SAMPLING SYSTEM CODE REQUIREMENTS

Primary sample heat exchanger	ASME Boiler and Pressure Ves- sel Code, Section VIII, Un- fired Pressure Vessels, Div. I
Sample pressure vessels	ASME Boiler and Pressure Ves- sel Code, Section VIII, Un- fired Pressure Vessels, Div. I
Piping and valves	ANSI B31.1.0* ANSI B31.7**
Steam generator blowdown sample and steam sample heat exchangers	ASME Boiler and Pressure Ves- sel Code, Section VIII, Un- fired Pressure Vessels, Div. I

* ANSI B31.1.0 - Code for Power Piping, used for design.

** For piping not supplied by the NSSS supplier, material inspection, fabrication, and quality control conform to ANSI B31.7. Where not possible to comply with ANSI B31.7, the requirements of ASME III-1971, which incorporated ANSI B31.7, were adhered to.

SGS-UFSAR

Revision 8 July 22, 1988

SAMPLING SYSTEM COMPONENTS

3

Primary System Sampling Heat Exchanger

General

Number Type

Shell and coiled tube

Design pressure, psig Design temperature, °F Design flow, gpm Temperature, in, °F Temperature, out, °F Material	<u>Shell</u> 150 350 14.1 95 125 Carbon steel	<u>Tube</u> 2485 680 0.42 652.7 (max) 127 (max) Austenitic
Fluid	Component cooling water	Stainless Steel Sample

Steam Generator Blowdown Sampling Heat Exchanger

General

Number Type 8 Shell and coiled tube

	Shell	Tube
Design pressure, psig	150	1500
Design temperature, ^o F	650	550
Design flow, gpm	6	0.40
Temperature, in, °F	95	550 (max)
Temperature, out, °F	125	127 (max)
Material	Carbon steel	Austenitic
		Stainless Steel
Fluid	Component	Sample
	cooling water	
	-	

Sample Pressure Vessels

Number, total1Volume, ml75Design pressure, psig2485Design temperature, °F680MaterialAustenitic Stainless Steel

Piping

Design	pressure, psig	2485
Design	temperature, °F	680

MALFUNCTION ANALYSIS OF SAMPLING SYSTEM

Component	Malfunction or Failure	Consequence
Pressurizer Sample Lines or Reactor Coolant Sample Lines	An isolation valve fails to close on containment isolation signal	The second isolation valve closes on containment isolation signal, maintaining containment integrity
Any of the above Sample Lines	Break in line down- stream of isolation valves	Isolation valves close on containment isolation signal
Sample Heat Exchangers	Loss of cooling water	Sample lines can be isolated at the containment. Cooling of samples is not required

.

CHEMICAL AND VOLUME CONTROL SYSTEM CODE REQUIREMENTS

Regenerative heat exchanger	ASME III*, Class C
Letdown heat exchanger	ASME III, Class C, Tube Side, ASME VIII, Shell Side
Mixed bed demineralizers	ASME III, Class C
Reactor coolant filter	ASME III, Class C
Volume control tank	ASME III, Class C
Seal water heat exchanger	ASME III, Class C, Tube Side, ASME VIII, Shell Side
Excess letdown heat exchanger	ASME III, Class C, Tube Side, ASME VIII, Shell Side
Cation bed demineralizer	ASME III, Class C
Seal water injection filters	ASME III, Class C
Boric acid filter	ASME III, Class C
Evaporator condensate demineralizers	ASME III, Class C
Concentrates filter	ASME III, Class C
Evaporator feed ion exchangers	ASME III, Class C
Ion exchanger filter	ASME III, Class C
Condensate filter	ASME III, Class C
Piping and valves	ANSI B31.1** Ansi B31.7*** ****

- * ASME III American Society of Mechanical Engineers, Boiler and Pressure Vessel Code, Section III, Nuclear Vessels.
- ** ANSI B31.1 Code for Power Piping, used for design.
- *** For piping not supplied by the NSSS supplier, material inspection, fabrication, and quality control conform to ANSI B31.7. Where not possible to comply with ANSI B31.7, the requirements of ASME III-1971, which incorporated ANSI B31.7, were adhered to.
- **** ASME Section III Code relief was obtained for the Volume Control Tank and regenerative heat exchanger relief systems using administrative controls per NRC approval (Section 9.3.7, Reference 3).

