
Tabulator: Automated Table Generator

Pontus Orraryd∗

Oskar Ankarberg†

Figure 1: Tabulator 1.0

Abstract

Being able to use tables and visualizations to show data is a power-
ful way to quickly understand trends and implications of the data.
However, most users do not want to spend time or effort in creating
good visualizations. They may also not be aware of what specifi-
cally makes a table easy to read and interpret. While systems for
generating good graphical visualizations exist, there are not many
tools that create well designed tables. Most users resort to the stan-
dard generators found in program such as Microsoft Excel, which
frankly, are not very good. While they can be customized to create
pretty decent tables, the problem is that users may not know what
characteristics a well designed table should have.

Here we present Tabulator, a web app to quickly create and down-
load a well-designed table for use in papers and similar. The table
generated upholds known principles in visualization and perception
and is very easy to use. All the user needs is a data file contain-
ing the data they want to tabulate. After creation, some optional
customization of the table is possible to allow users to specialize
the table for their needs. With Tabulator, we hope to fill the gap
between suboptimal table generators shipped with popular program
and complex visualization tools not really suited for people not used
to programming or advanced computer systems.

Keywords: data visualization, automated graph generation, table
design, table generation

∗orraryd@stanford.edu
†oankarbe@stanford.edu

1 Introduction

Tables may be one of the oldest ways to present data. Almost every-
body who have ever written a paper or scientific report have most
likely attempted to use one to show data of some kind. Using a ta-
ble is perfect when we need to show exact numerical values[Tufte
1990]. However, using the usual tools to create a table in software
like Excel is usually cumbersome, and the resulting table is often
perceptually very bad. It does not help how these tools also present
the user with hundreds of options - each more unnecessary than the
next and may cause the user to actually make the table worse.

Figure 2: Automated table created in Numbers

Consider the table made in Figure 2 in Numbers for Mac. The grid
lines attract a lot of focus, almost imprisoning the data in their cells.
The cells are spaced too close together vertically and the very dark
backgrounds on the headers make the text hard to read. While there
are most likely options hidden somewhere that might address these
issues, most users will not spend their time and effort on this, and
would most likely just use this default table. By doing so they do
themselves, and others, a disfavor. A table designed like this is very
suboptimal for displaying data [Few 2004].

While solutions for creating good graphical visualizations automat-
ically have started to appear, there still has not been much work
done to improve automatic creation of tables. There are tools that
can create good tables, but only if the user have the necessary skills
to find the right parameters. In reality, there are lots of users who
use tables that do not possess these skills. Users who may not be
very experienced with complex software and definitely does not
know any programming.

We have created Tabulator, a web app to quickly create and down-
load a well-designed table for use in papers and similar documents.
The table is designed based on well-known principles in visualiza-
tion and perception.



2 Related Work

2.1 Visual Perception

To know what makes an effective visualization, we need to know
how human perception works. Cleveland & McGills studies on
graphical perception is probably considered the most important
contribution concerning this [Cleveland and McGill 1984]. They
conducted studies and found what type of data encodings humans
can decode most accurately. For example, for quantities, we can
decode position and size very accurately but color hue and volumes
less effectively.

2.2 Tables and Table Design

A lot of research have been done on what makes a good table.
Tufte said that a good table should be free from visual clutter
(”chartjunk”) [Tufte 1990]. Tschichold said that ”(rules) should be
used only when they are absolutely necessary”. [Tschichold 1967]

Stephen Fews book describes multiple ways to improve table de-
sign.[Few 2004] He identifies multiple design principles that should
be used when designing a table. Similarly to Tufte, Few puts a lot
of emphasis on white space and how it is vital in making it easy
to quickly scan the data. He goes into detail on different design
choices and will serve as our main reference in our implemented
system. Some examples on things Few talks about is margins, text
formatting, fill color and grouping of tables.

Another important thing Stephen Few identifies is what different
type of tables there are. A table can be Quantitative-to-Categorical
or Quantitative-to-Quantitative. To put it simply, the first type
serves as a look up of individual values, and the second type serves
as a comparison between values. Tables can also be grouped into
two main categories of how they display data. A table that is uni-
directional have categorical items laid out in one direction, while
a table that is bidirectional have categorical items laid out in two.
Usually, the benefit of using a bidirectional table is that you can fit
more data in fewer cells.

