VJ, 370	BETAeff, 388
PHI VJ PHA PB, 370	bex, 388
	•
PHP VJSW, 370	capop , 385
PJ, 167, 368	cgd, 386
RS, 369	CGDeff , 388
SCALE, 368	cgs, 386
SCALM, 368	CGSeff , 388
SHRINK , 369	crat , 386
TCV, 370	ctd, 388
tlev, 368	cts, 388
tlevc, 368	d , 385
TM1, 371	dcap, 385
TM2, 371	eg , 388
TNOM TREF, 370	fc, 386
TOX, 371	gamds gamma, 385
TPB , 371	gamma gamds, 385

gap1, 388	dlat latd ld , 457
gap2, 388	expli, 457
gcap , 386	geo , 176
gdsnoi, 386	hdif , 457
hdif, 387	i js js , 457
interr, 386	is , 457
is , 385	js ijs , 457
ISeff, 388	jssw jsw , 457
k1 , 385	jsw jssw, 457
kf , 386	latd ld dlat, 457
I, 387	ld dlat latd, 457
lambda, 385	ldif, 457
Idel, 387	lmax, 457
ldif, 387	lmin, 457
level, 385	meto , 457
m, 386	mj mj0 , 457
n, 388	mj 0 mj, 457
nchan, 385	mjsw mjw, 457
nlev, 385	mjw mjsw, 457
pb , 386	n, 457
rd, 385	nds, 458
RDeff, 387	pb pj , 458
rg, 385	pb pj, 438 pbsw pjw php, 458
_	
RGeff , 387	php pbsw pjw, 458
rs, 386	pj pb, 458
RSeff , 387	pjw php pbsw , 458
rsh, 386	prdt , 458
rshg, 386	prst, 458
rshl, 386	rd, 458
sat, 385	rdc, 458
satexp, 386	rs, 458
tcv, 388	rsc, 458
tlev, 385	rsh rshm , 458
tlevc, 385	rshm rsh , 458
tpb , 388	vnds , 458
trd, 388	wmax , 458
trg, 388	wmin , 458
trs, 388	wmlt , 458
tt, 386	xl , 458
ucrit, 386	xlref , 458
vbi , 386	xw , 458
vdel , 386	xwref , 458
vgexp , 386	MOSFET Levels 1/2/3
vmax, 386	del , 396
vp , 386	delta , 395
vto, 386	dfs nfs dnf nf , 395
w, 387	dl Idel xl, 395
wdel, 387	dnb nb nsub, 395
xti , 388	dnf nf dfs nfs, 395
MOSFET (all levels)	dw wdel xw, 395
acm, 457	eta, 396
cj cjm, 457	gamma , 395
cjgate, 457	kappa , 396
cjm cj, 457	kp , 395
cjsw cjw, 457	lambda, 395
cjw cjsw, 457	ld, 395
	iu, 575

ldel xl dl, 395	Ix2e , 413
level, 395	lx2ms , 414
nb nsub dnb , 395	lx2mz , 413
neff, 395	lx2u0 , 413
nf dfs nfs dnf , 395	lx2u1 , 413
nfs dnf nf dfs , 395	Ix3e , 413
nss , 395	lx3ms , 414
nsub dnb nb , 395	lx3u1 , 414
phi, 395	mus , 414
theta, 396	muz , 412
tox, 395	n0 , 415
tpg, 395	nb , 415
ucrit, 395	nd , 415
uexp, 395	palpha , 441
uo, 395	peta , 412
vmax, 395	pgamma, 441
vto, 395	phi , 412
wd, 395	piratio, 441
wdel xw dw, 395	pk1 , 412
xj, 395	pk2 , 412
xl dl ldel, 395	pkt1, 440
xw dw wdel, 395	pmus, 414
MOSFET Level 4 (BSIM1)	pmuz, 412
alpha, 441	pn0, 415
cgbo, 414	pnb, 415
cgdo, 414	pnd, 415
cgso, 414	
	pphi, 412
dl, 413	pu0 , 413
dl Idel xl, 415	pu1 , 413
dw, 413	pute, 440
dw wdel xw, 415	pvfb, 412
eta, 412	pvoffset, 441
gamma, 441	px2e , 413
iratio, 441	px2ms, 414
k1 , 412	px2mz, 413
k2 , 412	px2u0 , 413
kt1, 440	px2u1 , 413
lalpha, 441	px3e , 413
Idel xl dl , 415	px3ms , 414
leta, 412	px3u1 , 414
lgamma, 441	satmod, 441
liratio, 441	submod, 441
lk1 , 412	temp, 414
lk2 , 412	tempmod, 440
lkt1, 440	tox, 414
Imus , 414	u0 , 413
Imuz , 412	u1 , 413
In0 , 415	ute , 440
Inb , 415	vdd, 414
Ind , 415	vfb , 412
lphi, 412	voffset, 441
lu0 , 413	walpha, 441
lu1 , 413	wdel xw dw , 415
lute, 440	weta , 412
lvfb, 412	wgamma, 441
lvoffset, 441	wiratio, 441
	•

wk1 , 412	MOSFET Level 14/54
wk2 , 412	acnqsmod, 430
wkt1 , 440	ad , 453
wmlt , 441	aebcp , 453
wmus , 414	agbcp , 453
wmuz , 412	bjtoff , 453
wn0 , 415	cth0 , 453
wnb , 415	frbody , 453
wnd, 415	geomod , 430
wphi, 412	ic , 454
wu0 , 413	I, 454
wu1 , 413	min , 430
wute, 440	nbc , 454
wvfb, 412	nf , 430
wvoffset, 441	nrb , 454
wx2e, 413	nrs, 454
wx2ms, 414	, 454
wx2mz, 413	nseg, 454
wx2u0 , 413	off , 454
wx2u1, 413	pd , 454
wx3e , 413	pdbcp , 454
wx3ms, 414	ps , 454
wx3u1, 414	psbcp , 454
x2e , 413	RBDB , 430
x2ms , 414	rbodymod , 430
x2mz , 413	RBPD , 430
x2u0 , 413	RBPS , 430
x2u1 , 413	RBSB , 430
x3e , 413	rgatemod, 454
x3ms , 414	rgeomod, 430
x3u1, 414	rsh, 454
xj, 441	rth 0 , 454
xi idel di, 415	SA , 430
xpart, 414	sb , 431
xw dw wdel, 415	sd , 431
MOSFET Level 5	soimod, 454
del, 416	tradeout, 454
dl Idel xl, 416 dw wdel xw, 416	trnsqmod, 430 vbsusr, 454
· · · · · · · · · · · · · · · · · · ·	w, 454
eghalf , 416 Id , 416	MOSFET Level 15 (RPI a-Si TFT)
	ALPHASAT , 432
mu0, 416	CGDO, 432
nsub, 416	CGSO , 433
qdtol, 416	MOSFET Level 47
qstol , 416	a0 , 448
solver, 416	a1 , 448
tox, 416	a2 , 448
tref, 416	at, 448
vfb , 416	bulkmod, 448
vmax, 416	cdsc, 448
wd, 416	cdscb , 448
wdel xw dw, 416	cgbo cgbom , 450
xj , 416	cgbom cgbo , 450
xl dl ldel , 416	cgdo cgdom , 450
xw dw wdel , 416	cgdom cgdo , 450

