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Preface

This book is a tutorial on foundational geometric principles of Lagrangian
and Hamiltonian dynamics and their application in studying important phys-
ical systems. As the title indicates, the emphasis is on describing Lagrangian
and Hamiltonian dynamics in a form that enables global formulations and,
where suitable mathematical tools are available, global analysis of dynamical
properties. This emphasis on global descriptions, that is, descriptions that
hold everywhere on the configuration manifold, as a means of determining
global dynamical properties is in marked contrast to the most common ap-
proach in the literature on Lagrangian and Hamiltonian dynamics that makes
use of local coordinates on the configuration manifold, thereby resulting in
formulations that are typically limited to a small open subset of the config-
uration manifold. In this sense, the material that we introduce and develop
represents a significant conceptual departure from the traditional methods of
studying Lagrangian and Hamiltonian dynamics.

More specifically, this book differs from most of the traditional studies of
analytical mechanics on Euclidean spaces, such as [13, 75]. Moreover, the
global formulation of mechanics presented in this book should be distin-
guished from the geometric treatments that appear in [1, 10, 16, 25, 27,
37, 38, 39, 69, 70], which explicitly make use of local coordinates when illus-
trating the abstract formulation through specific examples. In contrast, we
directly use the representations in the embedding space of the configuration
manifold, without resorting to an atlas of coordinate charts. This allows us to
obtain equations of motion that are globally valid and do not require changes
of coordinates. This is particularly useful in constructing a compact and el-
egant form of Lagrangian and Hamiltonian mechanics for complex dynam-
ical systems without algebraic constraints or coordinate singularities. This
treatment is novel and unique, and it is the most important distinction and
contribution of this monograph to the existing literature.

v
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This book is the result of a research collaboration that began in 2005, when
the first author initiated his doctoral research at the University of Michigan
with the other two authors as his graduate advisers. That research program
led to the completion of his doctoral degree and to numerous conference and
journal publications.

The research plan, initiated in 2005, was based on our belief that there
were advantages to be gained by the formulation, analysis, and computation
of Lagrangian or Hamiltonian dynamics by explicitly viewing configurations
of the system as elements of a manifold embedded in a finite-dimensional
vector space. This viewpoint was not new in 2005, but we believed that the
potential of this perspective had not been fully exploited in the research lit-
erature available at that time. This led us to embark on a long-term research
program that would make use of powerful methods of variational calculus, dif-
ferential geometry, and Lie groups for studying the dynamics of Lagrangian
and Hamiltonian systems. Our subsequent research since 2005 confirms that
there are important practical benefits to be gained by this perspective, es-
pecially for multi-body and other mechanical systems with dynamics that
evolve in three dimensions.

This book arose from our research and the resulting publications in [21],
[46, 47], and [49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63] since
2005, but it goes substantially beyond this earlier work. During the writing
of this book, we were motivated to consider many new issues that we had not
previously studied; in this sense, all of Chapter 4 is new material. We also had
many new insights and obtained new results that have not been previously
published. Nevertheless, this book is intended to be a self-contained treatment
containing many of the results of those publications plus new tutorial material
to provide a unifying framework for Lagrangian and Hamiltonian dynamics
on a manifold. As our research has progressed, we have come to realize the
practical importance and effectiveness of this geometric perspective.

This book is not a complete treatment of Lagrangian and Hamiltonian
dynamics; many important topics, such as geometric reduction, canonical
transformations, Hamilton–Jacobi theory, Poisson geometry, and nonholo-
nomic constraints, are not treated. These subjects are nicely covered in many
excellent books [10, 37, 38, 39, 70]. All of these developments, as well as the
development in this book, treat Lagrangian and Hamiltonian dynamics that
are smooth in the sense that they can be described by differentiable vector
fields. We note the important literature, summarized in [15], that treats non-
smooth Lagrangian and Hamiltonian dynamics. A complete development of
these topics, within the global geometric framework proposed in this book,
remains to be accomplished.

The following manifolds, which naturally arise as configuration manifolds
for Lagrangian and Hamiltonian systems, are of primary importance in our
subsequent development. The standard linear vector spaces of two- and three-
dimensional vectors are denoted by R

2 and R
3, endowed with the usual dot

product operation; the cross product operation is also fundamental in R
3. As
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usual, Rn denotes the linear space of ordered real n-tuples. All translations
of subspaces in R

n, e.g., lines, planes, and hyperplanes, are examples of em-
bedded manifolds. The unit sphere in two dimensions is denoted by S1; it
is a one-dimensional manifold embedded in R

2; similarly, the unit sphere in
three dimensions is denoted by S2; it is a two-dimensional manifold embed-
ded in R

3. The Lie group of orthogonal transformations in three dimensions
is denoted by SO(3). The Lie group of homogeneous transformations in three
dimensions is denoted by SE(3). Each of these Lie groups has an additional
structure based on a group operation, which in each case corresponds to ma-
trix multiplication. Finally, products of the above manifolds also commonly
arise as configuration manifolds.

All of the manifolds that we consider are embedded in a finite-dimensional
vector space. Hence, the geometry of these manifolds can be described using
mathematical tools and operations in the embedding vector space. Although
we are only interested in Lagrangian and Hamiltonian dynamics that evolve
on such an embedded manifold, it is sometimes convenient to extend the
dynamics to the embedding vector space. In fact, most of the results in the
subsequent chapters can be viewed from this perspective.

It is important to justify our geometric assumption that the configurations
constitute a manifold for Lagrangian and Hamiltonian systems. First, man-
ifolds can be used to encode certain types of important motion constraints
that arise in many mechanical systems; such constraints may arise from re-
strictions on the allowed motion due to physical restrictions. A formulation
in terms of manifolds is a direct encoding of the constraints and does not
require the use of additional holonomic constraints and associated Lagrange
multipliers. Second, there is a beautiful theory of embedded manifolds, in-
cluding Lie group manifolds, that can be brought to bear on the development
of geometric mechanics in this context. It is important to recognize that con-
figurations, as elements in a manifold, may often be described and analyzed in
a globally valid way that does not require the use of local charts, coordinates,
or parameters that may lead to singularities or ambiguities in the represen-
tation. We make extensive use of Euclidean frames in R

3 and associated
Euclidean coordinates in R

3, Rn, and R
n×n, but we do not use coordinates

to describe the configuration manifolds. In this sense, this geometric formu-
lation is said to be coordinate-free. Third, this geometric formulation turns
out to be an efficient way to formulate, analyze, and compute the kinematics,
dynamics, and their temporal evolution on the configuration manifold. This
representational efficiency has a major practical advantage for many complex
dynamical systems that has not been widely appreciated by the applied sci-
entific and engineering communities. The associated cost of this efficiency is
the requirement to make use of the well-developed mathematical machinery
of manifolds, calculus on manifolds, and Lie groups.

We study dynamical systems that can be viewed as Lagrangian or Hamil-
tonian systems. Under appropriate assumptions, such dynamical systems are
conservative in the sense that the Hamiltonian, which oftentimes coincides
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with the total energy of the system, is conserved. This is an ideal assumption
but a very useful one in many applications. Although our main attention is
given to dynamical systems that are conservative, many of the results can be
extended to dissipative dynamical systems and to dynamical systems with
inputs.

There are two basic requirements to make use of the Lagrangian perspec-
tive in obtaining the equations of motion. Based on the physical properties
of the dynamical system, it is first necessary to select the set of possible
configurations of the system and to identify the set of all configurations M
as a manifold. The second requirement is to develop a Lagrangian function
L : TM → R

1 which is a real-valued function defined on the tangent bundle
TM of the configuration manifold and satisfying certain assumptions. The
Lagrangian function is the difference of the kinetic energy of the system and
the potential energy of the system. It is assumed that the reader has suffi-
cient background to construct the kinetic energy function and the potential
energy function; we do not go into detail on the basic physics to construct
these energy functions. Rather, numerous specific examples of Lagrangian
and Hamiltonian systems are introduced and used to illustrate the concepts.

Hamilton’s variational principle is the fundamental basis for the theory
of Lagrangian and Hamiltonian dynamics. The action integral is the integral
of the Lagrangian function over a fixed time period. Along a motion of the
system, a specific value of the action integral is induced. Small variations
of the system motion, which are consistent with the configuration manifold
but not necessarily possible motions of the system, induce variations in the
value of the action integral. Hamilton’s variational principle states that these
variations in the value of the action integral are necessarily of higher than
first order for arbitrarily small variations about any system motion. In other
words, the directional or Gateaux derivative of the action integral vanishes for
all allowable variations of the system motion. Using methods of variational
calculus where variations are introduced in terms of a small scalar parame-
ter, this principle leads to Euler–Lagrange equations which characterize all
possible system motions.

Hamilton’s equations of motion are obtained by introducing the Legendre
transformation that is a mapping from the tangent bundle of the configu-
ration manifold to the cotangent bundle of the configuration manifold. A
Hamiltonian function is introduced, and Hamilton’s equations are obtained
using a phase space version of Hamilton’s variational principle. Methods of
variational calculus are used to express the dynamics on the cotangent bundle
of the configuration manifold.

It is admitted that some of the derivations are lengthy and the details and
formulas are sometimes complicated. However, most of the formulations of
Lagrangian and Hamiltonian dynamics on specific configuration manifolds,
considered in this book, are relatively simple and elegant. Consequently, their
application to the formulation of the dynamics of mass particles, rigid bod-
ies, deformable bodies, and multi-body systems follows a relatively straight-
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forward pattern that is, in fact, both more general and simpler than the
traditional formulations that make use of local coordinates.

This book presents a unifying framework for this geometric perspective
that we intend to be accessible to a wide audience. In concrete terms, the
book is intended to achieve the following objectives:

• Study the geometric formulations of dynamical equations of motion for La-
grangian and Hamiltonian systems that evolve on a configuration manifold
using variational methods.

• Express theoretical results in a global geometric form that does not require
local charts or coordinates for the configuration manifold.

• Demonstrate simple methods for the analysis of solution properties.
• Present numerous illustrations of theory and analysis for the dynamics of

multiple interacting particles and of rigid and deformable bodies.
• Identify theoretical and analytical benefits to be gained by the proposed

treatment of geometric mechanics.

The book is also intended to set the stage for a treatment of computational
issues associated with Lagrangian and Hamiltonian dynamics that evolve on
a configuration manifold. In particular, the material in this book can be
extended to obtain a framework for computational aspects of Lagrangian
and Hamiltonian dynamics that achieve the analogous objectives:

• Study the geometric formulations of discrete-time dynamical equations of
motion for Lagrangian and Hamiltonian systems that evolve on an embed-
ded configuration manifold using discrete-time variational methods.

• Develop discrete-time versions of Lagrangian and Hamiltonian dynamics;
these are referred to as geometric variational integrators to reflect the
configuration manifold for the problems considered.

• Demonstrate the benefits of these discrete-time dynamics as a computa-
tional approximation of the continuous-time Lagrangian or Hamiltonian
dynamics.

• Express computational dynamics in a global geometric form that does not
require local charts.

• Present numerous computational illustrations for the dynamics of multiple
interacting particles, and of rigid and deformable bodies.

• Identify computational benefits to be gained by the proposed treatment
of geometric mechanics.

Computational developments for Lagrangian and Hamiltonian dynamics, fol-
lowing the above prescription, lead to computational algorithms that are not
based on the discretization of differential equations on a manifold, but are
based on the discretization of variational principles on a manifold. The above
computational approach has been developed in [46, 50, 51, 54]. A symbolic
approach to obtaining differential equations on a manifold has been proposed
in [9], without addressing computational issues.
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This book is written for a general audience of mathematicians, engineers,
and physicists who have a basic knowledge of classical Lagrangian and Hamil-
tonian dynamics. Some background in differential geometry would be helpful
to the reader, but it is not essential as arguments in the book make primary
use of basic differential geometric concepts that are introduced in the book.
Hence, our hope is that the material in this book is accessible to a wide range
of readers.

In this book, Chapter 1 provides a summary of mathematical material
required for the subsequent development; in particular, manifolds and Lie
groups are introduced. Chapter 2 then introduces kinematics relationships for
ideal particles, rigid bodies, multi-bodies, and deformable bodies, expressed
in terms of differential equations that evolve on a configuration manifold.

Chapter 3 treats the classical approach to variational mechanics where
the configurations lie in an open set of a vector space R

n. This is stan-
dard material, but the presentation provides a development that is followed
in subsequent chapters. Chapters 4 and 5 develop the fundamental results
for Lagrangian and Hamiltonian dynamics when the configuration manifold
(S1)n is the product of n copies of the one-sphere in R

2 (in Chapter 4) and the
configuration manifold (S2)n is the product of n copies of the two-sphere in
R

3 (Chapter 5). The geometries of these two configuration manifolds are ex-
ploited in the developments, especially the definitions of variations. Chapter 6
introduces the geometric approach for rigid body rotation in three dimensions
using configurations in the Lie group SO(3). The development follows Chap-
ter 3, Chapter 4, and Chapter 5, except that the variations are carefully
defined to be consistent with the Lie group structure of SO(3). Chapter 7
introduces the geometric approach for rigid body rotation and translation in
three dimensions using configurations in the Lie group SE(3). The develop-
ment reflects the fact that the variations are defined to be consistent with
the Lie group structure of SE(3). The results in Chapters 3–7 are developed
using only well-known results from linear algebra and elementary properties
of orthogonal matrices and skew-symmetric matrices; minimal knowledge of
differential geometry or Lie groups is required, and all of it is introduced in
the book.

Chapter 8 makes use of the notation and formalism of differential geom-
etry and Lie groups. This mathematical machinery enables the development
of Lagrangian and Hamiltonian dynamics with configurations that lie in an
arbitrary differentiable manifold, an arbitrary matrix Lie group, or an arbi-
trary homogeneous manifold (a manifold that is transitive with respect to
a Lie group action). The power of this mathematical formalism is that it
allows a relatively straightforward development that follows the variational
calculus approach of the previous chapters and it results in a simple abstract
statement of the results in each case. The development, however, does require
a level of abstraction and some knowledge of differential geometry and Lie
groups.
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Chapter 9 makes use of the prior results to treat the dynamics of various
multi-body systems; Chapter 10 treats the dynamics of various deformable
multi-body systems. In each of these example illustrations, the equations
of motion are obtained in several different forms. The equations of motion
are used to study conservation properties and equilibrium properties in each
example illustration. The book concludes with two appendices that provide
brief summaries of fundamental lemmas of the calculus of variations and
procedures for linearization of a vector field on a manifold in a neighborhood
of an equilibrium solution.

Numerous examples of mechanical and multi-body systems are developed
in the text and introduced in the end of chapter problems. These examples
form a core part of the book, since they illustrate the way in which the devel-
oped theory can be applied in practice. Many of these examples are classical,
and they are studied in the existing literature using local coordinates; some
of the examples are apparently novel. Various multi-body examples, involv-
ing pendulums, are introduced, since these provide good illustrations for the
theory. The books [6, 29] include many examples developed using local coor-
dinates.

This book could form the basis for a graduate-level course in applied math-
ematics, classical physics, or engineering. For students with some prior back-
ground in differential geometry, a course could begin with the theoretical
material in Chapter 8 and then cover applications in Chapters 3–7 and 9–10
as time permits. For students with primary interest in the applications, the
course could treat the topics in the order presented in the book, covering the
theoretical topics in Chapter 8 as time permits. This book is also intended for
self-study; these two paths through the material in the book may aid readers
in this category.

In conclusion, the authors are excited to share our perspective on “global
formulations of Lagrangian and Hamiltonian dynamics on manifolds” with
a wide audience. We welcome feedback about theoretical issues the book
introduces, the practical value of the proposed perspective, and indeed any
aspect of this book.

Taeyoung Lee
Washington, DC

Melvin Leok
La Jolla, CA

N. Harris McClamroch
Ann Arbor, MI

January, 2017
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Chapter 1

Mathematical Background

Dynamical systems are most naturally described in the language of differen-
tial equations. For many, but not all dynamical systems, the variables that de-
scribe the motion dynamics can be viewed as elements of a finite-dimensional
vector space, e.g., Rn. But there are important situations where the variables
that describe the dynamics do not lie in a vector space but rather lie in a set
with a different mathematical structure, in particular a manifold structure.
In this case, the solution flow of the differential equations that describe the
dynamics of the system must evolve on this manifold.

In this chapter, we summarize the mathematical background that is used
subsequently. Important results in linear algebra are introduced for finite-
dimensional vectors and matrices viewed as linear transformations. A sum-
mary is given of manifold concepts and related differential geometric concepts
are introduced; a summary of results for vector fields on a manifold is given.
Further mathematical background is presented in Chapter 8, where addi-
tional details on Lie groups and homogeneous manifolds are provided. That
material appears there since it is not required for the prior developments.

1.1 Vectors and Matrices

A vector is an n-tuple of real numbers. Vector addition and scalar multi-
plication are defined as usual. A matrix is an n × m ordered array of real
numbers. Matrix addition, for compatible matrices, and scalar multiplication
are defined as usual.

The transpose of an n×m matrix A is an m× n matrix, denoted by AT ,
obtained by interchange of the rows and columns. The n× n identity matrix
is denoted by In×n. The n × m zero matrix composed of zero elements is
denoted by 0n×m or more often by 0.

© Springer International Publishing AG 2018
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2 1 Mathematical Background

Vector spaces in this book should be understood as being defined over the
real field; the only exception occurs when we occasionally use eigenvalue and
eigenvector concepts, in which case the field is the complex field. An excellent
reference on matrix theory is [7], while a comprehensive treatment is given
in [8].

1.1.1 Vector Spaces

As usual, Rn denotes the set of all ordered n-tuples of real numbers, with
the usual definition of vector addition and scalar multiplication. Thus, Rn is
a real vector space. Also, Rn×m denotes the set of all n × m real matrices
consisting of n rows and m columns. With the usual definition of matrix
addition and scalar multiplication of a matrix, Rn×m is a real vector space.
Unless indicated otherwise, we view an n-tuple of real numbers as a column
vector and we view a matrix as an array of real numbers.

The common notions of span, linear independence, basis, and subspace are
fundamental. The dimension of a vector space is the number of elements in
a basis.

Linear transformations can be defined from the vector space R
m to the

vector space R
n; such a linear transformation can be represented by a real

matrix in R
n×m. Linear transformations from a vector space to the vector

space R
1 are referred to as linear functionals.

We also make use of common matrix notions of rank, determinant, singular
matrix, and eigenvalues and eigenvectors.

The usual Euclidean inner product or dot product of two vectors x, y ∈ R
n

is the real number

x · y = xT y = yTx, (1.1)

and the Euclidean norm on the real vector space R
n is the nonnegative real

number

‖x‖ =
√
xTx. (1.2)

Vectors x, y ∈ R
n that satisfy x · y = 0 are said to be orthogonal or

normal. If y ∈ R
n is nonzero, then the set of vectors that are orthogonal to y

is referred to as the orthogonal complement of y; the orthogonal complement
is an (n− 1)-dimensional subspace of Rn.

Suppose that a vector y ∈ R
n is nonzero, then a vector x ∈ R

n can be
uniquely decomposed into the linear combination of a vector in the direction
of y ∈ R

n and a vector orthogonal to y ∈ R
n; this is given by the expression

x =
(yTx)y

‖y‖2 +

{
In×n − yyT

‖y‖2
}
x. (1.3)
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The first term on the right is the component of x ∈ R
n in the direction of

y ∈ R
n, referred to as the orthogonal projection of x onto y. The second

term on the right is the component of x ∈ R
n orthogonal to y ∈ R

n. These
properties are easily verified. Since the two terms in the decomposition are
orthogonal, this is referred to as an orthogonal decomposition. The above
decomposition formula is simplified if ‖y‖ = 1.

The standard basis vectors in R
n are denoted by e1, . . . , en where ei ∈ R

n

denotes the n-tuple with 1 in the i-th place and zeros elsewhere. Note that
each of the standard basis vectors has unit norm and they are mutually
orthogonal, that is, they form a set of orthonormal vectors. In particular, in
R

2 the standard basis vectors are e1 = [1, 0]T , e2 = [0, 1]T ; in R
3 the standard

basis vectors are e1 = [1, 0, 0]T , e2 = [0, 1, 0]T , e3 = [0, 0, 1]T .
Important subsets of the real vector space R

n are the linear subspaces,
namely subsets that are closed under the operations of vector addition and
scalar multiplication. Examples of important subspaces are the span of a
set of vectors and the orthogonal complement of a set of vectors. There are
important subsets of Rn, other than subspaces; we introduce subsets which
are referred to as manifolds subsequently. All of these concepts can be given
an important geometric interpretation.

A linear transformation A : Rm → R
n can be represented, with respect

to basis sets for R
m and R

n, by an n × m matrix that we also denote by
A. We denote the set of all real n × m matrices by R

n×m. As mentioned
previously, Rn×m is a vector space, and it is isomorphic to R

nm. If A is a
linear transformation on R

n, or equivalently if A ∈ R
n×n, then A is singular

if there is a nonzero x ∈ R
n such that Ax = 0. If A is nonsingular, there is

an inverse linear transformation, or equivalently a matrix in R
n×n denoted

by A−1, that is nonsingular and satisfies AA−1 = A−1A = In×n.
Important subspaces associated with a matrix A ∈ R

n×n are the range of
A, the null space of A, denoted by N (A), and the invariant subspaces of the
matrix A; these invariant subspaces include the eigenspaces of A associated
with the eigenvalues of A, which are the complex numbers s ∈ C for which
the matrix sIn×n −A is singular.

An important linear functional on R
n×n is the trace, which is the sum of

the diagonal terms. In particular, the inner product A · B of two matrices
A, B ∈ R

n×n is the real number

A ·B = trace(ATB) = trace(BTA). (1.4)

Thus, the norm on the real vector space Rn×n is the nonnegative real number

‖A‖ =
√
trace(ATA). (1.5)

The determinant is not a linear functional on R
n×n, but it can be viewed as

a multilinear functional on R
n×· · ·×R

n. It has the important property that
det(A) �= 0 if and only if A ∈ R

n×n is nonsingular.
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1.1.2 Symmetric and Skew-Symmetric Matrices

A symmetric matrix A ∈ R
n×n has the property that A = AT . It is easy to

show that the set of all symmetric matrices is a subspace of Rn×n. A basis of
n(n+1)

2 symmetric matrices can be constructed for the subspace of symmetric

matrices; the dimension of the subspace of symmetric matrices is n(n+1)
2 . For

example, the standard basis for all 2× 2 real symmetric matrices is

[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]
,

and the standard basis for all 3× 3 real symmetric matrices is

⎡
⎣1 0 0
0 0 0
0 0 0

⎤
⎦ ,

⎡
⎣0 1 0
1 0 0
0 0 0

⎤
⎦ ,

⎡
⎣0 0 0
0 1 0
0 0 0

⎤
⎦ ,

⎡
⎣0 0 1
0 0 0
1 0 0

⎤
⎦ ,

⎡
⎣0 0 0
0 0 1
0 1 0

⎤
⎦ ,

⎡
⎣0 0 0
0 0 0
0 0 1

⎤
⎦ .

A skew-symmetric matrix A ∈ R
n×n has the property that A+AT = 0. A

basis of n(n−1)
2 skew-symmetric matrices can be constructed for the subspace

of skew-symmetric matrices; the dimension of the subspace of skew-symmetric

matrices is n(n−1)
2 . For example, the standard basis for all 2 × 2 real skew-

symmetric matrices is

[
0 −1
1 0

]
,

and the standard basis for all 3× 3 real skew-symmetric matrices is

⎡
⎣0 −1 0
1 0 0
0 0 0

⎤
⎦ ,

⎡
⎣ 0 0 1

0 0 0
−1 0 0

⎤
⎦ ,

⎡
⎣0 0 0
0 0 −1
0 1 0

⎤
⎦ .

A simple but important result is that each matrix A ∈ R
n×n can be written

as the sum of a symmetric matrix and a skew-symmetric matrix, namely

A =
1

2

(
A+AT

)
+

1

2

(
A−AT

)
.

Symmetric n × n matrices are useful in defining quadratic forms on R
n.

The eigenvalues of symmetric matrices are necessarily real; the associated
quadratic form is positive-definite, negative-definite, positive-semidefinite, or
negative-semidefinite if the eigenvalues of the symmetric matrix that defines
the quadratic form are all positive, negative, nonnegative, or nonpositive,
respectively.
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1.1.3 Vector Operations in R
2

The real vector space R
2 has special importance, reflecting our interest in

describing objects that have a conceptual existence in two-dimensional space.
An important vector operation on pairs of vectors in R

2 is the dot product.
The dot product, also known as the inner product, of two vectors x, y ∈ R

2

is the real number

x · y = xT y.

Thus, the norm in R
2 is given by

‖x‖ = +
√
xTx.

We will also make use of the 2× 2 skew-symmetric matrix

S =

[
0 −1
1 0

]
, (1.6)

which rotates a vector by π
2 counterclockwise. Thus, for any x ∈ R

2, the
vector Sx ∈ R

2 is orthogonal to x ∈ R
2 since xTSx = 0.

Although the cross product can be defined on R
3 as shown in the next

section, the cross product is not defined on R
2.

Consider two unit vectors x, y ∈ R
2, which we can think of as direction

vectors in R
2. Plane geometry allows us to define the angle θ between these

two unit vectors. The angle θ, assumed to lie in the interval [0, 2π), can be
shown to satisfy

cos θ = xT y,

sin θ = xTST y.

Consequently, if θ = 0, it follows that xT y = 1 and xTST y = 0; that is, the
two vectors are collinear. If θ = π

2 , it follows that xT y = 0 and xTST y = 1;
that is, the two vectors are orthogonal.

1.1.4 Vector Operations in R
3

The real vector space R
3 has special importance, reflecting our interest in

describing physical objects that exist in three-dimensional space. Two im-
portant vector operations on pairs of vectors in R

3 are the dot product and
the cross product. The dot product, also known as the inner product, of two
vectors x, y ∈ R

3 is the real number

x · y = xT y.
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Then, as before, the norm in R
3 is given by

‖x‖ = +
√
xTx.

The cross product of two vectors x, y ∈ R
3 is the real vector in R

3

x× y =

⎡
⎣x2y3 − x3y2
x3y1 − x1y3
x1y2 − x2y1

⎤
⎦ . (1.7)

The cross product, viewed as an operator on R
3, can also be written in terms

of a linear transformation and a matrix multiplication as

x× y = S(x)y,

where S : R3 → R
3×3 is

S(x) =

⎡
⎣ 0 −x3 x2

x3 0 −x1

−x2 x1 0

⎤
⎦ , (1.8)

the skew-symmetric matrix-valued function on R
3.

Thus, for any x, y ∈ R
3, the vector S(x)y ∈ R

3 is orthogonal to y ∈ R
3

since S(x)y · y = yTS(x)T y = 0. Note that det(S(x)) = 0, for all x ∈ R
3, so

that each 3×3 skew-symmetric matrix is singular and does not have a matrix
inverse. Alternatively, any 3×3 skew-symmetric matrix can be viewed as the
image of a linear transformation on R

3 that represents the cross product
operation, y �→ x× y, for some x ∈ R

3.
The shorthand notation

x̂ = S(x)

is sometimes convenient, where we view S : R3 → so(3), where so(3) denotes
the subspace of 3 × 3 skew-symmetric matrices. Thus, the linear transfor-
mation hat map ·̂ : R

3 → so(3) transforms a vector x in R
3 to a 3 × 3

skew-symmetric matrix x̂ such that x̂y = x × y for any y ∈ R
3. This linear

transformation has an inverse and the inverse of the hat map is denoted by
the vee map ·∨ : so(3) → R

3. This demonstrates an isomorphism between
the vector spaces R3 and so(3).

Consider two unit vectors x, y in R
3, which we can think of as direction

vectors in R
3. The two unit vectors define a plane in R

3 wherein the angle θ
between these two unit vectors can be defined. The angle θ, assumed to lie
in the interval [0, 2π), can be shown to satisfy

cos θ = xT y,

e sin θ = S(x)y,
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for a unit vector e ∈ R
3 that is orthogonal to the plane defined by the two

unit vectors; the vector e ∈ R
3 is defined according to the right-hand rule,

that is, e = x×y
‖x×y‖ . Note that sin θ also satisfies

sin θ =
√

1− (xT y)2.

Consequently, if the two unit vectors are collinear, then either θ = 0 and it
follows that xT y = 1 and S(x)y = 0, or θ = π and it follows that xT y = −1
and S(x)y = 0. If the two unit vectors are orthogonal, then either θ = π

2 and
it follows that xT y = 0 and S(x)y = 1, or θ = 3π

2 and it follows that xT y = 0
and S(x)y = −1.

1.1.5 Orthogonal Matrices on R
3

We use the notation GL(n) for the set of all n× n real nonsingular matrices.
Since GL(n) is a subset of Rn×n, the inner product and the norm for matrices
in GL(n) are defined. It can be shown that GL(n) has the properties of a
group, formally introduced shortly, where matrix multiplication is the group
operation.

An important subset of GL(3) is the set of real 3× 3 orthogonal matrices,
that is, matrices whose inverses are equal to their transposes. In other words,
a matrix R ∈ R

3×3 is orthogonal if

RRT = I3×3, RTR = I3×3. (1.9)

Orthogonal matrices have the property that their columns, as vectors in
R

3, are orthonormal and their rows, as vectors in R
3, are orthonormal. An

orthogonal matrix can be viewed as an invertible linear transformation on
R

3. The set of 3 × 3 orthogonal matrices, with determinant +1, is denoted
subsequently as SO(3), referred to as the special orthogonal group or the
group of rotations.

There is a close connection between skew-symmetric matrices in so(3) and
orthogonal matrices in SO(3) in the sense that an orthogonal matrix can be
expressed in terms of a skew-symmetric matrix. We now show two different
representations that illustrate this connection.

For each orthogonal matrix R ∈ SO(3), there is a skew-symmetric matrix
ξ ∈ so(3) such that I3×3+ ξ is nonsingular and the orthogonal matrix can be
expressed as:

R = (I3×3 − ξ) (I3×3 + ξ)
−1

. (1.10)
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This provides an expression for an orthogonal matrix in terms of a skew-
symmetric matrix. This relationship is often referred to as the Cayley trans-
formation.

The following is also true. For each orthogonal matrix R ∈ SO(3), there is
a skew-symmetric matrix ξ ∈ so(3) such that the orthogonal matrix can be
expressed as:

R = eξ =
∞∑

n=0

(ξ)n

n!
, (1.11)

where the right-hand side gives the definition of the matrix exponential. This
provides another expression for an orthogonal matrix in terms of a skew-
symmetric matrix, using the exponential map.

Since the vee map provides an isomorphism between skew-symmetric ma-
trices and vectors in R

3, the above properties can also be expressed in the
following ways. For each orthogonal matrix R ∈ SO(3), there is a vector
x ∈ R

3, such that the orthogonal matrix can be expressed in terms of the
Cayley transformation as

R = (I3×3 − S(x)) (I3×3 + S(x))
−1

. (1.12)

For each orthogonal matrix R ∈ SO(3), there is a vector x ∈ R
3 such that

the orthogonal matrix can be expressed in terms of the matrix exponential
as

R = eS(x) =

∞∑
n=0

(S(x))n

n!
. (1.13)

The Cayley and exponential representations for elements in SO(3) have
important theoretical and computational implications. In particular, they
suggest that various operations and computations involving elements in SO(3)
correspond to vector space operations and computations on the associated
vector spaces so(3) or equivalently on R

3. However, these representations in
terms of skew-symmetric matrices so(3) are invertible only in a neighborhood
of the identity transformation in SO(3), so the identification does not hold
globally on SO(3).

1.1.6 Homogeneous Matrices as Actions on R
3

An important subset of GL(4) is the set of real 4 × 4 matrices with the
following partitioned matrix structure

[
R x
0 1

]
,
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where R ∈ SO(3) is a 3 × 3 orthogonal matrix with determinant +1 and
x ∈ R

3 is a column vector. Here, the 0 is a row vector in R
3 and ‘1 is a

real number in R
1. Such matrices are said to be homogeneous matrices. A

homogeneous matrix can also be viewed as a linear transformation on R
4.

The set of 4×4 homogeneous matrices is denoted subsequently as SE(3), and
the homogeneous matrix above is sometimes denoted by (R, x) ∈ SE(3). It
has important properties that we subsequently describe.

The set of all real 4 × 4 homogeneous matrices is closed under matrix
multiplication. To illustrate, the matrix product of two homogeneous matrices
is a homogeneous matrix since

[
R2 x2

0 1

] [
R1 x1

0 1

]
=

[
R2R1 x2 +R2x1

0 1

]
.

Each homogeneous matrix has an inverse given by

[
R x
0 1

]−1

=

[
RT −RTx
0 1

]
,

which is also a homogeneous matrix. The identity matrix I4×4 is a homo-
geneous matrix. Consequently, the set of all homogeneous matrices is closed
under matrix multiplication and is a group.

The matrix product represents the composition of the two linear trans-
formations represented by the individual homogeneous matrices. As a set,
SE(3) can be identified with SO(3) × R

3; however the calculation above in-
dicates that the group composition on SE(3) is given by (R2, x2)(R1, x1) =
(R2R1, x2 + R2x1), as opposed to the natural composition on SO(3) × R

3,
(R2, x2)(R1, x1) = (R2R1, x2 + x1). If we endow the set SO(3) × R

3 with
the operation defined by the second composition, it is referred to as the di-
rect product of SO(3) and R

3. Since the product is endowed with the first
group composition, SE(3) is referred to as the semidirect product of SO(3)
and R

3. The homogeneous matrix representation of SE(3) provides a conve-
nient way of encoding the semidirect product structure in terms of matrix
multiplication on GL(4).

We can identify a vector x ∈ R
3 with the vector (x, 1) ∈ R

4. The group
action of a homogeneous matrix in SE(3) acting on R

3 can be expressed as

[
R x2

0 1

] [
x1

1

]
=

[
x2 +Rx1

1

]
,

that represents the action x1 �→ x2 +Rx1 of a homogeneous matrix in GL(4)
on a vector in R

3. In geometric terms, the element (R, x2) ∈ SE(3) acts on
x1 ∈ R

3 by first rotating the vector x1 by R, followed by a translation by x2.
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1.1.7 Identities Involving Vectors, Orthogonal Matrices, and
Skew-Symmetric Matrices

There are a number of matrix identities that involve vectors, orthogonal ma-
trices, and skew-symmetric matrices. A few of these identities are summa-
rized.

For any vectors x, y ∈ R
n:

xT y = trace[xyT ]. (1.14)

For any m× n matrix A and any n×m matrix B:

trace[AB] = trace[BA]. (1.15)

For any x ∈ R
3:

ST (x) = −S(x), (1.16)

x× x = S(x)x = 0, (1.17)

S(x)2 = xxT − ‖x‖2 I3×3, (1.18)

S(x)3 = −‖x‖2S(x). (1.19)

For any R ∈ SO(3) and any x, y ∈ R
3:

R(x× y) = (Rx)× (Ry), (1.20)

RS(x)RT = S(Rx). (1.21)

For any x, y, z ∈ R
3:

S(x× y) = yxT − xyT , (1.22)

S(x× y) = S(x)S(y)− S(y)S(x), (1.23)

S(x)S(y) = −xT yI3×3 + yxT , (1.24)

(x× y) · z = x · (y × z), (1.25)

x× (y × z) = (x · z)y − (x · y)z, (1.26)

y × (x× z) + x× (z × y) + z × (y × x) = 0, (1.27)

‖x× y‖2 = ‖x‖2 ‖y‖2 − (xT y)2. (1.28)

The proofs of these identities are not given here but the proofs depend
only on the definitions and properties previously introduced.
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1.1.8 Derivative Functions

Here, we review the notation and terminology for derivatives of scalar and
vector-valued functions.

Suppose that D ⊂ R
n is an open set and the scalar-valued function

f : D → R
1 is a differentiable function on D. Then we use the notation

∂f(x)
∂x ∈ R

n to describe the derivative function, also referred to as the gradi-
ent; we usually view the gradient as a column vector in R

n. The directional
derivative of f : D → R

1 at x ∈ R
n in the direction ξ ∈ R

n is given by

(
∂f(x)

∂x
· ξ

)
=

(
∂f(x)

∂x

)T

ξ ∈ R
1,

where we use the inner product on R
n.

Suppose that D ⊂ R
n is an open set and the vector-valued function

f : D → R
m is a differentiable function on D. We use the notation

∂f(x)
∂x ∈ R

m×n to describe the derivative function; we usually view this as
an m × n matrix of partial derivatives of the scalar component functions
with respect to the scalar components of the argument vector. This is often
referred to as a Jacobian matrix.

For either scalar or vector-valued functions that are differentiable, we sub-

sequently use the notation ∂f(x0)
∂x to denote the derivative function ∂f(x)

∂x
evaluated at x0 ∈ D.

Suppose that D ⊂ R
n×n is an open set and the scalar-valued function

f : D → R
1 is a differentiable function on D. Then we use the notation

∂f(A)
∂A ∈ R

n×n to describe the derivative function; we usually view this deriva-
tive as a matrix-valued function with values in R

n×n. The directional deriva-
tive of f : D → R

1 at A ∈ R
n×n in the direction B ∈ R

n×n is given by

(
∂f(A)

∂A
·B

)
= trace

((
∂f(A)

∂A

)T

B

)
∈ R

1,

where we use the inner product on R
n×n.

1.2 Manifold Concepts

Finite-dimensional differentiable manifolds are sets with a mathematical
structure, referred to as a differential geometric structure, that supports
calculus. Locally, all m-dimensional, differentiable manifolds are equivalent,
or diffeomorphic to R

m, in the sense that there is a local diffeomorphism
between the manifold and R

m; that is, in a neighborhood of each point on
the manifold, the points in the neighborhood can be labeled using m local
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coordinates, or equivalently, each point in the neighborhood can be identified
with a point in R

m. This important fact is valid only locally in a possibly
small neighborhood of each point on the manifold. The global geometry of
the manifold may be quite different from the linear geometry of Rm. These
concepts are formalized in the subsequent sections.

Differentiable manifolds are used to describe the sets on which dynamical
systems evolve. This motivates us to use mathematical developments that
characterize the global properties of the manifolds and are not based only on
local manifold representations. We summarize the most important differential
geometric features of differentiable manifolds that are required. There are
many good references on the mathematical theory of differential geometry
and manifolds; references that emphasize connections with mechanics include
gentle introductions in [81, 89] and the important references [5, 42, 70].

1.2.1 Manifolds

A point in a differentiable manifold M is most often described in terms of
local coordinates, called charts, and a collection of charts, called an atlas.
Each vector in M is specified by real-valued coordinates. These coordinates
are referred to as local coordinates on M since they are defined only on an
open set in M , that is the coordinates, in general, are not (and typically
cannot be) globally defined everywhere on M .

We do not make extensive use of local coordinates in our subsequent de-
velopment of geometric mechanics, since such a development is necessarily
restricted by the inherent limitations of local coordinates. Rather, we take
a different point of view: viewing a manifold as a submersion or embedded
manifold. In particular, an embedded differentiable manifold is a subset of a
finite-dimensional vector space defined as the zero set of scalar differentiable
functions, where the derivatives (gradients) of the functions are assumed to
be linearly independent on the manifold.

A differentiable manifold, as a submersion or embedded manifold in R
n,

is described by

M = {x ∈ R
n : fi(x) = 0, i = 1, . . . , l} , (1.29)

where fi : R
n → R

1, i = 1, . . . , l are scalar differentiable functions with the

property that the vectors ∂fi(x)
∂x , i = 1, . . . , l are linearly independent vectors

in R
n for each x ∈ M . Thus, necessarily 1 ≤ l ≤ n. We say that the manifold

M has dimension n − l and codimension l. Consequently, we can represent
a vector in an embedded manifold M ⊂ R

n as a vector in R
n so long as

the equality conditions defining the embedded manifold are satisfied. Such
representations for a point in M have the geometric advantage that they are
global in the sense that they are defined everywhere that the manifold M is
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defined. In the subsequent analysis, a differentiable manifold is assumed to
have a constant dimension everywhere on the manifold.

Manifolds are fundamental to our subsequent development, and there is
an extensive theory described in the mathematical literature. Subsequent ref-
erences to a smooth manifold or simply a manifold imply that the manifold
is differentiable. Although more abstract notions of a manifold can be intro-
duced, it is sufficient for our subsequent development to view manifolds as
embedded manifolds.

A differentiable manifold M is also assumed to have an inner product,
typically the inner product that arises from the finite-dimensional vector
space within which it is embedded.

1.2.2 Tangent Vectors, Tangent Spaces and Tangent Bundles

Let γ : [−1, 1] → M denote a differentiable curve on M with γ(0) = x ∈ M .

Then dγ(s)
ds , evaluated at s = 0, is a tangent vector to M at x ∈ M . For each

x ∈ M , the set of all such tangent vectors to M at x ∈ M , denoted by TxM ,
is a subspace of Rn, referred to as the tangent space of M at x ∈ M , and
hence it is a linear manifold. We refer to ξ ∈ TxM as a tangent to M at
x ∈ M . For a manifold M as given above, it can be shown that the tangent
space

TxM =

{
ξ ∈ R

n :

(
∂fi(x)

∂x
· ξ

)
= 0, i = 1, . . . ,m

}
, (1.30)

so that the tangent space consists of the set of vectors in R
n that are orthog-

onal to all of the gradients of the functions that define the manifold. The
dimension of the tangent space is n−m.

The tangent bundle of a manifold M , denoted by TM , is the set of pairs
(x, ξ) ∈ M × TxM , and it has its own manifold structure. The dimension of
the tangent bundle is 2(n−m).

We are also interested in functions (maps, or transformations) from one
manifold to another manifold and calculus associated with such functions. A
map is said to be a diffeomorphism if it is continuously differentiable and it
has an inverse map that is continuously differentiable. We distinguish between
a local diffeomorphism that is defined on open subsets of the manifolds and
a global diffeomorphism that is defined everywhere on the two manifolds.

Two manifolds are said to be diffeomorphic if there exists a (global) diffeo-
morphism from one of the manifolds to the other. Two diffeomorphic mani-
folds necessarily have the same dimension. Two manifolds embedded in the
same vector space are diffeomorphic if one manifold can be smoothly de-
formed into the other manifold. Two diffeomorphic manifolds are, from a
differential geometry perspective, equivalent.
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1.2.3 Cotangent Vectors, Cotangent Spaces, and Cotangent
Bundles

In the following, if D is a subspace of Rn then D∗ denotes the set of all linear
functionals from D to R

1. It can be shown that D∗ is a subspace of (Rn)∗

and it is referred to as the dual of D.
This notation is used to introduce cotangent vectors (or covectors). If

x ∈ M , then a cotangent vector is a linear functional defined on the tangent
space TxM . The set of all such cotangents, denoted T∗

xM , is the set of all
linear functionals on the tangent space at x ∈ M , namely

T∗
xM = (TxM)∗, (1.31)

and it is a subspace, referred to as the cotangent space of M at x ∈ M , and
hence it is a linear manifold. The dimension of the cotangent space is n−m.

The cotangent bundle of a manifold M , denoted by T∗M , is the set of pairs
(x, ζ) ∈ M × T∗

xM , and it has its own manifold structure. The dimension of
the cotangent bundle is 2(n−m).

Both TM and T∗M are manifolds in their own right, so it makes sense
to consider tangent and cotangent spaces to these objects. In particular,
the tangent space of TM at (x, ξ) ∈ TM can be defined and it is denoted
by T(x,ξ)TM . Further, the cotangent space of TM at (x, ξ) ∈ TM can be
defined and it is denoted by T∗

(x,ξ)TM . The tangent bundle of the manifold
TM is denoted by TTM , and the cotangent bundle of the manifold TM is
denoted by T∗TM . Similarly, there are tangent spaces and cotangent spaces
for T∗M ; further, the tangent bundle of T∗M is denoted by TT∗M and the
cotangent bundle of T∗M is denoted by T∗T∗M .

Typically, one thinks of the tangent vectors as column vectors, and the
covectors as row vectors, which can be viewed as the transpose of a column
vector. This is because the matrix product of a row vector with a column
vector yields a scalar, which provides a natural way of representing the action
of a linear functional (or covector) on a vector to yield a scalar. Given a
covector represented by αT , with α ∈ R

n, and a vector v ∈ R
n, the natural

pairing of α ∈ R
n and v ∈ R

n is given by the matrix product or inner product
αT v = α ·v ∈ R

1. Thus, it is possible to identify the cotangent space with the
tangent space, by associating each (row) covector αT ∈ R

n with the (column)
vector α ∈ R

n.
With this identification in mind, we represent covectors as vectors in R

n,
but we emphasize the dual nature of covectors by expressing them in terms
of the inner product with an element of a tangent space. Since a covector
is defined by its action on a tangent vector, there is an ambiguity in the
representation since we can add a vector that is orthogonal to M to the
vector proxy for the covector and not change its inner product (or action) on
tangent vectors in TxM . To resolve this ambiguity, we identify the cotangent
space of M at each point x ∈ M with the corresponding tangent space.
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Consider an orthogonal projection operator P (x) : Rn → TxM . As in the
prior orthogonal decomposition result for vectors in R

n (1.3), we can express
any vector v ∈ R

n uniquely as

v = P (x)v + (In×n − P (x))v, (1.32)

where the first term on the right is the projection of v ∈ R
n onto TxM and

the second term on the right is orthogonal to TxM .
This orthogonal decomposition implies the following. A covector αT ∈

R
n is defined by its action α · (P (x)v) = αT (P (x)v) = (P (x)Tα)T v on all

v ∈ TxM . The ambiguity in defining a covector x ∈ T∗
xM can be resolved by

projecting α to P (x)Tα. This resolution of the ambiguity in defining covectors
is extensively used in the subsequent chapters.

1.2.4 Intersections and Products of Manifolds

As previously in (1.29), assume

M = {x ∈ R
n : fi(x) = 0, i = 1, . . . ,m} , (1.33)

where fi : R
n → R

1, i = 1, . . . ,m are scalar differentiable functions with the

property that the vectors ∂fi(x)
∂x , i = 1, . . . ,m are linearly independent vectors

in R
n on M . Thus, M is an (n − m)-dimensional differentiable manifold

embedded in R
n. Now define

Mi = {x ∈ R
n : fi(x) = 0} , (1.34)

for i = 1, . . . ,m. Thus, Mi is an (n − 1)-dimensional differentiable mani-
fold embedded in R

n for each i = 1, . . . ,m. It can be shown that M is the
intersection of these m manifolds; that is

M =
m⋂
i=1

Mi. (1.35)

Further, it can be shown that for each x ∈ M , the tangent and cotangent
spaces of the intersection manifold M satisfy

TxM =

m⋂
i=1

TxMi, (1.36)

T∗
xM =

m⋂
i=1

T∗
xMi, (1.37)

and the tangent and cotangent bundles of the intersection manifold M are
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TM =

m⋂
i=1

TMi, (1.38)

T∗M =
m⋂
i=1

T∗Mi. (1.39)

Now suppose that Mi is a differentiable manifold embedded in R
ni for

i = 1, . . . ,m. It can be shown that the product set defined by

M = {(x1, . . . , xm) : xi ∈ Mi, i = 1, . . . ,m} (1.40)

= M1 × . . . ×Mm, (1.41)

is a differentiable manifold embedded in R
n, where n =

∑m
i=1 ni. Further, it

can be shown that for each x = (x1, . . . , xm) ∈ M , the tangent and cotangent
spaces of the product manifold M are

TxM = Tx1
M1 × · · · × Txm

Mm, (1.42)

T∗
xM = T∗

x1
M1 × · · · × T∗

xm
Mm, (1.43)

and the tangent and cotangent bundles of the product manifold M are

TM = TM1 × · · · × TMm, (1.44)

T∗M = T∗M1 × · · · × T∗Mm. (1.45)

1.2.5 Examples of Manifolds, Tangent Bundles, and Cotangent
Bundles

In this section, several illustrations of manifolds, their tangent bundles, and
their cotangent bundles are described. In particular, we provide examples of
manifolds which are subsets of R2, R3, Rn, or GL(n).

1.2.5.1 Manifolds Embedded in R
2

The interesting nontrivial manifolds embedded in R
2 are one-dimensional.

The one-dimensional subspaces of R2, namely straight lines through the ori-
gin, are examples of one-dimensional manifolds. Each subspace can be trans-
lated by addition of a fixed vector; the resulting sets are also linear manifolds.
For any element in a linear manifold defined by the translation of a subspace,
the tangent space at that element coincides with the linear subspace. The
tangent bundle of such a linear manifold can be identified with the product
of the linear manifold and the subspace. The cotangent space can be identified
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with the dual of the subspace and the cotangent bundle can be identified with
the product of the linear manifold and the dual of the subspace.

Assume f : R2 → R
1 is continuously differentiable and f ′(x) = ∂f(x)

∂x �= 0
when f(x) = 0; then

M =
{
x ∈ R

2 : f(x) = 0
}

is a one-dimensional manifold embedded in R
2. The tangent space of M at

x ∈ M is

TxM =
{
ξ ∈ R

2 : (f ′(x) · ξ) = 0
}
,

which can also be expressed as the range of a 2× 2 projection matrix as

TxM =

{
ξ ∈ R

2 : ξ =

(
I2×2 − f ′(x)f ′T (x)

‖f ′(x)‖2
)
y, y ∈ R

2

}
,

or in terms of skew-symmetric matrices as

TxM =
{
ξ ∈ R

2 : ξ = Sf ′(x), S ∈ R
2×2, S + ST = 0

}
.

The tangent bundle of M is given by

TM =
{
(x, ξ) ∈ R

2 × R
2 : x ∈ M, ξ ∈ TxM

}
.

The dimension of the tangent bundle is two.
The one-dimensional cotangent space of M at x ∈ M is

T∗
xM = (TxM)∗,

the space of linear functionals on the tangent space TxM . The cotangent
bundle of M is

T∗M =
{
(x, ζ) ∈ R

2 × (R2)∗ : x ∈ M, ζ ∈ T∗
xM

}
.

The dimension of the cotangent bundle is two.
An important example of a one-dimensional manifold is the unit sphere in

R
2:

S1 =
{
q ∈ R

2 : ‖q‖2 = 1
}
. (1.46)

For any q ∈ S1, it can be shown that the tangent space to S1 at q ∈ S1 is the
one-dimensional subspace

TqS
1 =

{
ξ ∈ R

2 : q · ξ = 0
}
,

which can also be expressed as the range of a 2× 2 projection matrix as
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TqS
1 =

{
ξ ∈ R

2 : ξ = (I2×2 − qqT )y, y ∈ R
2
}
,

or in terms of skew-symmetric matrices as

TqS
1 =

{
ξ ∈ R

2 : ξ = Sq, S ∈ R
2×2, + ST = 0

}
.

The tangent bundle of S1 is given by

TS1 =
{
(q, ξ) ∈ R

2 × R
2 : q ∈ S1, ξ ∈ TqS

1
}
.

The dimension of the tangent bundle is two.
The cotangent space of S1 at q ∈ S1 is

T∗
qS

1 = (TqS
1)∗.

The dimension of the cotangent space T∗
qS

1 is one. The cotangent bundle of
S1 is

T∗S1 =
{
(q, ζ) ∈ R

2 × (R2)∗ : q ∈ S1, ζ ∈ T∗
qS

1
}
.

The dimension of the cotangent bundle of S1 is two.

1.2.5.2 Manifolds Embedded in R
3

The interesting nontrivial manifolds embedded in R
3 have dimension one or

dimension two. The subspaces of R
3 are examples of linear manifolds. In

geometric terms, the one-dimensional subspaces can be viewed as straight
lines in R

3 that contain the origin; the two-dimensional subspaces can be
viewed as planes in R

3 that contain the origin. Each subspace can be trans-
lated by addition of a fixed vector; the resulting sets are linear manifolds.
The one-dimensional linear manifolds are translations of straight lines; the
two-dimensional linear manifolds are translations of planes. For any vector
in such a linear manifold, the tangent space at that vector coincides with
the subspace. The tangent bundle of a linear manifold can be identified with
the product of the linear manifold and the subspace. The cotangent space
can be identified with the dual of the subspace and the cotangent bundle
can be identified with the product of the linear manifold and the dual of the
subspace.

Assume f : R3 → R
1 is continuously differentiable and f ′(x) = ∂f(x)

∂x �= 0
when f(x) = 0; then

M =
{
x ∈ R

3 : f(x) = 0
}

is a two-dimensional manifold embedded in R
3. The tangent space of M at

x ∈ M is
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TxM =
{
ξ ∈ R

3 : (f ′(x) · ξ) = 0
}
,

which can also be expressed as the range of a 3× 3 projection matrix as

TxM =

{
ξ ∈ R

3 : ξ =

(
I3×3 − f ′(x)f ′T (x)

‖f ′(x)‖2
)
y, y ∈ R

3

}
,

or in terms of skew-symmetric matrices as

TxM =
{
ξ ∈ R

3 : ξ = Sf ′(x), S ∈ R
3×3, S + ST = 0

}
.

The tangent bundle of M is given by

TM =
{
(x, ξ) ∈ R

3 × R
3 : x ∈ M, ξ ∈ TxM

}
.

The dimension of the tangent bundle is four.
The two-dimensional cotangent space of M at x ∈ M is

T∗
xM = (TxM)∗.

The cotangent bundle of M is

T∗M =
{
(x, ζ) ∈ R

3 × (R3)∗ : x ∈ M, ζ ∈ T∗
xM

}
.