Finally, when should we use tables over graphs? Both Tufte and
Few notes that the main reason to use tables above all else is that
they are easy to look up individual values in. They also work well
when comparing two specific values and provide a level of detail
that graphs do not. We should however, not use tables for massive
data sets (the table simply gets too large), or when we are trying to
show trends and overall patterns of a data set. In those cases, some
kind of graph visualization will be more effective.

2.3 Excel and Numbers for Mac

The well known spreadsheet software Excel originally called Visi-
Calc [1978] and became Microsoft Excel 1985 is a tool for visu-
alizing data in graphs and spreadsheets. The software has a rich
set of features but is rather complicated to start using without any
background reading of its functionality. Figure 3 is an example of a
quickly generated table from a CSV file in Excel without any input
from the user. This table does not make use of any whitespace and
column headers are not styled anything.This table would not reach
a high score in [Tufte 2001]

Apples counterpart Numbers in Figure 2 admittedly creates better
tables, but as mentioned earlier it also shows certain problems. This
tool is more intuitive and more user friendly for first time users to
create tables than Excel. The table comes out visually appealing
and a lot of users will probably use this table to present the data.
Instead, the user is tricked into believing that the generated table is

efficiently displayed. But in fact, lots of redundant ink is displayed
in the column header section as both fill color and text color is used.

Figure 3: Automated table created in Excel

2.4 Web Applications and Frameworks

There are quite a few table generators found online. While they
usually possess the ability to generate a table from a data file, they
are not very well designed initially. Many function more like editors
and the generated table require a lot of manual designing before it
can be considered to be finished.

https://datatables.net is a framework for designing tables on the
web. The framework does not aim to provide the most correct sci-
entific visualization related to the provided data, it is rather a tool
for developers to generate tables that look good, and not always dis-
play the data in an effective way according to visual perception. It
is also specifically designed for use on the web and not for publica-
tions, which is what Tabulator is focusing on.

Tablesgenerator.com is another web application that can generate
different tables for use in Latex, the web or in Markdown. The user
is also able to style the table with multiple options after generating
the table. Figure 4 show the table when it was generated automati-
cally. The table have a black grid that steal focus from the data and
have not styled the header columns any differently, making it easy
to confuse it with data. This tool is also not meant to be automatic
but require lots of tweaking before the table is finished.

Figure 4: Automated table created in Tablesgenerator.com

A different kind of table generator is Bertifier [Perin et al. ]. It is
based upon Bertins matrix analysis method[Bertin 1981] and is an
interactive tool for exploring tabular data. The tool allows you to
reorder the data, add graphs and much more. It is more intended
for exploratory data analysis than for creating effective graphics.
The interactive features have been a major inspiration in how our
interactivity has been designed.



3 Methods

3.1 Design Principles

Before implementing our system. We attempted to identify multiple
design principles that our system would try to uphold.

• User Friendly and Fast: Our system should be easy and
quick to use. Our target audience is people that do not feel
comfortable using advanced tools and do not know any pro-
gramming. However, almost everybody can find the need to
use a table. We want our system to be usable even for these
people. We want to make sure that our initial table have a
good design even before any kind of modification is made by
the user.

• Visual perception over pretty design: The tables our system
creates are meant to be easy to read and interpret. While this
usually also means it tends to look good, it is not our primary
focus to create fancy tables. We will rather base of design
choices on visual perception.

• Minimize users impact on design: Our system will not give
the users too much choice regarding the design of the table.
Too much choice can cause confusion and also lead to worse
visualizations in the hands of inexperienced users.

These principles served as general guidelines for every design
choice we made and we repeatedly asked ourselves if we still up-
held these rules.

3.2 System Overview

Our system is split into three distinct parts.

1. The first part of the system reads the data from a data file a
process it. It identifies certain properties of the data such as
type of data. We call this part the data extractor.

2. Once the data is extracted and certain metadata on the data has
been identified, we pass this data to the table drawer. Since
the focus of Tabulator is on table design this is our biggest
part of the system. The table drawer does not do any data
processing but simply creates a table to present the data in.
This separation allows us to create a more modular system.
For instance, our table drawer could be used in any context
where you want to create a table of json data (along with
some metadata). It also makes it easy to separate operations
on the data from the parts that are responsible for the design
of the table.

3. Finally, we have the table renderer, which is simply responsi-
ble for generating an image file of the generated table.

3.3 Data Extractor

Our system takes as input a csv data file. To parse the file we use
an external library called Papaparse1. A current limitation of our
system is that we expect the first line of the csv file to contain head-
ers. While this is often the case, a csv file without headers is still a
”valid” csv file and we would parse these files incorrectly.