cgso cgsom , 450	ub1 , 449
cgsom cgso , 450	uc , 449
cit , 448	uc0 , 449
dl ld , 450	uc1 , 450
dl Idel xI, 450	ute , 450
drout, 449	vbi , 449
dsub, 449	vbm , 449
dvt0, 449	vbx , 449
dvt1, 449	vfb , 450
dvt2, 449	vghigh, 448
dw wd, 450	vglow , 448
dw wdel xw, 450	voff , 450
em, 449	vsat, 448
eta, 450	vth0 vtho , 449
eta0, 450	vtho vth0 , 449
etab, 450	w0 , 449
gamma1, 449	wd dw , 450
gamma2, 449	wdel xw dw, 450
k1, 449	wmlt, 450
k2 , 449	xj , 448
k3, 449	xl dl ldel, 450
k3b, 449	xpart, 450
keta, 448	xt , 449
kt1, 449	xw dw wdel , 450
kt1, 449	MOSFET Level 49/53
kt2, 449	, 424
ld dl, 450	a1 , 418
ldd, 450	a2 , 418
11.11.11.11.470	410
	ags, 418
litl, 449	alpha0 , 418
litl, 449 lmlt, 450	alpha0 , 418 at , 423
litl, 449 lmlt, 450 mobmod, 448	alpha0 , 418 at , 423 b0 , 419
litl, 449 lmlt, 450 mobmod, 448 nch npeak, 449	alpha0, 418 at, 423 b0, 419 b1, 419
litl, 449 Imlt, 450 mobmod, 448 nch npeak, 449 nfactor, 448	alpha0, 418 at, 423 b0, 419 b1, 419 beta0, 419
litl, 449 Imlt, 450 mobmod, 448 nch npeak, 449 nfactor, 448 ngate, 449	alpha0, 418 at, 423 b0, 419 b1, 419 beta0, 419 binflag, 418
litl, 449 lmlt, 450 mobmod, 448 nch npeak, 449 nfactor, 448 ngate, 449 nlx, 449	alpha0, 418 at, 423 b0, 419 b1, 419 beta0, 419 binflag, 418 binunit, 424
litl, 449 lmlt, 450 mobmod, 448 nch npeak, 449 nfactor, 448 ngate, 449 nlx, 449 npeak nch, 449	alpha0, 418 at, 423 b0, 419 b1, 419 beta0, 419 binflag, 418 binunit, 424 capmod, 418
litl, 449 lmlt, 450 mobmod, 448 nch npeak, 449 nfactor, 448 ngate, 449 nlx, 449 npeak nch, 449 nsub, 448	alpha0, 418 at, 423 b0, 419 b1, 419 beta0, 419 binflag, 418 binunit, 424 capmod, 418 cdsc, 419
litl, 449 lmlt, 450 mobmod, 448 nch npeak, 449 nfactor, 448 ngate, 449 nlx, 449 npeak nch, 449 nsub, 448 pclm, 450	alpha0, 418 at, 423 b0, 419 b1, 419 beta0, 419 binflag, 418 binunit, 424 capmod, 418 cdsc, 419 cdscb, 419
litl, 449 lmlt, 450 mobmod, 448 nch npeak, 449 nfactor, 448 ngate, 449 nlx, 449 npeak nch, 449 nsub, 448 pclm, 450 pdibl1, 450	alpha0, 418 at, 423 b0, 419 b1, 419 beta0, 419 binflag, 418 binunit, 424 capmod, 418 cdsc, 419 cdscd, 419
litl, 449 lmlt, 450 mobmod, 448 nch npeak, 449 nfactor, 448 ngate, 449 nlx, 449 npeak nch, 449 nsub, 448 pclm, 450 pdibl2, 450	alpha0, 418 at, 423 b0, 419 b1, 419 beta0, 419 binflag, 418 binunit, 424 capmod, 418 cdsc, 419 cdscb, 419 cdscd, 419 cf, 422
litl, 449 lmlt, 450 mobmod, 448 nch npeak, 449 nfactor, 448 ngate, 449 nlx, 449 npeak nch, 449 nsub, 448 pclm, 450 pdibl1, 450 pdibl2, 450 phi, 449	alpha0, 418 at, 423 b0, 419 b1, 419 beta0, 419 binflag, 418 binunit, 424 capmod, 418 cdsc, 419 cdscb, 419 cdscd, 419 cf, 422 cgbo, 422
litl, 449 lmlt, 450 mobmod, 448 nch npeak, 449 nfactor, 448 ngate, 449 nlx, 449 npeak nch, 449 nsub, 448 pclm, 450 pdibl2, 450	alpha0, 418 at, 423 b0, 419 b1, 419 beta0, 419 binflag, 418 binunit, 424 capmod, 418 cdsc, 419 cdscb, 419 cdscd, 419 cf, 422
litl, 449 lmlt, 450 mobmod, 448 nch npeak, 449 nfactor, 448 ngate, 449 nlx, 449 npeak nch, 449 nsub, 448 pclm, 450 pdibl1, 450 pdibl2, 450 phi, 449	alpha0, 418 at, 423 b0, 419 b1, 419 beta0, 419 binflag, 418 binunit, 424 capmod, 418 cdsc, 419 cdscb, 419 cdscd, 419 cf, 422 cgbo, 422
litl, 449 lmlt, 450 mobmod, 448 nch npeak, 449 nfactor, 448 ngate, 449 nlx, 449 npeak nch, 449 nsub, 448 pclm, 450 pdibl1, 450 pdibl2, 450 phi, 449 pscbe1, 450	alpha0, 418 at, 423 b0, 419 b1, 419 beta0, 419 binflag, 418 binunit, 424 capmod, 418 cdsc, 419 cdscb, 419 cdscd, 419 cf, 422 cgbo, 422 cgdl, 422
litl, 449 lmlt, 450 mobmod, 448 nch npeak, 449 nfactor, 448 ngate, 449 nlx, 449 npeak nch, 449 nsub, 448 pclm, 450 pdibl1, 450 pdibl2, 450 phi, 449 pscbe1, 450 pscbe2, 450	alpha0, 418 at, 423 b0, 419 b1, 419 beta0, 419 binflag, 418 binunit, 424 capmod, 418 cdsc, 419 cdscb, 419 cdscd, 419 cf, 422 cgbo, 422 cgdl, 422 cgdo, 422
litl, 449 lmlt, 450 mobmod, 448 nch npeak, 449 nfactor, 448 ngate, 449 nlx, 449 npeak nch, 449 nsub, 448 pclm, 450 pdibl1, 450 pdibl2, 450 phi, 449 pscbe1, 450 pscbe2, 450 pvag, 450	alpha0, 418 at, 423 b0, 419 b1, 419 beta0, 419 binflag, 418 binunit, 424 capmod, 418 cdsc, 419 cdscb, 419 cdscd, 419 cf, 422 cgbo, 422 cgdl, 422 cgdo, 422 cgsl, 422
litl, 449 lmlt, 450 mobmod, 448 nch npeak, 449 nfactor, 448 ngate, 449 nlx, 449 npeak nch, 449 nsub, 448 pclm, 450 pdibl1, 450 pdibl2, 450 phi, 449 pscbe1, 450 pscbe2, 450 pvag, 450 rds0, 450	alpha0, 418 at, 423 b0, 419 b1, 419 beta0, 419 binflag, 418 binunit, 424 capmod, 418 cdsc, 419 cdscb, 419 cdscd, 419 cf, 422 cgbo, 422 cgdl, 422 cgdl, 422 cgsl, 422 cgso, 422
litl, 449 Imlt, 450 mobmod, 448 nch npeak, 449 nfactor, 448 ngate, 449 nlx, 449 npeak nch, 449 nsub, 448 pclm, 450 pdibl1, 450 pdibl2, 450 phi, 449 pscbe1, 450 pscbe2, 450 pvag, 450 rds0, 450 rdsw, 450	alpha0, 418 at, 423 b0, 419 b1, 419 beta0, 419 binflag, 418 binunit, 424 capmod, 418 cdsc, 419 cdscb, 419 cdscd, 419 cf, 422 cgbo, 422 cgdl, 422 cgdl, 422 cgsl, 422 cgso, 422 cgso, 422 cit, 419
litl, 449 Imlt, 450 mobmod, 448 nch npeak, 449 nfactor, 448 ngate, 449 nlx, 449 npeak nch, 449 nsub, 448 pclm, 450 pdibl2, 450 phi, 449 pscbe1, 450 pscbe2, 450 pvag, 450 rds0, 450 rdsw, 450 satmod, 448	alpha0, 418 at, 423 b0, 419 b1, 419 beta0, 419 binflag, 418 binunit, 424 capmod, 418 cdsc, 419 cdscb, 419 cdscd, 419 cf, 422 cgbo, 422 cgdl, 422 cgdl, 422 cgsl, 422 cgso, 422 cit, 419 ckappa, 422
litl, 449 Imlt, 450 mobmod, 448 nch npeak, 449 nfactor, 448 ngate, 449 nlx, 449 npeak nch, 449 nsub, 448 pclm, 450 pdibl1, 450 pdibl2, 450 phi, 449 pscbe1, 450 pscbe2, 450 pvag, 450 rds0, 450 rdsw, 450 satmod, 448 subthmod, 448	alpha0, 418 at, 423 b0, 419 b1, 419 beta0, 419 binflag, 418 binunit, 424 capmod, 418 cdsc, 419 cdscb, 419 cdscd, 419 cf, 422 cgbo, 422 cgdl, 422 cgdl, 422 cgso, 422 cit, 419 ckappa, 422 clc, 422
litl, 449 Imlt, 450 mobmod, 448 nch npeak, 449 nfactor, 448 ngate, 449 nlx, 449 npeak nch, 449 nsub, 448 pclm, 450 pdibl1, 450 pdibl2, 450 phi, 449 pscbe1, 450 pscbe2, 450 pvag, 450 rds0, 450 rdsw, 450 satmod, 448 subthmod, 448 tnom tref, 450	alpha0, 418 at, 423 b0, 419 b1, 419 beta0, 419 binflag, 418 binunit, 424 capmod, 418 cdsc, 419 cdscb, 419 cdscd, 419 cf, 422 cgbo, 422 cgdl, 422 cgdl, 422 cgs, 422 cgs, 422 cit, 419 ckappa, 422 cle, 422 cle, 422 cle, 422
litl, 449 Imlt, 450 mobmod, 448 nch npeak, 449 nfactor, 448 ngate, 449 nlx, 449 npeak nch, 449 nsub, 448 pclm, 450 pdibl1, 450 pdibl2, 450 phi, 449 pscbe1, 450 pscbe2, 450 pvag, 450 rds0, 450 rdsw, 450 satmod, 448 subthmod, 448 tnom tref, 450 tox, 448	alpha0, 418 at, 423 b0, 419 b1, 419 beta0, 419 binflag, 418 binunit, 424 capmod, 418 cdsc, 419 cdscb, 419 cdscd, 419 cf, 422 cgbo, 422 cgdl, 422 cgdl, 422 cgso, 422 cit, 419 ckappa, 422 clc, 422 cle, 422 CTA CTC, 423
litl, 449 Imlt, 450 mobmod, 448 nch npeak, 449 nfactor, 448 ngate, 449 nlx, 449 npeak nch, 449 nsub, 448 pclm, 450 pdibl1, 450 pdibl2, 450 phi, 449 pscbe1, 450 pscbe2, 450 pvag, 450 rds0, 450 rdsw, 450 satmod, 448 subthmod, 448 tnom tref, 450 tox, 448 tref tnom, 450	alpha0, 418 at, 423 b0, 419 b1, 419 beta0, 419 binflag, 418 binunit, 424 capmod, 418 cdsc, 419 cdscb, 419 cdscd, 419 cf, 422 cgbo, 422 cgdl, 422 cgdl, 422 cgsl, 422 cgs, 422 cit, 419 ckappa, 422 clc, 422 clc, 422 CTA CTC, 423 CTC CTA, 423
litl, 449 Imlt, 450 mobmod, 448 nch npeak, 449 nfactor, 448 ngate, 449 nlx, 449 npeak nch, 449 nsub, 448 pclm, 450 pdibl1, 450 pdibl2, 450 phi, 449 pscbe1, 450 pscbe2, 450 pvag, 450 rds0, 450 rdsw, 450 satmod, 448 subthmod, 448 tnom tref, 450 tox, 448 tref tnom, 450 u0, 450	alpha0, 418 at, 423 b0, 419 b1, 419 beta0, 419 binflag, 418 binunit, 424 capmod, 418 cdsc, 419 cdscb, 419 cdscd, 419 cf, 422 cgbo, 422 cgdl, 422 cgdl, 422 cgso, 422 cit, 419 ckappa, 422 clc, 422 clc, 422 clc, 422 clc, 423 cTC CTA, 423 cTP, 423 delta, 419
litl, 449 Imlt, 450 mobmod, 448 nch npeak, 449 nfactor, 448 ngate, 449 nlx, 449 npeak nch, 449 nsub, 448 pclm, 450 pdibl1, 450 pdibl2, 450 phi, 449 pscbe1, 450 pscbe2, 450 pvag, 450 rds0, 450 rdsw, 450 satmod, 448 subthmod, 448 tnom tref, 450 tox, 448 tref tnom, 450 u0, 450 ua, 449	alpha0, 418 at, 423 b0, 419 b1, 419 beta0, 419 binflag, 418 binunit, 424 capmod, 418 cdsc, 419 cdscb, 419 cdscd, 419 cf, 422 cgbo, 422 cgdl, 422 cgdl, 422 cgsl, 422 cgso, 422 cit, 419 ckappa, 422 clc, 422 clc, 422 CTA CTC, 423 CTC CTA, 423 CTP, 423