CHEMICAL AND VOLUME CONTROL SYSTEM DESIGN PARAMETERS

General

Plant design life, years	40
Seal water supply flow rate: Normal, gpm Maximum, gpm	32 113
Seal water return flow rates: Normal, gpm Maximum, gpm	12 93
Letdown flow: Normal, gpm Minimum, gpm Maximum, gpm	75 45 120
Charging flow: Normal, gpm Minimum, gpm Maximum, gpm	55 25 100
Temperature of letdown reactor coolant entering system at full power, DF	542.7
Centrifugal pump miniflow, gpm	60 (each)
Normal temperature of charging flow directed to Reactor Coolant System, $\Box F$	495
Temperature of effluent directed to holdup tanks, []F	127

(Volumetric flow rates in gpm are nominal values based upon 130 DF and 2350 psig)

SGS-UFSAR

1 of 1

Revision 22 May 5, 2006

PRINCIPAL COMPONENT DATA SUMMARY

Number1Heat transfer rate at design conditions, Btu/hr10.28 x 10 ⁶ Shell Side2485Design pressure, psig2485Design temperature, °F650FluidMaximum (Design) Purification Heatup)Material of construction37,05059,280System37,05059,280Inlet temperature, °F298294Outlet temperature, °F298294Design pressure, psig2825°Design pressure, psig2825°Design pressure, psig2825°Design pressure, psig2825°Design pressure, psig27,170Material of constructionMaximum (Design) Purification Heatup)Flow, lb/hr27,170Adot of temperature, °F130Differe27,170Design pressure, psig27,170Design pressure, psig27,170Outlet temperature, °F30Sign temperature, °F130Design pressure, psig2185Design pressure, psig2485Design pressure, psig2185Normal operating inlet pressure, psig210Normal operating temperature, °F290Material of construction290Normal operating temperature, °F290Number12Design flow, 1b/hr22,230Design flow, 1b/hr22,230Design flow, 1b/hr20Design flow, 1b/hr20Design flow, 1b/hr20Design flow, 1b/hr20 <td< th=""><th>Regenerative Heat Exchanger</th><th></th><th></th><th></th></td<>	Regenerative Heat Exchanger			
Shell SideDesign pressure, psig Design temperature, °F Fluid Material of construction2485 650 Borated reactor coolant Austenitic stainless steelNormal DesignMaximum (Design)Naximum PurificationFlow, lb/hr Inlet temperature, °F Outlet temperature, °F Pluid Material of construction37,050 555 542.7 29859,280 59,280 555 542.7 298Design pressure, psig Design temperature, °F Pluid Material of construction2825° 650 Borated reactor coolant Austenitic stainless steelNormal Design pressure, psig Design temperature, °F Outlet temperature, °F 130130 130 130Flow, lb/hr Inlet temperature, °F Normal operating inlet pressure, psig Design pressure, psig Design pressure, spig Design pressure, spig Design pressure, psig 290 Austenitic stainless steelDesign pressure, psig Dutlet temperature, °F Normal operating inlet pressure, psig Design pressure, psig Design temperature, °F Normal operating inlet pressure, psig Design temperature, °F Material of constructionDesign pressure, psig Design temperature, °F Material of construction2485 650 290 Austenitic stainless steelDesign pressure, psig Design temperature, °F Material of construction2485 650 290 Austenitic stainless steelDesign pressure, psig Design temperature, °F Material of construction2485 650 290 Austenitic stainless steelDesign pressure at Differential pressure at1 2 2,2,202 2,050	Number			
Design pressure, psig Design temperature, °F Fluid Material of construction2485 650 Borated reactor coolant Austenitic stainless steelNormal (Design)Maximum (Design)Maximum (Design)Flow, lb/hr Inlet temperature, °F Outlet temperature, °F37,050 298 29459,280 369Tube Side Design temperature, °F Pluid Material of construction2825° 650 Borated reactor coolant Austenitic stainless steelNormal (Design)2825° 650 Borated reactor coolant Austenitic stainless steelNormal (Design)2825° 650 Borated reactor coolant Austenitic stainless steelNormal (Design)Maximum (Design)Pivification Heatup130 130 130 130Flow, lb/hr Inlet temperature, °F Outlet temperature, °F Sign pressure, psig Design temperature, °F Austenitic stainless steelNormal (Design)Purification Purification HeatupFlow, lb/hr Inlet temperature, °F Outlet temperature, °F Austenitic stainless steelNormal operating inlet pressure, psig Design temperature, °F Material of construction2485 650 200 Austenitic stainless steelMumber Design flow, lb/hr Differential pressure at2485 22,230 27,050	Heat transfer rate at design conditi	ons, Btu/h	r	10.28 x 10 ⁶