Once the files has been uploaded, we attempt to identify the data
type of the different columns. We currently use a brute-force ap-
proach where we interpret something as numerical data if we can
interpret all its rows as a number. If we are not able to do this,
we consider the data type to be nominal. Due to this brute-force

1http://papaparse.com/

approach, we allow users to change the inferred data type after the
creation of the table. For example, sometimes numbers are meant
to be representing ids rather than a quantity and should therefore be
represented as nominal data, but our system would interpret it as a
numerical data type.

We also let the user define ordinal data types, as our system does not
automatically detect these. The user then have to order the different
values in a list which will allow our system to sort in that order
(rather than alphabetically). This is done by using the specified
ordinal order array as a sort function.

The data extractor also attempts to identify cases where the table is
bidirectional, i.e when the first column is not data but categories.
We do this by checking two things:

• The column only contains unique values.

• The column is not numerical.

These two simple requirements turned out to be an effective way to
identify a potential bidirectional table.2

A small but significant feature is that our system also reformat
header titles that may be written in camel case or snake case. These
formats are very common but do not look very pretty for presenta-
tion purposes. Our system properly adds spaces and capitalization
as you would expect from a header title, and improves the impres-
sion of the table created.

3.4 Table Design & the Table Drawer

The design of the table is determined by design principles from
[Tufte 1990] [Few 2004]. Both Few and Tufte are well respected
within the data visualization community and have written numerous
books on the subject. We have attempted to translate their, some-
time vague, ideas into practical implementations. These ideas will
be discussed below.

One of the most important concepts in table design, according to
Few, is the concept of white space. When data is clamped to tightly
together, it can be hard to read. Using a lot of white space between
data is a very effective way to make it easier for the reader to sepa-
rate data from different rows.

The idea of whitespace have been very central for how we choose
to design our tables. Both rows and columns always have a reason-
able amount of space between them and by doing that we improve
readability of the table a lot.

However, as a table get more rows, we also need to consider the
amount of space the full table will occupy. The margin between
rows will therefore decrease as the amount of data gets larger. To
determine an appropriate amount of white space between rows,
we use linear interpolation between our minimum and maximum
amount of white space. The minimum is set to be about 20% of
the row height. The maximum is set to be 100% of the row height.
This range is mentioned by Few as being the extremes of reason-
able margins. Making the margin lower than 20% and the rows will
be very hard to separate. Having over 100% margin on the other
hand, and our data density start being too low.

m(t) = (1− t)mmax + tmmin (1)

2While our system does identify a bidirectional table, it is currently not
styled in any special way.



Figure 5: Fill color appears when the margins get smaller.

The parameter t is set by dividing the amount of rows with a refer-
ence size.

t =
nrows

nref
(2)

The reference value determines how fast the margins get smaller,
and its value determine the limit when we reach the minimum value.
We chose to set this to nref = 50. This effect is demonstrated in
figure 5.

A very common element in tables is grid lines and rules used to
separate rows and columns from each other. In a lot of cases,
these gridlines are just chartjunk [Tufte 1990]. There are less in-
trusive ways to make it easier for the reader to separate the different
data cells. Our system primarily uses white space for this purpose.
When the margins get smaller however, we need to help the reader
separate the rows in other ways. To accomplish this we introduce a
light fill color that increasingly gets more apparent the smaller the
rows get. We do this by using a similar interpolation as with row
margins. Our table generator does not, under any circumstance, use
grids to separate data cells.

When the user chooses to sort a nominal or ordinal value, we will
only list each value once. This is done by aggregating the data and
comparing the previous cell value with current cell value for the
sorted column. We then use fill color to help users separate the dif-
ferent groups of data. This feature makes reading the data more
efficient, as the user does not have to rescan the table for informa-
tion that they already know [Few 2004].

To help readability when sorting this way. There will always be
light fill color separating the groups. While fill color should be
used sparingly, we felt it did more good than harm in this case as it
really helps showing which rows belong to which category.

Text Formatting and typography

The text representation is formatted in a way to make it as percep-
tive as possible to read the data. Text is aligned to the left and num-
bers are aligned to the right [Few 2004], both together with their
corresponding column header. Text in Tabulator is never presented
in any other orientation than horizontal [Few 2004]. Numbers have
always the same amount of decimals and digits are spaced equally
to make decimal points align perfectly. This helps readability and
makes it easier to compare numbers to each other.