drout , 419	pscbe2 , 420
dsub , 419	PTA , 424
dvt0 , 419	PTP , 424
dvt0w, 419	pvag , 420
dvt1, 419	rdsw, 420
dvt1w, 419	tlev, 424
dvt2, 419	tlevc, 424
dvt2w, 419	tnom tref, 424
dw wdel xw, 423	tox, 420
dwb, 422	tref tnom, 424
dwc, 422	TRS, 424
dwg, 422	u0 , 420
EG, 423	ua, 421
elm, 425	ua1 , 424
em, 424	ub , 421 ub1 , 424
eta0, 419	
etab, 419 gamma1, 425	uc, 421
gamma1, 423 gamma2, 425	uc1, 424 ute, 424
GAP1, 423	vbm, 421
GAP1, 423 GAP2, 423	vbn, 421 vbx, 425
is, 419	version, 418
k1 , 419	version, 418 vfb, 421
k2 , 419	vib, 421 vfbcv, 421
k3, 419	vibev, 421 vfbflag, 421
k3b, 419	voff, 421
keta, 419	voff, 421
kt1, 424	vsat, 421
kt1, 424	vth0 vth0, 421
kt2, 424	vtho vth0, 421
Idel xl dl, 423	w0 , 421
lint, 422	wdel xw dw, 423
II, 422	wint, 423
llc, 422	wl, 423
lln, 422	wlc, 423
lw, 422	wln, 423
lwc, 423	wr , 421
lwl, 423	ww , 423
lwlc, 423	wwc, 423
lwn, 423	wwl, 423
mobmod , 418	wwlc , 423
nch npeak, 420	wwn, 423
nfactor, 420	xj , 421
ngate, 420	xl dl ldel , 423
nlx, 420	xpart , 422
npeak nch, 420	xt , 425
nqsmod, 418	XTI , 424
nsub, 420	xw dw wdel , 423
pclm, 420	resistor
pdiblc1 , 420	bulk , 463
pdiblc2 , 420	cap , 463
pdiblcb, 420	capsw , 463
prt, 424	cox , 463
prwb , 420	cratio, 463
prwg , 420	di , 463
pscbe1, 420	dlr , 463

