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PREFACE

An Introduction to Differential Equations and Their Applications is
intended for use in a beginning one-semester course in differential
equations. It is designed for students in pure and applied mathematics who
have a working knowledge of algebra, trigonometry, and elementary
calculus. The main feature of this book lies in its exposition. The
explanations of ideas and concepts are given fully and simply in a language
that is direct and almost conversational in tone. I hope I have written a text
in differential equations that is more easily read than most, and that both
your task and that of your students will be helped.

Perhaps in no other college mathematics course is the interaction
between mathematics and the physical sciences more evident than in
differential equations, and for that reason I have tried to exploit the reader's
physical and geometric intuition. At one extreme, it is possible to approach
the subject on a highly rigorous “lemma-theoremcorollary” level, which, for
a course like differential equations, squeezes out the lifeblood of the
subject, leaving the student with very little understanding of how
differential equations interact with the real world. At the other extreme, it is
possible to wave away all the mathematical subtleties until neither the
student nor the instructor knows what's going on. The goal of this book is to
balance mathematical rigor with intuitive thinking.

FEATURES OF THE BOOK
Chaotic Dynamical Systems
This book covers the standard material taught in beginning differential
equations
courses, with the exception of Chapters 7 and 8, where I have included
optional sections relating to chaotic dynamical systems. The period-
doubling phenomenon of the logistic equation is introduced in Section 7.5
and Julia sets and the Mandelbrot set are introduced in Section 7.6. Then, in
Section 8.4, the chaotic behavior of certain nonlinear differential equations



is summarized, and the Poincare section and strange attractors are defined
and discussed.

Problem Sets
One of the most important aspects of any mathematics text is the problem
sets. The problems in this book have been accumulated over 25 years of
teaching differential equations and have been written in a style that, I hope,
will pique the student's interest.

Because not all material can or should be included in a beginning
textbook, some problems are placed within the problem sets that serve to
introduce additional new topics. Often a brief paragraph is added to define
relevant terms. These problems can be used to provide extra material for
special students or to introduce new material the instructor may wish to
discuss. Throughout the book, I have included numerous computational
problems that will allow the students to use computer software, such as
DERIVE, MATHEMATICA, MATHCAD, MAPLE, MACYSMA,
PHASER, and CONVERGE.

Writing and Mathematics
In recent years I have joined the “Writing Across the Curriculum” crusade
that is sweeping U.S. colleges and universities and, for my own part, have
required my students to keep a scholarly journal. Each student spends five
minutes at the end of each lecture writing and outlining what he or she does
or doesn't understand. The idea, which is the foundation of the “Writing
Across the Curriculum” program, is to learn through writing. At the end of
the problem set in Section 1.1, the details for keeping a journal are outlined.
Thereafter, the last problem in each problem set suggests a journal entry.

Historical Notes
An attempt has been made to give the reader some appreciation of the
richness and history of differential equations through the use of historical
notes. These notes, are intended to allow the reader to set the topic of
differential equations in its proper perspective in the history of our culture.
They can also be used by the instructor as an introduction to further
discussions of mathematics.

DEPENDENCE OF CHAPTERS AND COURSE SUGGESTIONS



Since one cannot effectively cover all nine chatpers of this book during a
one-semester or quarter course, the following dependence of chapters might
be useful in organizing a course of study. Normally, one should think of this
text as a one-semester book, although by covering all the material and
working through a sufficient number of problems, it could be used for a
two-semester course.

I often teach an introductory differential equations course for students
of engineering and science. In that course I cover the first three chapters on
first- and second-order equations, followed by Chapter 5 (the Laplace
transform), Chapter 6 (systems), Chapter 8 (nonlinear equations), and part
of Chapter 9 (partial differential equations). I generally spend a couple of
days giving a rough overview of the omitted chapters: series solutions
(Chapter 4) and difference equations (Chapter 7). For classes that contain
mostly physics students who intended to take a follow-up course in partial
differential equations, I cover Chapter 4 (series solutions) at the expense of
some material on the Laplace transform.

I have on occasion used this book for a problems course in which I
cover only Chapters 1, 2, and 3. Chapter 2 (first-order equations) contains a
wide variety of problems that will keep any good student busy for an entire
semester (some students have told me a lifetime).

ACKNOWLEDGMENTS
No textbook author can avoid thanking the authors of the many textbooks
that have come before. A few of the textbooks to which I am indebted are:
Differential Equations by Ralph Palmer Agnew, McGraw-Hill, New York,
(1942), Differential Equations by Lester R. Ford, McGraw-Hill, New York,
(1955), and Differential Equations by Lyman Kells, McGraw-Hill, New
York, (1968).



I would also like to thank my advisor of more than 25 years ago,
Ronald Guenther, who in addition to teaching me mathematics, taught me
the value of rewriting.
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various stages of the project. The following people offered excellent advice,
suggestions, and ideas as they reviewed the manuscript: Kevin T. Andrews,
Oakland University; William B. Bickford, Arizona State University; Juan
A. Gatica, University of Iowa; Peter A. Griffin, California State University,
Sacramento; Terry L. Herdman, Virginia Polytechnic Institute and State
University; Hidefumi Katsuura, San Jose State University; Monty J.
Strauss, Texas Tech University; Peter J. Tonellato, Marquette University.

Finally, I am deeply grateful to the McGraw-Hill editors Jack Shira
and Maggie Lanzillo, for their leadership and encouragement, and to
Margery Luhrs and Richard Ausbum who have contributed to the project
and worked so hard throughout the production process.
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Introduction to Differential
Equations

PROLOGUE

1.1 BASIC DEFINITIONS AND CONCEPTS
1.2 SOME BASIC THEORY

   1.0     PROLOGUE

GALLOPING GERTIE
There was a lot of excitement in the air when on July 1, 1940, local
dignitaries cut the ribbon that opened the Tacoma Narrows Bridge over



Puget Sound in the state of Washington, but the excitement didn't stop
there. Because it tended to experience undulating vibrations in the slightest
breeze, the bridge gained a great deal of attention and was nicknamed
“Galloping Gertie.” Although one might have thought that people would
have been afraid to cross the bridge, this was not so. People came from
hundreds of miles just for the thrill of crossing “Gertie.” Although a few
engineers expressed concern, authorities told the public that there was
“absolutely nothing to worry about.” They were so sure of this that they
even planned to drop the insurance on the bridge.

When Galloping Gertie collapsed into Puget Sound on November 7, 1940, bridge designers gained a
new respect for nonlinear differential equations. (AP/Wide World Photos)

However, at about 7:00 A.M. on November 7, 1940, Gertie's
undulations became more violent, and entire portions of the bridge began to
heave wildly. At one time, one side of the roadway was almost 30 feet
higher than the other. Then, at 10:30 A.M. the bridge began to crack up.
Shortly thereafter it made a final lurching and twisting motion and then
crashed into Puget Sound. The only casualty was a pet dog owned by a
reporter who was crossing the bridge in his car. Although the reporter



managed to reach safety by crawling on his hands and knees, clinging to the
edge of the roadway, the dog lost its life.

