

THE CITY OF SAN DIEGO

March 1, 2012

Mr. David W. Gibson, Executive Officer California Regional Water Quality Control Board 9174 Sky Park Court, Suite 100 San Diego, CA 92123

Attention: Pretreatment Coordinator

Dear Mr. Gibson:

Subject: Board Order No. R9-2006-0067, NPDES Permit No. CA0109045

CY2011 Pretreatment Annual Report for the South Bay POTW

The City of San Diego South Bay Water Reclamation Plant Pretreatment Program Annual Report for calendar year 2011 is hereby submitted in accordance with the requirements of NPDES Permit No.CA0109045, adopted November 8, 2006. The Pretreatment Program operated by the City of San Diego administers the program for the entire Metropolitan Sewerage System tributary area, under a single budget and implementation strategy. Therefore, this report incorporates sections of the EW Blom Annual Pretreatment Report relating to program budget, structure, and implementation strategy by reference. The City is committed to protecting public health and the environment through a program of environmental management, which includes source control, wastewater treatment, and extensive monitoring. One key element of the program is an aggressive pretreatment and pollution prevention program to minimize toxic discharges to the sewerage system.

Page 2 Mr. David W. Gibson, Executive Officer March 1, 2012

This report includes a summary of Pretreatment Program activities and accomplishments throughout jurisdictions tributary to the South Bay Water Reclamation Plant.

Should you have any questions concerning the information provided herein, or wish to meet with City staff to discuss the report in detail, please contact me at (619) 758-2300.

Sincerely,

Steve Meyer

Deputy Public Utilities Director

BLS:

Enclosure: CD containing PDF file of Report

cc: Keith Silva, Pretreatment Coordinator, EPA Region IX
Regulatory Unit, Water Quality Div., State Water Resources Control Board
Roger Bailey, Director of Public Utilities, City of San Diego (w/o enclosures)
Ann Sasaki, Assistant Director of Public Utilities, City of San Diego) (w/o enclosures)
Barbara Sharatz, Pretreatment Program Manager, City of San Diego
File

POTW PRETREATMENT ANNUAL REPORT

COVER SHEET

NPDES Permit Holder or Sewer Authority Name: City of San Diego

Report Date: <u>March 1, 2012</u>

Period Covered by This Report: January 1, 2011 to December 31, 2011

Period Covered by Previous Report: January 1, 2011 to December 31, 2011

Name of Wastewater Treatment Plant(s) NPDES Permit Number

South Bay Water Reclamation Plant CA 0109045

Person to contact concerning information contained in this report:

Name: Barbara Sharatz

Title: Industrial Wastewater Control Program Manager

Mailing Address: 9192 Topaz Way, MS 901D

San Diego, CA 92123-1119

Telephone No.: (858) 654-4106

I have personally examined and am familiar with the information submitted in this document and attachments. Based upon my inquiry of those individuals immediately responsible for obtaining the information reported herein, I believe that the submitted information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.

Steve Meyer

Deputy Public Utilities Director

Title

BLS:bil

PRETREATMENT ANNUAL REPORT

PCS Data Entry Form

			PPS1
POTW NAME:	City of San Die	go South Bay Water Reclamat	tion Plant and Ocean Outfall
NPDES Permit #:	<u>CA0109045</u>		
Period Covered By	Γhis Report:	<u>01/01/11</u> (PSSD) Start Date	12/31/11(PSED) End Date
Number of Significan Pretreatment Complia		in SNC With	0 (SSNC)
Number of Notices of Issued Against Signif			33 (FENF)
Number of Civil & C Significant Industrial		Actions Against	0 (JUDI)
Number of Significan Violations Published:		With Significant	
Number of Industrial Been Collected:	Users From Which	ch Penalties Have	<u>0</u> (IUPN)

SOUTH BAY WATER RECLAMATION PLANT & OCEAN OUTFALL ANNUAL PRETREATMENT REPORT

NPDES PERMIT No. CA 0109045 SDRWQCB ORDER No. R9-2006-0067

JANUARY 1 – DECEMBER 31, 2011

CY2011 ANNUAL PRETREATMENT REPORT FOR SOUTH BAY WATER RECLAMATION PLANT

I. Description of the South Bay Water Reclamation Plant and Its Service Area

The South Bay Water Reclamation Plant (SBWRP) is located on a 22.3 acre site near Dairy Mart Road and Monument Road in the eastern portion of the Tijuana River Valley. The site is approximately 300 feet north of the international boundary between Mexico and the United States and approximately 2000 feet west of the International Wastewater treatment Plant. The SBWRP treats raw wastewater collected from the southern portion of the City of San Diego, the City of Imperial Beach, the City of Chula Vista, and the unincorporated portions of south and east San Diego County, a total of approximately 44 square miles, and serves a population of nearly 107,000 people.

The plant is designed to treat up to 15 MGD of raw wastewater to secondary and/ or tertiary reclaimed water standards. All SBWRP tertiary treated wastewater in excess of reclaimed water demands is discharged to the Pacific Ocean through the South Bay Ocean Outfall (SBOO). The SBOO was constructed for shared use by the International Wastewater treatment Plant (IWTP), which is operated by the International Boundary and Water Commission (IBWC), and the City of San Diego's SBWRP. The SBOO extends westward approximately 23,600 feet from the mouth of the Tijuana River and terminates in a "wye" diffuser with two 1980 foot long diffusers. The IWTP currently discharges a maximum of 25 MDG of advanced primary treated wastewater from the City of Tijuana. This discharge is regulated by Regional Board Order No. 96-50 (NPDES Permit No. CA0108928). The total average design capacity of the outfall is 174 MGD with a peak hydraulic capacity of 233 MGD. The effluent from the SBWRP is combined with the effluent from the IWTP within the SBOO prior to discharge to the Pacific Ocean.

The SBWRP's primary and secondary processes consist of influent screening using mechanically cleaned bar screens, grit removal using aerated grit chambers, primary sedimentation clarifiers with chain and flight sludge collectors and tilting trough scum collectors, primary effluent flow equalization storage tanks, air activated sludge biological treatment with anoxic selector, and secondary clarifiers with chain and flight sludge collectors. The tertiary treatment process consists of filter feed pumping, coagulation with chemical addition, direct filtration with conventional deep bed mono-media filters, backwash facilities, and disinfection using ultraviolet light. Sludge processing is handled at the Point Loma Wastewater Treatment plant (PLWWTP) and the Metropolitan Biosolids Center. Solids from the SBWRP are pumped to the PLWWTP through the South Metro Interceptor.

The South Bay Water Reclamation Plant (SBWRP) began operations in CY2002, accepting an average of 3.5 MGD influent through the Grove Avenue Pump Station (GAPS). In October 2003 the Otay River Pump Station (ORPS) came on-line. The ORPS is divided into two pumping streams, with one sending high TDS flows from the Imperial Beach Sewer directly to the South Metro Interceptor influent to the Point Loma plant, and the other sending flows from the Otay Trunk Sewer and Salt Creek Trunk Sewer to the GAPS. Since start-up, the ORPS facility has been directing nearly 5 MGD to the GAPS, which combines

with the on-going 3.5 MGD GAPS flow for a total of 8.2 MGD influent to the SBWRP. In that some wastewater from areas tributary to the GAP and ORPS is able to be diverted to the PLWWTP via the South Metro Interceptor, facilities tributary to the GAP and ORPS are included in Annual Pretreatment Reports for both plants.

During CY2011 the program administered 11 SIU permits, covering 13 outfalls and monitored at 13 sample points. Two outfalls at 2 facilities were in SNC during the year. These facilities are included in the calculation of the Metro System annual Significant Non-Compliance Rate reported in the CY2011 Pretreatment Annual Report for the Pt Loma POTW, Board Order No. R9-2009-0001, NPDES Permit No. CA0109045.

II.

A. Summary of analytical results from representative flow-proportioned, 24-hour composite sampling of the SBWRP influent and effluent for those pollutants that the USEPA has identified under Section 307(a) of the CWA, and which are known or suspected to be discharged by industrial users. The summary must include a full priority pollutant scan.

Tables II.A-1 and II.A-2, below, summarize influent and effluent heavy metal loadings by month.

Pages 32 through 47 provide results for all influent and effluent pollutant monitoring during CY2011. These reports were extracted from the South Bay Treatment Plant and Ocean Outfall Annual Report. The summary includes a full priority pollutant scan.

				LE II.A-1				
	SOUTH BAY						TALS	
		Average C	oncentrati	on and Loa	dings for 2	011		
Month	Flow MGD	Cd ug/L	Cr ug/L	Cu ug/L	Pb ug/L	Ni ug/L	Ag ug/L	Zn ug/L
MDL(ug/L)		0.53	1.2	0.63	2	0.53	0.40	0.41
Jan	8.3	0.6	2.9	62	0	4.5	0.6	124
Feb	8.4	0	2.7	69	2.8	5.6	0.7	140
Mar	8.4	0	1.6	55	0	4.3	0.8	118
Apr	8.4	0	2.8	65	3.4	4.8	0	144
May	8.5	0	2.4	70	2.5	5	0.7	149
Jun	8.4	0.54	4.7	158	0	19.5	8.0	243
Jul	8.4	0	3.3	128	0	8.3	0	194
Aug	8.3	0	2.3	72	0	1.2	0.0	159
Sep	7.8	0	0	80	3.1	7.6	2.2	177
Oct	7.8	0	2.1	70	0	5.5	0	153
Nov	8.0	0	7.6	71	4.5	7.7	0	153
Dec	8.0	8.0	2.5	126.0	0.0	22.4	1.7	132
Avg Flow	8.2							
Avg ug/L		0.2	2.9	86	1.4	8	0.6	157
LBS/day		0.0	0.2	6	0.1	1	0.0	11
Total HM	17.53							
Total(-)Ag	17.49							

5	SOUTH BAY	/ WATER RI		LE II.A-2 N PLANT E	FFLUENT	HEAVY ME	TALS	
		Average C	oncentratio	on and Loa	dings for 2	011		
Zero = ND								
Month	Flow	Cd	Cr	Cu	Pb	Ni	Ag	Zn
	MGD	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MDL(ug/L)		0.53	1.2	2	2	0.53	0.40	2.50
Jan	5.9	0.265	0	17	0	5.3	0	29
Feb	5.5	0	0	16	0	55.3	0	28
Mar	6.2	0	0	13	0	4.2	0	36
Apr	4.0	0	0	18	0	6.3	0	27
May	2.5	0	0	22	0	5.0	0	30
Jun	1.5	0	0	13	0	5.1	0	26
Jul	1.2	0	0	11	0	5.8	0	21
Aug	0.5	0	0	6	0	2.8	0	28
Sep	0.8	0	0	7	0	8.1	0.6	31
Oct	2.1	0	0	7	0	6.7	0	30
Nov	6.0	0	0	9	3.4	6.0	0	26
Dec	6.4	0	0	12	0	12.8	0	31
Avg Flow	3.5							
Avg ug/L		0.0	0.0	13	0.3	10.3	0.1	29
LBS/day		0.0	0.0	0.4	0.0	0.3	0.0	1
Total HM	1.5							
Total(-)Ag	1.5							

B. Upset, Interference, and Pass-through

In CY2011, there were no reported incidents of interference with ORPS operations or the treatment plant by rags, suggesting the sewer grinder and solids removal system installed by the RJ Donovan Correctional Center is reliable and effective.

In CY2011, one (1) influent value and no effluent values exceeded the SBWRP reclaimed water TDS limit of 1200 mg/L and 42 influent values exceeded the reclaimed water goal of 1000 ppm TDS. These elevated TDS levels have been attributed to infiltration and to an increase in the number of SIUs tributary to the plant discharging high TDS wastestreams from food processing, self-regenerating water softeners, laundering, and power generation cooling systems. The program conducts monthly sewershed monitoring for TDS to quickly identify infiltration. A study conducted in FY2009 determined that, even if the regulated industries in the SBWRP sewershed eliminated their water softeners, the plant would likely still need to install TDS removal technology to consistently meet reclaimed water sale standards. The Public Utilities Department is planning to move an EDR unit from the North City WRP to the South Bay WRP by the end of CY14.

C. List of Deletions, Additions, and Name Changes of Significant Industrial Users during CY2011

	7	able 3.9	9-1: Cha	nges in SIU I	Inventory – 2011
Facility	Name	Class	Permit		Comments
FACILIT	TIES THAT BECAME SIUS IN	2011			Note: UT; = Extracted Groundwater Permit
12-024406	Harcon Precision Metals Inc	1	01-A	18-Feb-11	MF, PSNS, iron phosphating on Aluminum (99%) and steel (1%) base metals.
12-0245	UT; BRH Garver West Inc	3	01-A	10-May-11	Construction dewatering > 25,000 gpd
SIU FAC	ILITIES THAT REPORTED A	NAME	E CHAN	GE IN 2011	
IU#	TO	Class	Permit	Date	FROM
33-0044	Coating Services Group LLC	1	02-A	11-Feb-11	Molecular Metallurgy Inc
FORME	R SIU FACILITIES THAT BE	CAME I	NON-SIU	Us IN 2011	
Facility	Name	Class	Permit	Date	Comments
None					
		•			
SIU FAC	ILITIES INACTIVATED IN 20)11			
Facility	Name	Class	Permit	Date	Comments
12-0212	Cantare Foods Inc	3	01-B	07-Jun-11	Permit suspended 15-Apr-2011 due to cessation of operations pending new investor / buyer.
12-0245	UT; BRH Garver West Inc	3	01-B	02-Aug-11	Project completed

D. Baseline Monitoring Reports Requested or Received in CY2011

	Table 3.10	-1							
Facility Name Facility # BMR Requested BMR Received									
None		_							

E. Characterization of the Compliance Status of Each SIU

The Annual SIU Compliance Status Report for CY2011, which follows, lists the industry name, address, permit number, permit class; industrial flow by connection; violation dates and descriptions, if applicable; discharge standard and period, and actual value resulting in the violation; whether the violation exceeded the TRC; and whether the industry has been in Significant Non-Compliance (SNC) at any time during the year.