dw , 463	equations, additional, 459–462
I, 463	level/model cross reference, 333–334
level, 463	noise types, 123
noise, 463	N-type model specification, 96
rac, 463	parasitic diode equations, 459–460
res, 463	parasitic resistance equations, 459
rsh, 463	P-type model specification, 96
shrink, 463	stacked devices, 176
tc1c, 463	switch-level example, 195
tc1r, 463	terminals, notation for, 120
tc2c, 463	MOSFET Level 1/2/3
tc2r, 464	capacitance, 397–398
thick, 464	charge, 397
tref, 464	current equations
w , 464	Level 1, 397
sweeping, 139	device model, 395–411
switch	large signal model, 396
di , 466	Level 1 equations, 396–399
dv , 466	Level 2 equations, 399–408
hdt, 466	Level 3 equations, 408–411
ih, 466	linear and saturation regions, 401–403
it, 466	model parameters, 395
roff, 466	second-order effects
ron, 466	Level 2, 404
vh, 466	subthreshold region
vt, 466	Level 2, 399–401
unspecified, 98	temperature dependence, 410–411
model selectors	threshold voltage, 398–399
BJT, 347	Ward-Dutton charge model, 404–408
models	MOSFET Level 4/13 (BSIM1)
small signal, 31	device models, 412–415
modes	model parameters, 412–415
See options	MOSFET Level 5
modparam keyword, 139	characteristics, 416–417
modulation index, 160	device models, 416–417
monitoring simulations, 48	model parameters, 416
See also Simulation Manager	MOSFET Level 100 (Penn State & Philips PSP Model)
monotonicity, checking for, 503	device model, 456
Monte Carlo Analysis, 514	model documentation, 456
•	model parameters, 456
output, 515	MOSFET Level 11/63 (Philips MOS 11)
statistics, 516	device model, 428–429
Monte Carlo analysis, 113	•
defined, 35	model documentation, 428
example, 148	model parameters, 428–429
number of runs, specifying, 139	MOSFET Level 14/54 (BSIM4)
parameters, 114	device models, 430–431
specifying with .step, 140	model parameters, 430–??
monte keyword, 138, 139, 140, 514, 515	MOSFET Level 15
mos keyword, 150	equivalent circuit, 434–??
MOSFET	MOSFET Level 15/61 (RPI a-SI)
conductance, in DC analysis, 29	model parameters, 432–??
default gridsize for, 78	MOSFET Level 16
device parameters, 174	equivalent circuit, 438–??
device statements, 174–177	MOSFET Level 16/62 (RPI Poly-Si)
direct model evaluation, 175	model parameters, 435–??
effective areas and perimeters, 460–462	MOSFET Level 16/62 (RPI Poly-Si) v3.0

Index N

model parameters, 437–??	MOSFETs (levels 1-3 and BSIM)
MOSFET Level 20 (Philips MOS 20)	parameters, additional, 457–458, ??–458
device model, 439	mosparasitics option, 175
model documentation, 439	multidimensional parameter space, 35
model parameters, 439	multidimensional trends, 34
MOSFET Level 28 (Extended BSIM1)	multiline expressions, 54, 55
device models, 440–443	multiple
equations, 441–443	convergence solutions
model parameters, 440–441	use of .nodeset for, 100
process parameters, equations for, 441–443	document interface, 14
subthreshold current, 443	
	minima, 92
MOSFET Level 30 (Philips MOS 30)	optimization parameters, assigning, 115
device model, 444	optimizations, sequential, 117
model documentation, 444	parameters, assigning, 114
model parameters, 444	.print commands, 119
MOSFET Level 31 (Philips MOS 31)	simulation runs, with .alter , 64
device model, 445	simulations
model documentation, 445	See batch simulations
model parameters, 445	subcircuits, 142
MOSFET Level 40 (Philips MOS 40)	multiplication, 55, 56
device model, 446	multiplicity
model documentation, 446	diode device statement, 167
model parameters, 446	inductors, 168
MOSFET Level 44/55	JFETs, 172
model parameters, 447	MESFETs, 173
MOSFET Level 44/55 (EKV)	MOSFETs, 175
device models, 447	parameter, 152, 154
model documentation, 447	parasitic diodes, 176
model parameters, 447	resistors, 180
MOSFET Level 47, 448	subcircuits, 170
device models, 448–452	multiplier
drain current, 451–452	in bit pattern, 161
equations, 451–452	factors
model parameters, 448–450	example using, 162
MOSFET Level 49/53	noise source (resistor), 180
device models, 418–426	multi-threaded processing, 37
drain current, 425–426	mutual inductor
equations, 425–426	device statement, 178
gate charge, 426	
model parameters, 418–425	
AC and capacitance, 422	N
basic, 418–421	
bin description, 424	n
length and width, 422–423	metric prefix, 54
model selectors, 418	argument, .print , 120
nonquasi static, 425	names, 51–52
process parameters, 424	device names, 52
temperature, 423–424	global, 52, 77
MOSFET Level 57 (BSIM3SOI)	hierarchical, 52
device models, 453–455	inconsistencies in, 36
model documentation, 453	internal, 52
model parameters, 453–455	library sections, 85
MOSFET Level 9/50 (Philips MOS 9)	node, 51
device model, 427	of parameters, 55
model documentation, 427	reserved, 51
model parameters, 427	
model parameters, 727	in subcircuits, 142

Index N

NAND gate, 202	IBEP , 122
nano-, 54	IBEPFN, 122
natural logarithm, 57	IC, 122
negation, 55, 56	ICCP, 122
negative measurement results, 91	ID, 123
nested	ITZF, 122
.include commands, 84	RB , 122
subcircuits, 52, 142	RBI , 122
sweeps	RBP, 122
Monte Carlo analysis in, 140	RBX, 122
optimization and, 140	RC, 122
netlists	RCI, 122
color-coding in, ??–40	RCX, 122 RD, 123
editing mode, 39 ending, 71	RE, 122
exporting and extracting, 38	RG, 122
inserting commands in, 15	RS, 123
opening, 48	RX, 122, 123
searching, 40	TOT, 122, 123
text editors for, 38	parameters
updating, 22	diode, 370
Newton iterations, 29	MESFET, 386
nfreqs keyword, 75	spectral density, printing, 121
njf keyword, 96	types of, 122
nl device parameter	noise
transmission line, 184	device parameter
nmf keyword, 96	resistor, 179
nmos keyword, 96	keyword, 119
nodes	.noise command
floating, 81	defined, 101
global, 77	in subcircuits, 142
initial guesses, for DC operating point, 32	noise spectral density, 101, 121
naming syntax	nominal temperature, 179
See names, 51	nonconvergence
order of, in subcircuit calls, 170	avoiding with .nodeset, 32
referencing, in subcircuits, 52, 81, 142	errors
reserved names, 51	transient analysis, 30
residual current tolerances, 31	monotonicity and, 503
total in simulation, displayed, 50	powerup simulation option after, 32
in vectors, 161	triggering gmindc stepping, 29, 212, 214, 220
voltages, setting for DC operating point calculation, 81	nonconvergences, 28, 32
.nodeset command	DC operating point calculation, 32
.op , using with, 102	DC transfer analysis, 32
in .alter blocks, 64	nonlinear
convergence, improving with, 32	capacitor, 194–195
defined, 100	device models
in subcircuits, 142	solving iteratively, 28
noise, 33	systems
analysis, 101	discretization error in, 30
results, printing, 119, 133	nonlinear functions
models, 101	See polynomials
noise types	noprint keyword, 102
FN, 122, 123	NOR gate, 202
IB, 122	normal distribution, 114
IBE, 122 IBEFN, 122	normal region of operation, 347
IDEI 14, 144	notation