Later, when local authorities tried to collect the insurance on the
bridge, they discovered that the agent who had sold them the policy hadn't
told the insurance company and had pocketed the $800,000 premium. The
agent, referring to the fact that authorities had planned on canceling all
policies within a week, wryly observed that if the “damn thing had held out
just a little longer no one would have been the wiser.” The man was sent to
prison for embezzlement. The collapse also caused embarrassment to a
local bank, whose slogan was “As safe as the Tacoma Bridge.” After the
bridge collapsed into Puget Sound, bank executives quickly sent out
workers to remove the billboard.

Of course, after the collapse the government appointed all sorts of
commissions of inquiry. The governor of the State of Washington made an
emotional speech to the people of Washington proclaiming that “we are
going to build the exact same bridge, exactly as before.” Upon hearing this,
the famous engineer Theodor von Karman rushed off a telegram stating, “If
you build the exact same bridge, exactly as before, it will fall into the same
river, exactly as before.”



After the politicians finished their analysis of the bridge's failure,
several teams of engineers from major universities began a technical
analysis of the failure. It was the general consensus that the collapse was
due to resonance caused by an aerodynamical phenomenon known as “stall
flutter.”

Roughly, this phenomenon has to do with frequencies of wind currents
agreeing with natural frequencies of vibration of the bridge. The
phenomenon can be analyzed by comparing the driving frequencies of a
differential equation with the natural frequencies of the equation.

FISHES, FOXES, AND THE NORWAY RAT
Although at one time Charlie Elton suspected that sunspot activity might be
the cause of the periodic fluctuation in the rodent population in Norway, he
later realized that this fluctuation probably had more to do with the
ecological balance between the rats and their biological competitors.

The populations of many species of plants, fish, mammals, insects, bacteria, and so on, vary
periodically due to boom and bust cycles in which they alternately die out and recover in their
constant struggle for existance against their ecological adversaries. (Leonard Lee Rue Ill/Photo
Researchers)



At about the same time, in the 1920s an Italian marine biologist,
Umberto D’Ancona, observed that certain populations of fish in the
northern Adriatic varied periodically over time. More specifically, he noted
that when the population of certain predator fish (such as sharks, skates,
and rays) was up, the population of their prey (herbivorous fish) was down,
and vice versa. To better understand these “boom and bust” cycles, D’
Ancona turned to the famous Italian mathematician and differential
equations expert Vito Volterra. What Volterra did was to repeat for biology
what had been done in the physical sciences by Newton 300 years earlier. In
general, he developed a mathematical theory for a certain area of biology;
in particular, he developed a mathematical framework for the cohabitation
of organisms. One might say that he developed the mathematical theory for
the “struggle for existence” and that current research in ecological systems
had its beginnings in the differential equations of Volterra.

WHERE WERE YOU WHEN THE LIGHTS WENT OUT?
Most readers of this book were probably pretty young during the New York
City power failure of 1977 that plunged the entire northeastern section of
the United States and a large portion of Canada into total darkness.
Although the lessons learned from that disaster have led to more reliable
power grids across the country, there is always the (remote) possibility that
another failure will occur at some future time.

The problem is incredibly complicated. How to match the energy
needs of the millions of customers with the energy output from the
hundreds of generating stations? And this must be done so that the entire
network remains synchronized at 60 cycles per second and the customer's
voltage levels stay at acceptable levels! Everything would not be quite so
difficult if demand remained constant and if there were never any
breakdowns. As one system engineer stated, “It's easy to operate a power
grid if nothing breaks down. The trick is to keep it working when you have
failures.” However, there will always be the possibility of a generator
breaking down or lightning hitting a transformer. And when this happens,
there is always the possibility that the entire network may go down with it.



In any large scale system there is always the possibility that a failure in one part of the system can be
propagated throughout the system. Systems of differential equations can be used to help understand
the total dynamics of the system and prevent disasters. (Bill Gallery/Stock, Boston)

To help design large-scale power grids to be more reliable (stable),
engineers have constructed mathematical models based on systems of
differential equations that describe the dynamics of the system (voltages
and currents through power lines). By simulating random failures the
engineers are able to determine how to design reliable systems. They also
use mathematical models to determine after the fact how a given failure can
be prevented in the future. For example, after a 1985 blackout in Colombia,
South America, mathematical models showed that the system would have
remained stable if switching equipment had been installed to trip the
transmission lines more quickly.

DIFFERENTIAL EQUATIONS IN WEATHER PATTERNS
Meteorologist Edward Lorenz was not interested in the cloudy weather
outside his M.I.T. office. He was more interested in the weather patterns he
was generating on his new Royal McBee computer. It was the winter of
1961, and Lorenz had just constructed a mathematical model of convection
patterns in the upper atmosphere based on a system of three nonlinear
differential equations. In the early 1960s there was a lot of optimism in the
scientific world about weather forecasting, and the general consensus was



that it might even be possible in a few years to modify and control the
weather. Not only was weather forecasting generating a great deal of
excitement, but the techniques used in meteorology were also being used by
physical and social scientists hoping to make predictions about everything
from fluid flow to the flow of the economy.

Anyway, on that winter day in 1961 when Edward Lorenz came to his
office, he decided to make a mathematical shortcut, and instead of running
his program from the beginning, he simply typed into the computer the
numbers computed from the previous day's run. He then turned on the
computer and left the room to get a cup of coffee. When he returned an hour
later, he saw something unexpected—something that would change the
course of science.

The new run, which should have been the same as the previous day's
run, was completely different. The weather patterns generated on this day
were completely different from the patterns generated on the previous day,
although their initial conditions were the same.

Initially, Lorenz thought he had made a mistake and keyed in the
wrong numbers, or maybe his new computer had a malfunction. How else
could he explain how two weather patterns had diverged if they had the
same initial conditions? Then it came to him. He realized that the computer
was using six-place accuracy, such as 0.209254, but only three places were
displayed on the screen, such as 0.209. So when he typed in the new
numbers, he had entered only three decimal places, assuming that one part
in a thousand was not important. As it turned out insofar as the differential
equations were concerned, it was very important.

The “chaotic” or “randomlike behavior” of those differential equations
was so sensitive to their initial conditions that no amount of error was
tolerable. Little did Lorenz know it at the time, but these were the
differential equations that opened up the new subject of chaos. From this
point on scientists realized that the prediction of such complicated physical
phenomena as the weather was impossible using the classical methods of
differential equations and that newer theories and ideas would be required.
Paradoxically, chaos theory provides a way to see the order in a chaotic
system.



