

Table of Contents

Click on the topic to go to that section

- The Kinetic Molecular Theory
- Properties of Gases
- Measuring Pressure
- Gas Laws
- Ideal Gas Law

Gas Density

- Partial Pressure
- Graham's Law of Effusion
- Real versus Ideal Gases

Return to
Table of Contents

Slide 5 / 140

The Kinetic-Molecular Theory

This revolutionary theory was developed by Ludwig Boltzmann in the late 1800's. It was based on the idea that matter is made up of atoms and molecules too small to be seen...
ideas that were rejected by most scientists until the early 1900's...only a 100 years ago.

This theory connects the microscopic world of atoms and molecules with the macroscopic world around us and helps us greatly understand the behavior of gases.

Kinetic Molecular Theory

In order to understand the behavior of gases, we work with some key premises.

PREMISE 1
Gas molecules are in constant motion and therefore possess kinetic energy. The faster the speed, the higher the kinetic energy.

Low Temperature

PREMISE 2
The average kinetic energy of a sample of a gas is proportional to the temperature.

The higher the temperature, the higher the average kinetic energy.

Kinetic Molecular Theory

Notice that at any given temperature, there is a wide range of speeds yet the average speed is clearly greater at the higher temperatures.

Slide 9 / 140

Temperature

There are 3 scales used for measuring temperature.

*Absolute zero is the lowest theoretical temperature.

Slide 11 / 140

At the equator of Mars, the temperature can be quite balmly during the summer, reaching about 70 Fahrenheit or $\mathbf{2 0}$ Celsius. What would this be in Kelvin?

```
OA 253 K
OB -253 K
OC 293 K
OD -293 K
OE 32K
```


Slide 10 / 140

Temperature

It is important that we can convert between the two scientific units used to measure temperature (K and C)
$C+273=K \quad$ or $\quad K-273=C$

So... a temperature of $16 \mathrm{C}=289 \mathrm{~K}$

Slide 11 (Answer) / 140

1 At the equator of Mars, the temperature can be quite balmly during the summer. reachina about 70 Fahrenheit

Kelvin?

○A 253

C

2 Standard temperature is considered 273 K . What is this temperature in Celsius?

OA 273 C
OB $0 C$
○ C - 273 C
OD 32 C
OE 546 C

2 Standard temperature is considered 273 K . What is this temperature in Celsius?

Slide 13 (Answer) / 140

3 Water freezes at about 0 degrees Celsius. At what absolute temperature does water freeze?

273 K

Slide 14 / 140

4 The average temperature of the universe is thought to be roughly -270.5 Celsius. What is that temperature in Kelvin?

4 The average temperature of the universe is thought to be roughly -270.5 Celsius. What is that temperature in Kelvin?

5 Room temperature is about 20 degrees Celsius. What temperature is that in Kelvin?	5 Room temp What temp	about 20 degrees Celsius. hat in Kelvin? $293 \text { K }$
Slide 16 / 140	Slide 17 / 140	
Kinetic Molecular Theory PREMISE 3 Collisions between gas molecules are perfectly elastic, meaning that there is not net loss in kinetic energy over the course of the collision.	Ki	lecular Theory PREMISE 4 Because of their extremely low density, we assume that the gas molecules occupy a negligible amount of space in a container. Therefore the volume of the container is essentially the volume occupied by the gas.
Slide 18 / 140	Slide 19 / 140	
Kinetic Molecular Theory	Properties of Gases	
Premise Summary Statement		
1Gas molecules are in constant motion and therefore possess kinetic energy		
2 Average kinetic energy of gases is proportional to the		
3 Collisions between gas molecules are elastic		
4 Gases occupy a negligible amount of space in the container		
	Return to Table of Contents	

Characteristics of Gases

The gaseous state is characterized by extremely weak interactions between the atoms, ions, and molecules.

Gases (essentially no bonds)

Solids (strong bonds) Liquids (weak bonds)

Characteristics of Gases

Since there are very few attractions between gas molecules....
Gas molecules are free to move and willexpand to fill their containers

iquids do not expand to fit their containers

Slide 22 / 140

Characteristics of Gases

Since there are very few attractions between gas molecules...

