
Blue Gene/L 1

Table of Contents

ACKNOWLEDGEMENT .. 2

Abstract.. 3

Blue Gene/L ... 4

Introduction... 4

The performance spectrum ... 6

Design and Analysis of the Blue Gene/L Torus Interconnection Network.................. 9

Torus Network .. 9

Simulator Overview.. 13

Sample Performance Studies ... 15

Application... 20

The protein folding problem. .. 22

Current view of folding mechanisms.. 23

References .. 28

Model Engineering College

Blue Gene/L 2

ACKNOWLEDGEMENT

I would like to express my deep gratitude to Prof. Jyothi John, Principal of Model

Engineering College for permitting me to use all the facilities in the college.

Mrs. Preetha Theresa Joy, class advisor and seminar coordinator whose advice

and guidance helped me immensely during this project. Ms Tina Anne Sebastian,

my guide for her guidance and support.

 .

Last, but not least the Almighty from who flows all the wisdom and knowledge and

without whose blessings none of this would have ever occurred.

Model Engineering College

Blue Gene/L 3

Abstract

Blue Gene/L (BG/L) is a 64K (65,536) node scientific and engineering supercomputer

that IBM is developing with partial funding from the United States Department of

Energy. This paper describes one of the primary BG/L interconnection networks, a three

dimensional torus. We describe a parallel performance simulator that was used

extensively to help architect and design the torus network and present sample simulator

performance studies that contributed to design decisions. In addition to such studies, the

simulator was also used during the logic verification phase of BG/L for performance

verification, and its use there uncovered a bug in the VHDL implementation of one

of the arbiters. Blue Gene/L (BG/L) is a scientific and engineering, message-passing,

supercomputer that IBM is developing with partial funding from the U.S. Department of

Energy Lawrence Livermore National Laboratory. A 64K node system is scheduled to be

delivered to Livermore, while a 20K node system will be installed at the IBM T.J.

Watson Research Center for use in life sciences computing, primarily protein folding. A

more complete overview of BG/L may be found in [1], but we briefly describe the

primary features of the machine.

Model Engineering College

Blue Gene/L 4

Blue Gene/L

The Blue Gene/L architecture

Introduction

The first computer in the Blue Gene series, Blue Gene/L, developed through a

partnership with Lawrence Livermore National Laboratory, cost US$100 million and is

intended to scale to speeds in the hundreds of TFLOPS, with a theoretical peak

performance of 360 TFLOPS. This is almost ten times as fast as the Earth Simulator, the

fastest supercomputer in the world before Blue Gene. In June 2004, two Blue Gene/L

prototypes scored in the TOP500 Supercomputer List at the #4 and #8 positions.

On September 29, 2004, IBM announced that a Blue Gene/L prototype at IBM Rochester

(Minnesota) had overtaken NEC's Earth Simulator as the fastest computer in the world,

with a speed of 36.01 TFLOPS, beating Earth Simulator's 35.86 TFLOPS. The machine

later reached a speed of 70.72 TFLOPS.

Linux will be the main operating system for IBM's upcoming family of "Blue Gene"

supercomputers--a major endorsement for the operating system and the open-source

computing model it represents. The decision to adopt Linux came, in part, as a result of

the growing size and strength of the open-source community. Thousands of developers

Model Engineering College

Blue Gene/L 5

around the world are participating in the evolution of Linux. Creating a new OS inside of

IBM would require a massive engineering effort.

On March 24, 2005, the US Department of Energy announced that Blue Gene/L broke its

current world speed record, reaching 135.5 TFLOPS. This feat was possible because of

doubling the number of racks to 32 with each rack holding 1,024 compute nodes. This is

still only half of the final configuration with 65,536 compute nodes. The final Blue

Gene/L installation will have a total of 65,536 compute nodes (i.e., 216 nodes) and an

additional 1024 I/O nodes. Each compute or IO node is a single ASIC with associated

DRAM memory chips. The ASIC integrates two PowerPC 440 embedded processors, a

cache sub-system and communication sub-systems. Each node is attached to three

parallel communications networks: a 3D toroidal network for peer-to-peer

communication between compute nodes, a collective network for collective

communication, and a global interrupt network for fast barriers. The I/O nodes, which run

the Linux operating system, provide communication with the world via an Ethernet

network. Finally, a separate and private Ethernet network provides access to any node for

configuration, booting and diagnostics.

Blue Gene/L compute nodes use on a minimal operating system supporting a single

process thread, and lacking interrupts and virtual memory. To allow multiple programs to

run concurrently, compute nodes can be partitioned into electronically isolated sets of

nodes. The number of nodes in a partition must be a positive integer power of 2, and must

contain at least 25 = 32 nodes. The maximum partition is all nodes in the computer. To

run a program on Blue Gene/L, a partition of the computer must first be reserved. The

program is then run on all the nodes within the partition, and no other program may

access nodes within the partition while it is in use. Upon completion, the partition nodes

are released for future programs to use.

With so many nodes, components will be failing frequently. Thus, the system will be able

to electrically isolate faulty hardware to allow the machine to continue to run.

Model Engineering College

Blue Gene/L 6

In public relations terms, it is being positioned as the successor of IBM's Deep Blue chess

computer; however it bears little architectural resemblance to Deep Blue.

Technical Details

The performance spectrum

In computing, FLOPS is an abbreviation of FLoating point Operations Per Second. This

is used as a measure of a computer's performance, especially in fields of scientific

calculations that make heavy use of floating point calculations. (Note: a hertz is a cycle

(or operation) per second. Compare to MIPS -- million instructions per second.) One

should speak in the singular of a FLOPS and not of a FLOP, although the latter is

frequently encountered. The final S stands for second and does not indicate a plural.