The future success of accurate long-run weather predictions is not completely clear. The accurate
determination of long-term weather patterns could well depend on new research in dynamical
systems and differential equations. (Courtesy National Meteorological Center)

ENGINEERS TEACH SMART BUILDING TO FOIL
QUAKES*

Engineers and applied mathematicians are now designing self-stabilizing
buildings that, instead of swaying in response to an earthquake, actively
suppress their own vibrations with computer-controlled weights. (See
Figure 1.1.) In one experimental building, the sway was said to be reduced
by 80 percent.

During an earthquake, many buildings collapse when they oscillate
naturally with the same frequency as seismic waves traveling through the
earth, thus amplifying their effect, said Dr. Thomas Heaton, a seismologist
at the U.S. Geological Survey in Pasadena, California. Active control
systems might prevent that from happening, he added.



Figure 1.1 How a self-stabilizing building works. Instead of swaying in
response to an earthquake, some new buildings are designed as machines
that actively suppress their own vibrations by moving a weight that is about
1 percent of the building's weight.

One new idea for an active control system is being developed by the
University of Southern California by Dr. Sami Masri and his colleagues in
the civil engineering department. When wind or an earthquake imparts
energy to the building, Dr. Masri said, it takes several seconds for the
oscillation to build up to potentially damaging levels. Chaotic theory of
differential equations, he said, suggests that a random source of energy
should be injected into this rhythmic flow to disrupt the system.

At the present time, two new active stabilizing systems are to be added
to existing buildings in the United States that sway excessively. Because the
owners do not want their buildings identified, the names of the buildings are
kept confidential.

Bridges and elevated highways are also vulnerable to earthquakes.
During the 1989 San Francisco earthquake (the “World Series” earthquake)



the double-decker Interstate 880 collapsed, killing several people, and the
reader might remember the dramatic pictures of a car hanging precariously
above San Francisco Bay where a section of the San Francisco-Oakland
Bay Bridge had fallen away. Less reported was the fact that the Golden
Gate Bridge might also have been close to going down. Witnesses who
were on the bridge during the quake said that the roadbed underwent
wavelike motions in which the stays connecting the roadbed to the overhead
cables alternately loosened and tightened “like spaghetti.” The bridge
oscillated for about a minute, about four times as long as the actual
earthquake. Inasmuch as an earthquake of up to ten times this magnitude
(the “big one”) is predicted for California sometime in the future, this
experience reinforces our need for a deeper understanding of nonlinear
oscillations in particular and nonlinear differential equations in general.

   1.1     BASIC DEFINITIONS AND CONCEPTS

PURPOSE
To introduce some of the basic terminology and ideas that are necessary for
the study of differential equations. We introduce the concepts of

#x2022; ordinary and partial differential equations,
• order of a differential equation,
• linear and nonlinear differential equations.

THE ROLE OF DIFFERENTIAL EQUATIONS IN SCIENCE
Before saying what a differential equation is, let us first say what a
differential equation does and how it is used. Differential equations can be
used to describe the amount of money in a savings bank, the orbit of a
spaceship, the amount of deformation of elastic structures, the description
of radio waves, the size of a biological population, the current or voltage in
an electrical circuit, and on and on. In fact, differential equations can be
used to explain and predict new facts for about everything that changes
continuously. In more complex systems we don't use a single differential
equation, but a system of differential equations, as in the case of an
electrical network of several circuits or in a chemical reaction with several
interacting chemicals.



The process by which scientists and engineers use differential
equations to understand physical phenomena can be broken down into three
steps. First, a scientist or engineer defines a real problem. A typical
example might be the study of shock waves along fault lines caused by an
earthquake. To understand such a phenomenon, the scientist or engineer
first collects data, maybe soil conditions, fault data, and so on. This first
step is called data collection.

The second step, called the modeling process, generally requires the
most skill and experience on the part of the scientist. In this step the
scientist or engineer sets up an idealized problem, often involving a
differential equation, which describes the real phenomenon as precisely as
possible while at the same time being stated in such a way that
mathematical methods can be applied. This idealized problem is called a
mathematical model for the real phenomenon. In this book, mathematical
models refer mainly to differential equations with initial and boundary
conditions. There is generally a dilemma in constructing a good
mathematical model. On one hand, a mathematical model may describe
accurately the phenomenon being studied, but the model may be so
complex that a mathematical analysis is extremely difficult. On the other
hand, the model may be easy to analyze mathematically but may not reflect
accurately the phenomenon being studied. The goal is to obtain a model that
is sufficiently accurate to explain all the facts under consideration and to
enable us to predict new facts but at the same time is mathematically
tractable.

The third and last step is to solve mathematically the ideal problem
(i.e., the differential equation) and compare the solution with the
measurements of the real phenomenon. If the mathematical solution agrees
with the observations, then the scientist or engineer is entitled to claim with
some confidence that the physical problem has been “solved
mathematically,” or that the theory has been verified. If the solution does
not agree with the observations, either the observations are in error or the
model is inaccurate and should be changed. This entire process of how
mathematics (differential equations in this book) is used in science is
described in Figure 1.2.

Figure 1.2 Schematic diagram of a mathematical analysis of physical
phenomena



WHAT IS A DIFFERENTIAL EQUATION?
Quite simply, a differential equation is an equation that relates the
derivatives of an unknown function, the function itself, the variables by
which the function is defined, and constants. If the unknown function
depends on a single real variable, the differential equation is called an
ordinary differential equation. The following equations illustrate four
well-known ordinary differential equations.

In these differential equations the unknown quantity y = y{x) is called the
dependent variable, and the real variable, x, is called the independent
variable.

In this book, derivatives will be often represented by primes and
higher derivatives sometimes by superscripts in parentheses. For example,

Differential equations are as varied as the phenomena that they
describe.* For this reason it is convenient to classify them according to
certain mathematical properties. In so doing, we can better organize the
subject into a coherent body of knowledge.

In addition to ordinary differential equations,† which contain ordinary
derivatives with respect to a single independent variable, a partial



differential equation is one that contains partial derivatives with respect to
more than one independent variable. For example, Eqs. (1a)–(1d) above are
ordinary differential equations, whereas Eqs. (3a)–(3d) below are partial
differential equations.

HOW DIFFERENTIAL EQUATIONS ORIGINATE
Inasmuch as derivatives represent rates of change, acceleration, and so on,
it is not surprising to learn that differential equations describe many
phenomena that involve motion. The most common models used in the
study of planetary motion, the vibrations of a drumhead, or evolution of a
chemical reaction are based on differential equations. In summary,
differential equations originate whenever some universal law of nature is
expressed in terms of a mathematical variable and at least one of its
derivatives.

ORDER OF A DIFFERENTIAL EQUATION
Differential equations are also classified according to their order. The order
of a differential equation is simply the order of the highest derivative that
occurs in the equation. For example,



DEFINITION: Ordinary Differential Equation
An nth-order ordinary differential equation is an equation that has the
general form

where the primes denote differentiation with respect to x, that is, y' =
∂y/∂x, y” = d2y/dx2. and so on.