A small number of molecules can occupy a large volume resulting in very low densities

Physical State of Water	Density (g/mL)
Ice	$0.91 \mathrm{~g} / \mathrm{mL}$
Liquid	$0.98 \mathrm{~g} / \mathrm{mL}$
Vapor (gas)	$0.00052 \mathrm{~g} / \mathrm{mL}$

Note the gas is over 1800 times less dense than the liquid!

Slide 24 / 140

Slide 24 (Answer) / 140

6 Which of the following would NOT describe the
gaseous state of matter? gaseous state of matter?

A High compressibility
B Strong intermolecular attractions
OC Low Density
OD Will expand to fill container
OE Particles are in motion

Characteristics of Gases

Since gases have such low densities, meaning very few molecules in a very large space, they can be compressed into a much smaller volume!

A turbocharger compresses the air before it enters the car or jet engine.
Slide 24 / 140

Pressure

A key characteristic of gases is their pressure; how much force they exert on their container.

Pressure is the amount of force applied per unit area.
The magnitude of pressure is given by:

$$
\text { Pressure }=\frac{\text { Force }}{\text { Area }}
$$

Pressure

The SI units of pressure can be found from this formula:

$$
P=\frac{F}{A}
$$

Since Force is measured in Newtons and Area is measured in square meters (m^{2});
the SI units of Pressure are Newtons/meter ${ }^{2}\left(\mathrm{~N} / \mathrm{m}^{2}\right)$
$1 \mathrm{~N} / \mathrm{m}^{2}$ is also called a Pascal (Pa)

Slide 31 / 140

Pressure and Forces

Slide 33 / 140

Slide 34 / 140

Pressure

The pressure exerted by any fluid, including gases, is always perpendicular to any surface. As there is no direction associated with pressure, it is a scalar quantity.

If you change the orientation of the element applying the force, the pressure will stay the same.

Atmospheric Pressure

Atmospheric pressure is the weight of air per unit area.

A 1.0 m column of air extending to outer space has a weight of about $101,000 \mathrm{~N}$, or 101 kN .

As a result, it exerts a pressure of about $101,000 \mathrm{~Pa}$, or 101 kPa .

The Barometer

The barometer is a device for measuring atmospheric pressure at a particular time and place.

A tube filled with mercury is turned upside down in a container of mercury.

The mercury falls until the net force on it is zero.

9 Which barometer indicates higher air pressure?

Slide 36 (Answer) / 140

Slide 38 / 140
Slide 39 / 140

The Barometer

As weather systems move through, the mercury rises and falls as the local atmospheric pressure changes.

However, standard atmospheric pressure of 1 atm or 101 kPa supports a column of Hg which is 760 mm tall.

So another unit of pressure is mm of Hg (also called a torr).
$1 \mathrm{~atm}=760 \mathrm{~mm} \mathrm{Hg}=760$ torr

The Barometer and Changing Weather

The Barometer in Aviation

Aircraft altimeters measures the altitude of the aircraft. As the air pressure will be decreased at altitudes above sea level, the actual reading of the instrument will be dependent upon its location.

This pressure is then converted to an equivalent sea-level pressure for purposes of reporting and adjusting altitude.

Since aircraft may fly between regions of varying normalized atmospheric pressure (due to the presence of weather systems), pilots are constantly getting updates on the barometer as they fly.

Standard Pressure

Normal atmospheric pressure at sea level is referred to as standard pressure.

It is equal to all of the values below....

$$
1.00 \mathrm{~atm}=1.01 \mathrm{bar}=760 \mathrm{~mm} \mathrm{Hg}=760 \text { torr }=101 \mathrm{kPa}
$$

Slide 42 / 140

Units of Pressure: Question

The storm pressure of superstorm Sandy was recorded as 940 millibars or 0.940 bars.
Convert this to the unit atm, mm Hg , and torr.
move for answer

Slide 43 (Answer) / 140

Slide 44 / 140

10 An average tornado has a pressure of around 639 torr. Which of tha fallaninn wi...in ha ami.ivalant?

11 What is the pressure and temperature (in K) at standard conditions (STP)?

OA 1 atm, 273 K
OB 273 atm, 1 K
OC $1 \mathrm{~mm} \mathrm{Hg}, 298 \mathrm{~K}$
OD 1.01 bar, 298 K
OE $1 \mathrm{~atm}, 0 \mathrm{~K}$

Slide 47 (Answer) / 140

Slide 48 / 140

12 What is the pressure of the methane and water vapor

Slide 53 / 140

Slide 54 / 140

Sorryy this element
 requires Flesho which
 ls గot currently
 supported lim PDFs.