Computing devices exhibit an enormous range of performance levels in floating-point

applications, so it makes sense to introduce larger units than the FLOPS. The standard SI

prefixes can be used for this purpose, resulting in such units as the megaFLOPS

(MFLOPS, 106 FLOPS), the gigaFLOPS (GFLOPS, 109 FLOPS), the teraFLOPS

(TFLOPS, 1012 FLOPS), and the petaFLOPS (PFLOPS, 1015 FLOPS).

A cheap but modern desktop computer using, for example, a Pentium 4 or Athlon 64

CPU, typically runs at a clock frequency in excess of 2 GHz and provides computational

performance in the range of a few GFLOPS. Even some video game consoles of the late

1990s' vintage, such as the Gamecube and Dreamcast had performance in excess of one

GFLOPS .

The original supercomputer, the Cray-1, was set up at Los Alamos National Laboratory

in 1976. The Cray-1 was capable of 80 MFLOPS (or, according to another source, 138–

250 MFLOPS). In fewer than 30 years since then, the computational speed of

supercomputers has jumped a millionfold.

Model Engineering College

Blue Gene/L 7

The fastest computer in the world as of November 5, 2004, the IBM Blue Gene

supercomputer, measures 70.72 TFLOPS. This supercomputer was a prototype of the

Blue Gene/L machine IBM is building for the Lawrence Livermore National Laboratory

in California. During a speed test on 24 March 2005, it was rated at 135.5 TFLOPS. Blue

Gene's new record was achieved by doubling the number of current racks to 32. Each

rack holds 1,024 processors, yet the chips are the same as those found in high-end

computers. The complete version will have a total of 64 racks and a theoretical speed

measured at 360 TFLOPS.

Architecture Details

Blue Gene/L (BG/L) is a scientific and engineering, message-passing, supercomputer that

IBM is developing with partial funding from the U.S. Department of Energy Lawrence

Livermore National Laboratory. A 64K node system is scheduled to be delivered to

Livermore, while a 20K node system will be installed at the IBM T.J. Watson Research

Center for use in life sciences computing, primarily protein folding.

BG/L is built using system-on-a-chip technology in which all functions of a node (except

for main memory) are integrated onto a single ASIC. This ASIC includes two 32- bit

Power PC cores (the 440); the 440 was developed for embedded applications. Associated

with each core is a 64- bit “double” floating-point unit (FPU) that can operate in SIMD

mode. Each (single) FPU can execute up to two multiply-adds per cycle, meaning that the

peak performance of the chip is 8 floating-point operations per cycle. Each 440 has its

own instruction and data caches (each 32KB), a small L2 cache that primarily serves as a

pre-fetch buffer, a 4MB shared L3 cache built from embedded DRAM, and a DDR

memory controller. In addition, the logic for five different networks is integrated onto the

ASIC. These networks include a JTAG control and monitoring network, a Gbit Ethernet

macro, a global barrier and alert network, a “tree” network for broadcasts and combining

operations such as those used in the MPI collective communications library, and a three

dimensional torus network for point-point communications between nodes. The ASIC

can be used as either an I/O node or as a Compute node. I/O nodes have their Ethernet

Model Engineering College

Blue Gene/L 8

macro connected to an external switch enabling connectivity to hosts, however they do

not use the torus network. Compute nodes do not connect their Ethernet, and talk to the

I/O nodes over the tree network. The Livermore machine will have 64 Compute nodes for

each I/O node. I/O nodes will have at least 512MB and Compute nodes will have at least

256 MB of memory, depending on the cost of memory at the time of delivery. Because of

the high level of integration and relatively low target clock speed (700 MHz target), the

system is designed to deliver unprecedented aggregate performance at both low cost and

low power consumption. At this clock rate, each node has a peak of 5.6 GFlops, while the

64K node system has a peak of 367 Tera Flops. Each ASIC will consume only 12 watts

of power. Because of the low power, a very high density of packaging can be

achieved.Two compute ASICs and their associated memory are packaged onto a compute

card, 16 compute cards are mounted on a node card, and 16 node cards are packaged in a

512 node midplane. Two midplanes are packaged in a 1024 node rack, which is about the

size of a large refrigerator. Because the 440 core does not contain shared memory

support, the L1 caches of the two cores on the same ASIC are not coherent. Memory is

consistent from the L2 on out, but software is required to appropriately manage the L1’s.

The system can operate in one of two modes. In communications coprocessor mode, one

core is responsible for computing while the other core handles most messaging functions.

Careful software coordination is required in this mode to overcome the lack of L1

coherence. When configured in this mode, the peak performance of the 64K node system

is 183 Tera Flops. In the second mode, “virtual node” mode, each core has its own

memory space and each core is responsible for both computing and message handling;

the system has two sets of network injection and reception FIFOs, so that both cores can

simultaneously access the network interfaces.