LINEAR AND NONLINEAR DIFFERENTIAL EQUATIONS
Some of the most important and useful differential equations that arise in
applications are those that belong to the class of linear differential
equations. Roughly, this means that they do not contain products, powers,
or quotients of the unknown function and its derivatives. More precisely, it
means the following.

DEFINITION: Linear Differential Equation
An nth-order ordinary differential equation is linear when it can be
written in the form

The functions a0(x), …, an(x), are called the coefficients of the
differential equation, and f(x) is called the nonhomogeneous term.
When the coefficients are constant functions, the differential equation
is said to have constant coefficients. Unless it is otherwise stated, we
shall always assume that the coefficients are continuous functions and
that a0(x) ≠ 0 in any interval in which the equation is defined.
Furthermore, the differential equation is said to be homogeneous if
f(x) ≡ 0 and nonhomogeneous if f(x) is not identically zero.

Finally, an ordinary differential equation that cannot be written in
the above general form is called a nonlinear ordinary differential
equation.



Some examples of linear and nonlinear differential equations are the
following:

Table 1.1 summarizes the above ideas. Note that in Table 1.1 the
concepts of being homogeneous or having constant coefficients have no
relevance for nonlinear differential equations.

Table 1.1 Classification of Differential Equations

PROBLEMS: Section 1.1



For Problems 1–10, classify each differential equation according to the
following categories: order; linear or nonlinear; constant or variable
coefficients; homogeneous or nonhomogeneous.
1. 
2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

Problems 11–17 list differential equations that arise in the mathematical
formulation of pure and applied science. Classify each equation according
to order, number of independent variables, whether it is ordinary or partial,
and whether it is linear or nonlinear. For linear equations, tell whether the
equation has constant coefficients and whether it is homogeneous or
nonhomogeneous.
11. 
12. 
13. 

14. 

15. 

16. 

17. 
18. Gotcha Beginning students of differential equations are often confused

as to whether a linear differential equation is homogeneous or
nonhomogeneous. Problems (a)–(d) often confuse the beginner. Can



you say for sure which of the linear equations in (a)–(d) are
homogeneous?
(a)
(b)
(c)
(d)

Keeping a Scholarly Journal (Read This)
One cannot help but be impressed with the large number of important
English naturalists who lived during the nineteenth century. Of course, there
was Darwin, but there were also Wallis, Eddington, Thompson, Haldane,
Fisher, Jevons, Fechner, Galton, and many more. If one studies the works of
these eminent scholars, one cannot help but be impressed with the manner
in which they paid attention to scientific details. Part of that attention to
scientific details was the keeping of detailed journals in which they
recorded their observations and impressions. These journals provided not
only a means for storing data, but a means for exploring their thoughts and
ideas. They in fact learned through writing.

Over the past 100 years, journal keeping has declined in popularity, but
in recent years there has been a renaissance in the “learning through
writing” movement. A few people are beginning to realize that writing is an
important learning tool as well as a means of communication.

In this book we give the reader the opportunity to explore thoughts and
ideas through writing. We only require that the reader possess a bound
journal* in which daily entries are made. Each entry should be dated and, if
useful, given a short title. There are no rules telling you what to include in
your journal or how to write. The style of writing is strictly free form—
don't worry about punctuation, spelling, or form. You will find that if you
make a conscientious effort to make a daily entry, your writing style will
take care of itself.

The best time to make your entry is immediately after class. Some
professors allow their students the last five minutes of class time for journal
entries. You might spend five minutes writing about the day's lecture. You
might focus on a difficult concept. Ask yourself what you don't understand.
Realize that you are writing for yourself. No one cares about your journal
except you.



19. Your First Journal Entry Spend ten minutes exploring your goals for
this course. Do you think differential equations will be useful to you?
How does the material relate to your career goals as you see them?
Maybe summarize in your own language the material covered in this
first section. Be sure to date your entry. There will be a journal entry
suggestion at the end of each problem set. Good luck.

   1.2     SOME BASIC THEORY

PURPOSE
To introduce more concepts that are necessary to the study of differential
equations. In particular, we will study

• explicit and implicit solutions,
• initial-value problems,
• the existence and uniqueness of solutions.

SOLUTIONS OF DIFFERENTIAL EQUATIONS
The general form of an nth-order ordinary differential equation can be
written as

where F is a function of the independent variable x, the dependent variable
y, and the derivatives of y up to order n. We assume that x lies in an interval
I that can be any of the usual types: (a, b), [a, b], (a, ∞), (–∞, b), (– ∞, ∞),
and so on. Often, it is possible to solve algebraically for the highest-order
derivative in the differential equation and write it as

where f is a function of x, y, y', …, y(n)

One of the main reasons for studying differential equations is to learn
how to “solve” a differential equation.

HISTORICAL NOTE



The origins of differential equations go back to the beginning of the
calculus to the work of Isaac Newton (1642–1727) and Gottfried
Wilhelm von Leibniz (1646–1716). Newton classified first-order
differential equations according to the forms ∂y/∂x = f(x), ∂y/∂x = f(y),
or ∂y/∂x = f(x, y). He actually developed a method for solving ∂y/∂x =
f(x, y) using infinite series when f(x, y) is a polynomial in x and y. A
simple example would be ∂y/∂x = 1 + xy. Can you find an infinite
series y = y(x) that satisfies this equation?

This brings us to the concept of the solution of a differential equation.

DEFINITION: Solution of a Differential Equation*
A solution of an nth-order differential equation is an n times
differentiable function y = y(x), which, when substituted into the
equation, satisfies it identically over some interval a < x < b. We
would say that the function y is a solution of the differential equation
over the interval a < x < b.

Example 1
Verifying a Solution Verify that the function

is a solution of the equation

for all values of x.

Solution
Clearly, y(x) is defined on (– ∞, ∞), and y” = – sin x + cos x. Substituting y”
and y into the differential equation (4) yields the identity

for all – ∞ < x < ∞.

Example 2



Verifying a Solution Verify that the function

is a solution of the differential equation

for all x.

Solution
Clearly, the function y(x) is defined for all real x, and substitution of y(x) =
3e2x and y'(x) = 6e2x into the differential equation yields the identity

In fact, note that any function of the form y(x) = Ce2x'. where C is a
constant, is a solution of this differential equation.

Example 3
Verifying a Solution Verify that both functions

are solutions of the second-order equation

for all real x.

Solution
Substituting y1(x) = e5x into the equation gives

Substituting y2(x) = e-3x into the equation, we get

Hence both functions satisfy the equation for all x.



IMPLICIT SOLUTIONS
We have just studied solutions of the form y = y(x) that determine y directly
from a formula in x. Such solutions are called explicit solutions, since they
give y directly, or explicitly, in terms of x. On some occasions, especially
for nonlinear differential equations, we must settle for the less convenient
form of solution, G(x, y) = 0, from which it is impossible to deduce an
explicit representation for y in terms of x. Such solutions are called implicit
solutions.