Please refer to the origimal
Notebook fille

13 If the volume of a gas is decreased, the pressure will also decrease.

OTrue
OFalse

Slide 58 / 140

Slide 58 (Answer) / 140

14 If the temperature of a gas increases, the volume will also increase.

OTrue
OFalse

14 If the temperature of a gas increases, the volume will also incr

15 Which of the following correctly expresses the relationship between temperature and volume (Charle's Law)?

O $T \propto \frac{1}{V}$
$O_{B} T \propto V$

Slide 60 / 140

Sorvy this element requires Flasho which
is not currently supported in PDFs.

Please refier to the oflginal Notebook fille

Slide 62 / 140

Volume and Moles

The volume of a gas at constant temperature and pressure is directly proportional to the number of moles of the gas. Simply put, the more molecules that are present, the more room they will need to move around if the pressure is to stay the same.

4 mol of gas

$\mathrm{V}=4 \mathrm{~L}$
8 mol of gas

Volume and Moles

The direct relationship between the volume of a gas and the moles of a gas is called Avogadro's Law

moles

Pressure and Temperature

The pressure of a gas kept at a constant temperature and volume will increase proportionally with the temperature. In essence, the faster the molecules move, the greater the force of each collision, which increases the pressure.

$\mathrm{P}=32 \mathrm{~mm} \mathrm{Hg}$
$\mathrm{T}=200 \mathrm{~K}$
less energetic collisions

$\mathrm{P}=64 \mathrm{~mm} \mathrm{Hg}$
$\mathrm{T}=400 \mathrm{~K}$
more energetic collisions

Slide 66 / 140

Application

In car racing, the mechanics have to be very careful in adjusting the pressure of the car tires. Using the concept of friction and Gay-Lussac's law, what do you think happens to the air pressure in a car tire over the course of a long car race?

Slide 68 / 140

Slide 69 / 140

Calculating Changes in Gas Variables

Quite often, one or more of the variables we use to describe a gas change as a result of a chemical reaction or due to some environmental change. We can use the relationships developed to accomplish this.

Pressure and Temperature

The direct relationship between the pressure and the Kelvin temperature of a gas is known as Gay-Lussac's Law.

Plot of P vs T

Calculating Changes in Gas Variables

QUESTION: A 13 mL balloon at 34 C is heated to 78 C at a constant pressure. Assuming no molecules escaped or entered the balloon, what is the new volume of the balloon?

PROCEDURE

1. Identify quantities given and determine what is changing and by how much.
2. Using your knowledge of gas laws, predict what impact this change will have on the other variable.
3. Multiply the original variable by this change.

Calculating Changes in Gas Variables

QUESTION: A 13 mL balloon at 34 C is heated to 78 C at a constant pressure. Assuming no molecules escaped or entered the balloon, what is the new volume of the balloon?

1. Identify quantities given and determine what is changing and by how much.

$$
\begin{aligned}
& \mathrm{V}=13 \mathrm{~mL} \\
& \mathrm{~T}_{\mathrm{i}}=34 \mathrm{C}(34+273)=307 \mathrm{~K} \\
& \mathrm{~T}_{\mathrm{f}}=78 \mathrm{C}(78+273)=351 \mathrm{~K}
\end{aligned}
$$

Temperature is increasing by a factor of $351 / 307$
2. Using gas laws, predict what impact this change will have on the other variable.

Since the relationship between V and T is direct, the V will also increase by a factor of $351 / 307$

Slide 72 / 140

Calculating Changes in Gas Variables

QUESTION: A rigid gas canister has a volume of 18.5 L at 13 C and the pressure gauge reads 45 atm . To what temperature would the gas need to be decreased to cause the pressure to read only 30 atm ?
move for answer

Calculating Changes in Gas Variables

QUESTION: A 13 mL balloon at 34 C is heated to 78 C at a constant pressure. Assuming no molecules escaped or entered the balloon, what is the new volume of the balloon?
3. Multiply the original variable by the change

$$
13 \mathrm{~mL} \times \frac{351 \mathrm{~K}}{307 \mathrm{~K}}=14.9 \mathrm{~mL}
$$

Slide 73 / 140

16 The volume of a gas at a pressure of 400 mm Hg doubles, what will be the new pressure if the process occurred isothermally in a closed container?