Model Engineering College

Blue Gene/L 9

Design and Analysis of the Blue Gene/L Torus Interconnection
Network

Torus Network

Many of the design decisions were driven by simulation performance studies. The torus

network uses dynamic routing with virtual cut through buffering. A torus was chosen

because it provides high bandwidth nearest neighbor connectivity, which is common in

scientific applications, but also for its scalability, cost and packaging considerations. A

torus requires no long cables and, because the network is integrated onto the same chip

that does computing, no separate switch is required. Previous supercomputers such as the

Cray T3E have also used torus networks. Torus packets are variable in size – from 32 to

256 bytes in increments of 32 byte chunks. The first eight bytes of each packet contain

link level protocol information (e.g., sequence number) and routing information including

destination, virtual channel and size. A 24-bit CRC is appended to each packet, along

with a one byte valid indicator. The CRC permits link level checking of each packet

received, and a timeout mechanism is used for retransmission of corrupted packets. The

error detection and recovery protocol is similar to that used in IBM SP interconnection

networks as well as in the HIPPI standard. For routing, the header includes six “hint” bits,

which indicate in which directions the packet may be routed. For example, hint bits of

100100 means that the packet can be routed in the x+ and y- directions. Either the x+ or

x- hint bits, but not both, may be set. If no x hops are required, the x hint bits are set to 0.

Each node maintains registers that contain the coordinates of its neighbors, and hint bits

are set to 0 when a packet leaves a node in a direction such that it will arrive at its

destination in that dimension. These hint bits appear early in the header, so that

arbitration may be efficiently pipelined. The hint bits can be initialized either by software

or hardware; if done by hardware, a set of two registers per dimension is used to

determine the appropriate directions. These registers can be configured to provide

minimal hop routing. The routing is accomplished entirely by examining the hint bits and

virtual channels, i.e., there are no routing tables. Packets may be either dynamically or

Model Engineering College

Blue Gene/L 10

statically (xyz) routed. Besides point-topoint packets, a bit in the header may be set that

causes a packet to be broadcast down any dimension. The hardware does not have the

capability to route around “dead” nodes or links, however, software can set the hint bits

appropriately so that such nodes are avoided; full connectivity can be maintained when

there are up to three faulty nodes, provided they are not co-linear.

The torus logic consists of three major units, a processor interface, a send unit and a

receive unit. The processor interface consists of network injection and reception FIFOs.

Access to these FIFOs is via the double FPU registers, i.e., data is loaded into the FIFOs

via 128 bit memory mapped stores from a pair of FPU registers, and data is read from the

FIFOs via 128 bit loads to the FPU registers. There are a total of 8 injection FIFOs

organized into two groups: two high priority (for inter-node OS messages) and six normal

priority FIFOs, which are sufficient for nearest neighbor connectivity. Packets in all

FIFOs can go out in any direction. Each group of reception FIFOs contains 7 FIFOs, one

high priority and one dedicated to each of the incoming directions. More specifically,

there is a dedicated bus between each receiver and its corresponding reception FIFO. Up

to six injection and six reception FIFOs may be simultaneously active. Each of the six

receivers, as shown in Figure 1, has four virtual channels (VCs). Multiple VCs help

reduce head-ofline blocking [4], but in addition, mesh networks including tori with

dynamic routing, can deadlock unless appropriate additional “escape” VCs are provided.

We use a recent, elegant solution to this problem, the “bubble” escape VC as proposed in

BG/L has two dynamic VCs, one bubble escape VC that can be used both for deadlock

prevention and static routing, and one high priority bubble VC. Each VC has 1 KB of

buffering, enough for four full-sized packets. In addition to the VCs, the receivers include

a “bypass” channel so that packets can flow through a node without entering the VC

buffers, under appropriate circumstances. Dynamic packets can only enter the bubble

escape VC if no valid dynamic VCs are available. A token flow control algorithm is used

to prevent overflowing the VC buffers. Each token represents a 32B chunk. For

simplicity in the arbiters, a VC is marked as unavailable unless 8 tokens (a full-sized

packet) are available. However, token counts for packets on dynamic VCs are

incremented and decremented according to the size of the packet. The bubble rules, as

Model Engineering College

Blue Gene/L 11

outlined in require that tokens for one full-sized packet are required for a packet already

on the bubble VC to advance, but that tokens for two full-sized packets are required for a

packet to enter the bubble VC, upon either injection, a turn into a new direction, or when

a dynamic VC packet enters the bubble. This rule ensures that buffer space for one packet

is always available after an insertion and thus some packet can always, eventually move.

However, we discovered that this rule is incomplete for variable-sized packets when our

simulator deadlocked using this rule. With this rule, the remaining free space for one full-

sized packet can become fragmented resulting in a potential deadlock. To prevent this,

the bubble rules are simply modified so that each packet on the bubble is accounted for as

if it were a fullsized (8 chunk) packet. Eight byte acknowledgement (ack-only) or

combined token-acknowledgement (token-ack) packets are returned when packets are

either successfully received, or when space has freed up in a VC. Acknowledgements

permit the torus send units to delete packets from their retransmission FIFOs, which are

used in the error recovery protocol. The send units also arbitrate between requests from

the receiver and injection units. Due to the density of packaging and pin constraints, each

link is bit serial. The torus is internally clocked at onefourth the rate of the processor, so

at the target 700 MHz clock rate, each torus link is 175 MB/sec. There are sufficient

internal busses so that each of the 6 outgoing and 6 incoming links can be simultaneously

busy; thus each node can be sending and receiving 1.05 GB/sec. In addition, there are two

transfer busses (paths) coming out of each receiver that connect with the senders. Thus, a

single receiver can have up to 4 simultaneous transfers, e.g., one to its normal reception

FIFO, one to the high priority reception FIFO, and two to two different senders.

Arbitration is distributed and pipelined, but occurs in three basic phases. It generalizes an

approach used in [3] and represents tradeoffs between complexity, performance, and

ability to meet timing constraints. First, each packet at the head of the injection or VC

FIFOs decides in which direction and on what VC it prefers to move. For statically routed

packets, there is only one valid choice, but dynamically routed packets may have many

choices. The preferred direction and VC are selected using a modified “Join the Shortest

Queue” (JSQ) algorithm as follows. The senders provide the receivers and injection

FIFOs with a bit indicating both link and token availability for each VC in each direction.

