
T2.  CNDO to AM1: The Semiempirical Molecular 
Orbital Models 

 
The discussion in sections T2.1 – T2.3 applies also to ab initio 
molecular orbital calculations. 
 
T2.1  Slater Determinants 
 
Consider the general case of the orbital approximation: 
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"(1,2K2N ) = #1(1)#2 (2)K#2N (2N ) 
 
In the section (T1) on Hückel theory, we chose a restricted version in 
which ψ2 = ψ1,  ψ4 = ψ3  …   ψ2N = ψ2N-1.   However, it has the problem 
of violating the Pauli Principle.  It turned out that it didn’t matter 
because Hückel  theory doesn’t know anything about spin, but for 
more sophisticated models that do  include electron–electron inter-
actions, we need to get this right.   
 The Pauli Principle derives from a requirement of statistical 
physics that the wavefunction for any system of Fermions (of which 
electrons are an example) must change sign when any two particles 
change places.  We can see that this doesn’t work if we take the 
simple example of a two-MO wavefunction: 
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"(1,2) = #1(1)#2 (2)

Interchanging electrons 1 and 2 :

$ " (1,2) = #1(2)#2 (1) % &"(1,2)

 

 
A simple solution to the problem would be to choose the expression 
for Ψ(1,2) slightly differently.  If we wrote: 
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Now interchanging electrons 1 and 2 gives: 
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The successful wavefunction can be written as a determinant: 
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Electrons
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This can be generalized to our 2N-electron wavefunction: 
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creating what is called a Slater determinant.  Notice that we can 
easily show the proper behavior of the wavefunction: interchange of 
any pair of electrons is equivalent to interchanging two rows of the 
determinant, which changes its sign.  Note also that the more 
common form of the Pauli Principle is automatically incorporated 
into this formulation of the wavefunction.  If we set any two MOs 
equal to each (e.g. ψ1 = ψ2), then two columns of the determinant will 
become identical and its value will consequently become zero.  In 
other words, the total wavefunction vanishes if we try to put two 
electrons in identical molecular orbitals. 
 We can choose our molecular orbitals to be orthonormal, i.e.: 
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but then if we also want the full Ψ to be normalized, we will need a 
normalization factor.  This turns out to be ((2N)!)-1/2. 
 



 
 
T2.2 Restricted Hartree Fock (RHF) Calculations 
Most of the molecules on which we will want to do calculations have 
equal numbers of alpha- and beta-spin electrons in the lowest 
available energy levels.  For such systems it is reasonable to use a 
restricted version of the Slater determinant in which pairs of electrons 
are assigned to MOs that have identical spatial parts but different 
spin parts.  Thus, if we split our molecular orbitals ψi into spatial 
parts ϕi and spin parts α or β, we can write our restricted Slater 
determinant as: 
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In order to find the energy levels associated with such a 
wavefunction, we need to calculate its expectation value, 
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This requires that we be explicit about what H is: 
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If we use the Born-Oppenheimer approximation, i.e. treat the nuclei 
as static on the timescale of motion of the electrons, then the nuclei 
will have zero kinetic energy, and the nuclear-nuclear repulsion term 
will be some constant that is evaluated for a particular nuclear 
geometry. 
 
 



 Many of the physical constants in the expression for H can be 
made to disappear by working in atomic units: 
 
The unit of mass is the rest mass of the electron, m = 9.10953 × 10-28 g. 
The unit of charge is the absolute value of the charge on the electron, 
e = 4.803242 × 10-10 esu. 
The unit of distance is the Bohr radius, a0 = h2/(4π2me2) = 0.529177 Å. 
The unit of energy is the hartree = e2/a0 = 27.2116 eV = 627.5095 
kcal/mol. 
 
In atomic units, the Hamiltonian becomes: 
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If we use the usual LCAO approximation, 
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where Greek subscripts are used for atomic orbitals and Roman ones 
for molecular orbitals, then evaluation of 
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Hartree-Fock-Roothaan equations: 
 

! 

(F "ES)C = 0

Fµ# =Hµ# + P$%[(µ# | $%) "
1

2%

&
$

& (µ$ | #% )]

Hµ# = 'µ (1)Hcore
(1)'# (1)d( 1)

Pµ# = 2 cµic#i

i

&

 

         

! 

(µ" | #$ ) = %µ (1)%" (1)
1

r12

%# (2)%$ (2)d& 1d& 2''

(µ# | "$ ) = %µ (1)%# (2)
1

r12

%" (1)%$ (2)d&1d& 2''
 



At first sight, solution of the Hartree-Fock-Roothaan equations looks 
only a bit more complicated than solving the Hückel secular 
equations.  However, the problem is that the Fock operator, F 
contains the density matrix, P, whose elements are the LCAO 
coefficients that we are trying to find.  In other words, in order to 
evaluate the equations we need to know their solutions!  The way out 
of this conundrum is to use an iterative procedure. 
 