The default font for Tabulator is Gill Sans, a Sans-Serif font which
is legible and a favorite from Tufte [Tufte 2001]. The font for the
generated table can thereafter be changed to 5 different fonts legible
for tables, Helvetica, Arial, Verdana, Times New Roman, Palatino

Figure 6: Example of nominal sorting

[Few 2004]. This gives the user some choice over what font to use,
but all fonts are well suited for being used in a table.

User Interface

The main focus of this project has not been to create an efficient
and visually appealing user interface. Although some focus has
been towards the user interaction. We want to minimize the time
the user spends on our web application. Figure 7 shows the user
interface when interacting with the ordinal sort function. This sort
functionality is optimized by introducing drag and drop by rows.
When the user drops the row, the table immediately updates and
sorts by the requested ordinal order.

Figure 7: View of the user interface ordinal sort

3.5 Interactive Features

Quantities as shapes

Our web application lets the user represent quantitative data as cir-
cles. It detects if a column is represented by numbers and adds the
functionality to those columns. Our reasoning for adding this fea-
ture is that sometimes the actual numerical value of a column may
not be that important, but the relationship between the values are.
When that is the case, we can more effectively infer relationships
from shapes rather than from text.

We scale the circles by area. Research in perception has determined
that we tend to underestimate area and so we have compensated this
according to James Flannerys model [Flannery 1971]. We use the
following scaling:



S = 0.98A0.87

It is worth noting that this method has been criticized by Tufte
(among others) for distorting the data. Indeed if one were to mea-
sure the areas of the circles, they would get an incorrect value.
However, when comparing the two methods we made the choice
that Flannerys model made sense in this case.

Reordering of columns

The user might want to change the order of which the columns
should be represented. Therefore we added the functionality to re-
order columns by dragging and dropping a column between desired
columns. This is done by cloning the table into a temporary table
on drag and then reordering the data on drop. Since tables does its
best job of presenting data in a limited size [Tufte 2001], the user
also has the ability to hide undesired columns.

Sorting

The user can sort each column by clicking on each column header.
This will instantly change the order and the displayed table header
seen in Figure 9. The sorting is done by aggregating the data and
comparing cell value by value. As previously mentioned, when
sorting nominal or ordinal data the table will not repeat the same
value multiple times as demonstrated in Figure 6.

3.6 System Output

When the user is satisfied with the table, he/she can generate an
image file of the table. The output of the system is currently a png
file generated in Javascript. HTML5 lets us define a <canvas>
element that will be rendered as a png file.

4 Results

Our system is implemented as a web application written in
Javascript. To process the data into tables we have used a com-
mon visualization library called D3 [Bostock ]. D3 allows us to
bind data to specific DOM elements, which is very handy in any
type of visualization.

Our system generates a table from an uploaded csv data file. The
user then has some options concerning the design of the table. Our
system minimizes the user mistakes while still providing custom
styling. Some of these style options include choosing font, chang-
ing order of columns, change data type and sorting. Once the user
is satisfied with the table, he/she can download a png image of the
table for use.

A complete view of our application can be seen in figure 8. This
shows both the user interface and a generated table which has also
been modified. In this specific screenshot, the user has taken ad-
vantage of the ordinal data type by choosing what order to sort the
data.

Figure 9 show how the same table would look initially after being
uploaded. Since we want our system to generate good tables with-
out any user interaction, this is also an important part of our system.

5 Discussion

While table design may seem simple at first glance, there are lots of
things to think about. One thing we realized quickly was that there
are no perfect design. Almost every design choice involved a trade

Figure 8: Full view of our system

Figure 9: The initial table generated



off of some kind. For instance, it would make sense perceptually
to have bigger tables have larger row margin than smaller tables.
After all it becomes harder to separate the rows if there are more
of them. However, we chose to do the very opposite, and make the
margins smaller instead. Our reasoning were that users often have
a practical limit in the form of space and so a larger table have to be
clamped together to accommodate.

Finding just the right amount of customization for a system like
this is tricky. If you give a user too much freedom they may un-
knowingly reduce the readability of their created table when they
customize it. On the other hand, if you give no freedom at all and
just produce a completely static table, users may find it hard to use
these tables in their specific context. This is something we are still
trying to balance. Our current view is that the user is barely allowed
to change anything that could potentially make the table worse per-
ceptually, but has some choice of the tables visual look and what to
display.

Ordinal data turned out to be a tricky case, and for a long time we
considered to supporting it at all. As we had no way to automat-
ically detect the ordering of this data we knew we would have to
implement some kind of interface to allow the user to specify the
order. This felt like it went against one of our design principles to
keep the system very simple. Nevertheless we eventually decided
that being able to sort by ordinal data is very valuable so we did
choose to implement it. We tried to keep the functionality as simple
as possible with a drag-and-drop interface which we feel worked
out pretty good.