Index O

numbers and units, 54	.step command, 138
subcircuits (hierarchical), 81	.optgoal command
npn keyword, 96	defined, 103
npointskeyword, 75	, 517, 518
nrd device parameter, MOSFET, 174, 430, 453	example with .optimize, 105
nrs device parameter, MOSFET, 174, 430, 453	examples, 103
N-type MOSFET, specifying for .model, 96	vsmeasure, 89
number	optimization and, 104
of device dimensions, 78	syntax, 103
of iterations	optimization
DC analysis, 28, 32	AC analysis, 104
source stepping, 32	algorithm, 97, 518
time step size and, 29	algorithm, specifying, 96
of table grid points, 33	described, 517
of table gridpoints, 78	example, 141
numbers, T-Spice syntax for, 54	formulae, 103
numerical derivatives	goal, 517, 518
increment for, 98	goal, defining
numnd option	in .measure command, 90
compared with numnt , 29	in .step command, 140
DC analysis and, 28	globally, with .optgoal command, 103
simulation concepts of, 32	HSPICE-compatible, 528
numnt option	incremental, 518
simulation concepts of, 32	invoking, 104, 518
transient analysis and, 29	iterations, maximum number of, 98
numntreduce option	.measure command for, 89
simulation concepts of, 32	method, selecting (.model command), 98
transient analysis and, 29	for model parameter extraction, 68
	multiple (sequential) runs of, 117
	.optgoal vsmeasure, 89
0	parameters, 97, 518
•	initializing with .paramlimits command, 117
o suffix, octal notation, 161	.param command, 113, 115
oct keyword, 60–61	ranges, defining with .paramlimits command,
octal notation, 161	117
octave sweeps	step sizes for, .model , 97
.step command, 140	variation of, for convergence, 98
AC analysis, 60–61	reference data for, incorporating, 67
off keyword	sweep, specifying with .step , 140
.measure command, 89–90	transient analysis, 105
vectorized waveform, 161	Optimization Wizard, 524–526
on keyword, 161	.optimize command, 104–105, 517, 518
onoise keyword, 121	optimize keyword, 138, 140
.op command	.options command, 106
.acmodel command with, 63	absi abstol, 31
defined, 102	fields
op keyword, 147	accurate, 107
open circuits, 28	autostop, 89
opening	numnd itl1, 32
simulation netlist, 48	options
simulation netrist, 48	general defintion of, 28
operational amplifier, 199	T-Spice syntax for, 59
operator precedence, 55–56	waveform display during simulation, 46
opt keyword	Options >
.model command, 96, 97	Font, 20
.param command, 115	options command
iparam communa, 115	*

Index O

absdv, 238	maxdcfailures, 224
kcltest, 222	maxmsg, 304
absi, 206	maxord, 244
absq, 239	method, 245
abstol, 206	minderatio, 225
absv, 207	minresistance, 269
absvar, 238	minsrcstep, 226
acct, 294	mintimeratio, 246
accuracy and convergence, 204	model evaluation options, 255
accurate, 208	modelmode, 270
acout, 295	moscap, 271
autostop, 282	mosparasitics, 272
binaryoutput, 319	mu, 247
brief, 296	newtol, 216
bypass, 209	node, 305
bytol, 210	nomod, 306
casesensitive, 283	numdgt, 307
compat, 284	numnd, 227, 228
conncheck, 285	numns, 229
csdf, 298	numnt, 248
cshunt, 211	numntreduce, 249
dcap, 257	numnx, 230
dccap, 258	numnxramp, 231
dchomotopy, 212	nutmeg, 308
dcmethod, 214	opts, 309
destep, 215	output options, 290
defad, 259	outputall, 310
defas, 260	parhier, 286
defl, 261	pathnum, 311
defnrd, 262	persist, 288
defnrs, 263	pivtol, 279
defpd, 264	poweruplen, 250
defps, 265, 266	precise, 232
defw, 267	probefilename, 323
deriv, 268	probei, 320
dnout, 299	probeq, 321
echo, 300	probev, 322
expert, 301	prtdel, 312
extraiter, 216	prtinterp, 313
fast, 217	relchgtol, 252
ft, 240	reldy, 251
general options, 280	reli, 234
gmin, 218	relq, 252
gmindc, 219	reltol, 234
gramp, 220	relv, 235
gshunt, 221	relvar, 251
imax, 248	resmin, 269
ingold, 302	rmax, 253
it13, 249	rmin, 246
itl4, 248	scale, 273
keltest, 222	scalm, 274
kvltest, 223	search, 289
linear solver options, 276	spice, 290
linearsolver, 278	statdelay, 314
list, 303	tabdelim, 315
lvltim, 241	threads, 37, 291

Index P

timestep and integration, 236	size of, 29
tnom, 275	output keyword, 92
tolmult, 236	output noise
trextraiter, 254	spectral density, reporting, 121
trnewtol, 254	output
trtol, 255	signal
vaalwayscompile, 328	trigger/target measurements, 91
vacache, 327	outvar, 92
vaexprtol, 331	outvar2, 93
vaopts, 329	overriding operator precedence, 56
vasearch, 292, 326	overwrite mode, 39
vatimetol, 330	
vaverbose, 325	
verbose, 316	Р
vntol, 207	.
wl, 276	p metric prefix, 54
xmu, 247	p(d), 120
xref, 317	parallel
zpivtol, 280	devices
OR gate, 202	BJT, 152
order	capacitors, 154
of device dimensions, 78	diodes, 167
of integration, 29, 30	JFETs, 172
of magnitude, 54	MESFETs, 173
oscillator, voltage-controlled, 203	MOSFETs, 175
output	resistors, 180
.alter, 65	
files	inductors, 168 plate capacitor, 195
.ac command, 60	
binary format, 133	subcircuits, 170
default names for, 119	.param command, 512, 514, 515, 518
displaying, 14, 47	examples, 115
opening, 48	expression evaluation and, 94
parameter sweeps, format of, 138	in library files, 86
of Fourier analysis, 76	.model and, 98
messages	in subcircuits, 142
See Simulation Output window	sweeps and, 139
Monte Carlo, 514, 515–517	syntax, 113–115
noise	param keyword, 94, 139
total, reporting, 121	parameters .
operating points, 63	sweeping
	with .measure command, 89
signal	parameter .
statistics measurements, 92	sweeping
small-signal data, 102	for Monte Carlo analysis, 139
small-signal parameters, 63	parameters
suppressing from .measure, 90	declaring with .param command, 113–115
sweep, 512–513	device models, specifying, 96
trigger/target measurements, 91	expressions involving, 94
variables	extracting from models, 67
comparing, 94	Monte Carlo, 114
Fourier analysis of, 75	naming, 55
viewing, 48	optimization, 97–98, 115, 517, 518
viewing in W-Edit, 48	overriding subcircuit/external model values, 170
output curves, comparing with external data, 67	relative variation, 98
output files	signal statistics measurements, 91
opening, 510	small-signal, 60, 102