F. Pollution Prevention Plan Requirements

No IUs have been required to prepare or implement a pollution prevention plan as the result of non-compliance.

G. Programs San Diego has implemented to reduce pollutants from industrial users not classified as SIUs

The Metropolitan Wastewater Department of San Diego controls pollutants discharged by non-SIUs and by non-industrial sources through a combination of Class 2 and 3 permits, Best Management Practice Certification programs, and Hazardous Waste Collection events and facilities throughout the Metropolitan Sewerage System service area in cooperation with contributing agencies. For details, see Chapters Two and Three of the CY2011 Annual Report for the Point Loma POTW, NPDES Permit No. CA 0109045.

H. Pretreatment Program Changes

During CY2011, the program made the following significant changes: None

There were no significant changes in operating the pretreatment program in the areas of administrative structure, local limits, monitoring program, legal authority, enforcement policy, or funding or staffing levels.

I. Annual Pretreatment Program Budget

The pretreatment program budget is administered as a single budget for the three treatment plants in the Metropolitan Sewerage System service area. See Chapter 2 of the CY2011 Annual Report for the Point Loma POTW, NPDES Permit No. CA 0109045, for details.

J. Public Information and Involvement

Each year, a combined list of all facilities in the Metropolitan Sewerage System service area that were in SNC at any time during the year is published in the Union Tribune; this list is included in Chapter 4 of the CY2011 Annual Report for the Point Loma POTW NPDES Permit No. CA0109045.

In CY2011, the following SIUs discharging tributary to the SBWRP were in Significant Non-Compliance:

Name	Address	Pollutant in Violation
Doncasters GCE Industries	1891 Nirvana Ave, Chula Vista	silver
Spec-Built Systems Inc	2150 Michael Faraday Dr, San Diego	zinc

K. Biosolids Disposal Methods

Biosolids from the SBWRP is conveyed to the Miramar Biosolids Center for processing and disposal in combination with biosolids from throughout the Metropolitan Sewerage System service area. See Chapter 5 Section 5.5 of the CY2011 Annual Report for the Point Loma POTW, NPDES Permit No. CA 0109045, for details on CY11 biosolids disposal locations and beneficial uses.

L. Other Concerns

There are no other concerns	pertaining to the a	administration of	of the pretreatm	nent program	or control of
industrial contributions to th	e headworks loadi	ings at the SBV	VRP at this time	e.	

Distribution of Permits and Industrial Flows by Area Treatment Plant 6

Report run on: January 6, 2012 4:54 PM Page 1

Class		1		2		2F		3		4		4C		4D	5		Total	Total
Area	Count	IW (gpd)	Permits	flow (gpd)														
12	3	576	5	15,454	18	1	5	248,542	74	23,302	4		2	C	7		118	287,875
13	1	878	5	6,982	17	518	2	6,711	48	17,135	0		1	C	6		80	32,224
36	1	43,200	0		0		0		2	917	0		0		0		3	44,117
	5	44,654	10	22,436	35	519	7	255,253	124	41,354	4		3	C	13		201	364,216

Active Permits, Treatment Plant 6

Report run on: February 24, 2012 12:53 PM

Description	SIL	JSIU Type	Permit Count
1 - Federally Regulated CIU	Y	CIU	5
			5
2 - Local Toxic Pollutants	N		10
			10
2F - Film Processing only	N		35
			35
3 - Local Conventional Pollutants	N		2
	Υ	FLOW	5
			7
4 - No/Limited Discharge; Chemicals Stored	N		124
			124
4C - No/Limited Discharge; CIU process w/ 0 disch	N	CIU ZERO	4
			4
4D - Dry Cleaning only, no perc discharge	N		3
			3
5 - No IW Generated: No potential to discharge	N		14
			14
Total:			202

SIU Facilities: Federally and Locally Regulated Parameters by Connection Treatment Plant 6

Report run on: January 6, 2012 5:07 PM

Facility	Permit	Name	Address	Conn	Total IW (gpd)	Parmcode	City freq	Self freq	Cat	Period	Lower Limit	Upper Limit	Units
12-0038	04-A	RJ Donovan Correctional Facility	480 Alta Rd , San Diego	100	50,028	OIL/GREASE	Н	Н	L	DM	_	500	mg/L
						PH	Н	Н	L	DM	5	12.5	pH "
12-0065	03-C	Emerald Textiles LLC	1725 Dornoch Ct , San Diego	110	67,678	OIL/GREASE	Q	Q	L	DM	-	500	mg/L
10.0111	00.4	ADD '' MILL	101F 00H CL C B'	110	0/4	PH	Q	Q	L	DM	5	12.5	pH "
12-0144	03-A	AP Precision Metals	1215 30th St , San Diego	110	264	CADMIUM	Q	Q	F	DM		.11	mg/L
						CLIDOMILIM	0	0	г	MO		.07	mg/L
						CHROMIUM	Q	Q	F	DM		2.77	mg/L
						COPPER	0	Q	F	MO DM		1.71 3.38	mg/L
						COPPER	Q	Q	Г	MO		3.38 2.07	mg/L
						CYANIDE(T)	0	0	г	DM			mg/L
						CYANIDE(I)	Q	Q	F			1.2 .65	mg/L
						LEAD	0	0	г	MO			mg/L
						LEAD	Q	Q	F	DM MO		.69 .43	mg/L
						NICKEL	Q	Q	F	DM		.43 3.98	mg/L
						NICKEL	Q	Q	Г	MO		2.38	mg/L
						PH	Q	\circ	L	DM	5	12.5	mg/L
						SILVER	Q	Q Q	F	DM	3	.43	pH mg/l
						SILVER	Q	Q	Г	MO		.43 .24	mg/L mg/L
						TTO(413+433)-P	Α	Q	F	DM		2130	ug/L
						ZINC	Q	Q	F	DM		2.61	mg/L
						ZINC	Q	Q	'	MO		1.48	mg/L
12-0154	03-A	Heinz Frozen Foods	7878 Airway Rd , San Diego	110	62,361	CHROMIUM	Q	Q	L	DM		5	mg/L
12-0134	03-A	TICITE I TOZCII I OOUS	7070 Allway Na , Sall Diego	110	02,301	OIL/GREASE	M	M	Ĺ	DM		500	mg/L
						PH	M	M	Ĺ	DM	5	12.5	pH
						PH HIGHEST	N	IVI	Ĺ	DM	O	12.5	pН
						TEMP	M	М	F	DM		65.5	DegC
12-0202	02-Δ	Spec-Built Systems Inc	2150 Michael Faraday Dr , San Diego	110	26	CADMIUM	Q	Q	F	DM		.11	mg/L
12 0202	02 / t	Spec Built Systems inc	2100 Michael Faraday Dr. , Sull Diego	110	20	ONDIVITORI	Q	4	'	MO		.07	mg/L
						CHROMIUM	Q	Q	F	DM		2.77	mg/L
						or into ini o in	•	Q.	•	MO		1.71	mg/L
						COPPER	Q	Q	F	DM		3.38	mg/L
						OOT LIK	•	Q.	•	MO		2.07	mg/L
						CYANIDE(T)	Q	Q	F	DM		1.2	mg/L
						0.7	_	_	•	MO		.65	mg/L
						LEAD	Q	Q	F	DM		.69	mg/L
						-	_	_	•	MO		.43	mg/L
						NICKEL	Q	Q	F	DM		3.98	mg/L
							_	_	-	MO		2.38	mg/L
						PH	Q	Q	L	DM	5	12.5	pH
						SILVER	Q	Q	F	DM	-	.43	mg/L
							_	_	-	MO		.24	mg/L
						TTO(413+433)-P	Α	Q	F	DM		2130	ug/L

SIU Facilities: Federally and Locally Regulated Parameters by Connection Treatment Plant 6

Report run on: January 6, 2012 5:07 PM

Facility	Permit	Name	Address	Conn	Total IW (gpd)	Parmcode	City freq	Self freq	Cat	Period	Lower Limit	Upper Limit	Units
12-0202	02-A	Spec-Built Systems Inc	2150 Michael Faraday Dr , San Diego	110	26	ZINC	Q	Q	F	DM MO		2.61 1.48	mg/L mg/L
12-0220	01-A	Circle Foods LLC	8411 Siempre Viva Rd , San Diego	110	30,000	OIL/GREASE	M	M	L	DM		500	mg/L
			3.		,	PH	M	M	L	DM	5	12.5	рН
						PH HIGHEST	N		L	DM		12.5	pH
						TEMP	M	M	L	DM		65.5	DegC
12-0244	01-C	Harcon Precision Metals Inc	1790 Dornoch Ct , San Diego	110	286	CADMIUM	S	S	F	DM		.11	mg/L
			•							MO		.07	mg/L
						CHROMIUM	S	S	F	DM		2.77	mg/L
										MO		1.71	mg/L
						COPPER	S	S	F	DM		3.38	mg/L
										MO		2.07	mg/L
						CYANIDE(T)	S	S	F	DM		1.2	mg/L
										MO		.65	mg/L
						LEAD	S	S	F	DM		.69	mg/L
										MO		.43	mg/L
						NICKEL	S	S	F	DM		3.98	mg/L
										MO		2.38	mg/L
						PH	S	S	L	DM	5	12.5	рЙ
						PH HIGHEST	S		L	DM		12.5	рH
						SILVER	S	S	F	DM		.43	mg/L
										MO		.24	mg/L
						TTO(413+433)-P	Α	S S	F	DM		2130	ug/L
						ZINC	S	S	F	DM		2.61	mg/L
										MO		1.48	mg/L
12-0264	01-A	UT; SC Valley Engineering Inc	Palm City TrunkSewer , San Diego	100	38,400	FLOW RATE MAX		M	L	DM		80	gpm
13-0115	04-B	Doncasters GCE Industries	1891 Nirvana Av , Chula Vista	330	93	CADMIUM	Q	Q	F	DM		.11	mg/L
										MO		.07	mg/L
						CHROMIUM	Q	Q	F	DM		2.77	mg/L
										MO		1.71	mg/L
						COPPER	Q	Q	F	DM		3.38	mg/L
										MO		2.07	mg/L
						CYANIDE(T)	Q	Q	F	DM		1.2	mg/L
										MO		.65	mg/L
						LEAD	Q	Q	F	DM		.69	mg/L
										MO		.43	mg/L
						NICKEL	Q	Q	F	DM		3.98	mg/L
										MO		2.38	mg/L
						PH	Q	Q	L	DM	5	12.5	рН
						PH HIGHEST	S		L	DM		12.5	рН
						SILVER	Q	Q	F	DM		.43	mg/L
										MO		.24	mg/L
						TTO(413+433)-P	Α	Q	F	DM		2130	ug/L

SIU Facilities: Federally and Locally Regulated Parameters by Connection Treatment Plant 6

Report run on: January 6, 2012 5:07 PM

Facility Permi	t Name	Address	Conn	Total IW (gpd)	Parmcode	City freq		Cat	Period	Lower Limit	Upper Limit	Units
13-0115 04-B	Doncasters GCE Industries	1891 Nirvana Av , Chula Vista	330	93	ZINC	Q	Q	F	DM MO		2.61 1.48	mg/L mg/L
			410	784	CADMIUM	Q	Q	F	DM MO		.11 .07	mg/L mg/L
					CHROMIUM	Q	Q	F	DM MO		2.77 1.71	mg/L mg/L
					COPPER	Q	Q	F	DM MO		3.38 2.07	mg/L mg/L
					CYANIDE(T)	Q	Q	F	DM MO		1.2 .65	mg/L mg/L
					LEAD	Q	Q	F	DM MO		.69 .43	mg/L mg/L
					NICKEL	Q	Q	F	DM MO		3.98 2.38	mg/L mg/L
					PH PH HIGHEST	Q S	Q	L L	DM DM	5	12.5 12.5	рН рН
					SILVER	Q	Q	F	DM MO		.43 .24	mg/L mg/L
					TTO(413+433)-P ZINC	A Q	Q Q	F F	DM DM		2130 2.61	ug/L mg/L
36-0001 01-A	Otay Mesa Energy Center LLC	606 De La Fuente Ct , San Diego	110	43,000	CHROMIUM OIL/GREASE	Q Q	Q Q	F	MO DM DM		1.48 .2 500	mg/L mg/L mg/l
					PH PH HIGHEST	Q N	Q	L	DM DM	5	12.5 12.5	mg/L pH pH
					TDS ZINC	Q Q	Q Q	O F	DM DM		3200 1	mg/L mg/L

SIU Facilities Federal Category, Process, and Pretreatment Technology by Connection Treatment Plant 6

Report run on: January 6, 2012 5:09 PM

12-0038 04-A RJ Donovan Correctional Facility 50,028 100 Prison Sewer Main Local 130 133		ode
133	-	REASE
		RIND
	•	CREEN
12-0065 03-C Emerald Textiles LLC 67,703 110 Commercial Laundry Local 133		NT
	_	ETTLE
	-	AUL
12-0144 03-A AP Precision Metals 264 110 Metal Coating (Iron Phosphating) Federal 433 .17	1 PH	
		ETTLE
12-0154 03-A Heinz Frozen Foods 62,411 110 Food Manufacturing Local 137	-	QUAL
		CREEN
	-	AF+C
	-	REASE
		AUL
12-0202 02-A Spec-Built Systems Inc 26 110 Iron Phosphating Federal 433 .17	-	ETTLE
	2 RE	ECYL
	3 CC	
	4 PH	H
	5 MI	IXER
	6 H <i>A</i>	AUL
12-0220 01-A Circle Foods LLC 30,000 110 Food manufacturing Local 137	1 EC	QUAL
	2 SC	CREEN
	3 DA	AF+C
	4 SE	D-FP
12-0244 01-C Harcon Precision Metals Inc 286 110 Chemical conversion coating & water Federal 433 .17	1 PH	H
Jet	2 MI	IXER
	3 SE	ETTLE
	4 H/	AUL
	5 EV	VAP
12-0264 01-A UT; SC Valley Engineering Inc 38,400 100 Groundwater Local 101	1 FII	LT-O
13-0115 04-B Doncasters GCE Industries 878 200 Bldg 2 Lateral, 1887 Nirvana Av Local	1 ZE	ERO
	2 HA	AUL
300 Bldg 3 Lateral, 757 Main St Local 130	1 EF	RU+1
	2 H/	AUL