Model Engineering College

Blue Gene/L 12

This bit vector is and-ed with a bit vector of possible moves constructed from the

packet’s hint bits and VC. This defines the set of possible and available arbitration

requests. In addition, the sender provides 2 bits for each VC indicting one of four ranges

of available downstream tokens. Of all the possible and available dynamic direction/VC

pairs, the packet selects the one with the most available downstream tokens. Ties are

randomly broken. If no dynamic direction/VC combination is available, the packet will

request its bubble escape direction/VC pair (if available), and if that is also unavailable,

the packet makes no arbitration request. This is a somewhat simplified description since

bus availability must also be taken into account. In addition, when a packet reaches its

destination, the “direction” requested is simply the corresponding reception FIFO.

Second, since each receiver has multiple VC FIFOs (plus the bypass) an arbitration phase

is required to determine which of the requesting packets in the receiver wins the right to

request. If a high priority packet is requesting, it wins. Barring that, a modified “Serve the

Longest Queue” (SLQ) is used, based on 2 bit (4 ranges) FIFO Fullness indicators, i.e.,

the packet from the most full VC (as measured to within the 2 bits of granularity) wins.

However, this cannot always be used since doing so may completely block out a VC.

Therefore, a certain (programmable) fraction of the arbitration cycles are designated SLQ

cycles in which the above algorithm is used, while the remaining cycles select the winner

randomly. A packet on the bypass channel always receives the lowest priority (unless it is

a high priority packet). Third, the receivers and injection FIFOs present their requests to

the senders. Note that on a given cycle a receiver will present at most one request to the

senders. Thus each sender arbiter can operate independently. The sender gives highest

priority to token-ack or ack-only packets, if any. Barring that, the senders tend to favor

packets already in the network and use a similar modified SLQ algorithm in which there

are SLQ cycles and random cycles. In particular, a certain programmable fraction of

cycles (typically 1.0) give priority to packets already in the network (unless the only high

priority packet requesting is in an injection FIFO). On such cycles the modified SLQ

algorithm is used. Higher priority can be given to injection packets by lowering above in-

network priority fraction. On cycles in which injection packets receive priority (barring

in-network high priority packets), the modified SLQ algorithm is also used.

Model Engineering College

Blue Gene/L 13

Simulator Overview

Given the complexity and scale of the BG/L interconnection network, having an accurate

performance simulator was essential during the design phase of the project. Due to the

potential size of such a model, simulation speed was a significant concern and a proven

shared memory parallel simulation approach was selected. In particular, parallel

simulation on shared memory machines has been shown to be very effective in

simulating interconnection networks whereas success with message passing parallel

interconnection network simulators is harder to come by .We also recognized the

difficulties in developing an execution driven simulator for a system with up to 64K

processes, and therefore decided upon a simulator that would primarily be driven by

application pseudo-codes, in which message passing calls could be easily passed to the

simulator; such calls include the time since the last call (the execution burst time), the

destination and size of the message, etc. This pseudo-code included a subset of the MPI

point to point messaging calls as a workload driver for the simulator. We also extended

the IBM UTE trace capture utility that runs on IBM SP machines and were able to use

such traces as simulator inputs (for up to several hundreds of nodes). The basic unit of

simulation time is a network cycle, which is defined to be the time it takes to transfer one

byte. As BG/L is organized around 512 node (8x8x8) midplanes, the simulator partitions

its work on a midplane basis, i.e., all nodes on the same midplane are simulated by the

same processor (thread) and midplanes are assigned to threads in as even a manner as

possible.

Because different threads are concurrently executing, the local simulation clocks of the

threads need to be properly synchronized. To deal with this problem, we use a simple but

effective “conservative” parallel simulation protocol known as “YAWNS” .In particular,

we take advantage of the fact that the minimum transit time between midplanes is known

and is at least some constant w≥1 cycles. In this protocol, time “windows” of length w

are simulated in parallel by each of the threads. Consider an event that is executed during

Model Engineering College

Blue Gene/L 14

the window (starting at time t) on processor i that is destined to arrive on processor j in

the future; such an event represents the arrival of the first byte of a packet. Since the

minimum transit time is w, the arrival cannot occur during the current window,

represented by the interval [t, t+w-1]. Processor i simply puts a pointer to the event on an

i-to-j linked list. When each processor reaches the end of the window, it enters a barrier

synchronization. Upon leaving the barrier, each processor is sure that every other

processor has executed all events up to time t+w-1 and that all inter-processor events are

on the appropriate inter-processor linked lists. Processor j can therefore go through all its

i-to-j linked lists, remove events from them, and put the events on its own future event

list. Once this is done, the processors can simulate the next window [t+w, t+2w-1]. If

w=1, then this protocol requires a barrier synchronization every cycle, however, on

BG/L, the minimum inter-midplane delay will be approximately w=10 network cycles.