○A 400 mm Hg
OB 600 mm Hg
OC 800 mm Hg
OD 300 mm Hg
OE 200 mm Hg

Slide 73 (Answer) / 140

Slide 74 / 140

16 The volume of a gas at a pressure of 400 mm Hg doubles, wb
process o
container
OA 400 m

○C 8000°
OD 300 m
OE 200 m
E

17 A 6.0 liter volume of gas is at a temperature of 200 K . The temperature of the aas is reduced to 100 K while h fixed. What

18 A 6.0 liter volume of gas is at a pressure of 21 kPa . The volume of gas is reduced to 2.0 L while holding its quantity and temperature fixed. What is the new pressure of the gas?

Slide 75 (Answer) / 140

18 A 6.0 liter volume of gas is at a pressure of 21 kPa . The volume of aas is reduced to 2.0 L while holding its quantity - ow pressure o

63 kPa
3L

Slide 76 / 140

19 A gas is at a temperature of 200 K and a pressure of 0.80 atm . What must be the new temperature if the pressure of the gas was found to be 1.6 atm after heating. The quantity and volume of the gas were fixed.

Slide 76 (Answer) / 140

19 A gas is at a temperature of 200 K and a pressure of 0.80 atm. Wr pressure of heating. Th fixed. 400 K

Slide 77 / 140

20 Bear mace can be sprayed to deter a bear attack! The pressure of the gas in the rigid canister is 1900 torr at 30 C . If there were originally 10 moles of gas in the canister before using and 6.8 moles after using, what must be the new pressure in the canister at 30 C ? (Hint: Think about what the relationship would be between pressure and moles)

OA 2794 torr
OB 1896.2 torr
OC 1534 torr
OD 1292 torr

OE The pressure would not be affected

Ideal Gas Law

The value of the Ideal Gas Constant (R) depends on the units chosen for P and V .

Units	Numerical value
$\mathrm{L}-\mathrm{atm} / \mathrm{mol}-\mathrm{K}$	0.08206
$\mathrm{~J} / \mathrm{mol}-\mathrm{K}$	8.314
$\mathrm{cal} / \mathrm{mol}-\mathrm{K}$	1.987
$\mathrm{~m} 3-\mathrm{Pa} / \mathrm{mol}-\mathrm{K}$	8.314
$\mathrm{~L}-\mathrm{torr} / \mathrm{mol}-\mathrm{K}$	62.36

* SI units

Working with the Ideal Gas Law

Any variable within the Ideal Gas Law can be solved for so long the other three are given.

Question: What is the temperature of 32 grams of N_{2} gas that occupies 200 mL at a pressure of 450 mm Hg .

PROCEDURE

1. Write down known variables. Make sure V is written in liters and P in atmospheres and convert grams to moles.
2. Rearrange the Ideal Gas Law ($\mathrm{PV}=\mathrm{nRT}$) to solve for the unknown variable.
3. Put in numbers and solve.

Slide 84 / 140

Working with the Ideal Gas Law

Question: What is the temperature of 32 grams of N_{2} gas that occupies 200 mL at a pressure of 450 mm Hg .

Write down known variables. Make sure V is in Liters, P in atm, and grams in moles

$$
V=200 \mathrm{~mL}=2 \mathrm{~L} \quad \mathrm{P}=450 \mathrm{~mm} \mathrm{Hg}=0.59 \mathrm{~atm}
$$

$$
32 \text { grams of } \mathrm{N}_{2}=1.14 \text { moles } \mathrm{N}_{2}
$$

Rearrange the Ideal Gas Law to solve for unknown variable

$$
P V=n R T \quad \text {--> } \quad T=P V / n R
$$

Slide 86 / 140

22 A sample of a gas occupies 7.5L at 0.975atm and at $28^{\circ} \mathrm{C}$. The number of moles present in the gas is ?

Slide 85 / 140

Working with the Ideal Gas Law

Question: What is the temperature of 32 grams of N_{2} gas that occupies 200 mL at a pressure of 450 mm Hg .