The dimension of the cotangent bundle is four.
An important example of a two-dimensional manifold is the unit sphere in

R
3:

S2 =
{
q ∈ R

3 : ‖q‖2 = 1
}
. (1.47)

For any q ∈ S2, the tangent space to S2 at q ∈ S2 is a two-dimensional vector
space

TqS
2 =

{
ξ ∈ R

3 : q · ξ = 0
}
,

which can also be expressed as the range of a 3× 3 projection matrix as

TqS
2 =

{
ξ ∈ R

3 : ξ = (I3×3 − qqT )y, y ∈ R
3
}
,

or in terms of skew-symmetric matrices as

TqS
2 =

{
ξ ∈ R

3 : ξ = Sq, S ∈ R
3×3, S + ST = 0

}
.

The tangent bundle of S2 is given by

TS2 =
{
(q, ξ) ∈ R

3 × R
3 : q ∈ S2, ξ ∈ TqS

2
}
.

The dimension of the tangent bundle is four.
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The cotangent space T∗
qS

2 of S2 at q ∈ S2 is two dimensional. The cotan-
gent bundle of S2 is

T∗S2 =
{
(q, ζ) ∈ R

3 × (R3)∗ : q ∈ S2, ζ ∈ T∗
qS

2
}
.

The dimension of the cotangent bundle is four.
Assume fi : R

3 → R
1, i = 1, 2 are continuously differentiable and f ′

i(x) =
∂fi(x)
∂x , i = 1, 2, are linearly independent; then

M =
{
x ∈ R

3 : fi(x) = 0, i = 1, 2
}

is a one-dimensional manifold embedded in R
3. The tangent space of M at

x ∈ M is

TxM =
{
ξ ∈ R

3 : (f ′
i(x) · ξ) = 0, i = 1, 2

}
,

which can also be expressed in terms of 3× 3 projection matrices

TxM =

{
ξ ∈ R

3 : ξ =

(
I3×3 − f ′

i(x)f
′
i(x)

T

‖f ′
i(x)‖2

)
yi, yi ∈ R

3, i = 1, 2

}
.

The tangent bundle of M is given by

TM =
{
(x, ξ) ∈ R

3 × R
3 : x ∈ M, ξ ∈ TxM

}
.

The dimension of the tangent bundle is two.
The two-dimensional cotangent space of M at x ∈ M is

T∗
xM = (TxM)∗.

The cotangent bundle of M is

T∗M =
{
(x, ζ) ∈ R

3 × (R3)∗ : x ∈ M, ζ ∈ T∗
xM

}
.

The dimension of the cotangent bundle is two.
Let a ∈ R

3 with ‖a‖ = 1. An example of a one-dimensional manifold in
R

3 is given by

M =
{
x ∈ R

3 : ‖x‖2 = 1, a · x = 0
}
.

For any x ∈ M , it can be shown that the tangent space to M at x ∈ M is
the one-dimensional vector space

TxM =
{
ξ ∈ R

3 : x · ξ = 0, a · ξ = 0
}
,

which can also be expressed in terms of 3× 3 projection matrices as
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TxM =
{
ξ ∈ R

3 : ξ = (I3×3 − xxT )y1 = (I3×3 − aaT )y2, y1, y2 ∈ R
3
}
.

The tangent bundle of M is given by

TM =
{
(x, ξ) ∈ R

3 × R
3 : x ∈ M, ξ ∈ TxM

}
.

The dimension of the tangent bundle is two.
The cotangent space T∗

xM = (TxM)∗ is one dimensional. The cotangent
bundle of M is

T∗M =
{
(x, ζ) ∈ R

3 × (R3)∗ : x ∈ M, ζ ∈ T∗
xM

}
.

The dimension of the cotangent bundle is two.

1.2.5.3 Manifolds Embedded in R
n

The subspaces of Rn are examples of linear manifolds. In geometric terms,
the one-dimensional subspaces can be viewed as straight lines in R

n that con-
tain the origin; the m-dimensional subspaces can be viewed as m-dimensional
hyperplanes in R

n that contain the origin. Each subspace can be translated
by addition of a fixed vector; the resulting sets are linear manifolds. The one-
dimensional linear manifolds are translations of one-dimensional subspaces;
the m-dimensional linear manifolds are translations of m-dimensional sub-
spaces. For any vector in such a linear manifold, the tangent space at that
vector coincides with the subspace. The tangent bundle of such a linear man-
ifold can be viewed as the product of the linear manifold and the subspace.
Similarly, the cotangent space is the dual of the subspace and the cotangent
bundle can be viewed as the product of the linear manifold and the dual of
the subspace.

The (n−1)-dimensional unit sphere is an important example of a manifold
in R

n:

Sn−1 =
{
q ∈ R

n : ‖q‖2 = 1
}
.

For any q ∈ Sn−1, the tangent space to Sn−1 at q is

TqS
n−1 = {ξ ∈ R

n : q · ξ = 0} ,

which can also be expressed as the range of an n× n projection matrix as

TqS
n−1 =

{
ξ ∈ R

n : ξ = (In×n − qqT )y, y ∈ R
n
}
,

or in terms of skew-symmetric matrices as

TqS
n−1 =

{
ξ ∈ R

n : ξ = Sq, S ∈ R
n×n, S + ST = 0

}
.
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The tangent bundle of the (n− 1)-dimensional unit sphere is given by

TSn−1 =
{
(q, ξ) ∈ R

n × R
n : q ∈ Sn−1, ξ ∈ TqS

n−1
}
,

and can be viewed as a 2(n−1)-dimensional manifold embedded in R
2n. The

cotangent space to Sn−1 at q ∈ Sn−1 is the (n− 1)-dimensional dual space

T∗
qS

n−1 = (TqS
n−1)∗.

The cotangent bundle of Sn−1 is

T∗Sn−1 =
{
(q, ζ) ∈ R

3 × (R3)∗ : q ∈ Sn−1, ζ ∈ T∗
qS

n−1
}
.

The dimension of the cotangent bundle is 2(n− 1).
We now consider manifolds that have a product structure. Introduce

(S1)n =
{
(q1, . . . , qn) ∈ R

2n : qi ∈ R
2, ‖qi‖2 = 1, i = 1, . . . , n

}
,

which an n-dimensional manifold embedded in R
2n. We also write (S1)n =

S1 × · · · × S1 as the product of n copies of the one-dimensional unit sphere
in R

2. For any q ∈ (S1)n, the n-dimensional tangent space to (S1)n at q ∈
(S1)n is

Tq(S
1)n =

{
(ξ1, . . . , ξn) ∈ R

2n : (qi · ξi) = 0, i = 1, . . . , n
}
.

This tangent space can also be expressed in terms of the range of 2 × 2
projection matrices as

Tq(S
1)n =

{
(ξ1, . . . , ξn) ∈ R

2n : ξi = (I2×2 − qiq
T
i )yi, yi ∈ R

2, i = 1, . . . , n
}
,

or in terms of skew-symmetric matrices as

Tq(S
1)n = {(ξ1, . . . , ξn) ∈ R

2n :ξi = Siqi, Si ∈ R
2×2, STi = −Si, i = 1, . . . , n}.

The tangent bundle of (S1)n is

T(S1)n =
{
(q, ξ) ∈ R

2n × R
2n : q ∈ (S1)n, ξ ∈ Tq(S

1)n
}
,

and can be viewed as a 2n-dimensional manifold embedded in R
4n.

The cotangent space to (S1)n at q ∈ (S1)n is the n-dimensional dual of
Tq(S

1)n

T∗
q(S

1)n = (Tq(S
1)n)∗.

The cotangent bundle of (S1)n is

T∗(S1)n =
{
(q, ζ) ∈ R

2n × (R2n)∗ : q ∈ (S1)n, ζ ∈ T∗
q(S

1)n
}
.

The dimension of the cotangent bundle is 2n.
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Similarly, we introduce a manifold that is the product of n copies of the
two-dimensional unit sphere in R

3. In set-theoretic notation this manifold is

(S2)n =
{
(q1, . . . , qn) ∈ R

3n : qi ∈ R
3, ‖qi‖2 = 1, i = 1, . . . , n

}
,

which is a 2n-dimensional manifold embedded in R
3n. We also write (S2)n =

S2 × · · · × S2. For any q ∈ (S2)n, the 2n-dimensional tangent space to (S2)n

at q is

Tq(S
2)n =

{
ξ = (ξ1, . . . , ξn) ∈ R

3n : (qi · ξi) = 0, i = 1, . . . , n
}
.

This tangent space can also be expressed in terms of the range of 3 × 3
projection matrices as

Tq(S
2)n =

{
(ξ1, . . . , ξn) ∈ R

3n : ξi = (I3×3 − qiq
T
i )yi, yi ∈ R

3, i = 1, . . . , n
}
,

or in terms of skew-symmetric matrices as

Tq(S
2)n = {(ξ1, . . . , ξn) ∈ R

3n : ξi = Siqi, Si ∈ R
3×3, STi = −Si, i = 1, . . . , n}.

The tangent bundle of (S2)n is

T(S2)n =
{
(q, ξ) ∈ R

3n × R
3n : q ∈ (S2)n, ξ ∈ Tq(S

2)n
}
,

which is a 4n-dimensional manifold embedded in R
6n.

The cotangent space to (S2)n at q ∈ (S2)n is

T∗
q(S

2)n = (Tq(S
2)n)∗,

which has dimension 2n. The cotangent bundle of (S2)n is

T∗(S2)n =
{
(q, ζ) ∈ R

3n × (R3n)∗ : q ∈ (S2)n, ζ ∈ T∗
q(S

2)n
}
.

The dimension of the cotangent bundle is 4n.

1.2.5.4 Manifolds Embedded in R
n×n

Here we consider differentiable manifolds that are subsets of the vector space
R

n×n of n× n matrices. The matrix inner product A ·B = trace(ATB).
All subspaces and translations of subspaces of Rn×n are examples of linear

manifolds. Consequently, the tangent space of a linear manifold can be viewed
as the associated subspace; the tangent bundle of a linear manifold can be
viewed as the product of the linear manifold and the associated subspace.
Similarly, the cotangent space of a linear manifold in R

n×n can be viewed as
the dual of the associated subspace; the cotangent bundle of a linear manifold
in R

n×n can be viewed as the product of the linear manifold and the dual of
the associated subspace.
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The set of n×n real, nonsingular matrices is denoted by GL(n). It is both
a group under matrix multiplication and a manifold.

As previously introduced, the rotation group SO(3) has a group structure
with matrix multiplication as the group operation, and it can be viewed as a
subgroup of GL(3) consisting of orthogonal 3× 3 matrices with determinant
+1. But SO(3) is also a manifold and here we describe some of its differential
geometric features.

It can be shown that SO(3) is a three-dimensional manifold embedded
in the Lie group GL(3) (or embedded in the vector space R

3×3). For any
R ∈ SO(3), the tangent space, denoted by TRSO(3), consists of all tangent
matrices to SO(3) at R ∈ SO(3). It can be shown, using the exponential
representation of orthogonal matrices, that the tangent space is

TRSO(3) =
{
Rξ ∈ R

3×3 : ξ ∈ so(3)
}
.

That is, a tangent of the manifold SO(3) at R ∈ SO(3) is the product of
R and a 3 × 3 skew-symmetric matrix. Thus, we can associate the tangent
space TRSO(3) with the subspace so(3) of all real skew-symmetric matrices
in R

3×3. This shows that TRSO(3) is a three-dimensional subspace. Using
the inner product introduced on R

n×n, it can be seen that the inner product
of R ∈ SO(3) and of Rξ ∈ TRSO(3), denoted by the inner product pairing
(R ·Rξ) on R

3×3, satisfies

(R ·Rξ) = trace(RT ξR) = 0.

Thus, each tangent to SO(3) at R ∈ SO(3) is orthogonal to R ∈ SO(3). The
tangent bundle of SO(3) is

TSO(3) =
{
(R,Rξ) ∈ SO(3)× R

3×3 : ξ ∈ so(3)
}
,

and is a six-dimensional manifold. The cotangent space to SO(3) at R ∈
SO(3), denoted by T∗

RSO(3), is the dual of the tangent space TRSO(3) of
SO(3) at R ∈ SO(3). The cotangent space T∗

RSO(3) is three dimensional.
Thus, the cotangent bundle of SO(3) is the six-dimensional manifold

T∗SO(3) =
{
(R, ζ) ∈ SO(3)× (R3×3)∗ : ζ ∈ T∗

RSO(3)
}
.

We have seen that SE(3) can be viewed as a subset of GL(4) consisting of
homogeneous 4× 4 matrices with matrix multiplication as the group opera-
tion. But SE(3) is also a manifold and here we describe some of its differential
geometric features.

It can be shown that SE(3) is a six-dimensional manifold embedded in the
Lie group GL(4) (or embedded in the vector space R

4×4). For any (R, x) ∈
SE(3), the tangent space, denoted by T(R,x)SE(3), consists of all matrix and
vector pairs that are tangent to SE(3) at (R, x) ∈ SE(3). The tangent space
can be shown to be
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T(R,x)SE(3) =
{
(Rξ, y) ∈ R

3×3 × R
3 : ξ ∈ so(3)

}
.

That is, tangents to the manifold SE(3) at (R, x) ∈ SE(3) are ordered pairs
of the form (Rξ, y) where ξ ∈ so(3) and y ∈ R

3. This shows that T(R,x)SE(3)
is a six-dimensional subspace. The tangent bundle of SE(3) is

TSE(3) =
{
(R, x,Rξ, y) ∈ SO(3)× R

3 × R
3×3 × R

3 : ξ ∈ so(3)
}
,

which is a twelve-dimensional manifold. The cotangent space to SE(3) at
(R, x) ∈ SE(3), denoted by T∗

(R,x)SE(3), is the dual of the tangent space; it

is a six-dimensional subspace. The cotangent bundle of SE(3) is the twelve-
dimensional manifold

T∗SE(3) =
{
(R, x, ζ, y) ∈ SO(3)× R

3 × (R3×3)∗ × (R3)∗ : ζ ∈ T∗
RSO(3)

}
.

1.2.6 Lie Groups and Lie Algebras

It is convenient to make use of certain aspects of the mathematical theory of
Lie groups and Lie algebras. In fact, we use only concepts of matrix Lie groups
and Lie algebras. There are many good references on this subject; references
that make use of these concepts in the context of mechanics include [5, 23,
41, 70, 77].

A matrix Lie group, denoted by G, is a subset of GL(n), the set of all
n × n real invertible matrices, that has both group properties and manifold
properties. That is, G satisfies the group properties:

• Closure: for any two matrices A, B ∈ G, the matrix product AB ∈ G;
• Associativity: for any three matrices A, B, C ∈ G, (AB)C = A(BC);
• Identity: The n×nmatrix In×n ∈ G is the group identity with the property

that for each matrix A ∈ G, In×nA = AIn×n = A;
• Inverse: For each matrix A ∈ G, there is a matrix denoted by A−1 ∈ G

such that A−1A = AA−1 = In×n.

In particular, GL(n) is a matrix Lie group. Furthermore, any subset of
GL(n) that is closed under matrix multiplication and matrix inverse must
contain the identity matrix, and since it inherits the associativity property,
it is also a matrix group and it is referred to as a matrix subgroup of GL(n).
We identify two important matrix subgroups, namely SO(3) and SE(3), as
matrix Lie groups since they each have both group properties and differential
geometric or manifold properties. Lie algebras, associated with these matrix
Lie groups, are also introduced.
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The set of all orthogonal matrices with determinant +1 is a matrix group
and also a manifold; as such it is a Lie group and is denoted by SO(3) and
is referred to as the special orthogonal group or the group of rotations. The
Lie group SO(3) is important in our subsequent development since it is used
to characterize rigid body rotation in three dimensions.

We have already seen that R ∈ SO(3) can be represented in terms of
the matrix exponential map as R = eξ, where ξ ∈ so(3). This implies a
close association between the Lie group SO(3) and the vector space so(3);
this close association is formalized by referring to so(3) as the Lie algebra
associated with the Lie group SO(3). Recall that the tangent space of SO(3)
at the identity, namely TI3×3

SO(3), is in fact the Lie algebra so(3). More
generally, given a Lie group G, we refer to the tangent space TeG to the
identity e ∈ G as the Lie algebra g. This association suggests that analysis
on the manifold SO(3) can be translated into analysis on the Lie algebra
so(3), which is a vector space, at least locally on SO(3) near the identity.
This concept is central to the variational calculus on SO(3) that is at the
core of the development in Chapter 6.

The set of all homogeneous matrices is a matrix group and also a manifold;
as such it is a Lie group and is denoted by SE(3) and is referred to as the
special Euclidean group. The Lie group SE(3) is important in our subsequent
development since it is used to characterize rigid body Euclidean motion,
that is combined rotation and translation in three dimensions.

We know that elements in the Lie group SE(3) can be represented by
(R, x) ∈ SE(3), with R ∈ SO(3) and x ∈ R

3, where R can be represented
in terms of the matrix exponential map as R = eξ, where ξ ∈ so(3). This
implies a close association between the Lie group SE(3) and the vector space
so(3) × R

3 which we denote by se(3); this close association is formalized by
referring to se(3) as the Lie algebra associated with the Lie group SE(3).
In particular, the tangent space of SE(3) at I4×4 ∈ SE(3) is in fact the Lie
algebra se(3). This association suggests that analysis on the manifold SE(3)
can be translated into analysis on the Lie algebra se(3), which is a vector
space, at least locally on SE(3) near the identity. This concept is central to
the variational calculus on SE(3) that is at the core of the development in
Chapter 7.

1.2.7 Homogeneous Manifolds

A homogeneous manifold is a manifold that is associated with a Lie group.
This association can be exploited in characterizing the differential geometry
of homogeneous manifolds.

Consider a manifold M ; then the Lie group G is said to act on M if there
is a smooth map A : G → Diff(M), which maps each element g ∈ G into
a diffeomorphism A(g) : M → M . Alternatively, this can be expressed in
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terms of the smooth map A : G × M → M , and we write g · x = (A(g))
(x) = A(g, x) for a left action, and x · g = (x)(A(g)) = A(g, x) for a right
action. Furthermore, we have the property that h · (g · x) = (hg) · x for a
left action, and (x · g) · h = x · (gh) for a right action. For the rest of the
discussion, we assume that the group acts on the left, but the extension to
right group actions is straightforward.

The group orbit G · x of a point x ∈ M is given by

G · x = {g · x ∈ M : g ∈ G}.

A manifold M is a homogeneous manifold if it has a transitive Lie group
action, which is to say that M = G · x for some x ∈ M . It is easy to check
using the properties of groups and group actions that if this is true for one
x ∈ M , then it is true for all x ∈ M . This is equivalent to saying that there is
only one group orbit, or that given two points x, y ∈ M , it is always possible
to find g ∈ G such that y = g · x.

It is easy to see that S1 is a homogeneous manifold with the associated Lie
group of planar rotations. Furthermore, S2 is a homogeneous manifold with
the associated Lie group SO(3) of three-dimensional rotations.

1.3 Vector Fields on a Manifold

Vector fields and differential equations are closely related. Although much of
the classical literature on vector fields treats the case of vector fields defined
on an open subset of the Euclidean vector space Rn, it is natural to introduce
the concept of a vector field defined on a manifold.

Let M be a differentiable manifold embedded in R
n. A vector field on M is

defined by a mapping from M to R
n with the property that for each x ∈ M

there is a unique y ∈ TxM and this correspondence x → y is continuous.
The interpretation is that a vector field associates with each point x ∈ M
in the manifold a unique tangent vector y ∈ TxM in the tangent space of
the manifold. The vector field perspective is important in the subsequent
development since it emphasizes the geometry of the manifold.

Calculus associated with vector fields is used in the subsequent variational
developments: Euler–Lagrange equations are defined on the tangent bundle
of the configuration manifold and the Lagrangian vector fields on the tangent
bundle are defined by the Euler–Lagrange equations. We now review a few
basic results for vector fields.
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1.3.1 Vector Fields on a Manifold that Arise from Differential
Equations

Differential equations are fundamental to representing vector fields in gen-
eral and, in particular, to the representation of the dynamics of Lagrangian
and Hamiltonian systems. In the classical situation, differential equations are
defined on an open subset of Rn; a vector field on a manifold can always
be represented, at least locally in a neighborhood of a point on a mani-
fold, by vector differential equations on an open set of R

n. Consequently,
many references on (nonlinear) differential equations only treat this case;
see [44, 85]. However, we are subsequently interested in global dynamics of
a vector field on a manifold; thus, such a local approach is not appropriate.
References that provide a geometric perspective of vector fields on a mani-
fold, suitable for studying global properties of Lagrangian and Hamiltonian
dynamics, are [5, 33, 34, 83].

Let M be an (n − m)-dimensional differentiable manifold embedded in
R

n. A vector field on the manifold M associates with each point in the man-
ifold a unique vector in the tangent space of the manifold at that point.
Differential equations on a manifold can represent a vector field on a man-
ifold by expressing the rate of change of a configuration point as a tangent
vector at the configuration point on the manifold. If this dependence is suffi-
ciently smooth, the classical theory of differential equations guarantees that
there exists, at least locally in time, a unique solution of the differential
equation satisfying a specified initial-value on the manifold. In particular, let
f : M × R

1 → R
n be a differentiable time-dependent vector-valued function

that satisfies f(x, t) ∈ TxM for each x ∈ M and t ∈ R
1. If the vector field

f(x, t) is time-independent, then it is said to be autonomous, otherwise it is
nonautonomous. The differential equation

ẋ(t) = f(x(t), t) (1.48)

on the manifold M is well-posed in the sense that for each initial condition in
the manifoldM , the initial-value problem has a unique solution. Suppose that
a solution at time instant t, corresponding to an initial-value x0 ∈ M at time
instant t0, is given by x(t, t0, x0) ∈ M . Then x(t, t0, x0) = Ft,t0(x0) ∈ M
denotes the one-parameter time evolution or motion on M . The operator
Ft,t0 : M → M defines the flow map. The initial time t0 and final time t in
the flow map Ft,t0 needs to be explicitly specified when the vector field is
nonautonomous (or time-dependent), but if the vector field is autonomous
(or time-independent), then we can without loss of generality assume that
the initial conditions are given at time t0 = 0, and we can suppress the initial
time t0 in the flow map notation by writing Ft : M → M .

For the rest of the book, we will restrict ourselves to the case of time-
independent vector fields f(x), and their associated flow maps Ft. The mani-
fold M is an invariant manifold in the sense that the flow necessarily remains
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on M . Throughout the subsequent chapters, we assume that each solution
of an initial-value problem for a vector field on a manifold is defined for all
time t.

It is important to recognize that the vector differential equations (1.48)
are most often expressed in terms of vectors in the embedding space, namely
R

n, but the vector field of interest is only defined on the (n−m)-dimensional
manifold M . It is, of course, possible to introduce a chart and local coordi-
nates on M so that the differential equations (1.48) can be described locally
in terms of the n − m coordinates. This is a traditional approach, but the
limitations imposed by the use of local coordinates means that we generally
avoid this approach in this book.

Solutions of differential equations (1.48) on a manifold M can have a
number of interesting properties. For example, solutions that are constant in
time, x = Ft(x) for all t, are equilibrium solutions of the differential equations
or vector field and necessarily satisfy f(x) = 0 ∈ TxM .

A function φ : M → R
1 is an invariant function of the flow on the manifold

M if for each x ∈ M , φ(Ft(x)) is constant for all t. Such a function is referred
to as an integral function or a conserved quantity of the differential equations
or the vector field. If φ : M → R

1 is differentiable, then we can compute the
time derivative

d

dt
φ(x(t;x0)),

where x(t;x0) denotes the fact that x is a function of time t, and it is
parametrized by the initial data x0. The chain rule yields the expression

φ̇(x) =
∂φ(x)

∂x
· f(x),

which is the total derivative of φ(x) along the vector field defined by f(x)
on M . Note that φ̇(x) = 0, x ∈ M implies that φ : M → R

1 is a conserved
quantity on the flow defined by the vector field on M .

The theory of nonlinear differential equations, including differential equa-
tions and vector fields on manifolds, is well developed. Much of this theory
makes use of tools from differential geometry; see [33, 100]. This material
is not required for the subsequent development in this volume, but it is im-
portant for analytic studies of the geometric properties of vector fields on
manifolds.

1.3.2 Vector Fields on a Manifold that Arise
from Differential-Algebraic Equations

As shown in subsequent sections, vector fields on a manifold can also be
associated with sets of differential-algebraic equations. Differential-algebraic
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equations arise in many applications, including constrained mechanical and
electrical systems. Differential-algebraic equations are sometimes referred to
as generalized, singular, or descriptor differential equations, or differential and
algebraic equations, and they appear in several different forms. Overviews are
given in [12, 79, 82, 83]. Here we summarize a few results for two categories
of differential-algebraic equations.

Under appropriate assumptions, differential-algebraic equations are con-
sistent in the sense that they define unique solutions of initial-value problems.
Without going into detail in the general case, one of the key assumptions is
the index. The index is essentially the number of times that the algebraic
equations need to be differentiated with respect to time so that the result-
ing differential equations, together with the given differential equations, have
unique solutions for the initial-value problem. The index is discussed in sub-
stantial detail in the above references.

We begin with an examination of a category of differential-algebraic equa-
tions that satisfy an index one assumption; this material is presented for
completeness and background. Then we present results for a category of
differential-algebraic equations that satisfy an index two assumption. This
material is important for the subsequent treatment of Lagrangian dynamics
that evolve on a manifold.

1.3.2.1 Differential-Algebraic Equations: Index One

Let g : Rn → R
n and f : Rn → R

m be continuously differentiable functions
and 0 < m < n. Semi-explicit differential-algebraic equations with index one
are given by

ẋ = g(x) +

(
∂f(x)

∂x

)T

λ, (1.49)

f(x) = 0, (1.50)

where x ∈ R
n, λ ∈ R

m. The set M = {x ∈ R
n : f(x) = 0} is assumed to be

an (n−m)-dimensional differentiable manifold embedded in R
n. Further we

assume that the m×m matrix-valued function

(
∂f(x)

∂x

)(
∂f(x)

∂x

)T

is full rank m for all x ∈ M . This assumption is referred to as a differential
index one assumption [12] for the differential-algebraic equations (1.49) and
(1.50).

A simple calculation shows that the index one differential-algebraic equa-
tions (1.49) and (1.50) are equivalent to a vector field on the manifold M .
Multiplying (1.49) by the Jacobian of the constraint functions and using the
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assumptions allows the multipliers to be determined; substituting this expres-
sion for the multipliers into (1.49) and using (1.50) leads to the first-order
vector differential equations

ẋ = g(x)−
(
∂f(x)

∂x

)T
(
∂f(x)

∂x

(
∂f(x)

∂x

)T
)−1 (

∂f(x)

∂x

)
g(x) (1.51)

on R
n. Since the right-hand side of (1.51) projects g(x) onto TxM , it follows

that ẋ ∈ TxM ; in other words M is an invariant manifold of the flow defined
by (1.51). Consequently, the differential-algebraic equations (1.49) and (1.50)
define a continuous vector field onM and for each initial condition inM there
exists a unique solution of the initial-value problem defined on M .

The above index one assumptions are sufficient conditions for existence
and uniqueness of initial-value solutions of differential-algebraic equations
(1.49) and (1.50).

1.3.2.2 Differential-Algebraic Equations: Index Two

Let g : R2n → R
n and f : Rn → R

m be continuously differentiable functions
and 0 < m < n. Semi-explicit differential-algebraic equations with index two
are given by

ẍ = g(x, ẋ) +

(
∂f(x)

∂x

)T

λ, (1.52)

f(x) = 0, (1.53)

where x ∈ R
n, λ ∈ R

m. The set M = {x ∈ R
n : f(x) = 0} is assumed to be

an (n−m)-dimensional differentiable manifold embedded in R
n. Further we

assume that the m×m matrix-valued function

(
∂f(x)

∂x

)(
∂f(x)

∂x

)T

is full rank m for all x ∈ M . This assumption is referred to as a differential
index two assumption [12] for the differential-algebraic equations (1.52) and
(1.53).

A simple calculation shows that the index two differential-algebraic equa-
tions (1.52) and (1.53) are equivalent to a vector field on the tangent bundle
TM . Multiplying (1.52) by the Jacobian of the constraint function and us-
ing the assumptions allows the multipliers to be determined; substituting
this expression for the multipliers into (1.52) and using (1.53) leads to the
second-order vector differential equations
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ẍ = g(x, ẋ)−
(
∂f(x)

∂x

)T
(
∂f(x)

∂x

(
∂f(x)

∂x

)T
)−1

((
∂f(x)

∂x

)
g(x, ẋ) +

(
d

dt

∂f(x)

∂x

)T

ẋ

)
(1.54)

on R
2n. The expression for ẍ guarantees that (x, ẋ) ∈ TM implies (x, ẋ, ẋ, ẍ) ∈

T(x,ẋ) TM ; that is TM is an invariant manifold of the flow defined by (1.54).
Consequently, the differential-algebraic equations (1.52) and (1.53) define a
continuous vector field on TM and for each initial condition in TM there
exists a unique solution of the initial-value problem defined on TM .

The above index two assumptions are sufficient conditions for existence
and uniqueness of initial-value solutions of differential-algebraic equations
(1.52) and (1.53).

1.3.3 Linearized Vector Fields

We now return to the prior notation, assuming M is a differentiable (n−m)-
dimensional manifold embedded in R

n and f : M → R
n satisfies f(x) ∈ TxM

for each x ∈ M , thus defining a differentiable vector field on M .
Suppose that x0 ∈ M satisfies f(x0) = 0 so that it is an equilibrium

solution. Initial-value problems are well-posed for all initial-values in a small
neighborhood of x0 ∈ M . If the neighborhood is chosen sufficiently small
then the manifold can be approximated near x0 ∈ M by the tangent space
Tx0

M . Furthermore, the function f : M → R
n can be approximated in

this neighborhood of x0 ∈ M by the linear vector field ξ →
(

∂f(x0)
∂x

)
ξ where

ξ ∈ Tx0
M are viewed as perturbations from equilibrium. The linearized vector

field on R
n can be described by the linear vector differential equation

ξ̇ =

(
∂f(x0)

∂x

)
ξ. (1.55)

This linear vector field, restricted to the invariant subspace Tx0
M , can be

viewed as a linearization of the original vector field on M at x0 ∈ M .
We emphasize that the linear vector differential equations (1.55) are ex-

pressed in terms of vectors in the embedding space, namely R
n, but the

linearized vector field is only of interest on the (n−m)-dimensional invariant
subspace Tx0

M .
Local coordinates can be introduced on the subspace Tx0

M by selecting
(n−m) orthonormal basis vectors {ξ1, . . . , ξn−m} in R

n for Tx0
M . Thus, for

any ξ ∈ Tx0
M there exist local coordinates [σ1, . . . , σn−m]T ∈ R

n−m such
that ξ =

∑n−m
i=1 σiξi. Equivalently, it can be expressed in terms of a matrix-

vector product ξ = [ξ1| · · · |ξn−m][σ1, . . . , σn−m]T . Consequently, the linear
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differential equations can be expressed in terms of the local coordinates as

⎡
⎢⎣

σ̇1

...
σ̇n−m

⎤
⎥⎦ =

[
ξ1

∣∣∣ · · ·
∣∣∣ ξn−m

]T (
∂f(x0)

∂x

)[
ξ1

∣∣∣ · · ·
∣∣∣ ξn−m

]
⎡
⎢⎣

σ1

...
σn−m

⎤
⎥⎦ . (1.56)

This approach using local coordinates provides only a local approximation,
since the linearized vector field is only a suitable approximation of the orig-
inal vector field on the manifold in a small neighborhood of x0 ∈ M . At
least locally in a small neighborhood of an equilibrium solution, we can view
each solution of an initial-value problem for the linearized vector field (1.55)
or (1.56) as an approximation of the solution of the corresponding initial-
value problem for (1.48). More precisely, the Hartman–Grobman theorem
[33] states that if the equilibrium point x0 is hyperbolic, which is to say that

the eigenvalues of the matrix
[
ξ1

∣∣∣ · · ·
∣∣∣ ξn−m

]T (
∂f(x0)

∂x

) [
ξ1

∣∣∣ · · ·
∣∣∣ ξn−m

]
all

have nonzero real part, then there exists a local homeomorphism that takes
trajectories of the original system to trajectories of the linearization. As such,
the linearization process, in one form or another, is commonly employed in
many engineering analyses. It should be emphasized that this approximation
is valid only over time periods for which the approximating solution remains
in the specified neighborhood of x0 ∈ M .

This procedure for describing a linearized vector field linearizes first about
an equilibrium solution and then expresses the resulting differential equations
in local coordinates. It is easy to show that these steps commute: one can
introduce local coordinates first in a neighborhood of an equilibrium solution
and then linearize the resulting vector field. This latter approach is most
common in applications. Further details on linearization of a vector field on
a manifold are given in Appendix B.

1.3.4 Stability of an Equilibrium

Stability is an important qualitative property of an equilibrium of a vector
field f : M → R

n defined on a manifold M embedded in R
n. This property

is described in many references [33, 44, 76, 85, 93]. Here we give only a brief
description.

An equilibrium x0 of a vector field on a manifold is stable if given any
arbitrarily small neighborhood Nx0

⊂ M of the equilibrium, there always
exists a neighborhood Bx0

of the equilibrium such that all the trajectories
with initial conditions in Bx0

⊂ M remain inside the neighborhood Nx0
.

Otherwise, the equilibrium is said to be unstable. A stable equilibrium is
asymptotically stable if there is a neighborhood of the equilibrium on the
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manifold such that for all initial conditions inside this neighborhood, the
resulting flow asymptotically converges to the equilibrium.

There are several different approaches to stability analysis. Some ap-
proaches are based on the linearized vector field, while other approaches
make use of energy-like Lyapunov functions.

The linearized vector field defined by (1.55) necessarily has an invariant
(n−m)-dimensional subspace, namely the tangent space Tx0

M at the equi-
librium, and there are (n−m) eigenvalues associated with this invariant sub-
space. These (n − m) eigenvalues are the spectrum of the linearized vector
field at an equilibrium and they provide insight into the stability property
of that equilibrium solution. The stable manifold theorem [33] guarantees
that the eigenvalues of the linearized equations determine the stability of
the equilibrium if the equilibrium is hyperbolic, that is all eigenvalues of the
linearized equations have nonzero real part. In particular, if the real parts
of all (n −m) eigenvalues are negative, the equilibrium can be shown to be
asymptotically stable. If there is at least one eigenvalue with real part that is
positive, the equilibrium can be shown to be unstable. For all other spectral
patterns, no definite statement can be made on the basis of the linearized
vector field on the tangent space at the equilibrium.

Lyapunov stability methods [44, 85] provide powerful tools for stability
analysis of an equilibrium of a vector field. The most common Lyapunov
result provides sufficient conditions for stability of an equilibrium if there
exists an energy-like Lyapunov function that is zero at the equilibrium and
is positive elsewhere, and whose total derivative along the vector field is
negative-semidefinite in a neighborhood of the equilibrium. Details on Lya-
punov stability methods are given in the cited references.

1.3.5 Examples of Vector Fields

To make the prior ideas more concrete, examples of vector fields are described
for several different manifolds of the form that are studied in more detail in
subsequent chapters.

1.3.5.1 Example of a Vector Field Defined on S1

We consider differential equations that define a vector field on the one-
dimensional manifold S1 embedded in R

2. These differential equations are
expressed in terms of q = [q1, q2]

T ∈ R
2 as

q̇ = S(q)q,

where
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S(q) =

[
0 sin q2

− sin q2 0

]
.

Note that the skew-symmetric matrix-valued function S : S1 → R
2×2 is

continuously differentiable. The differential equations can be expressed in
scalar form as

q̇1 = q2 sin q2,

q̇2 = −q1 sin q2.

It is easy to show that TqS
1 =

{
ξ ∈ R

2 : ξT q = 0
}
and that q̇ ∈ TqS

1. Con-
sequently, these differential equations define a vector field on S1.

There are two equilibrium solutions on S1, namely [1, 0]T , [−1, 0]T . We
first linearize at the equilibrium [1, 0]T ∈ S1. The linearized vector field on
R

2 at [1, 0]T ∈ R
2 can be shown to be

ξ̇ =

[
0 0
0 −1

]
ξ,

where ξ ∈ R
2 can be viewed as first-order perturbations from the equilibrium.

We now restrict this vector field to T[1,0]T S
1 by selecting the unit basis vector

e2 = [0, 1]T ∈ T[1,0]T S
1. Thus, we let ξ = σe2, where σ ∈ R

1, so that
the restricted vector field on S1 is represented, in a neighborhood of the
equilibrium [1, 0]T ∈ S1, by the scalar differential equation

σ̇ = −σ.

The eigenvalue associated with this linear vector field is −1 so that the equi-
librium [1, 0]T ∈ S1 of the original vector field is asymptotically stable.

The linearized vector field on R
2 at [−1, 0]T ∈ R

2 can be shown to be

ξ̇ =

[
0 0
0 1

]
ξ,

where ξ ∈ R
2 can be viewed as first-order perturbations from the equilibrium.

We now restrict this vector field to T[−1,0]T S
1 by selecting the unit basis

vector e2 = [0, 1]T ∈ T[1,0]T S
1. Thus, we let ξ = σe2, where σ ∈ R

1, so
that the restricted vector field on S1 is represented, in a neighborhood of the
equilibrium [−1, 0]T ∈ S1, by

σ̇ = σ.

The eigenvalue associated with this linear vector field is 1 so that the equi-
librium [−1, 0]T ∈ S1 of the original vector field is unstable.
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1.3.5.2 Example of a Vector Field Defined on S2

We consider differential equations that define a vector field on the two-
dimensional manifold S2 embedded in R

3. These differential equations are
expressed in terms of q = [q1, q2, q3]

T ∈ R
3 as

q̇ = S(q)q,

where

S(q) =

⎡
⎣ 0 sin q2 sin q3
− sin q2 0 0
− sin q3 0 0

⎤
⎦ .

Note that the skew-symmetric matrix-valued function S : S2 → R
3×3 is

continuously differentiable. The differential equations can be expressed in
scalar form as

q̇1 = q2 sin q2 + q3 sin q3,

q̇2 = −q1 sin q2,

q̇3 = −q1 sin q3.

It is easy to show that TqS
2 =

{
ξ ∈ R

3 : ξT q = 0
}
and that q̇ ∈ TqS

2. Con-
sequently, the differential equations define a vector field on S2.

There are two equilibrium solutions on S2, namely [1, 0, 0]T , [−1, 0, 0]T .
We first linearize at the equilibrium [1, 0, 0]T ∈ S2. The linearized vector field
on R

3 at [1, 0, 0]T ∈ R
3 can be shown to be

ξ̇ =

⎡
⎣0 0 0
0 −1 0
0 0 −1

⎤
⎦ ξ,

where ξ ∈ R
3 can be viewed as first-order perturbations from the equilibrium.

We now restrict this vector field to T[1,0,0]T S
2 by selecting the basis vectors{

e2 = [0, 1, 0]T , e3 = [0, 0, 1]T
} ∈ T[1,0,0]T S

2. Thus, we let ξ = σ2e2 + σ3e3,

where σ = [σ2, σ3]
T ∈ R

2, so that the restricted vector field on S2 is repre-
sented, in a neighborhood of the equilibrium [1, 0, 0]T ∈ S2, by the second-
order differential equation

σ̇ =

[−1 0
0 −1

]
σ.

The eigenvalues associated with this linear vector field are −1,−1 so that the
equilibrium [1, 0, 0]T ∈ S2 of the original vector field is asymptotically stable.

We next linearize at the equilibrium [−1, 0, 0]T ∈ S2. The linearized vector
field on R

3 at [−1, 0, 0]T ∈ R
3 can be shown to be
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ξ̇ =

⎡
⎣0 0 0
0 1 0
0 0 1

⎤
⎦ ξ,

where ξ ∈ D ⊂ R
3 can be viewed as first-order perturbations from the

equilibrium. We now restrict this vector field to the tangent space T[−1,0,0]T S
2

by selecting the basis vectors
{
e2 = [0, 1, 0]T , e3 = [0, 0, 1]T

}
for the tangent

space T[1,0,0]T S
2. Thus, let ξ = σ2e2 + σ3e3, where σ = [σ2, σ3]

T ∈ R
2, so

that the restricted vector field on S2 is represented, in a neighborhood of the
equilibrium [1, 0, 0]T ∈ S2, by the second-order differential equation

σ̇ =

[
1 0
0 1

]
σ.

The eigenvalues associated with this linear vector field are 1, 1 so that the
equilibrium [−1, 0, 0]T ∈ S2 of the original vector field is unstable.

1.3.5.3 Example of a Vector Field Defined on SO(3)

We consider matrix differential equations that evolve on the three-dimensional
manifold SO(3) embedded in R

3×3. These differential equations are expressed
in terms of matrices R ∈ R

3×3 as

Ṙ = RS

(
3∑

i=1

ei ×RT ei

)
,

where e1, e2, e3 ∈ R
3 denote the standard unit basis vectors and S : R3 →

R
3×3 is the skew-symmetric matrix-valued function

S(x) =

⎡
⎣ 0 −x3 x2

x3 0 −x1

−x2 x1 0

⎤
⎦ .

Note that the skew-symmetric matrix-valued function S : R3 → R
3×3 is con-

tinuously differentiable. Since TRSO(3) =
{
Rξ ∈ R

3×3 : ξ ∈ so(3)
}
, it follows

that Ṙ ∈ TRSO(3). Consequently, the matrix differential equation defines a
vector field on SO(3).

The equilibrium solutions on SO(3) satisfy

3∑
i=1

ei ×RT ei = 0.

It can be shown that there are exactly four equilibrium solutions on SO(3),
namely the diagonal matrices
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I3×3 =

⎡
⎣1 0 0
0 1 0
0 0 1

⎤
⎦ , E2 =

⎡
⎣−1 0 0

0 −1 0
0 0 1

⎤
⎦ , E3 =

⎡
⎣−1 0 0

0 1 0
0 0 −1

⎤
⎦ , E4 =

⎡
⎣1 0 0
0 −1 0
0 0 −1

⎤
⎦ .

We first determine the linearized vector field at the identity matrix I3×3 ∈
SO(3). It is convenient to use the exponential representation

R = eξ,

where ξ ∈ so(3) so that the vector field can also be described by

ξ̇ = e−ξ S

(
3∑

i=1

ei × e−ξei

)
.

For ξ ∈ so(3) sufficiently small, this vector field is approximated by the linear
vector field

ξ̇ = −S

(
3∑

i=1

ei × ξei

)
.

Using skew-symmetric matrix identities, the linear vector field can be de-
scribed by

ξ̇ = ξT − ξ.

This linear vector field is restricted to the subspace so(3) ⊂ R
3×3 by using

the basis

ξ1 =

⎡
⎣0 −1 0
1 0 0
0 0 0

⎤
⎦ , ξ2 =

⎡
⎣ 0 0 1

0 0 0
−1 0 0

⎤
⎦ , ξ3 =

⎡
⎣0 0 0
0 0 −1
0 1 0

⎤
⎦ ,

for so(3). Thus, we introduce the representation

ξ = σ1ξ1 + σ2ξ2 + σ3ξ3,

where [σ1, σ2, σ3]
T ∈ D ⊂ R

3, where D is an open set containing the origin.
It follows that the linear vector field on so(3) is described by

σ̇i = −2σi, i = 1, 2, 3.

This is a linear approximation for the original vector field on SO(3) in a
neighborhood of I3×3 ∈ SO(3). The eigenvalues are −2,−2,−2 so that the
equilibrium at the identity of the original vector field on SO(3) is asymptot-
ically stable.

The linearized differential equations at the equilibrium Ei ∈ SO(3), i =
2, 3, 4, can be shown to be
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ξ̇ = Ei(ξ
T − ξ),

which defines a linear vector field on the invariant subspace of R3×3 spanned
by the basis

Ei

⎡
⎣0 −1 0
1 0 0
0 0 0

⎤
⎦ , Ei

⎡
⎣ 0 0 1

0 0 0
−1 0 0

⎤
⎦ , Ei

⎡
⎣0 0 0
0 0 −1
0 1 0

⎤
⎦ .

The eigenvalues associated with this invariant subspace can be shown to be
2, 2,−2 so that the equilibrium at Ei ∈ SO(3), i = 2, 3, 4 of the original vector
field on SO(3) is unstable.

In summary, the equilibrium solution at the identity is asymptotically
stable while the other three equilibrium solutions are unstable. This analysis
demonstrates local flow properties of this vector field on SO(3), but it is
challenging to determine global flow properties of the vector field.

1.3.5.4 Example of a Vector Field on S1 Defined by
Differential-Algebraic Equations with Index One

We consider differential-algebraic equations that define a vector field on the
one-dimensional manifold S1 embedded in R

2. These differential-algebraic
equations are expressed in terms of x ∈ R

2, λ ∈ R
1 as

ẋ = e1 + 2xλ,

‖x‖2 = 1,

where e1 = [1, 0]T . The second equation constrains x to lie on the manifold
S1.

We differentiate the algebraic constraint once to obtain xT ẋ = 0 and thus

xT (e1 + 2xλ) = 0,

so that

λ = −1

2
xT e1.

Consequently, the index is one and the flow defined by the above differential-
algebraic equations can also be described by the differential equation

ẋ = e1 − xxT e1,

which defines a differentiable vector field on the manifold S1.
There are two equilibrium solutions of the vector field on the manifold S1,

namely e1, corresponding to λ = − 1
2 , and −e1, corresponding to λ = 1

2 .
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The linearized differential-algebraic equations at e1 can be shown to be

ξ̇ = −(I2×2 + e1e
T
1 )ξ,

which defines a linear vector field on the tangent space Te1S
1 = span(e2).

Thus, we can write ξ = σe2 so that the linear vector field is described on an
open subset of R1 containing the origin by

σ̇ = −σ.

The single eigenvalue is −1; consequently this equilibrium solution of the
given differential-algebraic equations is asymptotically stable.

The linearized differential-algebraic equations at −e1 can be shown to be

ξ̇ = (I2×2 + e1e
T
1 )ξ.

Thus, we can write ξ = σe2 so that the linear vector field is described on an
open subset of R1 containing the origin by

σ̇ = σ.

The single eigenvalue is +1; consequently this equilibrium of the given
differential-algebraic equations is unstable.

This analysis demonstrates a few of the important dynamical properties
of the solutions of the given index one differential-algebraic equations.

1.3.5.5 Example of a Vector Field on TS1 Defined by
Differential-Algebraic Equations with Index Two

We consider differential-algebraic equations that define a vector field on the
two-dimensional manifold TS1 embedded in R

4. These differential-algebraic
equations are expressed in terms of x ∈ R

2, λ ∈ R
1 as

ẍ = e1 + 2xλ,

‖x‖2 = 1,

where e1 = [1, 0]T . As before, the second equation constrains x to lie on the
manifold S1.

We differentiate the algebraic constraint twice and substitute into the dif-
ferential equation to obtain

‖ẋ‖2 + xT (e1 + 2xλ) = 0,

so that
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λ = −1

2
‖ẋ‖2 − 1

2
xT e1.

Consequently, the index is two and the flow defined by the above differential-
algebraic equations can also be described by the differential equation

ẍ = e1 − x ‖ẋ‖2 − xxT e1.

Since (x, ẋ) ∈ TS1, this differential equation defines a differentiable vector
field on the tangent bundle manifold TS1.

There are two equilibrium solutions of the vector field on the tangent
bundle TS1, namely [e1, 0]

T , corresponding to λ = − 1
2 , and [−e1, 0]

T , corre-
sponding to λ = 1

2 .
The linearized differential-algebraic equations at [e1, 0]

T can be shown
to be

ξ̈ = −(I2×2 + e1e
T
1 )ξ,

which defines a linear vector field on the tangent space T(e1,0)TS
1. Thus, we

can write ξ = σe2 so that the linear vector field is described on an open
subset of R2 containing the origin by

σ̈ = −σ.

The two eigenvalues are purely imaginary; consequently the equilibrium point
is non-hyperbolic and we cannot conclude anything about its nonlinear be-
havior.

The linearized differential-algebraic equations at [−e1, 0]
T can be shown

to be

ξ̈ = (I2×2 + e1e
T
1 )ξ,

which defines a linear vector field on the tangent space T(−e1,0)TS
1. Thus,

we can write ξ = σe2 so that the linear vector field is described on an open
subset of R2 containing the origin by

σ̈ = σ.

The two eigenvalues are +1,−1; consequently the dynamics defined by the
given differential-algebraic equations are unstable in a neighborhood of this
equilibrium.

This analysis demonstrates a few of the important dynamical properties
of the solutions of the given index two differential-algebraic equations.
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1.3.6 Geometric Integrators

Most standard numerical integration algorithms are developed for initial-
value problems that evolve on a vector space. For differential equations or
differential-algebraic equations whose solutions evolve on R

n, these algo-
rithms are suitable for studying the local dynamics on a manifold, but they
do not typically perform well when applied to the global dynamics of a vector
field that evolves on a manifold that is not a vector space.

In our subsequent development for Lagrangian dynamics that evolve on
the tangent bundle of a configuration manifold, the differential equations are
expressed on a vector space within which the tangent bundle of the config-
uration manifold is embedded. This means that standard numerical integra-
tion algorithms can, in principle, be applied directly to the dynamics on the
embedding vector space. However, standard integration algorithms do not
guarantee that computed solutions of an initial-value problem that begin on
the configuration manifold remain on the configuration manifold. In practice,
the numerical solutions tend to drift off the configuration manifold, thus in-
troducing significant errors in the computational results. Although methods
can be introduced that project the computed solution back onto the con-
figuration manifold, such steps may be computationally intensive and the
projection process typically interferes with the conservation of other physical
invariants, such as the energy or momentum.

Our experience, and that of many others [12, 34, 79, 82, 83], is that it is
best to make use of special purpose numerical integration algorithms that are
constructed to produce solution approximations of an initial-value problem
that remain on the manifold if the initial-value is on the manifold. Such al-
gorithms are referred to as geometric integration algorithms and there is an
extensive literature on geometric integration and associated numerical com-
putations. Naturally, the details of a geometric integration algorithm depend
on the specific differential equations and they also depend on the specific
geometry of the manifold.

There is now a substantial body of literature that treats geometric inte-
grators for a vector field on a manifold. This literature is not as well known
and utilized as it should be, in our opinion. Important references that provide
good insight into this literature include [12, 34, 65, 71].

Computational dynamics are not treated in this text, but many of our
publications [46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61] do treat com-
putational issues for Lagrangian and Hamiltonian dynamics on a manifold
following the mathematical and geometric framework introduced here. A few
remarks illustrate this approach. The formulation of Lagrangian and Hamilto-
nian dynamics on a manifold in continuous-time presented in this book can be
followed to obtain discrete-time descriptions for Lagrangian and Hamiltonian
dynamics that evolve on a manifold. This approach is especially attractive
since it makes use of variational calculus on manifolds that closely follows
the continuous-time development. These discrete-time descriptions are the
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basis for constructing geometric and variational integration algorithms. The
development is most natural when the manifold is a Lie group or the tangent
bundle of a Lie group, in which case the geometric integrators are referred to
as Lie group variational integrators. The development can also be adapted
for Lagrangian and Hamiltonian dynamics that evolve on a homogeneous
manifold. This computational approach is especially suited to computations
of multi-body dynamics; many of the references cited above treat multi-body
examples that are subsequently studied, in continuous-time, in this book.

1.4 Covector Fields on a Manifold

Let M denote a differentiable manifold embedded in R
n. The cotangent space

at x ∈ M , denoted by T∗
xM , is the space of linear functionals on the tangent

space TxM . Since a covector y ∈ T∗
xM in the cotangent space is always

paired with a vector z ∈ TxM in the tangent space through the inner product
y · z = yT z, we can formally identify the cotangent space with the tangent
space using this inner product. In this sense, a covector can be formally
associated with a unique tangent vector except that we view it as a linear
functional that acts on another vector via the inner product.

Recall, a smooth vector field on a manifold M has the property: for each
x ∈ M there is a unique vector y ∈ TxM and this correspondence is contin-
uous. Consequently, the concept of a smooth vector field on a manifold M is
naturally extended to the concept of a smooth covector field on a manifoldM :
for each x ∈ M there is a unique covector y ∈ T∗

xM and this correspondence
is continuous. The interpretation is that a covector field associates with each
x ∈ M in the manifold a unique covector (or cotangent vector) y ∈ T∗

xM in
the cotangent space of the manifold.

Covector fields on a manifold can arise from vector differential equations or
from vector differential-algebraic equations as discussed in the prior section
of this chapter. The difference is that we view solutions of such differential
equations or differential-algebraic equations as linear functionals on the ap-
propriate tangent spaces. The concepts of linearized covector fields, equilibria
of a covector field, and stability of an equilibrium follow from the correspond-
ing concepts for a vector field.

1.5 Problems

1.1. Let A ∈ R
m×n, with m < n, have rank m and let b ∈ R

m. Consider the
linear manifoldM = {y ∈ R

n : Ay = b}. Let x ∈ R
n and obtain an orthogonal

decomposition of x into the sum of a vector in the linear manifold M and a
vector orthogonal to M .
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1.2. Suppose that y ∈ S2. Let x ∈ R
3 and obtain an orthogonal decompo-

sition of x into the sum of a vector in the direction of y ∈ S2 and a vector
orthogonal to y ∈ S2.

1.3. Suppose that y = (y1, . . . , yn) ∈ (S2)n. Let x ∈ R
3n and obtain an

orthogonal decomposition of x into the sum of a vector in the direction of
y ∈ (S2)n and a vector orthogonal to y ∈ (S2)n.

1.4. Suppose that y ∈ R
3 is nonzero, and x ∈ R

3.