SIU Facilities Federal Category, Process, and Pretreatment Technology by Connection Treatment Plant 6

Report run on: January 6, 2012 5:09 PM

Facility Permit	Name	IW Discharged (gpd)	Conn	Principle Process	Federal/ Local	CFR Part	CFR Section		Pre Treat Code
13-0115 04-B	Doncasters GCE Industries	878	330	Dye Pen / Vibra Clean	Federal	433	.17	1	SETTLE
								2	IX
								3	FILT-O
			410	Dye Pen / Water Jet Cutting	Federal	433	.17	1	SETTLE
								2	IX
								3	FILT-O
								4	O/W
								5	HAUL
36-0001 01-A	Otay Mesa Energy Center LLC	43,200	110	WetSac blowdown + OWS	Federal	423	.17	1	SETTLE
								2	PH
			120	PCB zero discharge	Federal	423	.17	1	ZERO
10									

10

SIU Enforcement Actions Initiated, Continued, or Finalized in CY2011

Doncasters GCE Industries; IU# 13-0115

This sheet metal fabricator of components for stationary turbine power units discharges about 250 gpd to connections 330 and 410 from dye penetrant testing, vibratory cleaning, and water jet cutting. At connection 330, daily maximum and monthly average violations for silver in April and June resulted in SNC status for the six-month period ending with the 2nd quarter of 2011. NOVs were issued for the violations and additional program monitoring has been scheduled. In response the IU replaced its silver recovery system and began conducting periodic silver checks of the system. All 10 subsequent samples collected (7 by the program) in 2011 and January 2012 demonstrated compliance. No further enforcement actions are planned.

Spec-Built Systems Inc; IU# 12-0202

This metal finisher performs iron phosphating on maritime cabinets and shelves. In 2008 the IU began reusing its rinsewater and batch discharging after settling at a frequency of once each quarter, equivalent to about 25 gpd. After demonstrating compliance since June 2009, a single monthly average violation for zinc in October 2011 resulted in SNC status for the 4th quarter. An NOV was issued and the IU's response and next discharge is still outstanding. Thus additional program monitoring will continue into 2012 to determine whether the IU needs to take further corrective actions to achieve consistent compliance.

Annual SIU Compliance Status Report

01-Jan-2011 through 31-Dec-2011

SIU Name	IU#	Class	IW Disch	SNC? [If Yes, Why]	Conn	Violation Date	Description/Parameter	Value	Limit	Period	Cat	TRC
AP Precision Metals	12-0144	. 1	264	No	NA							
1215 30th St, San Diego												
Cantare Foods Inc	12-0212	3	26210	No	100	18-Jan-11	SMR Incomplete					
7651 Saint Andrews Av, San					100	19-Jan-11	SMR Incomplete					
Diego					100	31-Jan-11	pH-Instantaneous	4.2	5-12.5	DM	L	N
					100	01-Feb-11	SMR Incomplete					
					100	28-Feb-11	SMR Incomplete					
					210	18-Jan-11	•					
					210	08-Feb-11	•					
					210	28-Feb-11	SMR Incomplete					
Circle Foods LLC	12-0220	3	30000	No	110	28-Sep-11	SMR Late - written notice					
8411 Siempre Viva Rd, San Diego												
Doncasters GCE Industries	13-0115	1	878	Yes SNC2 - TRC (DM): Ag	330	01-Apr-11	Silver, Total	.998	.24	MO	F	Υ
1891 Nirvana Av, Chula Vista				3/7(q2), (MO): Ag 2/4(q2)	330	26-Apr-11	Silver, Total	.998	.43	DM	F	Υ
					330	01-Jun-11	Silver, Total	1.25	.24	MO	F	Υ
					330	01-Jun-11	Silver, Total	1.42	.43	DM	F	Υ
					330	02-Jun-11	Silver, Total	3.58	.43	DM	F	Υ
Emerald Textiles LLC	12-0065	3	67703	No	NA							
1725 Dornoch Ct, San Diego												
Harcon Precision Metals Inc	12-0244	. 1	286	No	110	18-Jul-11	SMR Incomplete					
1790 Dornoch Ct, San Diego												
Heinz Frozen Foods	12-0154	. 3	62411	No	NA							
7878 Airway Rd, San Diego												

Annual SIU Compliance Status Report

01-Jan-2011 through 31-Dec-2011

SIU Name	IU#	Class	IW Disch	SNC? [If Yes, Why]	Conn	Violation Date	Description/Parameter	Value	Limit	Period	Cat	ΓRC
Otay Mesa Energy Center LLC 606 De La Fuente Ct, San Dieg	36-0001 o	1	43200	No	NA							
RJ Donovan Correctional Facility 480 Alta Rd, San Diego	12-0038	3 3	50028	No	100 100 100	27-Jan-11 22-Feb-11 13-Jul-11	SMR Late - written notice SMR Incomplete SMR Incomplete					
Spec-Built Systems Inc 2150 Michael Faraday Dr, San Diego	12-0202	2 1	26	Yes SNC2 - TRC (MO): Zn 1/2(q4)	110 110 110	28-Jan-11 01-Oct-11 16-Nov-11	SMR Incomplete Zinc, Total SMR Incomplete	1.84	1.48	МО	F	Y
UT; BRH Garver West Inc 0000 Hollister&Starburst, San Diego	12-0245	5 3	360000	No	100 100	29-Jun-11 24-Aug-11	SMR Late - written notice SMR Late - written notice					

SBWRP SIU NOV Summary for 2011

		SBWF	P SIU 1	NOV Summary	for 2011			
Name				Identified				
	12-0212		59569	20-JUL-10	19-JAN-11	27-MAY-10	\$75	Second notice
			60182	30-JUN-10	03-MAY-11	30-JUN-10	\$382	Final notice
			60208	07-SEP-10	19-JAN-11	30-JUL-10	\$75	Second notice
			60231	29-SEP-10	19-JAN-11	27-AUG-10	\$50	Notice only
			60479	27-001-10	T9-JAN-II	30-2Fb-10	\$50	Notice only
				01-NOV-10				Notice only
		210		18-JAN-11 18-JAN-11				Notice only
				19-JAN-11				Notice only Notice only
		100		19-JAN-11				Notice only
			61248	20-JAN-11	20-JAN-11	07-DEC-10	\$100	Initial notice
			61362	01-FEB-11	01-FEB-11	31-DEC-10	\$50	Notice only
		210	61438	08-FEB-11	08-FEB-11	31-DEC-10	\$50	Notice only
		T00	61897	28-FEB-11	28-FEB-11		\$50	Notice only
		210	61898	28-FEB-11	28-FEB-11	31-JAN-11	\$50	Notice only Notice only
		100	61992	14-MAR-11	25-MAR-11	01-FEB-11	\$50	Notice only
	*****	****		******	******			
	count		16					
	sum						\$1,232	
Circle Foods LLC	12-0220	110	64114	28-SEP-11 ******	28-SEP-11			Notice only
		****	1	*****	*****			
	count sum		Τ				\$50	
Dongasters CCF Industries	13_0115	330	62549	24_M7V_11	24_MAV_11	26_NDD_11		Initial notice
Doncasters GCE industries	13-0113	330	63029	15-TIIN-11	15-JIIN-11	01-TIIN-11	\$100	Initial notice
Doncasters GCE Industries			03023	13 001 11	24-AUG-11	01-JUN-11	\$75	Second notice
			63606	22-AUG-11	22-AUG-11	26-APR-11	\$50	Notice only
			63825	22-AUG-11	22-AUG-11	21-JUN-11	\$50	Notice only Notice only
								Notice only
	*****	****		******	******			_
	count		6					
	sum						\$425	
Harcon Precision Metals Inc								Final notice
		****	1	*****	*****			
	count		Τ				\$100	
Heinz Frozen Foods	sum 12-0154	110	61247	20TAN_11	20TAN_11	15_DFC_10		Initial notice
Heinz Flozen Foods				******				IIIICIAI NOCICE
	count		1					
	sum						\$100	
RJ Donovan Correctional Facil		100	61351	27-JAN-11	27-JAN-11			Notice only
ity								-
								Notice only
				13-JUL-11				Notice only
		****		******	*****			
	count		3				4150	
Coog Duilt Craters Inc	sum	110	61257	20 TAN 11	00 TANT 11		\$150	
Spec-Built Systems Inc	12-0202	TTO		28-JAN-11				Final notice
				28-JAN-11 16-NOV-11				Final notice Notice only
	*****	****		******				Notice only
	count		3					
	sum		3				\$250	
UT; BRH Garver West Inc	12-0245	100	63148	29-JUN-11	29-JUN-11			Notice only
				24-AUG-11				Notice only
	*****	****		******				•
	count		2					
	sum						\$100	

count			33				40 45=	
sum							\$2,407	

33 rows selected.

Sampling at SIUs Discharging to Treatment Plant 6 between 01-JAN-11 and 31-DEC-11

Report run on: February 17, 2012 2:25 PM Page 1

12-0038 04-A RJ Donovan Correctional Facility 100 Prison Sewer Main L OIL/GREASE 6 6 PH 6 6	
PH 6 6	j
	į
SILVER CERT 2	; •
12-006503-CEmerald Textiles LLC110Commercial LaundryLOIL/GREASE44	
PH 4 4	
12-0144 03-A AP Precision Metals 110 Metal Coating (Iron F CADMIUM 4 4	
Phosphating) CHROMIUM 4 4	
COPPER 4 4	
CYANIDE(T) 4 4	
FLOW 4	
LEAD 4 4	
NICKEL 4 4 PH 4 4	
PH 4 4 SILVER 4 4	
TTO CERT 4	
TTO CERT TTO (413+433)-P 1	
ZINC 4 4	ļ
12-0154 03-A Heinz Frozen Foods 110 Food Manufacturing L CHROMIUM 4 4	
OIL/GREASE 23 12	
PH 26 12	
PH HIGHEST	
PH LOWEST	
TEMP 20 12	2
12-0202 02-A Spec-Built Systems Inc 110 Iron Phosphating F CADMIUM 3 1	
CHROMIUM 3 1	
COPPER 3 1	
CYANIDE(T) 3 1	
FLOW 4	
LEAD 3 1	
NICKEL 3 1	
PH 3 1	
SILVER 3 1	
TTO CERT 4	:
TTO(413+433)-P 2 ZINC 3 1	
12-0220 01-A Circle Foods LLC 110 Food manufacturing L FLOW 12	
OIL/GREASE 23 12	
PH 24 12	
PH HIGHEST	-

Sampling at SIUs Discharging to Treatment Plant 6 between 01-JAN-11 and 31-DEC-11

Report run on: February 17, 2012 2:25 PM Page 2

Facility	Pmt	Name	Conn	Principle Process	Pmt Include	Parmcode	City Samples	Self Samples
12-0220	01-A	Circle Foods LLC	110			PH LOWEST		
						TEMP	24	12
12-0244	01-C	Harcon Precision Metals Inc	110	Chemical conversion	F	CADMIUM	2	3
				coating & water Jet		CHROMIUM	2	3
						COPPER	2	3
						CYANIDE(T)	1	2
						FLOW		3
						FLOW MAX	_	3
						LEAD	2	3
						NICKEL	2	3
						PH	2	2
						PH HIGHEST	1	
						PH LOWEST	1	_
						SILVER	2	3
						TTO CERT		2
						TTO(413+433)-P	1	3
2-0264 01-A LIT: SC Valley Engineering Inc			_	ZINC	2	3		
2-0264	-0264 01-A UT; SC Valley Engineering Inc	100	Groundwater	L	FLOW RATE MAX			
· · -				_	FLOW RATE MIN			
3-0115	04-B	Doncasters GCE Industries	200	Bldg 2 Lateral, 1887 Nirvana	L	ZERODISCHRG		4
			200	Av		CERT		
			300	Bldg 3 Lateral, 757 Main St	L		10	
			330	Dye Pen / Vibra Clean	F	CADMIUM	10	4
						CHROMIUM	10	4
						COPPER	10	4
						CYANIDE(T)	10	4
						LEAD	10	4
						NICKEL	10	4
						PH	10	4
						PH HIGHEST	2	
						PH LOWEST	2	4
						SILVER	10	4
						TTO CERT	4	4
						TTO(413+433)-P	1	
			410	Deep Deep / Wilder Land Carr	г	ZINC	10	4
			410	Dye Pen / Water Jet Cutting	F	CADMIUM	4	4
						CHROMIUM	4	4
						COPPER	4	4
						CYANIDE(T)	4	4

Sampling at SIUs Discharging to Treatment Plant 6 between 01-JAN-11 and 31-DEC-11

Report run on: February 17, 2012 2:25 PM

Facility	Pmt	Name	Conn	Principle Process	Pmt Include	Parmcode	City Samples	Self Samples
13-0115	04-B	Doncasters GCE Industries	410			LEAD	4	4
						NICKEL	4	4
						PH	4	4
						PH HIGHEST	2	
						PH LOWEST	2	
						SILVER	4	4
						TTO CERT		4
						TTO(413+433)-P	1	
						ZINC	4	4
36-0001	01-A	Otay Mesa Energy Center LLC	110	WetSac blowdown + OWS	F	CHROMIUM	4	4
						FLOW		4
						OIL/GREASE	4	4
						PH	4	4
						PH HIGHEST		
						PH LOWEST		
						ZINC	4	4
			120	PCB zero discharge	F	ZERODISCHRG		4
						CERT		