One of our main design principles is to always let visual perception
be more important than ”pretty” design. While those who have
knowledge in the field of data visualization or perception can see
the value in this, a user of the type we are targeting may instead
find the tables bland or even boring. It can certainly be problematic
that the users we are trying to target may not appreciate the design
of the tables and it is definitely important to realize that not all users
will be able to ”see” the value of some of our design choices.

While our system concerns the automatic creation of tables, it is
important to realize that a table is definitely not the tool for all kinds
of data presentation. First and foremost, tables are limited by size.
A table should be used for small data sets (or aggregations of larger
data sets) and never for displaying a large amount of data. Our
system will not deny any size of data, which could potentially lead
users to create massive tables that are too big to be comprehensible.
Some way to warn the user that they may try to show too much data
in a table could be appropriate to partially solve this.

6 Future Work

There are multiple ways this system could be extended and im-
proved. Most improvement involve automating certain processes
that is currently not automatic. The next step in our system would
be including more graphical components as ways to show data.
Small bar charts, spark lines or other type of charts can effectively
combined with a table to show data effectively and is something we
would like to support. We need to careful however in how features
like this will make the system more complicated and may scare
users away.

We would also like to automate more types of formatting. Dates
for instance, which we currently do not try to identify, also have
some special formatting you can apply to improve their readability.
We did not implement this because of how many date formats there
are. Without knowing beforehand anything about how the user may
input dates, it is hard to robustly identify them.

In the future we would like the user to select between a set of output
formats e.g, svg,png and xlsx. This will although have to be done
server side as a browsers cannot generate vector graphics. Vector
graphics would be a better choice for tables than a static image file.
Overall improvements are needed to the system that renders the
final image to create images of better quality.

Another extension would be to support more complex types of ta-
bles. The tables created by Tabulator always create one rectangular
table. Sometimes, it can be more beneficial to group certain subsets
of the data into separate tables, shown side by side.

One major extension (and way beyond the scope of this project)
would be the inclusion of some kind of word processing to infer
meaning and context automatically. This would enable automatic
detection of specific orders of ordinal data, hierarchical patterns
(like country, state and county) and in turn design the table with
this knowledge in mind. Currently the user have to enter the or-
der of ordinal data manually, which can be tedious. Automating
this would be a big step in truly automating the table generation
process.

7 Conclusion

We have created Tabulator, an automatic table generator designed
to quickly generate well designed tables that use ideas from visual
perception to make it as easy as possible to read data from the ta-
ble. We specifically target people who are not very experienced or
comfortable with more advanced software to create visualizations.
We hope that our tool can be used by everyone to quickly create a
table that is usable in papers or similar.

References

BERTIN, J. 1981. Graphics and Graphic Information Processing.
Walter De Gruyter Inc.

BOSTOCK, M. D3. https://d3js.org/.

CLEVELAND, W. S., AND MCGILL, R. 1984. Graphical percep-
tion: Theory, experimentation, and application to the develop-
ment of graphical methods. Journal of the American statistical
association 79, 387, 531–554.

FEW, S. 2004. Show Me the Numbers. Analytics Press.

FLANNERY, J. 1971. The relative effectiveness of some common
graduated point symbols in the presentation of ouantitative data.
The Canadian Cartographer 8, 2.

JOCK D. MACKINLAY, P. H., AND STOLTE, C. 2007. Show me:
Automatic presentation for visual analysis. IEEE Trans Visual-
ization Comp Graphics 13, 6, 1137–1144.

MACKINLAY, J. 1986. Automating the Design of Graphical Pre-
sentations of Relational Information. PhD thesis, Stanford Uni-
versity.

PAT HANRAHAN, CHRIS STOLTE, D. T. 2002. Polaris: A system
for query, analysis and visualization of multi-dimensional rela-
tional databases. IEEE Trans on Visualization Comp Graphics
8, 1.

PERIN, C., DRAGICEVIC, P., AND FEKETE, J.-D. Bertifier.
http://www.bertifier.com/.

TSCHICHOLD, J. 1967. Asymmetric Typography. Reinhold Pub-
lishing.

TUFTE, E. R. 1990. Envisioning Information. Graphics Press LLC.

https://d3js.org/
http://www.bertifier.com/


TUFTE, E. R. 2001. The Visual Display of Quantitative Informa-
tion. Graphics Press LLC.