Input numbers and solve

$$
\begin{gathered}
\mathrm{T}=\mathrm{PV} / \mathrm{nR} \\
\mathrm{~T}=\frac{0.59 \mathrm{~atm} \times 0.20 \mathrm{~L}}{1.14 \mathrm{moles}_{\mathrm{x}} 0.0821 \mathrm{~L}^{*} \mathrm{~atm} / \mathrm{mol} * \mathrm{~K}} \\
\mathrm{~T}=1.26 \mathrm{~K} \text { (wow, that's cold!!!) }
\end{gathered}
$$

Slide 86 (Answer) / 140

22 A sample of a gas occupies 7.5 L at 0.975 atm and at $28^{\circ} \mathrm{C}$. The number of moles present in the gas is

23 The pressure of 1.55 mols of a gas is \qquad if it has a volume of 3.2 L at $27^{\circ} \mathrm{C}$.

Slide 88 / 140

Gases and Chemical Reactions

The number of moles of gas molecules often change during a chemical reaction.
$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g})-->3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{CO}_{2}(\mathrm{~g})$

6 moles $\quad 7$ moles

This change in moles will cause a proportional change in volume and pressure.
The volume would increase by $7 / 6$ (direct relationship) The pressure would also increase by 7/6(direct relationship)

Slide 90 / 140

24 The below reaction occurs at constant temperature and volume. The initial pressure was 110 kPa ; what would the final pressure be after the reaction?

$$
\mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g}) \# \quad \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}(\mathrm{~g})
$$

23 The pressure of 1.55 mols of a gas is \qquad if it has a volv.
11.9 atm

Slide 89 / 140

Gases and Chemical Reactions

Example: A reaction occurs in a flexible container with an initial volume of 12 L . What is the new volume after the reaction below goes to completion?

$$
\mathrm{PCl}_{5}(\mathrm{~g}) \text {--> } \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

move for answer

Slide 90 (Answer) / 140

24 The below reaction occurs at constant temperature and volume. The initial nroccura mae 110 kDa : what would the fi

55 kPa

25 This reaction occurs at constant pressure and temperature. The initial volume was 2.8L; what would the final volume be?
$\mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g}) \# \quad \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}(\mathrm{~g})$

25 This reaction occurs at constant pressure and
 would the'

Slide 93 / 140

26 What volume does one mole of gas occupy at 1 atm and 0 C ?

Slide 93 (Answer) / 140

26 What volume does one mole of gas occupy at 1 atm and 0 C ?

Slide 94 / 140

Molar Volume at STP

We learned earlier this year that one mole of gas has a volume of 22.4 L at STP. Now we can see why.
$P V=n R T$
$V=\frac{n R T}{P}$
$V=\underline{(1.00 \mathrm{~mol})(0.0821 \mathrm{~L}-\mathrm{atm} / \mathrm{mol}-\mathrm{K})(273 \mathrm{~K})}$
1.00 atm
$\mathbf{V}=\mathbf{2 2 . 4} \mathrm{L}$ For one mole of gas at STP.

Gas Density	Densities of Gases Density is the ratio of mass to volume. $\quad D=\frac{m}{V}$ As we just learned: 1 mole of any gas occupies 22.4 L @ STP. However, each gas has a different mass and therefore a different density. Note: The density is directly proportional to the molar mass of the gas
Slide 97 / 140	Slide 97 (Answer) / 140
27 The density of oxygen gas is $1.430 \mathrm{~g} / \mathrm{L}$ @STP. What would you expect the density of Argon gas to be at the same conditions?	27 The density of oxygen gas is $1.430 \mathrm{~g} / \mathrm{L} @ S T P$. What would you expent tha damnith af nannomen he at the same cor $\grave{0}$ 3 0 \vdots 4 $1.79 \mathrm{~g} / \mathrm{L}$
Slide 98 / 140	Slide 98 (Answer) / 140
28 Which of the following gases would have the smallest density @STP? A Kr B N_{2} C $\mathrm{C}_{3} \mathrm{H}_{8}$ D CCl_{4} E CH4	28 Which of the following gases would have the smallest densit. ñomn A Kr N_{2} $\mathrm{C}_{3} \mathrm{H}_{8}$ D CCl 4 E E CH_{4}

Slide 100 (Answer) / 140

29 What is the densitv (in a/L) of H , aas at 1.4 atm and 300 K ?

Slide 101 / 140

${ }^{30}$ What is the density of oxygen gas at the top of Mt. Everest at a pressure of 600 mm Hg and a temperature of -18 C ?