10

TTO Sampling at SIUs discharging to Treatment Plant 6 between 01-Jan-11 and 31-Dec-11

Report run on: February 17, 2012 2:32 PM

Facility	Pmt '	Name	Conn	Principle Process	Batch	City TTO Samples	Self TTO Samples	Self Certification
12-0144	03-A	AP Precision Metals	110	Metal Coating (Iron Phosphating)	N	1		4
12-0202	02-A	Spec-Built Systems Inc	110	Iron Phosphating	N	2		4
12-0244	01-C	Harcon Precision Metals Inc	110	Chemical conversion coating & water Jet	N	1	2	2
13-0115	04-B	Doncasters GCE Industries	330	Dye Pen / Vibra Clean	N	1		4
			410	Dye Pen / Water Jet Cutting	N	1		4

Active Non-SIU Permits, Treatment Plant 6

Report run on: January 6, 2012 4:37 PM Page 1

Class	Facility Permit	Name		Address				City	Zip
2	12-0024 02-A 12-0140 01-A 12-0143 02-A 12-0145 03-A 12-0177 01-A 13-0159 03-A 13-0278 03-A	US Border Patrol Kaiser Foundation Health Plan Adesa San Diego Larkspur Energy Truck Net LLC SOS Metals San Diego Allied Waste Systems dba Allied Waste Services SD Fuller Ford	3752 4652 2175 9355 8490 635 881	Beyer Palm Cactus Otay Mesa Avenida De La Fuente Anita Energy Auto Park	BI Av Rd Rd St Wy			San Diego San Diego San Diego San Diego San Diego Chula Vista Chula Vista	92173 92154 92154 92154 92154 92151 91911
	13-0327 02-A 13-0399 02-A	Dresser-Rand Veolia Transportation	1675 3650A	Brandywine Main	Av St	Suite	E&F	Chula Vista Chula Vista	91911 91911
3	10 13-0298 03-A 13-0439 01-A 2	Chula Vista Energy Center LLC Toyota Chula Vista	3497 650	Main Main	St St			Chula Vista Chula Vista	91911 91911
	12								

Active Groundwater Permits, Treatment Plant 6

Report run on: January 6, 2012 4:34 PM

Class	Facility Permit	Name	Address	City	Zip
3	12-0264 01-A	UT; SC Valley Engineering Inc	Palm City TrunkSewer	San Diego	92154
	1				
	1				

Film Processors Subject to Best Management Practices, Treatment Plant 6

Report run on: January 6, 2012 4:39 PM Page 1

Class	Facility	Permit	Name			Address				City
2F	12-0081	00-A	San Ysidro Health Center	4004		Beyer	BI			San Diego
	12-0100	01-A	County; George Bailey Detention	446		Alta	Rd			San Diego
	12-0112	01-A	NAC	1330		30th	St	Suite	Е	San Diego
	12-0113	01-A	So San Diego Veterinary Hosp	2910		Coronado	Av			San Diego
	12-0114	02-A	EZ Smiles Dental Care	1850		Coronado	Av			San Diego
	12-0115	01-A	Lewis J Dorria DDS	2930		Coronado	Av			San Diego
	12-0117	01-A	Montgomery High School	3250		Palm	Av			San Diego
	12-0119	01-A	Jeffrey W Brown DDS	1761		Palm	Av			San Diego
	12-0121	01-A	Jerome A Bannister DDS	4370		Palm	Av	Suite	С	San Diego
	12-0122	02-A	Carlos Garcia DDS	1270		Picador	BI	Suite	L-M	San Diego
	12-0123	02-A	Southland Plaza Dental	655		Saturn	BI	Suite	G	San Diego
	12-0124	01-A	I-5 Palm Ave Medical Clinic	655		Saturn	BI			San Diego
	12-0125	02-A	San Ysidro Dental Care	2004		Dairy Mart	Rd			San Diego
	12-0146	02-A	CVS Pharmacy # 9115	645		Saturn	BI			San Diego
	12-0186	01-A	Rancho Vista Medical & Therapy Center Inc	342	W	San Ysidro	BI	Suite	F	San Diego
	12-0209	01-A	Rite Aid # 5668	1856		Coronado	Av			San Diego
	12-0222	01-A	Jose L Lopez DDS Inc	3490		Palm	Av	Unit	1	San Diego
	12-0231	01-A	Juvenile Detention Facility	446		Alta	Rd			San Diego
	13-0048	02-A	Hyspan Precision Products	1685		Brandywine	Av			Chula Vista
	13-0117	02-A	Bay Port Press	645		Marsat	St	Suite	D	Chula Vista
	13-0235	01-A	Photo Max	1367		3rd	Av			Chula Vista
	13-0249	01-A	The Pet Clinic	3326		Main	St			Chula Vista
	13-0255	01-A	Hilltop Dentistry	11		Naples	St			Chula Vista
	13-0256	01-A	Langford Chiropractor	4360		Main	St	Suite	209	Chula Vista
	13-0257	01-A	Robert N Woodall DDS Inc	330		Oxford	St			Chula Vista
	13-0261	02-A	Palomar Dental Group	648		Palomar	St			Chula Vista
	13-0333	01-A	Costco Wholesale # 781	1130		Broadway				Chula Vista
	13-0355	01-A	Walgreens # 7867	1430		Eastlake	Ру			Chula Vista
	13-0379	01-A	Amazon Animal Hospital	1172		3rd	Av	Suite	D8	Chula Vista
	13-0387	01-A	Perpecta Dental Group	314		Palomar	St			Chula Vista
	13-0388	01-A	Palomar Dental Group	664		Palomar	St	Suite	1103	Chula Vista
	13-0412	01-A	Wal-Mart Store # 5305	1150		Broadway				Chula Vista
	13-0414	01-A	Walgreens # 2623	1111		3rd	Av			Chula Vista
	13-0442	01-A	Wal-Mart # 3516	1360		Eastlake	Ру			Chula Vista
	13-0456	01-A	East Lake Plaza Dental	2060		Otay Lakes	Rd	Suite	230	Chula Vista

Dry Cleaners Subject to Best Management Practices, Treatment Plant 6

Report run on: January 6, 2012 4:31 PM Page 1

Class	Facility	Permit	Name		Address				City
4D	12-0106 12-0108 13-0176	02-A 03-A 01-A	Saturn Cleaners Rainbow Cleaners Speedy Clean Specialists Inc	655 2004 1327	Saturn Dairy Mart 3rd	BI Rd Av	Suite Suite	E 121	San Diego San Diego Chula Vista
	3								

SOUTH BAY WATER RECLAMATION PLANT AND OCEAN OUTFINFLUENT / EFFLUENT DATA FROM

SOUTH BAY WATER RECLAMATION PLANT AND OCEAN OUTFALL ANNUAL REPORT

Trace Metals

Analyte: MAX MDL Units: Source: Month/Limit:	Aluminum 47 UG/L Influent	Aluminum 47 UG/L Effluent	Antimony 2.9 UG/L Influent	Antimony 2.9 UG/L Effluent	Arsenic .4 UG/L Influent	Arsenic .4 UG/L Effluent 2800
JANUARY -2011	1040	95	ND	3.8	1.05	0.83
FEBRUARY -2011	1400	230	ND	ND	0.80	1.17
MARCH -2011	818	141	ND	ND	1.08	1.08
APRIL -2011	742	175	ND	ND	1.30	1.17
MAY -2011	878	149	ND	ND	0.50	0.80
JUNE -2011	751	ND	ND	ND	1.20	0.93
JULY -2011	588	ND	3.8	3.6	0.88	0.60
AUGUST -2011	598	ND	3.3	ND	ND	0.44
SEPTEMBER-2011	564	ND	ND	ND	0.53	0.61
OCTOBER -2011	843	199	ND	ND	1.04	1.05
NOVEMBER -2011	633	60	ND	ND	0.88	0.73
DECEMBER -2011	583	80	ND	ND	1.04	0.81
==========	=========	=======	=========		==========	=======
AVERAGE	787	94	0.59	0.62	0.86	0.85
Analyte:	Barium	Barium	Beryllium	Beryllium	Boron	Boron
MAX MDL Units:	.039 UG/L	.039 UG/L	.022 UG/L	.022 UG/L	7 UG/L	7 UG/L
Source:	Influent	Effluent	Influent	Effluent	Influent	Effluent
Month/Limit:						
JANUARY -2011	79.8	52.6	========= ND	ND	292	
FEBRUARY -2011	79.8 101	52.6	ND ND	0.024	326	320 327
MARCH -2011	63.9	48.8	0.024	0.024 0.043	216	327 284
APRIL -2011	77.2	48.6	0.024	0.043 0.056	216	264 291
MAY -2011	77.2 85.8	52.6	0.046	0.036	272	310
JUNE -2011	88.6	45.4	0.145	0.145	318	252
JULY -2011	76.8	47.3	0.031	0.143 ND	303	332
AUGUST -2011	86.4	47.3	0.031 ND	ND ND	306	328
SEPTEMBER-2011	63.5	34.3	ND ND	ND ND	337	301
OCTOBER -2011	63.1	39.2	ND ND	ND ND	296	341
OCTOBER -2011						_
NOVEMBED 2011	EQ /	21 O				
NOVEMBER -2011	58.4	31.9	ND ND	ND ND	259 272	166
NOVEMBER -2011 DECEMBER -2011	58.4 62.5	38.4	ND	ND	259 272	288

SOUTH BAY WATER RECLAMATION PLANT 2011 ANNUAL SEWAGE

Trace Metals

Analyte: MAX MDL Units: Source: Month/Limit:	Cadmium .53 UG/L Influent	Cadmium .53 UG/L Effluent 48	Chromium 1.2 UG/L Influent	Chromium 1.2 UG/L Effluent 760	Cobalt .85 UG/L Influent	Cobalt .85 UG/L Effluent
JANUARY -2011 FEBRUARY -2011 MARCH -2011	0.58 ND ND	<0.53 ND ND	2.9 2.7 1.6	ND ND ND	NR ND NR	ND ND ND
APRIL -2011	ND ND	ND	2.8	ND ND	NR	ND ND
MAY -2011	ND	ND	2.4	ND	ND	ND
JUNE -2011	0.54	ND	4.7	ND	NR	ND
JULY -2011	ND	ND	3.3	ND	NR	ND
AUGUST -2011 SEPTEMBER-2011	ND ND	ND ND	2.3 ND	ND ND	ND NR	ND ND
OCTOBER -2011	ND ND	ND ND	2.1	ND ND	ND ND	ND ND
NOVEMBER -2011	ND	ND	7.6	ND	NR	ND
DECEMBER -2011	0.83	ND	2.5	ND	NR	ND
AVERAGE	0.16	0.0	2.9	0.0	0.0	0.0
Analyte:	Copper	Copper	Iron	Iron	Lead	Lead
MAX MDL Units:	2 UG/L	2 UG/L	37 UG/L	37 UG/L	2 UG/L	2 UG/L
Source: Month/Limit:	Influent	Effluent 960 	Influent	Effluent	Influent	Effluent 760
JANUARY -2011	62	17	518	59	ND	ND
FEBRUARY -2011	69	16	825	94	2.8	ND
MARCH -2011	55	13	538	47	ND 2.4	ND
APRIL -2011 MAY -2011	65 70	18 22	538 754	55 ND	3.4 2.5	ND ND
JUNE -2011	158	13	812	ND	ND	ND
JULY -2011	128	11	698	72	ND	ND
AUGUST -2011	72	6	647	ND	ND	ND
SEPTEMBER-2011	80	7	679	75	3.1	ND
OCTOBER -2011 NOVEMBER -2011	70 71	7 9	562 707	41 39	ND 4.5	ND 3.4
DECEMBER -2011	126	12	564	61	ND	ND
======================================	======================================	13	====== 654	45	1.4	0.3
AVERAGE	80	15	654	45	1.4	0.5
Analyte: MAX MDL Units:	Manganese .24 UG/L	Manganese .24 UG/L	Mercury .005 UG/L	Mercury .005 UG/L	Molybdenum .89 UG/L	Molybdenum .89 UG/L
Source: Month/Limit:	Influent	Effluent	Influent	Effluent 15.00	Influent	Effluent
======== = = = = = = = = = = = = = = =	67.7	29.4	0.054	ND	======== NR	12.0
FEBRUARY -2011	74.9	49.2	0.111	ND ND	6.1	3.8
MARCH -2011	55.8	29.0	0.164	ND	NR	4.6
APRIL -2011	64.4	20.3	0.514	ND	NR	3.2
MAY -2011	71.4	33.7	0.270	0.006	4.9	2.5
JUNE -2011 JULY -2011	83.0 68.6	34.3 31.0	0.119 0.051	ND ND	NR NR	3.1
AUGUST -2011	70.0	20.8	0.322	ND ND	7.1	5.5 3.5
SEPTEMBER-2011	64.7	22.3	0.096	ND	NR	5.6
OCTOBER -2011	64.8	18.0	0.109	ND	5.5	3.5
NOVEMBER -2011	59.7	23.7	0.283	ND	NR	3.1
DECEMBER -2011	83.2	42.2	0.099 =======	ND	NR ========	2.1
AVERAGE	69.0	29.5	0.183	0.001	5.9	4.4
ND= not detected	NA= n	ot analyzed	NS= not	sampled		