Index P

subcircuit, specifying, 142	table function for, 57
sweeping, 511	voltage source, 187
concepts of, 34	pin names
with .data command, 67	aliasing, 52
for optimization, 140	pi-type lumps, 157, 185
with .step command, 138	pjf keyword, 96
temperature, 139	pkt1, 416
tables, 33	plots
trigger/target measurements, 90	temperature vs. voltage, 145
types of, 510	voltage vs. temperature, 145
unspecified, 98	plus signs, in multiline expressions, 55
See also keyword	pmf keyword, 96
parametric analysis, 34	pmos keyword, 96
parametric sweeps	P-N diode
, 138	model type specification, 96
.paramlimits command, 518	pnp keyword, 96
defined, 117	poi keyword, 60–61, 138–140
example with .optimize , 105	POLY capacitor parameter, 154
examples, 117	POLY voltage-controlled current source parameter, 191
optimization and, 104	POLY voltage-controlled voltage source parameter, 197
syntax, 117	polynomials
parasitic	coefficients for, 165
capacitance, BJT Level 1 (Gummel-Poon), 340	formulas for, 164
diodes, 175–177	keyword for, 163
MOSFET, 459–460	replacing corners with, 159
resistance, 168–169	polysilicon capacitance, 374
resistance equations, MOSFET, 459	positive current, defined
resistors, BJT, 340	mutual inductor, 178
parentheses, 55, 56	voltage or current source, 163
parmin keyword, 98	pow(x,y), 57
parralel processing, 37	.power command, 118
parsing SPICE versions, 51	power consumption
Paused, simulation status, 47	reporting, 120
pd device parameter, MOSFET, 174, 430, 453	power dissipation, computing, 118
peak-to-peak values, 91	power dissipation, comparing, 110 powers of variables, 57
performance measures, optimizing, 35, 140	powerup keyword, 147
Performs, 138	powerup simulation, defined, 32
perimeter perimeter	poweruplen option, 32
effective, 175, 460–462	pp keyword, 92
MOSFET	precision
effective, 460	of computations, 31
permittivity	prefixes, metric, 54
See dielectric permittivity	preview keyword, 147
•	.print command, 119–124
phase	
complex current, 121	AC magnitude/phase differences, 295
discontinuities, VCO model, 203	defined, 119
voltage, 121	device states, 119
phase advance, sinusoidal waveform, 161	error function measurements, 94
phase differences, calculation of, 295	expression evaluation and, 94
Philips models	find-when measurements, 93
model cross reference, 335–336	noise mode
physical constants, 337	arguments, 121
pi, 337	error function measurements, 94
pico-, 54	signal statistics measurements, 92
piecewise linear waveform	in subcircuits, 142
current source, 159	trigger/target measurements, 91

Index Q

wildcards, 120	qz(<i>a</i>) , 120
.print noise command	
signal statistics measurements, 92	
printing	R
external tables, 503	IX.
probabalistic parameter definitions, 35	r
probability distributions, 113, 514, 515	device parameter
Monte Carlo analysis, 140	inductor, 168
.probe command	resistor, 179
AC magnitude/phase differences, 295	transmission line, 184
defined, 133	key letter, 179
in subcircuits, 142	r keyword, 96
progress tracking, 50	random
progress, of simulation, 50	
progress, simulation	generator, 140
display options, 46	limit distributions, 114
.protect command, 134	number sequence, initializing, 139
.prt files, 503	parameter variation, 35
	ranges, of optimization parameters, 117
ps device parameter	real components, printing
MOSFET, 174, 430, 453	complex current, 121
PSPICE compatibility, 284	complex voltage, 121
P-Spice compatible syntax, list sweeps, 140	real-time waveform viewing, 46
P-type MOSFET, specifying for .model , 96	Redo , 40
pulse "off" time	reference data, 67
vectorized current source, 161	regions of operation
pulse "on" time	BJT Level 1 (Gummel-Poon), 347
vectorized current source, 161	regular expressions
pulse keyword	rules, 41–42
current source, 159	searching, 41
pulse period	Unix-style, 41
current source, 159	relative
pulse waveform	error, in optimization measurement, 90
current source, 159	simulation accuracy, 32
voltage source, 186	tolerances
pulse width	charge, 32
current source, 159	numerical approximations, 31
vectorized current source, 161	voltages, reporting, 120
pw keyword, 161	relative input parameter variation, 98
pwr(x,y), 57	relchargetol option
	discretization error and, 29
	simulation concepts of, 32–33
Q	relin keyword, 98
u	reloading files, 22
q	relout keyword, 98
key letter, 152	reltol option
•	DC analysis, 28
q elementary electron charge, 337	vs. relchargetol , 32
.q files, 143, 502, 503	simulation concepts of, 31
q(d,n) , 120	time step size and, 33
	* · · · · · · · · · · · · · · · · · · ·
.qtx files, 143, 502, 503	transient analysis, 29
queue, simulation	remainder expression, 56
adding files to, 19	removing files from simulation queue, 48
Queued, simulation status, 47	REPEAT keyword, 159
quotation marks	repeating a simulation, 64
in expressions, 55	repeating bit input
filenames in, 70, 85, 133	example using, 162

Index S

replacing statements with .alter , 64 replacing text, 40, 41, 43–?? reserved names, 51	run-time update, W-Edit, 46
residual currents, 31, 33	S
resistance	3
during AC analysis, 180	
equations, resistor device model, 464	S Iron lotton 192
parasitic	key letter, 182
See parasitic resistance	saturation curent
scaling, 180	diode, 175
specifying, 179	saturation current
switch, 182	BJT Level 1 (Gummel-Poon), 354–356
	diode
temperature effects on	temperature effects, 377
diode, 379	saturation current, diode
temperature influence on, 179	equation for, 175
transmission line, distributed, 184	saturation region, 347, 401–403
variable base resistance equations, 349	.save command
resistor	defined, 135
AC analysis, 180	.savebias command
capacitance equations, 465	defined, 136
device model, 463–465	scale device parameter
device statements, 179–181	BJT, 153
equations, 464–465	capacitor, 154
large-signal model, 464	inductor, 168
macromodel example, 144	resistor, 179
model parameters, 463–464	scaling factor
model type specification, 96	BJT area, 152
noise, 180	BJT scale, 153
resistance equations, 464–465	capacitors, 154
as switch implementation, 182	inductor, 168
resolution	JFET area, 172
Fourier analysis, 75	MESFET area, 173
internal tables, 33, 78	resistor, 180
result files	See alsogeometric and scaling parameters
comparing, 49	schematic export tool, 36
results keyword, 138, 140	Schottky barrier diodes, 380–381
results, measurement, 89	scientific notation, 54
Resume simulation processing, 48	scope
RGT lumps, hybrid, 185	global, 77
rise crossing, 91, 93	subcircuit parameters, 142, 170
rise keyword, 90, 91, 93	search and replace, 40
rise time	searching
exponential waveform, 158	library files, 86
pulse waveform, 159	text, 41
trigger/target example, 95	second-order effects
rms keyword, 92	current, 344
root-mean-square computation, 91	MOSFET Level 2, 404
ROUND keyword, 159	S-Edit, 38
rounding half-interval	seed keyword, 138, 139
pulse waveform, 159	selecting text, 39
PWL waveform, 159	selectors, model
vectorized waveform, 161	See model selectors
rt keyword, 161	
Run Simulation dialog, opening, 44, 46	sensitive analog designs, 31
running simulations, 19, 44, 46	sequential optimization, 117
Running , simulation status, 47	sets of characters, searching for, 42
running, simulation status, 47	setup options, 20