Slide 101 (Answer) / 140

30 What is the density of oxygen gas at the top of Mt. Everest at a pressure of $\mathbf{6 0 0} \mathbf{~ m m ~ H a ~ a n d ~ a ~}$ temperature
$1.21 \mathrm{~g} / \mathrm{L}$

31 What is the density (in g/L) of N_{2} gas at 1.6 atm and 320 K ?

Water Vapor Pressure Chart		
Temperature Pressure Pressure $\left({ }^{\circ} \mathrm{C}\right) \quad(\mathrm{mm} \mathrm{Hg}) \quad$ (mbar)		
0	4.58	6.11
5	6.54	8.72
10	9.21	12.28
12	10.52	14.03
14	11.99	15.99
16	13.63	18.17
17	14.53	19.37
18	15.48	20.64
19	16.48	21.97
20	17.54	23.38
21	18.65	24.86
22	19.83	26.44
23	21.07	28.09
24	22.38	29.84
25	23.76	31.68

$35 \mathrm{~N}_{2}$ gas is collected over water $\left(\mathrm{H}_{2} \mathrm{O}\right)$. The total pressure of the gas is $1 \mathrm{~atm}, 760 \mathrm{~mm} \mathrm{Hg}$. Water vapor ($\mathrm{H}_{2} \mathrm{O}$ gas) has a partial pressure of 25 mm Hg at that temperature. What is the partial pressure of the \mathbf{N}_{2} component of the gas?

Slide 112 (Answer) / 140

$35 \mathrm{~N}_{2}$ gas is collected over water ($\mathrm{H}_{2} \mathrm{O}$). The total pressure of the vapor $\left(\mathrm{H}_{2} \mathrm{O}\right.$ at that temp pressure of

Slide 113 / 140

$36 \mathrm{O}_{2}$ gas is collected over water ($\mathrm{H}_{2} \mathrm{O}$). The total pressure of the gas is $1 \mathrm{~atm}, 760 \mathrm{~mm} \mathrm{Hg}$. Water vapor ($\mathrm{H}_{2} \mathrm{O}$ gas) has a partial pressure of 35 torr mm Hg at that temperature. What is the partial pressure of the O_{2} component of the gas?

Slide 113 (Answer) / 140

$36 \mathrm{O}_{2}$ gas is collected over water $\left(\mathrm{H}_{2} \mathrm{O}\right)$. The total
 vapor $\left(\mathrm{H}_{2} \mathrm{C}\right.$
mm Hg at
pressure

The partial pressure of a gas in a mixture is directly

Dalton's Law of Partial Pressures

 proportional to the number of moles of that gas.$$
\frac{\text { moles gas } A}{\text { moles gas total }}=\frac{P_{A}}{P_{\text {tot }}}
$$

Dalton's Law of Partial Pressures

If a gas mixture were made up of 3 moles of N_{2} and 1 mole of O_{2}.

The composition of the mixture would be...
$3 \mathrm{~mol} \mathrm{~N}_{2}: 1 \mathrm{~mol} \mathrm{O}_{2}$
$75 \% \mathrm{~N}_{2}$ and $25 \% \mathrm{O}_{2}$.

If the total pressure of the gas mixture was 1.0 atm , then the partial pressures would be...
$1.0 \mathrm{~atm} \times \frac{3 \mathrm{~mol} \mathrm{~N}_{2}}{4 \mathrm{~mol} \mathrm{tat}^{2}}=0.75 \mathrm{~atm} \mathrm{~N} \quad 1.0 \mathrm{~atm} \times \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{\mathrm{~mol}_{2}}=0.25 \mathrm{~atm} \mathrm{O} \mathrm{O}_{2}$ 4 mol tot
$4 \overline{\mathrm{~mol} \text { tot }}$

37 A gas mixture is made up of 2 moles of H_{2} and 6 moles of N_{2}. It has a total pressure of 1.6 atm . What is the partial pressure of H_{2} ?

Slide 116 (Answer) / 140

37 A gas mixture is made up of 2 moles of H_{2} and 6 moles of N_{2}. It hac a total nrescure of 16 atm . What is the partia

Slide 117 (Answer) / 140

Slide 118 / 140

38 What is the partial pressure of oxygen gas in the mixture below assuming the total pressure in the container is 670 mm Hg ?