SOUTH BAY WATER RECLAMATION PLANT 2011 ANNUAL SEWAGE

Trace Metals

Analyte:	Nickel	Nickel	Selenium	Selenium	Silver	Silver
MAX MDL Units:	.53 UG/L	.53 UG/L	.28 UG/L	.28 UG/L	.4 UG/L	.4 UG/L
Source:	Influent	Effluent	Influent	Effluent	Influent	Effluent
Month/Limit:		1900		5700		250
===========	=========	========	=========	========	=========	=======
JANUARY -2011	4.53	5.34	1.65	0.58	0.6	ND
FEBRUARY -2011	5.55	5.27	1.18	0.69	0.7	ND
MARCH -2011	4.30	4.21	1.04	0.68	0.8	ND
APRIL -2011	4.77	6.32	1.35	0.90	ND	ND
MAY -2011	4.95	4.96	0.90	0.55	0.7	ND
JUNE -2011	19.5	5.11	1.64	0.72	0.8	ND
JULY -2011	8.28	5.77	1.61	0.39	ND	ND
AUGUST -2011	1.21	2.75	0.78	ND	ND	ND
SEPTEMBER-2011	7.57	8.12	0.81	ND	2.2	0.6
OCTOBER -2011	5.49	6.69	0.50	ND	ND	ND
NOVEMBER -2011	7.73	5.96	1.05	0.41	ND	ND
DECEMBER -2011	22.4	12.8	1.29	0.51	1.7	ND
AVERAGE	8.02	6.11	1.15	0.45	0.6	0.1
Analyte: MAX MDL Units: Source: Month/Limit:	Thallium 3.9 UG/L Influent	Thallium 3.9 UG/L Effluent	Vanadium .64 UG/L Influent	Vanadium .64 UG/L Effluent	Zinc 2.5 UG/L Influent	Zinc 2.5 UG/L Effluent 6900
JANUARY -2011	ND	ND	NR	ND	124	29.0
FEBRUARY -2011	ND ND	ND ND	2.5	<0.64	140	28.3
MARCH -2011	ND ND	ND ND	NR	1.48	118	36.0
APRIL -2011	ND ND	ND	NR	1.60	144	27.4
MAY -2011	ND ND	ND	3.2	1.41	149	30.2
JUNE -2011	ND ND	ND	NR	1.22	243	25.5
JULY -2011	ND	ND	NR	1.82	194	21.4
AUGUST -2011	ND	ND	2.2	0.87	159	28.1
SEPTEMBER-2011	ND	ND	NR	ND	177	30.6
OCTOBER -2011	ND ND	ND	0.9	ND ND	153	29.9
NOVEMBER -2011	ND ND	ND	NR	ND ND	153	26.4
DECEMBER -2011	ND	ND	NR	1.17	132	31.0
==========	=========		=========		=========	
AVERAGE	0.0	0.0	2.2	0.8	157	28.7

ND= not detected NA= not analyzed NR= not required

SOUTH BAY WATER RECLAMATION PLANT 2011 ANNUAL SEWAGE

Ammonia-Nitrogen and Total Cyanides

			Total	Total
Analyte:	Ammonia-N	Ammonia-N	Cyanides	Cyanides
MDL/Units:	.3 MG/L	.3 MG/L	.002 MG/L	.002 MG/L
Source:	SB_INF_02	SB_OUTFALL_01	SB_INF_02	SB_OUTFALL_01
=========	========	========	========	========
JANUARY -2011	NR	3.6	ND	ND
FEBRUARY -2011	32.7	4.7	ND	0.002
MARCH -2011	34.0	2.1	ND	ND
APRIL -2011	37.3	0.8	ND	ND
MAY -2011	30.8	2.6	ND	ND
JUNE -2011	36.5	5.6	ND	ND
JULY -2011	33.5	11.8	ND	ND
AUGUST -2011	34.7	ND	0.002	ND
SEPTEMBER-2011	40.3	ND	ND	ND
OCTOBER -2011	25.1	ND	ND	ND
NOVEMBER -2011	34.5	ND	0.002	ND
DECEMBER -2011	34.3	1.0	ND	ND
=========	========	========	========	========
Average:	34.0	2.7	0.0003	0.0002

ND= not detected

SOUTH BAY WATER RECLAMATION PLANT Radioactivity Effluent to the Ocean

Analyzed by: TestAmerica Laboratories Richland

Annual 2011

Source	Month	Gross Alpha Radiation	Gross Beta Radiation
=========	=========	=======================================	=======================================
SB_OUTFALL_01	JANUARY -2011	2.5 ± 2.1	22.7 ± 5.8
SB_OUTFALL_01	FEBRUARY -2011	3.9 ± 1.9	19.3 ± 4.5
SB_OUTFALL_01	MARCH -2011	1.2 ± 2.6	24.5 ± 6.2
SB_OUTFALL_01	APRIL -2011	1.0 ± 1.7	18.1 ± 4.2
SB_OUTFALL_01	MAY -2011	2.7 ± 1.9	21.1 ± 5.4
SB_OUTFALL_01	JUNE -2011	3.5 ± 2.3	24.9 ± 5.7
SB_OUTFALL_01	JULY -2011	5.4 ± 3.4	24.1 ± 7.5
SB_OUTFALL_01	AUGUST -2011	1.8 ± 1.7	19.1 ± 4.0
SB_OUTFALL_01	SEPTEMBER-2011	2.4 ± 2.4	18.0 ± 4.2
SB_OUTFALL_01	OCTOBER -2011	0.4 ± 3.2	18.5 ± 4.4
SB_OUTFALL_01	NOVEMBER -2011	0.5 ± 2.6	22.4 ± 4.5
SB_OUTFALL_01	DECEMBER -2011	2.5 ± 3.3	17.5 ± 4.3
=========		=======================================	=======================================
AVERAGE		2.3 ± 2.4	20.9 ± 5.1

Units in picocuries/liter (pCi/L)

SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL - Chlorinated Pesticide Analysis

Annual 2011

			EFF JAN	EFF FEB	EFF MAR	EFF APR	EFF MAY	EFF JUN	EFF JUL	EFF AUG	EFF SEP	EFF OCT	EFF NOV	EFF DEC	EFF
Analyte	MDL ====	Units	=====	=====	=====	=====	=====		=====		====		=====	=====	Avg
Aldrin	7	NG/L	ND	*	ND										
Dieldrin	3	NG/L	ND	*	ND										
BHC, Alpha isomer	7	NG/L	ND	ND											
BHC, Beta isomer	3	NG/L	ND	ND											
BHC, Gamma isomer	5	NG/L	ND	*	ND										
BHC, Delta isomer	3	NG/L	ND	ND											
p,p-DDD	3	NG/L	ND	ND											
p,p-DDE	4	NG/L	ND	ND											
p,p-DDT	8	NG/L	ND	*	ND										
o,p-DDD	4	NG/L	ND	ND											
o,p-DDE	5	NG/L	ND	ND											
o,p-DDT	3	NG/L	ND	ND											
Heptachlor	8	NG/L	ND	*	ND										
Heptachlor epoxide	4	NG/L	ND	ND											
Alpha (cis) Chlordane	3	NG/L	ND	ND											
Gamma (trans) Chlordane	4	NG/L	ND	ND											
Alpha Chlordene		NG/L	NA	NA											
Gamma Chlordene		NG/L	NA	NA											
Oxychlordane	6	NG/L	ND	ND											
Trans Nonachlor	5	NG/L	ND	ND											
Cis Nonachlor	3	NG/L	ND	ND											
Alpha Endosulfan	4	NG/L	ND	ND											
Beta Endosulfan	2	NG/L	ND	ND											
Endosulfan Sulfate	6	NG/L	ND	ND											
Endrin	2	NG/L	ND	*	ND										
Endrin aldehyde	9	NG/L	ND	ND											
Mirex	10	NG/L	ND	ND											
Methoxychlor	10	NG/L	ND	ND											
Toxaphene	330	NG/L	ND	ND											
PCB 1016		NG/L	ND	ND											
PCB 1221	4000	NG/L	ND	ND											
PCB 1232	360	NG/L	ND	ND											
PCB 1242		NG/L	ND	ND											
PCB 1248		NG/L	ND	ND											
PCB 1254		NG/L	ND	ND											
PCB 1260		NG/L	ND	ND											
PCB 1262	930	NG/L	ND	ND											
======================================	7	NG/L	===== 0	0	0	0	0	==== 0	===== 0	===== 0	===== 0	===== 0	===== 0	*	0
Hexachlorocyclohexanes	7	NG/L	0	0	0	0	0	9	9	0	0	9	0	0	0
DDT and derivatives	8	NG/L	0	0	9	0	9	0	0	0	0	0	0	0	0
Chlordane + related cmpds.	-	NG/L	0	0	0	0	0	a	9	0	9	0	9	0	0
Polychlorinated biphenyls		NG/L	0	9	0	0	0	9	9	9	9	9	9	0	0
Endosulfans	6	NG/L NG/L	0	0	0	0	0	0	0	9	0	0	0	0	0
=======================================		-	=====		=====	-	====	=====	=====	-	====		=====	=====	
Heptachlors	8	NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
=======================================		=====	=====		=====	=====	=====		=====		=====	=====	=====	=====	=====
Chlorinated Hydrocarbons		NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
chizor inacca figur ocar bolls	-500	.10/ L	9	ð	ð	Ð	ð	ð	ð	ð	ð	ð	9	ð	Ū

ND= not detected NA= not analyzed NS= not sampled

Standards for alpha and gamma chlordene are no longer available in the U.S. for the analysis of these compounds.

^{*=}This sample was erroneously spiked in the laboratory for BHC_G, Hetachlor, Aldrin, Dieldrin, Endrin and PP_DDT and no data is being reported for these compounds.

SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL - Chlorinated Pesticide Analysis

Annual 2011

			INF	INF	INF	INF	INF
			FEB	MAY	AUG	OCT	
Analyte	MDL	Units					Avg
A1 do 2 o	====	=====	=====	=====	=====	=====	=====
Aldrin	7	NG/L	ND	ND	ND	ND	ND
Dieldrin	3	NG/L	ND	ND	ND	ND	ND
BHC, Alpha isomer	7	NG/L	ND	ND	ND	ND	ND
BHC, Beta isomer	3	NG/L	ND	ND	ND	ND	ND
BHC, Gamma isomer	5	NG/L	ND	ND	ND	ND	ND
BHC, Delta isomer	3	NG/L	ND	ND	ND	ND	ND
p,p-DDD	3	NG/L	ND	ND	ND	ND	ND
p,p-DDE	4	NG/L	ND	6	ND	ND	2
p,p-DDT	8	NG/L	ND	ND	ND	ND	ND
o,p-DDD	4	NG/L	ND	ND	ND	ND	ND
o,p-DDE	5	NG/L	ND	ND	ND	ND	ND
o,p-DDT	3	NG/L	ND	ND	ND	ND	ND
Heptachlor	8	NG/L	ND	ND	ND	ND	ND
Heptachlor epoxide	4	NG/L	ND	ND	ND	ND	ND
Alpha (cis) Chlordane	3	NG/L	ND	ND	ND	ND	ND
Gamma (trans) Chlordane	4	NG/L	ND	ND	ND	ND	ND
Alpha Chlordene		NG/L	NA	NA	NA	NA	NA
Gamma Chlordene		NG/L	NA	NA	NA	NA	NA
Oxychlordane	6	NG/L	ND	ND	ND	ND	ND
Trans Nonachlor	5	NG/L	ND	ND	ND	ND	ND
Cis Nonachlor	3	NG/L	ND	ND	ND	ND	ND
Alpha Endosulfan	4	NG/L	ND	ND	ND	ND	ND
Beta Endosulfan	2	NG/L	ND	ND	ND	ND	ND
Endosulfan Sulfate	6	NG/L	ND	ND	ND	ND	ND
Endrin	2	NG/L	ND	ND	ND	ND	ND
Endrin aldehyde	9	NG/L	ND	ND	ND	ND	ND
Mirex	10	NG/L	ND	ND	ND	ND	ND
Methoxychlor	10	NG/L	ND	ND	ND	ND	ND
Toxaphene	330	NG/L	ND	ND ND	ND	ND	ND
PCB 1016		NG/L NG/L	ND	ND	ND	ND ND	ND ND
				ND	ND ND		ND ND
PCB 1221 PCB 1232		NG/L	ND ND			ND	
	360	NG/L		ND	ND	ND	ND
PCB 1242		NG/L	ND	ND	ND	ND	ND
PCB 1248		NG/L	ND	ND	ND	ND	ND
PCB 1254		NG/L	ND	ND	ND	ND	ND
PCB 1260		NG/L	ND	ND	ND	ND	ND
PCB 1262	930	NG/L	ND	ND	ND	ND	ND
	====		=====	=====	=====		=====
Aldrin + Dieldrin	7	NG/L	0	0	0	0	0
Hexachlorocyclohexanes	7	NG/L	0	0	0	0	0
DDT and derivatives	8	NG/L	0	6	0	0	2
Chlordane + related cmpds.	6	NG/L	0	0	0	0	0
Polychlorinated biphenyls	4000	NG/L	0	0	0	0	0
Endosulfans	6	NG/L	0	0	0	0	0
	====	=====	=====	=====	=====	=====	=====
Heptachlors	8	NG/L	0	0	0	0	0
	====	=====	=====	=====		=====	=====
Chlorinated Hydrocarbons	4000	NG/L	0	6	0	0	2

ND= not detected NA= not analyzed NS= not sampled

Standards for alpha and gamma chlordene are no longer available in the U.S. for the analysis of these compounds.