Design temperature, °F Fluid Material of construction Flow, lb/hr Inlet temperature, °F Guilet temperature, °F Sign pressure, psig Pelow, lb/hr Partification Heatup 37,050 59,280 59,280 S55 542.7 542.7 298 294 369 Tube Side Design pressure, psig Design temperature, °F Fluid Material of construction Flow, lb/hr Inlet temperature, °F Plow, lb/hr Sign pressure, psig Design pressure, psig Sign temperature, °F Sign pressure, psig Design pressure, psig Sign pressure, psig Design pressure, °F Sign pressure, psig Design temperature, °F Material of construction Number Design flow, lb/hr Differential pressure at Number Design flow, lb/hr Differential pressure at Design flow, lb/hr Design flow, lb/hr Differential pressure at Design flow, lb/hr Design flow, lb/hr Desig	Shell Side			
$\begin{tabular}{ c c c c c c c c c c c c c $	Design temperature, °F Fluid	650 Borated r		eel
Inlet temperature, °F 555 542.7 542.7 Outlet temperature, °F 298 294 369 <u>Tube Side</u> Design pressure, psig 2825° Design temperature, °F 650 Fluid Borated reactor coolant Austenitic stainless steel <u>Normal Maximum (Design) Purification Heatup</u> Flow, lb/hr 27,170 49,400 29,640 Inlet temperature, °F 130 130 130 Outlet temperature, °F 495 466 520 <u>Letdown Orifice</u> Design pressure, psig 2485 Design temperature, °F 650 Normal operating inlet pressure, psig 2185 Normal operating temperature, °F 290 Austenitic stainless steel <u>Austenitic stainless steel</u> Normal operating temperature, °F 12 Material of construction 12 <u>Austenitic stainless steel</u> <u>Austenitic stainless steel</u>				Heatup
Design temperature, °F Fluid Material of construction Flow, lb/hr Inlet temperature, °F Design pressure, psig Design temperature, °F Normal operating inlet pressure, psig Normal operating temperature, °F Material of construction Number Design flow, lb/hr Design flow, lb/hr Defferential pressure at 650 Borated reactor coolant Austenitic stainless steel 650 Borated reactor coolant Austenitic stainless steel 650 Borated reactor coolant Austenitic stainless steel 1 2,230 27,050 Design flow, lb/hr Differential pressure at 650 Borated reactor coolant Austenitic stainless steel 1 22,230 27,050 Design flow, lb/hr Differential pressure at	Inlet temperature, °F Outlet temperature, °F	555	542.7	542.7
(Design)PurificationHeatupFlow, lb/hr27,17049,40029,640Inlet temperature, °F130130130Outlet temperature, °F495466520Letdown Orifice2485Design pressure, psig2485Design temperature, °F650Normal operating inlet pressure, psig2185Normal operating temperature, °F290Material of constructionAustenitic stainless steelMumber12Design flow, lb/hr22,23027,050	Design temperature, °F Fluid	650 Borated r		eel
Inlet temperature, °F130130130Outlet temperature, °F495466520Letdown Orifice2485Design pressure, psig2485Design temperature, °F650Normal operating inlet pressure, psig2185Normal operating temperature, °F290Material of constructionAustenitic stainless steelMumber Design flow, 1b/hr Differential pressure at				Heatup
Design pressure, psig2485Design temperature, °F650Normal operating inlet pressure, psig2185Normal operating temperature, °F290Material of constructionAustenitic stainless steelMumber Design flow, 1b/hr Differential pressure at 1 22,230 27,050	Inlet temperature, °F	130	130	130
Design temperature, °F 650 Normal operating inlet pressure, psig 2185 Normal operating temperature, °F 290 Material of construction Austenitic stainless steel <u>45 gpm 75 gpm</u> Number 1 2 Design flow, 1b/hr 22,230 27,050	Letdown Orifice			
45 gpm75 gpmNumber12Design flow, lb/hr22,23027,050Differential pressure at12	Design temperature, °F Normal operating inlet pressure, psi- Normal operating temperature, °F	650 g 2185 290	tic stainless o	steel
Number12Design flow, lb/hr22,23027,050Differential pressure at22,23027,050				
design flow, psig 1900 1900	Design flow, lb/hr Differential pressure at	1 22 , 230	2 27,050	