(a) Show that x ∈ R
3 can be uniquely decomposed as

x = (I3×3 − S(y))x+ S(y)x,

where S(y) is the 3×3 skew-symmetric matrix-valued function introduced
in (1.8).

(b) Show that the second term on the right is orthogonal to y ∈ R
3.

(c) Show that the first term on the right is not necessarily in the direction y ∈
R

3, so that this decomposition differs from the orthogonal decomposition
given in the text.

1.5. Prove the following:

(a) The set of all n×n symmetric matrices is an n(n+1)
2 -dimensional subspace

of Rn×n.
(b) The set of all n × n skew-symmetric matrices is an n(n−1)

2 -dimensional
subspace of Rn×n.

(c) The vector space R
n×n is the direct sum of the subspace of symmetric

matrices and the subspace of skew-symmetric matrices.

1.6. Show that for each R ∈ SO(3) near the identity, the Cayley transforma-
tion so(3) → SO(3) given by (1.10) can be inverted. Give an expression for
the inversion formula.

1.7. Show that for each R ∈ SO(3) near the identity, the exponential trans-
formation so(3) → SO(3) given by (1.11) can be inverted. Give an expression
for the inversion formula.

1.8. Prove the following matrix identities.

(a) For any vectors x, y ∈ R
n:

xT y = trace[xyT ].

(b) For any m× n matrix A and any n×m matrix B:

trace[AB] = trace[BA].
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(c) For any x ∈ R
3:

ST (x) = −S(x),

x× x = S(x)x = 0,

S(x)2 = xxT − ‖x‖2 I3×3,

S(x)3 = −‖x‖2S(x).

(d) For any R ∈ SO(3) and any x, y ∈ R
3:

R(x× y) = (Rx)× (Ry),

RS(x)RT = S(Rx).

(e) For any x, y, z ∈ R
3:

S(x× y) = yxT − xyT ,

S(x× y) = S(x)S(y)− S(y)S(x),

S(x)S(y) = −xT yI3×3 + yxT ,

(x× y) · z = x · (y × z),

x× (y × z) = (x · z)y − (x · y)z,
y × (x× z) + x× (z × y) + z × (y × x) = 0,

‖x× y‖2 = ‖x‖2 ‖y‖2 − (xT y)2.

1.9. The manifold of 2 × 2 matrices in SO(2) consists of all matrices that
satisfy RTR = RRT = I2×2 and have determinant +1.

(a) Show that SO(2) is a one-dimensional manifold.
(b) Show that SO(2) is a Lie group with matrix multiplication as the group

operation.
(c) Show that each R ∈ SO(2) is nonsingular.
(d) Show that the two rows of each R ∈ SO(2) are orthonormal; show that

the two columns of each R ∈ SO(2) are orthonormal.
(e) Show that each R ∈ SO(2) in a neighborhood of the identity can be

represented as an exponential matrix, that is there is a skew-symmetric
matrix ξ ∈ R

2×2, that is ξ + ξT = 0, such that R = eξ.

1.10. The set of 2×2 real skew-symmetric matrices S, that satisfy S+ST = 0,
is denoted by so(2).

(a) Show that each real 2 × 2 skew-symmetric matrix S ∈ so(2) can be ex-
pressed as

S = ω

[
0 −1
1 0

]
,

for some ω ∈ R
1.
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(b) Show that so(2) is a one-dimensional vector space.
(c) Show that any R ∈ SO(2) in a neighborhood of the identity can be ex-

pressed as R = eS for some S ∈ so(2); thus so(2) can be viewed as the
Lie algebra of SO(2).

(d) Show that the tangent space of SO(2) at the identity matrix I2×2 is in
fact so(2).

1.11. Let A ∈ R
m×n be full rank with 0 < m < n. Consider the linear

manifold M = {x ∈ R
n : Ax = b}.

(a) Let x ∈ M . Describe the tangent space TxM .
(b) Describe the tangent bundle TM .
(c) Let x ∈ M . Describe the cotangent space T∗

xM .
(d) Describe the cotangent bundle T∗M .

1.12. Consider q =
[
4
5 ,

3
5

]T ∈ S1.

(a) Describe the tangent space TqS
1.

(b) Describe the cotangent space T∗
qS

1.
(c) Describe the tangent bundle TS1.
(d) Describe the cotangent bundle T∗S1.
(e) Describe the tangent space T(q,0)TS

1.
(f) Describe the tangent bundle TTS1.

1.13. Consider q =
[
1
2 ,

1
2 ,

√
2
2

]T
∈ S2.

(a) Describe the tangent space TqS
2.

(b) Describe the cotangent space T∗
qS

2.
(c) Describe the tangent bundle TS1.
(d) Describe the cotangent bundle T∗S2.
(e) Describe the tangent space T(q,0)TS

2.
(f) Describe the tangent bundle TTS2.

1.14. Consider the manifold M = {x ∈ R
n : f(x) = 0}, where f : Rn → R

1

is continuously differentiable and f ′(x) = ∂f(x)
∂x �= 0 when f(x) = 0. Show

that

TxM =
{
ξ ∈ R

n : ξ = Sf ′(x), S ∈ R
n×n, S + ST = 0

}
.

1.15. Show that R(n×n) and R
n2

are diffeomorphic.

1.16. Show that SO(2) and S1 are diffeomorphic.

1.17. Show that SO(3) and S2 are not diffeomorphic.

1.18. Let a > 0 and b > 0. The set S1ab = {q ∈ R
2 : ( q1a )2 + ( q2b )

2 = 1}
can be viewed as an elliptical manifold embedded in R

2 that is a smooth
deformation of the embedded manifold S1.
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(a) Describe the tangent space of S1ab at q ∈ S1ab and describe the tangent
bundle of S1ab.

(b) Show that this elliptical manifold and the sphere S1 are diffeomorphic
and φ : S1 → S1ab given by φ(q) = [ q1a , q2

b ]
T is a diffeomorphism.

(c) Describe the tangent space of S1ab at q ∈ S1ab and the tangent bundle of
S1ab using this diffeomorphism.

1.19. Let a > 0, b > 0, and c > 0. The set S2abc = {q ∈ R
3 : ( q1a )2 + ( q2b )

2 +
( q3c )

2 = 1} can be viewed as an ellipsoidal manifold embedded in R
3 that is

a smooth deformation of the embedded manifold S2.

(a) Describe the tangent space of S2abc at q ∈ S2abc and describe the tangent
bundle of S2abc.

(b) Show that this ellipsoidal manifold and the sphere S2 are diffeomorphic
and φ : S2 → S2abc given by φ(q) = [ q1a , q2

b ,
q3
c ]

T is a diffeomorphism.
(c) Describe the tangent space of S2abc at q ∈ S2abc and the tangent bundle of

S2abc using this diffeomorphism.

1.20. Consider the parabola manifold

M =
{
x ∈ R

2 : x2 = x2
1

}

embedded in R
2. Let x ∈ M .

(a) Determine an analytical expression for the orthogonal projection operator
P (x) : R2 → TxM satisfying (1.32) as a 2× 2 matrix-valued function.

(b) Show that the orthogonal projection operator is well defined for all x ∈ M
and it is differentiable.

1.21. Consider the helix manifold

M =

{
x ∈ R

3 : x1 = R cos

(
2πx3

L

)
, x2 = R sin

(
2πx3

L

)}

embedded in R
3. Let x ∈ M .

(a) Determine an analytical expression for the orthogonal projection operator
P (x) : R3 → TxM satisfying (1.32) as a 3× 3 matrix-valued function.

(b) Show that the orthogonal projection operator is well defined for all x ∈ M
and it is differentiable.

1.22. A vector field F : R3 → TR3 is described by:

F (x) =

{
−k x

‖x‖ , x �= 0,

0, x = 0,

for a constant k > 0.

(a) Describe the geometry of the vector field on R
3. Show that it is continuous

everywhere except at the origin.
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(b) Describe the flow of the vector field on R
3. What are equilibrium solutions

of the flow?

1.23. A vector field F : R3 → TR3 is described by:

F (x) =

{
k x
‖x‖ , x �= 0,

0, x = 0,

for a constant k > 0.

(a) Describe the geometry of the vector field on R
3. Show that it is continuous

everywhere except at the origin.
(b) Describe the flow of the vector field on R

3. What are equilibrium solutions
of the flow?

1.24. A vector field F : R3 → TR3 is described by:

F (x) = a× x,

for a constant nonzero vector a ∈ R
3.

(a) Describe the geometry of the vector field on R
3.

(b) Describe the flow of the vector field on R
3. What are equilibrium solutions

of the flow?

1.25. Consider the linear differential equations on R
3:

ẋ1 = −1,

ẋ2 = 2,

ẋ3 = −1.

(a) Show that these differential equations define a continuous vector field on
the linear manifold M =

{
x ∈ R

3 : x1 + x2 + x3 = 1
}
.

(b) Determine the unique solution for the initial-value problem defined by
x(0) = [1, 0, 0]T ∈ M and verify that this solution lies in M .

(c) Are there any equilibrium solutions on this linear manifold? If so, what
are the stability properties of these equilibrium solutions?

1.26. Consider the differential equations on R
2:

q̇1 = −q2,

q̇2 = q1.

(a) Show that these differential equations define a continuous vector field on
the manifold S1.

(b) Determine the unique solution for the initial-value problem defined by
q(0) = [1, 0]T ∈ S1 and verify that this solution lies in S1.
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(c) Are there any equilibrium solutions of the vector field on the manifold
S1? If so, what are the stability properties of these equilibrium solutions?

1.27. Consider the differential equations on R
3:

q̇1 = −q2 + q3,

q̇2 = q1 − q3,

q̇3 = −q1 + q2.

(a) Show that these differential equations define a continuous vector field on
the manifold S2.

(b) Determine the unique solution for the initial-value problem defined by
q(0) = [1, 0, 0]T ∈ S2 and verify that this solution lies in S2.

(c) Are there any equilibrium solutions of the vector field on the manifold
S2? If so, what are the stability properties of these equilibrium solutions?

1.28. Consider the matrix differential equation

Ṙ = RS

defined on R
3×3, where

S =

⎡
⎣ 0 1 −1
−1 0 0
1 0 0

⎤
⎦ .

(a) Show that this differential equation defines a continuous vector field on
SO(3).

(b) Determine the unique solution for the initial-value problem defined by
R(0) = I3×3 ∈ SO(3) and verify that this solution lies in SO(3).

(c) Are there any equilibrium solutions of the vector field on the manifold
SO(3)? If so, what are the stability properties of these equilibrium solu-
tions?

1.29. Consider the matrix differential equation

Ṙ = RS

defined on R
2×2, where

S =

[
0 −1
1 0

]
.

(a) Show that this differential equation defines a continuous vector field on
SO(2).

(b) Determine the unique solution for the initial-value problem defined by
R(0) = I2×2 ∈ SO(2) and verify that this solution lies in SO(2).
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(c) Are there any equilibrium solutions of the vector field on the manifold
SO(2)? If so, what are the stability properties of these equilibrium solu-
tions?

1.30. Consider the index one differential-algebraic equations (1.49) and
(1.50).

(a) Show that the multipliers necessarily satisfy

λ = −
(
∂f(x)

∂x

(
∂f(x)

∂x

)T
)−1 (

∂f(x)

∂x

)
g(x).

(b) Show that the vector field defined by the differential equation (1.51) is
invariant on M , that is it defines a continuous vector field restricted to
M .

(c) What conditions on the functions f(x) and g(x) guarantee that the mul-
tipliers are identically zero?

1.31. Consider the index two differential-algebraic equations (1.52) and
(1.53).

(a) Show that the multipliers necessarily satisfy

λ = −
(
∂f(x)

∂x

(
∂f(x)

∂x

)T
)−1 ((

∂f(x)

∂x

)
g(x, ẋ) +

(
d

dt

∂f(x)

∂x

)T

ẋ

)
.

(b) Show that the vector field defined by the differential equation (1.54) is in-
variant on TM , that is it defines a continuous vector field on the manifold
TM .

(c) What conditions on the functions f(x) and g(x, ẋ) guarantee that the
multipliers are identically zero?

1.32. Consider the differential-algebraic equations

ẋ+ Sx+ 2xTλ = 0,

0 = ‖x‖2 − 1,

where x ∈ R
3, λ ∈ R

1 and

S =

⎡
⎣ 0 1 −1
−1 0 1
1 −1 0

⎤
⎦ .

(a) Show that this is a well-posed differential-algebraic system with index
one.

(b) Show that these differential-algebraic equations define a vector field on
the manifold S2.

(c) What are equilibrium solutions of this vector field on S2? What is the
corresponding Lagrange multiplier?
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(d) What are linearized equations that approximate the dynamics in a neigh-
borhood of each equilibrium solution?

1.33. Consider the differential-algebraic equations

ẍ+ ẋ+ Sx+ 2xTλ = 0,

0 = ‖x‖2 − 1,

where x ∈ R
3, λ ∈ R

1 and

S =

⎡
⎣0 0 0
0 0 1
0 −1 0

⎤
⎦ .

(a) Show that this is a well-posed differential-algebraic system with index
two.

(b) Show that these differential-algebraic equations define a vector field on
the tangent bundle TS2.

(c) What are equilibrium solutions of this vector field on the tangent bundle
TS2? What is the corresponding Lagrange multiplier at each equilibrium
solution?

(d) What are linearized equations that approximate the dynamics in a neigh-
borhood of each equilibrium solution?



Chapter 2

Kinematics

This chapter first introduces multi-body systems in conceptual terms. It then
describes the concept of a Euclidean frame in the material world, follow-
ing the concept of a Euclidean structure introduced in [5]. The Euclidean
frame is used to define the set of all possible configurations. This set of con-
figurations is assumed to have the mathematical structure of an embedded
finite-dimensional manifold. Differential equations or vector fields on a config-
uration manifold describe the kinematics or velocity relationships; especially
in the case of rotational kinematics, these kinematics relationships are some-
times referred to as Poisson’s equations. Kinematics equations are obtained
for several interesting connections of mass particles and rigid bodies. This
chapter provides important background for the subsequent results on the
dynamics of Lagrangian and Hamiltonian systems. A classical treatment of
kinematics of particles and rigid bodies is given in [99].

2.1 Multi-Body Systems

The concept of a multi-body system is a familiar one in physics and engineer-
ing. It consists of a collection of rigid and deformable bodies; these bodies may
be physically connected and/or they may interact through forces that arise
from a potential. Multi-body systems, as interpreted here and throughout the
physics and engineering literature, represent idealizations of real mechanical
systems.

Throughout this book, several different categories of multi-body systems
are studied. In some cases, an individual body is idealized as consisting of
a rigid straight line, referred to as a link, with mass concentrated at one or
more points on the link. Such an idealization is a convenient approximation,
especially for cases where the physical body is slender and rotational motion

© Springer International Publishing AG 2018
T. Lee et al., Global Formulations of Lagrangian and Hamiltonian
Dynamics on Manifolds, Interaction of Mechanics and Mathematics,
DOI 10.1007/978-3-319-56953-6 2

53
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about its slender axis and the associated kinetic energy can be ignored. Such
approximations are sometimes referred to as lumped mass bodies or bodies
defined by mass particles. On the other hand, the concept of a rigid body as-
sumes a full three-dimensional body with spatially distributed mass. Rigidity
implies that distances between material points in the body remain constant.
Possible interconnection constraints between two bodies include: rotational
joints that allow constrained relative rotation between the bodies and pris-
matic joints that allow constrained relative translation between the bodies.
This also allows elastic or gravitational connections that arise from a mutual
potential field between the bodies. We do not attempt to provide a theoretical
framework for multi-body systems; rather the subsequent development pro-
vides numerous instances of multi-body systems that arise as approximations
in physics and engineering.

Our interest in multi-body systems is to understand their possible motions,
not the structural or design features of multi-body systems. It is convenient to
distinguish between multi-body kinematics and multi-body dynamics. Kine-
matics describe relationships between configuration variables and velocity
variables; dynamics describe acceleration relationships. In this chapter, we
consider kinematics issues; the remainder of this book presents results on
multi-body dynamics, from a Lagrangian and Hamiltonian perspective that
make use of the methods of variational calculus.

2.2 Euclidean Frames

In order to describe, in mathematical terms, the mechanics of objects such
as ideal mass particles, rigid bodies, and deformable bodies, it is convenient
to introduce the concepts of spatial vectors and Euclidean frames that are
used to define the motion of objects in the material world or forces that act
on those objects.

A spatial vector in mechanics has a direction and magnitude in the mate-
rial world. A Euclidean frame can be viewed as a construction in the three-
dimensional material world consisting of three mutually orthogonal direction
vectors that we associate with the standard basis vectors of R3. We think of
the three orthogonal directions as defining (positively) directed axes or spa-
tial vectors in the Euclidean frame, thereby inducing Euclidean coordinates
for spatial vectors in the material world. Thus, any spatial vector can be
expressed as a linear combination of the three basis vectors of the Euclidean
frame, so that a spatial vector is uniquely associated with a vector in R

3.
Any direction in the material world is defined by a nonzero vector, typically
scaled to be of unit length, in R

3. If we also specify the location of the origin
of the Euclidean frame in the material world then the location of any point in
the material world is represented by a spatial vector and by a corresponding
vector in R

3, expressed with respect to the selected Euclidean frame. It is
convenient to order the directed axes of the Euclidean frame according to the
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usual right-hand rule: if the first directed axis is rotated in the direction of
the second directed axis according to the fingers of the right hand, then the
thumb points in the direction of the third directed axis.

In summary, we have the following. For any given Euclidean frame, we
associate a spatial vector in the material world with a vector in R

3; if the
Euclidean frame has a specified origin, we can associate the location of a
point in the material world by a vector in R

3. These associations imply that
the geometry of the material world can be described mathematically in terms
of R3, viewed as a linear vector space with an inner product. Consequently,
the following developments do not emphasize the spatial vectors of mechanics
but rather the developments are built upon their representations with respect
to one or more Euclidean frames.

In the case that the motion of points of a physical object can be char-
acterized to lie within a two-dimensional plane fixed in a three-dimensional
Euclidean frame, we often select the three-dimensional frame so that the ob-
jects can be easily described with respect to a two-dimensional Euclidean
frame consisting of two orthogonal direction vectors; these ideas are natural
and are used in examples that are subsequently introduced.

We make use of several categories of Euclidean frames. A Euclidean frame
may be fixed or stationary with respect to a background in the material
world; such frames are said to be inertial. We refer to such frames as fixed
frames or inertial frames. In some cases, we introduce Euclidean frames that
are attached to a rigid body, that is the frame translates and rotates with
the body; such frames are said to be body-fixed frames. In some cases, it is
convenient to introduce a reference Euclidean frame that is neither stationary
nor body-fixed but is physically meaningful as a reference. In situations where
several Euclidean frames are introduced, it is important to maintain their
distinction. We do not introduce any special notation that identifies a specific
frame or frames, but rather we hope that this is always clear from the context.

2.3 Kinematics of Ideal Mass Particles

The motion of an ideal mass element or mass particle, viewed as an abstract
point in the material world at which mass is concentrated, is naturally char-
acterized with respect to an inertial Euclidean frame. The position of the
mass particle in the Euclidean frame, at one instant, is represented by a vec-
tor in R

3 where the components in the vector are defined with respect to the
standard basis vectors for the Euclidean frame.

If the particle is in motion, then its position vector changes with time t and
is represented by a vector-valued function of time t → x(t) ∈ R

3. We refer to
the position vector x ∈ R

3 as the configuration of the particle; the space of
configurations is represented by the vector space R3. We can differentiate the

position vector once to obtain the velocity vector v(t) = dx(t)
dt of the moving

particle, and we observe that the velocity is an element of the tangent space
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TxR
3, which we can identify in this case with R

3 itself. The tangent bundle
TR3 consists of all possible pairs of position vectors and velocity vectors,
which in this case is identified with R

3 × R
3. This characterization defines

the kinematics of an ideal mass particle. In fact, this characterization can be
used to describe the motion of any fixed point on a body, whether or not this
point corresponds to a concentrated mass.

These concepts can easily be extended to a finite number n of interacting
particles that are in motion in the material world. Suppose that no constraints
are imposed on the possible motions of the n particles; for example, we do
not prohibit two or more particles from occupying the same location in the
material world. We introduce a Euclidean frame in the material world to
describe the motion of these interacting particles. The motion of n interacting
particles can be described by an n-tuple, consisting of the position vectors
of the n particles, that is functions of time t → xi ∈ R

3, i = 1, . . . , n. Thus,
the configuration of the n interacting particles is described by the vector
x = (x1, . . . , xn) ∈ R

3n. We can differentiate the configuration vector once
to obtain the velocity vector ẋ = (ẋ1, . . . , ẋn) ∈ TxR

3n of the n particles.
The time derivative of the configuration vector, or the velocity vector, is an
element of the tangent space TxR

3n, which we identify in this case with R
3n

itself. The tangent bundle consists of all possible pairs of position vectors and
velocity vectors, which in this case is identified with R

3n × R
3n.

On the other hand, suppose n interacting particles in motion are subject
to algebraic constraints, which can be represented by an embedded manifold
M in R

3n. The configuration of the n interacting particles is the vector x =
(x1, . . . , xn) ∈ M . We can differentiate the configuration vector once to obtain
the velocity vector ẋ = (ẋ1, . . . , ẋn) ∈ TxM of the n particles. That is, the
time derivative of the configuration vector, also referred to as the velocity
vector, is an element of the tangent space TxM . The tangent bundle consists
of all possible pairs of position vectors and velocity vectors, which is identified
with the tangent bundle TM .

2.4 Rigid Body Kinematics

The concept of a rigid body is an idealization of real bodies, but it is a useful
approximation that we adopt in the subsequent developments. A rigid body is
defined as a collection of material particles, located in the three-dimensional
material world. The material particles of a rigid body have the property that
the relative distance between any two particles in the body does not change.
That is, the body, no matter what forces act on the rigid body or what motion
it undergoes, does not deform.

We sometimes consider rigid bodies consisting of an interconnection of a
finite number of ideal particles, where the particles are connected by rigid
links. Such rigid bodies may be a good approximation to real rigid bodies in
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the material world, and they have simplified inertial properties. More com-
monly, we think of a rigid body in the material world as consisting of a
spatially distributed mass continuum.

The key in defining rigid body kinematics is the definition of the config-
uration of the rigid body. The choice of the configuration of a rigid body,
and its associated configuration manifold, depends on the perspective and
the assumptions or constraints imposed on the rigid body motion. Kinematic
relationships describe the rate of change of the configuration as it depends on
translational and rotational velocity variables and the configuration. The role
of the geometry of the configuration manifold is emphasized in the subsequent
development.

As shown subsequently, several configuration manifolds are commonly em-
ployed. If the rigid body is constrained to rotate so that each of its material
points moves on a circle within a fixed plane, then the attitude configuration
of the rigid body can be represented by a point on the configuration manifold
S1. If the rigid body is constrained to rotate so that each of its material points
moves on the surface of a sphere in R

3, then the attitude configuration of the
rigid body can be represented by a point on the configuration manifold S2. If
the rigid body can rotate arbitrarily in R

3, then the attitude configuration of
the rigid body can be represented by a point on the configuration manifold
SO(3).

In addition to rotation of rigid bodies, we also consider translation of
a rigid body, often characterized by the motion of a selected point in the
body, such as its center of mass. If the rigid body is constrained to trans-
late so that each of its material points moves within a fixed plane, then the
translational configuration of the rigid body can be selected to lie in the con-
figuration manifold R

2. If the rigid body can translate arbitrarily in R
3, then

the translational configuration of the rigid body can be selected to lie in the
configuration manifold R

3.
Finally, general rigid body motion, or Euclidean motion, can be described

by a combination of rotation and translation. For example, a rigid body may
be constrained to translate and rotate so that each of its material points lies
in a fixed plane or a rigid body may rotate and translate arbitrarily in R

3.
We consider each of these situations subsequently, in each case identifying
the configuration manifold and the corresponding rigid body kinematics.

2.5 Kinematics of Deformable Bodies

It is challenging to study the kinematics of deformable bodies. The configu-
ration variables and the configuration manifold of a deformable body in mo-
tion must be carefully selected to characterize the translational, rotational,
and spatial deformation features. This choice is strongly influenced by the
assumptions about how the body is spatially distributed and how it may
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deform in three dimensions. A full treatment of the kinematics and dynamics
of deformable bodies requires the use of infinite-dimensional configuration
manifolds and is beyond the scope of this book. However, we do treat several
challenging examples of finite-dimensional deformable bodies in Chapter 10
that can be viewed as finite element approximations of infinite-dimensional
deformable bodies.

2.6 Kinematics on a Manifold

As seen above, the motion of particles, rigid bodies, and deformable bodies is
naturally described in terms of the time evolution of configuration variables
within a configuration manifold. Kinematics relationships are the mathemat-
ical representations that describe this evolution. The time derivative of the
configuration variables is necessarily an element of the tangent space at each
instant. Thus, the kinematics are the differential equations, and possibly as-
sociated algebraic equations, that describe the time derivative of the config-
uration as it depends on the configuration.

The kinematics relations are typically viewed as describing the time evo-
lution of the configuration or the flow in the configuration manifold. In this
chapter, variables that generate the flow within the configuration manifold
are often left unspecified. In the subsequent chapters where issues of dynam-
ics are included, the variables that describe the flow within the configuration
manifold are specified as part of the dynamics. Alternatively, these flow vari-
ables can be specified as having constant values or even as functions of the
configuration; mathematical models of this latter type are sometimes referred
to as closed loop kinematics or kinematics with feedback.

Additional structure arises when the configuration manifold is (a) a Lie
group manifold, (b) a homogeneous manifold, or (c) a product of Lie groups
and homogeneous manifolds. In these cases, the kinematics can be expressed
in terms of the Lie algebra of the Lie group manifold or of the Lie group
associated with the homogeneous manifold. All of the kinematics examples
studied subsequently arise from configuration manifolds of this or a closely
related form.

The motion of a particular physical system may be described in different
ways, for example by selecting one of several possible configuration manifolds.
We demonstrate this possibility in some of the examples to follow. Typically,
we would like to select configuration variables and configuration manifolds
that are parsimonious in describing the physical features, while providing
physical insight without excessive analytical or computational baggage. One
of the important features of this book is demonstration of the important role
of the geometry of the configuration manifold.

We emphasize an important point made in the Preface: configuration man-
ifolds are fundamental in describing kinematics (and dynamics); although we
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make use of a Euclidean frame and associated coordinates for the material
world, we do not use local coordinates to describe the configuration manifolds.
In this sense, the subsequent development is said to be coordinate-free. This
approach is important in obtaining globally valid descriptions of kinematics
(and dynamics).

2.7 Kinematics as Descriptions of Velocity Relationships

Several examples of mechanical systems are introduced. In each case, the
physical description and assumptions are made clear. The configurations are
selected and a configuration manifold is identified. Kinematics relationships
are obtained by describing the time derivative of the configuration variables
using differential equations, and possibly algebraic equations, on the config-
uration manifold.

It is important to emphasize that the formulation in each of the following
examples leads to representations for the global kinematics; that is, there are
no singularities or ambiguities in the expressions for the kinematics. Con-
sequently, this formulation is suitable to describe extreme motions, without
requiring an ad-hoc fix or adjustment as is necessary when using local coor-
dinates.

2.7.1 Translational Kinematics of a Particle on an Inclined Plane

A particle is constrained to move in an inclined plane in R
3 with respect

to an inertial Euclidean frame. The plane is given by the linear manifold
M =

{
(x1, x2, x3) ∈ R

3 : x1 + x2 + x3 − 1 = 0
}
. A schematic of the particle

on an inclined plane is shown in Figure 2.1.
The manifold M is viewed as the configuration manifold. Since the di-

mension of the configuration manifold is two, the translational motion of a
particle in the plane is said to have two degrees of freedom. We first con-
struct a basis for the tangent space TxM ; note that M is the zero level
set of the constraint function f(x) = x1 + x2 + x3 − 1 and the gradient
of this constraint function is [1, 1, 1]T ∈ R

3, which is normal to M . Thus,
the tangent space TxM =

{
(y1, y2, y3) ∈ R

3 : y1 + y2 + y2 = 0
}
is a subspace

of R
3 that does not depend on x ∈ R

3. A basis for the tangent space is
easily selected, for example as

{
[1,−1, 0]T , [0, 1,−1]T

}
. Suppose that a func-

tion of time t → x ∈ M represents a translational motion of the parti-
cle in the inclined plane. Since x ∈ M , it follows that the time derivative
ẋ ∈ TxM = span

{
[1,−1, 0]T , [0, 1,−1]T

}
. This implies there is a vector-

valued function of time t → (v1, v2) ∈ R
2 such that
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Fig. 2.1 Translational kinematics of a particle on an inclined plane

ẋ = v1

⎡
⎣ 1
−1
0

⎤
⎦+ v2

⎡
⎣ 0

1
−1

⎤
⎦ . (2.1)

This vector differential equation (2.1) is referred to as the translational
kinematics for a particle on the inclined plane. This describes the rate of
change of the configuration, namely ẋ ∈ TxM , in terms of v = [v1, v2]

T ∈ R
2.

The vector v ∈ R
2 is referred to as the translational velocity vector of the

particle in the linear manifold. Thus, the translational kinematics of a particle
on an inclined plane can be viewed through the evolution of (x, ẋ) ∈ TM in
the tangent bundle or through the evolution of (x, v) ∈ M × R

2.
Now, suppose that the translational velocity vector v ∈ R

2 is a smooth
function of the configuration. The translational kinematics equations (2.1)
can be viewed as defining a smooth vector field on the linear manifold M .
Initial-value problems can be associated with the translational kinematics.
The following result can be shown to hold: for any initial-value x(t0) = x0 ∈
M , there exists a unique solution of (2.1) satisfying the specified initial-value
and this unique solution satisfies x(t) ∈ M for all t.

2.7.2 Translational Kinematics of a Particle on a Hyperbolic
Paraboloid

A particle is constrained to move in a smooth surface in R
3, namely a hyper-

bolic paraboloid. Its motion is described with respect to an inertial Euclidean
frame. The surface is described by the manifold

M =
{
x ∈ R

3 : x3 = −(x1)
2 + (x2)

2
}
,
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which we select as the configuration manifold. A schematic of the particle on
the surface is shown in Figure 2.2.

Fig. 2.2 Translational kinematics of a particle on a hyperbolic paraboloid

We determine the tangent space and the tangent bundle of the configura-
tion manifold M . This is done indirectly by first focusing on the kinematics
of [x1, x2]

T ∈ R
2 which is the projected position vector of the particle, with

respect to the inertial Euclidean frame. Since the dimension of the configu-
ration manifold is two, the translational motion of a particle on the surface
is said to have two degrees of freedom.

Suppose that a function of time t → [x1, x2, x3]
T ∈ M represents a transla-

tional motion of the particle on the surface. It follows that t → [x1, x2]
T ∈ R

2

and the time derivative [ẋ1, ẋ2]
T ∈ T[x1,x2]TR

2 = span
{
[1, 0]T , [0, 1]T

}
using

the standard basis for R
2. This implies there is a vector-valued function of

time t → [v1, v2]
T ∈ R

2 such that

[
ẋ1

ẋ2

]
= v1

[
1
0

]
+ v2

[
0
1

]
.

Since ẋ3 = −2x1ẋ1 + 2x2ẋ2, it follows that

ẋ = v1

⎡
⎣ 1

0
−2x1

⎤
⎦+ v2

⎡
⎣ 0

1
2x2

⎤
⎦ . (2.2)

This vector differential equation (2.2) describes the translational kinemat-
ics for a particle on a hyperbolic paraboloid in R

3. This describes the rate
of change of the configuration ẋ ∈ TxM in terms of v = [v1, v2]

T ∈ R
2. The

vector v ∈ R
2 is the translational velocity vector of the particle projected

onto the x1x2-plane. Thus, the translational kinematics of a particle on the
surface can be viewed through the evolution of (x, ẋ) ∈ TM in the tangent
bundle or through the evolution of (x, v) ∈ M × R

2.
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Now, suppose that the translational velocity vector is a smooth function of
the configuration. The translational kinematics equations (2.2) can be viewed
as defining a smooth vector field on the manifold M . The following result can
be shown to hold for an initial-value problem associated with (2.2): for any
initial-value x(t0) = x0 ∈ M , there exists a unique solution of (2.2) satisfying
the specified initial-value and this unique solution satisfies x(t) ∈ M for all t.

2.7.3 Rotational Kinematics of a Planar Pendulum

A planar pendulum is an inextensible, rigid link that rotates about a fixed axis
of rotation, referred to as the pivot. The pivot is fixed in an inertial Euclidean
frame. Each material point in the pendulum is constrained to move along a
circular path within an inertial two-dimensional plane; thus, it is referred to
as a planar pendulum.

The configuration of the planar pendulum is the direction vector of the
pendulum link q ∈ S1 defined in a two-dimensional Euclidean frame, where
the two axes define the plane of rotation and the origin of the frame is located
at the pivot. For simplicity, the plane of rotation is viewed as defined by
the first two axes of a three-dimensional Euclidean frame. The configuration
manifold is S1. Since the dimension of the configuration manifold is one,
planar rotations are said to have one degree of freedom. A schematic of the
planar pendulum is shown in Figure 2.3.

Suppose that a function of time t → q ∈ S1 represents a rotational motion
of the planar pendulum. Since q ∈ S1, it follows that the time derivative
q̇ ∈ TqS

1 is necessarily a tangent vector of S1 at q. Thus, q̇ is orthogonal to
q, that is (q̇ · q) = 0. This implies that there is a scalar-valued function of
time t → ω ∈ R

1 such that

q̇ = ωSq, (2.3)

where S is the 2× 2 constant skew-symmetric matrix

S =

[
0 −1
1 0

]

introduced in (1.6). Note that when S acts on a vector by multiplication, it
rotates the vector by π

2 counterclockwise. It is easy to verify that equation
(2.3) is consistent with the familiar expression in three dimensions for velocity
of a point in terms of the cross product of the angular velocity vector and the
position vector if we embed R

2 ↪→ R
2 × {0} ⊂ R

3. This embedding is given
in terms of the matrix
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Q =

⎡
⎣1 0
0 1
0 0

⎤
⎦ .

Then equation (2.3) is equivalent to

Qq̇ =

⎡
⎣0
0
ω

⎤
⎦× (Qq).

q ∈ S1

Fig. 2.3 Planar pendulum

This vector differential equation (2.3) is referred to as the rotational kine-
matics for a planar pendulum. It describes the rate of change of the configu-
ration q̇ ∈ TqS

1 in terms of ω ∈ R
1. The scalar ω is referred to as the angular

velocity of the planar pendulum. Thus, the rotational kinematics of a planar
pendulum can be viewed through the evolution of (q, q̇) ∈ TS1 in the tangent
bundle or through the evolution of (q, ω) ∈ S1 × R

1.
Suppose the link length of the planar pendulum is L, so that the end of

the link is located at LQq ∈ R
3. Then the velocity vector of the mass particle

is LQq̇ ∈ R
3. It is easy to see that the velocity vector of any material point

on the link is proportional to Qq̇ ∈ R
3. Thus, the rotational kinematics of

the planar pendulum can be used to characterize the velocity of any point
on the planar pendulum.

Now, suppose that the angular velocity is a smooth function of the config-
uration. The rotational kinematics equation (2.3) can be viewed as defining
a smooth vector field on the manifold S1. We are interested in initial-value
problems associated with the rotational kinematics equation (2.3). The fol-
lowing result can be shown to hold: for any initial-value q(t0) = q0 ∈ S1, there
exists a unique solution of (2.3) satisfying the specified initial-value and this
unique solution satisfies q(t) ∈ S1 for all t.
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2.7.4 Rotational Kinematics of a Spherical Pendulum

A spherical pendulum is an inextensible, rigid link that can rotate about
an inertially fixed point on the link, referred to as the pivot. The origin of
the inertial Euclidean frame is chosen to be the location of the fixed pivot
point. Each material point on the pendulum link is therefore constrained to
move on a sphere centered about the pivot, which is why it is referred to
as a spherical pendulum. The direction vector q ∈ S2 of the link specifies
the configuration of the spherical pendulum. The configuration manifold is
S2. Since the dimension of the configuration manifold is two, rotations of the
spherical pendulum are said to have two degrees of freedom. This is shown
in a schematic of the spherical pendulum in Figure 2.4.

Suppose that the function of time t → q ∈ S2 represents a rotational
motion of the spherical pendulum. Since q ∈ S2, it follows that the time
derivative q̇ ∈ TqS

2 is a tangent vector of S2 at q ∈ S2. Thus, q̇ is orthogonal
to q, that is (q̇ · q) = 0. This implies that there is a vector-valued function of
time t → ω ∈ R

3 such that

q̇ = ω × q,

or equivalently

q̇ = S(ω)q, (2.4)

where

S(ω) =

⎡
⎣ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤
⎦

is a 3 × 3 skew-symmetric matrix function introduced in (1.8). There is no
loss of generality in requiring that (ω · q) = 0. This observation is true since
ω ∈ R

3 can be decomposed into the sum of a part in the direction of q and
a part that is orthogonal to q and the former part does not contribute to the
value of q̇ in equation (2.4).

q ∈ S2

Fig. 2.4 Spherical pendulum
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This vector differential equation (2.4) is referred to as the rotational kine-
matics for a spherical pendulum. It describes the rate of change of the config-
uration q̇ ∈ TqS

2 in terms of the vector-valued function ω ∈ R
3. The vector ω

is referred to as the angular velocity vector of the spherical pendulum. Thus,
the rotational kinematics of a spherical pendulum can be viewed through the
evolution of (q, q̇) ∈ TS2 in the tangent bundle or through the evolution of
(q, ω) ∈ S2×R

3. Notice that the dimensions of TS2 and S2×R
3 are different,

which is because of the ambiguity in ω mentioned above. As before, this is
resolved by requiring that (ω · q) = 0 for each (q, ω) ∈ S2 × R

3.
Suppose the link length of the spherical pendulum is L, so that the end of

the link is located at Lq ∈ R
3 and the velocity vector of the point at the end

of the link is Lq̇ ∈ R
3. It is easy to see that the velocity vector of any point

along the massless link of the spherical pendulum is proportional to q̇ ∈ R
3.

Thus, the rotational kinematics of the spherical pendulum can be used to
characterize the velocity of any material point on the spherical pendulum.

Suppose that the angular velocity vector is a smooth function of the con-
figuration. The rotational kinematics equation (2.4) can be viewed as defining
a smooth vector field on the manifold S2. We are interested in initial-value
problems associated with the rotational kinematics equation (2.4). The fol-
lowing result can be shown to hold: for any initial-value q(t0) = q0 ∈ S2, there
exists a unique solution of (2.4) satisfying the specified initial-value and this
unique solution satisfies q(t) ∈ S2 for all t.

2.7.5 Rotational Kinematics of a Double Planar Pendulum

The double planar pendulum is an interconnection of two planar pendulum
links, with each link constrained to rotate in a common fixed vertical plane.
The attitude of each link is defined by a direction vector in the fixed vertical
plane. The first link rotates about a fixed one degree of freedom rotational
joint or pivot while the second link is connected by a one degree of freedom
rotational joint to the end of the first link. A schematic of the double planar
pendulum is shown in Figure 2.5.

Here we introduce the attitude of a double planar pendulum as a pair
of direction vectors of the two links, with each direction vector in the unit
circle S1. Thus, the configuration of the double planar pendulum is q =
(q1, q2) ∈ (S1)2. These two direction vectors are defined with respect to a
fixed two-dimensional Euclidean frame, where the two axes define the plane
of rotation of the two pendulums. The origin of the frame is located at the
pivot. For simplicity, the plane of rotation is viewed as defined by the first two
axes of a three-dimensional Euclidean frame. It follows that (S1)2 is the two-
dimensional configuration manifold of the double planar pendulum, which
has two degrees of freedom.
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q1 ∈ S1

q2 ∈ S1

Fig. 2.5 Double planar pendulum

Suppose that a function of time t → q = (q1, q2) ∈ (S1)2 represents a
rotational motion of the double planar pendulum. Since qi ∈ S1, i = 1, 2, it
follows that the time derivative q̇i ∈ TqiS

1 is a tangent vector of S1 at qi.
Thus, q̇i is orthogonal to qi, that is (q̇i · qi) = 0, i = 1, 2. This implies that
there is a function of time t → ω = (ω1, ω2) ∈ R

2 such that

q̇1 = ω1Sq1, (2.5)

q̇2 = ω2Sq2. (2.6)

As previously, S denotes the 2× 2 skew-symmetric matrix given by (1.6).
These vector differential equations (2.5) and (2.6) are referred to as the

rotational kinematics for a double planar pendulum. It describes the rate of
change of the configuration q̇ ∈ Tq(S

1)2 in terms of ω ∈ R
2. The vector ω =

(ω1, ω2) ∈ R
2 is referred to as the angular velocity vector of the double planar

pendulum. Thus, the rotational kinematics of a double planar pendulum can
be viewed through the evolution of (q, q̇) ∈ T(S1)2 in the tangent bundle or
through the evolution of (q, ω) ∈ (S1)2 × R

2.
Suppose the link lengths are L1 and L2 for the two planar pendulums. The

end of the second planar pendulum, in the fixed Euclidean frame, is located
at L1Qq1 + L2Qq2 ∈ R

3, where

Q =

⎡
⎣1 0
0 1
0 0

⎤
⎦ ,

so that the velocity vector of the end of the second spherical pendulum is
L1Qq̇1 + L2Qq̇2 ∈ R

3. It is easy to see that the velocity of any selected
body-fixed point on either link of the double planar pendulum is a linear
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combination of Qq̇1 ∈ R
3 and Qq̇2 ∈ R

3. Thus, the rotational kinematics of
the double planar pendulum can be used to characterize the velocity vector
of any material point on either link.

Now, suppose that the angular velocity vector is a smooth function of
the configuration. The rotational kinematics equations (2.5) and (2.6) can
be viewed as defining a smooth vector field on the manifold (S1)2. We are
interested in initial-value problems associated with the rotational kinematics
equation (2.5) and (2.6). The following result can be shown to hold: for any
initial-value q(t0) = q0 ∈ (S1)2, there exists a unique solution of (2.5) and
(2.6) satisfying the specified initial-value and this unique solution satisfies
q(t) ∈ (S1)2 for all t.

2.7.6 Rotational Kinematics of a Double Spherical Pendulum

The double spherical pendulum is an interconnection of two spherical pen-
dulum links, with each link able to rotate in three dimensions. The first link
rotates about a fixed spherical pivot while the second link is connected by
a spherical pivot located at some point on the first link. A schematic of the
double spherical pendulum is shown in Figure 2.6.

q1 ∈ S2

q2 ∈ S2

Fig. 2.6 Double spherical pendulum

Here we introduce the attitude of a double spherical pendulum as a pair
of direction vectors for the two links, with each direction vector in the
unit sphere S2. Thus, the configuration of the double spherical pendulum
is q = (q1, q2) ∈ (S2)2. These two direction vectors are defined with respect
to an inertially fixed three-dimensional Euclidean frame. The origin of the
frame is located at the inertially fixed pivot. It follows that (S2)2 is the four-
dimensional configuration manifold of the double spherical pendulum, which
has four degrees of freedom.
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Suppose that a function of time t → q = (q1, q2) ∈ (S2)2 represents a
rotational motion of the double spherical pendulum. Since qi ∈ S2, i = 1, 2,
it follows that the time derivative q̇i ∈ TqiS

2 is a tangent vector of S2 at qi.
Thus, q̇i is orthogonal to qi, that is (q̇i·qi) = 0, i = 1, 2. This implies that there
is a function of time t → ω = (ω1, ω2) ∈ (R3)2 satisfying (ωi ·qi) = 0, i = 1, 2,
such that

q̇1 = S(ω1)q1, (2.7)

q̇2 = S(ω2)q2, (2.8)

where S(ω) is the 3× 3 skew-symmetric matrix function introduced in (1.8).
These vector differential equations (2.7) and (2.8) are referred to as the

rotational kinematics for a double spherical pendulum. It describes the rate
of change of the configuration q̇ ∈ Tq(S

2)2 in terms of ω ∈ (R3)2. The vector
ω = (ω1, ω2) ∈ (R3)2 is referred to as the angular velocity vector of the double
spherical pendulum. Thus, the rotational kinematics of a double spherical
pendulum can be viewed through the evolution of (q, q̇) ∈ T(S2)2 in the
tangent bundle or through the evolution of (q, ω) ∈ (S2)2 × (R3)2.

Suppose the link lengths are L1 and L2 for the two spherical pendulums.
The end of the second spherical pendulum, in the fixed Euclidean frame,
is located at L1q1 + L2q2 ∈ R

3, so that the velocity vector of the end of
the second spherical pendulum is L1q̇1 + L2q̇2 ∈ R

3. It is easy to see that
the velocity of any selected body-fixed point on either link of the double
spherical pendulum is a linear combination of q̇1 ∈ R

3 and q̇2 ∈ R
3. Thus,

the rotational kinematics of the double spherical pendulum can be used to
characterize the velocity vector of any material point on either link.

Now, suppose that the angular velocity vector is a smooth function of
the configuration. The rotational kinematics equations (2.7) and (2.8) can
be viewed as defining a smooth vector field on the manifold (S2)2. We are
interested in initial-value problems associated with the rotational kinematics
equation (2.7) and (2.8). The following result can be shown to hold: for any
initial-value q(t0) = q0 ∈ (S2)2, there exists a unique solution of (2.7) and
(2.8) satisfying the specified initial-value and this unique solution satisfies
q(t) ∈ (S2)2 for all t.

2.7.7 Rotational Kinematics of a Planar Pendulum Connected
to a Spherical Pendulum

We consider a planar pendulum that can rotate in a fixed plane about a one
degree of freedom rotational pivot whose axis is perpendicular to the plane
of rotation. One end of a spherical pendulum is connected to the end of the
planar pendulum by a two degree of freedom rotational pivot; the spherical
pendulum can rotate in three dimensions. An inertially fixed Euclidean frame
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in three dimensions is constructed so that its first two axes define the plane of
rotation of the planar pendulum and its third axis is orthogonal. A schematic
of the connection of a planar pendulum and a spherical pendulum is shown
in Figure 2.7.

q1 ∈ S1

q2 ∈ S2

Fig. 2.7 Connection of a planar pendulum and a spherical pendulum

The configuration of the planar pendulum q1 ∈ S1 is defined by the di-
rection vector of the planar link, with respect to the first two axes of the
Euclidean frame that define the plane of rotation of the link. Thus, S1 is
the configuration manifold of the planar pendulum. The configuration of the
spherical pendulum q2 ∈ S2 is defined as the direction vector of the spherical
link, with respect to the Euclidean frame. Thus, S2 is the configuration mani-
fold of the spherical pendulum. It follows that S1×S2 is the three-dimensional
configuration manifold of the connection of the planar pendulum and the
spherical pendulum. The connection has three degrees of freedom.

Suppose the function of time t → (q1, q2) ∈ S1 × S2 represents a motion
of the connection of a planar pendulum and a spherical pendulum. As seen
previously for a planar pendulum, the time derivative q̇1 ∈ Tq1S

1 is a tangent
vector of S1 at q1. Thus, q̇1 is orthogonal to q1. This implies that there is a
scalar-valued function of time t → ω1 ∈ R

1, referred to as the scalar angular
velocity of the planar pendulum about its joint axis, such that

q̇1 = ω1Sq1. (2.9)

Here, S denotes the 2× 2 skew-symmetric matrix given by (1.6) that rotates
a vector by π

2 counterclockwise.
As seen previously for the spherical pendulum, the time derivative q̇2 ∈

Tq2S
2 is a tangent vector of S2 at q2. Thus, q̇2 is orthogonal to q2. This implies

that there is a vector-valued function of time t → ω2 ∈ R
3, referred to as the

angular velocity vector of the spherical pendulum, such that
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q̇2 = S(ω2)q2. (2.10)

The skew-symmetric matrix function is defined by (1.8).
These vector differential equations (2.9) and (2.10) are referred to as the

rotational kinematics for a connection of a planar pendulum and a spherical
pendulum. They describe the rate of change of the configuration q̇ = (q̇1, q̇2) ∈
T(q1,q2)(S

1×S2) in terms of the angular velocities ω = (ω1, ω2) ∈ R
1×R

3. The
rotational kinematics can be viewed through the evolution of (q, q̇) ∈ T(S1 ×
S2) in the tangent bundle or through the evolution of (q, ω) ∈ S1×S2×R

1×R
3.

Suppose the link length from the inertially fixed pivot to the pivot con-
necting the two links is L1 for the planar pendulum and the link length from
the spherical pivot to the end of the spherical pendulum is L2. The position
vector of the end of the spherical pendulum, in the fixed Euclidean frame, is
L1Qq1 + L2q2 ∈ R

3, where

Q =

⎡
⎣1 0
0 1
0 0

⎤
⎦ ,

which defines an embedding of R2 into R
3. Then the velocity vector of the

end of the spherical pendulum is L1Qq̇1+L2q̇2 ∈ R
3. It is easy to see that the

velocity of any body-fixed point on either link of the connection of a planar
pendulum and a spherical pendulum is a linear combination of Qq̇1 ∈ R

3

and q̇2 ∈ R
3. Thus, the rotational kinematics of the connection of a planar

pendulum and a spherical pendulum can be used to characterize the velocity
vector of any material point in either link.

Suppose that the angular velocities are smooth functions of the configura-
tion. The rotational kinematics equations can be viewed as defining a smooth
vector field on the manifold S1 ×S2. The following result for the initial-value
problem holds: for any initial-value q(t0) = q0 ∈ S1 × S2, there exists a
unique solution of (2.9) and (2.10) satisfying the specified initial-value and
this unique solution satisfies q(t) ∈ S1 × S2 for all t.

2.7.8 Kinematics of a Particle on a Torus

Consider an ideal particle that is constrained to move on the surface of a torus
or doughnut in R

3, where the torus is the surface of revolution generated by
revolving a circle about an axis, coplanar with the circle, that does not touch
the circle. Without loss of generality, it is assumed that the torus has major
radius R > 0 which is the distance from the axis of the torus to the center
of the circle and minor radius 0 < r < R which is the radius of the revolved
circle. A schematic of the particle on a torus is shown in Figure 2.8.



2.7 Kinematics as Descriptions of Velocity Relationships 71

q ∈ (S1)2

Fig. 2.8 Particle constrained to a torus

An inertially fixed Euclidean frame is constructed so that the center of the
revolved circle is located at (R, 0, 0) ∈ R

3, the circle lies in the plane defined
by the first and third axes and the axis of the torus is the third axis of the
Euclidean frame.

The position vector of the particle on the torus is denoted by x =
(x1, x2, x3) ∈ R

3. The configuration of the particle on the torus can be se-
lected as q = (q1, q2) ∈ (S1)2, and we show that this uniquely determines the
position vector of the particle on the torus. Thus, the configuration manifold
is (S1)2 and the particle has two degrees of freedom. We describe the kine-
matics of the particle on the torus by expressing these kinematics in terms
of the evolution on the configuration manifold.

This example should be contrasted with the double planar pendulum ex-
ample which has the same configuration manifold. It is common to visualize
the flow of the double planar pendulum on a torus in R

3, but the values
of the major radius and the minor radius of the torus are irrelevant to this
visualization. In contrast, the kinematics of the particle on a torus depend on
the major radius and the minor radius of the torus, as is subsequently shown.
The formulation of the kinematics of a particle on a torus in R

3, as developed
here, seems not to have appeared previously in the published literature.

The torus in R
3 can be defined parametrically in terms of two angles

x1 = (R+ r cosφ) cos θ,

x2 = (R+ r cosφ) sin θ,

x3 = r sinφ,

but this description leads to an ambiguity in the description of the kinematics.
Alternatively, the torus in R

3 can be defined implicitly by the constraint
equation

(
R−

√
x2
1 + x2

2

)2

+ x2
3 − r2 = 0.
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This formulation can be the basis for describing the kinematics of a par-
ticle moving on a torus in terms of a constraint manifold embedded in R

3.
This leads to kinematics equations described in terms of differential-algebraic
equations on this constraint manifold. We do not develop this formulation any
further.

Now, we describe a geometric approach in terms of the configuration man-
ifold (S1)2. We first express the position of the particle on the torus x ∈ R

3

in terms of the configuration q = (q1, q2) ∈ (S1)2. The geometry of the torus
implies that an arbitrary vector x ∈ R

3 on the torus can be uniquely decom-
posed, in the Euclidean frame, into the sum of a vector from the origin to the
center of the embedded circle on which x lies and a vector from the center of
this embedded circle to x. This decomposition can be expressed as

x =

⎡
⎣(R+ r(eT1 q2))(e

T
1 q1)

(R+ r(eT1 q2))(e
T
2 q1)

r(eT2 q2)

⎤
⎦ , (2.11)

where e1, e2 denote the standard basis vectors in R
2. It is easy to see that this

is consistent with the parametric representation in terms of two angles given
above, but avoids the ambiguity of the angular representation associated with
angles that differ by multiples of 2π. This decomposition demonstrates that
the position vector of the particle on the torus depends on the configuration
of the particle and on the values of the major radius and minor radius of the
torus.