SOUTH BAY WATER RECLAMATION PLANT Organophosphorus PesticidesEPA Method 614/622 (with additions)

INFLUENT & EFFLUENT

Annual 2011

Analyta	MDI	Units	Effluent 03-MAY-2011 P558042	Effluent 04-0CT-2011 P584731	Influent 03-MAY-2011 P558037	Influent 04-0CT-2011 P584726
Analyte	MDL	011172	P336042	P364/31	P336037	P364726
Demeton O	15	UG/L	ND	ND	ND	ND
Demeton S		UG/L	ND.	ND.	ND.	ND
Diazinon		UG/L	ND	ND	ND.	ND
Guthion		UG/L	ND	ND	ND	ND
Malathion		UG/L	ND	ND	ND	ND
Parathion	.03	UG/L	ND	ND	ND	ND
Dichlorvos	.05	UG/L	ND	ND	ND	ND
Disulfoton	.02	UG/L	ND	ND	ND	ND
Dimethoate	.04	UG/L	ND	ND	ND	ND
Stirophos	.03	UG/L	ND	ND	ND	0.1
Coumaphos	.15	UG/L	ND	ND	ND	ND
Chlorpyrifos	.03	UG/L	ND	ND	ND	ND
	===	=====	========	========	========	========
Thiophosphorus Pesticides	.15	UG/L	0.0	0.0	0.0	0.0
Demeton -O, -S	.15	UG/L	0.0	0.0	0.0	0.0
	===	=====	========	========	========	========
Total Organophosphorus Pesticides	.15	UG/L	0.0	0.0	0.0	0.1

ND=not detected NR=not required

Tributyl Tin

Effluent

			FEB	MAY	AUG	OCT	
Analyte	MDL	Units					Average
	===	=====	=====	=====	=====	=====	=====
Dibutyltin	7	UG/L	ND	NE) NE) ND	ND
Monobutyltir	n 16	UG/L	ND	NE) NE) ND	ND
Tributyltin	2	UG/L	ND	NE) NE) ND	ND

Influent

			FEB	MAY	AUG	OCT.	
Analyte	MDL	Units					Average
	===	=====	=====	=====	=====	=====	=====
Dibutyltin	7	UG/L	ND) NI	O NE) ND	ND
Monobutyltin	16	UG/L	ND) NI	O NE) ND	ND
Tributyltin	2	UG/L	ND) NI	O ND) ND	ND

ND=not detected

SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL - Acid Extractables

Annual 2011

EFFLUENT

Analyte	MDL	Units	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	AVG
2-Chlorophenol	1.32	UG/L	===== ND	ND											
2,4-Dichlorophenol		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chloro-3-methylphenol		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pentachlorophenol	1.12	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenol	1.76	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Nitrophenol	1.55	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dimethylphenol	2.01	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dinitrophenol	2.16	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Nitrophenol	1.14	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methyl-4,6-dinitrophenol	1.52	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
		=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====
Total Chlorinated Phenols		UG/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Non-Chlorinated Phenols		UG/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Phenols	2.16	UG/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====
2-Methylphenol	2.15	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-Methylphenol(4-MP is unresolved)		UG/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Methylphenol(3-MP is unresolved)			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4,5-Trichlorophenol	1.66	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

INFLUENT

Analyte	MDL	Units	FEB	MAY	AUG	OCT	AVG
	====	=====	=====	=====	=====	=====	=====
2-Chlorophenol	1.32	UG/L	ND	ND	ND	ND	ND
2,4-Dichlorophenol	1.01	UG/L	ND	ND	ND	ND	ND
4-Chloro-3-methylphenol	1.67	UG/L	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol	1.65	UG/L	ND	ND	ND	ND	ND
Pentachlorophenol	1.12	UG/L	ND	ND	ND	ND	ND
Phenol	1.76	UG/L	35.6	41.8	39.8	43.8	40.3
2-Nitrophenol	1.55	UG/L	ND	ND	ND	ND	ND
2,4-Dimethylphenol	2.01	UG/L	ND	ND	ND	ND	ND
2,4-Dinitrophenol	2.16	UG/L	ND	ND	ND	ND	ND
4-Nitrophenol	1.14	UG/L	ND	ND	ND	ND	ND
2-Methyl-4,6-dinitrophenol	1.52	UG/L	ND	ND	ND	ND	ND
	====	=====	=====	=====	=====	=====	=====
Total Chlorinated Phenols	1.67	UG/L	0.0	0.0	0.0	0.0	0.0
Total Non-Chlorinated Phenols	2.16	UG/L	35.6	41.8	39.8	43.8	40.3
Total Phenols	2.16	UG/L	35.6	41.8	39.8	43.8	40.3
	====	=====	=====	=====	=====	=====	=====
2-Methylphenol	2.15	UG/L	ND	ND	ND	ND	ND
<pre>3-Methylphenol(4-MP is unresolved)</pre>		UG/L	NA	NA	NA	NA	NA
4-Methylphenol(3-MP is unresolved)	2.11	UG/L	116	116	110	88.9	108
2,4,5-Trichlorophenol	1.66	UG/L	ND	ND	ND	ND	ND

ND=not detected NS=not sampled NA=not analyzed

SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL Priority Pollutants Base/Neutrals

Annual 2011

Analyte	MDL	Units	EFF FEB Avg	EFF MAY Avg	EFF AUG Avg	EFF OCT Avg	EFF Average
		=====			=====		=====
Bis-(2-chloroethyl) ether		UG/L	ND	ND	ND	ND	ND
Bis-(2-chloroisopropyl) ether		UG/L	ND	ND	ND	ND	ND
N-nitrosodi-n-propylamine		UG/L	ND	ND	ND	ND	ND
Nitrobenzene	1.6	UG/L	ND	ND	ND	ND	ND
Hexachloroethane		UG/L	ND	ND	ND	ND	ND
Isophorone Pic (2 chloroothovy) mothano		UG/L UG/L	ND ND	ND ND	ND ND	ND ND	ND ND
Bis-(2-chloroethoxy) methane 1,2,4-Trichlorobenzene		UG/L	ND ND	ND	ND	ND	ND
Naphthalene		UG/L	ND	ND	ND	ND	ND
Hexachlorobutadiene		UG/L	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene		UG/L	ND	ND	ND	ND	ND
Acenaphthylene		UG/L	ND	ND	ND	ND	ND
Dimethyl phthalate		UG/L	ND	ND	ND	ND	ND
2,6-Dinitrotoluene		UG/L	ND	ND	ND	ND	ND
Acenaphthene	1.8	UG/L	ND	ND	ND	ND	ND
2,4-Dinitrotoluene	1.36	UG/L	ND	ND	ND	ND	ND
Fluorene	1.61	UG/L	ND	ND	ND	ND	ND
4-Chlorophenyl phenyl ether	1.57	UG/L	ND	ND	ND	ND	ND
Diethyl phthalate	3.05	UG/L	ND	ND	ND	ND	ND
N-nitrosodiphenylamine	3.48	UG/L	ND	ND	ND	ND	ND
4-Bromophenyl phenyl ether	1.4	UG/L	ND	ND	ND	ND	ND
Hexachlorobenzene	1.48	UG/L	ND	ND	ND	ND	ND
Phenanthrene		UG/L	ND	ND	ND	ND	ND
Anthracene		UG/L	ND	ND	ND	ND	ND
Di-n-butyl phthalate		UG/L	ND	ND	ND	ND	ND
N-nitrosodimethylamine		UG/L	ND	ND	ND	ND	ND
Fluoranthene		UG/L	ND	ND	ND	ND	ND
Pyrene Ronaidina		UG/L	ND	ND	ND	ND	ND
Benzidine Butyl benzyl phthalate		UG/L UG/L	ND ND	ND ND	ND ND	ND ND	ND ND
Chrysene		UG/L	ND ND	ND	ND	ND	ND
Benzo[a]anthracene	1.10	UG/L	ND	ND	ND	ND	ND
Bis-(2-ethylhexyl) phthalate		UG/L	ND	ND	ND	ND	ND
Di-n-octyl phthalate	1	UG/L	ND	ND	ND	ND	ND
3,3-Dichlorobenzidine		UG/L	ND	ND	ND	ND	ND
Benzo[k]fluoranthene		UG/L	ND	ND	ND	ND	ND
3,4-Benzo(b)fluoranthene	1.35	UG/L	ND	ND	ND	ND	ND
Benzo[a]pyrene	1.25	UG/L	ND	ND	ND	ND	ND
<pre>Indeno(1,2,3-CD)pyrene</pre>	1.14	UG/L	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	1.01	UG/L	ND	ND	ND	ND	ND
Benzo[g,h,i]perylene	1.09	UG/L	ND	ND	ND	ND	ND
1,2-Diphenylhydrazine		UG/L	ND =====	ND	ND	ND	ND
Polynuc. Aromatic Hydrocarbons			0.0	0.0	0.0	0.0	0.0
			=====	=====	=====	=====	=====
Base/Neutral Compounds		UG/L	0.0	0.0	0.0	0.0	0.0
1-Methylnaphthalene		===== UG/L	===== ND	ND	ND	ND	ND
2-Methylnaphthalene		UG/L	ND ND	ND	ND	ND	ND
2,6-Dimethylnaphthalene		UG/L	ND	ND	ND	ND	ND
2,3,5-Trimethylnaphthalene		UG/L	ND	ND	ND	ND	ND
1-Methylphenanthrene		UG/L	ND	ND	ND	ND	ND
Benzo[e]pyrene		UG/L	ND	ND	ND	ND	ND
Perylene		UG/L	ND	ND	ND	ND	ND
Biphenyl		UG/L	ND	ND	ND	ND	ND

ND=not detected

SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL Priority Pollutants Base/Neutrals

Annual 2011

Analyte	MDL	Units	INF FEB Avg	INF MAY Avg	INF AUG Avg	INF OCT Avg	INF Average
		=====			=====		=====
Bis-(2-chloroethyl) ether		UG/L	ND	ND	ND	ND	ND
Bis-(2-chloroisopropyl) ether		UG/L	ND	ND	ND	ND	ND
N-nitrosodi-n-propylamine		UG/L	ND	ND	ND	ND	ND
Nitrobenzene	1.6	UG/L	ND	ND	ND	ND	ND
Hexachloroethane		UG/L	ND	ND	ND	ND	ND
Isophorone Pic (2 chloroothovy) mothano		UG/L UG/L	ND ND	ND ND	ND ND	ND ND	ND ND
Bis-(2-chloroethoxy) methane 1,2,4-Trichlorobenzene		UG/L	ND	ND	ND	ND	ND
Naphthalene		UG/L	ND	ND	ND	ND	ND
Hexachlorobutadiene		UG/L	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene		UG/L	ND	ND	ND	ND	ND
Acenaphthylene		UG/L	ND	ND	ND	ND	ND
Dimethyl phthalate		UG/L	ND	ND	ND	ND	ND
2,6-Dinitrotoluene		UG/L	ND	ND	ND	ND	ND
Acenaphthene	1.8	UG/L	ND	ND	ND	ND	ND
2,4-Dinitrotoluene	1.36	UG/L	ND	ND	ND	ND	ND
Fluorene	1.61	UG/L	ND	ND	ND	ND	ND
4-Chlorophenyl phenyl ether	1.57	UG/L	ND	ND	ND	ND	ND
Diethyl phthalate		UG/L	9.0	8.9	6.7	6.0	7.7
N-nitrosodiphenylamine		UG/L	ND	ND	ND	ND	ND
4-Bromophenyl phenyl ether	1.4	UG/L	ND	ND	ND	ND	ND
Hexachlorobenzene		UG/L	ND	ND	ND	ND	ND
Phenanthrene		UG/L	ND	ND	ND	ND	ND
Anthracene		UG/L	ND	ND	ND	ND	ND
Di-n-butyl phthalate		UG/L	ND	ND	ND	ND	ND
N-nitrosodimethylamine Fluoranthene		UG/L UG/L	ND ND	ND ND	ND ND	ND ND	ND ND
Pyrene		UG/L	ND	ND	ND	ND	ND
Benzidine		UG/L	ND	ND	ND	ND	ND
Butyl benzyl phthalate		UG/L	ND	ND	ND	ND	ND
Chrysene		UG/L	ND	ND	ND	ND	ND
Benzo[a]anthracene	1.1	UG/L	ND	ND	ND	ND	ND
Bis-(2-ethylhexyl) phthalate		UG/L	ND	9.4	12.1	17.8	9.8
Di-n-octyl phthalate	1	UG/L	ND	ND	ND	ND	ND
3,3-Dichlorobenzidine	2.44	UG/L	ND	ND	ND	ND	ND
Benzo[k]fluoranthene	1.49	UG/L	ND	ND	ND	ND	ND
3,4-Benzo(b)fluoranthene	1.35	UG/L	ND	ND	ND	ND	ND
Benzo[a]pyrene		UG/L	ND	ND	ND	ND	ND
Indeno(1,2,3-CD)pyrene		UG/L	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene		UG/L	ND	ND	ND	ND	ND
Benzo[g,h,i]perylene		UG/L	ND	ND	ND	ND	ND
1,2-Diphenylhydrazine		UG/L	ND	ND =====	ND	ND	ND
Polynuc. Aromatic Hydrocarbons			0.0	0.0	0.0	0.0	0.0
=======================================				=====			
Base/Neutral Compounds		UG/L	9.0	18.3	18.8	23.8	17.5
=======================================				=====			
1-Methylnaphthalene	2.18	UG/L	ND	ND	ND	ND	ND
2-Methylnaphthalene	2.14	UG/L	ND	ND	ND	ND	ND
2,6-Dimethylnaphthalene	2.16	UG/L	ND	ND	ND	ND	ND
2,3,5-Trimethylnaphthalene	2.18	UG/L	ND	ND	ND	ND	ND
1-Methylphenanthrene		UG/L	ND	ND	ND	ND	ND
Benzo[e]pyrene		UG/L	ND	ND	ND	ND	ND
Perylene		UG/L	ND	ND	ND	ND	ND
Biphenyl	2.29	UG/L	ND	ND	ND	ND	ND

ND=not detected

SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL Priority Pollutants Purgeables