* Associated pipe design pressure for Pipe Schedule SPS48B is 2825 psig, based on CV141 setpoint pressure. Per the design code, maximum allowable accumulation for pressure relief is 110% of ASME pressure vessel design pressure (Reference Calculation S-C-CVC-MDC-2348). TABLE 9.3-6 (Cont)

1 14.8 x 10 ⁶ poling water
14.8 × 10^{6}
oling water
oling water
oling water
oling water
up Maximum .gn) <u>Purification</u>
000 320,000
95 95
125 125
coolant
nless steel
up Maximum gn) Purification
80 59,280**
(max) 380 (max)
.27 127
or application-specif
nless steel
wn operation (Ref. VT

** Qualified for 88650 lb/hr during Low Pressure RHR Letdown operation (Ref. VTD 328295, sht. 002)

Resin Fill Tank

Restli FIII Tank	
Number	1
Composition ft ³	8
Capacity, ft ³ Design pressure	Atmospheric
	200
Design temperature, °F	Ambient
Normal operating temperature Material of construction	Austenitic stainless steel
Material of construction	Auscenitic statutess steet
Reactor Coolant Filter	
Number	1
Туре	Replaceable assembly
Design pressure, psig	200
Design temperature, °F	250
Flow rate:	
Nominal, gpm	120
Maximum, gpm	150*
Material of construction	Austenitic stainless steel
Filtration Requirement	≥98 Percent retention of particles
	above 25 micron
Volume Control Tank	
Number	1
Number	+
Internal volume, ft ³	400
Design pressure:	
Internal, psig	75
External, psig	15
Design temperature, °F	250
Operating pressure range, psig	0 - 60
Normal operating pressure, psig	15
Spray nozzle flow (maximum), gpm	120*
Material of construction	Austenitic stainless steel
Centrifugal Charging Pumps	
Number	2
Туре	Z Horizontal centrifugal
Design pressure, psig	2800
Design temperature, °F	300
Shutoff head, psi	2670
-	
Normal suction temperature, °F	127

Design temperature, °F Shutoff head, psi Normal suction temperature, °F Design flowrate, gpm Design head, ft Required NPSH at 150 gpm, ft Material

10 Austenitic stainless steel

* Qualified for 180gpm during Low Pressure RHR Letdown operation (Ref. VTD 328295, sht. 002)

150

5800

Positive Displacement Charging Pump

Number Type Positive displacement Design head, ft Design temperature, °F Design pressure, psig Design flow rate*, gpm Suction temperature, °F Discharge pressure at 130°F, psig Material of construction Maximum operating pressure, psia	1 ent with variable speed drive 5800 250 3200 98 127 2500 Austenitic stainless steel 3125
<u>Chemical Mixing Tank</u>	
Number Capacity, gal Design pressure, psig Design temperature, °F Normal operating temperature Material of construction	l 5 150 200 Ambient Austenitic stainless steel
Boric Acid Tank	
Number Capacity (each), gal Design pressure Design temperature, °F Normal operating temperature, °F Material of construction	2 8000 Atmospheric 250 Ambient Austenitic stainless steel
Boric Acid Tank Electric Immersion Heater	
Number (two per tank) Heat transfer rate, each, kŴ Material of construction	4 7.5 Austenitic stainless steel sheath
Batching Tank and Batching Tank Heater Jacket	
Number Type Capacity, gal	l Cylindrical with steam panel coils 400
Design pressure Design temperature, °F Steam temperature, °F Initial ambient temperature, °F Final fluid temperature, °F Heatup time, hr Tank material of construction Panel coils, material of construction	Atmospheric 300 250 32 >80 ~ 3 Austenitic stainless steel Carbon steel

* At 130°F, 2500 psig

SGS-UFSAR

Batching Tank Agitator

~~

Number Fluid handled, boric acid, wt percent Service Tank volume, gal Operating temperature, °F Operating pressure Material of construction	l 12 Continuous 400 165 Atmospheric Austenitic st	ainless steel
Excess Letdown Heat Exchanger		
Number Heat transfer rate at design conditions, Btu/hr	1 4.61 x 10 ⁶	
	Shell Side	Tube Side
Design pressure, psig Design temperature, °F Design flow rate, 1b/hr Inlet temperature, °F Outlet temperature, °F Fluid Material of construction	150 250 115,000 95 135 Component cooling water Carbon Steel	reactor coolant
	Carbon Steel	stainless steel
Seal Water Heat Exchanger		
Number Heat transfer rate at design	1	
conditions, Btu/hr	2.49×10^{6}	
	Shell Side	Tube Side
Design pressure, psig Design temperature, °F Design flow rate, lb/hr Design operating inlet temperature, °F Design operating outlet temperature, °F Fluid Material of construction	150 250 99,500 95 120 Component cooling water Carbon steel	coolant
MODELINI OF COMPERATION	Salbou Steel	stainless steel