1. Calculate Sµν. 
2. Calculate Hµν. 
3. Diagonalize H and use the eigenvectors (effectively the 

extended Hückel wavefunctions) as the first estimates of cµi. 
4. Calculate Pµv from cµi. 
5. Calculate (µν|λσ) and (µλ|νσ).  This is by far the most time-

consuming step. 
6. From 2–5 calculate Fµν. 
7. From 1 and 6 calculate εi and new cµi. 
8. Return to step 4. 

 
This cycle is repeated until Pµν and/or εi have converged within some 
selected tolerance.  One is then said to have achieved a self-consistent 
field (SCF). 
 
T2.3 Unrestricted Hartree Fock (UHF) Calculations 
The adequacy of the RHF approximation for closed-shell molecules is 
demonstrated by the fact that if you start with an unrestricted 
determinant you will invariably find the RHF wavefunction to be the 
lowest energy solution.  This happens because the α- and β-spin 
electrons have symmetrical environments: in a 2N-electron molecule, 
every α electron is interacting with N-1 other α electrons and N β 
electrons.  Every β  electron is interacting with N-1 other β electrons 
and N α electrons.  Thus the best MOs for the α electrons are the 
same as the best MOs for the β electrons. 
 In open-shell molecules (those having an unequal numbers of α- 
and β-spin electrons) this symmetry no longer holds.  One can then 
do one of two things: either ignore the asymmetry and still use a 
RHF-type determinant but simply partially occupy one or more of 
the orbitals (this is then a ROHF or restricted, open-shell Hartree-
Fock wavefunction) or, alternatively, use an unrestricted Hartree-
Fock (UHF) wavefunction in which every electron is in a MO of 
unique spatial character.   
 



The situation is illustrated below for a radical: 
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The larger number of adjustable parameters for the UHF 
wavefunction (7 ϕi for the UHF wavefunction instead of just 4 for the 
ROHF, in our example) means that it is guaranteed to have an energy 
that is ≤ the energy of the ROHF solution.  By the Variation Principle, 
the UHF solution should consequently be preferred.  However, UHF 
wavefunctions are, in general, not eigenfunctions of the   
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which proper wavefunctions should be.  RHF and ROHF 
wavefunctions are always eigenfunctions of   
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The scalar quantity s is just the total spin of the unpaired electrons in 
the system (i.e. 1/2 for a radical 1 for a triplet state, etc.).  Thus s(s+1) 
should be 0 for a singlet-state molecule, 0.75 for a radical, and 2 for a 
triplet.  Typically, UHF wavefunctions have <  
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2> values greater than 

they should be because they do not correspond to pure spin states.  
Doublet (radical) wavefunctions will typically be contaminated with 
components of quartets, sextets etc., and triplet wavefunctions will 
typically be contaminated with components of quintets, septets, etc.  
The extent of the contamination can be estimated from the magnitude 
of <  
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) 
S 
2>.  As a rough rule of thumb, if it is more than about 10% 

higher than the ideal value, the wavefunction and all of the 
properties calculated from it are likely to be unreliable. 



T2.4  The Pople Semiempirical Approximations: CNDO & INDO 
Pople, J.A.; Segal, G.A. J. Chem. Phys. 1966, 44, 3289. 
 
T2.4.1 Basis Sets 
All of the semiempirical methods use valence basis sets, i.e. the 
atomic orbitals of the LCAO approximation consist of a 1s orbital on 
each hydrogen and a 2s and three 2p orbitals on each element of the 
second row of the periodic table. 
 Actually, these atomic orbitals are further approximated.  Because 
electron-electron repulsion integrals are hard to calculate with the 
analytical hydrogen-like atomic orbitals, they are replaced by Slater-
type orbitals (STO) which lack all radial nodes. 
 
T2.4.2 Electron Repulsion Integrals 
The point of all semiempirical MO methods is to reduce the size of 
the full Hartree-Fock-Roothaan calculation by discarding many of the 
time-consuming electron-electron repulsion integrals, and by setting 
others equal to various constants, whose values are optimized to get 
the best match of the overall calculations to some chosen properties 
of a set of molecules. 
 The most severe of these kinds of approximation is the Complete 
Neglect of Differential Overlap (CNDO).  It sets: 
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and then further approximates how the remaining integrals (µµ|λλ) 
are evaluated.  It also uses some empirical parameters for certain 
elements of the H matrix. 
 A slightly less severe approach is the Intermediate Neglect of 
Differential Overlap (INDO), which retains a few of the integrals 
discarded in CNDO – specifically so-called one-center exchange 
integrals of the type (µν|µν), in which atomic orbitals φµand φν are on 
the same atom.  Retaining these integrals leads to a method that does 
a much better job of getting relative energies of singlet and triplet 
states correct (vide infra). 
 A crucial philosophical point is that in CNDO and INDO, the 
empirical parameters are adjusted to give the best possible fit of the 
semiempirical calculations to the exact calculation using the same 
basis set.  This choice is the principal difference between the Pople 
and Dewar semiempirical methods, and it has several subtle 
consequences. 
 