The kinematics for the motion of a particle on a torus in R
3 are easily

obtained. The velocity vector of the particle on the torus is described by

ẋ =

⎡
⎣(R+ r(eT1 q2))e

T
1

(R+ r(eT1 q2))e
T
2

0

⎤
⎦ q̇1 +

⎡
⎣r(e

T
1 q1)e

T
1

r(eT2 q1)e
T
1

reT2

⎤
⎦ q̇2. (2.12)

As we have seen previously, there exists an angular velocity vector that
is a function of time t → ω = (ω1, ω2) ∈ R

2 such that the configuration
kinematics for q = (q1, q2) ∈ (S1)2 are given by

q̇1 = ω1Sq1, (2.13)

q̇2 = ω2Sq2, (2.14)

where S is the 2× 2 skew-symmetric matrix that rotates a vector by π
2 coun-

terclockwise. Thus, the velocity vector of the particle on the torus can also
be described by

ẋ =

⎡
⎣−(R+ r(eT1 q2))e

T
2 q1

(R+ r(eT1 q2))e
T
1 q1

0

⎤
⎦ω1 +

⎡
⎣−r(eT1 q2)e

T
2 q2

−r(eT1 q2)e
T
2 q2

r(eT1 q2)

⎤
⎦ω2. (2.15)
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The vector differential equation (2.12) or equivalently the vector differen-
tial equation (2.15), together with (2.13) and (2.14), are referred to as the
kinematics of a particle on a torus. They describe the rates of change of the
configuration q̇ ∈ Tq(S

1)2 and the particle velocity vector ẋ ∈ R
3 on the

torus. The scalars ω1 and ω2 are referred to as the angular velocities of the
particle on the torus. Thus, the translational kinematics of the particle on a
torus can be viewed through the evolution of (q, q̇) ∈ T(S1)2 in the tangent
bundle or through the evolution of (q, ω) ∈ (S1)2 × (R1)2.

Suppose that the angular velocities are a smooth function of the configu-
ration. The rotational kinematics (2.13) and (2.14) can be viewed as defining
a smooth vector field on the manifold (S1)2. We are interested in initial-value
problems associated with these kinematics equations. The following results
can be shown to hold: for any initial-value q(t0) = q0 ∈ (S1)2, there exists a
unique solution of (2.13) and (2.14) satisfying the specified initial-value and
this unique solution satisfies q(t) ∈ (S1)2 for all t. Each such solution results
in a unique solution of (2.12) or (2.15) which has the property: if x(t0) ∈ R

3

is on the torus, then x(t) ∈ R
3 remains on the torus for all t.

2.7.9 Rotational Kinematics of a Free Rigid Body

A rigid body is free to rotate in three dimensions without constraint. In
addition to an inertially fixed Euclidean frame, it is convenient to define
another Euclidean frame that is fixed to the rigid body. That is, the body-
fixed Euclidean frame rotates with the body; in fact, we describe the rotation
of the body through the rotation of the body-fixed Euclidean frame. In formal
terms, the configuration of a rotating rigid body in three dimensions is the
linear transformation that relates the representation of a vector in the body-
fixed Euclidean frame to the representation of that vector in the inertially
fixed Euclidean frame.

The matrix representing this linear transformation can be constructed by
computing the direction cosines between the unit vectors that define the axes
of the inertially fixed Euclidean frame and the unit vectors that define the
axes of the body-fixed Euclidean frame. This attitude configuration is re-
ferred to as a rotation matrix, attitude matrix, or direction cosine matrix
of the rigid body. It can be shown that such matrices are orthogonal with
determinant +1, so that each rotation or attitude matrix R ∈ SO(3). Hence,
the configuration manifold is SO(3), which, as seen previously, is a Lie group.
Since the dimension of the configuration manifold is three, rigid body rota-
tions are said to have three degrees of freedom. A schematic of a rotating free
rigid body is shown in Figure 2.9.

Suppose that the function of time t → R ∈ SO(3) represents a rotational
motion of a free rigid body. Since R is an orthogonal matrix, it follows that
RTR = I3×3. Differentiating, we obtain ṘTR = −RT Ṙ which implies that
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R ∈ SO(3)

Fig. 2.9 Rotating free rigid body

RT Ṙ is always skew-symmetric. This implies that there is a vector-valued
function of time t → ω ∈ R

3 such that RT Ṙ = S(ω) where we have used
(1.8). This can be written as

Ṙ = RS(ω), (2.16)

which shows that Ṙ ∈ TRSO(3), that is Ṙ is in the tangent space of SO(3)
at R ∈ SO(3). This should come as no surprise, since the set of tangent
vectors to a curve that takes values on a manifold are the very definition of
the tangent space to a manifold. Recall that S(ω) ∈ so(3), where so(3) is the
space of skew-symmetric matrices, which is the Lie algebra associated with
the Lie group SO(3). Thus, the time derivative Ṙ can be expressed as shown
in (2.16) so that S(ω) = RT Ṙ ∈ so(3).

Alternatively, we can use the matrix identity S(Rω) = RS(ω)RT to obtain
the rotational kinematics for a rotating rigid body given by

Ṙ = S(Rω)R. (2.17)

This alternate form of the rotational kinematics describes the rate of change
of the configuration in terms of Rω which is the angular velocity vector of
the rigid body represented in the inertially fixed Euclidean frame, sometimes
referred to as the spatial angular velocity of the rigid body. Although (2.16)
and (2.17) are equivalent, the form (2.16) using the body-fixed angular ve-
locity is most convenient; we will most often use the rotational kinematics
expressed in terms of the body-fixed angular velocity.

Yet another perspective is to view the attitude configuration R ∈ SO(3)
by partitioning into three rows or equivalently by partitioning RT ∈ SO(3)
into three columns, that is
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R =

⎡
⎣r

T
1

rT2
rT3

⎤
⎦ , RT =

⎡
⎣r1 r2 r3

⎤
⎦ .

The attitude or rotational kinematics of a rotating rigid body can also be
described by the three vector differential equations

ṙi = S(ri)ω, i = 1, 2, 3. (2.18)

The matrix differential equation (2.16) or (2.17), or equivalently the vector
differential equations (2.18), are referred to as the rotational kinematics of
a free rigid body. They describe the rates of change of the configuration
Ṙ ∈ TRSO(3) in terms of the angular velocity ω ∈ R

3 represented in the
body-fixed frame. Thus, the rotational kinematics of a free rigid body can be
viewed through the evolution of (R, Ṙ) ∈ TSO(3) in the tangent bundle of
SO(3) or through the evolution of (R,ω) ∈ SO(3)× R

3.
Suppose that the angular velocity is a smooth function of the configuration.

The rotational kinematics can be viewed as defining a smooth vector field on
the Lie group manifold SO(3). We are interested in initial-value problems
associated with these rotational kinematics equations. The following results
can be shown to hold: for any initial-value R(t0) = R0 ∈ SO(3), there exists a
unique solution of the kinematics differential equations satisfying the specified
initial-value and this unique solution satisfies R(t) ∈ SO(3) for all t.

2.7.10 Rotational and Translational Kinematics of a Rigid Body
Constrained to a Fixed Plane

Planar Euclidean motion of a rigid body occurs if each point in the body is
constrained to move in a fixed two-dimensional plane. Select a point fixed
in the rigid body and define a two-dimensional inertial Euclidean frame for
this fixed plane within which the selected point moves. Additionally, define
a body-fixed Euclidean frame centered at the selected point and spanned by
unit vectors e1 and e2.

Here, the configuration is taken as (q, x) ∈ S1 × R
2, where q ∈ S1 denotes

the unit vector e1 with respect to the inertially fixed Euclidean frame and x ∈
R

2 denotes the position vector of the selected point in the Euclidean frame.
In this case, the configuration manifold has a product form. A schematic
of a rotating and translating rigid body constrained to a plane is shown in
Figure 2.10.

Suppose the function of time t → (q, x) ∈ S1 × R
2 represents a rotational

and translational motion of the constrained rigid body. Since q ∈ S1 there is
a scalar function t → ω ∈ R

1, referred to as the scalar angular velocity of
the body and there is a translational velocity vector for the body-fixed point
that is a function of time t → v ∈ R

2 such that
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(q, x) ∈ S1 × R
2

Fig. 2.10 Rotating and translating rigid body in planar motion

q̇ = ωSq, (2.19)

ẋ =
[
q, Sq

]
v, (2.20)

where S denotes the 2× 2 skew-symmetric matrix (1.6) that rotates a vector
by π

2 counterclockwise and the 2 × 2 partitioned matrix in (2.20) consists
of columns q ∈ S1 and Sq ∈ S1. Note that v ∈ R

2 represents the transla-
tional velocity of the selected body-fixed point. The rotational and transla-
tional kinematics (2.19) and (2.20) can be viewed through the evolution of
(q, x, q̇, ẋ) ∈ T(S1 × R

2) in the tangent bundle or through the evolution of
(q, x, ω, v) ∈ S1 × R

2 × R
1 × R

2.
Now suppose that the angular velocity scalar ω and the translational ve-

locity vector v are smooth functions of the configurations. The kinematics
equations can be viewed as defining a smooth vector field on the configura-
tion manifold S1 ×R

2. We are interested in initial-value problems associated
with the kinematics equations (2.19) and (2.20). The following result can
be shown to hold: for any initial-values (q(t0), x(t0)) = (q0, x0) ∈ S1 × R

2,
there exists a unique solution of (2.19) and (2.20) satisfying the specified
initial-values and this unique solution satisfies (q(t), x(t)) ∈ S1 ×R

2 for all t.

2.7.11 Rotational and Translational Kinematics of a Free Rigid
Body

A rigid body is free to translate and rotate in three dimensions. As previously,
the configuration is defined in terms of an inertially fixed Euclidean frame and
a body-fixed Euclidean frame. The configuration of a translating and rotating
rigid body in three dimensions consists of an ordered pair (R, x) ∈ SE(3),
where R ∈ SO(3) is a rotation matrix describing the attitude of the rigid
body and x ∈ R

3 is the vector describing the position of a point in the body,
typically the origin of the body-fixed frame, in the inertial frame. The pair
(R, x) ∈ SE(3) can be viewed as a homogenous matrix in GL(4). Hence, the
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configuration manifold is SE(3), which is a Lie group. Since the dimension of
the configuration manifold is six, rigid body rotations and translations are
said to have six degrees of freedom. A schematic of a rotating and translating
free rigid body is shown in Figure 2.11.

Suppose that the function of time t → R(t) ∈ SO(3) is a rotational motion
and the position vector of the origin of the body-fixed Euclidean frame with
respect to the inertial Euclidean frame is described by the function of time
t → x(t) ∈ R

3, which defines a translational motion of the rigid body. This
implies that there are vector-valued functions of time t → ω ∈ R

3 and t →
v ∈ R

3 such that the kinematics for Euclidean motion of a rigid body are
given by

Ṙ = RS(ω), (2.21)

ẋ = Rv, (2.22)

which shows that (Ṙ, ẋ) ∈ T(R,x)SE(3). We have used the 3 × 3 skew-
symmetric matrix function given by (1.8).

As in the prior section, it can be shown that if ri = RT ei, i = 1, 2, 3 then
ri ∈ S2, i = 1, 2, 3 and the kinematics can be expressed as

ṙi = S(ri)ω, i = 1, 2, 3, (2.23)

ẋ =

⎡
⎣r

T
1 v
rT2 v
rT3 v

⎤
⎦ , (2.24)

which also implies that (Ṙ, ẋ) ∈ T(R,x)SE(3).
Equations (2.21) and (2.22), or equivalently equations (2.23) and (2.24),

reflect the fact that the Lie algebra se(3) associated with the Lie group SE(3)
can be identified with so(3)× R

3.
These differential equations are referred to as the Euclidean kinematics

or the rotational and translational kinematics for a rigid body. The matrix
differential equation (2.21) describes the rate of change of the rotational con-
figuration in terms of the angular velocity vector ω ∈ R

3, represented in
the body-fixed frame. The vector differential equation (2.22) is referred to
as the translational kinematics for a rigid body. It relates the translational
velocity vector ẋ ∈ R

3 represented in the inertial Euclidean frame to the
translational velocity vector v represented in the body-fixed Euclidean frame.
Thus, the rotational and translational kinematics of a free rigid body can be
viewed through the evolution of (R, x, Ṙ, ẋ) ∈ TSE(3) in the tangent bundle
or through the evolution of (R, x, ω, v) ∈ SE(3)× R

3 × R
3.

Suppose that the rotational and translational velocity vectors ω ∈ R
3, v ∈

R
3 are smooth functions of the configuration. The translational and rota-

tional kinematics equations (2.21) and (2.22) can be viewed as defining a
smooth vector field on the Lie group SE(3). We are interested in initial-value
problems. The following result can be shown to hold: for any initial-value
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(R, x) ∈ SE(3)

Fig. 2.11 Rotating and translating free rigid body

(R(t0), x(t0)) = (R0, x0) ∈ SE(3), there exists a unique solution of (2.21) and
(2.22) satisfying the specified initial-values and this unique solution satisfies
(R(t), x(t)) ∈ SE(3) for all t.

2.7.12 Translational Kinematics of a Rigid Link with Ends
Constrained to Slide Along a Straight Line and a Circle
in a Fixed Plane

One end of a rigid link is constrained to slide along a straight line; the other
end of the link is constrained to slide along a circle of radius r. For simplicity,
assume that the straight line and the circle lie in a common plane, with the
straight line passing through the center of the circle. The length of the rigid
link is L and assume r < L.

Since the ends of the link are constrained, this physical system is referred
to as a slider-crank mechanism that can be used to transform circular motion
of one end of the link to translational motion of the other end of the link, or
vice versa. We now study the kinematics of the slider-crank mechanism. A
schematic of this mechanism is shown in Figure 2.12.

A two-dimensional inertially fixed Euclidean frame is constructed with the
first axis along the straight line and the second axis orthogonal to the first
axis; the origin of the frame is located at the center of the circle.

x

rq L

Fig. 2.12 Rigid link with ends constrained to slide along a straight line and a circle



2.7 Kinematics as Descriptions of Velocity Relationships 79

Let q ∈ S1 denote the direction vector of the end of the link that moves on
the circle in the fixed frame; thus, rq is the position vector of the other end of
the link in the fixed frame. Let x ∈ R

1 denote the position of the end of the
link that moves on the straight line in the fixed frame. Thus, (q, x) ∈ S1×R

1,
but this is constrained by the fixed length of the rigid link. This constraint
is given by

‖rq − xe1‖2 = L2.

It can be shown that

M =
{
(q, x) ∈ S1 × R

1 : ‖rq − xe1‖2 − L2 = 0
}

is a manifold that characterizes all possible configurations of the physical
mechanism. This configuration manifold has dimension one; thus, the mech-
anism has one degree of freedom.

Suppose that the function of time t → (q, x) ∈ M defines a motion for
the mechanism. Since one end of the link is constrained to the circle, that is
q ∈ S1, it follows that there is a scalar angular velocity t → ω ∈ R

1 such that

q̇ = ωSq,

where S is the 2 × 2 skew-symmetric matrix given by (1.6) that rotates a
vector by π

2 counterclockwise.
Further, since (q̇, ẋ) ∈ T(q,x)M , the time derivative of the configuration

must satisfy

(rq − xe1)
T (rωSq − e1ẋ) = 0.

Since ẋ is a scalar, some algebra shows that the time derivative of the con-
figuration can be expressed as

[
q̇
ẋ

]
= ω

[
I2×2
−rxeT1

(reT1 q−x)

]
Sq. (2.25)

This defines the kinematics for the mechanism by describing the time deriva-
tive of the configuration as a tangent vector of the configuration manifold M .
Note that the assumption that r < L guarantees that reT1 q − x �= 0 on M .

Thus, (2.25) guarantees that (q̇, ẋ) ∈ T(q,x)M . The kinematics can be
viewed through the evolution of (q, x, q̇, ẋ) ∈ TM in the tangent bundle of
M or through the evolution of (q, x, ω, ẋ) ∈ M × R

2.
If the angular velocity ω ∈ R

1 is a smooth function of the configuration, the
differential equations (2.25) define a smooth vector field on the configuration
manifoldM . It follows that for each initial condition (q(t0), x(t0)) = (q0, x0) ∈
M there exists a unique solution (q(t), x(t)) ∈ M for all t.
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2.7.13 Rotational and Translational Kinematics of a Constrained
Rigid Rod

A thin rigid rod is viewed as a rigid body in three dimensions; the end points
of the rigid rod are constrained to move on a fixed, rigid sphere. An inertially
fixed Euclidean frame is constructed so that its origin is located at the center
of the fixed sphere. A body-fixed Euclidean frame is constructed so that its
origin is located at the centroid of the rod and the third body-fixed axis is
along the minor principal axis of the rod. The length of the rod along its
minor principal axis is L. The radius of the fixed sphere is r and we assume
that r > L

2 . The two ends of the rigid rod are constrained to move in contact
with the fixed sphere. This gives rise to two scalar constraints that the ends
of the rigid rod maintain contact with the fixed sphere. A schematic of the
constrained rigid rod is given in Figure 2.13.

(R, x) ∈ SE(3)

Fig. 2.13 A constrained rigid rod

Let R ∈ SO(3) denote the attitude of the rigid rod and let x ∈ R
3 denote

the position vector of the center point of the rod in the fixed Euclidean frame.
The two constraint equations that encode the contact between the ends of
the rod and the sphere are

‖x‖2 − r2 +

(
L

2

)2

= 0, (2.26)

xTRe3 = 0. (2.27)

The position vector to one end of the rod is x1 = x + L
2R

T e3 ∈ R
3 while

the position vector to the other end of the rod is x2 = x − L
2R

T e3 ∈ R
3.

Simple computations show that ‖x1‖2 = r2 and ‖x2‖2 = r2 so that each end
of the rod is in contact with the sphere.
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Thus, the configuration manifold is

M =

{
(R, x) ∈ SE(3) : ‖x‖2 − r2 +

(
L

2

)2

= 0, xTRe3 = 0

}
. (2.28)

It can be shown that the dimension of the configuration manifold is four so
that the rigid rod, constrained to move on the sphere, has four degrees of
freedom.

Consider a motion of the constrained rigid rod given by t → (R, x) ∈ M .
This motion implies that there is an angular velocity vector ω ∈ R

3 and a
translational velocity vector v ∈ R

3 such that

Ṙ = RS(ω), (2.29)

ẋ = Rv, (2.30)

using the 3× 3 skew-symmetric matrix function given by (1.8). Here, ω ∈ R
3

is the angular velocity vector of the rigid rod in the body-fixed frame and
v ∈ R

3 is the translational velocity vector of the rigid rod in the body-fixed
frame.

Differentiating the constraints (2.26) and (2.27) and using the kinematics
results in

xTRv = 0, (2.31)

eT3 v+eT3 R
TS(x)Rω = 0. (2.32)

Thus, if (Ṙ, ẋ) satisfy (2.29) and (2.30) and the velocities (ω, v) ∈ R
6

satisfy (2.31) and (2.32), then (Ṙ, ẋ) ∈ T(R,x)M . The rotational and trans-
lational kinematics of the constrained rigid rod can be viewed through the
evolution of (R, x, Ṙ, ẋ) ∈ TM in the tangent bundle of M or through the
evolution of (R, x, ω, v) ∈ M ×R

6 where (ω, v) are subject to the constraints
(2.31) and (2.32). These differential equations define the constrained kine-
matics on the configuration manifold M .

Suppose that the angular velocity vector and the translational velocity
vector ω ∈ R

3, v ∈ R
3 are smooth functions of the configuration (R, x) ∈ M

that satisfy (2.31) and (2.32). It can be shown that if the initial conditions
R(t0) = R0 ∈ SO(3), x(t0) = x0 ∈ R

3 satisfy (R0, x0) ∈ M , then there exists
a unique solution (R(t), x(t)) ∈ M for all t.
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2.8 Problems

2.1. A particle moves on a curve embedded in R
2 described by the manifold

M =
{
x ∈ R

2 : x1 − (x2)
2 = 0

}
.

(a) Describe the geometry of the manifold.
(b) Describe the translational kinematics of the particle on the curve in terms

of a single kinematics parameter.
(c) Interpret the geometric significance of the kinematics parameter you se-

lected.

2.2. A particle moves on a plane embedded in R
3 described by the manifold

M =
{
x ∈ R

3 : x1 + x2 + x3 − 1 = 0
}
.

(a) Describe the geometry of the manifold.
(b) Describe the translational kinematics of the particle on the plane in terms

of two kinematics parameters.
(c) Interpret the geometric significance of the two kinematics parameters you

selected.

2.3. A particle moves on a plane embedded in R
3 described by the manifold

M =
{
x ∈ R

3 : x1 − x2 + x3 − 1 = 0
}
.

(a) Describe the geometry of the manifold.
(b) Describe the translational kinematics of the particle on the plane in terms

of two kinematics parameters.
(c) Interpret the geometric significance of the two kinematics parameters you

selected.

2.4. A particle moves on a surface embedded in R
3 described by the manifold

M =
{
x ∈ R

3 : (x1)
2 − x2 + x3 = 0

}
.

(a) Describe the geometry of the manifold.
(b) Describe the translational kinematics of the particle on the surface in

terms of two kinematics parameters.
(c) Interpret the geometric significance of the two kinematics parameters you

selected.

2.5. A particle is constrained to move on a surface embedded in R
3 described

by the manifold M =
{
x ∈ R

3 : (x1)
2 + (x2)

2 − x3 = 0
}
.

(a) Describe the geometry of the manifold.
(b) Describe the translational kinematics of the particle on the surface in

terms of two kinematics parameters.
(c) Interpret the geometric significance of the two kinematics parameters you

selected.

2.6. A particle is constrained to move on a line embedded in R
3 described

by the manifold M =
{
x ∈ R

3 : x1 − x2 = 0, x1 + x2 − x3 = 0
}
.
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(a) Describe the geometry of the manifold.
(b) Describe the translational kinematics of the particle on the line in terms

of one kinematics parameter.
(c) Interpret the geometric significance of the one kinematics parameter you

selected.

2.7. A particle is constrained to move on a curve embedded in R
3 described

by the manifold M =
{
x ∈ R

3 : x1 − x2 = 0, (x1)
2 + (x2)

2 − x3 = 0
}
.

(a) Describe the geometry of the manifold.
(b) Describe the translational kinematics of the particle on the curve in terms

of one kinematics parameter.
(c) Interpret the geometric significance of the one kinematics parameter you

selected.

2.8. Let R > 0 and L > 0. A particle moves on a curve embedded in R
3 given

by the manifold M =
{
x ∈ R

3 : x1 = R cos
(
2πx3

L

)
, x2 = R sin

(
2πx3

L

)}
.

(a) Describe the geometry of the manifold. What is the geometric interpre-
tation of the parameters R and L?

(b) Describe the translational kinematics of the particle on the curve in terms
of one kinematics parameter.

(c) Interpret the geometric significance of the one kinematics parameter you
selected.

2.9. Let a > 0, b > 0. A particle is constrained to move on an elliptical curve
embedded in R

2 that is given by M = {q ∈ R
2 : { q1

a }2+{ q2
b }2−1 = 0}. Show

that the kinematics of the particle can be expressed in terms of the kinematics
on S1 using the global diffeomorphism φ : S1 → M given by φ(q) = ( q1a , q2

b ).

2.10. Let a > 0, b > 0, c > 0. A particle is constrained to move on an
ellipsoidal surface given by M = {q ∈ R

3 : { q1
a }2 + { q2

b }2 + { q3
c }2 − 1 = 0}.

Show that the kinematics of the particle can be expressed in terms of the
kinematics on S2 using the global diffeomorphism φ : S2 → M given by
φ(q) = ( q1a , q2

b ,
q3
c ).

2.11. Show the following results hold.

(a) The angular velocity ω ∈ R
1 of the planar pendulum satisfies ω = −qTSq̇.

(b) The angular velocity ω ∈ R
3 of the spherical pendulum satisfies ω =

S(q)q̇.
(c) The angular velocities ω1 ∈ R

1 and ω2 ∈ R
3 for the connection of a

planar pendulum and a spherical pendulum satisfy ω1 = −qT1 Sq̇1 and
ω2 = S(q2)q̇2.

(d) The angular velocity ω ∈ R
3 of the rotating free rigid body satisfies

ω = (RT Ṙ)∨, where (·)∨ denotes the inverse of the hat map defined by
(1.8).
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2.12. Show that the following results are valid for the planar pendulum, the
spherical pendulum, the double planar pendulum, and the double spherical
pendulum.

(a) The velocity vector of any material point on the link of a planar pendulum
is proportional to q̇ ∈ TqS

1.
(b) The velocity vector of any material point on the link of a spherical pen-

dulum is proportional to q̇ ∈ TqS
2.

(c) The velocity vector of any material point on either link of a double planar
pendulum is a linear combination of q̇1 ∈ Tq1S

1 and q̇2 ∈ Tq2S
1.

(d) The velocity vector of any material point on either link of a double spher-
ical pendulum is a linear combination of q̇1 ∈ Tq1S

2 and q̇2 ∈ Tq2S
2.

2.13. Consider a rotating rigid body with a body-fixed point located at the
origin of the body-fixed frame; this body-fixed point is also assumed to be
fixed in the inertial frame at the origin of the inertial frame. Assuming the
rotational motion of the rigid body is given by t → R(t) ∈ SO(3), define the
vector q(t) = R(t)a ∈ R

3, where a ∈ R
3 denotes an identified point on the

rigid body in the body-fixed frame.

(a) Confirm that q ∈ R
3 is the position vector of the identified point on the

rigid body in the inertial frame.
(b) Determine an expression for the angular velocity vector of this identified

point in the inertial frame.
(c) Show that this identified point moves on the surface of a sphere in the

inertial frame.

2.14. Use the rotational kinematics of a rigid body to show that the angular
velocity vector ω ∈ R

3, in the body-fixed frame, is constant in time if and
only if the angular velocity vector Rω ∈ R

3, in the inertial frame, is constant
in time.

2.15. Verify that the rotational kinematics of a rotating rigid body, expressed
in terms of the transpose of the rows of the attitude matrix ri = RT ei, i =
1, 2, 3, satisfy ri ∈ S2, i = 1, 2, 3, and

ṙi = S(ri)ω, i = 1, 2, 3.

2.16. In contrast with the prior development in this chapter, show that the
rotational and translational kinematics of a rigid body constrained to un-
dergo planar Euclidean motion can be described as follows. The configuration
manifold is SE(2) = SO(2) × R

2; the configuration is (R, x) ∈ SE(2) where
R ∈ SE(2) denotes the planar rotation matrix of the body and x ∈ R

2 de-
notes the position vector of a selected point in the body expressed in a fixed
two-dimensional Euclidean frame. Show that the rotational and translational
kinematics are given by

Ṙ = RSω,

ẋ = Rv,
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where ω ∈ R
1 is the scalar angular velocity of the rigid body and v ∈ R

2 is the
velocity vector of the selected point on the body expressed in the body-fixed
Euclidean frame.

2.17. Consider the three-dimensional translational kinematics of a rigid link
with ends constrained to slide along a straight line and a sphere of radius
r; assume the straight line passes through the center of the sphere and the
length of the link is L > r.

(a) Show that the configuration manifold

M =
{
(q, x) ∈ S2 × R

1 : ‖rq − xe1‖2 − L2 = 0
}

is a differentiable manifold under the given assumptions.
(b) What are the resulting kinematics of the rigid link on M expressed in

terms of the angular velocity vector?

2.18. Consider the planar pendulum with rotational kinematics given by

q̇ = ωSq,

where q ∈ S1, ω ∈ R
1 and

S =

[
0 −1
1 0

]
.

Suppose that the angular velocity is given in terms of the configuration by
ω = sin q2. This defines a closed loop kinematics system.

(a) What are the closed loop kinematics? Show that they define a continuous
vector field on S1.

(b) Show that there are two equilibrium solutions.
(c) Determine linearized equations at each equilibrium solution. What are

the stability properties of each equilibrium solution?
(d) Describe the physical motions of the planar pendulum as governed by the

closed loop kinematics.

2.19. Consider the spherical pendulum with rotational kinematics given by

q̇ = S(ω)q,

where q ∈ S2, ω ∈ R
3, and

S(ω) =

⎡
⎣ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤
⎦ .

Suppose that the angular velocity vector is given in terms of the configura-
tion by
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ω =

⎡
⎣ 0

sin q3
− sin q2

⎤
⎦ .

This defines a closed loop kinematics system.

(a) What are the closed loop kinematics? Show that they define a continuous
vector field on S2.

(b) Show that there are two equilibrium solutions.
(c) Determine linearized equations at each equilibrium solution. What are

the stability properties of each equilibrium solution?
(d) Describe the physical motions of the spherical pendulum as governed by

the closed loop kinematics.

2.20. Consider the rotational kinematics of a rigid body given by

Ṙ = RS(ω),

where R ∈ SO(3), ω ∈ R
3 and

S(ω) =

⎡
⎣ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤
⎦ .

Suppose that the angular velocity vector is given in terms of the configuration
by

ω =

3∑
i=1

ei ×RT ei,

where e1, e2, e3 denote the standard unit basis vectors in R
3. This defines a

closed loop kinematics system.

(a) What are the closed loop kinematics? Show that they define a continuous
vector field on SO(3).

(b) Show that there are four equilibrium solutions.
(c) Determine linearized equations at each equilibrium solution. What are

the stability properties of each equilibrium solution?
(d) Describe the rotational motions of the rigid body as governed by the

closed loop kinematics.

2.21. Consider the translational kinematics of a rigid link with ends con-
strained to slide along a straight line and a circle in a fixed plane. The radius
of the circle is r and the length of the rigid link is L > r.

(a) Assume the angular velocity of the end of the link constrained to the
circle is identically zero. Describe the possible configurations of the rigid
link.
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(b) Assume the angular velocity of the end of the link constrained to the
circle is a nonzero constant. Describe the motion of the link. What is the
translational motion of the end of the rigid link that is constrained to
move along a straight line?

(c) Assume the translational velocity of the end of the link constrained to
the straight line is sinusoidal. Describe the motion of the link. What is
the rotational motion of the end of the link that is constrained to move
along the circle?

2.22. Consider the kinematics of a rigid link that is constrained to move
within a fixed plane described by a two-dimensional Euclidean frame. Let A,
B, and C denote three fixed points on the rigid link: point A of the link is
constrained to translate along the x-axis of the Euclidean frame while point B
of the link is constrained to translate along the y-axis of the Euclidean frame.
The distance between points A and B is denoted by L, while the distance
between point B and C is denoted by D. This mechanism is referred to as
the Trammel of Archimedes [4] .

(a) Let (x, y) ∈ R
2 denote the position vector of point C on the link in

the Euclidean frame. What is the algebraic constraint that this position
vector must satisfy? What is the configuration manifold embedded in R

2?
Describe the geometry of the configuration manifold.

(b) Describe the kinematics relationship of point C on the link, by expressing
the time derivative of the configuration in terms of the scalar angular
velocity ω ∈ R

1 of the rigid link and the configuration.
(c) Suppose the angular velocity of the link is constant; describe the resulting

motion of point C on the link.

2.23. A knife-edge can slide on a horizontal plane without friction; the knife-
edge is assumed to have a single point of contact with the plane. The motion
of the point of contact of the knife-edge is constrained so that its velocity
vector is always in the direction of the axis of the knife-edge. This constraint
on the direction of the velocity vector is an example of a nonholonomic or
non-integrable constraint . The motion of the knife-edge is controlled by the
axial speed of the knife-edge and the rotation rate of the knife-edge about
its point of contact. A two-dimensional Euclidean frame is introduced for the
horizontal plane, so that x ∈ R

2 denotes the position vector of the contact
point of the knife-edge; let q ∈ S1 denote the direction vector of the knife-edge
in the horizontal plane. Let V ∈ R

1 be the scalar speed of the knife-edge and
let ω ∈ R

1 be the scalar rotation rate of the knife-edge.

(a) Show that the nonholonomic constraint can be expressed as

ẋ = V q,

and the rotational kinematics of the knife-edge are

q̇ = ωSq.



88 2 Kinematics

(b) Show that these equations of motion can be written in the standard non-
linear control form [

ẋ
q̇

]
= g1(x, q)V + g2(x, q)ω.

This is an example of a drift-free nonlinear control system with control
vector fields g1(x, q) and g2(x, q) defined on the manifold {x, q) : x ∈
R

2, q ∈ S1}; what are the control vector fields?
(c) Suppose that the speed of the knife-edge is a positive constant and the

rotation rate of the knife-edge is zero. Describe the motion of the point
of contact of the knife-edge in the horizontal plane.

(d) Suppose that the speed of the knife-edge is a positive constant and the
rotation rate of the knife-edge is a positive constant. Describe the motion
of the point of contact of the knife-edge in the horizontal plane.



Chapter 3

Classical Lagrangian and Hamiltonian
Dynamics

In this chapter, we introduce Lagrangian dynamics and Hamiltonian dynam-
ics that evolve on the vector space R

n by using classical variational calcu-
lus. The Euler–Lagrange equations and Hamilton’s equations are obtained.
There are many excellent treatments that go far beyond the brief discussion
in this chapter. References that emphasize geometric features in the develop-
ment are [5, 10, 16, 65, 69, 70, 72] while traditional developments are given
in [30, 32, 45, 99].

3.1 Configurations as Elements in R
n

We consider systems that can be described by Lagrangian dynamics and by
Hamiltonian dynamics with the classical assumption that the configuration is
described by the so-called generalized coordinates that constitute a configu-
ration vector q = [q1, ..., qn]

T ∈ R
n. Since the configurations lie in a manifold

that is the vector space R
n, it follows that there are n degrees of freedom.

Further, the time derivative q̇ = [q̇1, . . . , q̇n]
T ∈ TqR

n lies in the tangent
space which is diffeomorphic to R

n and (q, q̇) ∈ TRn lies in the tangent bun-
dle of Rn which is diffeomorphic to R

2n. The simple linear geometry of these
vector spaces is reflected in the subsequent variational analysis.

Such classical descriptions using configurations in R
n arise locally if the

Lagrangian or Hamiltonian dynamics evolve on any manifold, since any finite-
dimensional manifold can be described locally using configurations in R

n for
some n. In fact, this is the common practice [5, 30, 32, 69, 70, 72, 99] in the
study of Lagrangian and Hamiltonian dynamics on a manifold: first introduce
local coordinates on the manifold; then formulate and analyze the dynamics
in terms of these local coordinates defined in an open subset of Rn. Although
this is common practice, there are many deficiencies in this approach; the

© Springer International Publishing AG 2018
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subsequent chapters of this book introduce a fundamentally different ap-
proach that avoids the use of local coordinates on the configuration manifold.

3.2 Lagrangian Dynamics on R
n

The action integral is defined in terms of a Lagrangian, and Hamilton’s vari-
ational principle is used to derive the Euler–Lagrange equations on R

n using
variational calculus.

3.2.1 Lagrangian Function

The Lagrangian function L : TRn → R
1 is a function of the configurations,

or generalized coordinates, and their time derivatives, sometimes referred to
as the generalized velocities. The Lagrangian function is the system kinetic
energy, expressed in terms of the configurations and their time derivatives,
minus the system potential energy, expressed in terms of the configurations.
That is, the Lagrangian function is

L(q, q̇) = T (q, q̇)− U(q),

where T (q, q̇) is the kinetic energy function and U(q) is the potential energy
function. The Lagrangian function is defined on the tangent bundle of the
configuration manifold TRn which is diffeomorphic to R

2n.
The Lagrangian formulation provides an effective means to obtain the

equations of motion since they require knowledge only of the Lagrangian
function which can be obtained using energy concepts. This provides a user-
friendly approach since the kinetic energy and the potential energy can often
be obtained using elementary concepts of physics. Additionally, they provide
a coordinate-independent description of mechanics, allowing one to obtain
equations of motion even in terms of coordinates with respect to non-inertial
reference frames. This is in contrast to approaches based on Newton’s second
law, which requires great care in obtaining correct expressions for forces and
acceleration in a non-inertial frame.

3.2.2 Variations on R
n

Suppose that a curve q : [t0, tf ] → R
n describes a motion. We introduce the

variation of the curve q(t), which is the ε-parametrized family of curves qε(t)
taking values in R

n, where ε ∈ (−c, c) for some c > 0, q0(t) = q(t), and
the endpoints are fixed, that is, qε(t0) = q(t0), and qε(tf ) = q(tf ). Then, by
expanding qε(t) as a power series in ε, we obtain

qε(t) = q(t) + εδq(t) +O(ε2).
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By the equality of mixed partial derivatives, the variation of the time
derivative of the motion is

q̇ε(t) = q̇(t) + εδq̇(t) +O(ε2).

The variation of a motion is given by (qε, q̇ε) : [t0, tf ] → R
2n. The infinitesimal

variations of the motion (q, q̇) are

d

dε
qε

∣∣∣∣
ε=0

= δq, (3.1)

d

dε
q̇ε

∣∣∣∣
ε=0

= δq̇, (3.2)

where the infinitesimal variations satisfy (δq, δq̇) : [t0, tf ] → TRn. Due to the
fixed endpoint conditions, δq(t0) = δq(tf ) = 0.

This framework allows us to introduce the action integral and Hamilton’s
principle which, using methods of variational calculus, provide a coordinate-
independent method for deriving the equations of motion.

3.2.3 Hamilton’s Variational Principle

The action integral is the integral of the Lagrangian function along a motion
of the system over a fixed time period, which is taken as the interval [t0, tf ]:

G =

∫ tf

t0

L(q, q̇) dt.

The action integral along a variation of a motion of the system is

Gε =

∫ tf

t0

L(qε, q̇ε) dt.

The varied value of the action integral corresponding to a variation of a
motion can be expressed as a power series in ε as

Gε = G+ εδG+O(ε2),

where the infinitesimal variation of the action integral is

δG =
d

dε
Gε

∣∣∣∣
ε=0

.

Hamilton’s principle states that the action integral is stationary, that is the
infinitesimal variation of the action integral along any motion of the system
is zero:
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δG =
d

dε
Gε

∣∣∣∣
ε=0

= 0, (3.3)

for all possible variations qε(t) of q(t) with fixed endpoints, or equivalently, all
differentiable curves (δq, δq̇) : [t0, tf ] → TRn satisfying δq(t0) = δq(tf ) = 0.
Motions, that is functions q : [t0, tf ] → R

n that satisfy (3.3), are sometimes
referred to as extremals.

Hamilton’s variational principle is the foundational cornerstone of La-
grangian and Hamiltonian dynamics. It is discussed in detail in many of
the books on classical and geometric treatments of Lagrangian and Hamilto-
nian dynamics that have already been cited. It is also the foundation for the
developments in subsequent chapters of this book.

3.2.4 Euler–Lagrange Equations

Because the configuration manifold is the vector space R
n, the variation of

the action integral is easily determined by differentiating under the integral
sign to obtain

δG =
d

dε
Gε

∣∣∣∣
ε=0

=

∫ tf

t0

{
∂L(q, q̇)

∂q̇
· δq̇ + ∂L(q, q̇)

∂q
· δq

}
dt = 0.

We integrate the first term in the integral by parts to obtain

δG =
∂L(q, q̇)

∂q̇
· δq

∣∣∣∣
tf

t0

+

∫ tf

t0

{
− d

dt

(
∂L(q, q̇)

∂q̇

)
+

∂L(q, q̇)

∂q

}
· δq dt.

We now invoke Hamilton’s principle that δG = 0 for all possible variations
with fixed endpoints. Using the fact that the infinitesimal variations δq at t0
and at tf vanish, the fundamental lemma of the calculus of variations (given
in the Appendix A) can be applied to obtain the Euler–Lagrange equations:

d

dt

(
∂L(q, q̇)

∂q̇

)
− ∂L(q, q̇)

∂q
= 0. (3.4)

With appropriate assumptions on the Lagrangian function, the following
result can be stated for the associated initial-value problem. For each initial
condition (q(t0), q̇(t0)) = (q0, q̇0) ∈ TRn, there exists a unique solution of the
Euler–Lagrange equation (3.4) denoted by (q(t), q̇(t)) ∈ TRn that evolves
on the tangent bundle of Rn. The Lagrangian flow is the time evolution of
(q, q̇) ∈ TRn corresponding to the Lagrangian vector field on TRn deter-
mined by the above Euler–Lagrange equations.

The Lagrangian function for an interacting set of ideal particles and for
many other mechanical and physical systems has a special form: the kinetic
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energy function is quadratic in the time derivatives of the configuration vari-
ables.

Consider the Lagrangian function

L(q, q̇) =
1

2
q̇TM(q)q̇ − U(q), (3.5)

where q = (q1, . . . , qn) ∈ R
n and q̇ = (q̇1, ..., q̇n) ∈ TqR

n. The first term in
the Lagrangian is the kinetic energy expressed as a positive-definite quadratic
form and the second term is the potential energy which is only configuration
dependent. In this formulation, M(q) = [Mij(q)] is a symmetric, positive-
definite n × n matrix function of the configuration, with Mij(q) : R

n → R
1

denoting the scalar function in the ith row and jth column of the matrix.
This matrix function, that defines the kinetic energy, is sometimes referred
to as the inertia matrix or the mass matrix.

The resulting Euler–Lagrange equations can be expressed in scalar form
as

n∑
j=1

Mkj(q)q̈j + Fk(q, q̇) +
∂U(q)

∂qk
= 0, k = 1, . . . , n, (3.6)

where

Fk(q, q̇) =

n∑
i=1

Ṁki(q)q̇i − ∂

∂qk

n∑
i,j=1

1

2
q̇iMij(q)q̇j , k = 1, . . . , n.

This function can be written in a conventional form as

Fk(q, q̇) =

n∑
i,j=1

q̇i
∂Mki(q)

∂qj
q̇j −

n∑
i,j=1

1

2
q̇i
∂Mij(q)

∂qk
q̇j

=

n∑
i,j=1

1

2
q̇i

{
∂Mki(q)

∂qj
+

∂Mik(q)

∂qj
− ∂Mij(q)

∂qk

}
q̇j

=

n∑
i,j=1

1

2
q̇i

{
∂Mik(q)

∂qj
+

∂Mjk(q)

∂qi
− ∂Mij(q)

∂qk

}
q̇j ,

where we have reindexed the second set of terms and used the symmetry of
the inertia terms. This is commonly expressed as

Fk(q, q̇) =

n∑
i,j=1

[ij, k]q̇iq̇j , k = 1, . . . , n, (3.7)

where the Christoffel symbols are
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[ij, k] =
1

2

{
∂Mik(q)

∂qj
+

∂Mjk(q)

∂qi
− ∂Mij(q)

∂qk

}
, i, j, k = 1, . . . , n.

The Christoffel terms characterize the curvature associated with the kinetic
energy metric defined by the inertia matrix M(q) ∈ R

n×n. Note that if the
inertia matrix is independent of the configuration, then the Christoffel terms
are all zero.

The Euler–Lagrange equations can be expressed in vector form as

M(q)q̈ + F (q, q̇) +
∂U(q)

∂q
= 0, (3.8)

where F (q, q̇) = (F1(q, q̇), . . . , Fn(q, q̇)). This form of the Euler–Lagrange
equations describes the evolution of (q, q̇) ∈ TRn on the tangent bundle
of Rn.

When the inertia matrix is constant, the Christoffel terms vanish, and
these equations reduce to

Mq̈ +
∂U(q)

∂q
= 0,

or equivalently,
d

dt
(Mq̇) = −∂U(q)

∂q
,

which can be interpreted as requiring that the time rate of change of the
momentum equals the external force that arises from the potential, this lat-
ter interpretation being an expression of Newton’s second law. Put another
way, Hamilton’s principle and the associated Euler–Lagrange equations pro-
vide a coordinate-independent characterization of the equations of motion.
In particular, Hamilton’s principle allows us to derive equations of motion
in a non-inertial frame directly from the Lagrangian, given by the kinetic
energy minus the potential energy in an inertial frame but expressed in the
non-inertial coordinates. The associated Euler–Lagrange equations follow.

3.3 Hamiltonian Dynamics on R
n

The Legendre transformation is introduced and used to determine the conju-
gate momentum. The Hamiltonian function is defined in terms of the phase
variables, the configuration, and the momentum, which are viewed as evolving
on the cotangent bundle T∗

R
n. Hamilton’s phase space variational principle

is used to derive Hamilton’s equations.
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3.3.1 Legendre Transformation and the Hamiltonian

The Legendre transformation of the Lagrangian gives an equivalent Hamil-
tonian form of the equations of motion in terms of conjugate momentum
covectors. For q ∈ R

n, the velocity vector q̇ lies in the tangent space TqR
n

whereas the conjugate momentum covector p lies in the dual space T∗
qR

n. The
tangent space TqR

n and its dual space T∗
qR

n are identified by using the usual
dot product in R

n, which corresponds to identifying column vectors with row
vectors. The Legendre transformation is based on the inner product relation

p · q̇ =
∂L(q, q̇)

∂q̇
· q̇,

for all q̇ ∈ TqR
n. Thus, the Legendre transformation FL : TRn → T∗

R
n is

defined as
FL(q, q̇) = (q, p),

where p ∈ T∗
qR

n is the conjugate momentum given by

p =
∂L(q, q̇)

∂q̇
. (3.9)

It is assumed that the Lagrangian function has the property that expression
(3.9) is invertible in the sense that q̇ is uniquely expressible in terms of p
and q. The property that the Legendre transformation is globally invertible
is referred to as hyperregularity of the Lagrangian function, and if the Leg-
endre transformation is non-invertible, we say that the Lagrangian function
is degenerate. For the remainder of this book, we will focus exclusively on
hyperregular Lagrangian functions, which in the case of Lagrangians of the
form (3.5) correspond to requiring that the inertia matrix M(q) is always
full-rank.

The Hamiltonian dynamics can be described by introducing the Hamilto-
nian function defined on the cotangent bundle of Rn as H : T∗

R
n → R

1:

H(q, p) = p · q̇ − L(q, q̇), (3.10)

where q̇ is viewed as a function of (q, p) by inverting the Legendre transfor-
mation (3.9).

3.3.2 Hamilton’s Equations and Euler–Lagrange Equations

Based on the above definition of the Hamiltonian, we compute its derivative
with respect to q and p to obtain,
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∂H(q, p)

∂q
= p · ∂q̇

∂q
− ∂L(q, q̇)

∂q
− ∂L(q, q̇)

∂q̇

∂q̇

∂q

= −∂L(q, q̇)

∂q

= − d

dt

(
∂L(q, q̇)

∂q̇

)

= −ṗ,

∂H(q, p)

∂p
= q̇ + p · ∂q̇

∂p
− ∂L(q, q̇)

∂q̇

∂q̇

∂p

= q̇,

where we used the Legendre transformation, the Euler–Lagrange equations,

and the fact that the Legendre transformation, p = ∂L(q,q̇)
∂q̇ implicitly defines

q̇ in terms of (q, p). This yields Hamilton’s equations,

q̇ =
∂H(q, p)

∂p
,

ṗ = −∂H(q, p)

∂q
.

Conversely, if we start with the Hamiltonian, the associated Legendre
transformation FH : T∗

R
n → TRn is defined as

FH(q, p) = (q, q̇),

where q̇ ∈ TqR
n is given by,

q̇ =
∂H(q, p)

∂p
. (3.11)

Then we can define the Lagrangian in terms of the Hamiltonian,

L(q, q̇) = p · q̇ −H(q, p),

where p is defined implicitly in terms of (q, q̇) by inverting the Legendre
transformation (3.11). We compute the derivative of the Lagrangian with
respect to q and q̇ to obtain,

∂L(q, q̇)

∂q
=

∂p

∂q
q̇ − ∂H(q, p)

∂q
− ∂H(q, p)

∂p

∂p

∂q

= −∂H(q, p)

∂p

= ṗ,

∂L(q, q̇)

∂q̇
=

∂p

∂q̇
q̇ + p− ∂H(q, p)

∂p

∂p

∂q̇

= p,
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where we used the Legendre transformation, the Hamilton’s equations, and

the fact that the Legendre transformation, q̇ = ∂H(q,p)
∂p implicitly defines

p in terms of (q, q̇). Combining these two equations, we recover the Euler–
Lagrange equations,

d

dt

(
∂L(q, q̇)

∂q̇

)
− ∂L(q, q̇)

∂q
= 0.

3.3.3 Hamilton’s Phase Space Variational Principle

Hamilton’s equations can also be derived from Hamilton’s phase space vari-
ational principle, based on the action integral expressed in the form

G =

∫ tf

t0

{p · q̇ −H(q, p)} dt.

We consider variations of the motion (q, p) ∈ T∗
R

n given by

qε = q + εδq +O(ε2),

pε = p+ εδp+O(ε2),

where the infinitesimal variations (δq, δp) : [t0, tf ] → T(q,p)T
∗
R

n satisfy
δq(t0) = δq(tf ) = 0. The varied value of the action integral is given by

Gε =

∫ tf

t0

{pε · q̇ε −H(qε, pε)} dt.

The varied value of the action integral can be expressed as a power series in
ε as

Gε = G+ εδG+O(ε2),

where the infinitesimal variation of the action integral is

δG =
d

dε
Gε

∣∣∣∣
ε=0

.

Hamilton’s phase space variational principle is that the action integral is
stationary, that is

δG =
d

dε
Gε

∣∣∣∣
ε=0

= 0,
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for all differentiable functions (δq, δp) : [t0, tf ] → T(q,p)T
∗
R

n that satisfy
δq(t0) = δq(tf ) = 0. Note that only the infinitesimal variations in q are
required to vanish at the endpoints.

3.3.4 Hamilton’s Equations

As before, we compute the variation of the action integral,

δG =
d

dε
Gε

∣∣∣∣
ε=0

=

∫ tf

t0

{
p · δq̇ − ∂H(q, p)

∂q
· δq +

(
q̇ − ∂H(q, p)

∂p

)
· δp

}
dt.

We integrate the first term in the integral by parts to obtain

δG = p · δq
∣∣∣∣
tf

t0

+

∫ tf

t0

{(
−ṗ− ∂H(q, p)

∂q

)
· δq +

(
q̇ − ∂H(q, p)

∂p

)
· δp

}
dt.

We now invoke Hamilton’s phase space variational principle that δG = 0
for all possible variations of q and p where the infinitesimal variations of q
vanish at the endpoints. The boundary term vanishes since the infinitesimal
variations δq at t0 and at tf are zero, and the fundamental lemma of the
calculus of variations, as in Appendix A, yields Hamilton’s equations,

q̇ =
∂H(q, p)

∂p
, (3.12)

ṗ = −∂H(q, p)

∂q
. (3.13)

With appropriate assumptions on the Lagrangian function, the following
result can be stated for the associated initial-value problem. For each initial
condition (q(t0), p(t0)) = (q0, p0) ∈ T∗

R
n there exists a unique solution of

Hamilton’s equations (3.12) and (3.13) denoted by (q(t), p(t)) ∈ T∗
R

n that
evolves on the cotangent bundle of R

n. The Hamiltonian flow is the time
evolution of (q, p) ∈ T∗

R
n corresponding to the Hamiltonian vector field on

T∗
R

n determined by the above Hamilton’s equations.
The following property follows directly from the above formulation of

Hamilton’s equations:

dH(q, p)

dt
=

∂H(q, p)

∂q
· q̇ + ∂H(q, p)

∂p
· ṗ

=
∂H(q, p)

∂q
· ∂H(q, p)

∂p
− ∂H(q, p)

∂p
· ∂H(q, p)

∂q

= 0.
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This formulation exposes an important property of the Hamiltonian flow
on the cotangent bundle: the Hamiltonian function is constant along each
solution of Hamilton’s equations. It should be emphasized that this property
does not hold if the Hamiltonian function has a nontrivial explicit dependence
on time.

We again consider the case that the Lagrangian function is quadratic in
the time derivatives of the configuration:

L(q, q̇) =
1

2
q̇TM(q)q̇ − U(q),

where q = (q1, . . . , qn) ∈ R
n and q̇ = (q̇1, ..., q̇n) ∈ TqR

n.
In this case, the conjugate momentum is obtained from the Legendre trans-

formation as

p =
∂L(q, q̇)

∂q̇
= M(q)q̇,

where we view p ∈ T ∗
q R

n in the cotangent space of Rn.
The Hamiltonian function H : T∗

R
n → R

1 can be shown to be

H(q, p) =
1

2
pTM I(q)p+ U(q),

where, as before, M I(q) = M−1(q) denotes the matrix inverse of M(q) for
each q ∈ R

n. In this case, we see that the Hamiltonian function is the sum
of the kinetic energy and the potential energy; that is, the Hamiltonian is
interpreted as the total energy.

Thus, Hamilton’s equations are expressed in the form

q̇ = M I(q)p, (3.14)

ṗ =
∂

∂q

{
1

2
pTM I(q)p

}
− ∂U(q)

∂q
. (3.15)

Hamilton’s equations describe evolution of the Hamiltonian dynamics (q, p) ∈
T∗

R
n on the cotangent bundle of Rn.

3.4 Flow Properties of Lagrangian and Hamiltonian
Dynamics

The Lagrangian flow (q, q̇) ∈ TRn defines a Lagrangian vector field on the
tangent bundle of Rn; it is equivalent to the Hamiltonian flow (q, p) ∈ T∗

R
n

that defines a Hamiltonian vector field on the cotangent bundle of Rn. Each
formulation is useful and can provide insight into the dynamical flow.
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It is natural to focus on solutions of an initial-value problem for the Euler–
Lagrange equations or for Hamilton’s equations, assuming that each initial-
value problem has a unique solution and the solution is defined for all time.
However, it is often useful to conceptualize a family of solutions of the Euler–
Lagrange equations or Hamilton’s equations defined for a corresponding fam-
ily of initial conditions; this defines the Lagrangian flow or the Hamiltonian
flow for the given Lagrangian or Hamiltonian function. The Euler–Lagrange
equations and Hamilton’s equations provide two different, but equivalent,
perspectives on the dynamical flow.

The Lagrangian flow and the Hamiltonian flow exhibit special properties,
a few of which are now summarized.