DEFINITION: Implicit Solution
A relation G(x, y) = 0 is said to be an implicit solution of a differential
equation involving x, y, and derivatives of y with respect to x if G(x, y)
= 0 defines one or more explicit solutions of the differential equation.*

Example 4
Implicit Solution Show that the relation

is an implicit solution of

Solution
First, note that we cannot solve Eq. (9) for y in terms of x. However, a
change in x in Eq. (10) results in a change in y, so we would expect that on
some interval, Eq. (9) would define at least one function † y = y(x). This is
true in this case, and such a function y = y(x) is also differentiable. See
Figure 1.3.

Figure 1.3 Note that x + y + exy = 0 defines a function y = y(x) on certain
intervals and that this function is an explicit solution of the differential
equation. Also, it can be shown that the slope ∂y/∂x of the tangent line at
each point of the curve satisfies Eq. (9).



Once we know that the implicit relationship in Eq. (9) defines a
differentiable function of x, we differentiate implicitly with respect to x.
Doing this, we get

which is equivalent to the differential equation

Hence Eq. (9) is an implicit solution of Eq. (10).

Example 5
Implicit Solution Show that the relation

where c is a positive constant and is an implicit solution of the differential
equation

on the open interval (– c, c).

Solution



By differentiating Eq. (13) with respect to x we get

or y' = –x/y, which shows that Eq. (13) is an implicit solution of Eq. (14).
The geometric interpretation of this implicit solution is that the tangent

line to the circle x2 + y2 = c at the point (x, y) has slope ∂y/∂x = –x/y. Also,
note that there are many functions y = y(x) that satisfy the implicit relation
x2 + y2 – c = 0 on (– c, c), and some of them are shown in Figure 1.4.
However, the only ones that are continuous (and hence possibly
differentiable) are

Note that y'(– c) and y'(c) do not exist, and so y' = –x/y is an implicit
relation only on the open interval (– c, c). Hence from the implicit solution
we are able to find two explicit solutions on the interval (– c, c).

Figure 1.4 By taking portions of either the upper or lower semicircle of the
circle x2 + y2 = c2, one obtains a function Y = y(x) that satisfies the
relationship x2 + y2(x) = c2 on the interval (– c, c). A few of them are shown
here.



COMMENT ON EXPLICIT VERSUS IMPLICIT
SOLUTIONS

To better appreciate the use of the words “explicit” and “implicit,” we
would say that y = x + 1 states explicitly that y is x + 1 and thus is called an
explicit solution. On the other hand, the equation y – x = 1 does not state
explicitly that y is x + 1 but only implies or states implicitly that y is x + 1.
When a differential equation is solved, it is generally an explicit solution*
that is desired.

THE INITIAL-VALUE PROBLEM
When solving differential equations in science and engineering, one
generally seeks a solution that also satisfies one or more supplementary
conditions such as initial or boundary conditions. The general idea is to first
find all the solutions of the differential equation and then pick out the
particular one that satisfies the supplementary condition(s).

DEFINITION: Initial-Value Problem
An initial-value problem for an nth-order equation

consists in finding the solution to the differential equation on an
interval I that also satisfies the n initial conditions

where x0 ε I and …, yn-1 are given constants.

Note that in the special case of a first-order equation the only initial
condition is y(x0) = y0, and in the case of a second-order equation the initial
conditions are y(x0) = y0 and y'(x0) = y1.



The reason it is natural to specify n “side” conditions to accompany
the nth-order linear differential equation lies in the fact that the general
solution of the nth-order linear equation contains n arbitrary constants.
Hence the n initial conditions will determine the constants, giving a unique
solution to the initial-value problem.

Example 6
First-Order Instial-Value Problem Verify that y(x) = e-x + 1 is a solution
of the initial-value problem

Solution
Computing y'(x) = – e-x and substituting y(x) and y'(x) into the differential
equation, we get

Hence y(x) satisfies the differential equation. To verify that y(x) also
satisfies the initial condition, we observe that

This solution is shown in Figure 1.5.

Figure 1.5 In Chapter 2 we will learn that y(x) = ce-x + 1, where c is any
constant, constitutes all the solutions of the equation y' + y = 1. However,
the only one of these solutions that satisfies y(0) = 2 is y(x) = e-x + 1.

Example 7



Initial-Value Problem Verify that y(x) = sin x + cos x is a solution of the
initial-value problem

Solution
Computing y'(x) = cos x – sin x and y"(x) = – sin x – cos x and substituting
these values into the differential equation, we get

Hence y(x) satisfies the differential equation. To verify that y(x) also
satisfies the initial conditions, we observe that

This solution is drawn in Figure 1.6.

EXISTENCE AND UNIQUENESS OF SOLUTIONS
Although differential equations studied in applied work normally have
solutions, it is clear that the equation

has none.* Inasmuch as some differential equations have solutions and
some do not, it is important to know the conditions under which we know a
solution exists. We state a fundamental existence and uniqueness result for
the first-order initial-value problem.

Figure 1.6 Although it is clear that any function of the general form y(x) =
c1, sin x + c2 cos x, where c1 and c2 are any constants, is a solution of y" + y
= 0, only y(x) = sin x + cos x satisfies the conditions y(0) = 1 and y'(0) = 1.



Theorem 1.1 (PICARD'S THEOREM): Existence
and Uniqueness for First-Order Equations

Assume that for the initial-value problem

the functions f and ∂f/∂y are continuous on some rectangle

that contains the initial point (x0, y0). Under these conditions the
initial-value problem has a unique solution y = (x) on some interval
(x0 - h, x0 + h), where h is some positive number.



Note: Picard's theorem is one of the more popular existence and
uniqueness theorems, since one only has to check the continuity of f
and ∂f/∂y, which is generally easy to do. A weakness of the theorem
lies in the fact that it doesn't specify the size of the interval on which a
solution exists without actually solving the differential equation.

Example 8
Picard's Theorem What does Picard's theorem guarantee about a solution
to the initial-value problem

Solution
Since f(x, y) = y + e2x and ∂f/∂y = 1 are continuous in any rectangle
containing the point (0, 1), the hypothesis of Picard's theorem is satisfied.
Hence Picard's theorem guarantees that a unique solution of the initial-value
problem exists in some interval (– h, h), where h is a positive constant. We
will learn how to solve this equation in Chapter 2 and see that the solution
is y(x) = e2x for all - ∞ < x < ∞. Picard's theorem tells us that this is the only
solution of this initial-value problem.

HISTORICAL NOTE
Theorem 1.1 and other closely related existence theorems are
generally associated with the name of Charles Emile Picard (1856–
1941), one of the greatest French mathematicians of the nineteenth
century. He is best known for his contributions to complex variables
and differential equations. It is interesting to note that in 1899, Picard
lectured at Clark University in Worcester, Massachusetts.