Index S

sffm keyword, 160	.global, 77
SGI IRIX	.gridsize, 78
external model files, 97	.hdl, 79–??
sgifile, 97	.ic, 81
sgn(x) , 57	.if, 82
short circuits, 28	.include, 84
shot noise, 122	.lib , 85–86
sigma, 114	.load , 87
sign convention, current, 163	.macro, 88
sign of x , 57	.measure , 89–95, 510, 512, 517, 518
sign(<i>x</i> , <i>y</i>), 57	.model , 96–99, 517
signal statistics measurements, 91–92, 95	.nodeset , 100
silicon	.noise, 101
relative dielectric permittivity of, 337	.op , 102
silicon dioxide	.optgoal , 103, 517, 518
relative dielectric permittivity of, 337	.optimize, 104–105, 517, 518
Simulate >	.options , 106
Batch Simulations, 19	.param, 113–115, 512, 514, 515, 518
Simulate >	.paramlimits, 117, 518
Run Simulation, 44, 46	.power, 118
simulation	.print, 119–124
accuracy, 33, 78	.probe , 133
algorithms	.protect, 134
See algorithms	.save, 135
batch, 19	.savebias, 136-137
commands, entering, 17	.step, 138–141, 510, 513
methods	.subckt, 142
default, 33	.table, 143–144
output	.temp, 145
See output files	.tf, 146
queueing, 19	.tran, 147–148
results, reporting, 119	.unprotect, 134
speed, 33, 78	.vector, 149
status, display of, 47	.vrange, 150
time	Simulation Manager
Fourier analysis, 75	See also batch simulations
reporting, 120	Simulation Manager , 14–??, 46–47, ??–47, 47–??
simulation accuracy	simulation manager, 12
See also accuracy	simulation
simulation commands	options
.ac, 60–62	See .options command
.acmodel, 63	Simulation Output window
.alter, 64–65	See also output file
.connect, 66	Simulation Output window, 14, 47, 48
.data, 67–68, 511	Simulation Window, 19
.dc, 69	results reported to, 119
.del lib, 70	simulations
.else, 82	repeated, 64
.elseif, 82	sin keyword, 160
.end, 71	sin(x), 57
.enddata, 72	sine functions, 57
.endif, 82	sine functions, $57sinh(x)$, 57
.endi, 82 .endl, 73	sinux), 37 sinusoidal waveform, 160
.endi, 73 .ends, 74	site, of output files, 29
.ends, 74 .eom, 88	size, of output fries, 29 small-signal
.four, 75–76	
.ioui, /3-/0	analysis, 31

Index S

DC transfer function, 146	step size
models, 60	parameters, 97
parameters, 60	source stepping, 28, 32
reporting, 102	time steps, 29
small-signal parameters	transient analysis, 29, 30, 147
reporting of, 63	variable, 30
Solaris 2.x	Stop simulation processing, 48
external model files, 97	stp() function, 57, 195
solfile, 97	strings
solving circuit equations	as column headings, 120
See algorithms	external model parameters, 97
source	in vectorized waveforms, 161
MOSFET	subcircuits
effective area and perimeter, 175	accessing nodes and devices, 81
stepping, 28, 32	accessing nodes/devices within, 100, 119
step size, 32	defining, 88, 142
sweeping, 139	ending with .ends , 74
terminal, notation for, 120	ic commands in, 81
source keyword, 139	instantiating, 170–171
sources, voltage	nodes, specifying, 52
adding for DC simulation, 81	parallel instances of, 170
spaces, in filenames, 70	parameter values, expressions involving, 94
spacing, of table grid points, 33	parameters, scope of, 113
special character codes, 41	pin names, aliasing, 52
specifying device type, 51	.subckt command
specifying subcircuit nodes, 52	defined, 142
speed vs. accuracy, trading off, 33	ending with .ends , 74
speed of simulation	in library files, 86
See simulation speed	.measure commands in, 89
SPICE	submodel selectors
Berkeley implementation, 338, 358, 364	MESFET, 385
compatibility with, 52, 71	subs, 339
SPICE compatibility, 284	subs, 345, 349
sqrt(x), 57	substrate
square root function, 57	BJT, 152
.st command, 138	terminal, notation for, 120
stability, in transient analysis, 30	subthreshold
stacked MOSFET devices, 176	current, 443
standard deviation, 114	region of operation, 399–401
start keyword, 147	subtraction, 55, 56
Start Simulation dialog, 119	subwaveform
statistics, Monte Carlo analysis, 516	repeating, 159
	suffix
status	
simulation, 47	d, decimal notation, 161
Status Bar, 13	h, hexadecimal notation, 161
status bar, 12	o, octal notation, 161
steady state, 28	sunfile, 97
See also DC analysis	SunOS 4.x
.step command, 138–141, 510, 513	external model files, 97
in .alter blocks, 64	sw keyword, 96
defined, 138	sw model type, 182
optimization and, 104	sweep keyword, 35, 61, 67, 138, 139, 148, 511
optimization with .measure, 89	monte, 514, 515
vs. sweep , 61, 511	multiple variables, 511
vs. sweep keyword, 148	output, 512–513
step function, 57	sweeps

Index T

.data command, 69	table() function, 57, 195
linear, 61, 511	table-based evaluation
list, 511	defined, 33
listed frequencies, 61	vs. direct model, 34
logarithmic, 511	interpolation and, 33
logarithmic by decades, 61	tables
logarithmic by octaves, 61	converting to binary, 503
Monte Carlo analysis, 139	dimensions, 150
multiple variables, 67	diode device evaluation, 167
optimization, 140	external, 143
output, 510	generating external, 502
parameters, 138	internal, 33, 152
parametric, 138	referencing with .table, 143
syntax, 138–140	resolution, 33, 78, 150
temperature, 139	toggling, 173
swept parameters	tables device parameter
difference measurements, 90	BJT, 152
switch	diode, 167
current-controlled, 182, 467	JFET, 172
device models, 466–467	MESFET, 173
examples, 467	MOSFET, 174, 430, 453
model parameters, 466–467	tan(x), 57
table function for, 194	tangent function, 57
voltage-controlled, 96, 183, 467	tanh(x), 57
switch, voltage- or current-controlled	Tanner Extended BSIM1 MOSFET, 440–441
device statements, 183	targ keyword, 90
switch, voltage-controlled, 182	target string, searching for, 41
switch-level MOSFET, 195	tc1 device parameter
symmetric lumps, 185	capacitor, 154
syntax	inductor, 168
color-coding, 40	resistor, 179
device names, 51	tc2 device parameter
device statements, 151	capacitor, 154
documentation conventions, 59	inductor, 168
errors, 36	resistor, 179
expressions, 55	td device parameter
names, 51	transmission line, 184
quotation marks, 70, 85	TD keyword, 160
quotation marks, 70, 03	td keyword, 90–91, 93
	.temp command
-	in .alter blocks, 64
Т	defined, 145
<u> </u>	temp keyword, 139
11	temperature
key letter, 184	nominal, 179
metric prefix, 54	specifying, 145
tab breaks, searching for, 41	sweeps, 139, 148
tab character, 42	temperature effects
Table >	BJT Level 1 (Gummel-Poon)
Convert Table, 503	capacitance, 356–357
Evaluate Table, 502	energy gap, 354
Generate Table, 502	saturation current and Beta, 354–356
Monotonicity Check, 503	diode, 376–379
Print Table, 503	MESFET, 391–394
.table command	MOSFET Level 1/2/3, 410–411
defined, 143–144	temperature parameters
table parameters, 33	temperature parameters