3.4.1 Energy Properties

Consider a Lagrangian function of the form (3.5), which is quadratic in the
time derivatives of the configuration. In this case, the Hamiltonian (3.10)
expressed in position and velocity form coincides with the total energy, which
is the sum of the kinetic energy and the potential energy,

H(q, q̇) =
∂L(q, q̇)

∂q̇
· q̇ − L(q, q̇) =

1

2
q̇TM(q)q̇ + U(q).

This agrees with the Hamiltonian in position and momentum form,

H(q, p) =
1

2
pTM I(q)p+ U(q),

as the Legendre transform gives p = M(q)q̇. As shown previously, the Hamil-
tonian is constant along each solution of the dynamical flow.

More generally, this is true for any Lagrangian or Hamiltonian that does
not explicitly depend on time. To show this directly, we compute the time
derivative of the Hamiltonian, expressed in position and velocity form, along
a solution of the Euler–Lagrange equations,

d

dt
H(q, q̇) =

d

dt

(
∂L(q, q̇)

∂q̇
· q̇ − L(q, q̇)

)

=
d

dt

(
∂L(q, q̇)

∂q̇

)
q̇ +

∂L(q, q̇)

∂q̇
q̈ − ∂L(q, q̇)

∂q
q̇ − ∂L(q, q̇)

∂q̇
q̈

=

{
d

dt

(
∂L(q, q̇)

∂q̇

)
− ∂L(q, q̇)

∂q

}
q̇

= 0.
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Similarly, computing the time derivative of the Hamiltonian, expressed in
position and momentum form, along a solution of Hamilton’s equations yields,

d

dt
H(q, p) =

∂H(q, p)

∂q
q̇ +

∂H(q, p)

∂p
ṗ

=
∂H(q, p)

∂q

∂H(q, p)

∂p
+

∂H(q, p)

∂p

(
−∂H(q, p)

∂q

)

= 0.

These results have important implications. For example, for any real con-
stant c the set {(q, q̇) ∈ TRn : H(q, q̇) = c} is an invariant subset of the tan-
gent bundle TRn; similarly, the set {(q, p) ∈ T∗

R
n : H(q, p) = c} is an invari-

ant subset of the cotangent bundle T∗
R

n. That is, for any initial condition
in such a set, the solution remains in the set.

These results can also be used to characterize a number of stability prop-
erties; see [76] for details of such developments.

3.4.2 Cyclic Coordinates, Conserved Quantities, and Classical
Reduction

In classical terms, a scalar configuration variable qk for a fixed index k is
cyclic, sometimes referred to as ignorable, if the Lagrangian function is inde-
pendent of this configuration variable. If this is true, then it follows from the
Euler–Lagrange equations that

d

dt

(
∂L(q, q̇)

∂q̇k

)
= 0.

This implies that the conjugate momentum,

pk =
∂L(q, q̇)

∂q̇k
,

is constant along each solution of the Lagrangian flow. Similarly, pk is con-
stant along each solution of the corresponding Hamiltonian flow. In this case,
we obtain additional conserved quantities or integrals of the motion which
are constant along the dynamical flow.

The existence of a cyclic generalized coordinate allows reduction of the
dynamics in the sense that the reduced dynamics of the noncyclic coordinates
can be defined by fixing the value of the conserved quantity. In classical
terms, this leads to a reduced Lagrangian model, using the method of Routh
reduction. The advantage is that the reduced equations are expressed in terms
of fewer configuration variables; on the other hand, it is often the case that
the reduced equations are more analytically complicated.
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We now briefly describe the procedure for classical Routh reduction, which
is applicable for the case of one or more cyclic variables. Consider a La-
grangian of the form L(q1, . . . qs, q̇1, . . . , q̇s, q̇s+1, . . . , q̇n), where s < n, which
is invariant under a shift in the qs+1, . . . qn variables. We then introduce the
Routhian, which can be viewed as a partial Legendre transformation, with
respect to the cyclic variables, of the Lagrangian,

R(q1, . . . qn, q̇1, . . . , q̇s, ps+1, . . . , pn)

=

n∑
i=s+1

piq̇i − L(q1, . . . qn, q̇1, . . . , q̇s, q̇s+1, . . . , q̇n),

where we recognize that the Lagrangian, and hence the Routhian, does not
depend on the cyclic variables. By taking the variation of both sides of the
equation, we obtain,

n∑
i=1

∂R

∂qi
δqi +

s∑
i=1

∂R

∂q̇i
δq̇i +

n∑
i=s+1

∂R

∂pi
δpi

=

n∑
i=s+1

q̇iδpi +

n∑
i=s+1

piδq̇i −
n∑

i=1

∂L

∂qi
δqi −

n∑
i=1

∂L

∂q̇i
δq̇i

=

n∑
i=s+1

q̇iδpi −
n∑

i=1

∂L

∂qi
δqi −

s∑
i=1

∂L

∂q̇i
δq̇i,

where we used the fact that pi =
∂L
∂q̇i

. Equating the coefficients for δqi, δq̇i,
and δpi on both sides, we obtain

∂R

∂qi
= − ∂L

∂qi
,

∂R

∂q̇i
= − ∂L

∂q̇i
, i = 1, . . . , s;

∂R

∂qi
= −ṗi,

∂R

∂pi
= q̇i, i = s+ 1, . . . , n,

where we used the fact that ∂L
∂qi

= ṗi.
This leads to a restatement of the Euler–Lagrange equations. The equa-

tions for the cyclic variables have the form of Hamilton’s equations where
the Routhian plays the role of the Hamiltonian, and the equations for the
noncyclic variables have the form of the Euler–Lagrange equations where
the Routhian plays the role of the Lagrangian. This should perhaps come
as no surprise due to the fact that the full Legendre transformation of the
Lagrangian leads to the Hamiltonian and Hamilton’s equations.

Now, we make use of the fact that the Lagrangian, and hence the Routhian,
does not depend on the cyclic variables, which means that ṗi = − ∂R

∂qi
= 0,

for i = s+1, . . . , n, which is to say that the conjugate momenta to the cyclic
variables are constant. If we specify the values of these constant momenta,
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by letting pi = μi, for i = s+ 1, . . . , n, and define

Rμ(q1, . . . qs, q̇1, . . . , q̇s) =

n∑
i=s+1

μiq̇i − L(q1, . . . qs, q̇1, . . . , q̇s, q̇s+1, . . . , q̇n),

it follows that the reduced dynamics in the noncyclic variables are given by
the Euler–Lagrange equations in terms of Rμ,

d

dt

(
∂Rμ

∂q̇i

)
− ∂Rμ

∂qi
= 0, i = 1, . . . , s.

If one desires, after solving this equation for the time evolution of the non-
cyclic variables, the full dynamics in all the variables can be recovered by
using the fact that the conjugate momenta to the cyclic variables are con-
stant.

The presence of one or more cyclic configuration variables is sufficient to
demonstrate the existence of a conserved quantity, but it is not necessary. If
there are symmetry actions defined in terms of a Lie group action that leave
the Lagrangian function invariant, then there are corresponding conserved
quantities of the flow known as momentum maps. The notion of reduction
can also be generalized to deal with symmetries of the Lagrangian described
in terms of Lie group actions.

In the case of cyclic configuration variables, the symmetry transformation
only acts on each cyclic variable separately, and the components of the ve-
locity are not affected. To understand what it means for a Lagrangian to
be invariant under a more general symmetry action, we first describe how
elements of the tangent bundle transform. The action of the symmetry group
on the configuration manifold induces a lifted action on the tangent bun-
dle to the manifold. In particular, tangent vectors are transformed by the
linearization of the symmetry transformation on the configuration manifold.
While it is possible to consider symmetry groups acting on tangent bundles
that are not induced by a symmetry action on the underlying configuration
manifold, we will not discuss such group actions in this book. For the re-
mainder of our discussion, we restrict ourselves to symmetries that are point
transformations, which act on the tangent or cotangent bundles by the lift of
a symmetry action on the configuration manifold.

To understand how momentum maps generalize the notion of conjugate
momentum associated with a cyclic variable, we first make the observation
that the conjugate momentum is the component of the image of the Legendre
transformation in the symmetry (or cyclic) direction. The generalization to
Lie group symmetries involves considering the Lie group acting on a configu-
ration point, which generates a group orbit along which the Lagrangian has
the same value. Then, the tangent space to this group orbit gives a set of
symmetry directions and the components of the momentum in these symme-
try directions are again invariant. The various momentum components are
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combined to yield the momentum map. This relationship between Lie group
symmetries of the Lagrangian and the invariance of the associated momentum
maps is referred to as Noether’s theorem.

It is possible to show, for example, that the spatial angular momentum
arises as the momentum map associated with the left action of the rotation
group on R

3 (see page 390 of [70]). This means that by Noether’s theorem,
a Lagrangian which is invariant under the lifted left action of rotations will
lead to a dynamical flow in which the spatial angular momentum is conserved.
Similarly, linear momentum can be viewed as the momentum map associated
with translations in R

3, and the conservation of linear momentum is a con-
sequence of Noether’s theorem for Lagrangians that are invariant under the
lifted action of the translation group. These momentum maps can be used
to carry out a reduction process, by restricting the dynamics to a level set of
the momentum map; this is often referred to as geometric reduction.

We do not go further into these issues here. In many of the examples
treated in later chapters, we point out the existence of conserved quantities,
but we do not develop reduced equations in any of those examples. For a
discussion of reduction theory, the reader is referred to [1, 17, 70, 74].

3.4.3 Symplectic Property

The Hamiltonian flow on the cotangent bundle (the phase space) T∗
R

n is
symplectic; this means that a symplectic form, which is a closed, nonde-
generate differential two-form, is conserved along the Hamiltonian flow. In
the case of Hamilton’s equations, the flow preserves the canonical symplectic
form Ωcan =

∑n
i=1 dqi ∧ dpi, which measures the sum of the areas projected

onto matched position-momentum planes in the phase space. The expression
above for the canonical symplectic form is expressed in terms of the exterior
calculus of differential forms, but the symplectic form can be described us-
ing a local coordinate expression. For an in-depth discussion of the exterior
calculus of differential forms, the reader is referred to [2, 91].

The symplectic form Ωcan can be viewed as an alternating bilinear form
that takes two vectors v, w ∈ T(q,p)T

∗
R

n and returns the scalar

Ωcan(v, w) = vT Jw,

where J =

[
0n×n In×n

−In×n 0n×n

]
is the symplectic matrix.

By Darboux’s theorem, given any symplectic form, there are local coordi-
nates for which the symplectic form can be written locally as the canonical
symplectic form. We say that a map F : T∗

R
n → T∗

R
n is symplectic with

respect to the canonical symplectic structure, if for all z ∈ T∗
R

n,
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(
∂F (z)

∂z

)T

J

(
∂F (z)

∂z

)
= J,

where
(

∂F (z)
∂z

)
is the Jacobian of the map F .

One consequence of symplecticity is Liouville’s theorem, which states that
the Hamiltonian flow preserves the phase volume: for any open setD ⊂ T∗

R
n,

the volume of {(q(t), p(t)) : (q(0), p(0)) ∈ D} is invariant in time, where
(q(t), p(t)) ∈ T∗

R
n denotes a trajectory of Hamilton’s equations. This is

a consequence of the fact that the n-fold wedge product of the canonical
symplectic form, Ωn

can = Ωcan ∧ · · · ∧ Ωcan is the usual volume form on the
phase space T∗

R
n.

Lagrangian flows and Hamiltonian flows can be shown to be invariant
under time reversals, that is the Lagrangian dynamics and the Hamiltonian
dynamics do not change if the direction of time is reversed.

These properties have important implications in terms of analysis of the
detailed flow characteristics.

3.5 Lagrangian and Hamiltonian Dynamics with
Holonomic Constraints

Constraints restrict the set of admissible configurations and velocities in a
dynamical system, and can be expressed in terms of an algebraic equation
in the configuration and velocity variables. Holonomic constraints refer to
a special class of constraints that can be expressed only in terms of the
configuration variables in R

n, or they can be integrated to obtain such a
form. For example, the constraint

x1ẋ1 + x2ẋ2 = 0,

in R
2 is an example of a holonomic constraint, since it can be integrated to

yield
x2
1 + x2

2 = r2,

which is an algebraic constraint involving only the configuration variables.
Equivalently, we say that a constraint is holonomic if there is an equation,
expressed in terms of configuration variables only, which when differentiated
yields the original constraint equations.

Without loss of generality, we restrict ourselves to the case where the
holonomic constraint is expressed in terms of the zero level set of a con-
straint function involving only the configuration variables. Several possible
approaches can be followed to describe the Lagrangian and Hamiltonian dy-
namics for such holonomically constrained systems.
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1. The algebraic constraints are solved, perhaps only locally, to obtain a re-
duced set of configuration variables, in a lower-dimensional vector space,
without constraints. In the context of embedded manifolds, this corre-
sponds to choosing local coordinates on the manifold. Standard varia-
tional methods are then used to obtain Euler–Lagrange differential equa-
tions on this reduced vector space of configurations. This approach has
a number of practical deficiencies and it is only effective for simple con-
straint functions.

2. The algebraic constraint functions are appended to the Lagrangian using
Lagrange multipliers; this does not change the value of the Lagrangian on
the constraint manifold (assuming the constraint manifold is described
by the zero level set of the constraint function), so that the methods of
variational calculus can be applied in a rather direct way. This leads to
Euler–Lagrange differential equations that include the Lagrange multipli-
ers; these differential equations must be considered in conjunction with
the algebraic constraint equations.

3. The set of configurations that satisfy the holonomic constraints are
viewed as defining a configuration manifold, sometimes referred to as
the constraint manifold, that is embedded in R

n. The geometry of this
configuration manifold may be significantly different from the geometry
of Rn. Nevertheless, variational methods may be developed so long as the
variations are constrained to respect the geometry of the configuration
manifold.

In this chapter, and throughout the rest of this book, we make use of each
approach. The choice of approach should be selected to best fit the features
of each case. The first two approaches indicated above are well known in
the classical literature on variational methods [30, 32, 45, 99]. The second
approach is summarized in the following paragraphs with proofs of the results
given in Chapter 8. The third approach, where holonomic constraints are used
to define the configuration manifold, is not so well known and its development
and illustration constitute one of the main contributions of this book.

To briefly illustrate the second approach, assume that the configurations
q ∈ R

n are required to satisfy the constraints fi(q) = 0, i = 1, . . . ,m, where
fi : R

n → R
1, i = 1, . . . ,m are real-valued differentiable functions with

linearly independent gradients.
The constraint manifold is

M = {q ∈ R
n : fi(q) = 0, i = 1, . . . ,m} .

The tangent space of M at q ∈ M is given by

TqM =

{
q̇ ∈ R

n :

(
∂fi(q)

∂q

)T

q̇ = 0, i = 1, . . . ,m

}
,

and
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TM =
{
(q, q̇) ∈ R

2n : q ∈ M, q̇ ∈ TqM
}

is the tangent bundle of the constraint manifold M .
Introduce Lagrange multipliers λ = [λ1, . . . , λm]T ∈ R

m; it can be shown
that the resulting Euler–Lagrange equations are given by the differential
equations

d

dt

(
∂L(q, q̇)

∂q̇

)
− ∂L(q, q̇)

∂q
+

m∑
i=1

λi
∂fi(q)

∂q
= 0, (3.16)

together with algebraic equations that define the constraints

fi(q) = 0, i = 1, . . . ,m. (3.17)

These differential-algebraic equations can be shown to have index two, so that
they define a Lagrangian vector field on TM , which is the tangent bundle of
the constraint manifold M . A vector field on TM is a vertical map from TM
to TTM , which means that it takes (q, q̇) ∈ TM to (q, q̇, q̈) ∈ TTM .

These Euler–Lagrange equations can be written in a simpler form by in-
troducing the augmented Lagrangian function La : T∗

R
n ×R

m → R
1 that is

given by

La(q, q̇, λ) = L(q, q̇) +

m∑
i=1

λifi(q).

The constrained Euler–Lagrange equations on R
n can be expressed as

d

dt

(
∂La(q, q̇, λ)

∂q̇

)
− ∂La(q, q̇, λ)

∂q
= 0. (3.18)

The augmented Euler–Lagrange equations, together with the m algebraic
constraint equations given in (3.17), can be shown to be index two differential-
algebraic equations. They guarantee that the constrained Lagrangian dynam-
ics described by (q, q̇) evolve on TM , the tangent bundle of the constraint
manifold M .

Consider the Legendre transformation associated with the augmented La-
grangian

p =
∂La(q, q̇, λ)

∂q̇
,

and assume that q̇ ∈ TqR
n can be expressed uniquely in terms of q ∈ R

n,
p ∈ T∗

qR
n and λ ∈ R

m. Define the augmented Hamiltonian function Ha :
T∗

R
n × R

m → R
1 as

Ha(q, p, λ) = p · q̇ − La(q, q̇, λ),

so that we obtain Hamilton’s equations in the form
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q̇ =
∂Ha(q, p, λ)

∂p
, (3.19)

ṗ = −∂Ha(q, p, λ)

∂q
. (3.20)

These equations of motion are augmented by the m algebraic constraint
equations (3.17), consistent with the introduction of the m real-valued La-
grange multipliers. The augmented Hamilton’s equations, together with the
constraint equations, are also index two differential-algebraic equations that
guarantee that the constrained Hamiltonian dynamics described by (q, p)
evolve on T∗M , which is the cotangent bundle of the constraint manifold M .

The following interpretation for each of the Lagrange multipliers is stan-

dard: the constraint force λi
∂fi(q)
∂q ∈ R

n appears in the Euler–Lagrange equa-
tions and in Hamilton’s equations to guarantee satisfaction of the constraint
function fi(q) = 0. Alternatively, it can also be said that the Lagrange mul-
tipliers λi are chosen so that the Euler–Lagrange vector field and the Hamil-
tonian vector field take values in TTM and TT∗M , respectively. This is al-

ways possible, since the set of gradient vectors
{

∂fi(q)
∂q ∈ R

n : i = 1, . . . ,m
}

span a complementary subspace to TqM . If the constraints are satisfied,
then the constraint force can be shown to satisfy the variational condition

δfi(q) = ∂fi(q)
∂q · δq = 0, i = 1, . . . ,m; thus, the forces that arise from the

holonomic constraints do no work.

3.6 Lagrange–d’Alembert Principle

We describe a modification of Hamilton’s principle to incorporate the effects
of external forces; these external forces may or may not be derivable from
a potential. We assume that the dynamics evolves on a configuration mani-
fold R

n. This modification is usually referred to as the Lagrange–d’Alembert
principle. It states that the infinitesimal variation of the action integral over a
fixed time period equals the negative of the work done by the external forces,
corresponding to an infinitesimal variation of the configuration, during this
same time period. Obviously, this reduces to Hamilton’s principle when there
are no external forces. This version of the variational principle requires de-
termining the virtual work that corresponds to an infinitesimal variation of
the configuration.

In particular, the external forces are described by a time-dependent vertical
mapping F : [t0, tf ] × R

n → T∗
R

n from the configuration space R
n to the

cotangent bundle T∗
R

n. In this context, the vertical assumption means that
F (t, q) ∈ T∗

qR
n and implies that the kinematics are unchanged, while the

external forces affect only the dynamics. Because the map is vertical, we can
identify the covector F (t, q) with a vector based at the point q, and describe
the external force by a map F : [t0, tf ] × R

n → R
n. Thus, the virtual work
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along an infinitesimal variation of the configuration is given by

∫ tf

t0

F (q)T δq dt,

where we have suppressed the time-dependence of F for notational brevity.
The Lagrange–d’Alembert principle states that

δ

∫ tf

t0

L(q, q̇)dt = −
∫ tf

t0

F (q)T δq dt,

holds for all possible infinitesimal variations δq : [t0, tf ] → R
n that vanish at

the endpoints, that is, δq(t0) = δq(tf ) = 0.
Following the prior development, this leads to the forced Euler–Lagrange

equations

d

dt

(
∂L(q, q̇)

∂q̇

)
− ∂L(q, q̇)

∂q
= F (q), (3.21)

that include the external forces.
With appropriate assumptions on the Lagrangian function, the following

result can be stated for the associated initial-value problem. Suppose that
the external forces are specified by the map F : [t0, tf ]×R

n → R
n. For each

initial condition (q(t0), q̇(t0)) = (q0, q̇0) ∈ TRn there exists a unique solution
of the forced Euler–Lagrange equation (3.21) denoted by (q(t), q̇(t)) ∈ TRn.

It is easy to see that Hamilton’s equations can also be modified to incor-
porate external forces,

q̇ =
∂H(q, p)

∂p
, (3.22)

ṗ = −∂H(q, p)

∂q
+ F (q). (3.23)

Many, but not all, of the results described for the autonomous case without
inclusion of external forces hold for this case. But it is important to be careful.
For instance, if there are external forces it is not necessarily true that the
Hamiltonian is conserved.

In practice, this version of the Euler–Lagrange equations and Hamilton’s
equations that include external forces are important. This is the mechanism
whereby physical effects such as friction and other forms of energy dissipa-
tion can be incorporated into the equations of motion. This is also one way in
which time-varying effects can be incorporated into the equations of motion.
Finally, external forces can be used to model control effects and external dis-
turbances. Such modifications significantly broaden the physical application
of the Lagrangian and Hamiltonian approaches to dynamics.
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3.7 Classical Particle Dynamics

In this section, several Lagrangian and Hamiltonian systems defined in terms
of ideal particles, with mass, are introduced. In each case, the physical de-
scription and assumptions are made clear and it is shown that the configura-
tions can be identified with R

n. The Euler–Lagrange equations and Hamil-
ton’s equations are obtained.

3.7.1 Dynamics of a Particle in Uniform, Constant Gravity

Consider a particle that moves in three dimensions under the influence of
uniform, constant gravity. The mass of the particle is m and the constant
gravitational acceleration is g. An inertial Euclidean frame is selected so that
the third axis of the inertial frame is vertical.

Let q ∈ R
3 denote the position vector of the particle in the inertial frame.

We take the configuration manifold to be the vector space R
3. Thus, there

are three degrees of freedom.

3.7.1.1 Euler–Lagrange Equations

The Lagrangian function L : TR3 → R
1 is given by

L(q, q̇) =
1

2
mq̇T q̇ −mgeT3 q.

The first term is the kinetic energy function of the particle while the second
term is the negative of the gravitational potential energy.

The Euler–Lagrange equation (3.6) yields the equation of motion

mq̈ +mge3 = 0. (3.24)

Thus, the acceleration of the particle is due to gravity and is given by the
constant vector −ge3. This vector differential equation defines the Lagrangian
dynamics of the particle in terms of (q, q̇) ∈ TR3 on the tangent bundle
of R3.

3.7.1.2 Hamilton’s Equations

By defining the conjugate momentum of the particle as p = ∂L(q,q̇)
∂q̇ = mq̇ ∈

T∗
qR

3 using the Legendre transformation, we obtain the Hamiltonian function



3.7 Classical Particle Dynamics 111

H(q, p) =
1

2m
pT p+mgeT3 q.

Thus, Hamilton’s equations, from (3.14) and (3.15), are

q̇ =
p

m
,

ṗ = −mge3.

These vector differential equations define the Hamiltonian dynamics of the
particle in terms of (q, p) ∈ T∗

R
3 on the cotangent bundle of R3.

3.7.1.3 Conservation Properties

The Hamiltonian of the particle

H =
1

2
mq̇T q̇ +mgeT3 q,

which coincides with the total energy E in this case, is constant along each
solution of the dynamical flow.

It is easy to show that the horizontal components of the linear momentum,
given by meT1 q̇ and meT2 q̇, are constant along each solution of the dynamical
flow. This can be viewed as a consequence of Noether’s theorem and the fact
that the Lagrangian function is invariant with respect to the lifted action of
translations in the e1 and e2 directions.

3.7.1.4 Equilibrium Properties

There are no equilibrium solutions of this dynamical system.

3.7.1.5 Modification to Include the Force of Air Resistance

In the above analysis, gravitational effects are included through the grav-
itational potential energy, giving rise to the constant force of gravity. An
important external force, often included in such analyses, is the aerodynamic
drag force due to the resistance of air. This force is not derivable from a
potential, so it must be included separately as an external force. A common
expression for the aerodynamic drag is

F = −CD ‖q̇‖ q̇,
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where CD is an aerodynamic drag coefficient. This force acts opposite to
the direction of the velocity vector and is proportional to the square of the
magnitude of the velocity vector.

The forced Euler–Lagrange equations are

mq̈ + CD ‖q̇‖ q̇ +mge3 = 0, (3.25)

and the Lagrangian flow evolves on the tangent bundle TR3.
The forced Hamilton’s equations are

q̇ =
p

m
, (3.26)

ṗ = −CD

m2
‖p‖ p−mge3, (3.27)

and the Hamiltonian flow evolves on the cotangent bundle T∗
R

3.
The inclusion of aerodynamics drag into the equations of motion for a

particle is relatively easy, but the resulting dynamics are more complicated.

3.7.2 Dynamics of a Particle, Constrained to an Inclined Plane, in
Uniform, Constant Gravity

A particle is constrained to move, without friction, on an inclined plane in R
3

under the influence of gravity. The mass of the particle is m. The position of
the particle is denoted by x = [x1, x2, x3]

T ∈ R
3 and expressed with respect

to an inertial Euclidean frame whose third axis is in the vertical direction;
g denotes the constant acceleration of gravity. The plane is described by the
linear constraint manifold

M =
{
x ∈ R

3 : x1 + x2 + x3 − 1 = 0
}
.

A schematic of the particle on an inclined plane is shown in Figure 3.1.
Since the position vector of the particle x ∈ M , the linear manifold M

is viewed as the configuration manifold. The dimension of the configuration
manifold is two, and the translational motion of a particle in the plane is said
to have two degrees of freedom.

As previously in Chapter 2, a constant basis for the tangent space TxM
is selected as

{
[1,−1, 0]T , [0,−1, 1]T

}
. Then, x ∈ M can be written as

x = q1

⎡
⎣ 1
−1
0

⎤
⎦+ q2

⎡
⎣ 0
−1
1

⎤
⎦+

⎡
⎣00
1

⎤
⎦ , (3.28)

for q = [q1, q2]
T ∈ R

2. This also implies that the time derivative ẋ ∈ TxM
can be written as
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Fig. 3.1 Particle on an inclined plane

ẋ = q̇1

⎡
⎣ 1
−1
0

⎤
⎦+ q̇2

⎡
⎣ 0
−1
1

⎤
⎦ . (3.29)

These expressions can be used to characterize the tangent plane and the
tangent bundle of the configuration manifold M . It is clear that M is diffeo-
morphic to R

2.

3.7.2.1 Euler–Lagrange Equation

The Lagrangian function L : TM → R
1 is given by

L(x, ẋ) =
1

2
mẋT ẋ−mgeT3 x,

which can be rewritten, with abuse of notation, as the Lagrangian function
L : TR2 → R

1

L(q, q̇) =
1

2
mq̇T

[
2 1
1 2

]
q̇ −mg(q2 + 1).

The first term is the kinetic energy function of the particle while the second
term is the negative of the gravitational potential energy.

Viewing the configuration as q ∈ R
2, the Euler–Lagrange equations, ob-

tained from (3.6), yield the equations of motion

m

[
2 1
1 2

]
q̈ +mg

[
0
1

]
=

[
0
0

]
. (3.30)

This vector differential equation defines the Lagrangian dynamics of the par-
ticle on an inclined plane in terms of (q, q̇) ∈ TR2 on the tangent bundle of
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R
2. The Lagrangian dynamics of the particle on an inclined plane can also

be expressed in terms of (x, ẋ) ∈ TM , the tangent bundle of M , using (3.28)
and (3.29).

3.7.2.2 Hamilton’s Equations

We define the conjugate momentum p ∈ T∗
qR

2 of the particle using the Leg-
endre transformation

p =
∂L(q, q̇)

∂q̇
= m

[
2 1
1 2

]
q̇.

From this, the Hamiltonian function is

H(q, p) =
1

6m
pT

[
2 −1
−1 2

]
p+mg(q2 + 1).

Thus, Hamilton’s equations, from (3.14) and (3.15), are

q̇ =
1

3m

[
2 −1
−1 2

]
p, (3.31)

ṗ = −mg

[
0
1

]
. (3.32)

These vector differential equations define the Hamiltonian dynamics of the
particle in terms of (q, p) ∈ T∗

R
2 on the cotangent bundle of R

2. These
equations can be used to determine the Hamiltonian dynamics expressed on
the cotangent bundle T∗M .

3.7.2.3 Conservation Properties

The Hamiltonian of the particle

H =
1

2
mẋT ẋ+mgeT3 x,

which coincides with the total energy E in this case, is constant along each
solution of the dynamical flow. The Hamiltonian can, of course, also be ex-
pressed in terms of (q, q̇) ∈ TR2 as

H =
1

2
mq̇T

[
2 1
1 2

]
q̇ +mg(q2 + 1),

or in terms of (q, p) ∈ T∗
R

2.
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3.7.2.4 Equilibrium Properties

There are no equilibrium solutions of this dynamical system.

3.7.3 Dynamics of a Particle, Constrained to a Hyperbolic
Paraboloid, in Uniform, Constant Gravity

A particle is constrained to move, without friction, on a smooth surface in
R

3 under the influence of gravity. The mass of the particle is m. The position
of the particle is denoted by x = [x1, x2, x3]

T ∈ R
3 expressed with respect

to an inertial Euclidean frame whose third axis is in the vertical direction;
g denotes the constant acceleration of gravity. The surface is a hyperbolic
paraboloid described by the embedded manifold

M =
{
x ∈ R

3 : −x2
1 + x2

2 − x3 = 0
}
.

The surface has a particularly simple mathematical description in that M
can also be described by

M =
{
[x1, x2,−x2

1 + x2
2]

T ∈ R
3 : [x1, x2]

T ∈ R
2
}
.

Thus, M and R
2 are diffeomorphic.

Consequently, the vector [x1, x2]
T ∈ R

2 parameterizes any point on M
and can be viewed as the configuration vector, and R

2 can be viewed as the
configuration manifold. Since the dimension of the configuration manifold is
two, the translational motion of a particle on the surface is said to have two
degrees of freedom.

Introducing the notation, q = [q1, q2]
T = [x1, x2]

T ∈ R
2, a vector x ∈ M

can be expressed as

x =

⎡
⎣ q1

q2
−q21 + q22

⎤
⎦ , (3.33)

and ẋ ∈ TxM can be expressed as

ẋ = q̇1

⎡
⎣ 1

0
−2q1

⎤
⎦+ q̇2

⎡
⎣ 0

1
2q2

⎤
⎦ . (3.34)

3.7.3.1 Euler–Lagrange Equation

The Lagrangian function L : TM → R
1 is given by
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L(x, ẋ) =
1

2
mẋT ẋ−mgeT3 x,

which can be rewritten, with abuse of notation, as the Lagrangian function
L : TR2 → R

1

L(q, q̇) =
1

2
mq̇T

[
1 + 4q21 −4q1q2
−4q1q2 1 + 4q22

]
q̇ −mg(−q21 + q22).

The first term is the kinetic energy function of the particle while the second
term is the negative of the gravitational potential energy.

The Euler–Lagrange equations on R
2, obtained from (3.6), yield the equa-

tions of motion

m

[
1 + 4q21 −4q1q2
−4q1q2 1 + 4q22

]
q̈ +m

[
4q1(q̇

2
1 − q̇22)

4q2(q̇
2
2 − q̇21)

]
+mg

[−2q1
2q2

]
=

[
0
0

]
. (3.35)

This vector differential equation defines the Lagrangian dynamics of the par-
ticle on the hyperbolic paraboloid surface in terms of (q, q̇) ∈ TR2 on the
tangent bundle of R2. The Lagrangian dynamics of the particle on the sur-
face can also be expressed in terms of (x, ẋ) ∈ TM , the tangent bundle of M ,
using (3.33) and (3.34).

3.7.3.2 Hamilton’s Equations

Using the Legendre transformation, we define the conjugate momentum p ∈
T∗
qR

2 of the particle to be

p =
∂L(q, q̇)

∂q̇
= m

[
1 + 4q21 −4q1q2
−4q1q2 1 + 4q22

]
q̇.

The Hamiltonian function is

H(q, p) =
1

2m

1

(1 + 4(q21 + q22))
pT

[
1 + 4q22 4q1q2
4q1q2 1 + 4q21

]
p+mg(−q21 + q22).

Thus, Hamilton’s equations, obtained from (3.14) and (3.15), are

q̇ =
1

m(1 + 4(q21 + q22))

[
1 + 4q22 4q1q2
4q1q2 1 + 4q21

]
p, (3.36)

ṗ =
4(p1q1 − p2q2)

m(1 + 4(q21 + q22))
2

[−4p1q
2
2 − 4p2q1q2 − p1

4p2q
2
1 + 4p1q1q2 + p2

]
+mg

[
2q1
−2q2

]
. (3.37)

These vector differential equations define the Hamiltonian dynamics of the
particle in terms of (q, p) ∈ T∗

R
2 on the cotangent bundle of R2. The Hamil-

tonian dynamics can also be described in terms of the evolution on the cotan-
gent bundle T∗M .
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3.7.3.3 Conservation Properties

The Hamiltonian of the particle

H =
1

2
mẋT ẋ+mgeT3 x,

which coincides with the total energy E in this case, is constant along each
solution of the dynamical flow. The Hamiltonian can, of course, also be ex-
pressed in terms of (q, q̇) ∈ TR2 as

H =
1

2
mq̇T

[
1 + 4q21 −4q1q2
−4q1q2 1 + 4q22

]
q̇ +mg(−q21 + q22),

or in terms of (q, p) ∈ T∗
R

2.

3.7.3.4 Equilibrium Properties

There is a single equilibrium solution at [0, 0]T ∈ TR2. Viewing [q1, q2]
T ∈ R

2

as local coordinates for R
2, the linearized vector field using (3.35) can be

described by

mξ̇1 − 2mgξ1 = 0,

mξ̇2 + 2mgξ2 = 0.

The eigenvalues are easily computed to be:
√
2g, −√

2g, j
√
2g, −j

√
2g. Since

one eigenvalue is real and positive, the equilibrium [0, 0]T ∈ TR2, and thus,
the equilibrium [0, 0]T ∈ TM , is unstable.

3.7.4 Keplerian Dynamics of a Particle in Orbit

We consider the restricted two-body problem in orbital mechanics. A particle
is in orbit about a large spherical body acted on by the gravitational force of
the large spherical body. The mass of the orbiting body is m and the mass M
of the spherical body is sufficiently large that it can be assumed to be fixed;
this is the restricted two-body problem.

The origin of an inertial Euclidean frame is fixed at the center of mass
of the large spherical body. The configuration vector of the orbiting body
is q ∈ R

3 and R
3 is the configuration manifold. A schematic of this three

degrees of freedom system is shown in Figure 3.2.
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q ∈ R3

Fig. 3.2 Particle in Keplerian orbit

3.7.4.1 Euler–Lagrange Equations

The kinetic energy of the orbiting body, viewed as a particle, is given by

T (q, q̇) =
1

2
m ‖q̇‖2 .

The gravitational potential energy of the particle in orbit is obtained as the
integral of the potential energy for each mass increment in the central body
over the material points in the central body. As shown in [80], this potential
energy is the same as if all mass of the central body is concentrated at its
center of mass, that is

U(q) = −mμ

‖q‖ ,

where μ is the positive gravitational constant depending on the mass of the
large spherical body.

Thus, the Lagrangian function L : TR3 → R
1 is

L(q, q̇) =
1

2
m ‖q̇‖2 + mμ

‖q‖ .

The Euler–Lagrange equation of motion, obtained from (3.6), is given by

mq̈ +mμ
q

‖q‖3 = 0. (3.38)

The mass of the orbiting body is thus seen to be irrelevant to the orbital
dynamics.

Note that there is a singularity in the gravitational term at the origin so
that the equations are motion are valid only on R

3 − {0}. This singularity
arises from the gravitational model. Excluding the origin, the vector differ-
ential equation describes the Lagrangian flow of Kepler’s dynamics in terms
of (q, q̇) ∈ TR3 on the tangent bundle of R3.
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3.7.4.2 Hamilton’s Equations

Hamilton’s equations of motion are obtained from the Lagrangian function
by using the Legendre transformation to define the orbital momentum p =
∂L(q,q̇)

∂q̇ = mq̇ ∈ T∗
qR

3 and introducing the Hamiltonian function

H(q, p) =
1

2m
‖p‖2 − mμ

‖q‖ .

From (3.14) and (3.15) we obtain Hamilton’s equations of motion

q̇ =
p

m
, (3.39)

ṗ = −mμ
q

‖q‖3 . (3.40)

These differential equations define the Hamiltonian flow of Kepler’s dynamics
described in terms of (q, p) ∈ T∗

R
3 on the cotangent bundle of R3.

3.7.4.3 Conservation Properties

There are several conserved quantities. First, the Hamiltonian, which coin-
cides with the total energy E in this case, is conserved:

H =
1

2
m ‖q̇‖2 − mμ

‖q‖ ,

is constant along each solution of the Lagrangian flow.
Second, it is easily verified that the spatial angular momentum

h = q ×mq̇

is constant along each solution of the Lagrangian flow. This guarantees that
each orbital motion lies in a fixed orbital plane in R

3. This arises as a conse-
quence of Noether’s theorem, due to the invariance of the Lagrangian under
the lifted left action of the rotation group.

In addition, the Runge–Lenz vector

r = q̇ × h− mμq

‖q‖
can be shown to be constant along each solution of the Lagrangian flow.
This conservation law is more subtle and does not arise from a symmetry
of the Lagrangian, at least if we only consider symmetry groups acting on
the configuration manifold. Rather, the Runge–Lenz vector is related to the
invariance of the Newtonian potential −k/‖q‖ under the lifted action of the
Lorentz group on spacetime.
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3.7.4.4 Equilibrium Properties

There are no equilibrium solutions. However, the conserved functions, which
are constant along each orbital motion, can be used to derive Kepler’s three
laws for orbiting bodies. These can be used to show that the orbital paths
in R

3 are conic sections; that is the Keplerian orbital paths are circular,
elliptical, parabolic, or hyperbolic.

3.7.5 Dynamics of a Particle Expressed in a Rotating Euclidean
Frame

The dynamics of a particle with mass m moving under the influence of a po-
tential in an inertial Euclidean frame constitute one of the simplest problems
in Lagrangian dynamics. The equations of motion are easily determined using
Newton’s laws or the Euler–Lagrange equations for a configuration vector in
R

3.
There are many situations, such as in imaging or target tracking, for which

the dynamics of a particle with mass m moving under the influence of a
potential are required to be expressed in a non-inertial, rotating Euclidean
frame. Such equations of motion can be obtained using the Euler–Lagrange
equations on R

3. In this section, these basic results are presented; they are
of interest in their own right and they demonstrate the general approach in
obtaining the equations of motion expressed in a rotating Euclidean frame
using variational methods.

A rotating Euclidean frame and an inertial Euclidean frame are assumed
to have identical origins. The position vector of the particle is q ∈ R

3 in
the rotating frame; the position vector of the particle in the inertial frame is
x ∈ R

3. The vector q ∈ R
3 is taken as the configuration vector, so that R3 is

the configuration manifold. The particle has three degrees of freedom.

3.7.5.1 Euler–Lagrange Equations

The non-inertial, rotating frame is described by the known map: R : [0,∞) →
SO(3), which is the transformation between vectors in the rotating frame and
corresponding vectors in the inertial frame, as described in Chapter 2. As in
(2.16), there exists an angular velocity vector ω : [0,∞) → R

3 such that
Ṙ = RS(ω).

Thus, the position vector of the particle in the inertial frame is related to
the position vector of the particle in the rotating frame by

x = Rq.



3.7 Classical Particle Dynamics 121

The velocity vector of the particle in the inertial frame is

ẋ = R(q̇ + S(ω)q),

and the kinetic energy of the particle is given by

T (q, q̇) =
1

2
m ‖ẋ‖2

=
1

2
m ‖q̇ + S(ω)q‖2 .

The potential energy of the particle is given by the scalar function U(x) =
U(Rq).

Thus, the Lagrangian function L : TR3 → R
1 is

L(q, q̇) =
1

2
m ‖q̇ + S(ω)q‖2 − U(Rq),

which is the difference of the kinetic and potential energy in the inertial
frame, expressed in non-inertial coordinates. The partial derivatives are

∂L(q, q̇)

∂q̇
= m(q̇ + S(ω)q),

∂L(q, q̇)

∂q
= −mS(ω)(q̇ + S(ω)q)− ∂U(Rq)

∂q
,

and the Euler–Lagrange equation of motion, obtained from (3.6), is given by

m {q̈ + 2S(ω)q̇ + S(ω)S(ω)q + S(ω̇)q}+ ∂U(Rq)

∂q
= 0. (3.41)

This can also be expressed using the cross-product notation as

m {q̈ + 2ω × q̇ + ω × (ω × q) + ω̇ × q}+ ∂U(Rq)

∂q
= 0. (3.42)

The second and third terms in these equations are often referred to as the
Coriolis and centripetal terms. Note that if ω ≡ 0, then the rotating frame
is in fact stationary and the above equations reduce to describe the simple
dynamics of a particle moving in a potential, expressed in an inertial frame.

These vector differential equations define the Lagrangian dynamics of a
particle in a potential in terms of (q, q̇) ∈ TR3 on the tangent bundle of
R

3. Here, the configuration vector is the position vector of the particle in an
arbitrary rotating, non-inertial Euclidean frame.

These Euler–Lagrange equations for particle dynamics in a rotating frame
appear in many textbooks and in many research publications. The publica-
tion [24] contains a detailed description of the response properties, in the case
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that the potential U(q) = 1
2k ‖q‖2 with k > 0, so that the particle dynamics,

ignoring rotation of the frame, corresponds to a spatial harmonic oscillator.

3.7.5.2 Hamilton’s Equations

Using the Legendre transformation, define the conjugate momentum p ∈
T∗
qR

3 of the particle to be

p =
∂L(q, q̇)

∂q̇
= m(q̇ + S(ω)q).

The Hamiltonian function is

H(q, p) =
‖p‖2
2m

− p · (S(ω)q) + U(Rq).

Thus, Hamilton’s equations, obtained from (3.14) and (3.15), are

q̇ =
p

m
− S(ω)q, (3.43)

ṗ = S(ω)p− ∂U(Rq)

∂q
. (3.44)

These vector differential equations define the Hamiltonian dynamics of the
particle in terms of (q, p) ∈ T∗

R
3 on the cotangent bundle of R3.

3.7.5.3 Conservation Properties

The Hamiltonian of the particle in the potential

H =
1

2
m ‖q̇ + S(ω)q‖2 −m(q̇ + S(ω)q) · (S(ω)q) + U(Rq)

is time dependent, since it depends on R, which is a function of time. Conse-
quently, the Hamiltonian is not constant along each solution of the dynamical
flow. However, the total energy in the inertial frame expressed in non-inertial
coordinates

E =
1

2
m ‖q̇ + S(ω)q‖2 + U(Rq)

is constant along each solution of the dynamical flow.
There may be additional conserved properties if the potential function has

certain symmetry properties.



3.8 Problems 123

3.8 Problems

3.1. Consider the dynamics of a particle, with mass m, in three dimensions.
The particle acts under a gravitational field given, in an inertial frame, by
G : R

3 → TR3. That is, the gravitational force on a particle, located at
x ∈ R

3 is given by mG(x).

(a) What are the Euler–Lagrange equations for the particle?
(b) What are Hamilton’s equations for the particle?
(c) What are conditions that guarantee existence of an equilibrium solution

of the particle in a gravitational field?
(d) Suppose that the gravitational field is constant. What are conditions for

existence of an equilibrium solution of the particle?

3.2. Consider the dynamics of a charged particle, with mass m, in three
dimensions. The particle acts under an electric field given, in an inertial
frame, by E : R3 → TR3 and a magnetic field given, in the inertial frame, by
B : R3 → TR3. The Lorentz force on a particle, located at x ∈ R

3, is given
by Q(E(x)+ ẋ×B(x)), where Q denotes the constant charge on the particle.

(a) What are the Euler–Lagrange equations for the particle?
(b) What are Hamilton’s equations for the particle?
(c) What are conditions that guarantee existence of an equilibrium solution

of the particle in an electric field and a magnetic field?
(d) Suppose that the electric field and the magnetic field are constant. What

are the conditions for existence of an equilibrium solution of the particle?

3.3. Consider the dynamics of a particle, with mass m, in three dimensions.
The particle is constrained to move on an inclined plane described by

M =
{
x ∈ R

3 : x1 + x2 + x3 − 1 = 0
}
,

with uniform constant gravity acting along the negative direction of the third
axis of the inertial frame.

(a) View the constant gravity force as an external force, instead of arising
from a potential. Show that the forced Euler–Lagrange equations (3.21)
and forced Hamilton’s equations (3.22) and (3.23) can be used to recover
the Euler–Lagrange equations (3.30) and the Hamilton’s equations (3.31)
and (3.32).

(b) Derive an expression for the contact force of the plane on the particle,
expressed in terms of (x, ẋ) ∈ TM .

3.4. Consider the dynamics of a particle, with mass m, in three dimensions.
The particle is constrained to move, without friction, on a surface defined by
a hyperbolic paraboloid described by

M =
{
x ∈ R

3 : −x2
1 + x2

2 − x3 = 0
}
.
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Uniform constant gravity acts along the negative direction of the third axis
of the inertial frame.

(a) View the constant gravity force as an external force, instead of arising
from a potential. Show that the forced Euler–Lagrange equations (3.21)
and forced Hamilton’s equations (3.22) and (3.23) can be used to recover
the Euler–Lagrange equations (3.35) and the Hamilton’s equations (3.36)
and (3.37).

(b) Derive an expression for the contact force of the surface on the particle,
expressed in terms of (x, ẋ) ∈ TM .

3.5. A particle of mass m is constrained to move, without friction, on a plane
embedded in R

3 that is given by

M =
{
x ∈ R

3 : x1 − x2 + x3 − 1 = 0
}
,

under the influence of constant gravity that acts along the negative direction
of the third axis of the inertial frame.

(a) Show that M and R
2 are diffeomorphic.

(b) Show that the Lagrangian function can be expressed as a function on the
tangent bundle TR2.

(c) What are the resulting Euler–Lagrange equations?
(d) What are the resulting Hamilton’s equations?
(e) Describe the flow on the tangent bundle TM in terms of the flow on the

tangent bundle TR2.
(f) What are conservation properties of the dynamical flow on TM?
(g) What are the equilibrium solutions of the dynamical flow on TM?

3.6. A particle of mass m is constrained to move, without friction, on a
surface embedded in R

3 that is given by

M =
{
x ∈ R

3 : (x1)
2 + (x2)

2 − x3 = 0
}
,

under the influence of constant gravity that acts along the negative direction
of the third axis of the inertial frame.

(a) Show that M and R
2 are diffeomorphic.

(b) Show that the Lagrangian function can be expressed as a function on the
tangent bundle TR2.

(c) What are the resulting Euler–Lagrange equations?
(d) What are the resulting Hamilton’s equations?
(e) Describe the flow on the tangent bundle TM in terms of the flow on the

tangent bundle TR2.
(f) What are conservation properties of the dynamical flow on TM?
(g) What are the equilibrium solutions of the dynamical flow on TM?
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3.7. A particle of mass m is constrained to move, without friction, on a line
embedded in R

3 that is given by

M =
{
x ∈ R

3 : x1 − x2 = 0, x1 + x2 − x3 = 0
}
,

under the influence of constant gravity that acts along the negative direction
of the third axis of the inertial frame.

(a) Show that M and R
1 are diffeomorphic.

(b) Show that the Lagrangian function can be expressed as a function on the
tangent bundle TR1.

(c) What are the resulting Euler–Lagrange equations?
(d) What are the resulting Hamilton’s equations?
(e) Describe the flow on the tangent bundle TM in terms of the flow on the

tangent bundle TR1.
(f) What are conservation properties of the dynamical flow on TM?
(g) What are the equilibrium solutions of the dynamical flow on TM?

3.8. A particle of mass m is constrained to move, without friction, on a curve
embedded in R

3 that is given by

M =
{
x ∈ R

3 : x1 − x2 = 0, (x1)
2 + (x2)

2 − x3 = 0
}
,

under the influence of constant gravity that acts along the negative direction
of the third axis of the inertial frame.

(a) Show that M and R
1 are diffeomorphic.

(b) Show that the Lagrangian function can be expressed as a function on the
tangent bundle TR1.

(c) What are the resulting Euler–Lagrange equations?
(d) What are the resulting Hamilton’s equations?
(e) Describe the flow on the tangent bundle TM in terms of the flow on the

tangent bundle TR1.
(f) What are conservation properties of the dynamical flow on TM?
(g) What are the equilibrium solutions of the dynamical flow on TM?

3.9. A particle of mass m is constrained to move, without friction, on a
plane that rotates at a constant angular rate Ω ∈ R

1 about an inertially
fixed line that is orthogonal to the rotating plane. No potential forces or
external forces act on the particle. Let q ∈ R

2 denote the position vector of
the particle with respect to a two-dimensional Euclidean frame fixed to the
rotating plane; let x ∈ R

3 denote the position vector of the particle with
respect to a three-dimensional Euclidean frame that is inertial. The position
vector, in the inertial frame, can be expressed in terms of the position vector
q ∈ R

2 in the rotating frame by

x =

⎡
⎣cosΩt − sinΩt
sinΩt cosΩt

0 0

⎤
⎦ q.
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(a) What is the Lagrangian function on the tangent bundle TR2, where the
configuration is the position vector in the rotating frame?

(b) What are the resulting Euler–Lagrange equations?
(c) What are the resulting Hamilton’s equations?
(d) What are conserved quantities?
(e) What are the equilibrium solutions of the dynamical flow on TR2?

3.10. Two particles, each of mass m, are connected by a massless link of
length L and act under uniform, constant gravity. Let x1 ∈ R

3 and x2 ∈ R
3

denote the position vectors of the two particles with respect to an iner-
tial Euclidean frame. Gravity acts along the negative direction of the third
axis of the inertial frame. The link length constraint can be written as
‖x1 − x2‖2 − L2 = 0 and this can be used to define the constraint mani-
fold and the augmented Lagrangian function on the tangent bundle TR6.

(a) Describe the constraint manifold M as an embedded manifold in R
6.

(b) What is the augmented Lagrangian function expressed as a function on
the tangent bundle TR6?

(c) What are the resulting Euler–Lagrange equations, expressed using La-
grange multipliers?

(d) What are the resulting Hamilton’s equations, expressed using Lagrange
multipliers?

(e) Show that the Euler–Lagrange differential-algebraic equations have index
two on the tangent bundle of the constraint manifold; show that Hamil-
ton’s differential-algebraic equations have index two on the cotangent
bundle of the constraint manifold.

(f) What are conservation properties of the dynamical flow on TM?
(g) What are equilibrium solutions of the dynamical flow on TM?

3.11. Consider the restricted three-body problem in orbital mechanics. Two
particles are in orbit in three dimensions about a massive spherical body;
the two particles are acted on by the Newtonian gravitational force of a
massive spherical body and by their mutual Newtonian gravitational force.
The masses of the two orbiting bodies are m1 and m2 and the mass M of the
spherical body is sufficiently large that it can be assumed to be inertially fixed.
The configuration of the restricted three-body problem is (q1, q2) ∈ R

3 ×R
3,

denoting the position vectors of the two particles from the center of the large
spherical body, defined with respect to a Euclidean frame whose origin is
located at the center of the fixed spherical body. Thus, the configuration
manifold is TR6.

(a) What is the Lagrangian function defined on the tangent bundle TR6?
(b) What are the Euler–Lagrange equations for the two particles?
(c) What are Hamilton’s equations for the two particles?
(d) Define the location of the center of mass of the two particles. Describe

the dynamics of the center of mass of the two particles.
(e) What are conservation properties for the dynamics of the two particles?
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3.12. Consider the separable Lagrangian function L : TRn → R
1 given by

L(q, q̇) =
1

2

n∑
i=1

mi(qi)q̇
2
i −

n∑
i=1

Ui(qi),

where q = [q1, . . . , qn]
T ∈ R

n and mi(qi) > 0, i = 1, . . . , n and Ui(qi), i =
1, . . . , n are real scalar functions.

(a) What are the Euler–Lagrange equations for this separable Lagrangian?
(b) What are Hamilton’s equations for this separable Lagrangian?
(c) Show that there are n conserved quantities, namely

Ei =
1

2
mi(qi)q̇

2
i + Ui(qi), i = 1, . . . , n,

that are constant along the dynamical flow.

3.13. Consider n identical particles, each of mass m, that translate in R
3.

Each particle is constrained to translate, without friction, on a straight line
embedded in R

3. That is, the position vector xi of the i-th particle in an
inertial Euclidean frame is constrained to lie in the one-dimensional linear
manifold

Mi =
{
x ∈ R

3 : x ∈ span {ai}+ bi
}
,

where ai ∈ R
3, ai �= 0, bi ∈ R

3, i = 1, . . . , n. We assume that none of
the manifolds Mi, . . . ,Mn intersect. The configuration manifold is given by
M = M1×· · ·×Mn so that the configuration vector is x = (x1, . . . , xn) ∈ M .
The n particles act under the influence of a mutual potential function given
by

U(x) =

n∑
i=1

∑
j �=i

K ‖xi − xj‖2 ,

where K > 0 is constant.

(a) Show that the configuration manifold M is globally diffeomorphic to R
n.