 
T2.4.3 Results of CNDO and INDO Calculations for CH2 
In 1961 Gerhard Herzberg reported high-resolution UV spectra of 
CH2 in both its singlet and triplet states.  From the vibrational and 
rotational fine structure he was able to deduce geometries for the two 
states (Proc. Roy. Soc. (London) 1961, A262, 291).  Pople subsequently 
carried out CNDO and INDO calculations to compare with 
Herzberg’s data.  The results are summarized below: 
 

Method Singlet Triplet 
 
 
        CNDO 

1.111 Å

108.0°

E = -8.1462121 hartree  

 

1.095 Å

141.3°

E = -8.0889311 hartree  
 
 
         INDO 

1.117 Å

106.0°

E = -7.8574419 hartree  

 

1.100 Å

131.8°

E = -7.8814363 hartree  
 
 
    Experiment 

1.12 Å

103.2°  

1.04 Å

180°  
 
It looked as if both theoretical models did reasonably well on the 
singlet, but were badly wrong for the triplet.  However, after Pople 
published his results, Herzberg went back to look again at his spectra 
and discovered that he had made a mistake.  The real structure of the 
triplet was that the C-H bond distance was 1.08Å and the HCH angle 
was 134°. 
 This was really the first time that pure calculation had caused 
people to reevaluate their experimental results.  As much of a 
triumph for theory as this may have been, it’s worth noting that the 
energy gap between the singlet and the triplet is wildly different for 
the CNDO (ES–ET = –36 kcal/mol) and INDO (ES–ET = +15 kcal/mol) 
methods, and neither agrees with the experimental value (measured 
much later) of +8.5 kcal/mol. 
 
 



T2.5 The Dewar Semiempirical Approximations: MINDO, MNDO, 
& AM1. 
Bingham, R.C.; Dewar, M.J.S.; Lo, D.H. J. Am. Chem. Soc. 1975, 97, 
1285 (and references therein). 
 
Starting in 1969 Michael Dewar introduced a series of differently 
parameterized versions of INDO called MINDO/1, /2, and /3.  
These Modified INDO methods had some relatively minor technical 
differences from Pople’s INDO, but they also had one major 
philosophical difference.  Instead of optimizing his adjustable 
parameters to fit the results of exact calculations, the optimizations of 
the MINDO methods were done to fit experimental heats of formation 
and geometries of a set of molecules.  Dewar’s argument for this 
choice was that the “exact” calculations against which CNDO and 
INDO were parameterized were actually far from accurate because: 
 

1) Any method that uses the orbital approximation in the form of 
a single RHF Slater determinant has neglected electron 
correlation.  This is the physical phenomenon by which the 
motions of electrons in atoms and molecules become correlated 
with each other in order to minimize electron-electron 
repulsion. 

2) The basis set used to describe the MOs is too small.  Although 
valence atomic orbitals may be appropriate for describing 
isolated atoms, they are not sufficient to describe the behavior 
of electrons in molecules because of the lack of spherical 
symmetry around each atom. 

 
Dewar suggested that one might be able to compensate for the 
inadequate basis set and lack of explicit electron correlation by 
parameterizing against experimental data whose values presumably 
were sensitive to these things.  There are a number of consequences 
of taking this approach.  One potential concern is that the errors of 
Dewar’s semiempirical method might be bigger than they appeared 
because the “calibration set” of molecules consisted of only stable 
“normal” species.  Fitting the adjustable parameters to these might 
not give one a method that described reactive intermediates or 
transition structures well at all.  In fact, though, MINDO/3 
performed very well in the methylene test – it gave rC–H = 1.122 Å and 
an angle of 100.2° for the singlet state and rC–H = 1.078 Å and an angle 
of 134.1° for the triplet state.  The triplet was calculated to be more 
stable than the singlet by 8.7 kcal/mol. 



 Despite this apparent great success of the MINDO approach, there 
were things that it did not do well.  It made strained rings too stable, 
and it did poorly in describing highly polar molecules.  These 
deficiencies were significantly reduced by adding back in some more 
of the electron-electron repulsion integrals that had been thrown out 
in CNDO, INDO, and MINDO.  In the NDDO (Neglect of Diatomic 
Differential Overlap) approximation, integrals of the type (µν|λσ) are 
discarded only if φµ and φν or φλ and φσ are on different atoms.  The 
NDDO approximation formed the basis of Dewar’s MNDO method. 
 
 Finally, Dewar added one last fix-up to MNDO to create AM1 
(Austin Model 1; J. Am. Chem. Soc. 1985, 107, 3902).  This involved the 
addition of a semiempirical equation (not based on quantum 
mechanics at all) to improve the description of hydrogen bonding.  A 
later reparameterization of AM1 by J.J.P. Stewart (a one-time 
collaborator but subsequent competitor of Dewar’s) produced the 
PM3 method (J. Comput. Chem. 1989, 10, 209).  AM1 and PM3 are the 
currently most frequently used semiempirical MO methods. 
 
 