TABLE 9.3-6 (Cont) Seal Water Filter Number 1 Туре Replaceable Assembly Design pressure, psig 200 250 Design temperature, °F Maximum flow rate, gpm Vessel material of construction 325 Austenitic stainless steel Filtration Requirement 98 percent retention of particles above 25 microns Boric Acid Filter Number 1 Replaceable Assembly Type 200 Design pressure, psig Design temperature, °F 250 150 Design flow, gpm Vessel material of construction Austenitic stainless steel Filtration Requirement 98 percent retention of particles above 25 microns Boric Acid Transfer Pump Number 2 Two-speed horizontal Type centrifugal 75* Design flow rate, each, gpm Design pressure, psig Design discharge head, ft 150 235 Design temperature, °F 250 Temperature of pumped fluid, °F 70 Required NPSH at 75 gpm, ft 6 Material of construction Austenitic stainless steel Boric Acid Blender Number 1 150 Design pressure, psig Design temperature, °F 250 Material of construction Austenitic stainless steel Cation Bed Demineralizer Number 1 Flushable Type Vessel design pressure: Internal, psig External, psig 200 15 Vessel design temperature, °F 250 Normal operating temperature, °F 127 Normal operating pressure, psig 150 Design flow, gpm 75 Resin type Cation Material of construction Austenitic stainless steel

*Because of the severe duty from pumping boric acid, the minimum required flow, which is verified by the In-Service Testing Program for pumps, has been set as 45 gpm.

Revision 14 December 29, 1995

Chemical Mixing Tank Orifice

Number

Design pressure, psig Design temperature, °F Design flow, gpm Material of construction

Boric Acid Tank Orifice

Number Design pressure, psig Design temperature, °F Design flow, gpm Material of construction

Deborating Demineralizers

Number
Туре
Vessel design pressure:
Internal, psig
External, psig
Vessel design temperature, °F Normal flow, gpm
Normal operating temperature, °F
Normal operating pressure, psig
Resin type

Material of construction

Seal Injection Filters

Number Design pressure, psig Design temperature, °F Design flow, gpm Particle retention Fluid

Material of construction, vessel

Type

No. 1 Seal Bypass Orifice

Number Design pressure, psig Design temperature, °F Design flow, gpm Differential pressure at design flow, psi

1		
1 150		
200		
2	*	ŕ
M	1	

Austenitic stainless steel

2	· · ·
150	
200	
3	
Austenitic	stainless
steel	

2 Regenerable 200 15 250 127

127 150 Cation, anion, or Application-specific Austenitic stainless steel

2735 200 80 98 percent above 5 micron Reactor coolant

2

containing up to 4.0 weight percent boric acid

Austenitic stainless steel

Replaceable Assembly

7 of 12

Revision 21 December 6, 2004

Holdup Tanks

Number Design temperature, °F Design pressure,3psig Volume, each, ft Normal operating pressure, psig Normal operating temperature, °F Material of construction	*3 200 15 8500 3 130 Austenitic stainless steel
Recirculation Pump	
Number Type Design flow, gpm Design head, ft Design pressure, psig Design temperature, °F Normal operating temperature, °F Material of construction	l Centrifugal 500 100 75 200 115 Austenitic stainless steel
Gas Stripper Feed Pumps	
Number Type Design flow, gpm Design head (TDH), ft Design pressure, psig Design temperature, °F Normal fluid temperature, °F Material of construction	2 Canned 30 320 150 200 115 Austenitic stainless steel
Gas Stripper and Evaporator Package Unit	
Number of Units Design flow/unit; gas stripper feed, gpm Evaporator condensate, gpm Evaporator concentrates (batch flow), gpm Decontamination factors (design): Gas stripper Evaporator Concentration of concentrates, boric acid, wt percent Concentration of distillate	1 30 30 40 Approx 10 ⁵ (for gas) Approx 10 (for liquid) 12 <10 ppm boron as H ₃ BO <0.1 ppm oxygen Conductivity <2.0 µmhos/cm pH = 6 0 to 8 0
Material of construction	pH = 6.0 to 8.0 Austenitic stainless steel

 \star Unit No. 1 has only two CVCS Hold-up Tanks. The No. 12 Tank has been abandoned in place.