(b) Use this diffeomorphism to show that the Lagrangian function L : TM →
R

1 can be expressed as a function defined on the tangent bundle TRn.
(c) What are the resulting Euler–Lagrange equations?
(d) What is the Legendre transformation?
(e) What is the Hamiltonian function?
(f) What are the resulting Hamilton’s equations?
(g) What are conservation properties of the dynamical flow?
(h) What are equilibrium solutions of the dynamical flow?

3.14. This problem treats the dynamics of a particle moving in a potential,
expressing the equations of motion in terms of a configuration that is the
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position vector of the particle in a translating and rotating, non-inertial Eu-
clidean frame. The position vector of a particle, with mass m, is described
with respect to a translating and rotating Euclidean frame by the vector
q ∈ R

3. The position vector of the particle in the inertial frame is given by
x = z +Rq ∈ R

3, where z : [0,∞) → R
3 denotes the (possibly time-varying)

position vector of the origin of the non-inertial frame and R : [0,∞) → SO(3)
denotes the (possibly time-varying) transformation matrix from the inertial
frame to the moving frame; the motion of the moving frame, characterized
by (z,R) ∈ SE(3), is assumed to be given. We also assume Ṙ = RS(ω), where
ω : [0,∞) → R

3 is the given angular velocity vector of the non-inertial frame.
The particle acts under the influence of a potential energy U(x) = U(z+Rq)
that depends only on the position vector of the particle in the non-inertial
frame. The configuration vector can be selected as the position vector of
the particle q ∈ R

3 in the reference frame, so that R
3 is the configuration

manifold.

(a) Obtain an expression for the Lagrangian function L : TR3 → R
1.

(b) What are the Euler–Lagrange equations for the particle expressed in
terms of (q, q̇) ∈ TR3?

(c) Define the conjugate momentum p ∈ T∗
qR

3 according to the Legendre
transformation. What is the Hamiltonian function H : T∗

R
3 → R

1?
(d) What are Hamilton’s equations for the particle expressed in terms of

(q, p) ∈ T∗
R

3?

3.15. Consider the problem of finding the curve(s) [0, 1] → R
3 of shortest

length that connect two fixed points in R
3. Such curves are referred to as

geodesic curve(s) on R
3.

(a) If the curve is parameterized by t → q(t) ∈ R
3, show that the incremental

arc length of the curve is ds =

√
‖dq‖2 so that the geodesic curve(s)

minimize
∫ 1

0

√
‖q̇‖2dt.

(b) Show that the geodesic curve(s) necessarily satisfy the variational prop-

erty δ
∫ 1

0
‖q̇‖ dt = 0 for all smooth curves t → q(t) ∈ R

3 that satisfy the
boundary conditions q(0) = q0 ∈ R

3, q(1) = q1 ∈ R
3.

(c) What are the Euler–Lagrange equations and Hamilton’s equations that
geodesic curves in R

3 must satisfy?
(d) Use the equations and boundary conditions for the geodesic curves to

show that for each q0 ∈ R
3, q1 ∈ R

3, there is a unique geodesic curve in
R

3. Describe this geodesic curve. Show that the geodesic curve is actually

a minimum of
∫ 1

0
‖q̇‖ dt.

(e) For each q0 ∈ R
3, q1 ∈ R

3, view the geodesic curve as a one-dimensional
manifold embedded in R

3. Describe the geometrical properties of the tan-
gent bundle along the geodesic curve.

3.16. Generalize the results of the prior problem to geodesic curves in R
n.

Consider the problem of finding the curve(s) [0, 1] → R
n of shortest length



3.8 Problems 129

that connect two fixed points in R
n. Such curves are referred to as geodesic

curve(s) on R
n.

(a) If the curve is parameterized by t → q(t) ∈ R
n, show that the incremental

arc length of the curve is ds =

√
‖dq‖2 so that the geodesic curve(s)

minimize
∫ 1

0

√
‖q̇‖2dt.

(b) Show that the geodesic curve(s) necessarily satisfy the variational prop-

erty δ
∫ 1

0
‖q̇‖ dt = 0 for all smooth curves t → q(t) ∈ R

n that satisfy the
boundary conditions q(0) = q0 ∈ R

n, q(1) = q1 ∈ R
n.

(c) What are the Euler–Lagrange equations and Hamilton’s equations that
geodesic curves in R

n must satisfy?
(d) Use the equations and boundary conditions for the geodesic curves to

show that for each q0 ∈ R
n, q1 ∈ R

n, there is a unique geodesic curve in
R

n. Describe this geodesic curve. Show that the geodesic curve is actually

a minimum of
∫ 1

0
‖q̇‖ dt.

(e) For each q0 ∈ R
n, q1 ∈ R

n, view the geodesic curve as a one-dimensional
manifold embedded in R

n. Describe the geometrical properties of the
tangent bundle along the geodesic curve.

3.17. Suppose the configuration manifold is R
n and the kinetic energy has

the form of a general quadratic function in the time derivatives of the con-
figuration variables, so that the Lagrangian function L : TRn → R

1 is given
by

L(q, q̇) =
1

2

n∑
i=1

n∑
j=1

mij(q)q̇iq̇j +
n∑

i=1

ai(q)
T q̇i − U(q),

where q = [q1, . . . , qn]
T ∈ R

n and mij(q) = mji(q) > 0, i = 1, . . . , n,
ai(q), i = 1, . . . , n are vector functions and U(q) is a real scalar function.

(a) What are the Euler–Lagrange equations for this Lagrangian?
(b) What is the Hamiltonian function?
(c) What are the Hamilton’s equations for the Hamiltonian associated with

this Lagrangian?



Chapter 4

Lagrangian and Hamiltonian Dynamics
on (S1)n

This chapter introduces Lagrangian and Hamiltonian dynamics defined on
the configuration manifold (S1)n, the product of n copies of the one-sphere
embedded in R

2. Euler–Lagrange equations and Hamilton’s equations are
developed for systems that evolve on (S1)n. This development is fundamen-
tally different from the common approach in most of the published literature
that makes use of angle coordinates for (S1)n; in particular, the development
here makes use of the differential geometry of the configuration manifold and
leads to results that are globally valid everywhere on the configuration man-
ifold. This chapter also serves as an introduction to variational methods and
methods of analysis on configuration manifolds that are further developed in
subsequent chapters.

The results in this chapter are illustrated by several formulations of La-
grangian dynamics and Hamiltonian dynamics on the configuration manifold
(S1)n. The key ideas of the development were first presented in published form
in [46, 54] for the configuration manifold (S2)n; those ideas are developed for
the configuration manifold (S1)n in this chapter.

4.1 Configurations as Elements in (S1)n

We develop Euler–Lagrange equations for Lagrangian systems evolving on
the configuration manifold (S1)n that is a product of n copies of unit spheres
in R

2. Since the dimension of the configuration manifold is n, there are n
degrees of freedom. The basic differential geometry for such a configuration
manifold is now introduced.

© Springer International Publishing AG 2018
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As background, recall that the one-sphere, as an embedded manifold in
R

2, is

S1 = {q ∈ R
2 : ‖q‖2 = 1}.

The product of n spheres in R
2, denoted by (S1)n = S1×· · ·×S1, consists

of all ordered n-tuples of vectors q = (q1, . . . , qn), with qi ∈ S1, i = 1, . . . , n.
This manifold is also described as

(S1)n =
{
q ∈ R

2n : qi ∈ S1, i = 1, . . . , n
}
.

As previously discussed, for q ∈ (S1)n,

Tq(S
1)n =

{
ξ ∈ R

2n : (qi · ξi) = 0, i = 1, . . . , n
}
,

denotes the tangent space to (S1)n at q ∈ (S1)n; any vector ξ ∈ Tq(S
1)n is

referred to as a tangent vector to (S1)n at q ∈ (S1)n. Also,

T(S1)n =
{
(q, ξ) ∈ R

2n × R
2n : q ∈ (S1)n, ξ ∈ Tq(S

1)n
}
,

denotes the tangent bundle of (S1)n.
For each q ∈ (S1)n, the set of all linear functionals defined on the tangent

space Tq(S
1)n is the dual of Tq(S

1)n denoted by

T∗
q(S

1)n = (Tq(S
1)n)∗,

and it is the cotangent space to (S1)n at q ∈ (S1)n; any element ζ ∈ T∗
q(S

1)n

is referred to as a covector to (S1)n at q ∈ (S1)n. Also

T∗(S1)n =
{
(q, ζ) ∈ R

2n × (R2n)∗ : q ∈ (S1)n, ζ ∈ T∗
q(S

1)n
}
,

is the cotangent bundle of (S1)n. These definitions are important in our sub-
sequent development of variational calculus on (S1)n.

4.2 Kinematics on (S1)n

Consider a time-parameterized curve t → q(t) ∈ S1; its time derivative sat-
isfies q · q̇ = 0 for all t. This fact implies that there exists a scalar-valued
angular velocity function t → ω(t) ∈ R

1 such that the time derivative of this
curve can be written as

q̇ = ωSq,

where the 2× 2 skew-symmetric matrix
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S =

[
0 −1
1 0

]
,

given in (1.6) acts by matrix multiplication to rotate a vector by π
2 counter-

clockwise.
It also follows that a time-parameterized curve t → q = (q1, . . . , qn) ∈

(S1)n and its time derivative q̇ = (q̇1, . . . , q̇n) ∈ Tq(S
1)n satisfy (qi · q̇i) = 0

for i = 1, . . . , n and all t. This implies that there are scalar-valued angular
velocity functions t → ωi ∈ R

1, i = 1, . . . , n, such that the time derivatives
can be written as

q̇i = ωiSqi, i = 1, . . . , n. (4.1)

These equations describe the rotational kinematics on the configuration man-
ifold (S1)n.

Taking the inner product of each equation of (4.1) with Sqi, it follows that
the scalar angular velocities can be expressed as

ωi = qTi S
T q̇i, i = 1, . . . , n.

We subsequently use the notation ω = (ω1, . . . , ωn) ∈ R
n for the angular

velocity vector.

4.3 Lagrangian Dynamics on (S1)n

We introduce a Lagrangian function, and we derive the Euler–Lagrange equa-
tions that make the integral of the Lagrangian over time, called the action
integral, stationary; that is, the variation of the action integral is zero. The
Euler–Lagrange equations are expressed in terms of the configuration vector
and the time derivative of the configuration vector. A second form of the
Euler–Lagrange equations is obtained in terms of a modified Lagrangian ex-
pressed in terms of the configuration vector and the angular velocity vector.
In each case, these Euler–Lagrange equations are simplified for the impor-
tant case that the kinetic energy function is a quadratic function of the time
derivative of the configuration vector or the angular velocity vector.

4.3.1 Hamilton’s Variational Principle in Terms of (q, q̇)

The Lagrangian L : T(S1)n → R
1 is a real-valued function defined on the

tangent bundle of the configuration manifold (S1)n; we assume that the La-
grangian function

L(q, q̇) = T (q, q̇)− U(q),

is given by the difference between a kinetic energy function T (q, q̇), defined on
the tangent bundle, and a configuration-dependent potential energy function
U(q).
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We first describe variations of curves or functions with values in (S1)n. We
can express the variation of a curve with values in S1 using a 2 × 2 matrix
exponential map. This observation allows us to develop expressions for the
infinitesimal variations of curves on (S1)n.

Let q = (q1, . . . , qn) : [t0, tf ] → (S1)n be a differentiable curve. The varia-
tion of qi is an ε-parameterized differentiable curve qεi (t) taking values in S1,
where ε ∈ (−c, c) for some c > 0, q0i (t) = qi(t) for any t ∈ [t0, tf ], and the
endpoints are fixed, that is, qεi (t0) = qi(t0), q

ε
i (tf ) = q(tf ) for any ε ∈ (−c, c).

If q = (q1, . . . , qn) : [t0, tf ] → (S1)n is a differentiable curve on (S1)n,
then its variation is qε = (qε1, . . . , q

ε
n) : [t0, tf ] → (S1)n. Similarly, the time

derivative is q̇ = (q̇1, . . . , q̇n) ∈ Tq(S
1)n, and its variation is q̇ε = (q̇ε1, . . . , q̇

ε
n) :

[t0, tf ] → Tq(S
1)n.

Since the variational derivation of the Euler–Lagrange equations depends
on the infinitesimal variation, there is no loss of generality in expressing the
variation in terms of the matrix exponential map as follows:

qεi (t) = eεSγi(t) qi(t), i = 1, . . . , n,

for differentiable curves γi : [t0, tf ] → R
1, satisfying γi(t0) = γi(tf ) = 0, i =

1, . . . , n. Since the exponent εSγi is a 2× 2 skew-symmetric matrix, it is easy
to show that γi ∈ R

1 → eεSγi ∈ SO(2) is a local diffeomorphism, and that
eεSγi(t) qi(t) ∈ S1.

The infinitesimal variations are computed as

δqi(t) =
d

dε
qεi (t)

∣∣∣∣
ε=0

= γi(t)Sqi(t), i = 1, . . . , n, (4.2)

where γi(t0) = γi(tf ) = 0, i = 1, . . . , n. The infinitesimal variations vanish at
the end points of the time interval since γi(t0) = γi(tf ) = 0, i = 1, . . . , n.

Since the variation and time differentiation commute, the infinitesimal
variations of the time derivative are given by

δq̇i(t) =
d

dε
q̇εi (t)

∣∣∣∣
ε=0

= γ̇i(t)Sqi(t) + γi(t)Sq̇i(t), i = 1, . . . , n. (4.3)

These expressions characterize the infinitesimal variations for a vector-
valued function of time (q, q̇) = (q1, . . . , qn, q̇1, . . . , q̇n) : [t0, tf ] → T(S1)n.
The infinitesimal variations are important ingredients to derive the Euler–
Lagrange equations on (S1)n. We subsequently suppress the time argument,
thereby simplifying the notation.

The action integral is the integral of the Lagrangian function along a mo-
tion of the system over a fixed time period. The variations are taken over all
differentiable curves with values in (S1)n for which the initial and final values
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are fixed. The action integral along a motion is

G =

∫ tf

t0

L(q1, . . . , qn, q̇1, . . . , q̇n) dt.

The action integral along a varied motion is

Gε =

∫ tf

t0

L(qε1, . . . , q
ε
n, q̇

ε
1, . . . , q̇

ε
n) dt.

The value of the action integral along a variation of a motion can be expressed
as a power series in ε as

Gε = G+ εδG+O(ε2),

where the infinitesimal variation of the action integral is

δG =
d

dε
Gε

∣∣∣∣
ε=0

.

Hamilton’s principle states that the infinitesimal variation of the action
integral along any motion is zero:

δG =
d

dε
Gε

∣∣∣∣
ε=0

= 0, (4.4)

for all possible differentiable functions γi : [t0, tf ] → R
1 satisfying γi(t0) =

γi(tf ) = 0, i = 1, . . . , n.
The infinitesimal variation of the action integral can be expressed in terms

of the infinitesimal variation of the configuration as

δG =

∫ tf

t0

n∑
i=1

{
∂L(q, q̇)

∂q̇i
· δq̇i + ∂L(q, q̇)

∂qi
· δqi

}
dt.

We now substitute the expressions for the infinitesimal variations of the
motion (4.2) and (4.3) into the above expression for the infinitesimal varia-
tion of the action integral. We then simplify the result to obtain the Euler–
Lagrange equations expressed in terms of (q, q̇) ∈ T(S1)n.

4.3.2 Euler–Lagrange Equations in Terms of (q, q̇)

Substituting (4.2) and (4.3) we obtain

δG = −
∫ tf

t0

n∑
i=1

{
qi · S∂L(q, q̇)

∂q̇i
γ̇i + q̇i · S∂L(q, q̇)

∂q̇i
γi + qi · S∂L(q, q̇)

∂qi
γi

}
dt.
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Integrating the first term in the integral by parts, the infinitesimal variation
of the action integral is given by

δG = −
n∑

i=1

qi · S∂L(q, q̇)
∂q̇i

γi

∣∣∣∣
tf

t0

+

n∑
i=1

∫ tf

t0

qi · S
{

d

dt

(
∂L(q, q̇)

∂q̇i

)
− ∂L(q, q̇)

∂qi

}
γi dt.

According to Hamilton’s principle, δG = 0 for all continuous infinitesimal
variations γi : [t0, tf ] → R

1 that vanish at t0 and tf , i = 1, . . . , n. Since
γi(t0) = γi(tf ) = 0, the boundary terms vanish, and the fundamental lemma
of the calculus of variations, as described in Appendix A, implies that

qi · S
{

d

dt

(
∂L(q, q̇)

∂q̇i

)
− ∂L(q, q̇)

∂qi

}
= 0, i = 1, . . . , n. (4.5)

This means that qi and the expression inside the braces are collinear. Hence,
there are differentiable curves ci : [t0, tf ] → R

1 for i = 1, . . . , n, such that

d

dt

(
∂L(q, q̇)

∂q̇i

)
− ∂L(q, q̇)

∂qi
= ci(t)qi, i = 1, . . . , n.

Taking the dot product of the equation above with qi, we obtain

ci = qi ·
{

d

dt

(
∂L(q, q̇)

∂q̇i

)
− ∂L(q, q̇)

∂qi

}
, i = 1, . . . , n.

This leads to the following proposition.

Proposition 4.1 The Euler–Lagrange equations for a Lagrangian function
L : T(S1)n → R

1 are

(I2×2 − qiq
T
i )

{
d

dt

(
∂L(q, q̇)

∂q̇i

)
− ∂L(q, q̇)

∂qi

}
= 0, i = 1, . . . , n. (4.6)

The matrix (I2×2 − qiq
T
i ) is a projection of R2 onto Tqi(S

1) in the sense
that for any qi ∈ S1 and any q̇i ∈ Tqi(S

1):

(I2×2 − qiq
T
i )qi = 0,

(I2×2 − qiq
T
i )q̇i = q̇i.

This form of the Euler–Lagrange equations is reminiscent of the classical
Euler–Lagrange equations from Chapter 3. The presence of the projection
matrix in equation (4.6) reflects the fact that the configuration vector qi is not
an independent vector in R

2 but is rather constrained to satisfy qi ∈ S1, i =
1, . . . , n. In this way, the Euler–Lagrange equations reflect the geometry of
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the configuration manifold. Alternatively, equation (4.6) can be viewed as
stating that only the projection of the Euler–Lagrange equations onto the
tangent space to the constraint manifold is satisfied, and this point of view
will be expanded upon in Chapter 8.

Quadratic Kinetic Energy We now consider the important case that the
kinetic energy is a quadratic function of the time derivative of the configura-
tion vector, that is the Lagrangian function L : T(S1)n → R

1 is

L(q, q̇) =
1

2

n∑
j=1

n∑
k=1

q̇Tj mjk(q)q̇k − U(q), (4.7)

where the scalar inertia terms mjk : (S1)n → R
1 satisfy the symmetry con-

dition mjk(q) = mkj(q) and the quadratic form in the time derivative of the
configuration vector is positive-definite on (S1)n.

We first determine the derivatives of the Lagrangian function

∂L(q, q̇)

∂q̇i
=

n∑
j=1

mij(q)q̇j ,

∂L(q, q̇)

∂qi
=

1

2

∂

∂qi

n∑
j=1

n∑
k=1

q̇Tj mjk(q)q̇k − ∂U(q)

∂qi
,

and thus

d

dt

{
∂L(q, q̇)

∂q̇i

}
=

n∑
j=1

mij(q)q̈j +

n∑
j=1

ṁij(q)q̇j .

It follows from (4.6) that the Euler–Lagrange equations can be written in the
form

(I2×2 − qiq
T
i )

{ n∑
j=1

mij(q)q̈j +
n∑

j=1

ṁij(q)q̇j

− 1

2

∂

∂qi

n∑
j=1

n∑
k=1

q̇Tj mjk(q)q̇k +
∂U(q)

∂qi

}
= 0, i = 1, . . . , n. (4.8)

Since qTi q̇i = 0, it follows that d
dt (q

T
i q̇i) = (qTi q̈i) + ‖q̇i‖2 = 0; thus we obtain

(I2×2 − qiq
T
i )q̈i = q̈i − (qiq

T
i )q̈i

= q̈i + ‖q̇i‖2 qi, i = 1, . . . , n.

Thus, we can expand the time derivative expression from (4.8) to obtain the
following Euler–Lagrange equations on T(S1)n:
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mii(q)q̈i +mii(q) ‖q̇i‖2 qi + (I2×2 − qiq
T
i )

n∑
j=1
j �=i

mij(q)q̈j

+ (I2×2 − qiq
T
i )Fi(q, q̇) + (I2×2 − qiq

T
i )

∂U(q)

∂qi
= 0, i = 1, . . . , n, (4.9)

where the vector-valued functions

Fi(q, q̇) =
n∑

j=1

ṁij(q)q̇j − 1

2

∂

∂qi

n∑
j=1

n∑
k=1

q̇Tj mjk(q)q̇k, i = 1, . . . , n,

can be expressed as a quadratic function of the time derivative of the con-
figuration vector by using Christoffel symbols (see equation (3.7)). Note that
if the inertia terms are constants, independent of the configuration, then
Fi(q, q̇) = 0, i = 1, . . . , n.

These Euler–Lagrange equations (4.9) describe the dynamical flow of
(q, q̇) ∈ T(S1)n on the tangent bundle of the configuration manifold (S1)n.

Assuming that the inertia terms and the potential terms in (4.9) are glob-
ally defined on (R2)n, then the domain of definition of (4.9) on T(S1)n can
be extended to T(R2)n. This extension is natural and useful in that it defines
a Lagrangian vector field on the tangent bundle T(R2)n. Alternatively, the
manifold T(S1)n can be viewed as an invariant manifold of this Lagrangian
vector field on T(R2)n and its restriction to this invariant manifold describes
the Lagrangian flow of (4.9) on T(S1)n.

4.3.3 Hamilton’s Variational Principle in Terms of (q, ω)

We now give an alternative expression for the Euler–Lagrange equations in
terms of angular velocities as introduced in (4.1).

By making use of the kinematics, the Lagrangian function can also be
expressed in terms of the angular velocities. We write

L̃(q, ω) = L(q, q̇),

where the time derivative of the configuration vector is given by the kine-
matics (4.1). This is referred to as the modified Lagrangian function and we
view it as also being defined on the tangent bundle of (S1)n.

The infinitesimal variation of the modified action integral can be written
as

δG̃ =

∫ tf

t0

n∑
i=1

{
∂L̃(q, ω)

∂ωi
δωi +

∂L̃(q, ω)

∂qi
· δqi

}
dt.
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Note that the first term in the integral on the right-hand side is the product
of two scalars, so the dot product notation is not utilized; the second term
in the integral on the right-hand side is the dot product of two vectors.

The infinitesimal variations of the motion are given by

δqi = γiSqi, i = 1, . . . , n, (4.10)

δωi = γ̇i, i = 1, . . . , n, (4.11)

for curves γi : [t0, tf ] → R
1 satisfying γi(t0) = γi(tf ) = 0, i = 1, . . . , n.

The first expression was previously given, while the second expression can be
easily derived from the kinematics and the condition that qi · q̇i = 0.

4.3.4 Euler–Lagrange Equations in Terms of (q, ω)

Substituting (4.10) and (4.11) into the expression for the infinitesimal varia-
tion of the modified action integral we obtain

δG̃ =

∫ tf

t0

n∑
i=1

{
∂L̃(q, ω)

∂ωi
γ̇i +

∂L̃(q, ω)

∂qi
· γiSqi

}
dt.

Integrating the first term in the integral by parts, the infinitesimal variation
of the modified action integral is given by

δG̃ =

n∑
i=1

∂L̃(q, ω)

∂ωi
γi

∣∣∣∣
tf

t0

+

n∑
i=1

∫ tf

t0

{
− d

dt

(
∂L̃(q, ω)

∂ωi

)
− qTi S

∂L̃(q, ω)

∂qi

}
γi dt.

According to Hamilton’s principle, δG̃ = 0 for all differentiable functions
γi : [t0, tf ] → R

1, i = 1, . . . , n that vanish at t0 and tf , i = 1, . . . , n. Since
γi(t0) = γi(tf ) = 0, the boundary terms vanish, and the fundamental lemma
of the calculus of variations, as described in Appendix A, implies the following
proposition.

Proposition 4.2 The Euler–Lagrange equations for a modified Lagrangian
function L̃ : T(S1)n → R

1 are

d

dt

(
∂L̃(q, ω)

∂ωi

)
+ qTi S

∂L̃(q, ω)

∂qi
= 0, i = 1, . . . , n. (4.12)

Thus, the evolution on the tangent bundle T(S1)n is described by the kine-
matics equations (4.1) and the Euler–Lagrange equations (4.12).
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This form of the Euler–Lagrange equations on (S1)n, expressed in terms
of angular velocities, can be obtained in a different way directly from the
Euler–Lagrange equations given in (4.6). The kinematics (4.1) can be viewed
as defining a change of variables (q, q̇) ∈ T(S1)n → (q, ω) ∈ (S1)n × R

n.
This approach can be used to show the equivalence of the Euler–Lagrange
equations (4.6) and the Euler–Lagrange equations (4.12) and the kinematics
(4.1).

Quadratic Kinetic Energy We now consider the important case that the
Lagrangian is a quadratic function of the angular velocities as in (4.7); that
is, the modified Lagrangian function is

L̃(q, ω) =
1

2

n∑
i=1

n∑
j=1

ωiq
T
i mij(q)qjωj − U(q). (4.13)

The modified Lagrangian function can also be written as

L̃(q, ω) =
1

2

n∑
i=1

mii(q)ω
2
i +

1

2

n∑
i=1

n∑
j=1
j �=i

ωiq
T
i mij(q)qjωj − U(q).

Now we show that the Euler–Lagrange equations can be expressed in terms
of the angular velocity vector ω = (ω1, . . . , ωn) ∈ R

n.
We first determine the derivatives of the modified Lagrangian function

∂L̃(q, ω)

∂ωi
=

n∑
j=1

qTi mij(q)qjωj

= mii(q)ωi +

n∑
j=1
j �=i

qTi mij(q)qjωj ,

∂L̃(q, ω)

∂qi
=

1

2

∂

∂qi

n∑
j=1

n∑
k=1

ωjq
T
j mjk(q)qkωk − ∂U(q)

∂qi
,

and thus

d

dt

{
∂L̃(q, ω)

∂ωi

}
= mii(q)ω̇i +

n∑
j=1
j �=i

qTi mij(q)qjω̇j

+
n∑

j=1

qTi ṁij(q)qjωj +
n∑

j=1
j �=i

mij(q)(q̇
T
i qj + qTi q̇j)ωj .

The Euler–Lagrange equations (4.12) can be expressed as
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mii(q)ω̇i+

n∑
j=1
j �=i

qTi mij(q)qjω̇j+

n∑
j=1

qTi ṁij(q)qjωj+

n∑
j=1
j �=i

mij(q)(q̇
T
i qj+qTi q̇j)ωj

+ qTi S

⎧⎨
⎩

1

2

∂

∂qi

n∑
j=1

n∑
k=1

ωjq
T
j mjk(q)qkωk − ∂U(q)

∂qi

⎫⎬
⎭ = 0.

We use the kinematics (4.1) to write

n∑
j=1
j �=i

mij(q)(q̇
T
i qj + qTi q̇j)ωj =

n∑
j=1
j �=i

mij(q)q
T
i Sqj(ωj − ωi)ωj .

Thus, it follows from (4.12) that

mii(q)ω̇i +

n∑
j=1
j �=i

qTi mij(q)qjω̇j +

n∑
j=1

qTi ṁij(q)qjωj

+
n∑

j=1
j �=i

mij(q)q
T
i Sqj(ωj − ωi)ωj

+ qTi S

{
1

2

∂

∂qi

n∑
j=1

n∑
k=1

ωjq
T
j mjk(q)qkωk − ∂U(q)

∂qi

}
= 0.

Using the observation that qTi qj = −qTi SSqj , we rewrite the third term to
obtain a convenient form of the Euler–Lagrange equations on T(S1)n:

mii(q)ω̇i +

n∑
j=1
j �=i

qTi mij(q)qjω̇j + qTi S

n∑
j=1
j �=i

mij(q)ω
2
j qj

− qTi S

{
n∑

j=1
j �=i

ωimij(q)ωjqj + Fi(q, ω) +
∂U(q)

∂qi

}
= 0, i = 1, . . . , n, (4.14)

where

Fi(q, ω) =

n∑
j=1

ṁij(q)Sqjωj − 1

2

∂

∂qi

n∑
j=1

n∑
k=1

ωjq
T
j mjk(q)qkωk, i = 1, . . . , n,

can be shown to be quadratic in the angular velocities. Note that if the inertial
terms are constants, independent of the configuration, then Fi(q, ω) = 0, i =
1, . . . , n.
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This version of the Euler–Lagrange differential equations (4.14) and the
kinematics equations (4.1), expressed in terms of the angular velocities, de-
scribe the Lagrangian flow of (q, q̇) ∈ T(S1)n on the tangent bundle of the
configuration manifold (S1)n.

If the inertia terms and the potential terms in (4.14) are globally defined
on (R2)n, then the domain of definition of (4.14) on T(S1)n can be extended
to T(R2)n. This extension is natural in that it defines a Lagrangian vector
field on the tangent bundle T(R2)n. Alternatively, the manifold T(S1)n is an
invariant manifold of this Lagrangian vector field on T(R2)n and its restric-
tion to this invariant manifold describes the Lagrangian flow of (4.14) on
T(S1)n.

Equations (4.9) and the kinematics (4.1) can be shown to be equivalent to
(4.14) by viewing the kinematics as defining a transformation from (q, q̇) to
(q, ω). This provides an alternate derivation of (4.14).

4.4 Hamiltonian Dynamics on (S1)n

Here, the Legendre transformation is introduced to derive Hamilton’s equa-
tions for dynamics that evolve on (S1)n. The derivation is based on the phase
space variational principle, a natural modification of Hamilton’s principle for
Lagrangian dynamics. Two forms of Hamilton’s equations are obtained. One
form is expressed in terms of momentum covectors (μ1, . . . , μn) ∈ T∗

q(S
1)n

that are conjugate to the velocities (q̇1, . . . , q̇n) ∈ Tq(S
1)n, where q ∈ (S1)n.

The other form of Hamilton’s equations is expressed in terms of the mo-
mentum π = (π1, . . . , πn) that is conjugate to the angular velocity vector
(ω1, . . . , ωn).

4.4.1 Hamilton’s Phase Space Variational Principle in Terms of
(q, μ)

As in the prior section, we begin with a Lagrangian function L : T(S1)n →
R

1, which is a real-valued function defined on the tangent bundle of the
configuration manifold (S1)n; we assume that the Lagrangian function

L(q, q̇) = T (q, q̇)− U(q),

is given by the difference between a kinetic energy function T (q, q̇), defined on
the tangent bundle, and a configuration-dependent potential energy function
U(q).

The Legendre transformation of the Lagrangian function L(q, q̇) provides
the basis for obtaining a Hamiltonian form of the equations of motion in
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terms of a conjugate momentum. The Legendre transformation (q̇1, . . . , q̇n) ∈
Tq(S

1)n → (μ1, . . . , μn) ∈ T∗
q(S

1)n satisfies

μi · q̇i = ∂L(q, q̇)

∂q̇i
· q̇i, i = 1, . . . , n,

for all q̇i ∈ TqiS
1, i = 1, . . . , n. The momentum μi is an element of the dual

of the tangent space TqiS
1, and its action on a tangent vector q̇i via the inner

product is independent of any component that is collinear with qi. This results
in an ambiguity in the representation of the momentum as a vector, and we
address this by requiring that the vector representing μi is orthogonal to qi;

that is μi is equal to the orthogonal projection of ∂L(q,q̇)
∂q̇i

onto the tangent

space TqiS
1. Thus,

μi =
∂L(q, q̇)

∂q̇i
−

(
qi · ∂L(q, q̇)

∂q̇i

)
qi, i = 1, . . . , n,

which can be written as

μi = (I2×2 − qiq
T
i )

∂L(q, q̇)

∂q̇i
, i = 1, . . . , n, (4.15)

where the operators (I2×2 − qiq
T
i ) project R

2 onto TqiS
1 for i = 1, . . . , n.

We assume that the Lagrangian function is hyperregular; that is the Leg-
endre transformation, viewed as a map Tq(S

1)n → T∗
q(S

1)n, is invertible.
The Hamiltonian function H : T∗(S1)n → R

1 is given by

H(q, μ) =

n∑
i=1

μi · q̇i − L(q, q̇), (4.16)

where the right-hand side can be evaluated by expressing (q, q̇) in terms of
(q, μ) by inverting the Legendre transformation (4.15).

The Legendre transformation can be viewed as defining a transformation
(q, q̇) ∈ T(S1)n → (q, μ) ∈ T∗(S1)n, which implies that the Euler–Lagrange
equations can be written in terms of the transformed variables; this is effec-
tively Hamilton’s equations. However, Hamilton’s equations can also be ob-
tained using Hamilton’s phase space variational principle, and this approach
is now introduced.

Consider the action integral in the form,

G =

∫ tf

t0

{
n∑

i=1

μi · q̇i −H(q, μ)

}
dt.

The infinitesimal variation of the action integral is given by

δG =

n∑
i=1

∫ tf

t0

{
μi · δq̇i − ∂H(q, μ)

∂qi
· δqi +

(
q̇i − ∂H(q, μ)

∂μi

)
· δμi

}
dt.
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Hamilton’s phase space variational principle states that the infinitesimal vari-
ation of the action integral is zero for all admissible variations of (q, μ) ∈
T∗(S1)n. By integrating the first term on the right-hand side by parts, we
can express the variational principle as

δG =

n∑
i=1

μi · δqi
∣∣∣∣
tf

t0

+
n∑

i=1

∫ tf

t0

{(
−μ̇i − ∂H(q, μ)

∂qi

)
· δqi +

(
q̇i − ∂H(q, μ)

∂μi

)
· δμi

}
dt = 0,

for all possible differentiable curves (δqi, δμi) : [t0, tf ] → T(qi,μi)T
∗S1, satis-

fying δqi(t0) = δqi(tf ) = 0 for all i = 1, . . . , n.
From the definition of the conjugate momenta μi given by (4.15), we have

qi ·μi = 0, which implies that δqi ·μi+qi ·δμi = 0. To impose this constraint on
the variations, it is convenient to decompose δμi into a component collinear
with qi, namely δμC

i = qiq
T
i δμi, and a component orthogonal to qi, namely

δμM
i = (I2×2 − qiq

T
i )δμi. Thus, the constraint on the momentum induces

the following constraint on the infinitesimal variations, qTi δμ
C
i = qTi δμi =

−μT
i δqi, but δμ

M
i = (I2×2 − qiq

T
i )δμi is otherwise unconstrained.

Recall the prior expression for the infinitesimal variations on (S1)n:

δqi = γiSqi, i = 1, . . . , n,

for differentiable curves γi : [t0, tf ] → R
1, i = 1, . . . , n satisfying γi(t0) =

γi(tf ) = 0, i = 1, . . . , n.
These results can be summarized as: the infinitesimal variation of the

action integral is zero, for all possible differentiable curves γi : [t0, tf ] → R
1

and δμM
i : [t0, tf ] → R

2, with δμM
i · qi = 0 and γi(t0) = γi(tf ) = 0, for

i = 1, . . . , n.

4.4.2 Hamilton’s Equations in Terms of (q, μ)

Substituting the expressions for the infinitesimal variations of the configura-
tion and using the fact that the infinitesimal variation of the configuration
vanishes at the endpoints, the infinitesimal variation of the action integral
can be rewritten as

δG =

n∑
i=1

∫ tf

t0

{(
−μ̇i − ∂H(q, μ)

∂qi

)
· δqi +

(
qiq

T
i

(
q̇i − ∂H(q, μ)

∂μi

))
· δμC

i

+

(
(I2×2 − qiq

T
i )

(
q̇i − ∂H(q, μ)

∂μi

))
· δμM

i

}
dt
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=

n∑
i=1

∫ tf

t0

{(
−μ̇i − ∂H(q, μ)

∂qi

)
· δqi −

(
qTi

∂H(q, μ)

∂μi

)
· (qTi δμC

i )

+

(
q̇i − (I2×2 − qiq

T
i )

∂H(q, μ)

∂μi

)
· δμM

i

}
dt

=
n∑

i=1

∫ tf

t0

{(
−μ̇i − ∂H(q, μ)

∂qi

)
· δqi +

(
qTi

∂H(q, μ)

∂μi

)
(μi · δqi)

+

(
q̇i − (I2×2 − qiq

T
i )

∂H(q, μ)

∂μi

)
· δμM

i

}
dt

=

n∑
i=1

∫ tf

t0

{
qTi S

(
−μ̇i − ∂H(q, μ)

∂qi
+ μiq

T
i

∂H(q, μ)

∂μi

)
γi

+

(
q̇i − (I2×2 − qiq

T
i )

∂H(q, μ)

∂μi

)
· δμM

i

}
dt = 0.

We now invoke Hamilton’s phase space variational principle that δG = 0 for
all possible differentiable curves γi : [t0, tf ] → R

1 and δμM
i : [t0, tf ] → R

2

that are orthogonal to qi, for i = 1, . . . , n.
According to the fundamental lemma of the calculus of variations, as de-

scribed in Appendix A, the first condition gives

qTi S

(
μ̇i +

∂H(q, μ)

∂qi
− μiq

T
i

∂H(q, μ)

∂μi

)
= 0, i = 1, . . . , n.

By the same arguments used to derive equation (4.6), we obtain

(I2×2 − qiq
T
i )

(
μ̇i +

∂H(q, μ)

∂qi
− μiq

T
i

∂H(q, μ)

∂μi

)
= 0, i = 1, . . . , n.

These are incomplete since the first equation only determines the component
of μ̇i in the tangent space TqiS

1. The component of μ̇i that is orthogonal
to this tangent space, that is collinear with qi, is determined as follows. The
time derivative of qi ·μi = 0 gives qi · μ̇i = −q̇i ·μi, which allows computation
of the component μ̇C

i that is collinear with qi.
Since both terms multiplying δμM

i in the above variational expression are
necessarily orthogonal to qi, and the second condition implies that the com-
ponent orthogonal to qi vanishes, it follows that

q̇i − (I2×2 − qiq
T
i )

∂H(q, μ)

∂μi
= 0, i = 1, . . . , n.

By combining these, Hamilton’s equations on the configuration manifold
(S1)n are given as follows.
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Proposition 4.3 Hamilton’s equations for a Hamiltonian function H :
T∗(S1)n → R

1 are

q̇i = (I2×2 − qiq
T
i )

∂H(q, μ)

∂μi
, i = 1, . . . , n, (4.17)

μ̇i =
(
μiq

T
i − qiμ

T
i

)(
∂H(q, μ)

∂μi

)
− (

I2×2 − qiq
T
i

) ∂H(q, μ)

∂qi
, i = 1, . . . , n.

(4.18)

The second term in the last equation comes from the fact that the component
of μ̇i in the qi direction is given by −(q̇i · μi)qi. Thus, equations (4.17) and
(4.18) describe the Hamiltonian flow in terms of (q, μ) ∈ T∗(S1)n on the
cotangent bundle T∗(S1)n.

The following property follows directly from the above formulation of
Hamilton’s equations on (S1)n:

dH(q, μ)

dt
=

n∑
i=1

∂H(q, μ)

∂qi
· q̇i + ∂H(q, μ)

∂μi
· μ̇i

=

n∑
i=1

∂H(q, μ)

∂μi
·
{
μiq

T
i

∂H(q, μ)

∂μi
− μT

i

∂H(q, μ)

∂μi
qi

}

=
n∑

i=1

∂H(q, μ)

∂μi
·
{
(μiq

T
i − qiμ

T
i )

∂H(q, μ)

∂μi

}

= 0.

This formulation exposes an important property of the Hamiltonian flow on
the cotangent bundle: the Hamiltonian function is constant along each solu-
tion of Hamilton’s equation. As previously mentioned, this property does not
hold if the Hamiltonian function has a nontrivial explicit time dependence.

Quadratic Kinetic Energy We now consider the important case where
the Lagrangian is a quadratic function of the time derivative of the config-
uration vector that was introduced previously in equation (4.7) and given
by

L(q, q̇) =
1

2

n∑
j=1

n∑
k=1

q̇Tj mjk(q)q̇k − U(q), (4.19)

where the scalar inertia terms mjk(q) : (S1)n → R
1 satisfy the symmetry

condition mjk(q) = mkj(q) and the quadratic form is positive-definite.
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Thus, the conjugate momentum is defined by the Legendre transformation

μi = (I2×2 − qiq
T
i )

∂L(q, q̇)

∂q̇i

= (I2×2 − qiq
T
i )

n∑
j=1

mij(q)q̇j

= mii(q)q̇i + (I2×2 − qiq
T
i )

n∑
j=1
j �=i

mij(q)q̇j , i = 1, . . . , n. (4.20)

The algebraic equations (4.20), viewed as defining a linear mapping from
(q̇1, . . . , q̇n) ∈ Tq(S

1)n to (μ1, . . . , μn) ∈ T∗
q(S

1)n, can be inverted and ex-
pressed in the form

q̇i = (I2×2 − qiq
T
i )

n∑
j=1

mI
ij(q)μj , i = 1, . . . , n,

where mI
ij : (S1)n → R

2×2, for i = 1, . . . , n, j = 1, . . . , n are the entries in
the inverse matrix from (4.20).

There is no loss of generality in including the indicated projection in the
above expression since the inverse necessarily guarantees that if (μ1, . . . , μn) ∈
T∗
q(S

1)n then (q̇1, . . . , q̇n) ∈ Tq(S
1)n.

The Hamiltonian function can be written as

H(q, μ) =

n∑
i=1

q̇i · μi − 1

2

n∑
i=1

n∑
j=1

q̇Ti mij(q)q̇j + U(q)

=

n∑
i=1

q̇i · μi − 1

2

n∑
i=1

q̇i ·
n∑

j=1

mij(q)q̇j + U(q)

=

n∑
i=1

q̇i · μi − 1

2

n∑
i=1

q̇i · (I2×2 − qiq
T
i )

n∑
j=1

mij(q)q̇j + U(q)

=
1

2

n∑
i=1

q̇i · μi + U(q).

The third equality uses the fact that the inner product q̇i ·
∑n

j=1 mij(q)q̇j is
not changed by projecting the vector defined by the sum onto the tangent
space TqiS

1.
Thus, the Hamiltonian function can be expressed as a quadratic function

of the conjugate momenta

H(q, μ) =
1

2

n∑
i=1

n∑
j=1

μT
i m

I
ij(q)μj + U(q).
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Consequently, Hamilton’s equations, expressed in terms of (q, μ), are:

q̇i = mI
ii(q)μi + (I2×2 − qiq

T
i )

n∑
j=1
j �=i

mI
ij(q)μj , i = 1, . . . , n, (4.21)

μ̇i =

n∑
j=1

(μiq
T
i m

I
ij(q)μj − μT

i m
I
ij(q)μjqi)

− (I2×2 − qiq
T
i )

1

2

∂

∂qi

n∑
j=1

n∑
k=1

μT
j m

I
jk(q)μk

− (I2×2 − qiq
T
i )

∂U(q)

∂qi
, i = 1, . . . , n. (4.22)

The first two sets of summation terms on the right-hand side of (4.22) are
necessarily quadratic in the conjugate momenta.

Hamilton’s equations (4.21) and (4.22) describe the Hamiltonian flow in
terms of (q, μ) ∈ T∗(S1)n on the cotangent bundle of (S1)n.

Assuming the Legendre transformation is globally invertible and the po-
tential terms in (4.21) and (4.22) are globally defined on (R2)n, then the
domain of definition of (4.21) and (4.22) on T∗(S1)n can be extended to
T∗(R2)n. This extension is natural in that it defines a Hamiltonian vector
field on the cotangent bundle T∗(R2)n. Alternatively, the manifold T∗(S1)n

is an invariant manifold of this Hamiltonian vector field on T∗(R2)n and its
restriction to this invariant manifold describes the Hamiltonian flow of (4.21)
and (4.22) on T∗(S1)n.

4.4.3 Hamilton’s Phase Space Variational Principle
in Terms of (q, π)

We now present an alternate version of Hamilton’s equations using the Legen-
dre transformation defined with respect to the modified Lagrangian function
L̃(q, ω). The modified Lagrangian function L̃(q, ω) is expressed in terms of
the angular velocity vector, which satisfies the kinematics (4.1). The Legendre
transformation ω = (ω1, . . . , ωn) → π = (π1, . . . , πn) is defined by

πi =
∂L̃(q, ω)

∂ωi
, i = 1, . . . , n. (4.23)

The Lagrangian function is assumed to be hyperregular; that is the Legendre
transformation, viewed as a map Tq(S

1)n → T∗
q(S

1)n, is invertible.
The modified Hamiltonian function is given by

H̃(q, π) =

n∑
i=1

πiωi − L̃(q, ω),
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where the right-hand side is expressed in terms of (q, π) by inverting the
Legendre transformation (4.23). Since πi ∈ R

1 and ωi ∈ R
1 are scalars, there

is no need to introduce a projection in the definition of the momenta.
Consider the modified action integral of the form,

G̃ =

∫ tf

t0

{
n∑

i=1

πiωi − H̃(q, π)

}
dt.

The infinitesimal variation of the modified action integral is given by

δG̃ =

n∑
i=1

∫ tf

t0

{
πiδωi − ∂H̃(q, π)

∂qi
· δqi +

(
ωi − ∂H̃(q, π)

∂πi

)
δπi

}
dt.

Recall that the infinitesimal variations δqi and δωi can be written as

δqi = γiSqi, i = 1, . . . , n,

δωi = γ̇i, i = 1, . . . , n,

for differentiable curves γi : [t0, tf ] → R
1, i = 1, . . . , n satisfying γi(t0) =

γi(tf ) = 0, i = 1, . . . , n.

4.4.4 Hamilton’s Equations in Terms of (q, π)

We now substitute the expressions for δqi and δωi into the expression for the
infinitesimal variation of the modified action integral, integrate by parts, and
use the boundary conditions on the variations to obtain

δG̃ =

n∑
i=1

∫ tf

t0

{(
ωi − ∂H̃(q, π)

∂πi

)
δπi +

(
−π̇i − ∂H̃(q, π)

∂qi
· Sqi

)
γi

}
dt.

We invoke Hamilton’s phase space variational principle that δG̃ = 0 for all
possible differentiable functions γi : [t0, tf ] → R

1 and δπi : [t0, tf ] → R
1

satisfying γi(t0) = γi(tf ) = 0, i = 1, . . . , n. The fundamental lemma of the
calculus of variations, as in Appendix A, implies that the expressions in each
of the above parentheses should be zero. This leads to Hamilton’s equations.

Proposition 4.4 Hamilton’s equations for a modified Hamiltonian function
H̃ : T∗(S1)n → R

1 are

q̇i = Sqi
∂H̃(q, π)

∂πi
, i = 1, . . . , n, (4.24)

π̇i = qTi S
∂H̃(q, π)

∂qi
, i = 1, . . . , n. (4.25)
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Thus, equations (4.24) and (4.25) describe the Hamiltonian flow in terms
of (q, π) ∈ (S1 × R

1)n as it evolves on the cotangent bundle of (S1)n.
The following property follows directly from the above formulation of

Hamilton’s equations on the configuration manifold (S1)n:

dH̃(q, π)

dt
=

n∑
i=1

∂H̃(q, π)

∂qi
· q̇i + ∂H̃(q, π)

∂πi
π̇i

=

n∑
i=1

∂H̃(q, π)

∂πi

⎧⎨
⎩

(
∂H̃(q, π)

∂qi

)T

Sqi + qTi S
∂H̃(q, π)

∂qi

⎫⎬
⎭

= 0.

This formulation exposes the fact that the modified Hamiltonian function is
constant along the Hamiltonian flow on the cotangent bundle. We again note
that this property does not hold if the modified Hamiltonian function has a
nontrivial explicit time dependence.

Now consider the case that the modified Lagrangian function is a quadratic
function of the angular velocity vector that was previously introduced in
equation (4.13) and given by

L̃(q, ω) =
1

2

n∑
i=1

n∑
j=1

ωiq
T
i mij(q)qjωj − U(q). (4.26)

The conjugate momentum is defined by the Legendre transformation

πi =
∂L̃(q, ω)

∂ωi

=

n∑
j=1

qTi mij(q)qjωj

= mii(q)ωi +
n∑

j=1
j �=i

mij(q)S(qi)
TS(qj)ωj , i = 1, . . . , n. (4.27)

These algebraic equations, viewed as a linear mapping from ω = (ω1, . . . , ωn)
to π = (π1, . . . , πn), can be inverted and expressed in the form

ωi =

n∑
j=1

mI
ij(q)πj , i = 1, . . . , n,

where mI
ij : (S1)n → R

1, for i = 1, . . . , n, j = 1, . . . , n are the entries in the
matrix inverse obtained from (4.27).
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Thus, the modified Hamiltonian function can be written as

H̃(q, π) =
1

2

n∑
i=1

n∑
j=1

πim
I
ij(q)πj + U(q). (4.28)

Hamilton’s equations are:

q̇i = Sqi

⎧⎨
⎩

n∑
j=1

mI
ij(q)πj

⎫⎬
⎭ , i = 1, . . . , n, (4.29)

π̇i = qTi S

⎧⎨
⎩

1

2

∂

∂qi

n∑
j=1

n∑
k=1

πjm
I
jk(q)πk +

∂U(q)

∂qi

⎫⎬
⎭ , i = 1, . . . , n. (4.30)

Hamilton’s equations (4.29) and (4.30) describe the Hamiltonian flow as it
evolves on the cotangent bundle T∗(S1)n of the configuration manifold.

If the Legendre transformation is globally invertible and the potential
terms in (4.29) and (4.30) are globally defined on (R2)n, then the domain
of definition of (4.29) and (4.30) on T∗(S1)n can be extended to T∗(R2)n.
This extension defines a Hamiltonian vector field on the cotangent bundle
T∗(R2)n. Alternatively, the manifold T∗(S1)n is an invariant manifold of this
Hamiltonian vector field on T∗(R2)n and its restriction to this invariant man-
ifold describes the Hamiltonian flow of (4.29) and (4.30) on T∗(S1)n.

4.5 Linear Approximations of Dynamics on (S1)n

We have developed a geometric form of the Euler–Lagrange equations and
Hamilton’s equations on the configuration manifold (S1)n that provides in-
sight into the global dynamics of the associated Lagrangian vector field on
T(S1)n or the Hamiltonian vector field on T∗(S1)n. We emphasize the La-
grangian vector field in the sequel, although a similar development holds for
the Hamiltonian vector field.

Let (qe, 0) ∈ T(S1)n be an equilibrium solution of the Lagrangian vec-
tor field. It is possible to construct a linear vector field that approximates
the Lagrangian vector field on T(S1)n, at least locally in a neighborhood of
(qe, 0) ∈ T(S1)n. Such linear approximations are closely related to the use of
local coordinates on T(S1)n.

Although our main emphasis throughout this book is on global methods,
we do make use of local coordinates as a way of describing a linear vector
field that approximates a vector field on a manifold, at least in the neigh-
borhood of an equilibrium solution. This approach is used subsequently in
the chapter to study the local flow properties near an equilibrium. As fur-
ther background for the subsequent development, Appendix B summarizes a
linearization procedure for a Lagrangian vector field defined on TS1.
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4.6 Dynamics of Systems on (S1)n

In this section, several specific examples of Lagrangian and Hamiltonian dy-
namics that evolve on the configuration manifold (S1)n are introduced. In
each case, the physical description and assumptions are made clear. The
Euler–Lagrange equations are expressed in two different forms and Hamil-
ton’s equations are obtained in two different forms. These follow directly
from the expression for the Lagrangian function in each example, and the
general form of the equations of motion for dynamics on (S1)n developed
earlier in this chapter. Special features of these equations are described.

4.6.1 Dynamics of a Planar Pendulum

The planar pendulum is perhaps the most commonly studied example in
dynamics. The planar pendulum, viewed here as an idealized massless link
with mass concentrated at a fixed location on the link, is constrained to rotate
in a fixed vertical plane about a fixed frictionless joint axis or pivot under
the influence of uniform gravity.

The common treatment of a planar pendulum is based on defining the
attitude configuration of the pendulum as a single angle that a body-fixed
direction makes with a fixed direction vector in a two-dimensional inertial
frame. Although this choice of configuration is natural for small angle mo-
tions of the planar pendulum where the configuration space can be viewed
as an interval of the real line, this choice of configuration and the resulting
pendulum model is problematic in characterizing large rotational motions of
the pendulum, due to the need to identify angles that differ by 2π.

Here, we introduce a preferred notion of the attitude of a planar pendulum
as the direction vector of the pendulum link, referred to as the attitude of the
link. This direction vector is defined with respect to an inertially fixed two-
dimensional Euclidean frame. For simplicity, we introduce a two-dimensional
frame selected so that the two axes define the plane of rotation of the pen-
dulum, with the first axis in a horizontal direction and the second axis in the
vertical direction. The origin of the frame is located at the pivot. We then
develop Lagrangian and Hamiltonian dynamics for the planar pendulum on
this configuration manifold; this pendulum model is globally defined and al-
lows analysis and computation of extreme pendulum dynamics. A schematic
of a planar pendulum is shown in Figure 4.1.

The vector q ∈ S1 is the attitude of the pendulum link with respect to
the two-dimensional frame; it defines the configuration vector of the planar
pendulum. Thus, the configuration manifold is S1. The planar pendulum has
one degree of freedom.

Uniform gravity acts on the concentrated mass of the pendulum and g
denotes the constant acceleration of gravity. The distance from the pivot to
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q ∈ S1

Fig. 4.1 Planar pendulum

the pendulum mass is L and m is the mass of the pendulum. No forces, other
than gravity, act on the planar pendulum.