When a large number of BG/L nodes are being simulated, each processor will execute

many events during a window, i.e., between barriers, and thus the simulator should obtain

good speedups. The simulator runs on a 16-way IBM “nighthawk” SMP with 64 GB of

memory. The model of the torus hardware contains close to 100 resources per node

(links, VC token counters, busses, FIFOs, etc), so that a full 64K node system can be

thought of as a large queuing network with approximately 6 million resources. It

consumes a large amount of memory and runs slowly; a 32K node simulation of fully

loaded network advances at about 0.25 microseconds of BG/L time per second of wall

clock time. However, it obtains excellent speedup, typically more than 12 on 16 nodes,

and sometimes achieves superlinear speedup due to the private 8MB L3 caches on the

SMP and the smaller per node memory footprint of the parallel simulator. The model,

which was written before the VHDL, is thought to be a quite accurate representation of

the BG/L hardware, although a number of simplifications were made. For example, in

BG/L the arbitration is pipelined and occurs over several cycles. In the simulator, this is

modeled as a delay of several cycles followed by presentation of the arbitration request.

Because the simulator focuses on what happens once packets are inside the network, a

gross simplification was the assumption that the injection FIFOs were of infinite size, and

that packets are placed in these FIFOs as early as possible rather than as space frees up in

the FIFOs. This has little effect on network response time and throughput measurements

Model Engineering College

Blue Gene/L 15

during the middle of a run, but can affect the dynamics particularly near the end of runs.

The simulator also did not model the error recovery protocol, i.e., no link errors were

simulated and the ackonly packets that are occasionally sent if a link is idle for a long

time were not modeled. However, the arbitration algorithms and token flow control are

modeled to a high level of detail.

Sample Performance Studies

In this section, we present some examples of use of the simulator to study design trade-

offs in BG/L. The studies presented are illustrative and sometimes use assumptions and

corresponding parameters about the system that do not reflect the final BG/L design.

Response Time in Light Traffic: Figure 2 plots the response time for various 32K node

BG/L configurations when the workload driver generates packets for random destinations

and the packet generation rate is low enough so that the average link utilization is less

than one. This Figure compares static routing to dynamic routing with one or more

dynamic VCs and one or more busses (paths) connecting receivers to senders. Simpler,

random, arbitration rules than SLQ and JSQ were used and the plot was generated early

in our studies when the target link bandwidth was 350 MB/sec. (The 350 MB/sec.

assumption essentially only affects results by a rescaling of the y-axis.) The figure shows

the clear benefit of dynamic over static routing. It also shows that there is little benefit in

increasing the number of dynamic VCs unless the number of paths is also increased.

Finally, it shows only marginal benefit in going from a 2 VC/2 path to 4 VC/4 path

configuration.

All-to-All: MPI_AlltoAll is an important MPI collective communications operation in

which every node sends a different message to every other node. plots the average link

utilization during the communications pattern implied by this collective. The Figure again

shows the benefit of dynamic over static routing. For this pattern, there is marginal

benefit in going from 1 to 2 dynamic VCs, but what is important is that the average link

Model Engineering College

Blue Gene/L 16

utilization is, at approximately 98%, close to the theoretical peak. This peak includes the

overhead for the token-ack packets, the packet headers and the 4 byte CRC trailers. A

reasonable assumption for the BG/L software is that each packet carries 240 bytes of

payload, and with this assumption the plot shows that the payload occupies 87% of the

links. Not shown in these plots is the fact that a very low percentage of the traffic flows

on the escape bubble VC and that statistics collected during the run showed that few of

the VC buffers are full. Three-dimensional FFT algorithms often require the equivalent of

an All-to-All, but on a subset of the nodes consisting of either a plane or a line in the

torus. Simulations of these communications patterns also resulted in near-peak

performance. The above simulation was for a symmetric BG/L. However, the situation is

not so optimistic for an asymmetric BG/L. For example, the 64K node system will be a

64x32x32 node torus. In such a system, the average number of hops in the x dimension is

twice that of the y and z dimensions, so that even if every x link is 100% busy, the y and

z links can be at most 50% busy. Thus, the peak link utilization is at most 66.7%. Since

12% of that is overhead, the best possible payload utilization is 59%. However, we

expect significantly more blocking and throughput degradation due to full VC buffers.

Indeed a simulation of the All-to-All communications pattern on a 32x16x16 torus

resulted in an average link utilization of 49% and payload utilization of 44%,

corresponding to 74% of the peak. This figure is probably somewhat pessimistic due to

the simulator artifact of infinite-sized injection FIFOs, which distorts the effects at the

end of the simulation. We also believe that appropriate injection flow control software

algorithms can reduce VC buffer blocking and achieve closer to peak performance.

Nevertheless, the above study points out a disadvantage of the torus architecture for

asymmetric machines in which the application cannot be easily mapped so as to result in

a close proximity communications pattern.

Virtual Channel Architecture: Here we consider several different deadlock prevention

escape VC architectures. The first proposed has two escape VCs per direction. Each

dimension has a “dateline.” Before crossing the dateline, the escape VC is the lower

numbered of the pair, but after crossing the dateline the escape VC is the higher

numbered of the pair. In addition we consider dimension ordered or direction ordered

Model Engineering College

Blue Gene/L 17

escape VCs. In dimension ordered, the escape VC is x first, then y if no x hops remain,

then z if no x or y hops remain. In direction ordered, the escape VCs are ordered by x+,

y+, z+, x-, y-, z- (other orderings are possible). We also consider dimension and direction

ordered escape VCs for the bubble escape. We again use the hot region workload where

the hot region starts at coordinates (0,0,0) and the datelines are set at the maximum

coordinate value in each dimension. plots the throughput as a function of time. The

dimension ordered dateline pair shows particularly poor and wild behavior, with a steep

decline in throughput, followed by a rise and then another steep decline. plots the

throughput on a per VC basis for a longer period of time. The decreasing and increasing

bandwidth waves persist even over this much longer time scale. An appreciable fraction

of the traffic flows on the escape VCs, indicating a high level of VC buffer occupation.