Annual 2011

			EFF FEB	EFF MAY	EFF AUG	EFF OCT	EFF
Analyte	MDL	Units					Average
Dichlorodifluoromethane	.66	===== UG/L	ND	ND	==== = ND	ND	ND
Chloromethane	.5	UG/L	ND	ND	ND	ND	ND
Vinyl chloride	.4	UG/L	ND	ND	ND	ND	ND
Bromomethane	.7	UG/L	ND	ND	ND	ND	ND
Chloroethane	.9	UG/L	ND	ND	ND	ND	ND
Trichlorofluoromethane	.3	UG/L	ND	ND	ND	ND	ND
Acrolein	1.3	UG/L	ND	ND	ND	ND	ND
1,1-Dichloroethane	.4	UG/L	ND 72.6	ND	ND	ND	ND
Methylene chloride trans-1,2-dichloroethene	.3 .6	UG/L UG/L	72.6 ND	0.7 ND	ND ND	0.6 ND	18.5 ND
1,1-Dichloroethene	.4	UG/L	ND ND	ND	ND	ND	ND
Acrylonitrile	.7	UG/L	ND	ND	ND	ND	ND
Chloroform	.2	UG/L	0.2	0.6	1.1	1.4	0.8
1,1,1-Trichloroethane	.4	UG/L	ND	ND	ND	ND	ND
Carbon tetrachloride	.4	UG/L	ND	ND	ND	ND	ND
Benzene	.4	UG/L	ND	ND	ND	ND	ND
1,2-Dichloroethane	.5	UG/L	ND	ND	ND	ND	ND
Trichloroethene	.7	UG/L	ND	ND	ND	ND	ND
1,2-Dichloropropane	.3	UG/L	ND	ND	ND	ND	ND
Bromodichloromethane	.5	UG/L	ND	ND	ND	ND	ND
2-Chloroethylvinyl ether	1.1	UG/L	ND	ND	ND	ND	ND
cis-1,3-dichloropropene Toluene	.3	UG/L	ND	ND ND	ND ND	ND	ND
trans-1,3-dichloropropene	.4 .5	UG/L UG/L	ND ND	ND ND	ND ND	ND ND	ND ND
1,1,2-Trichloroethane	.5	UG/L	ND	ND	ND	ND	ND
Tetrachloroethene	1.1	UG/L	ND	ND	ND	ND	ND
Dibromochloromethane	.6	UG/L	ND	ND	ND	ND	ND
Chlorobenzene	.4	UG/L	ND	ND	ND	ND	ND
Ethylbenzene	.3	UG/L	ND	ND	ND	ND	ND
Bromoform	.5	UG/L	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	.5	UG/L	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	.5	UG/L	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	.4	UG/L	ND	ND	0.64*	ND	ND
1,2-Dichlorobenzene	.4	UG/L	ND	ND	ND	ND	ND
Halomethane Purgeable Cmpnds		===== UG/L	0.0	0.0	0.0	0.0	0.0
=======================================		=====				====	
Total Dichlorobenzenes	.5	UG/L	0.0	0.0	0.0	0.0	0.0
Total Chloromethanes	.5	===== UG/L	72.8	1.3	1.1	2.0	19.3
=======================================					===== :		
Purgeable Compounds	1.3	UG/L	72.8	1.3	1.1	2.0	19.3
Methyl Iodide	.6	UG/L	ND	ND	ND	ND	ND
Carbon disulfide	.6	UG/L	ND	ND	ND	ND	ND
Acetone	4.5	UG/L	ND	ND	ND	ND	ND
Allyl chlorido			ND	ND	==== = ND	ND	ND
Allyl chloride Methyl tert-butyl ether	.6 .4	UG/L UG/L	ND ND	ND	ND	ND	ND
Chloroprene	.4	UG/L	ND	ND	ND	ND	ND
1,2-Dibromoethane	.3	UG/L	ND	ND	ND	ND	ND
2-Butanone	6.3	UG/L	ND	ND	ND	ND	ND
Methyl methacrylate	.8	UG/L	ND	ND	ND	ND	ND
2-Nitropropane	12	UG/L	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	1.3	UG/L	ND	ND	ND	ND	ND
meta,para xylenes	.6	UG/L	ND	ND	ND	ND	ND
ortho-xylene	.4	UG/L	ND	ND	ND	ND	ND
Isopropylbenzene	.3	UG/L	ND	ND	ND	ND	ND
Styrene	.3	UG/L	ND	ND	ND	ND	ND
Benzyl chloride	1.1	UG/L	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	1.52	UG/L	ND	ND	ND	ND	ND

^{*=} Blank did not meet QC criteria for this analyte due to contamination. The result value of the blank in this batch was 0.55 UG/L, result above the MDL. Result is not used in computations. ND=not detected

SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL Priority Pollutants Purgeables

Annual 2011

			INF	INF	INF	INF	INF
			FEB	MAY	AUG	OCT	
Analyte	MDL	Units					Average
Dichlorodifluoromethane	.66	===== UG/L	==== ND	ND	ND	ND	ND
Chloromethane	.5	UG/L	ND	ND	ND	ND	ND
Vinyl chloride	.4	UG/L	ND	ND	ND	ND	ND
Bromomethane	.7	UG/L	ND	ND	ND	ND	ND
Chloroethane	.9	UG/L	ND	ND	ND	ND	ND
Trichlorofluoromethane	.3 1.3	UG/L	ND	ND	ND	ND	ND
Acrolein 1,1-Dichloroethane	.4	UG/L UG/L	ND ND	ND ND	ND ND	ND ND	ND ND
Methylene chloride	.3	UG/L	3.5	1.1	1.2	0.9	1.7
trans-1,2-dichloroethene	.6	UG/L	ND	ND	ND	ND	ND
1,1-Dichloroethene	.4	UG/L	ND	ND	ND	ND	ND
Acrylonitrile	.7	UG/L	ND	ND	ND	ND	ND
Chloroform	.2	UG/L	2.1	1.6	2.0	1.6	1.8
1,1,1-Trichloroethane	.4	UG/L	ND ND	ND ND	ND ND	ND	ND
Carbon tetrachloride Benzene	.4 .4	UG/L UG/L	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-Dichloroethane	.5	UG/L	ND	ND	ND	ND	ND
Trichloroethene	.7	UG/L	ND	ND	ND	ND	ND
1,2-Dichloropropane	.3	UG/L	ND	ND	ND	ND	ND
Bromodichloromethane	.5	UG/L	ND	ND	ND	ND	ND
2-Chloroethylvinyl ether	1.1	UG/L	ND	ND	ND	ND	ND
cis-1,3-dichloropropene Toluene	.3 .4	UG/L	ND a c	ND	ND 1.0	ND 1.0	ND 0.9
trans-1,3-dichloropropene	.5	UG/L UG/L	0.6 ND	0.8 ND	ND	ND	ND
1,1,2-Trichloroethane	.5	UG/L	ND	ND	ND	ND	ND
Tetrachloroethene	1.1	UG/L	ND	ND	ND	ND	ND
Dibromochloromethane	.6	UG/L	ND	ND	ND	ND	ND
Chlorobenzene	.4	UG/L	ND	ND	ND	ND	ND
Ethylbenzene	.3	UG/L	ND	ND	ND	ND	ND
Bromoform 1,1,2,2-Tetrachloroethane	.5 .5	UG/L UG/L	ND ND	ND ND	ND ND	ND ND	ND ND
1,3-Dichlorobenzene	.5	UG/L	ND ND	ND	ND	ND	ND
1,4-Dichlorobenzene	.4	UG/L	0.7	0.8	0.92*		0.8
1,2-Dichlorobenzene	.4	UG/L	ND	ND	ND	ND	ND
			=====				
Halomethane Purgeable Cmpnds	.7	UG/L =====	0.0	0.0	0.0	0.0	0.0
Total Dichlorobenzenes	.5	===== UG/L	0.0	0.0	0.0	0.0	0.0
	====					=====	
Total Chloromethanes	.5	UG/L	5.6 =====	2.7	3.2	2.5	3.5
Purgeable Compounds	1.3	UG/L	6.9	4.3	4.2	4.3	4.9
Methyl Iodide	.6	UG/L	ND	ND	ND	ND	ND
Carbon disulfide	.6	UG/L	1.9	2.6	1.7	1.5	1.9
Acetone	4.5	UG/L	141	125	217	264	187
Allyl chloride	==== .6	===== UG/L	==== ND	ND	ND	ND	ND
Methyl tert-butyl ether	.4	UG/L	ND	ND	ND	ND	ND
Chloroprene	.4	UG/L	ND	ND	ND	ND	ND
1,2-Dibromoethane	.3	UG/L	ND	ND	ND	ND	ND
2-Butanone	6.3	UG/L	6.5	8.1	7.2	9.2	7.8
Methyl methacrylate	.8	UG/L	ND	ND	ND	ND	ND
2-Nitropropane	12 1.3	UG/L UG/L	ND ND	ND ND	ND ND	ND ND	ND ND
4-Methyl-2-pentanone meta,para xylenes	.6	UG/L	ND ND	ND ND	ND	ND	ND ND
ortho-xylene	.4	UG/L	ND	ND	ND	ND	ND
Isopropylbenzene	.3	UG/L	ND	ND	ND	ND	ND
Styrene	.3	UG/L	ND	ND	ND	ND	ND
Benzyl chloride	1.1	UG/L	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	1.52	UG/L	ND	ND	ND	ND	ND

^{*=} Blank did not meet QC criteria for this analyte due to contamination. The result value of the blank in this batch was 0.55 UG/L, result above the MDL. Result is not used in computations.

ND= not detected

SOUTH BAY WATER RECLAMATION PLANT Annual Sewage Dioxin and Furan Analysis Annual 2011

Analista	MDI	llait.	F	INF JAN	INF FEB	INF MAR	INF APR
Analyte ========		Units	Equiv	P547834	P549339	P555199	P559882
2,3,7,8-tetra CDD		PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD		PG/L PG/L	0.500 0.100	ND ND	ND ND	ND ND	ND ND
1,2,3,6,7,8-hexa_CDD	98	PG/L	0.100	ND ND	ND ND	ND ND	ND ND
1,2,3,7,8,9-hexa CDD		PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD	137	PG/L	0.010	ND	ND	ND	ND
octa CDD		PG/L	0.001	ND	ND	ND	ND
2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF		PG/L PG/L	0.100 0.050	ND ND	ND ND	ND ND	ND ND
2,3,4,7,8-penta CDF		PG/L	0.500	ND ND	ND ND	ND	ND ND
1,2,3,4,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF		PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF 1,2,3,4,6,7,8-hepta CDF		PG/L PG/L	0.100 0.010	ND ND	ND ND	ND ND	ND ND
1,2,3,4,7,8,9-hepta CDF			0.010	ND	ND.	ND	ND ND
octa CDF		PG/L	0.001	ND	ND	ND	ND
				INF	INF	INF	INF
				MAY	JUN	JUL	AUG
Analyte =========	MDL ===	Units	Equiv	P558037	P566832	P571268	P564981
2,3,7,8-tetra CDD	125	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD		PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD		PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD	98 111	PG/L PG/L	0.100 0.100	ND ND	ND ND	ND ND	ND ND
1,2,3,4,6,7,8-hepta CDD			0.010	ND	ND	ND	ND
octa CDD		PG/L	0.001	ND	ND	ND	ND
2,3,7,8-tetra CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF		PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF		PG/L PG/L	0.500 0.100	ND ND	ND ND	ND ND	ND ND
1,2,3,6,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF	152	PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF		PG/L	0.010	ND	ND	ND	ND
1,2,3,4,7,8,9-hepta CDF octa CDF		PG/L PG/L	0.010 0.001	ND ND	ND ND	ND ND	ND ND
occu coi		. 0, 2	0.001				
				INF	INF	INF	INF
Analyte	MDL	Units	Equiv	SEP P580883	OCT P584726	NOV P591174	DEC P592523
	===		=====				
2,3,7,8-tetra CDD		PG/L	1.000	ND	ND	ND	ND ND
1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD		PG/L PG/L	0.500 0.100	ND ND	ND ND	ND ND	ND ND
1,2,3,6,7,8-hexa CDD	98	PG/L	0.100	ND	ND.	ND.	ND
1,2,3,7,8,9-hexa CDD		PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD			0.010	DNQ12.8	DNQ16.3	DNQ21.5	44.4
octa CDD		PG/L	0.001	140	160	250	710
2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF		PG/L PG/L	0.100 0.050	ND ND	ND ND	ND ND	ND ND
2,3,4,7,8-penta CDF		PG/L	0.500	ND ND	ND ND	ND ND	ND ND
1,2,3,4,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF		PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF 1,2,3,4,6,7,8-hepta CDF		PG/L PG/L	0.100 0.010	ND ND	ND ND	ND DNQ6.18	ND DNQ3.87
1,2,3,4,7,8,9-hepta CDF			0.010	ND ND	ND ND	ND	ND
octa CDF		PG/L	0.001	DNQ7.35	DNQ10.0	DNQ14.0	DNQ19.8

Above are permit required CDD/CDF isomers. ND= not detected DNQ= (Detected but not quantified). Estimated analyte concentration below calibration range.