To illustrate the several possible formulations of the equations of motion,
we present two equivalent versions of the Euler–Lagrange equations and two
equivalent versions of Hamilton’s equations.

4.6.1.1 Euler–Lagrange Equations in Terms of (q, q̇)

The expression for the kinetic energy of the planar pendulum is

T (q, q̇) =
1

2
mL2 ‖q̇‖2 .

The gravitational potential energy of the planar pendulum is

U(q) = mgLeT2 q.

The vectors e1, e2 denote the standard basis vectors in R
2. The Lagrangian

L : TS1 → R
1 is

L(q, q̇) =
1

2
mL2 ‖q̇‖2 −mgLeT2 q.

The Euler–Lagrange equations can be expressed in terms of the attitude
configuration and its time derivative. Based on (4.9), the Euler–Lagrange
equation is

mL2q̈ +mL2 ‖q̇‖2 q +mgL(I2×2 − qqT )e2 = 0. (4.31)

Thus, the Lagrangian dynamics of the planar pendulum are described by the
evolution of (q, q̇) ∈ TS1 on the tangent bundle of S1.
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4.6.1.2 Euler–Lagrange Equations in Terms of (q, ω)

A somewhat more convenient form of the Euler–Lagrange equations is ob-
tained in terms of the pendulum scalar angular velocity that satisfies the
rotational kinematics

q̇ = ωSq. (4.32)

As previously discussed, S denotes the 2× 2 skew-symmetric matrix

S =

[
0 −1
1 0

]
,

which rotates a vector by π
2 counterclockwise.

The modified Lagrangian function can be expressed in terms of the angular
velocity of the planar pendulum as

L̃(q, ω) =
1

2
mL2ω2 −mgLeT2 q.

The Euler–Lagrange equation, expressed in terms of the angular velocity, is
obtained from (4.14); the resulting Euler–Lagrange equation is

mL2ω̇ +mgLeT1 q = 0. (4.33)

Thus, the Lagrangian dynamics of the planar pendulum are described by the
kinematics equation (4.32) and the Euler–Lagrange equation (4.33) as they
evolve on TS1. This form of the pendulum dynamics can be identified with
the dynamics of (q, q̇) ∈ TS1 on the tangent bundle of S1 via the kinematics
equation (4.32).

4.6.1.3 Hamilton’s Equations in Terms of (q, μ)

The conjugate momentum

μ = (I2×2 − qqT )
∂L(q, q̇)

∂q̇
= mL2q̇ ∈ T∗

qS
1,

is defined using the Legendre transformation. Thus, the Hamiltonian function
is

H(q, μ) =
1

2mL2
‖μ‖2 +mgLeT2 q.

Hamilton’s equations of motion for the planar pendulum are obtained from
(4.21) and (4.22) as
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q̇ =
μ

mL2
, (4.34)

μ̇ = − 1

mL2
‖μ‖2 q −mgL(I2×2 − qqT )e2. (4.35)

Thus, the Hamiltonian flow of the planar pendulum is described by (4.34)
and (4.35) in terms of the evolution of (q, μ) ∈ T∗S1 on the cotangent bundle
of S1.

4.6.1.4 Hamilton’s Equations in Terms of (q, π)

We introduce the scalar momentum conjugate to the scalar angular velocity
to obtain another form of Hamilton’s equations on the cotangent bundle.
Define the scalar momentum by

π =
∂L̃(q, ω)

∂ω
= mL2ω,

according to the Legendre transformation. Thus, the momentum is conjugate
to the angular velocity. The modified Hamiltonian function in this case is

H̃(q, π) =
1

2mL2
π2 +mgLeT2 q.

Hamilton’s equations of motion for the planar pendulum are obtained from
(4.24) and (4.25) as

q̇ =
π

mL2
Sq, (4.36)

π̇ = −mgLeT1 q. (4.37)

Thus, the Hamiltonian flow of the planar pendulum is described by (4.36) and
(4.37). These dynamics can be identified with the dynamics of (q, μ) ∈ T∗S1

on the cotangent bundle TS1 via the relationship μ = πSq.

4.6.1.5 Conservation Properties

The Euler–Lagrange equation (4.31) suggests that the dynamics of the planar
pendulum do not depend on the mass value of the pendulum but do depend
on the gravity to length ratio g

L .
It is easy to show that the Hamiltonian of the planar pendulum

H =
1

2
mL2 ‖q̇‖2 +mgLeT2 q,
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which coincides with the total energy E in this case, is constant along each
solution of the Lagrangian flow of the planar pendulum.

4.6.1.6 Equilibrium Properties

An important feature of the dynamics of the planar pendulum is its equilib-
rium configurations in S1. The conditions for an equilibrium are that the time
derivatives of the configuration, or equivalently the angular velocity vector or
the conjugate momentum, is zero and the equilibrium configuration satisfies:

(I2×2 − qqT )e2 = 0,

which implies that the time derivatives of the angular velocity or momentum
vanish as well. Hence, there are two equilibrium solutions given by (−e2, 0) ∈
TS1 and by (e2, 0) ∈ TS1. A configuration is an equilibrium if and only
if it is collinear with the direction of gravity. The equilibrium (−e2, 0) ∈
TS1 is referred to as the hanging equilibrium of the planar pendulum; the
equilibrium (e2, 0) ∈ TS1 is the inverted equilibrium of the planar pendulum.

The stability properties of each equilibrium are studied in turn using
(4.31). We first linearize (4.31) about the inverted equilibrium (e2, 0) ∈ TS1.
The resulting linearized equations can be shown to be

mL2ξ̈1 −mgLξ1 = 0,

when restricted to the two-dimensional tangent space of TS1 at (e2, 0) ∈ TS1.
This linear dynamics can be used to approximate the local dynamics of the
planar pendulum in a neighborhood of the inverted equilibrium (e2, 0) ∈ TS1.
The eigenvalues are easily determined to be +

√
g
L , −

√
g
L . Since there is a

positive eigenvalue, the inverted equilibrium (e2, 0) ∈ TS1 is unstable.
We now linearize (4.31) about the hanging equilibrium (−e2, 0) ∈ TS1.

The resulting linearized equations can be shown to be

mL2ξ̈1 +mgLξ1 = 0,

when restricted to the two-dimensional tangent space of TS1 at (−e2, 0) ∈
TS1. These linear dynamics can be used to approximate the local dynam-
ics of the planar pendulum in a neighborhood of the hanging equilibrium
(−e2, 0) ∈ TS1. The eigenvalues are easily determined to be +j

√
g
L , −j

√
g
L .

Since the eigenvalues are purely imaginary no conclusion can be drawn about
the stability of the hanging equilibrium.

We now describe a Lyapunov method to demonstrate the stability of the
hanging equilibrium. The total energy of the planar pendulum can be shown
to have a strict local minimum at the hanging equilibrium on TS1, and the
sublevel sets in TS1 in a neighborhood of the hanging equilibrium are com-
pact. Furthermore, the time derivative of the total energy along the flow given
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by (4.31) is zero, that is the total energy does not increase along the flow.
According to standard Lyapunov stability results, this guarantees that the
hanging equilibrium (−e2, 0) ∈ TS1 is stable.

These stability results provide an analytical confirmation of the physically
intuitive conclusions about the local flow properties of these two equilibrium
solutions.

4.6.2 Dynamics of a Particle Constrained to a Circular Hoop
That Rotates with Constant Angular Velocity

Consider a particle, with mass m, that is constrained to move, without fric-
tion, on a rigid circular hoop of radius L > 0. The circular hoop lies in a
plane that rotates about an inertially fixed diameter at a constant angular
velocity vector with angular speed Ω ∈ R

1. This example can also be inter-
preted as a planar pendulum whose pivot, and hence the plane of rotation
of the pendulum, rotates at a constant angular velocity. Usually, pendulum
models include gravity effects, whereas the particle on a circular hoop does
not include gravity or other external forces in the current formulation. Con-
sequently, we interpret the subsequent development in terms of a particle
constrained to a rotating circular hoop.

Since we intend to obtain global representations for the dynamics of the
particle, we do not make use of angles to describe the configuration of
the particle. Rather, the two-dimensional plane that contains the circular
hoop defines the configuration manifold S1 embedded in R

2, where this two-
dimensional plane rotates in three dimensions about a fixed axis that is a
diameter of the hoop. Hence, the motion of the particle is in three dimen-
sions.

The position vector of the particle, with respect to a two-dimensional hoop-
fixed Euclidean frame, is denoted by Lq ∈ R

2, where the direction vector of
the position vector q ∈ S1. We assume the origin of this frame is located at
the center of the circular hoop and the second axis of this hoop-fixed frame
is in the direction of the angular velocity vector of the hoop. A hoop-fixed
three-dimensional Euclidean frame is obtained by a natural extension of the
two-dimensional frame defined by the plane of the hoop. In the hoop-fixed
frame, the position vector of the particle is given by LCq, where

C =

⎡
⎣1 0
0 0
0 1

⎤
⎦ .

The origin of the three-dimensional inertial frame is located at the fixed
center of the circular hoop; the third inertial axis is in the fixed direction of
the angular velocity vector of the hoop in three dimensions. The first two axes
of the inertial frame are selected so that the inertial frame is a right-hand
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Euclidean frame. We denote the position vector of the particle, with respect
to the three-dimensional inertial frame, by x ∈ R

3. Thus, the position vector
x ∈ R

3 is related to LCq ∈ R
3 through the rotation matrix from the hoop-

fixed frame to the inertial frame.
We develop Lagrangian and Hamiltonian dynamics for the particle on a

rotating hoop; this one degree of freedom model is globally defined and allows
analysis and computation of extreme dynamics of the particle. A schematic
of a particle on a rotating circular hoop is shown in Figure 4.2.

q ∈ S1

Fig. 4.2 Particle on a rotating circular hoop

To illustrate the several possible formulations of the equations of motion,
we present two equivalent versions of the Euler–Lagrange equations and two
equivalent versions of Hamilton’s equations.

4.6.2.1 Euler–Lagrange Equations in Terms of (q, q̇)

Assume initially the two axes of the hoop-fixed frame are aligned with the
first and third axes of the inertial frame. The position vector of the parti-
cle in the three-dimensional inertial frame can be expressed in terms of the
configuration vector of the particle by

x = L

⎡
⎣cosΩt − sinΩt 0
sinΩt cosΩt 0

0 0 1

⎤
⎦Cq,
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where the indicated rotation matrix reflects the constant rotation rate about
the third inertial axis.

The velocity vector of the particle in the inertial frame is given by

ẋ =

⎡
⎣cosΩt − sinΩt 0
sinΩt cosΩt 0

0 0 1

⎤
⎦ (LCq̇ + LS(Ωe3)Cq).

Since the relative velocity vector of the particle with respect to the hoop-
fixed frame and the velocity vector of the point on the hoop where the particle
is located are orthogonal as reflected in this equation, the kinetic energy of
the particle on a rotating hoop can be expressed as

T (q, q̇) =
1

2
m ‖ẋ‖2 =

1

2
mL2

{
‖q̇‖2 +Ω2(eT1 q)

2
}
,

where the vectors e1, e2 denote the standard basis vectors in R
2. There is no

potential energy so that the Lagrangian L : TS1 → R
1 is

L(q, q̇) =
1

2
mL2

{
‖q̇‖2 +Ω2(eT1 q)

2
}
.

Note that, although there is no potential, the second term in the Lagrangian,
arising from the angular velocity of the circular hoop, depends only on the
configuration and is effectively equivalent to a potential.

The Euler–Lagrange equations can be expressed in terms of the config-
uration vector and its time derivative. Based on (4.9), the Euler–Lagrange
equation is

mL2q̈ +mL2 ‖q̇‖2 q −mL2Ω2(I2×2 − qqT )e1e
T
1 q = 0. (4.38)

Thus, the Lagrangian dynamics of the particle on a rotating circular hoop
are described by the evolution of (q, q̇) ∈ TS1 on the tangent bundle of S1.
The dynamics can also be used to describe the motion of the particle with
respect to the inertial frame using the expression for x in terms of q given
previously.

4.6.2.2 Euler–Lagrange Equations in Terms of (q, ω)

A convenient form of the Euler–Lagrange equation is obtained in terms of
the scalar angular velocity that satisfies the rotational kinematics

q̇ = ωSq. (4.39)

As previously discussed, S denotes the 2× 2 skew-symmetric matrix
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S =

[
0 −1
1 0

]
,

which rotates a vector by π
2 counterclockwise in a plane.

The modified Lagrangian function can be expressed in terms of the angular
velocity of the particle on the hoop as

L̃(q, ω) =
1

2
mL2

{
ω2 +Ω2(eT1 q)

2
}
.

The Euler–Lagrange equation, expressed in terms of the angular velocity, is
obtained from (4.14); the resulting Euler–Lagrange equation is

mL2ω̇ +mL2Ω2qT e2e
T
1 q = 0. (4.40)

Thus, the Lagrangian dynamics of the particle on a rotating hoop are de-
scribed by the kinematics equation (4.39) and the Euler–Lagrange equa-
tion (4.40) in terms of the evolution of (q, ω) ∈ TS1. This can be identified
with the dynamics of (q, q̇) ∈ TS1 via the kinematics equation (4.39). The
dynamics can also be used to describe the motion of the particle with respect
to the inertial frame.

4.6.2.3 Hamilton’s Equations in Terms of (q, μ)

The conjugate momentum

μ = (I2×2 − qqT )
∂L(q, q̇)

∂q̇
= mL2q̇,

is defined using the Legendre transformation. Thus, μ ∈ T∗
qS

1 is conjugate to
q̇ ∈ TqS

1. The Hamiltonian function is

H(q, μ) =
1

2mL2
‖μ‖2 − 1

2
mL2Ω2(eT1 q)

2.

Hamilton’s equations of motion for the particle on a rotating hoop are ob-
tained from (4.21) and (4.22) as

q̇ =
μ

mL2
, (4.41)

μ̇ = − 1

mL2
‖μ‖2 q +mL2Ω2(I2×2 − qqT )e1e

T
1 q. (4.42)

Thus, the Hamiltonian flow of the particle on a rotating hoop is described by
(4.41) and (4.42) in terms of the evolution of (q, μ) ∈ T∗S1 on the cotangent
bundle of S1.
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4.6.2.4 Hamilton’s Equations in Terms of (q, π)

We introduce the scalar momentum conjugate to the scalar angular velocity
to obtain Hamilton’s equations on the cotangent bundle. Define the momen-
tum by

π =
∂L̃(q, ω)

∂ω
= mL2ω,

according to the Legendre transformation. Thus, the momentum is conjugate
to the angular velocity. The modified Hamiltonian function in this case is

H̃(q, π) =
1

2mL2
π2 − 1

2
mL2Ω2(eT1 q)

2.

Hamilton’s equations of motion for the particle on a rotating hoop are ob-
tained from (4.24) and (4.25), as

q̇ =
π

mL2
Sq, (4.43)

π̇ = −mL2Ω2qT e2e
T
1 q. (4.44)

Thus, the Hamiltonian flow of the particle on a rotating hoop is described
by (4.43) and (4.44) in terms of the evolution of (q, π) ∈ T∗S1. This can be
identified with the dynamics of (q, μ) ∈ T∗S1 on the cotangent bundle of S1

via the relationship, μ = πSq.

4.6.2.5 Conservation Properties

The Euler–Lagrange equation (4.38) suggests that the dynamics of the par-
ticle on a rotating hoop do not depend on the mass value or radius of the
hoop but do depend on the constant angular velocity Ω of the rotating hoop.

It is easy to show that the Hamiltonian of the particle on a rotating hoop,
expressed in terms of (q, q̇) ∈ TS1, is

H =
1

2
mL2

{
‖q̇‖2 −Ω2(eT1 q)

2
}
,

which coincides with the total energy E in this case, and it is constant along
each solution of the dynamical flow of the particle on a rotating hoop.

4.6.2.6 Equilibrium Properties

The equilibria of the particle on a rotating hoop are important features of the
dynamics. The equilibria correspond to solutions with constant configurations
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of the particle in the rotating Euclidean frame. The conditions for such a equi-
librium are that the time derivative of the configuration, or equivalently the
angular velocity or the momentum, is zero and the equilibrium configuration
satisfies:

−mL2Ω2(I2×2 − qqT )e1e
T
1 q = 0,

which implies that the time derivatives of the angular velocity or momentum
vanish as well. This can be simplified to

[−q22q1
q21q2

]
=

[
0
0

]
.

Hence, there are four equilibrium solutions given by (e1, 0) ∈ TS1,
(−e1, 0) ∈ TS1, (e2, 0) ∈ TS1, and (−e2, 0) ∈ TS1. A configuration vector
is an equilibrium if and only if it is collinear or orthogonal to the angular
velocity vector of the circular hoop. In physical terms, the first equilibrium
solution corresponds to circular motion x = (L cosΩt, L sinΩt, 0)T of the
particle in the inertial frame, the second equilibrium solution corresponds to
the circular motion x = (−L cosΩt, L sinΩt, 0)T of the particle in the iner-
tial frame, the third equilibrium solution corresponds to the constant motion
x = (0, 0, L)T of the particle in the inertial frame, and the fourth equilibrium
solution corresponds to the constant motion x = (0, 0,−L)T of the particle
in the inertial frame; the first two motions are periodic in the inertial frame,
but fixed in the rotating frame, so they are sometime referred to as relative
equilibrium solutions.

The stability properties of each equilibrium solution are studied in turn
using the Euler–Lagrange equation (4.38). We first linearize (4.38) about the
equilibrium (e1, 0) ∈ TS1. The resulting linearized equations are

ξ̈2 +Ω2ξ2 = 0,

when restricted to the tangent space of TS1 at (e1, 0) ∈ TS1. These linear
dynamics approximate the local dynamics of the particle on a circular hoop in
a neighborhood of the relative equilibrium (e1, 0) ∈ TS1. The eigenvalues of
the local dynamics are jΩ, −jΩ. Since the eigenvalues are purely imaginary,
no conclusion can be drawn about stability from the linear stability analysis.

It can be shown that the local dynamics of the particle on a circular hoop
in a neighborhood of the equilibrium (−e1, 0) ∈ TS1 are also given by

ξ̈2 +Ω2ξ2 = 0.

As before, this corresponds to purely imaginary eigenvalues, and we cannot
draw a conclusion about the stability of this equilibrium.

We now linearize (4.38) about the equilibrium (e2, 0) ∈ TS1. This gives
the resulting linearized equations
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ξ̈1 −Ω2ξ1 = 0,

when restricted to the tangent space of TS1 at (e2, 0) ∈ TS1. These linear dy-
namics approximate the local dynamics of the particle on a rotating hoop in a
neighborhood of the equilibrium (e2, 0) ∈ TS1. The eigenvalues are easily de-
termined to be +Ω, −Ω. Since there is a positive eigenvalue, this equilibrium
is unstable.

It can be shown that the local dynamics of the particle on a circular hoop
in a neighborhood of the equilibrium (−e2, 0) ∈ TS1 are also given by

ξ̈1 −Ω2ξ1 = 0,

with eigenvalues +Ω, −Ω. Since there is a positive eigenvalue, the equilibrium
(−e2, 0) ∈ TS1 is also unstable.

We now describe a Lyapunov method to demonstrate the stability of the
equilibrium (e1, 0) ∈ TS1. The total energy of the system can be shown to
have a strict local minimum at the equilibrium on TS1, and the sublevel sets
in TS1 in a neighborhood of the equilibrium (e1, 0) ∈ TS1 are compact. Fur-
ther the time derivative of the total energy along the flow given by (4.38)
is zero, that is the total energy does not increase along the flow. Accord-
ing to standard Lyapunov stability results, this guarantees that the equilib-
rium (e1, 0) ∈ TS1 is stable. The same argument shows that the equilibrium
(−e1, 0) ∈ TS1 is stable.

4.6.3 Dynamics of Two Elastically Connected Planar Pendulums

Two identical pendulums are attached to a common inertially fixed support-
ing point by a frictionless pivot. Each pendulum is constrained to rotate in
a common two-dimensional plane. Gravitational effects are ignored, but a
rotational spring exerts an elastic restoring moment on each pendulum with
an elastic potential energy that is proportional to (1 − cos θ) where θ is the
angle between the two pendulums. Each pendulum is assumed to be a thin
rigid rod with concentrated mass m located a distance L from the pivot.
A schematic of the two elastically connected planar pendulums is shown in
Figure 4.3.

Let qi ∈ S1, i = 1, 2, denote the attitude of the i-th pendulum in the
inertial frame. Consequently, the configuration of the two pendulums is given
by q = (q1, q2) ∈ (S1)2. Thus, the configuration manifold is (S1)2 and the
dynamics of the elastically connected planar pendulums have two degrees of
freedom.
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q ∈ (S1)2

Fig. 4.3 Two elastically connected planar pendulums

4.6.3.1 Euler–Lagrange Equations in Terms of (q, q̇)

The total kinetic energy is the sum of the kinetic energies of the two planar
pendulums

T (q, q̇) =
1

2
mL2 ‖q̇1‖2 + 1

2
mL2 ‖q̇2‖2 .

The elastic potential energy is assumed to be of the form

U(q) = κ(1− cos θ),

where κ is a positive elastic constant and θ is the angle between the two
pendulums. Since cos θ = qT1 q2, the elastic potential energy can be expressed
in terms of the configuration as

U(q) = κ(1− qT1 q2).

Note that the elastic potential energy has zero gradient and hence exerts no
force when the two pendulum are collinear, that is the angle between the two
pendulums is either 0 radians or π radians.

The Lagrangian function L : T(S1)2 → R
1 for the two elastically connected

planar pendulums is thus given by

L(q, q̇) =
1

2
mL2 ‖q̇1‖2 + 1

2
mL2 ‖q̇2‖2 − κ(1− qT1 q2).

The inertia matrix is constant so that the Euler–Lagrange equations, accord-
ing to (4.9), are

mL2q̈1 +mL2 ‖q̇1‖2 q1 − κ(I2×2 − q1q
T
1 )q2 = 0, (4.45)

mL2q̈2 +mL2 ‖q̇2‖2 q2 − κ(I2×2 − q2q
T
2 )q1 = 0. (4.46)

This version of the Euler–Lagrange equations describes the Lagrangian
dynamics of the two elastically connected planar pendulums in terms of
(q, q̇) ∈ T(S1)2 on the tangent bundle of the configuration manifold.
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4.6.3.2 Euler–Lagrange Equations in Terms of (q, ω)

An alternative version of the Euler–Lagrange equations of motion for the dou-
ble spherical pendulum is expressed in terms of the scalar angular velocities
of the two pendulum links. The rotational kinematics are given by

q̇1 = ω1Sq1, (4.47)

q̇2 = ω2Sq2, (4.48)

where ω = (ω1, ω2) ∈ R
2. As previously discussed, S denotes the 2× 2 skew-

symmetric matrix

S =

[
0 −1
1 0

]
,

which rotates a vector by π
2 counterclockwise. Thus, the modified Lagrangian

can be expressed in terms of the angular velocities as

L̃(q, ω) =
1

2
mL2ω1

2 +
1

2
mL2ω2

2 − κ(1− qT1 q2).

Following the prior development in this chapter, the Euler–Lagrange equa-
tions for the elastically connected spherical pendulums, expressed in terms
of the angular velocities, are obtained from (4.14) as

mL2ω̇1 + κqT1 Sq2 = 0, (4.49)

mL2ω̇2 + κqT2 Sq1 = 0. (4.50)

Equations (4.47), (4.48), (4.49), and (4.50) also describe the Lagrangian
dynamics of the two elastically connected planar pendulums in terms of
(q, ω) ∈ T(S1)2. This can be identified with the dynamics of (q, q̇) ∈ T(S1)2

on the tangent bundle of (S1)2 via the kinematics equations (4.47) and (4.48).

4.6.3.3 Hamilton’s Equations in Terms of (q, μ)

Hamilton’s equations on the cotangent bundle T∗(S1)2 are obtained by defin-
ing the conjugate momentum μ = (μ1, μ2) ∈ T∗

q(S
1)2 according to the Leg-

endre transformation

μ1 = (I2×2 − q1q
T
1 )

∂L(q, q̇)

∂q̇1
= mL2q̇1,

μ2 = (I2×2 − q2q
T
2 )

∂L(q, q̇)

∂q̇2
= mL2q̇2.

The Hamiltonian function H : T∗(S1)2 → R
1 is
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H(q, μ) =
1

2

‖μ1‖2
mL2

+
1

2

‖μ2‖2
mL2

+ κ(1− qT1 q2).

Hamilton’s equations of motion, obtained from (4.21) and (4.22), are given by

q̇1 =
μ1

mL2
, (4.51)

q̇2 =
μ2

mL2
, (4.52)

and

μ̇1 = − 1

mL2
‖μ1‖2 q1 + κ(I2×2 − q1q

T
1 )q2, (4.53)

μ̇2 = − 1

mL2
‖μ2‖2 q2 + κ(I2×2 − q2q

T
2 )q1. (4.54)

Hamilton’s equations (4.51), (4.52), (4.53), and (4.54) describe the Hamil-
tonian dynamics of the elastically connected planar pendulums in terms of
(q, μ) ∈ T∗(S1)2 on the cotangent bundle of (S1)2.

4.6.3.4 Hamilton’s Equations in Terms of (q, π)

A different form of Hamilton’s equations on the cotangent bundle T∗(S1)2

can be obtained in terms of the momentum π = (π1, π2) ∈ R
2 which is

conjugate to the angular velocity vector ω = (ω1, ω2) ∈ R
2. The Legendre

transformation gives

π1 =
∂L̃(q, ω)

∂ω1
= mL2ω1,

π2 =
∂L̃(q, ω)

∂ω2
= mL2ω2.

The modified Hamiltonian function is

H̃(q, π) =
1

2

π2
1

mL2
+

1

2

π2
2

mL2
+ κ(1− qT1 q2).

Thus, Hamilton’s equations of motion for the elastically connected planar
pendulums, according to (4.24) and (4.25), are

q̇1 =
π1

mL2
Sq1, (4.55)

q̇2 =
π2

mL2
Sq2, (4.56)

and
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π̇1 = −κqT1 Sq2, (4.57)

π̇2 = −κqT2 Sq1. (4.58)

The Hamiltonian flow of the elastically connected planar pendulums is de-
scribed by equations (4.55), (4.56), (4.57), and (4.58) in terms of (q, π) ∈
T(S1)2 on the cotangent bundle. This can be identified with the dynamics of
(q, μ) ∈ T∗(S1)2 via the relationship, μi = πiSqi, i = 1, 2.

4.6.3.5 Conservation Properties

It is easy to show that the Hamiltonian of the two elastically connected planar
pendulums is

H =
1

2
mL2 ‖q̇1‖2 + 1

2
mL2 ‖q̇2‖2 + κ(1− qT1 q2),

which coincides with the total energy E in this case, and that it is constant
along each solution of the dynamical flow.

Further, the total scalar angular momentum of the two elastically con-
nected planar pendulums

π1 + π2 = mL2(ω1 + ω2)

can be shown to be constant along each solution of the dynamical flow. This
arises as a consequence of Noether’s theorem, due to the invariance of the
Lagrangian with respect to the lifted action of rotations about the pivot.

4.6.3.6 Equilibrium Properties

The equilibrium solutions of the elastically connected planar pendulums oc-
cur when the time derivative of the configuration vector or equivalently the
angular velocity vector or momentum is zero and the equilibrium configura-
tion satisfies:

(I2×2 − q1q
T
1 )q2 = 0,

(I2×2 − q2q
T
2 )q1 = 0,

which implies that the time derivatives of the angular velocity or momentum
vanish as well. This is equivalent to

qT1 Sq2 = 0.

Consequently, equilibrium solutions occur when the pendulum links are sta-
tionary in an arbitrary attitude but with the angle between them either 0
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radians or π radians. There are two disjoint manifolds of equilibrium config-
urations given by

{
(q1, q2) ∈ (S1)2 : q1 = q2

}
,{

(q1, q2) ∈ (S1)2 : q1 = −q2
}
.

In the former case, the pendulum links are said to be in phase, while in the
latter case they are said to be out of phase.

The stability properties of two typical equilibrium solutions are studied
using (4.45) and (4.46). Without loss of generality, we first develop a lin-
earization of (4.45) and (4.46) at the equilibrium (e2,−e2, 0, 0) ∈ T(S1)2;
this equilibrium corresponds to the pendulum links being out of phase. We
use the notation qi = (qi1, qi2) ∈ S1, i = 1, 2 so that the first index of each
double subscript refers to the pendulum index.

The resulting linearized equations about an out of phase equilibrium can
be shown to be

mL2ξ̈11 − κ(ξ21 + ξ11) = 0,

mL2ξ̈21 − κ(ξ11 + ξ21) = 0,

when restricted to the four-dimensional tangent space of T(S1)2 at the equi-
librium (e2,−e2, 0, 0) ∈ T(S1)2. These linear dynamics approximate the local
dynamics of the elastically connected planar pendulums in a neighborhood of
the out of phase equilibrium (e2,−e2, 0, 0) ∈ T(S1)2. The eigenvalues for this

out of phase equilibrium are given by +
√

2κ
mL2 , −

√
2κ

mL2 , 0, 0. Since there is

a positive eigenvalue, this equilibrium with out of phase pendulum links is
unstable. Similarly, it can be shown that all out of phase equilibrium solutions
are unstable.

Without loss of generality, we now develop a linearization of (4.45) and
(4.46) at the equilibrium (e2, e2, 0, 0) ∈ T(S1)2; this equilibrium corresponds
to the pendulum links being in phase.

The linearized equations can be shown to be

mL2ξ̈11 − κ(ξ21 − ξ11) = 0,

mL2ξ̈21 − κ(ξ11 − ξ21) = 0,

when restricted to the four-dimensional tangent space of T(S1)2 at the equi-
librium (e2, e2, 0, 0) ∈ T(S1)2. These linear dynamics approximate the local
dynamics of the elastically connected planar pendulums in a neighborhood
of the in phase equilibrium (e2, e2, 0, 0) ∈ T(S1)2. The eigenvalues for this

in phase equilibrium are +j
√

2κ
mL2 , −j

√
2κ

mL2 , 0, 0. Since the eigenvalues are

purely imaginary or zero, no conclusion can be made about the stability of
this equilibrium on the basis of this analysis.
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We mention that a Lyapunov approach, using the total energy of the elas-
tically connected planar pendulums, does not provide a positive result in this
case since the in phase equilibrium is not a strict local minimum of the to-
tal energy function on the tangent bundle T(S1)2. This is because there is a
one-parameter family of in phase equilibrium solutions which have the same
minimum energy.

Relative equilibrium solutions occur when the angular velocities of the
two pendulums are identically equal and constant and the angle between
them is either 0 radians or π radians. This corresponds to a constant planar
rotation of the pendulum links about their common axis, as a rigid system.
An analysis of the stability of these relative equilibrium solutions could follow
the developments in [70].

4.6.4 Dynamics of a Double Planar Pendulum

The double planar pendulum is an interconnection of two rigid bodies, with
each body constrained to rotate in a common fixed vertical plane under uni-
form gravity. Here, each rigid body is idealized as a massless link of fixed
length with a rigidly attached concentrated mass at the end. The first link
rotates about a fixed frictionless pivot or joint while the second link is con-
nected by a frictionless joint to the end of the first link.

The configuration vector of a double planar pendulum consists of a pair
of direction vectors for the attitudes of the pendulum links, each in the unit
circle S1. Thus, the configuration vector of the double planar pendulum is
q = (q1, q2) ∈ (S1)2. These two attitude vectors are defined with respect
to an inertially fixed two-dimensional Euclidean frame, where the two axes
define the plane of rotation of the two pendulums, with the second axis in the
vertical direction. The origin of the frame is located at the pivot. A schematic
of the double planar pendulum is shown in Figure 4.4.

We develop Lagrangian and Hamiltonian dynamics for the double planar
pendulum on the configuration manifold (S1)2; this double planar pendulum
model is globally defined and allows analysis and computation of the global
dynamics of a double pendulum. The double planar pendulum has two de-
grees of freedom.

Uniform gravity acts on the mass elements of the two pendulum links; g
is the constant acceleration of gravity. The distance from the fixed pivot to
the pendulum mass element of the first link is L1 and m1 denotes its mass.
The distance from the pivot connecting the two links to the mass element of
the second link is L2 and m2 denotes its mass. No forces, other than gravity,
act on the double planar pendulum.
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q1 ∈ S1

q2 ∈ S1

Fig. 4.4 Double planar pendulum

4.6.4.1 Euler–Lagrange Equations in Terms of (q, q̇)

The expression for the kinetic energy of the double planar pendulum is

T (q, q̇) =
1

2
m1 ‖ẋ1‖2 + 1

2
m2 ‖ẋ2‖2 ,

where x1 = L1q1 ∈ R
2 is the position vector of the mass element of the first

link and x2 = L1q1 +L2q2 ∈ R
2 is the position vector of the mass element of

the second link with respect to the two-dimensional inertial Euclidean frame.
Thus, the expression for the kinetic energy of the double planar pendulum

is

T (q, q̇) =
1

2

[
q̇1
q̇2

]T [
(m1 +m2)L

2
1I2×2 m2L1L2I2×2

m2L1L2I2×2 m2L
2
2I2×2

] [
q̇1
q̇2

]
.

The gravitational potential energy of the double planar pendulum is

U(q) = m1ge
T
2 x1 +m2g(e

T
2 x1 + eT2 x2)

= (m1 +m2)gL1e
T
2 q1 +m2gL2e

T
2 q2,

so that the Lagrangian function L : T(S1)2 → R
1 is

L(q, q̇) =
1

2

[
q̇1
q̇2

]T [
(m1 +m2)L

2
1I2×2 m2L1L2I2×2

m2L1L2I2×2 m2L
2
2I2×2

] [
q̇1
q̇2

]

− (m1 +m2)gL1e
T
2 q1 −m2gL2e

T
2 q2.
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The Euler–Lagrange equations, according to (4.9), can be expressed in
terms of the attitude configuration and its time derivative as

[
(m1 +m2)L

2
1I2×2 m2L1L2(I2×2 − q1q

T
1 )

m2L1L2(I2×2 − q2q
T
2 ) m2L

2
2I2×2

] [
q̈1
q̈2

]
+

[
(m1 +m2)L

2
1 ‖q̇1‖2 q1

m2L
2
2 ‖q̇2‖2 q2

]
+

[
(m1 +m2)gL1(I2×2 − q1q

T
1 )e2

m2gL2(I2×2 − q2q
T
2 )e2

]
=

[
0
0

]
. (4.59)

These equations of motion (4.59) describe the dynamics of the double
planar pendulum in terms of (q, q̇) ∈ T(S1)2 on the tangent bundle of (S1)2.

4.6.4.2 Euler–Lagrange Equations in Terms of (q, ω)

An alternative form of the Euler–Lagrange equations is expressed in terms
of the angular velocities ω = (ω1, ω2) ∈ R

2 of the two pendulum links. The
rotational kinematics are

q̇1 = ω1Sq1, (4.60)

q̇2 = ω2Sq2. (4.61)

As previously discussed, S denotes the 2× 2 skew-symmetric matrix

S =

[
0 −1
1 0

]
,

which rotates a vector by π
2 counterclockwise. Thus, the modified Lagrangian

can be expressed in terms of the angular velocities as

L̃(q, ω) =
1

2

[
ω1

ω2

]T [
(m1 +m2)L

2
1 m2L1L2q

T
1 q2

m2L1L2q
T
2 q1 m2L

2
2

] [
ω1

ω2

]

− (m1 +m2)gL1e
T
2 q1 −m2gL2e

T
2 q2.

Following the prior results in (4.14), the Euler–Lagrange equations can be
expressed in terms of the angular velocities of the two pendulum links as

[
(m1 +m2)L

2
1 m2L1L2q

T
1 q2

m2L1L2q
T
1 q2 m2L

2
2

] [
ω̇1

ω̇2

]
+

[
m2L1L2ω2(ω2 − ω1)q

T
1 Sq2

m2L1L2ω1(ω1 − ω2)q
T
2 Sq1

]

+

[
(m1 +m2)gL1e

T
1 q1

m2gL2e
T
1 q2

]
=

[
0
0

]
. (4.62)

Thus, the Lagrangian dynamics of the double planar pendulum are described
by the kinematics equations (4.60) and (4.61) and the Euler–Lagrange equa-
tions (4.62) in terms of (q, ω) ∈ T(S1)2 on the tangent bundle. This can
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be identified with the dynamics of (q, q̇) ∈ T(S1)2 via the kinematics equa-
tions (4.60) and (4.61).

4.6.4.3 Hamilton’s Equations in Terms of (q, μ)

Hamilton’s equations on the cotangent bundle T∗(S1)2 are obtained by defin-
ing the conjugate momentum μ = (μ1, μ2) ∈ T∗

q(S
1)2 according to the Leg-

endre transformation,

[
μ1

μ2

]
=

[
(I2×2 − q1q

T
1 )

∂L(q,q̇)
∂q̇1

(I2×2 − q2q
T
2 )

∂L(q,q̇)
∂q̇2

]

=

[
(m1 +m2)L

2
1I2×2 m2L1L2(I2×2 − q1q

T
1 )

m2L1L2(I2×2 − q2q
T
2 ) m2L

2
2I2×2

] [
q̇1
q̇2

]
.

Define the 4× 4 matrix inverse

[
mI

11 mI
12

mI
21 mI

22

]
=

[
(m1 +m2)L

2
1I2×2 m2L1L2(I2×2 − q1q

T
1 )

m2L1L2(I2×2 − q2q
T
2 ) m2L

2
2I2×2

]−1

,

so that the Hamiltonian function H : T∗(S1)2 → R
1 can be expressed as

H(q, μ) =
1

2

[
μ1

μ2

]T [
mI

11 mI
12

mI
21 mI

22

] [
μ1

μ2

]
+ (m1 +m2)gL1e

T
2 q1 +m2gL2e

T
2 q2.

Thus, the prior results in (4.21) and (4.22) give Hamilton’s equations of
motion for the double planar pendulum as

[
q̇1
q̇2

]
=

[
mI

11 mI
12(I2×2 − q1q

T
1 )

mI
21(I2×2 − q2q

T
2 ) mI

22

] [
μ1

μ2

]
, (4.63)

and [
μ̇1

μ̇2

]
=

[
μ1q

T
1 m

I
11μ1 − μT

1 m
I
11μ1q1 + μ1q

T
1 m

I
12μ2 − μT

1 m
I
12μ2q1

μ2q
T
2 m

I
21μ1 − μT

2 m
I
21μ1q2 + μ2q

T
2 m

I
22μ2 − μT

2 m
I
22μ2q2

]

−
[
(m1 +m2)gL1(I2×2 − q1q

T
1 )e2

m2gL2(I2×2 − q2q
T
2 )e2

]
,

which can be simplified to

[
μ̇1

μ̇2

]
=

⎡
⎣μT

1

((
mI

11μ1 +mI
12μ2

)T − (
mI

11μ1 +mI
12μ2

))
q1

μT
2

((
mI

21μ1 +mI
22μ2

)T − (
mI

21μ1 +mI
22μ2

))
q2

⎤
⎦

−
[
(m1 +m2)gL1(I2×2 − q1q

T
1 )e2

m2gL2(I2×2 − q2q
T
2 )e2

]
. (4.64)
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The Hamiltonian flow of the double planar pendulum is described by equa-
tions (4.63) and (4.64) in terms of the evolution of (q, μ) ∈ T∗(S1)2 on the
cotangent bundle of (S1)2.

4.6.4.4 Hamilton’s Equations in Terms of (q, π)

A different form of Hamilton’s equations on the cotangent bundle T∗(S1)2 can
be obtained in terms of the momentum π = (π1, π2) ∈ R

2 that is conjugate to
the angular velocity vector ω = (ω1, ω2) ∈ R

2. The Legendre transformation
yields

[
π1

π2

]
=

[
∂L̃(q,ω)

∂ω1

∂L̃(q,ω)
∂ω2

]
=

[
(m1 +m2)L

2
1 m2L1L2q

T
1 q2

m2L1L2q
T
2 q1 m2L

2
2

] [
ω1

ω2

]
.

The 2× 2 inverse matrix is

[
mI

11 mI
12

mI
21 mI

22

]
=

[
(m1 +m2)L

2
1 m2L1L2q

T
1 q2

m2L1L2q
T
2 q1 m2L

2
2

]−1

,

and the modified Hamiltonian function can be written as

H̃(q, π) =
1

2

[
π1

π2

]T [
mI

11 mI
12

mI
21 mI

22

] [
π1

π2

]
+ (m1 +m2)gL1e

T
2 q1 +m2gL2e

T
2 q2.

Thus, Hamilton’s equations of motion for the double planar pendulum, ob-
tained from (4.24) and(4.25), are

[
q̇1
q̇2

]
=

[
(mI

11(q)π1 +mI
12(q)π2)Sq1

(mI
21(q)π1 +mI

22(q)π2)Sq2

]
, (4.65)

and [
π̇1

π̇2

]
= −

[
(m1 +m2)gL1e

T
1 q1

m2gL2e
T
1 q2

]
. (4.66)

The Hamiltonian flow for the double planar pendulum is described by equa-
tions (4.65) and (4.66) in terms of the evolution of (q, π) ∈ T∗(S1)2 on
the cotangent bundle. This can be identified with the dynamics of (q, μ) ∈
T∗(S1)2 on the cotangent bundle.
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4.6.4.5 Conservation Properties

It is easy to show that the Hamiltonian of the double planar pendulum

H =
1

2

[
q̇1
q̇2

]T [
(m1 +m2)L

2
1I2×2 m2L1L2I2×2

m2L1L2I2×2 m2L
2
2I2×2

] [
q̇1
q̇2

]

+ (m1 +m2)gL1e
T
2 q1 +m2gL2e

T
2 q2,

which coincides with the total energy E in this case, is constant along each
solution of the dynamical flow.

4.6.4.6 Equilibrium Properties

The equilibrium solutions of the double planar pendulum are easily deter-
mined. They occur when the time derivative of the configuration vector, or
equivalently the angular velocity vector, is zero, and the angle that each link
makes with the basis vector e2 is either 0 or π radians, which implies that the
time derivative of the angular velocity vanishes as well. Thus, there are four
distinct equilibrium solutions: (−e2,−e2, 0, 0), (e2,−e2, 0, 0), (−e2, e2, 0, 0),
and (e2, e2, 0, 0) in T(S1)2.

The total energy can be shown to have a strict local minimum at the first
equilibrium (−e2,−e2, 0, 0) ∈ T(S1)2 on the tangent bundle T(S1)2. Since the
time derivative of the total energy is zero along the flow of (4.59), it follows
that this equilibrium is stable.

The other three equilibrium solutions are unstable. We demonstrate this
fact only for the equilibrium solution (e2, e2, 0, 0) ∈ T(S1)2 by analysis of the
properties of the linearized equations about this equilibrium. These linearized
equations are restricted to the four-dimensional tangent space of T(S1)2 at
(e2, e2, 0, 0) ∈ T(S1)2 to obtain

[
(m1 +m2)L

2
1 m2L1L2

m2L1L2 m2L
2
2

] [
ξ̈1
ξ̈2

]
−

[
(m1 +m2)gL1 0

0 m2gL2

] [
ξ1
ξ2

]
=

[
0
0

]
.

These linearized equations can be used to characterize the local dynam-
ics of the double planar pendulum in a neighborhood of the equilibrium
(e2, e2, 0, 0) ∈ T(S1)2. The characteristic equation can be shown to be

det

[
(m1 +m2)L

2
1λ

2 − (m1 +m2)gL1 m2L1L2λ
2

m2L1L2λ
2 m2L

2
2λ

2 −m2gL2

]
= 0.

This characteristic equation is quadratic in λ2 with sign changes in its coeffi-
cients. This guarantees that there are one or more eigenvalues with positive
real parts. To see this, observe that for characteristic equations that are
polynomials in λ2, the eigenvalues come in ±λ pairs. So, the only way for
all the eigenvalues to not have a positive real part is for the eigenvalues to
be purely imaginary, which corresponds to λ2 being either a negative real
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number or zero. But, this would contradict the fact that coefficients of the
characteristic equation change sign. Consequently, this equilibrium solution
(e2, e2, 0, 0) ∈ T(S1)2 is unstable. A similar analysis shows that the other equi-
librium solutions, namely (e2,−e2, 0, 0) ∈ T(S1)2 and (−e2, e2, 0, 0) ∈ T(S1)2,
are also unstable.

4.6.5 Dynamics of a Particle on a Torus

An ideal particle, of mass m, is constrained to move on the surface of a torus
in R

3 without friction and under uniform gravity, where g is the acceleration
due to gravity. The torus is the surface of revolution generated by revolving a
circle about an axis, coplanar with the circle, that does not touch the circle.
Without loss of generality, the torus has major radius R > 0 which is the
distance from the axis of the torus to the center of the circle and minor axis
0 < r < R which is the radius of the revolved circle.

An inertially fixed Euclidean frame is constructed so that the center of the
circle is located at (R, 0, 0) ∈ R

3, the circle lies in the plane defined by the
first and third axes and the axis of the torus is the third axis of the Euclidean
frame, which is assumed to be vertical.

The position vector of the particle on the torus, in the inertial frame, is
denoted by x = (x1, x2, x3) ∈ R

3. The configuration of the particle on the
torus can be selected as q = (q1, q2) ∈ (S1)2, which uniquely determines the
position vector of the particle on the torus as is shown subsequently. Thus, the
configuration manifold is (S1)2 and the particle has two degrees of freedom.
We describe the Lagrangian dynamics and the Hamiltonian dynamics of the
particle on the torus by expressing these dynamics in terms of the evolution
on the tangent bundle of the configuration manifold and on the cotangent
bundle of the configuration manifold.

A schematic of the particle on a torus is shown in Figure 4.5.

q ∈ (S1)2

Fig. 4.5 Particle constrained to a torus

As in Chapter 2, we express the position of the particle x ∈ R
3 on the

torus in terms of the configuration q = (q1, q2) ∈ (S1)2. The geometry of the
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torus implies that an arbitrary vector x ∈ R
3 on the torus can be uniquely

decomposed, in the Euclidean frame, into the sum of a vector from the origin
to the center of the embedded circle on which x lies and a vector from the
center of this embedded circle to x. This decomposition can be expressed as

x =

⎡
⎣(R+ r(eT1 q2))(e

T
1 q1)

(R+ r(eT1 q2))(e
T
2 q1)

r(eT2 q2)

⎤
⎦ ,

where e1, e2 denote the standard basis vectors in R
2. This decomposition

demonstrates that the position vector of the particle on the torus depends on
the configuration of the particle and on the values of the major radius and
minor radius of the torus.

4.6.5.1 Euler–Lagrange Equations in Terms of (q, q̇)

The expression for the kinetic energy of the particle on a torus is

T (q, q̇) =
1

2
m ‖ẋ‖2 .

The velocity vector of the particle on the torus is

ẋ =

⎡
⎣(R+ r(eT1 q2))e

T
1

(R+ r(eT1 q2))e
T
2

01×2

⎤
⎦ q̇1 +

⎡
⎣r(e

T
1 q1)e

T
1

r(eT2 q1)e
T
1

reT2

⎤
⎦ q̇2.

It can be shown that the kinetic energy of the particle on a torus can be
expressed as

T (q, q̇) =
1

2
m{(R+ r(eT1 q2))

2 ‖q̇1‖2 + r2 ‖q̇2‖2}.

The gravitational potential energy of the particle on a torus is

U(q) = mgreT2 q2,

so that the Lagrangian function L : T(S1)2 → R
1 is

L(q, q̇) =
1

2
m{(R+ r(eT1 q2))

2 ‖q̇1‖2 + r2 ‖q̇2‖2} −mgreT2 q2.

This shows that the Lagrangian function does not depend on q1 ∈ S1, that
is the Lagrangian is invariant under the lifted action of rotations about the
third axis of the Euclidean frame. This invariance implies the existence of an
associated conserved quantity, corresponding to the component of angular
momentum about the gravity direction.
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Following the results in (4.9), the Euler–Lagrange equations can be ex-
pressed in terms of the configuration and its time derivative as

m(R+ r(eT1 q2))
2q̈1 +m(R+ r(eT1 q2))

2 ‖q̇1‖2 q1
+2mr(R+ r(eT1 q2))(e

T
1 q̇2)q̇1 = 0, (4.67)

mr2q̈2 +mr2 ‖q̇2‖2 q2 −mr(R+ r(eT1 q2))(I2×2 − q2q
T
2 ) ‖q̇1‖2 e1

+mgr(I2×2 − q2q
T
2 )e2 = 0. (4.68)

The equations of motion (4.67) and (4.68) describe the dynamics of the par-
ticle on a torus in terms of (q, q̇) ∈ T(S1)2 on the tangent bundle of (S1)2.

4.6.5.2 Euler–Lagrange Equations in Terms of (q, ω)

An alternative form of the Euler–Lagrange equations expresses the equations
in terms of the configuration and the angular velocities ω = (ω1, ω2) ∈ R

2

of the particle on a torus. The rotational kinematics on the configuration
manifold (S1)2 are

q̇1 = ω1Sq1, (4.69)

q̇2 = ω2Sq2. (4.70)

As previously discussed, S denotes the 2× 2 skew-symmetric matrix

S =

[
0 −1
1 0

]
,

which rotates a vector by π
2 counterclockwise. Thus, the modified Lagrangian

can be expressed in terms of the angular velocities as

L̃(q, ω) =
1

2
m{(R+ r(eT1 q2))

2ω2
1 + r2ω2

2} −mgreT2 q2.

The modified Lagrangian function is also invariant for rotations about the
third axis of the Euclidean frame.

Following the prior results in (4.14), the Euler–Lagrange equations, ex-
pressed in terms of the angular velocities of the particle on a torus, are

m(R+ r(eT1 q2))
2ω̇1 − 2mr(R+ r(eT1 q2))e

T
2 q2ω1ω2 = 0, (4.71)

mr2ω̇2 +mr(R+ r(eT1 q2))e
T
2 q2ω

2
1 +mgreT1 q2 = 0. (4.72)

Thus, the Lagrangian dynamics of the particle on a torus are described by
the kinematics equations (4.69) and (4.70) and the Euler–Lagrange equa-
tions (4.71) and (4.72) in terms of (q, ω) ∈ T(S1)2. This can be identified
with the dynamics of (q, q̇) ∈ T(S1)2 via the kinematics equations (4.69) and
(4.70).
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4.6.5.3 Hamilton’s Equations in Terms of (q, μ)

Hamilton’s equations on the cotangent bundle T∗(S1)2 are obtained by defin-
ing the conjugate momentum μ = (μ1, μ2) ∈ T∗

q(S
1)2 according to the Leg-

endre transformation,

μ1 = (I2×2 − q1q
T
1 )

∂L(q, q̇)

∂q̇1
= m(R+ r(eT1 q2))

2q̇1,

μ2 = (I2×2 − q2q
T
2 )

∂L(q, q̇)

∂q̇2
= mr2q̇2.

The Hamiltonian function H : T∗(S1)2 → R
1 can be expressed as

H(q, μ) =
1

2

{
‖μ1‖2

(m(R+ r(eT1 q2))
2)

+
‖μ2‖2
mr2

}
+mgreT2 q2.

Thus, the prior results in (4.21) and (4.22) give Hamilton’s equations of
motion for the particle on a torus as

q̇1 =
μ1

m(R+ r(eT1 q2))
2
, (4.73)

q̇2 =
μ2

mr2
, (4.74)

and

μ̇1 = − ‖μ1‖2
m(R+ r(eT1 q2))

2
q1, (4.75)

μ̇2 =
r ‖μ1‖2

m(R+ r(eT1 q2))
3
(I2×2 − q2q

T
2 )e1 −

‖μ2‖2
mr2

q2

−mgr(I2×2 − q2q
T
2 )e2. (4.76)

The Hamiltonian flow of the particle on a torus is described by equa-
tions (4.73), (4.74), (4.75), and (4.76) in terms of the evolution of (q, μ) ∈
T∗(S1)2 on the cotangent bundle of (S1)2.

4.6.5.4 Hamilton’s Equations in Terms of (q, π)

A different form of Hamilton’s equations on the cotangent bundle T∗(S1)2

can be obtained by considering the momentum π = (π1, π2) ∈ R
2 that is

conjugate to the angular velocity vector ω = (ω1, ω2) ∈ R
2. The Legendre

transformation gives
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π1 =
∂L̃(q, ω)

∂ω1
= m(R+ r(eT1 q2))

2ω1,

π2 =
∂L̃(q, ω)

∂ω2
= mr2ω2.

The modified Hamiltonian function can be written as

H̃(q, π) =
1

2

{
π1

2

m(R+ r(eT1 q2))
2
+

π2
2

mr2

}
+mgreT2 q2.

Following the results in (4.24) and (4.25), Hamilton’s equations of motion
for a particle on a torus consist of the kinematics equations

q̇1 =
π1Sq1

m(R+ r(eT1 q2))
2
, (4.77)

q̇2 =
π2Sq2
mr2

, (4.78)

and the dynamics equations

π̇1 = 0, (4.79)

π̇2 = − rπ1
2

m(R+ r(eT1 q2))
3
eT2 q2 −mgreT1 q2. (4.80)

The Hamiltonian flow for the particle on a torus is described by equa-
tions (4.77), (4.78), (4.79), and (4.80) in terms of the evolution of (q, π) ∈
T∗(S1)2 on the cotangent bundle. This can be identified with the dynamics
of (q, μ) ∈ T∗(S1)2 via the relationship, μi = πiSqi, i = 1, 2.