Evaporator Distillate Demineralizers

Number Type	2 Regenerable
Design temperature, °F	250
Design pressure:	
Internal, psig	200
External, psig	15
Design flow, gpm	30
Normal operating pressure, psig	50
Normal operating temperature, °F	130
Resin type	Anion
Material of construction	Austenitic stainless steel

Monitor Tanks

Number Volume, each, gal	2 21,600
Design pressure	Atmospheric
Design temperature, °F	150
Material of construction	Stainless steel

Monitor Tank Pumps

Number Type
Design flow, gpm
Design head, ft
Design pressure, psig
Design temperature, °F
Material of construction
NPSH, ft

Evaporator Feed Ion Exchangers

Number Type
Design temperature, °F
Design pressure:
Internal, psig
External, psig
Minimum decontamination factor
for ions removed
Design flow, gpm
Normal operating temperature, °F
Normal operating pressure, psig
Resin type
Material of construction

2 Centrifugal 150 200 150 200 Austenitic stainless steel 15

4 Flushable 250		
200 15		
10 30		
130 75		
Cation		
Austenitic	stainless	steel

Revision 26 May 21, 2012 **Concentrates Filter**

Number	1
Туре	Cage type
Design pressure, psig	200
Design temperature, °F	250
Design flow rate, gpm	35
Retention for 25 micron particles	98 percent
Material of construction (vessel)	Austenitic stainless steel

Concentrates Holding Tank

Number	1
Туре	Cylindrical, heated
Volume, gal	1000
Design pressure	Atmospheric
Design temperature, °F	250
Normal operating temperature, °F	150
Material of construction	Austenitic stainless steel

Concentrates Holding Tank Transfer Pump

Number	2
Туре	Centrifugal canned
Design flow rate, gpm	40
Design head, ft	150
Design temperature, °F	250
Design pressure, psig	100
Required NPSH at 40 gpm, ft	8
Material of construction	Austenitic stainless steel

Concentrates Holding Tank Electric Heater

Number	1
Heat transfer rate, kW	3.0
Material of construction	Austenitic stainless steel

Ion Exchanger Filter

Number	1
Туре	Cage assembly
Design pressure, psig	200
Design temperature, °F	250
Design flow rate, gpm	35
Retention of 25 micron particles	98 percent
Material of construction	Austenitic stainless steel

Distillate Filter

~

Number	1
Туре	Cage assembly
Design pressure, psig	200
Design temperature, °F	250
Design flow rate, gpm	35
Retention of 25 micron particles	98 percent
Material of construction	Austenitic stainless steel

		Fl ui d	Fluid Inlet Temperature	Set Pressure		ure, psig	Capacity
<u>Relief Valves</u>	<u>No.</u>	Discharged	°F	psig	Constant	Building	gpm
Letdown line (HP)	1	Water-Steam Mixture	385 (max)	600	3	50	98,000 lb/hr
Seal water return line	1	Water	150	150	3	50	180
Charging pump's discharge	1	Water	130	2735	15	75	100
Letdown line (LP)	1	Water	127	200	15	12	200
Volume control tank	1	Hydrogen, nitrogen, or water	130	75	3	12	350
Boric acid batch tank heater	1	Steam	250	20	0	0	320 lb/hr
Holdup tanks	3	Nitrogen, water	130	12	З	3	235

Revision 23 October 17, 2007 1

FAILURE ANALYSIS OF THE CHEMICAL AND VOLUME CONTROL SYSTEM

Con	ponent	Failure	Comments and Consequences
1.	Letdown Line	Rupture in the line inside the reactor containment	The two remote air-operated valves located near the main coolant loop are closed on low pressurizer level to prevent supplementary loss of coolant through the letdown line rupture. The containment isolation valves in the letdown line are automatically closed by the containment isolation signal. The closure of these valves prevents any leakage of the reactor containment atmosphere outside the reactor containment.
2.	Normal and Alternate Charging Line	See above.	The check valves located near the main coolant loops prevent supplementary loss of coolant through the line and isolate the Reactor Coolant System from the rupture. The check valve located at the boundary of the reactor containment prevents any leakage of the reactor containment atmosphere outside the reactor containment.
			The two motor-operated valves outside the containment are automatically closed by the containment isolation signal.
3.	Seal Water Return Line	See above.	The motor-operated isolation valves located inside and outside the containment are automatically closed by the containment isolation signal. The closure of these valves prevents any leakage of the reactor containment atmosphere outside the reactor containment.

.