Example 9
Picard's Theorem What does Picard's theorem imply about a unique
solution of the initial-value problem

Solution



Here we have f(x, y) = yl/3 and . Although f(x, y) is continuous
in the entire xy-plane, the partial derivative ∂f/∂y is not continuous on any
rectangle that intersects the line y = 0. Hence the hypothesis of Picard's
theorem fails, and so we cannot be guaranteed* that there exists a unique
solution to any problem whose initial value of y is zero. In Problem 45 at
the end of this section we will see that there are in fact solutions to this
problem—in fact, an infinite number of solutions.

GENERAL SOLUTION OF A DIFFERENTIAL EQUATION
The nature of the solutions of a differential equation is somewhat
reminiscent of finding A DIFFERENTIAL antiderivatives in calculus.
Remember that when finding an antiderivative, one obtains a function
containing an arbitrary constant.* In solving a first-order differential
equation F(x, y, y') = 0, the standard strategy is to obtain a family of curves
G(x, y, c) = 0 containing one arbitrary constant c (called a parameter) such
that each member of the family satisfies the differential equation. In the
general case when solving an nth-order equation F(x, y, y', …, y(n)) = 0, we
generally obtain an n-parameter family of solutions G(x, y, c1, c2 …, cn) =
0. A solution of a differential equation that is free of arbitrary parameters is
called a specific or particular solution.

The theory of differential equations would be simplified if one could
say that each differential equation of order n has an n-parameter family of
solutions and that those are the only solutions. Normally, this is true as we
will see for linear differential equations. However, there are some nasty
nonlinear equations of order n that have an n-parameter family of solutions
but still have a few more singular solutions hanging around the fringes, so
to speak. For example, the nonlinear equation (y')2 + xy' = y has a one-
parameter family of solutions y(x) = cx + c2, but it still has one more
singular solution, y(x) = – x2/4. (See Problem 46 at the end of this section.)
It is called a singular solution, since it cannot be obtained by assigning a
specific value of c to y(x) = cx + c2.

The fact that for some nonlinear differential equations, not all solutions
of an nth-order equation are members of an n-parameter family has given
rise to two schools of thought concerning the definition of a “general
solution” of a differential equation. Some people say that the general
solution of an nth-order differential equation is a family of solutions



consisting of n essential† parameters. In this book we use a slightly broader
definition of the general solution. We define the general solution of a
differential equation to be the collection of all solutions of a differential
equation. Period. If the only solutions of a differential equation consist of an
n-parameter family of solutions, then the two definitions are the same. For
those nasty nonlinear equations that have an n-parameter family of
solutions plus a few more singular solutions, we will call the general
solution the collection of both these types of solutions.

PROBLEMS: Section 1.2
For Problems 1–11, show that each function is a solution of the given
differential equation. Assume that a and c are constants. For what values of
the independent variable(s) is your solution defined?
Differential equation Function

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 
For Problems 12–16, show that the following relation defines an implicit
solution of the given differential equation.



Differential equation Relation
12. 

13. 

14. 

15. 

16. 

Test Your Intuition
For Problems 17–25, see whether you can make an educated guess to find a
solution of the given equation. After you have selected your candidate,
check to see whether it satisfies the equation. Have you found all the
solutions of the equation?

17. (When is the derivative equal to the function itself?)

18. (When is the derivative equal to the function squared?)

19. (There is a solution staring you in the face.)

20. (Almost staring you in the face)

21. (More interesting)

22. (Kind of like Problem 21)

23. (A little tougher)

24. Do you have all of them?)

25. (Compare with Problem 24.)

26. Simplest Differential Equations The simplest of all differential
equations are equations of the form



that are studied in calculus. Recall that the solution of the first-order
equation y' = f(x) is simply the collection of antiderivatives of f(x), or

For Problems (a)–(e), solve the given first- or second-order differential
equation for all – ∞ < x < ∞ Where initial conditions are specified, solve the
initial-value problem.

(a)
(b)
(c)
(d)
(e)

Initial-Value Problems
For Problems 27–33, verify that the specified function is a solution of the
given initial-value problem.

34. No Solutions Why don't the following differential equations have real-
valued solutions on any interval?

(a)

(b)
(c)
(d)

35. Implicit Function Theorem The implicit function theorem states that if
G(x, y) has continuous first partial derivatives in a rectangle R = {(x, y):
a < x < b, c < y < d} containing a point (x0, y0), and if G(x0, y0) = 0 and
∂ G(x0, y0)/∂ y is not zero, then there exists a differentiable function y =
Φ(x), defined on an interval I = (x0 - h, x0 + h), that satisfies G(x, Φ(x))
= 0 for all x ε I. The implicit function theorem provides the conditions
under which G(x, y) = 0 defines y implicitly as a function of x. Use the



implicit function theorem to verify that the relationship x + y + exy = 0
defines y implicitly as a function of x near the point (0, – 1).

Existence of Solutions
For Problems 36–43, determine whether Picard's theorem implies that the
given initial-value problem has a unique solution on some interval
containing the initial value of x.
36. 
37. 
38. 
39. 
40. 
41. 
42. 
43. 
44. A Strange Differential Equation The initial-value problem

has an infinite number of solutions on the interval [0, ∞).
(a)Show that y(x) = x2 is a solution.

Figure 1.7 An infinite number of solutions of the initial-value problem 
 = 0. This problem has long been a popular example for

illustrating when Picard's theorem fails.

(b)Show that any function of the form

where c ≥ 0 is a solution of Eq. (21). See Figure 1.7.
(c)How do these results relate to Picard's existence and uniqueness

theorem?



45. Hubbard's Empty Bucket* If you are given an empty bucket with a hole
in it, can you determine when the bucket was full of water? Of course,
the answer is no, but did you know that the reason is that a certain
differential equation does not have a unique solution? It's true—The
differential equation that describes the height h of the water satisfies
Torricelli's law,

where k > 0 is a constant depending on the cross section of the hole
and the bucket.

(a)Show that Eq. (22) does not satisfy Picard's theorem.
(b)Find an infinite number of solutions of Eq. (22).
(c)Sketch the graphs of several solutions of Eq. (22) and discuss why

you can't determine when the bucket was full if it is currently
empty.

46. Singular Solution Given the first-order nonlinear equation

verify the following.
(a)Each member of the one-parameter family of functions y(x) = cx +

c2, where c is a real constant, is a solution of Eq. (23).
(b)The function y(x) = –1/4 x2 cannot be obtained from y = cx + c2 by

any choice of c, yet it satisfies Eq. (23). It is a singular solution of
Eq. (23).