Index T

BJT Level 1 (Gummel-Poon), 342	to keyword, 92, 94
diode, 370, 371	toggled options, 106
MESFET, 388	tolerances, 31, 36
MOSFET Level 49/53, 423, 424	abstol , 31, 32
tera-, 54	abstol option, 31
terminal	charge, 33
charge, reporting, 120	charge tolerance, 32
current, reporting, 121	chargetol, 32
voltages, for external tables, 502	convergence tolerance for gradient, 98
terminals	DC analysis, 28
BJT, 152	discretization error, 29, 32
defined, 28	node, 31
JFET, 172	numnd, 32
text	numnt, 32
editor, 38, 39	numntreduce, 32
color coding, ??–40	relchargetol, 32
files	reltol, 31, 32
keyboard shortcuts, 39	toolbars
searching, 40	Command, 13
tables, 143	simulation, 13, 50
strings, searching for, 41	total output noise, 121, 122, 123
wrapping, 53	.tran command
text editor	in .alter blocks, 64
formatting in, 22	defined, 147–148
keyword groups, 22	with .four , 75
text	optimization and, 104
files	optimization with .measure, 89
See also input files, netlist, output files	tran keyword, 89
.tf command	transconductance, 146, 191
DC operating point and, 102	transfer analysis
defined, 146	See DC analysis
in subcircuits, 142	transfer function, 102, 146
The, 138, 338, 358, 364	transfer keyword, 121
thermal noise, 122, 123	transient analysis, 147
thermal voltage (vt), 175	accuracy of, 32
three-terminal transistors, 172, 173	command invoking, 147
threshold voltage/current, in switch, 182	power dissipation and, 118
time	power usage, 118
delay	reporting results, 119
in measurements, 91	results, 119
measurement example, 95	results, printing, 133
in piece-wise linear waveform, 160	simulation concepts, 29–30
rise time, exponentialwaveform, 158	terminating with autostop, 89
sinusoidal waveform, 160	transistors, 28
vectorized waveform, 161	MESFET, 173
difference measurement, 90	MOSFET, 174
resolution	three-terminal, 172
Fourier analysis, 75	transit time
step size, 29, 30, 147	diode, 377
excessively small, 33	modulation effect in BJT, 345
time(), 186	parameters, 341
time, of simulation	transmission delay, 184
See simulation time	transmission line
time-dependent analysis	device models, 468–469
See transient analysis	device statements, 184–185
title bar, 12	equations, 468, 469
· · · · · · · · · · · ==	-1,,,

Index U

frequency, 184	Simulation Manager, 47
model with resistors, 179	ViewDraw, 38
wavelengths in, 184	viewing
transresistance, 121, 122, 123, 146	simulation netlist, 48
Trapezoidal Integration Method, 30	simulation output file, 48
trig keyword, 90	simulation output in W-Edit, 48
trigger/target measurements, 90, 95	voltage
trigonometric functions, 57	complex, 121
T-Spice	divider, example, 16
current conventions, 120	gain, 146
T-type lumps, 157, 185	magnitude, reporting, 121
tutorials	range, 150
Optimization, 518–527	reporting, 120
type, model, 96, 97	setting for DC operating point calculations, 81
	source
	adding for DC simulation, 81
U	current-controlled, 165
	currents, calculating, 102
u	device statements, 186, 203
key letter, 157	initializing, 32
u metric prefix, 54	sweeping with .step, 139
UIC keyword, 147	supply, 186
unary negation, 55, 56	voltage vs. temperature
unif keyword, 114, 515	plotting, 145
uniform distribution, 114, 515	voltage-controlled
units, specifying in output, 120	capacitor, 195
Unix-style regular expressions, 41	current source, 191
.unprotect command, 134	oscillator, 203
update model selector, 347–348	resistor, 183
updating input files, 22	switch, 96
user interface, 11–??	.vrange command, 150
user-defined functions	vt (thermal voltage), 175
declaring with .param, 113	
examples, 115	VAI
syntax, 113	W
	W device parameter
V	diode, 167
V	w device parameter
v	capacitor, 154
key letter, 186	MESFET, 173
vacuum	MOSFET, 174, 430
dielectric permittivity of, 337	resistor, 179
val keyword, 90, 91	Ward-Dutton charge model, 404–408
variables	warnings, 50
defining, 512	waveforms
variation in distribution functions, 114	current source, 158–161
VCO	frequency-modulation formula, 160
See voltage-controlled oscillator	sinusoidal formula, 161
.vector command, 149, 161, 162	current-controlled voltage source
vectorized waveform	polynomial formulas, 166
current source, 161	polynomial formulas, 164
voltage source, 188	repeating, 159
vertical geometry	wavelengths, number of
BJT, 345	transmission line, 184
. ,	transmission fine, 104

Index

```
launching automatically, 46
W-Edit waveform viewer
    invoking for simulation output, 48
weight keyword, 89, 90, 103
weighted measurements, in optimization, 35, 89, 90
when keyword, 93
white space, searching for, 41
width parameters
    capacitor, 154
    diodes, 167
    MESFET device, 173
    MOSFET Level 49/53, 422-423
    resistor, 180
    See alsolength and width parameters
width, pulse
    vectorized current source, 161
wildcards
    in .print statements, 120
Windows platform
    external model files, 97
winfile, 97
words, selecting, 39
wrapping text, 53
X
X, 81, 142
    key letter, 142, 170
    metric prefix, 54
Y
-y command-line flag, 38
Ζ
Z. 118
    key letter, 173
z0 device parameter
    transmission line, 184
zero initial values, 32
zero-delay
    AND gate, 202
    inverter, 201
```

Credits

Software Development

Ken Van de Houten Alex Ivanov Dan'l Leviton

Quality Assurance

Luba Gromova Ken Van de Houten Lena Neo

Documentation

Judy Bergstresser

Ken Van de Houten

Additional Credits

T-Spice is based on version 5.0 of CAzM (Circuit AnalyZer with Macromodeling) written by Donald J. Erdman and Donald J. Rose Gary B. Nifong, Bill Richards, Stephen Kenkel and Ravi Subrahmanyan MCNC Center for Microelectronics and Duke University.

T-Spice contains object modules from the Intel Math Kernel Library (Intel MKL) package, Copyright © 2002-2005, Intel Corporation.

T-Spice uses the Sparse1.3 matrix library, copyright © 1985-1988 by Kenneth S. Kundert, University of California, Berkeley.

T-Spice uses the SuperLU sparse linear solver library, copyright © 2003, The Regents of the University of California.

BSIM models BSIM4, BSIM3v322 and BSIMSOI are based upon software developed by the BSIM Research Group, University of California, Berkeley, ©1990-2004, Regents of the University of California.

EKV models are based on the EPFL-EKV MOSFET Report by the Electronics Laboratories, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland, ©1998.

Philips models are based upon software developed by Philips Electronics N.V. © 2005

SiMKit is a trademark of Philips Electronics N.V.

The following copyright notice is applicable to Sparse, SuperLU, and BSIM:

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The following copyright notice is applicable to the KLU sparse linear solver, together with it's component libraries, AMD, COLAMD, and BTF, which are distributed herein as **klu.dll**:

KLU Version 1.0, Copyright © 2007 University of Florida. All Rights Reserved.

AMD Version 2.2, Copyright © 2007 by Timothy A. Davis, Patrick R. Amestoy, and Iain S. Duff. All Rights Reserved.

This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Permission is hereby granted to use or copy this program under the terms of the GNU LGPL, provided that the Copyright, this License, and the Availability of the original version is retained on all copies. User documentation of any code that uses this code or any modified version of this code must cite the Copyright, this License, the Availability note, and "Used by permission." Permission to modify the code and to distribute modified code is granted, provided the Copyright, this License, and the Availability note are retained, and a notice that the code was modified is included.

Availability:

http://www.cise.ufl.edu/research/sparse/klu

http://www.cise.ufl.edu/research/sparse/btf

http://www.cise.ufl.edu/research/sparse/amd

Acknowledgments:

This work was supported by Sandia National Laboratories, and the National Science Foundation under grants 0203270 and 0620286.