What causes these waves? First, the placement of the dateline causes an asymmetry in the

torus, whereas the bubble escape is perfectly symmetrical in each dimension. Since there

are two escape VCs, we thought it likely that packets at the head of the VC buffers could

be waiting for one of the escape VCs but tokens are returned for the other escape VC. In

such a situation, no packets could move even though the link may be available and

downstream buffer space is available. To confirm this, the simulator was instrumented to

collect additional statistics. In particular, we measured the fraction of time a token-ack is

returned that frees at least one previously blocked packet to move. plots this unblocking

probability along with the throughput as a function of time. The unblocking probability is

relatively constant for the bubble (after the initial decline), but varies directly with the

throughput for the dateline pair; when the unblocking probability increases, the

throughput increases and vice-versa.

Performance Verification: To verify the VHDL logic of the torus, we built a multi-node

verification testbench. This testbench, which runs on the Cadence VHDL simulator,

consisted of workload drivers that inject packets into the injection FIFOs, links between

nodes on which bits could be corrupted to test the error recovery protocol, and packet

checkers that pull packets out of the reception FIFOs and check them for a variety of

conditions, such as whether the packet arrived at the correct destination and whether its

contents were received correctly. The workload drivers could be flexibly configured to

Model Engineering College

Blue Gene/L 18

simulate a number of different traffic patterns. As we neared the end of the logic

verification process, we wanted to ensure that network performance was as intended. One

of the benchmarks we tested was the All-to- All. The VHDL simulator was limited (by

memory) to a maximum of 64 nodes, so we simulated both a 4x4x4 torus and an 8x8x1

torus and compared the average link utilizations to those predicted by the performance

simulator. While these agreed to within 2%, the VHDL (corresponding to the actual

network hardware) indicated that VC buffers were fuller than that predicted by the

performance simulator. A close inspection of the arbitration logic revealed that a one

cycle gap in the arbitration pipeline of the receivers could occur when all possible

outgoing links/VCs were busy. This gap was sufficient to permit packets from the

injection FIFOs to sneak into the network, leading to fuller VCs than intended. A simple

fix to eliminate this possibility was implemented, and subsequent VHDL simulations

indicated greatly reduced levels of VC buffer occupation.

Model Engineering College

Blue Gene/L 19

Model Engineering College

Blue Gene/L 20

Application

 Machines like Blue Gene/L are designed to handle data-intensive applications like

content distribution, simulations, and modeling, webserving, data mining or business

intelligence.

Another most important application is to predict how chains of biochemical building

blocks described by DNA fold into proteins--massive molecules such as hemoglobin.

Most biological functions involve proteins and while a protein's chemical composition is

determined by a sequence of amino acids joined like links of a chain, a protein folds into

a highly complex, three-dimensional shape such as illustrated in the two figures below.

 Fig 1.

It is hypothesized that the shape of a protein is the principal determinant of its function.

Arbitrary strings of amino acids do not, in general, fold into a well-defined three-

dimensional structure, but evolution has selected out the proteins used in biological

processes for their ability to fold reproducibly (sometimes with assistance, sometimes

without) into a particular three-dimensional structure within a relatively short time. Some

diseases are actually caused by slight misfoldings of a particular protein. Understanding

the mechanisms that cause a string of amino acids to fold into a specific three-

dimensional structure is an outstanding scientific challenge. Appropriate use of large

scale biomolecular simulation to study protein folding is expected to shed significant

light into this process. Extensive collaborations with the biological research community

will be needed to find the best way of applying the unique computational resources

available to the Blue Gene project to advance our understanding of protein folding. The

level of performance provided by Blue Gene (sufficient to simulate the folding of a small

Model Engineering College

Blue Gene/L 21

protein in a year of running time) is expected to enable a tremendous increase in the scale

of simulations that can be carried out as compared with existing supercomputers.

The scientific community considers protein folding one of the most significant "grand

challenges" -- a fundamental problem in science or engineering that has broad economic

and scientific impact and whose solution can be advanced only by applying high-

performance computing technologies.

Proteins control all cellular processes in the human body. Comprising strings of amino

acids that are joined like links of a chain, a protein folds into a highly complex, three-

dimensional shape that determines its function. Any change in shape

dramatically alters the function of a protein, and even the slightest change in the folding

process can turn a desirable protein into a disease.

Better understanding of how proteins fold will give scientists and doctors better insight

into diseases and ways to combat them. Pharmaceutical companies could design high-

tech prescription drugs customized to the specific needs of individual people. And

doctors could respond more rapidly to changes in bacteria and viruses that cause them to

become drug-resistant.

The human genome is currently thought to contain approximately 40000 genes, which

code for a much larger number of proteins through alternative splicing and post-

translational modification, a molecular toolkit assembled to handle a huge diversity of

functions. An understanding of how proteins function is essential for understanding the

cell life cycle and metabolism, how cells send signals to their environment, and how cells

receive and process signals from their environment. An understanding of protein structure

and function can serve as a basis for innovation in new therapies, diagnostic devices, and

even industrial applications. When proteins fold into the wrong structure, the results can

be fatal, e.g., “mad cow” disease probably results from an autocatalyzed wrong fold in

the prion protein6 and cystic fibrosis is also connected with protein (mis)folding.

Model Engineering College

Blue Gene/L 22

Protein architecture. Protein architecture8 is based on three principles:

• The formation of a polymer chain .

• The folding of this chain into a compact function-enabling structure, or native

structure .