SOUTH BAY WATER RECLAMATION PLANT Annual Sewage Dioxin and Furan Analysis Annual 2011

Analyte		Units	Equiv	EFF JAN P547838	EFF FEB P549344	EFF MAR P555203	EFF APR P559886
2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD	125	PG/L PG/L	1.000 0.500	ND ND	ND ND	ND ND	ND ND
1,2,3,4,7,8_hexa_CDD		PG/L	0.100	ND ND	ND ND	ND ND	ND ND
1,2,3,6,7,8-hexa CDD	98	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD		PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD			0.010	ND	ND	ND	ND
octa CDD		PG/L	0.001	ND	ND	ND	ND
2,3,7,8-tetra CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF		PG/L PG/L	0.050 0.500	ND ND	ND ND	ND ND	ND ND
2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF		PG/L	0.100	ND ND	ND ND	ND ND	ND ND
1,2,3,6,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF		PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF	90	PG/L	0.010	ND	ND	ND	ND
1,2,3,4,7,8,9-hepta CDF			0.010	ND	ND	ND	ND
octa CDF	222	PG/L	0.001	ND	ND	ND	ND
				EFF	EFF	EFF	EFF
				MAY	JUN	JUL	AUG
Analyte	MDL	Units	Equiv	P558042	P566836	P571272	P564986
2,3,7,8-tetra CDD	125	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	123	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD		PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	98	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD		PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD octa CDD		PG/L PG/L	0.010 0.001	ND ND	ND ND	ND ND	ND ND
2,3,7,8-tetra CDF		PG/L	0.100	ND ND	ND ND	ND ND	ND ND
1,2,3,7,8-penta CDF		PG/L	0.050	ND ND	ND.	ND.	ND
2,3,4,7,8-penta CDF		PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF	107	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF		PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF		PG/L	0.010	ND	ND	ND	ND
1,2,3,4,7,8,9-hepta CDF			0.010	ND	ND	ND	ND
octa CDF	222	PG/L	0.001	ND	ND	ND	ND
				EFF	EFF	EFF	EFF
_		_		SEP	OCT	NOV	DEC
Analyte =========	MDL ===	Units	Equiv	P580887	P584731	P591177	P592527
2,3,7,8-tetra CDD		PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD		PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD		PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD	98 111	PG/L PG/L	0.100 0.100	ND ND	ND ND	ND ND	ND ND
1,2,3,4,6,7,8-hepta CDD			0.010	ND ND	ND ND	ND ND	ND ND
octa CDD		PG/L	0.001	DNQ3.45	DNQ6.13	DNQ5.93	DNQ7.71
2,3,7,8-tetra CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF		PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF		PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF		PG/L	0.100	ND	ND ND	ND ND	ND ND
2,3,4,6,7,8-hexa CDF		PG/L PG/I	0.100	ND ND	ND ND	ND ND	ND ND
1,2,3,4,6,7,8-hepta CDF 1,2,3,4,7,8,9-hepta CDF		PG/L PG/I	0.010 0.010	ND ND	ND ND	ND ND	ND ND
octa CDF		PG/L	0.001	ND	ND ND	ND ND	ND ND

Above are permit required CDD/CDF isomers. ND= not detected DNQ= (Detected but not quantified). Estimated analyte concentration below calibration range.

SOUTH BAY WATER RECLAMATION PLANT Annual Sewage Dioxin and Furan Analysis Annual 2011

TCCD
1.2,3,7,8-penta CDD
1,2,3,4,7,8_hexa_CDD 133 P6/L 0.160 ND ND ND ND ND ND 1,2,3,4,7,8_hexa_CDD 98 P6/L 0.160 ND ND ND ND ND ND ND 1,2,3,7,8_hexa_CDD 137 P6/L 0.160 ND
1,2,3,4,7,8.hexa CDD
1,2,3,6,7,8-hexa CDD
1,2,3,7,8,9-hexa CDD 111 PG/L 0.100 ND ND ND ND ND ND OCTA CDD
1,2,3,4,6,7,8-hepta CDD 137 PG/L 127 PG/L 127 PG/L 128 PG/L 128 PG/L 128 PG/L 129 PG/L 120 PG/L 129 PG/L 12
Cota CDD
2,3,7,8-retra CDF
2,3,4,7,8-penta CDF 118 PG/L 0.500 ND ND ND ND 1,2,3,4,7,8-hexa CDF 147 PG/L 0.100 ND
1,2,3,4,7,8-hexa CDF 147 PG/L 0.100 ND ND ND ND ND 1,2,3,4,7,8-hexa CDF 197 PG/L 0.100 ND
1,2,3,6,7,8-hexa CDF
1,2,3,7,8,9-hexa CDF
2,3,4,6,7,8-hexa CDF 148 PG/L 0.100 ND ND ND ND 1,2,3,4,6,7,8-hepta CDF 166 PG/L 0.010 ND ND ND ND 1,2,3,4,7,8,9-hepta CDF 166 PG/L 0.010 ND ND ND ND Analyte L L Equiv TCCD TCCD TCCD TCCD Analyte MDL Units Equiv P558037 P566832 P571268 P564981 2,3,7,8-tetra CDD 125 PG/L 1.000 ND ND ND ND 1,2,3,7,8-penta CDD 123 PG/L 0.500 ND ND ND ND 1,2,3,7,8-hexa CDD 98 PG/L 0.100 ND ND ND ND 1,2,3,7,8-hexa CDD 98 PG/L 0.100 ND ND ND ND 1,2,3,7,8-hexa CDD 111 PG/L 0.100 ND ND ND ND 1,2,3,4,7,8-hexa CDD 137 PG/L 0.010 ND ND
1,2,3,4,6,7,8-hepta CDF 90 PG/L 0.010 ND
1,2,3,4,7,8,9-hepta CDF 166 PG/L
octa CDF 222 PG/L 0.001 ND ND ND ND Analyte MDL Units Equiv P558037 P566832 P571268 P564981 2,3,7,8-tetra CDD 125 PG/L 1.000 ND ND ND ND 1,2,3,7,8-penta CDD 123 PG/L 0.500 ND ND ND ND 1,2,3,4,7,8-bexa_CDD 113 PG/L 0.100 ND ND ND ND 1,2,3,4,7,8-bexa_CDD 113 PG/L 0.100 ND ND ND ND 1,2,3,4,6,7,8-hexa_CDD 111 PG/L 0.100 ND ND ND ND 1,2,3,4,6,7,8-hexa_CDD 117 PG/L 0.100 ND ND ND ND 1,2,3,4,6,7,8-hexa_CDD 117 PG/L 0.100 ND ND ND ND 1,2,3,4,6,7,8-hexa_CDF 140 PG/L 0.001 ND ND ND ND 1,2,3,4,6,7,8-hexa_CDF 140 PG/L 0.500 ND ND ND ND </td
Note
Analyte MDL Units Equiv P558037 P566832 P571268 P564981
Analyte MDL Units Equiv P558037 P566832 P571268 P564981
Analyte
2,3,7,8-tetra CDD 125 PG/L 1.000 ND ND ND ND ND ND 1,2,3,4,7,8-penta CDD 137 PG/L 0.100 ND
2,3,7,8-tetra CDD
1,2,3,7,8-penta CDD 123 PG/L 0.500 ND ND ND ND ND ND 1,2,3,4,7,8_hexa_CDD 113 PG/L 0.100 ND ND ND ND ND ND ND ND 1,2,3,4,7,8_hexa_CDD 98 PG/L 0.100 ND
1,2,3,6,7,8-hexa CDD 98 PG/L 0.100 ND ND ND ND ND ND 1,2,3,7,8,9-hexa CDD 111 PG/L 0.100 ND
1,2,3,7,8,9-hexa CDD 111 PG/L 0.100 ND ND ND ND ND ND 1,2,3,4,6,7,8-hepta CDD 137 PG/L 0.010 ND
1,2,3,4,6,7,8-hepta CDD
octa CDD 247 PG/L 0.001 ND ND ND ND 2,3,7,8-tetra CDF 115 PG/L 0.100 ND ND ND ND ND 1,2,3,7,8-penta CDF 140 PG/L 0.500 ND ND ND ND 2,3,4,7,8-penta CDF 118 PG/L 0.500 ND ND ND ND 1,2,3,4,7,8-hexa CDF 147 PG/L 0.100 ND ND ND ND 1,2,3,4,7,8-hexa CDF 147 PG/L 0.100 ND ND ND ND 1,2,3,4,6,7,8-hexa CDF 148 PG/L 0.100 ND ND ND ND 2,3,4,6,7,8-hexa CDF 148 PG/L 0.100 ND ND ND ND 1,2,3,4,6,7,8-hexa CDF 148 PG/L 0.100 ND ND ND ND 1,2,3,4,7,8,9-hepta CDF 166 PG/L 0.010 ND ND ND ND 0cta CDF 222 PG/L 0.001 ND ND ND ND <t< td=""></t<>
2,3,7,8-tetra CDF
1,2,3,7,8-penta CDF
2,3,4,7,8-penta CDF
1,2,3,4,7,8-hexa CDF
1,2,3,6,7,8-hexa CDF
1,2,3,7,8,9-hexa CDF
2,3,4,6,7,8-hexa CDF
1,2,3,4,6,7,8-hepta CDF 90 PG/L 0.010 ND
Octa CDF 222 PG/L 0.001 ND ND ND ND Interpretation of the product of the
INF TCCD TCC
TCCD TCCD TCCD TCCD TCCD TCCD TCCD DEC
TCCD TCCD TCCD TCCD TCCD TCCD TCCD DEC
Analyte MDL Units Equiv P580883 P584726 P591174 P592523 P580837,8-tetra CDD 125 PG/L 0.100 ND
Analyte MDL Units Equiv P580883 P584726 P591174 P592523
2,3,7,8-tetra CDD 125 PG/L 1.000 ND
1,2,3,7,8-penta CDD 123 PG/L 0.500 ND
1,2,3,4,7,8_hexa_CDD 113 PG/L 0.100 ND
1,2,3,6,7,8-hexa CDD 98 PG/L 0.100 ND
1,2,3,7,8,9-hexa CDD 111 PG/L 0.100 ND ND ND ND 1,2,3,4,6,7,8-hepta CDD 137 PG/L 0.010 DNQ0.13 DNQ0.16 DNQ0.22 0.44 octa CDD 247 PG/L 0.001 0.14 0.16 0.25 0.71 2,3,7,8-tetra CDF 115 PG/L 0.100 ND ND ND ND 1,2,3,7,8-penta CDF 140 PG/L 0.050 ND ND ND ND 2,3,4,7,8-penta CDF 118 PG/L 0.500 ND ND ND ND
1,2,3,4,6,7,8-hepta CDD 137 PG/L 0.010 DNQ0.13 DNQ0.16 DNQ0.22 0.44 octa CDD 247 PG/L 0.001 0.14 0.16 0.25 0.71 2,3,7,8-tetra CDF 115 PG/L 0.100 ND ND ND ND 1,2,3,7,8-penta CDF 140 PG/L 0.050 ND ND ND ND 2,3,4,7,8-penta CDF 118 PG/L 0.500 ND ND ND ND
2,3,7,8-tetra CDF 115 PG/L 0.100 ND
1,2,3,7,8-penta CDF 140 PG/L 0.050 ND
2,3,4,7,8-penta CDF
1,2,3,4,/,8-nexa CDF
1,2,3,6,7,8-hexa CDF
1,2,3,7,8,9-hexa CDF
2,3,4,6,7,8-hexa CDF
1,2,3,4,7,8,9-hepta CDF 166 PG/L 0.010 ND ND ND ND ND ND
octa CDF 222 PG/L 0.001 DNQ0.007 DNQ0.01 DNQ0.014 DNQ0.02

SOUTH BAY WATER RECLAMATION PLANT 2011 Annual Sewage - Dioxin and Furan Analysis

Analista	MDI	Unit a	Fautu	EFF TCCD JAN	EFF TCCD FEB	EFF TCCD MAR	EFF TCCD APR
Analyte ========		Units	Equiv	P547838	P549344	P555203	P559886
2,3,7,8-tetra CDD	125	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	123	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD		PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	98	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD		PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD		PG/L PG/L	0.010	ND ND	ND ND	ND ND	ND ND
octa CDD 2,3,7,8-tetra CDF		PG/L PG/L	0.001 0.100	ND ND	ND ND	ND ND	ND ND
1,2,3,7,8-penta CDF		PG/L	0.050	ND ND	ND ND	ND ND	ND ND
2,3,4,7,8-penta CDF		PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF	107	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF	152	PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF	148	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF		PG/L	0.010	ND	ND	ND	ND
1,2,3,4,7,8,9-hepta CDF			0.010	ND	ND	ND	ND
octa CDF	222	PG/L	0.001	ND	ND	ND	ND
				EFF	EFF	EFF	EFF
				TCCD	TCCD	TCCD	TCCD
				MAY	JUN	JUL	AUG
Analyte		Units	Equiv	P558042	P566836	P571272	P564986
2 2 7 8-tota CDD		PG/L		ND	ND	ND	ND
2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD		PG/L PG/L	1.000 0.500	ND ND	ND ND	ND ND	ND ND
1,2,3,4,7,8_hexa_CDD		PG/L	0.100	ND ND	ND ND	ND ND	ND ND
1,2,3,6,7,8-hexa CDD	98	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD		PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD			0.010	ND	ND	ND	ND
octa CDD		PG/L	0.001	ND	ND	ND	ND
2,3,7,8-tetra CDF	115	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF	140	PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF		PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF 2,3,4,6,7,8-hexa CDF		PG/L PG/L	0.100 0.100	ND ND	ND ND	ND ND	ND ND
1,2,3,4,6,7,8-hepta CDF		PG/L	0.010	ND ND	ND ND	ND ND	ND ND
1,2,3,4,7,8,9-hepta CDF			0.010	ND	ND	ND ND	ND ND
octa CDF		PG/L	0.001	ND	ND	ND	ND
				EFF	EFF	EFF	EFF
				TCCD	TCCD	TCCD	TCCD
Analyte	MDI	Units	Equiv	SEP P580887	OCT P584731	NOV P591177	DEC P592527
=============		=======	=====	========	=========	=========	=========
2,3,7,8-tetra CDD	125	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	123	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	113	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	98	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD		PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD			0.010	ND	ND	ND	ND
octa CDD		PG/L	0.001	DNQ0.003	DNQ0.006	DNQ0.006	DNQ0.008
2,3,7,8-tetra CDF		PG/L	0.100	ND ND	ND ND	ND ND	ND ND
1,2,3,7,8-penta CDF 2,3,4,7,8-penta CDF		PG/L PG/L	0.050 0.500	ND ND	ND ND	ND ND	ND ND
1,2,3,4,7,8-hexa CDF		PG/L PG/L	0.100	ND ND	ND ND	ND ND	ND ND
1,2,3,6,7,8-hexa CDF		PG/L	0.100	ND ND	ND ND	ND ND	ND ND
1,2,3,7,8,9-hexa CDF		PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF		PG/L	0.010	ND	ND	ND	ND
1,2,3,4,7,8,9-hepta CDF			0.010	ND	ND	ND	ND
octa CDF	222	PG/L	0.001	ND	ND	ND	ND

Above are permit required CDD/CDF isomers. ND= not detected