47. Only One Parameter Show that it is possible to rewrite

in terms of only one parameter.
48. Delay Differential Equation A delay differential equation differs from

the usual differential equation by the presence of a shift x – x0 in the
argument of the unknown function y(x). These equations are much more
difficult to solve than the usual differential equation, although much is
known about them. Show that the simple delay differential equation

where a ≠ 0 and b are given constants, has a solution of the form y = Cekx

for any constant C, provided that the constant k satisfies the transcendental



equation k = ae-bk. If you have access to a computer with a program to
approximate solutions of transcendental equations, find an approximate
solution to the equation y' = y(x – 1) and sketch the graph of this solution.

49. Journal Entry—How's Your Intuition? Using your intuition, spend a
few minutes and try to answer one of the following questions. How many
solutions should there be to the equation y' = ky? What are all the
solutions of the differential equation y" + y = 0? Are there more solutions
to second-order differential equations than to first-order equations? Can
you find a solution of a differential equation by just finding the
antiderivative of each term in the equation?

* Based on an article taken from the New York Times, July 2, 1991.

* A differential equation is often named after the person who first studied it. For example, Van der
Pol's equation listed here was first investigated by the Dutch radio engineer Balthasar Van der Pol
(1889–1959), in studying oscillatory currents in electric circuits.
† Although differential equations should probably be called derivative equations, inasmuch as they
contain derivatives, the term “differential equations” (aequatio differential) was coined by Gotfried
Leibniz in 1676 and is used universally today.

* A good leather-bound journal can be purchased in any office supply store for about $10. Regular
notebook paper can be inserted into these journals.
* Solutions of differential equations are sometimes called integrals of the differential equations, since
they are more or less an extension of the process of integration in calculus.

* Realize that even though you may not be able to actually solve the equation G(x, y) = 0 for y, thus
obtaining a formula in x, nevertheless, any change in x still results in a corresponding change in y.
Thus the expression G(x, y) = 0 gives rise to at least one function y = y(x), even though you cannot
find a formula for it. The exact conditions under which G(x, y) = 0 gives rise to a function y = y(x)
are known as the implicit function theorem. Details of this theorem can be found in most textbooks
of advanced calculus.
† The implicit function theorem provides exact conditions under which an implicit relation G(x, y) =
0 defines y as a function of x. See Problem 35 at the end of this section.

* The importance of implicit solutions lies in the fact that some methods of solution do not lead to
explicit solutions, but only to implicit solutions. Thus implicit solutions might be thought of as
“better than nothing.” In some areas of nonlinear differential equations, implicit solutions are the only
solutions obtainable and in this context are referred to simply as solutions.
* Although the equation has no real-valued solution, it does have a complex-valued solution. A study
of complex-valued solutions of differential equations is beyond the scope of this book.

* Remember, the conditions stated in Picard's theorem are sufficient but not necessary. If the
conditions stated in Picard's theorem hold, then there will exist a unique solution. However, if the
conditions stated in the hypothesis of Picard's theorem do not hold, then nothing is known: The
initial-value problem may have either (a) no solution, (b) more than one solution, or (c) a unique
solution.



* For example, the antiderivative of f(x) = 2x is F(x) = x2 + c, where c is an arbitrary constant.

† By essential parameters or constants we mean just that. For instance, we could write the solution of
the equation y' = 1 as either y = x + c or y = x + c1 + c2. The two constants in second form are
“fraudulent,” since we could let c = c1 + c2. It is more difficult to determine the number of essential
constants in other equations, such as y = c1 + In c2 x. How many do you think there are? Be careful,
there is really only one! See Problem 47.
* This interesting problem is based on an example taken from Differential Equations: A Dynamical
Systems Approach by J. H. Hubbard and B. H. West (Springer-Verlag, New York, 1989).
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   2.1     FIRST-ORDER LINEAR EQUATIONS



PURPOSE
To solve the general first-order linear differential equation

using the integrating factor method. We will construct a function μ(x) that
satisfies μ(y' + py) = (μy)', thus allowing the equation to be integrated.

The general first-order linear differential equation can be written as

where a0(x), a1(x), and F(x) are given functions of x defined on some given
interval* I. Inasmuch as we always assume that a0(x) ≠ 0 for all x ∈ I, it is
convenient to divide by a0(x) and rewrite the equation as

where p(x) = a1(x)/a0(x) and f(x) = F(x)/a0(x). If we assume that the
functions p(x) and f(x) are continuous for x belonging to the interval I, then
Picard's theorem guarantees the existence of a unique solution to Eq. (2) in
some subinterval satisfying arbitrary initial conditions y(x0) = y0, where x0
belongs to I. (See Problem 37 at the end of this section.) The goal of this
section is to find the general solution (all solutions) of Eq. (2). In the case of
first-order equations the general solution will contain one arbitrary constant.

INTEGRATING FACTOR METHOD (Constant Coefficients)
Before solving Eq. (2), however, we will solve the simpler equation

where we have replaced p(x) by the constant a. The idea behind the
integrating factor method is the simple observation that

which turns the differential equation (3) into a “calculus problem.” To see
how this method works, multiple each side of Eq. (3) by eax, getting



which, using the fundamental property (4), reduces to

This equation can now be integrated directly, and we get

where c is an arbitrary constant and the integral sign refers to any
antiderivative of f(x)eax. Solving for y gives

We now solve the general first-order equation

where p(x) is assumed to be a continuous function. The general idea is
motivated by the constant coefficient equation; we seek a function μ(x).
called an integrating factor, that satisfies

To find μ(x), we carry out the differentiation on the right-hand side and
simplify, getting

If we now assume that y(x) ≠ 0, we arrive at

But we can find a solution μ(x) > 0 by separating variables, getting

Note: Since ∫p(x) dx denotes the collection of all antiderivatives of
p(x), it contains an arbitrary additive constant. Hence μ(x) contains an
arbitrary multiplicative constant. However, since we are interested in
finding only one integrating factor, we will pick the multiplicative
constant to be 1.



Now that we know the integrating factor, we simply multiply each side
of Eq. (7) by the integrating factor (9), getting

But from the property  we have

We can now integrate Eq. (10), getting

and since μ(x) ≠ 0, we can solve for y(x) algebraically, getting

We summarize these ideas, which give rise to the integrating factor
method for solving the general first-order linear equation.

Integrating Factor Method
To solve the first-order linear differential equation

on a given interval I, perform the following steps.
Step 1 (Find the Integrating Factor). Find the integrating factor

where ∫p(x) dx represents any antiderivative of p(x). Normally,
pick the arbitrary constant in the antiderivative to be zero. Note that
μ(x) ≠ 0 for x ∈ I.
Step 2 (Multiply by the Integrating Factor). Multiply each side of the
differential equation by the integrating factor to get

which will always reduce to



Step 3 (Find the Antiderivative). Integrate the equation from Step 2 to
get

Step 4 (Solve for y). Solve the equation found in Step 3 for y(x) to get
the general solution

Notes:

1. We have shown that if y' + p(x) y = f(x) has a solution, it must be of
the form in Eq. (13). Conversely, it is a straightforward matter to
verify that Eq. (13) also constitutes a one-parameter family of
solutions of the differential equation.