• Post-translational modification of the folded structure .

The protein chain (or peptide chain if short in length) is a heteropolymer built up from

alpha amino acid monomers, as shown in Figure 2. The sequence of amino acid residues

in the peptide chain is termed the primary structure of the protein. The 20 different

choices for each amino acid in the chain give the possibility of enormous diversity, even

for small proteins. For example, a peptide of 30 residues yields the astonishing number of

about 2030, or approximately 1039, possible unique sequences.

Fig 2

The protein folding problem.

There are two important facets to the protein folding problem: prediction of three-

dimensional structure from amino acid sequence, and understanding the mechanisms and

pathways whereby the three-dimensional structure forms within biologically relevant

timescales.

The prediction of structure from sequence data is the subject of an enormous amount of

research and a series of conferences that assess the state of the art in structure

prediction.9 While this area is extremely important, good progress in the area of

structural predictions has been made using only modest amounts of computational power.

The effort described in this paper is aimed at improving our understanding of the

mechanisms behind protein folding, rather than at structure prediction. Even though

Model Engineering College

Blue Gene/L 23

biologists have been most interested in structure prediction, there has been an increasing

recognition of the role that misfolding of proteins plays in certain disease processes,

notably Alzheimer's disease and mad cow disease.6 The section that follows describes

some of the fundamental reasons for interest in the process of protein folding.

Current view of folding mechanisms.

A simplistic but illustrative way of viewing protein folding is to note that the amino acid

R groups (see Figure 2, caption) fall into three main classes: (1) charged, (2) hydrophilic

(“water-loving”), and (3) hydrophobic (“water-hating”). In the simplest picture, the

folded state of the peptide chain is stabilized primarily (for a globular protein in water),

by the sequestration of much of the hydrophobic groups into the core of the protein—out

of contact with water, while the hydrophilic and charged groups remain in contact with

water. The stability can be described in terms of the Gibbs free-energy change G

 G = H – TS,

 where H is the enthalpy change and S is the entropy change. H is negative due to the

more favorable hydrophobic interactions in the folded state, but so is S because the

folded state is much more ordered and has lower entropy than the unfolded state. The

balance between the enthalpy and entropy terms is a delicate one, and the total free-

energy change is only of order 15 kilocalories per mole. Evidently the internal

hydrophobic/external hydrophilic packing requirement places strong constraints on the

amino acid sequence, as does the requirement that the native state be kinetically

accessible.

It is helpful to think of the physics of the folding process as a “free-energy funnel Since

the folding process is slow relative to motions at atomic scale, we can think of partially

folded configurations as having a quasi-equilibrium value of the free energy. The free

energy surface may be displayed as a function of some reduced dimensionality

representation of the system configuration in a given state of the protein.12 . The most

unfolded configurations are the most numerous, but have the highest free energy, and

Model Engineering College

Blue Gene/L 24

occur on the rim of the funnel. Going into the funnel represents a loss of number of

configurations (decrease of entropy), but a gradual decrease in free energy, until the

native state with very few configurations and the lowest free energy is reached at the

bottom of the funnel. The walls of the funnel contain only relatively shallow subsidiary

minima, which can trap the folding protein in non-native states, but only for a short time.

Now the evolution of the system as it folds can be described in terms of the funnel. The

system starts off in a physically probable state on the rim of the funnel, and then makes

transitions to a series of physically accessible states within the funnel, until the bottom of

the funnel is gradually approached.

Figure 3 illustrates folding. Here the unfolded peptide chain on the left already contains

some folded secondary structure, alpha helices (red), and a beta hairpin (blue). It is still a

long way from the compact native structure at right. The folding process in different

proteins spans an enormous dynamic range from approximately 20 microseconds to

approximately 1 second.

Fig 3.

The scientific knowledge derived from research on protein folding can potentially be

applied to a variety of related life sciences problems of great scientific and commercial

interest, including:

• Protein-drug interactions (docking)

• Enzyme catalysis (through use of hybrid quantum and classical methods)

• Refinement of protein structures created through other methods

Model Engineering College

Blue Gene/L 25

We shall also explore the use of Blue Gene in other scientific computing areas. We

expect that lessons learned from this project will apply to future high performance IBM

systems in a broader range of scientific and commercial applications.

Examples of those applications include the modeling of the aging and properties of

materials, and the modeling of turbulence. This technology opens the door to a number of

applications of great interest to civilian industry and business, like biology and other life

sciences. The future of US high-performance computing will benefit tremendously from

pursuing both of these paths in parallel.

 "One day, you're going to be able to walk into a doctor's office and have a

computer analyze a tissue sample, identify the pathogen that ails you, and then instantly

prescribe a treatment best suited to your specific illness and individual genetic makeup."

Consider the following three types of protein science studies that might employ large-

scale numerical simulation techniques:

• Structure prediction

• Folding pathway characterization

• Folding kinetics

Protein structure prediction can be carried out using a large number of techniques8 and,

as previously discussed, it is unnecessary to spend a “petaflop year” on the prediction of a

single protein structure. That said, there is some reason to believe that atomistic

simulation techniques may be useful in refining structures obtained by other methods.

Folding pathway characterization typically involves the study of thermodynamic

properties of a protein in quasi-equilibrium during the folding process. Mapping out the

free-energy “landscape” that the protein traverses as it samples conformations during the

folding process can give insights into the nature of intermediate states along the folding

pathway and into the “ruggedness” of the free-energy surface that is traversed during this

process. Because such studies involve computations of average values of selected

functions of the system's state, one has the choice of either averaging over time as the

system samples a large number of states (molecular dynamics) or averaging over

Model Engineering College

Blue Gene/L 26

configurations (Monte Carlo). Aggressive sampling techniques that may improve the

computational efficiency with which such averages can be computed can be used to good

effect in these studies. Simulation techniques to compute these averages over the

appropriate thermodynamic ensembles are available.