Graham's Law of Effusion

Graham's Law of Effusion

Effusion is the escape of gas molecules through a tiny hole into an evacuated space.

The two balloons are filled to the same volume

The difference in the rates of effusion for helium and nitrogen (N_{2} is more massive than H_{e}) explains why helium balloons deflate faster.

Graham's Law of Effusion

$$
\left(\frac{\mathrm{V} 1}{\mathrm{~V} 2}\right)^{2}=\frac{\mathrm{M} 2}{\mathrm{M} 1}
$$

This equation illustrates Graham's Law of Effusion.
The rates at which two gases will effuse is inversely proportional to the square root of their molar masses.

$$
\frac{\mathbf{v}_{1}}{\mathbf{v}_{2}}=\frac{\# M_{2}}{\# M_{1}} \quad \text { or } \quad \frac{\mathbf{v}_{1}}{\mathbf{v}_{2}}=\# M_{2} / M_{1}
$$

Slide 125 / 140

Graham's Law of Effusion

How much faster would we expect hydrogen gas $\left(\mathrm{H}_{2}\right)$ to move compared to nitrogen gas $\left(\mathrm{N}_{2}\right)$?
move for answer

Slide 126 (Answer) / 140

41 Of the following gases, \qquad will have the greatest rate of effucion at a aiven temnerature. Slide 127 / 140

42 A gas mixture consists of oxygen and helium. What is the ratio of the average velocity of oxygen to helium?

42 A gas mixture consists of oxygen and helium. What is the ratio of the average velocity of

43 A gas mixture consists of nitrogen and helium. What is the ratio of the average velocity of helium to nitrogen?

Slide 128 (Answer) / 140

43 A gas mixture consists of nitrogen and helium. What is the ratio of the average velocity of hr

Slide 130 / 140

44 A mixture of carbon dioxide and an unknown gas was allowed to effuse from a container. The carbon dioxide took 1.25 times as long to escape as the unknown gas. Which one could be the unknown gas?

O $\mathrm{ACl} \mathrm{Cl}_{2}$
O B CO
$\bigcirc \mathrm{CHCl}$
O H_{2}
$O E \mathrm{SO}_{2}$

Slide 129 / 140

Graham's Law of Effusion

An unknown gas travels at a rate that is 1.17 x slower than oxygen gas. What is the molar mass of the unknown gas?
move for answer

Slide 130 (Answer) / 140

44 A mixture of carbon dioxide and an unknown gas was allowed to effuse from a container.
The carbon di
escape as tt
be the unkn

2
\vdots
3
3
\vdots

B

Application

The escape velocity (velocity a molecule needs to escape from the earth) is equal to $\mathbf{1 1 , 1 0 0}$ meters per second in the upper atmosphere. The average speed of hydrogen gas is 1,832 meters per second. Explain, with what you know about the definition of temperature and Graham's Law...

1. Why does some hydrogen gas can escape the Earth's atmosphere?
2. Why is our atmosphere composed of more nitrogen and oxygen than
than hydrogen?

Real versus Ideal Gases

Slide 133 / 140

Real Gases

Until now, we have been assuming that gases behave ideally, ie.. that they behave according to our assumptions.

In reality, gases do occupy a tiny amount of space and do experience a small degree of attractions which make some collisions inelastic.

Slide 135 / 140

Slide 136 / 140

Real Gases

The temperature, pressure, and type of gas can influence how ideal or real a gas behaves.
In terms of size, what kind of gas molecule would

In terms of intermolecular forces, what kind of gas molecule would behave most ideally?

Return to
Table of
Contents

Slide 134 / 140

Real Gases

The temperature, pressure, and type of gas can influence how ideal or real a gas behaves.

What kind of temperature you would want to have in order for the gas to behave ideally?

What kind of pressure you would want to have gases behave most ideally?
move for answer

Real vs. Ideal Gases

Property	Ideal Gas	Real Gas
Volume	none	small
Intermolecular forces	none	weak
Required Temperature	High	Low
Required Pressure	Low	High

Note: All gases behave non-ideally at most temperatures and pressures. So, although a gas never behaves completely ideally, a small gas at a high temperature and low pressure will behave most ideally. *Think about what conditions would most likely lead to perfectly elastic collisions.