2. One could memorize the formula for the general solution of the
general first-order linear equation. However, it is easier to simply
remember that multiplication of the differential equation by μ(x)
turns the differential equation into an “ordinary” antiderivative
problem of the type one studies in calculus. The following
examples illustrate the integrating factor method.

3. For first-order linear differential equations a one-parameter family
of solutions constitutes all the solutions of the equation and is
called the general solution of the equation. Hence the one-
parameter family in Eq. (13) constitutes all the solutions of y' +
p(x) y = f(x) and is called the general solution.

Example 1

Integrating Factor Method

Find the general solution of

Figure 2.1 The one-parameter family of curves y = (x + c)ex2, where c is an
arbitrary constant, represents the entire collection of solutions of y' – 2xy =
ex2



Solution

Here p(x) = – 2x, and so the integrating factor is

Multiplying each side of the differential equation by the integrating factor,
we get

which can be rewritten as

Integrating, we get

Solving for y, we find the solutions

where c is an arbitrary constant. A few of these solutions are drawn in
Figure 2.1. 

INITIAL-VALUE PROBLEM FOR FIRST-ORDER EQUATIONS



We are often interested in finding the single solution of a first-order
equation that passes through a given point (x0, y0). This is the initial-value
problem for first-order equations

The strategy for solving this problem is first to find all the solutions of the
differential equation and then to determine which solution satisfies the
initial condition y(x0) = y0. The following example illustrates this idea.

Example 2

Initial-Value Problem

Solve the initial value problem

Solution
Note that the differential equation is not defined when x = 0, and so we
restrict the equation to the interval (0, ∞), over which the coefficient 3/x and
the nonhomogeneous term (sin x)/x3 are continuous. To solve this problem,
we first find the general solution of the differential equation using the
integrating factor method. Since p(x) = 3/x, the integrating factor is

Multiplying by μ(x) gives

and by direct integration we find

Finally, dividing by x3 gives the general solution



To determine which curve passes through the initial point (π/2, 1), we
simply solve the equation y(π/2) = 1 for c. Doing this gives

or

Hence the solution of the initial-value problem is

The graph of this solution is shown in Figure 2.2.

Figure 2.2 Solution of the initial-value problem

PROBLEMS: Section 2.1

For Problems 1–15, find the general solution to the indicated equation.
1. 
2. 



3. 

4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 

14. 

15. 
For Problems 16–20, find the solution of the given initial-value
problem.

16. 

17. 

18. 

19. 

20. 
21. The Integrating Factor Identity Verify the fundamental integrating

factor identity

22. Interchanging x and y to Get Linearity Solve the non-linear
differential equation



by considering the inverse function and writing x as a function of y.

Hint: Using the basic identity from calculus that , rewrite the
given equation y' = f(x, y) as dx/dy = 1/f(x, y).

23. A Tough Problem Made Easy The differential equation

would seem to be impossible to solve. However, if one treats y as the
independent variable and x as the dependent variable and uses the

relationship , one can find an implicit solution. Find this
implicit solution.

24. Use of Transformations Often a difficult problem is quite easy if it is
viewed in the proper perspective.
(a)Solve the nonlinear equation

where a and b are constants and can be solved by transforming the
dependent variable* to z = In y.

(b)Use the result from part (a) to solve

25. Bernoulli Equation An equation that is not linear but can be
transformed into a linear equation is the Bernoulli equation

(a)Show that the transformation v = y1 – n reduces the Bernoulli
equation to a linear equation in v.

(b) Use the transformation in part (a) to solve the Bernoulli equation

26. The Riccati Equation The equation



is known as the Riccati equation.
(a)Show that if one solution y1(x) of the Riccati equation is known, then

a more general solution containing an arbitrary constant can be
found by making the substitution

and showing that v(x) satisfies the linear equation

(b)Verify that y1(x) = 1 satisfies the Riccati equation

and use this fact to find the general solution.
27. General Theory of First-Order Equations Show that if y1 and y2 are

two different solutions of

then y1, – y2 is a solution of the homogeneous equation

28. Discontinuous Coefficients There are phenomena in which the
coefficient p(x) in the linear first-order equation is not continuous but
has jump discontinuities. However, it is often possible to solve these
types of problems with a little effort. Consider the initial-value problem

where

(a)Find the solution of the initial value problem in the interval 0 ≤ x ≤
1.

(b)Find the solution of the problem for 1 < x.
(c)Sketch the graph of the solution for 0 ≤ x ≤ 4.



29. Discontinuous Right-Hand Side Often the right-hand side f(x) of the
first-order linear equation is not continuous but has jump discontinuities.
It is still possible to solve problems of this type with a little effort. For
example, consider the problem

where

(a)Find the solution of the initial value problem in the interval 0 ≤ x ≤
1.

(b)Find the solution of the problem for 1 < x.
(c)Sketch the graph of the solution for 0 ≤ x ≤ 4.

30. Comparing a Linear and Nonlinear Equation
(a)Verify the solutions:

(b)Verify

31. Error Function Express the solution of y' = 1 + 2xy in terms of the
error function

32. Computer Problem–Sketching Solutions Use a graphing calculator or
a graphing package for your computer* to plot some of the solutions of
the one-parameter family of solutions drawn in Figure 2.1. You might try
sketching some solutions for different values of the parameter c than
have been drawn in the text. The author used the computer package
MICRO CALC to draw the curves shown in Figure 2.1.

33. Computer Problem–Sketching a Solution Redraw the solution of the
initial-value problem drawn in Figure 2.2 using either a graphing
calculator or a computer.

34. Today's Journal Entry Spend ten minutes exploring your thoughts
about some aspect of the integrating factor. Is it possible to solve



algebraic equations using an integrating factor? Were you disappointed
in the complicated-looking solution to the first-order equation? What did
you expect? Will the integrating factor method always work? Can you
think of another way to solve the first-order equation? Do you think this
course is going to be worthwhile? Date your entry.

   2.2     SEPARABLE EQUATIONS

PURPOSE
To solve the class of first-order differential equations of the form

known as separable equations by a method known as separation of
variables. The importance of this class of equations lies in the fact that
many important nonlinear equations are separable and hence solvable.

SOLVING SEPARABLE EQUATIONS
The very simplest differential equation is the one studied in calculus,

where f(x) is a given continuous function. In calculus we learned that we
can solve this equation by essentially “integrating both sides” of the
equation, getting

where c is an arbitrary constant and the integral sign denotes any single
antiderivative of f(x). We now see that this procedure can be applied to a
broader class of differential equations, known as separable equations,
having the form

Clearly, any separable equation* reduces to the simpler form in Eq. (1)
when we have g(y) = 1. To solve a separable differential equation, we
rewrite it as