Simulation studies of folding kinetics are aimed at understanding the rates at which the

protein makes transitions between various conformations. In this case, the calculation of

thermodynamic averages is not enough; the actual dynamics of the system must be

simulated with sufficient accuracy to allow estimation of rates. Of course, a large number

of transition events must be simulated in order to derive rate estimates with reasonable

statistical uncertainties. Another challenge faced in such simulations is that the simulation

techniques used to reproduce thermodynamic averages in ensembles other than constant

particle number, volume, and energy (NVE) are, strictly speaking, inappropriate for

studies of folding kinetics.

Challenges for computational modeling

The current expectation is that it will be sufficient to use classical techniques, such as

molecular dynamics (MD), to model proteins in the Blue Gene project. This is because

many aspects of the protein folding process do not involve the making and breaking of

covalent bonds. While disulfide bonds play a role in many protein structures, their

formation will not be addressed by classical atomistic simulations. In classical atomistic

approaches, a model for the interatomic interactions is used. This is known as a potential,

or force field, since the forces on all the particles can be computed from it, if one has its

mathematical expression and all its parameters. The MD approach is to compute all the

forces on all the atoms of the computer model of the protein and solvent, then use that

force to compute the new positions of all the atoms a very short time later. By doing this

repeatedly, a trajectory of the atoms of the system can be traced out, producing atomic

coordinates as a function of time.

Model Engineering College

Blue Gene/L 27

system samples a large number of states (molecular dynamics) or averaging over

configurations (Monte Carlo). Aggressive sampling techniques that may improve the

computational efficiency with which such averages can be computed can be used to good

effect in these studies. Simulation techniques to compute these averages over the

appropriate thermodynamic ensembles are available.

Simulation studies of folding kinetics are aimed at understanding the rates at which the

protein makes transitions between various conformations. In this case, the calculation of

thermodynamic averages is not enough; the actual dynamics of the system must be

simulated with sufficient accuracy to allow estimation of rates. Of course, a large number

of transition events must be simulated in order to derive rate estimates with reasonable

statistical uncertainties. Another challenge faced in such simulations is that the simulation

techniques used to reproduce thermodynamic averages in ensembles other than constant

particle number, volume, and energy (NVE) are, strictly speaking, inappropriate for

studies of folding kinetics.

Conclusion
 "Blue Gene" is an ambitious project to expand the horizons of supercomputing, with the

ultimate goal of creating a system that can perform one quadrillion calculations per

second, or one petaflop. IBM is hoping that expanded performance, more efficient data

access for processors, and lower operational costs will give Blue Gene a big leg up in the

world of high-performance computing.

The Blue Gene project represents a unique opportunity to explore novel research into a

number of areas, including machine architecture, programming models, algorithmic

techniques, and biomolecular simulation science. Every aspect of this highly adventurous

project involves significant challenges. Carrying out our planned program will require a

collaborative effort across many disciplines and the involvement of the worldwide

scientific and technical community. In particular, the scientific program will engage with

the life sciences community in order to make best use of this unique computational

resource.

Model Engineering College

Blue Gene/L 28

 References

• www.research.ibm.com/bluegene
• www.research.ibm/journals/sj/402/allen.html

• www.bio-itworld.com/news/071503-report2898.html

• www.linuxdevices.com

• Adiga et al., (2002). An Overview of the BG/L Supercomputer. Proceedings of

the 2002 Supercomputing Conference www.scconference. org/sc2002/

• Benveniste, C. and Heidelberger, P. (1995). Parallel Simulation of the IBM

Interconnection Network. In Proceedings of the 1995 Winter Simulation

Conference. IEEE Computer Society Press, 584 – 589.

• Dally, W.J. (1992). Virtual-Channel Flow Control. IEEE Transactions on Parallel

and Distributed Systems 3, No. 2, 194-205.

• Puente, V., Beivide, R., Gregorio, J.A., Prellezo, J.M., Duato, J., and Izu, C.

(1999). Adaptive Bubble Router: A Design to Improve Performance in Torus

Networks. In Proceedings of the 1999 International Conference on Parallel

Processing, 58-67.

• Dally, W.J. and Seitz, C.L. (1987). Deadlock-Free Message Routing in

Multiprocessor Interconnection Networks. IEEE Transactions on Computers C-

36, No. 5, 547-553.

• Dickens, P.M., Heidelberger, P., and Nicol, D.M. (1996). Parallelized Direct

Execution Simulation of Message-Passing Parallel Programs. IEEE Transactions

on Parallel and Distributed Systems 7, No. 10, 1090-1105

• IBM Research Report on torus interconnection network by M. Blumrich, D.

Chen, P. Coteus, A. Gara, M. Giampapa and P. Heidelberger.

Model Engineering College

http://www.linuxdevices.com/
http://www.scconference/

	Table of Contents
	
	
	 ACKNOWLEDGEMENT
	 Abstract
	 Blue Gene/L
	Introduction
	The performance spectrum
	
	
	
	
	
	Design and Analysis of the Blue Gene/L Torus Interconnection Network
	Torus Network
	Simulator Overview

	Sample Performance Studies

	Application
	The protein folding problem.
	Current view of folding mechanisms.

	 References
	 www.research.ibm.com/bluegene