4.6.5.5 Conservation Properties

It is easy to show that the Hamiltonian of the particle on a torus

H =
1

2
m{(R+ r(eT1 q2))

2 ‖q̇1‖2 + r2 ‖q̇2‖2}+mgreT2 q2

which coincides with the total energy E in this case is constant along each
solution of the dynamical flow.

Further, it follows that the scalar conjugate momentum

π1 = m(R+ r(eT1 q2))
2ω1

is constant along each solution of the dynamical flow, which is a consequence
of Noether’s theorem and the rotational symmetry about the direction of
gravity.
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4.6.5.6 Equilibrium Properties

The equilibrium solutions of the dynamics of the particle on a torus are easily
determined. They occur when the time derivatives of both the configuration
vector and the angular velocity vector vanish. The equilibrium configurations
(q1, q2) ∈ (S1)2 are those for which q2 ∈ S1 is either e2 ∈ R

2 or −e2 ∈ S1,
that is the attitude vector q2 ∈ S1, characterizing the particle position vector
on the torus, is either opposite to the direction of gravity or in the direction
of gravity. Since the configuration component q1 ∈ S1 is arbitrary, there are
two distinct equilibrium manifolds

{
(q1, q2) ∈ (S1)2 : q2 = e2

}
,{

(q1, q2) ∈ (S1)2 : q2 = −e2
}
.

An equilibrium in the first manifold is referred to as a top equilibrium; an
equilibrium in the second manifold is referred to as a bottom equilibrium.

We use the notation qi = (qi1, qi2) ∈ S1, i = 1, 2 so that the first index of
each double subscript refers to the configuration vector index.

Linearization of the differential equations (4.67) and (4.68) at the top equi-
librium (e2, e2, 0, 0) ∈ T(S1)2, expressed in local coordinates, can be shown
to be

mR2ξ̈11 = 0,

mr2ξ̈21 −mgrξ21 = 0,

which are defined on the four-dimensional tangent space of T(S1)2 at the
equilibrium point (e2, e2, 0, 0) ∈ T(S1)2. These linearized differential equa-
tions can be used to characterize the local dynamics of the particle on a
torus in a neighborhood of the top equilibrium (e2, e2, 0, 0) ∈ T(S1)2. The
eigenvalues are +

√
g
r , −

√
g
r , 0, 0. Since there is a positive eigenvalue, this

equilibrium is unstable. Similarly, any equilibrium on the top of the torus is
unstable.

Without loss of generality, we now develop a linearization of (4.67) and
(4.68) at the bottom equilibrium (e2,−e2, 0, 0) ∈ T(S1)2. The linearized dif-
ferential equations can be shown to be

mR2ξ̈11 = 0,

mr2ξ̈21 +mgrξ21 = 0,

which are defined on the four-dimensional tangent space of T(S1)2 at the equi-
librium point (e2,−e2, 0, 0) ∈ T(S1)2. These linearized differential equations
can be used to characterize the local dynamics of the particle on a torus in a
neighborhood of the bottom equilibrium (e2,−e2, 0, 0) ∈ T(S1)2. The eigen-
values are +j

√
g
r , −j

√
g
r , 0, 0. Since the eigenvalues are purely imaginary or
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zero, no conclusion can be made about the stability of this equilibrium on
the basis of this analysis.

We mention that a Lyapunov approach using the total energy does not
provide a positive result in this case since the equilibrium is not a strict local
minimum of the total energy function on the tangent bundle T(S1)2.

4.6.6 Dynamics of a Furuta Pendulum

A Furuta pendulum [43] is a serial connection of two rigid links, where the first
link is constrained by an inertially fixed pivot to rotate in a horizontal plane
and the second link is constrained to rotate in a vertical plane orthogonal to
the first link, under the influence of gravity.

Assume the first link is a thin, rigid body idealized as a massless link; one
end is pinned to an inertial frame so that the first link is constrained to rotate
in a horizontal plane; the length of the massless link is L1 and a mass m1 is
concentrated at the end of the first link. The second link is also a thin, rigid
body idealized as a massless link; the length of the massless link is L2 and
a mass m2 is concentrated at the end of the second link. The second link is
constrained to rotate in a vertical plane that is always orthogonal to the first
link.

Introduce an inertial Euclidean frame for R
3 where the origin is located

at the inertially fixed pivot of the first link; the first two axes are assumed to
be horizontal while the third axis is assumed to be vertical.

The following matrix notation is used subsequently:

C =

⎡
⎣1 0
0 1
0 0

⎤
⎦ , D =

⎡
⎣0 0
0 0
0 1

⎤
⎦ , S =

[
0 −1
1 0

]
.

A schematic of a Furuta pendulum is shown in Figure 4.6.

q1 ∈ S1

q2 ∈ S1

Fig. 4.6 Furuta pendulum

Since the mass at the end of the first link moves in a horizontal plane, the
position vector x1 ∈ R

3 of the first mass element in the inertial frame is
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x1 = L1Cq1,

where q1 = (q11, q12) ∈ S1 is the attitude vector of the first link in the
horizontal plane within which the first mass element moves. This expression
enforces the constraint that the first link rotates in a fixed horizontal plane.

The position vector x2 ∈ R
3 of the second mass element in the inertial

frame is most easily described in terms of the basis for R3:

Cq1, CSq1, e3.

This can be shown to be an orthonormal basis set for R
3. This basis has

the property that the direction of the first link is always along the first basis
vector, while the direction of the second link lies in the span of the second
and third basis vectors.

The position vector x2 ∈ R
3 of the second mass element can be expressed

as

x2 = x1 + L2(q21Cq1 + q22e3),

where q2 = (q21, q22) ∈ S1 is the attitude vector of the second link in its
instantaneous plane of rotation. Thus,

x2 = L1Cq1 + L2(e
T
1 q2CSq1 +Dq2)

= L1Cq1 + L2(CSq1e
T
1 +D)q2.

Since the position vectors for the two mass elements that define the Furuta
pendulum can be expressed in terms of q = (q1, q2) ∈ (S1)2, the configuration
manifold for the Furuta pendulum is (S1)2; the dimension of the configuration
manifold is two so there are two degrees of freedom.

4.6.6.1 Euler–Lagrange Equations in Terms of (q, q̇)

The velocity vectors of the two mass elements in the inertial frame are

ẋ1 = L1Cq̇1,

ẋ2 = L1Cq̇1 + L2(e
T
1 q̇2CSq1 + eT1 q2CSq̇1 +Dq̇2)

= (L1C + L2e
T
1 q2CS)q̇1 + L2(CSq1e

T
1 +D)q̇2.

The expression for the kinetic energy of the mass element of the first link is

T1(q, q̇) =
1

2
m1 ‖ẋ1‖2 =

1

2
m1L

2
1 ‖q̇1‖2 .

The kinetic energy of the mass element of the second link is
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T2(q, q̇) =
1

2
m2 ‖ẋ2‖2

=
1

2
m2

∥∥(L1C + L2e
T
1 q2CS)q̇1 + L2(CSq1e

T
1 +D)q̇2

∥∥2
.

Thus, the expression for the kinetic energy of the Furuta pendulum is

T (q, q̇) =
1

2
m1L

2
1 ‖q̇1‖2

+
1

2
m2

∥∥(L1C + L2e
T
1 q2CS)q̇1 + L2(CSq1e

T
1 +D)q̇2

∥∥2

=
1

2
q̇T1 m11q̇1 + q̇T1 m12q̇2 +

1

2
q̇T2 m22q̇2,

where the inertia terms are

m11 = (m1 +m2)L
2
1 +m2L

2
2(e

T
1 q2)

2,

m12 = m2L2

{
L1S + L2e

T
1 q2I2×2

}
q1e

T
1 ,

m22 = m2L
2
2.

The gravitational potential energy of the Furuta pendulum is

U(q) = m2gL2e
T
3 x2 = m2gL2e

T
3 Dq2,

where we have used the facts that eT3 x1 = 0 and eT3 x2 = L2e
T
3 Dq2.

The Lagrangian function L : T(S1)2 → R
1 for the Furuta pendulum is

given by

L(q, q̇) =
1

2
q̇T1 m11q̇1 + q̇T1 m12q̇2 +

1

2
q̇T2 m22q̇2 −m2gL2e

T
3 Dq2.

Consequently, the Euler–Lagrange equations are given by

m11q̈1 + (I2×2 − q1q
T
1 )m12q̈2 +m11 ‖q̇1‖2 q1

+(I2×2 − q1q
T
1 )F1(q, q̇) = 0, (4.81)

(I2×2 − q2q
T
2 )m

T
12q̈1 +m22q̈2 +m22 ‖q̇2‖2 q2 + (I2×2 − q2q

T
2 )F2(q, q̇)

+m2gL2(I2×2 − q2q
T
2 )e2 = 0. (4.82)

Here, the terms F1, F2 are quadratic in the time derivative of the configura-
tion vector. These vector functions are

F1(q, q̇) = ṁ11q̇1 + ṁ12q̇2 − ∂T (q, q̇)

∂q1
,

F2(q, q̇) = ṁT
12q̇1 −

∂T (q, q̇)

∂q2
.
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These Euler–Lagrange equations (4.81) and (4.82) describe the global evolu-
tion of the dynamics of the Furuta pendulum on the tangent bundle T(S1)2.

4.6.6.2 Euler–Lagrange Equations in Terms of (q, ω)

An alternative form of the Euler–Lagrange equations is obtained in terms of
the configuration and the angular velocities ω = (ω1, ω2) ∈ R

2 of the two
links. The rotational kinematics on the configuration manifold (S1)2 are

q̇1 = ω1Sq1, (4.83)

q̇2 = ω2Sq2. (4.84)

Thus, the modified Lagrangian can be expressed in terms of the angular
velocity vector as

L̃(q, ω) =
1

2
m11ω

2
1 + qT1 S

Tm12q2Sq2ω1ω2

+
1

2
m22ω

2
2 −m2gL2e

T
3 Dq2.

The resulting Euler–Lagrange equations consist of the kinematics equa-
tions (4.83) and (4.84) and

m11ω̇1 + qT1 m12q2ω̇2 + qT1 Sm12q2‖ω2‖2 − qT1 S {m12q2ω1ω2 + F1(q, q̇)} = 0,
(4.85)

qT2 m
T
12q1ω̇1 +m22ω̇2 − qT2 S

{
mT

12q1ω1ω2 + F2(q, q̇) +m2gL2e2
}
= 0. (4.86)

These Euler–Lagrange equations describe the global evolution of the dynam-
ics of the Furuta pendulum on the tangent bundle T(S1)2.

4.6.6.3 Hamilton’s Equations in Terms of (q, μ)

Hamilton’s equations on the cotangent bundle T∗(S1)2 are obtained by defin-
ing the conjugate momentum μ = (μ1, μ2) ∈ T∗

q(S
1)2 according to the Leg-

endre transformation,

μ1 = (I2×2 − q1q
T
1 )

∂L(q, q̇)

∂q̇1
= m11q̇1 + (I2×2 − q1q

T
1 )m12q̇2,

μ2 = (I2×2 − q2q
T
2 )

∂L(q, q̇)

∂q̇2
= (I2×2 − q2q

T
2 )m

T
12q̇1 +m22q̇2.

The Hamiltonian function H : T∗(S1)2 → R
1 can be expressed as

H(q, μ) =
1

2
μT
1 m

I
11μ1 + μT

1 m
I
12

T
μ2 +

1

2
μT
2 m

I
22μ2 +m2gL2e

T
3 Dq2,
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where

[
mI

11 mI
12

mI
12

T
mI

22

]
=

[
m11I2×2 m12

mT
12 m22I2×2

]−1

.

The resulting Hamilton’s equations are given by

q̇1 = mI
11μ1 +mI

12μ2, (4.87)

q̇2 = mI
12

T
μ1 +mI

22μ2, (4.88)

μ̇1 = μ1q
T
1 m

I
12μ2 − μT

1 m
I
12μ2q1 − (I2×2 − q1q

T
1 )

∂μT
1 m

I
12μ2

∂q1
, (4.89)

μ̇2 = μ2q
T
2 m

I
12

T
μ1 − μT

2 m
I
12

T
μ1q2

− (I2×2 − q2q
T
2 )

{
∂

∂q2

(
1

2
μT
1 m

I
11μ1 + μT

1 m
I
12μ2

)
−m2gL2e2

}
.

(4.90)

The Hamiltonian flow of the Furuta pendulum is described by equations (4.87),
(4.88), (4.89), and (4.90) in terms of the evolution of (q, μ) ∈ T∗(S1)2 on the
cotangent bundle of (S1)2.

4.6.6.4 Hamilton’s Equations in Terms of (q, π)

A different form of Hamilton’s equations on the cotangent bundle T∗(S1)2 can
be obtained by defining the momentum π = (π1, π2) ∈ R

2 that is conjugate to
the angular velocity vector ω = (ω1, ω2) ∈ R

2. The Legendre transformation
gives

π1 =
∂L̃(q, ω)

∂ω1
= m11ω1 + qT1 Sm12q2ω2,

π2 =
∂L̃(q, ω)

∂ω2
= qT2 m

T
12q1ω1 +m22ω2.

The modified Hamiltonian function can be written as

H(q, π) =
1

2
mI

11π
2
1 + qT1 m

I
12

T
q2π1π2 +

1

2
mI

22π
2
2 +m2gL2e

T
3 Dq2,

where

[
mI

11 mI
12

mI
12

T
mI

22

]
=

[
m11I2×2 m12

mT
12 m22I2×2

]−1

.

The resulting Hamilton’s equations are given by
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q̇1 = Sq1
(
mI

11π1 +mI
12π2

)
, (4.91)

q̇2 = Sq2

(
mI

12

T
π1 +mI

22π2

)
, (4.92)

π̇1 = qT1 S
∂

∂q1

(
1

2
mI

11π
2
1 + qT1 m

I
12

T
q2π1π2 +

1

2
mI

22π
2
2

)
, (4.93)

π̇2 = qT2 S
∂

∂q2

(
1

2
mI

11π
2
1 + qT1 m

I
12

T
q2π1π2 +

1

2
mI

22π
2
2

)

+ qT2 Sm2gL2e2. (4.94)

The Hamiltonian flow of the Furuta pendulum is described by equations (4.91),
(4.92), (4.93), and (4.94) in terms of the evolution of (q, π) ∈ T∗(S1)2.

4.6.6.5 Conservation Properties

It is easy to show that the Hamiltonian of the Furuta pendulum

H =
1

2
q̇T1 m11q̇1 + q̇T1 m12q̇2 +

1

2
q̇T2 m22q̇2 −mgL2e

T
3 Dq2

which coincides with the total energy E in this case is constant along each
solution of the dynamical flow.

In addition, the vertical component of angular momentum

eT3 (m1x1 × ẋ1 +m2x2 × ẋ2)

is preserved as a consequence of Noether’s theorem, due to the invariance of
the Lagrangian with respect to the lifted action of rotations about the gravity
direction.

4.6.6.6 Equilibrium Properties

The equilibrium solutions of the Furuta pendulum are easily determined.
They occur when the time derivative of the configuration vector is zero and
the attitude of the second link satisfies (I2×2−q2q

T
2 )e2 = 0, which implies that

the time derivative of the angular momentum vanishes as well; the attitude
of the first link is arbitrary. Consequently, there are two distinct equilibrium
manifolds in (S1)2 given by

{
(q1, q2) ∈ (S1)2 : q2 = e2

}
,

referred to as the inverted equilibrium manifold, and

{
(q1, q2) ∈ (S1)2 : q2 = −e2

}
,
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referred to as the hanging equilibrium manifold. An equilibrium in the first
manifold is referred to as an inverted equilibrium; an equilibrium in the sec-
ond manifold is referred to as a hanging equilibrium.

Linearization of the differential equations (4.81) and (4.82) at an inverted
equilibrium (e2, e2, 0, 0) ∈ T(S1)2, expressed in local coordinates, can be
shown to be

(m1 +m2)L
2
1ξ̈11 = 0,

m2L
2
2ξ̈21 −m2gL2ξ21 = 0,

which are defined on the four-dimensional tangent space of T(S1)2 at the
equilibrium (e2, e2, 0, 0) ∈ T(S1)2. These linearized differential equations can
be used to characterize the local dynamics of the Furuta pendulum in a neigh-
borhood of the inverted equilibrium (e2, e2, 0, 0) ∈ T(S1)2. The eigenvalues

are +
√

g
L2

, −
√

g
L2

, 0, 0. Since there is a positive eigenvalue, this equilibrium

is unstable. Similarly, any inverted equilibrium is unstable.
We now develop a linearization of (4.81) and (4.82) at the hanging equi-

librium (e2,−e2, 0, 0) ∈ T(S1)2. The linearized differential equations can be
shown to be

(m1 +m2)L
2
1ξ̈11 = 0,

m2L
2
2ξ̈21 +m2gL2ξ21 = 0,

which are defined on the four-dimensional tangent space of T(S1)2 at the
equilibrium (e2,−e2, 0, 0) ∈ T(S1)2. These linearized differential equations
can be used to characterize the local dynamics of the Furuta pendulum in a
neighborhood of the hanging equilibrium (e2,−e2, 0, 0) ∈ T(S1)2. The eigen-
values are +j

√
g
r , −j

√
g
r , 0, 0. Since the eigenvalues are purely imaginary or

zero, no conclusion can be made about the stability of this equilibrium on
the basis of this analysis.

The Lyapunov approach, using the total energy again, does not provide a
positive result in this case since the hanging equilibrium is not a strict local
minimum of the total energy function on the tangent bundle T(S1)2.

It is interesting to compare the results of the local dynamics of the Furuta
pendulum and the local dynamics of the particle on a torus.

4.6.7 Dynamics of a Three-Dimensional Revolute Joint Robot

A three-dimensional robot consists of a cylindrical base connected to two
rigid links by revolute joints. The cylindrical base can rotate about a fixed
vertical axis. A first link rotates about a one degree of freedom joint fixed to
the cylindrical base with a horizontal axis of rotation; a second link rotates
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about a one degree of freedom joint fixed to the end of the first link with
its joint axis parallel to the axis of rotation of the first link. In other words,
the two links form a two link planar robot but the plane of the two links is
not fixed but rotates with the cylindrical base. Consequently, this is a three-
dimensional robot. This is a generalization of the nonplanar double pendulum
considered previously. The dynamics of this three-dimensional revolute joint
robot are presented within a geometric framework. A schematic of a three-
dimensional revolute joint robot is shown in Figure 4.7.

q2 ∈ S1

q1 ∈ S1

q0 ∈ S1

Fig. 4.7 Three-dimensional revolute joint robot

Large rotational motions of the cylindrical base and the two links are
allowed. It is assumed that there are no collisions between the links or with
the stationary base. Gravity forces act on the three-dimensional robot; no
other forces are included.

The challenging feature of this example is that the end of the third link
moves in three dimensions, rather than in a fixed plane. A geometric form of
the Euler–Lagrange equations is developed that avoids all representational
singularities and does not require the use of complicated trigonometry.

An inertially fixed Euclidean frame has its origin at the joint connecting
the first link and the axis of the rotating base. The first two axes of the fixed
frame lie in the horizontal plane and the third axis is vertical.

Let q0 ∈ S1 be the attitude vector that describes the rotation of the cylin-
drical base about its vertical axis of rotation. Also, q1 ∈ S1 is the attitude
vector that describes the attitude of the first link within its plane of rota-
tion, q2 ∈ S1 is the attitude vector that describes the attitude of the second



4.6 Dynamics of Systems on (S1)n 189

link within its plane of rotation. The configuration of the three-dimensional
revolute joint robot is q = (q0, q1, q2) ∈ (S1)3. Since each of the rotations of
the base and the joints is one-dimensional, the robot configuration manifold
is (S1)3, and the robot has three degrees of freedom.

The physical parameters of the robot are: L1 is the length of the first link,
L2 is the length of the second link. Also, J is the scalar moment of inertia
of the cylindrical base about its vertical axis of rotation, m1 is the mass of
the first link and m2 is the mass of the second link; for simplicity each mass
is assumed to be concentrated at the end of its link. As usual, g denotes the
constant acceleration of gravity.

4.6.7.1 Euler–Lagrange Equations in Terms of (q, q̇)

Careful attention to the three-dimensional geometry of the robot leads to the
following expression for the kinetic energy of the robot:

T (q, q̇) =
1

2
J ‖q̇0‖2 + 1

2
m1(‖L1q̇1‖2 +

∥∥eT1 L1q1q̇0
∥∥2

)

+
1

2
m2

(
‖L1q̇1 + L2q̇2‖2 +

∥∥(eT1 (L1q1 + L2q2))q̇0
∥∥2

)

=
1

2

⎡
⎣q̇0q̇1
q̇2

⎤
⎦
T ⎡
⎣M00(q)I2×2 0 0

0 (m1 +m2)L
2
1I2×2 m2L1L2I2×2

0 m2L1L2I2×2 m2L
2
2I2×2

⎤
⎦

⎡
⎣q̇0q̇1
q̇2

⎤
⎦ ,

where M00(q) = J +m1(e
T
1 L1q1)

2 +m2(e
T
1 (L1q1 + L2q2))

2.
The gravitational potential energy of the robot is given by

U(q) = m1gL1e
T
2 q1 +m2ge

T
2 (L1q1 + L2q2).

Thus, the Lagrangian function L : T(S1)3 → R
1 is

L(q, q̇) =
1

2

⎡
⎣q̇0q̇1
q̇2

⎤
⎦
T ⎡
⎣M00(q)I2×2 0 0

0 (m1 +m2)L
2
1I2×2 m2L1L2I2×2

0 m2L1L2I2×2 m2L
2
2I2×2

⎤
⎦

⎡
⎣q̇0q̇1
q̇2

⎤
⎦

−m1gL1e
T
2 q1 −m2ge

T
2 (L1q1 + L2q2).

Following the prior results in (4.9), the Euler–Lagrange equations for the
robot dynamics are

⎡
⎣M00(q)I2×2 0 0

0 (m1 +m2)L
2
1I2×2 m2L1L2(I2×2 − q1q

T
1 )

0 m2L1L2(I2×2 − q2q
T
2 ) m2L

2
2I2×2

⎤
⎦

⎡
⎣q̈0q̈1
q̈2

⎤
⎦
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+

⎡
⎣ M00(q) ‖q̇0‖2 q0
(m1 +m2)L

2
1 ‖q̇1‖2 q1

m2L
2
2 ‖q̇2‖2 q2

⎤
⎦+

⎡
⎢⎣

Ṁ00(q)(I2×2 − q0q
T
0 )q̇0

−(I2×2 − q1q
T
1 )

∂
∂q1

q̇T0 M00(q)q̇0
−(I2×2 − q2q

T
2 )

∂
∂q2

q̇T0 M00(q)q̇0

⎤
⎥⎦

+

⎡
⎣ 0
(m1 +m2)gL1(I2×2 − q1q

T
1 )e2

m2gL2(I2×2 − q2q
T
2 )e2

⎤
⎦ =

⎡
⎣00
0

⎤
⎦ . (4.95)

These differential equations (4.95) describe the Lagrangian flow of the robot
dynamics in terms of the evolution of (q, q̇) ∈ T(S1)3 on the tangent bundle
of (S1)3.

4.6.7.2 Euler–Lagrange Equations in Terms of (q, ω)

The Euler–Lagrange equations can also be expressed in terms of the angular
velocity vector. Here, ω0 ∈ R

1 is the angular velocity of the cylindrical base,
ω1 ∈ R

1 is the angular velocity of the first link within its plane of rotation, and
ω2 ∈ R

1 is the angular velocity of the second link within its plane of rotation.
Note that the relative angular velocity of the second link with respect to the
first link, that is the rotation rate of the connecting joint, is ω2 − ω1.

The rotational kinematics equations are

q̇0 = ω0Sq0, (4.96)

q̇1 = ω1Sq1, (4.97)

q̇2 = ω2Sq2. (4.98)

As previously discussed, S denotes the 2× 2 skew-symmetric matrix

S =

[
0 −1
1 0

]
,

which rotates a vector by π
2 counterclockwise. Thus, the modified La-

grangian function can be expressed in terms of the angular velocity vector
ω = (ω0, ω1, ω2) as

L̃(q, ω) =
1

2

⎡
⎣ω0

ω1

ω2

⎤
⎦
T ⎡
⎣M00(q) 0 0

0 (m1 +m2)L
2
1 m2L1L2q

T
1 q2

0 m2L1L2q
T
2 q1 m2L

2
2

⎤
⎦

⎡
⎣ω0

ω1

ω2

⎤
⎦

−m1gL1e
T
2 q1 −m2ge

T
2 (L1q1 + L2q2).

Using the prior results in (4.14), the resulting Euler–Lagrange equations,
expressed in terms of the angular velocity vector, are:
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⎡
⎣M00(q) 0 0

0 (m1 +m2)L
2
1 m2L1L2q

T
1 q2

0 m2L1L2q
T
2 q1 m2L

2
2

⎤
⎦

⎡
⎣ω̇0

ω̇1

ω̇2

⎤
⎦

+

⎡
⎣ 0
m2L1L2q

T
1 Sq2ω

2
2

m2L1L2q
T
2 Sq1ω

2
1

⎤
⎦+

⎡
⎢⎣

−Ṁ00(q)q
T
1 Sq0ω0

qT1 S
∂

∂q1
qT0 M00(q)q0ω

2
0

qT2 S
∂

∂q2
qT0 M00(q)q0ω

2
0

⎤
⎥⎦

+

⎡
⎣ 0
(m1 +m2)gL1e

T
1 q1

m2gL2e
T
1 q2

⎤
⎦ =

⎡
⎣00
0

⎤
⎦ . (4.99)

The differential equations (4.96), (4.97), (4.98), and (4.99) describe the dy-
namical flow of the robot dynamics on the tangent bundle T(S1)3. These
dynamics can be identified with the dynamics of (q, q̇) ∈ T(S1)3 via the kine-
matics equations (4.96), (4.97), and (4.98).

4.6.7.3 Hamilton’s Equations in Terms of (q, μ)

The momentum μ = (μ0, μ1, μ2) ∈ T∗
q(S

1)3 is defined to be conjugate to
q̇ ∈ Tq(S

1)3 according to the Legendre transformation

⎡
⎣μ0

μ1

μ2

⎤
⎦ =

⎡
⎢⎣
(I2×2 − q1q

T
1 )

∂L(q,q̇)
∂q̇1

(I2×2 − q2q
T
2 )

∂L(q,q̇)
∂q̇2

(I2×2 − q3q
T
3 )

∂L(q,q̇)
∂q̇3

⎤
⎥⎦ ,

=

⎡
⎣M00(q)I2×2 0 0

0 (m1 +m2)L
2
1I2×2 m2L1L2(I2×2 − q1q

T
1 )

0 m2L1L2(I2×2 − q2q
T
2 ) m2L

2
2I2×2

⎤
⎦

⎡
⎣q̇0q̇1
q̇2

⎤
⎦ .

We assume that the 6× 6 inverse matrix is

⎡
⎣m

I
00(q) 0 0
0 mI

11(q) m
I
12(q)

0 mI
21(q) m

I
22(q)

⎤
⎦

=

⎡
⎣M00(q)I2×2 0 0

0 (m1 +m2)L
2
1I2×2 m2L1L2(I2×2 − q1q

T
1 )

0 m2L1L2(I2×2 − q2q
T
2 ) m2L

2
2I2×2

⎤
⎦
−1

.

The Hamiltonian function H : T∗(S1)3 → R
1 is

H(q, μ) =
1

2

⎡
⎣μ0

μ1

μ2

⎤
⎦
T ⎡
⎣m

I
00(q) 0 0
0 mI

11(q) m
I
12(q)

0 mI
21(q) m

I
22(q)

⎤
⎦

⎡
⎣μ0

μ1

μ2

⎤
⎦

+m1gL1e
T
2 q1 +m2ge

T
2 (L1q1 + L2q2).
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Following the results in (4.21) and (4.22), Hamilton’s equations can be shown
to be ⎡

⎣q̇0q̇1
q̇2

⎤
⎦ =

⎡
⎣m

I
00(q) 0 0
0 mI

11(q) m
I
12(q)

0 mI
21(q) m

I
22(q)

⎤
⎦

⎡
⎣μ0

μ1

μ2

⎤
⎦ , (4.100)

and

⎡
⎣μ̇0

μ̇1

μ̇2

⎤
⎦ =

⎡
⎣ −M00(q) ‖q̇0‖2 q0
−(m1 +m2)L

2
1 ‖q̇1‖2 q1

−m2L
2
2 ‖q̇2‖2 q2

⎤
⎦

+

⎡
⎣ 0
−m2L1L2q̇1q̇

T
2 q1 + (I2×2 − q1q

T
1 )

∂
∂q1

q̇T0 M00(q)q̇0
−m2L1L2q̇2q̇

T
1 q2 + (I2×2 − q2q

T
2 )

∂
∂q2

q̇T0 M00(q)q̇0

⎤
⎦

+

⎡
⎣ 0
−(m1 +m2)gL1(I2×2 − q1q

T
1 )e2

−m2gL2(I2×2 − q2q
T
2 )e2

⎤
⎦ , (4.101)

where the right-hand side of these equations can be expressed in terms of the
momenta using the Legendre transformation. These differential equations
define the Hamiltonian flow of the robot dynamics in terms of the evolution
of (q, μ) on the cotangent bundle T∗(S1)3.

4.6.7.4 Hamilton’s Equations in Terms of (q, π)

A different form of Hamilton’s equations on the cotangent bundle T∗(S1)3

can be obtained by defining the momentum according to the Legendre trans-
formation

⎡
⎣π0

π1

π2

⎤
⎦ =

⎡
⎢⎢⎣

∂L̃(q,ω)
∂ω0

∂L̃(q,ω)
∂ω1

∂L̃(q,ω)
∂ω2

⎤
⎥⎥⎦ =

⎡
⎣M00(q) 0 0

0 (m1 +m2)L
2
1 m2L1L2q

T
1 q2

0 m2L1L2q
T
2 q1 m2L

2
2

⎤
⎦

⎡
⎣ω0

ω1

ω2

⎤
⎦ ,

where the momentum π = (π0, π1, π2) ∈ R
3 is conjugate to the angular

velocity vector ω = (ω0, ω1, ω2) ∈ R
3. Introduce the 3× 3 matrix inverse

⎡
⎣m

I
00(q) 0 0
0 mI

11(q) m
I
12(q)

0 mI
21(q) m

I
22(q)

⎤
⎦ =

⎡
⎣M00(q) 0 0

0 (m1 +m2)L
2
1 m2L1L2q

T
1 q2

0 m2L1L2q
T
2 q1 m2L

2
2

⎤
⎦
−1

.

The modified Hamiltonian function H̃ : T∗(S1)3 → R
1 can be written as
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H̃(q, π) =
1

2

⎡
⎣π0

π1

π2

⎤
⎦
T ⎡
⎣m

I
00(q) 0 0
0 mI

11(q) m
I
12(q)

0 mI
21(q) m

I
22(q)

⎤
⎦

⎡
⎣π0

π1

π2

⎤
⎦

+m1gL1e
T
2 q1 +m2ge

T
2 (L1q1 + L2q2).

Following the results in (4.24) and (4.25), Hamilton’s equations of motion for
the revolute robot are⎡

⎣q̇0q̇1
q̇2

⎤
⎦ =

⎡
⎣ mI

00(q)Sq0π0

(mI
11(q)π1 +mI

12(q)π2)Sq1
(mI

21(q)π1 +mI
22(q)π2)Sq2

⎤
⎦ , (4.102)

and

⎡
⎣π̇0

π̇1

π̇2

⎤
⎦ =

⎡
⎢⎣

0

qT1 S
∂T̃ (q1,q2,π)

∂q1
+ (m1 +m2)gL1e

T
1 q1

qT2 S
∂T̃ (q1,q2,π)

∂q2
+m2gL2e

T
1 q2

⎤
⎥⎦ . (4.103)

These equations, together with the rotational kinematics and the Legendre
transformation, describe the Hamiltonian flow of the three-dimensional rev-
olute robot on the cotangent bundle T∗(S1)3 of the configuration manifold.

4.6.7.5 Robot Kinematics

The rotational dynamics of the cylindrical base and of the first and second
links are coupled in a complicated way, presumably giving rise to highly
coupled nonlinear dynamics at least for large robot motions.

The three-dimensional position vector of the end of the second link in the
inertial frame is of interest in robot applications; this position vector is given
by

⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣e

T
1 (L1q1 + L2q2)e

T
1 q0

eT1 (L1q1 + L2q2)e
T
2 q0

eT2 (L1q1 + L2q2)

⎤
⎦ .

Consequently, this form of the robot kinematics for the three-dimensional
translational velocity vector of the end of the second link can be expressed
as a linear function of the time derivative of the configuration vector as

⎡
⎣ẋ1

ẋ2

ẋ3

⎤
⎦ =

⎡
⎣e

T
1 (L1q1 + L2q2)e

T
1 L1e

T
1 q0e

T
1 L2e

T
1 q0e

T
1

eT1 (L1q1 + L2q2)e
T
2 L1e

T
2 q0e

T
1 L2e

T
2 q0e1T

0 L1e
T
2 L2e

T
2

⎤
⎦

⎡
⎣q̇0q̇1
q̇2

⎤
⎦ .

These robot kinematics are globally defined and they demonstrate that the
translational velocity vector of the end of the second link is a linear function



194 4 Lagrangian and Hamiltonian Dynamics on (S1)n

of the link velocities. Configurations for which the above 3 × 3 matrix is
rank deficient are known as the kinematic singularities. Since the equations
are globally defined on (S1)3, these kinematic singularities are intrinsic and
cannot be eliminated by a different choice of configuration variables.

The three-dimensional dynamics of the end of the second link of the robot
depends on the complex, coupled dynamics of all three degrees of freedom
of the robot. Our several descriptions of the robot dynamics on the tangent
bundle T(S1)3 and on the cotangent bundle T∗(S1)3 are not traditional since
we have avoided all use of angle coordinates which are, necessarily, only locally
defined.

4.6.7.6 Conservation Properties

The Hamiltonian of the robot defined on the tangent bundle,

H =
1

2

⎡
⎣q̇0q̇1
q̇2

⎤
⎦
T ⎡
⎣M00(q)I2×2 0 0

0 (m1 +m2)L
2
1I2×2 m2L1L2I2×2

0 m2L1L2I2×2 m2L
2
2I2×2

⎤
⎦

⎡
⎣q̇0q̇1
q̇2

⎤
⎦

+m1gL1e
T
2 q1 +m2ge

T
2 (L1q1 + L2q2),

which coincides with the total energy E in this case, is constant along each
solution of the robot dynamics.

It is observed that the Lagrangian and Hamiltonian functions do not de-
pend on the attitude of the cylindrical base q0 ∈ S1; it is a cyclic configuration
variable. According to Noether’s theorem, it follows that the conjugate mo-
mentum

π0 = M00(q)ω0

is constant along each solution of the robot dynamics.

4.6.7.7 Equilibrium Properties

The equilibrium solutions of the robot dynamics are easily determined. They
occur when the time derivative of the configuration vector, or equivalently the
angular velocity vector or momentum, is zero and the two links are vertical,
which implies that the time derivatives of angular velocity and momentum
both vanish; the attitude of the cylindrical base is arbitrary. Consequently,
there are four equilibrium manifolds given by

{
(q0, q1, q2) ∈ (S1)3 : q1 = −e2, q2 = −e2

}
,{

(q0, q1, q2) ∈ (S1)3 : q1 = e2, q2 = −e2
}
,{

(q0, q1, q2) ∈ (S1)3 : q1 = −e2, q2 = e2
}
,{

(q0, q1, q2) ∈ (S1)3 : q1 = e2, q2 = e2
}
.
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It is possible to develop linearized equations of motion for any equilibrium
solution and to assess stability properties of each equilibrium solutions using
either the linearized equations or a Lyapunov approach. These details are not
developed here.

4.6.7.8 Revolute Joint Robot with Actuated Joints

The above formulation and analysis of the dynamics for a revolute joint robot
is based on the assumption of no external forces or moments other than
those due to gravity. The common situation for industrial robots is that the
three degrees of freedom are actuated in the sense that external moments are
applied at each joint axis by motors. The incorporation of external moments
into the equations of motion is easily followed from the prior development by
replacing Hamilton’s principle with the Lagrange–d’Alembert principle.

4.7 Problems

4.1. Starting with the Euler–Lagrange equations (4.6), view the kinematics
equations (4.1) as defining a change of variables (q, q̇) ∈ T(S1)n → (q, ω) ∈
(S1)n × R

n. Show that this change of variables can be used to derive the
Euler–Lagrange equations (4.12) according to the following:

(a) Show that the transformation associated with this change of variables is
a diffeomorphism. Is it a global diffeomorphism?

(b) Show that

∂L(q, q̇)

∂q̇i
= Sqi

∂L̃(q, ω)

∂ωi
, i = 1, . . . , n,

∂L(q, q̇)

∂qi
=

∂L̃(q, ω)

∂qi
+ ωiqi

∂L̃(q, ω)

∂ωi
, i = 1, . . . , n.

(c) Substitute these expressions into (4.6) and simplify.
(d) Take the inner product of each of the resulting vector equations with

Sqi, i = 1, . . . , n, and simplify to obtain the scalar Euler–Lagrange equa-
tions (4.12).

4.2. Show that the Euler–Lagrange equation (4.6) can be expressed as

d

dt

(
∂L(q, q̇)

∂q̇i

)
− qi

d

dt

(
qTi

∂L(q, q̇)

∂q̇i

)

− qiq̇
T
i

∂L(q, q̇)

∂q̇i
− (

I2×2 − qiq
T
i

) ∂L(q, q̇)

∂qi
= 0, i = 1, . . . , n.
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4.3. Consider the dynamics of a planar pendulum that is constrained to ro-
tate in a fixed horizontal plane so that there are no gravitational forces.
The pendulum mass is m and the pendulum length is L. The configuration
manifold is S1

(a) Determine the Lagrangian function L : TS1 → R
1 defined on the tangent

bundle of the configuration manifold.
(b) What are the Euler–Lagrange equations for the horizontal planar pendu-

lum?
(c) Determine the Hamiltonian function H : T∗S1 → R

1 defined on the
cotangent bundle of the configuration manifold.

(d) What are Hamilton’s equations for the horizontal planar pendulum?
(e) What are conserved quantities for the dynamical flow on TS1?
(f) What are the equilibrium solutions of the horizontal planar pendulum?
(g) What are linear dynamics that approximate the dynamics of a horizontal

planar pendulum in a neighborhood of an equilibrium solution?

4.4. Consider two identical particles, each of mass m, that translate in R
3.

Each particle is constrained to translate, without friction, on a planar circle
embedded in R

3. The two circles have common radius R > 0; the planes
containing the circles are parallel and are separated by a distance L > 0.
The position vector of the first particle in an inertial Euclidean frame is
x1 = (Rq1, 0) ∈ R

3 and the position vector of the second particle in the
inertial Euclidean frame is x2 = (Rq2, L) ∈ R

3. The configuration manifold is
(S1)2. The two particles act under the influence of a mutual potential function
given by

U(x) = K ‖x1 − x2‖2 ,

where K > 0 is constant.

(a) Determine the Lagrangian function L : T(S1)2 → R
1 on the tangent

bundle of the configuration manifold.
(b) What are the resulting Euler–Lagrange equations?
(c) Determine the Hamiltonian function H : T∗(S1)2 → R

1 defined on the
cotangent bundle of the configuration manifold.

(d) What are the resulting Hamilton’s equations?
(e) What are conservation properties of the dynamical flow on T(S1)2?
(f) What are the equilibrium solutions of the dynamical flow on T(S1)2?

4.5. Consider the dynamics of a particle, with mass m, constrained to move,
without friction, on a circular hoop that rotates about a diameter with con-
stant angular velocity. Introduce an inertial Euclidean frame. Assume uni-
form, constant gravity, acts in the direction −e3 of the inertial frame and
assume the constant angular velocity of the circular hoop is Ωe3 ∈ R

3. With
respect to a two-dimensional Euclidean frame defined by the plane of the
hoop, the position vector of the particle is q ∈ S1; the configuration manifold
is S1.
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(a) Determine an expression for the position vector of the particle in the
inertial frame, expressed in terms of the configuration vector.

(b) Determine the Lagrangian function L : TS1 → R
1 defined on the tangent

bundle of the configuration manifold.
(c) What are the Euler–Lagrange equations for the particle constrained to a

circular hoop that rotates with constant angular velocity under the action
of uniform, constant gravity?

(d) Determine the Hamiltonian function H : T∗S1 → R
1 defined on the

cotangent bundle of the configuration manifold.
(e) What are Hamilton’s equations for the particle constrained to a circu-

lar hoop that rotates with constant angular velocity under the action of
uniform, constant gravity?

(f) What are conserved quantities for the dynamical flow on TS1?
(g) What are the equilibrium solutions of the dynamical flow on TS1?
(h) What are linear dynamics that approximate the dynamics of the particle

constrained to a circular hoop that rotates with constant angular velocity
in a neighborhood of an equilibrium solution?

4.6. Consider the dynamics of a particle, with mass m, constrained to move,
without friction, on a circular hoop that rotates about a vertical vector,
tangent to the hoop, through a fixed point on the hoop with constant angular
velocity. Introduce an inertial Euclidean frame. Assume uniform, constant
gravity, acts in the direction−e3 of the inertial frame and assume the constant
angular velocity of the circular hoop is Ωe3 ∈ R

3. With respect to a two-
dimensional Euclidean frame defined by the plane of the hoop, the position
vector of the particle is q ∈ S1; the configuration manifold is S1.

(a) Determine an expression for the position vector of the particle in the
inertial frame, expressed in terms of the configuration vector.

(b) Determine the Lagrangian function L : TS1 → R
1 defined on the tangent

bundle of the configuration manifold.
(c) What are the Euler–Lagrange equations for the particle constrained to a

circular hoop that rotates with constant angular velocity under the action
of uniform, constant gravity?

(d) Determine the Hamiltonian function H : T∗S1 → R
1 defined on the

cotangent bundle of the configuration manifold.
(e) What are Hamilton’s equations for the particle constrained to a circu-

lar hoop that rotates with constant angular velocity under the action of
uniform, constant gravity?

(f) What are conserved quantities for the dynamical flow on TS1?
(g) What are the equilibrium solutions of the dynamical flow on TS1?

4.7. Consider the dynamics of a planar double pendulum that is constrained
to rotate in a fixed horizontal plane so that there are no gravitational forces.
The pendulum masses are m1 and m2 and the pendulum lengths are L1 and
L2. The configuration manifold is (S1)2.
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(a) Determine the Lagrangian function L : T(S1)2 → R
1 on the tangent

bundle of the configuration manifold.
(b) What are the Euler–Lagrange equations for the double pendulum in a

horizontal plane?
(c) Determine the Hamiltonian function H : T∗(S1)2 → R

1 defined on the
cotangent bundle of the configuration manifold.

(d) What are Hamilton’s equations for the double pendulum in a horizontal
plane?

(e) What are conserved quantities for the dynamical flow on T(S1)2?
(f) What are the equilibrium solutions of the dynamical flow on T(S1)2?
(g) What are linear dynamics that approximate the dynamics of a double

pendulum in a horizontal plane in a neighborhood of an equilibrium so-
lution?

4.8. Consider the dynamics of a planar double pendulum that is constrained
to rotate in a vertical plane with constant rotation rate. The vertical plane
rotates about an inertially fixed axis with constant angular velocity Ω ∈ R

1;
the first joint of the double planar pendulum lies on the axis of rotation of the
vertical plane, at the origin of the inertial frame. There are no gravitational
forces. The pendulum masses are m1 and m2 and the pendulum lengths are
L1 and L2. The configuration manifold is (S1)2.

(a) Determine the Lagrangian function L : T(S1)2 → R
1 on the tangent

bundle of the configuration manifold.
(b) What are the Euler–Lagrange equations for the planar double pendulum

in a vertical plane with constant rotation rate?
(c) Determine the Hamiltonian function H : T∗(S1)2 → R

1 defined on the
cotangent bundle of the configuration manifold.

(d) What are Hamilton’s equations for the planar double pendulum in a ver-
tical plane with constant rotation rate?

(e) What are conserved quantities for the dynamical flow on T(S1)2?
(f) What are linear dynamics that approximate the dynamics of a planar

double pendulum in a vertical plane with constant rotation rate in a
neighborhood of an equilibrium solution?

4.9. Consider the dynamics of a nonplanar double pendulum and assume
there are no gravitational forces. The pendulum masses are m1 and m2 and
the pendulum lengths are L1 and L2. The configuration manifold is (S1)2.

(a) Determine the Lagrangian function L : T(S1)2 → R
1 on the tangent

bundle of the configuration manifold.
(b) What are the Euler–Lagrange equations for the nonplanar double pendu-

lum?
(c) Determine the Hamiltonian function H : T∗S1 → R

1 defined on the
cotangent bundle of the configuration manifold.

(d) What are Hamilton’s equations for the nonplanar double pendulum?
(e) What are conserved quantities for the dynamical flow on T(S1)2?
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(f) What are the equilibrium solutions of the dynamical flow on T(S1)2?
(g) What are linear dynamics that approximate the dynamics of a nonplanar

double pendulum in a neighborhood of an equilibrium solution?

4.10. Consider the dynamics of a modified Furuta pendulum; the first link is
constrained to rotate in a fixed horizontal plane while the second link is con-
strained to rotate in a vertical plane that contains the first link. Include the
gravitational forces. The pendulum masses are m1 and m2 and the pendulum
lengths are L1 and L2. The configuration manifold is (S1)2.

(a) Determine the Lagrangian function L : T(S1)2 → R
1 on the tangent

bundle of the configuration manifold.
(b) What are the Euler–Lagrange equations for the modified Furuta pendu-

lum?
(c) Determine the Hamiltonian function H : T∗(S1)2 → R

1 defined on the
cotangent bundle of the configuration manifold.

(d) What are Hamilton’s equations for the modified Furuta pendulum?
(e) What are conserved quantities for the dynamical flow on T(S1)2?
(f) What are the equilibrium solutions of the dynamical flow on T(S1)2?
(g) What are linear dynamics that approximate the dynamics of the modified

Furuta pendulum in a neighborhood of an equilibrium solution?

4.11. Consider the dynamics of a particle on a torus and assume there are no
gravitational forces. The mass of the particle is m and the torus has major
axis R and minor axis 0 < r < R. The configuration manifold is (S1)2.

(a) Determine the Lagrangian function L : T(S1)2 → R
1 on the tangent

bundle of the configuration manifold.
(b) What are the Euler–Lagrange equations for the particle on a torus, with-

out gravity?
(c) Determine the Hamiltonian function H : T∗(S1)2 → R

1 defined on the
cotangent bundle of the configuration manifold.

(d) What are Hamilton’s equations for the particle on a torus, without grav-
ity?

(e) What are conserved quantities for the dynamical flow on T(S1)2?
(f) What are the equilibrium solutions of the dynamical flow on T(S1)2?
(g) What are linear dynamics that approximate the dynamics of a particle

on a torus in a neighborhood of an equilibrium solution?

4.12. Consider the dynamics of two elastically connected planar pendulums,
with colocated inertial pivots, that are constrained to rotate in a fixed vertical
plane under uniform, constant gravity. The pendulum masses are m1 and
m2 and the pendulum lengths are L1 and L2. The potential for the elastic
connection is given by κ(1 − qT1 q2), where κ is an elastic stiffness constant.
The configuration manifold is (S1)2.

(a) Give a physical interpretation of this elastic potential energy. What are
the configurations for which the potential energy is a maximum or a
minimum?
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(b) Determine the Lagrangian function L : T(S1)2 → R
1 defined on the

tangent bundle of the configuration manifold.
(c) What are the Euler–Lagrange equations for the two elastically connected

planar pendulums in a vertical plane?
(d) Determine the Hamiltonian function H : T∗(S1)2 → R

1 defined on the
cotangent bundle of the configuration manifold.

(e) What are Hamilton’s equations for the two elastically connected planar
pendulums in a vertical plane?

(f) What are conserved quantities for the dynamical flow on T(S1)2?
(g) What are the equilibrium solutions of the dynamical flow on T(S1)2?
(h) What are linear dynamics that approximate the dynamics of the two elas-

tically connected planar pendulums in a neighborhood of an equilibrium
solution?

4.13. Consider the dynamics of two elastically connected planar pendulums,
with colocated inertial pivots, that are constrained to rotate in a fixed hori-
zontal plane so there are no gravitational forces. The pendulum masses are
m1 and m2 and the pendulum lengths are L1 and L2. Assume the potential
for the elastic connection is given by κ(1 − qT1 S

T q2), where κ is an elastic
stiffness constant. The configuration manifold is (S1)2.

(a) Give a physical interpretation of this elastic potential energy. What are
the configurations for which the potential energy is a maximum or a
minimum?

(b) Determine the Lagrangian function L : T(S1)2 → R
1 defined on the

tangent bundle of the configuration manifold.
(c) What are the Euler–Lagrange equations for the two elastically connected

planar pendulums in a horizontal plane?
(d) Determine the Hamiltonian function H : T∗(S1)2 → R

1 defined on the
cotangent bundle of the configuration manifold.

(e) What are Hamilton’s equations for the two elastically connected planar
pendulums in a horizontal plane?

(f) What are conserved quantities for the dynamical flow on T(S1)2?
(g) What are the equilibrium solutions of the dynamical flow on T(S1)2?
(h) What are linear dynamics that approximate the dynamics of the two elas-

tically connected planar pendulums in a neighborhood of an equilibrium
solution?

4.14. Consider the dynamics of a planar pendulum, with an elastic connec-
tion to an inertially fixed point. The planar pendulum is constrained to rotate
in a fixed vertical plane under uniform, constant gravity. The pendulum mass
is m and the pendulum length is L. The elastic connection consists of a linear
elastic spring; one end of the spring is connected to an inertially fixed point
that is a distance H directly above the pendulum pivot and the other end
of the spring is connected to the end of the planar pendulum. Let κ denote
the elastic stiffness constant of the spring. Assume the elastic spring always
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remains straight; the elastic spring has zero force when its end points are
separated by the distance D. Assume H > L+D so that the spring is always
in tension. The configuration manifold is S1.

(a) Describe the force exerted by the elastic spring expressed in terms of the
configuration. Describe the moment on the planar pendulum exerted by
the elastic spring expressed in terms of the configuration.

(b) Use the Lagrange–d’Alembert principle to determine the Euler–Lagrange
equations for the planar pendulums, with an inertial elastic connection,
in a vertical plane.

(c) Use the Lagrange–d’Alembert principle to determine Hamilton’s equa-
tions for the planar pendulums, with an inertial elastic connection, in a
vertical plane.

(d) What are conserved quantities for the dynamical flow on TS1?
(e) What are algebraic equations that describe the equilibrium solutions on

TS1?

4.15. Consider the dynamics of two elastically connected planar pendulums,
with different pivot locations; the pendulums are constrained to rotate in a
fixed vertical plane under uniform, constant gravity. The two pivots of the
planar pendulums lie in a horizontal plane separated by a distance H. The
pendulum masses are m1 and m2 and the pendulum lengths are L1 and L2.
The elastic connection consists of a linear elastic spring with ends connected
to the ends of the two planar pendulums, where κ is the elastic stiffness
constant. Assume the elastic spring always remains straight; the elastic spring
has zero force when its end points are separated by the distance D. Assume
H > L1 + L2 +D so that the spring is always in tension. The configuration
manifold is (S1)2.

(a) Describe the force exerted by the elastic spring expressed in terms of the
configuration variables. Describe the moments on each pendulum exerted
by the elastic spring expressed in terms of the configuration variables.

(b) Use the Lagrange–d’Alembert principle to determine the Euler–Lagrange
equations for the two elastically connected planar pendulums in a vertical
plane.

(c) Use the Lagrange–d’Alembert principle to determine Hamilton’s equa-
tions for the two elastically connected planar pendulums in a vertical
plane.

(d) What are conserved quantities for the dynamical flow on T(S1)2?
(e) What are algebraic equations that describe the equilibrium solutions on

T(S1)2?

4.16. Consider the dynamics of a three-dimensional revolute joint robot and
assume there are no gravitational forces. The moment of inertia of the cylin-
drical base is J ; the two robot links have mass m1 and m2 and link lengths
L1 and L2. The configuration manifold is (S1)3.
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(a) Determine the Lagrangian function L : T(S1)3 → R
1 defined on the

tangent bundle of the configuration manifold.
(b) What are the Euler–Lagrange equations for the three-dimensional revo-

lute joint robot, without gravity?
(c) Determine the Hamiltonian function H : T∗(S1)3 → R

1 defined on the
cotangent bundle of the configuration manifold.

(d) What are Hamilton’s equations for the three-dimensional revolute joint
robot, without gravity?

(e) What are conserved quantities for the dynamical flow on (S1)3?
(f) What are the equilibrium solutions of the dynamical flow on (S1)3?
(g) What are linear dynamics that approximate the dynamics of a three-

dimensional revolute joint robot in a neighborhood of an equilibrium so-
lution?

4.17. Consider a particle that moves, without friction, on a torus under uni-
form, constant gravity. The mass of the particle is m and the torus has major
axis R > 0 and minor axis 0 < r < R. In contrast to the prior assumption
in this chapter, assume the major axis of the torus lies in a horizontal plane,
say along the first axis of the inertial frame. The configuration manifold is
(S1)2.

(a) Determine the Lagrangian function L : T(S1)2 → R
1 for the particle on

the torus defined on the tangent bundle of the configuration manifold.
(b) What are the Euler–Lagrange equations for the particle on the torus?
(c) Determine the Hamiltonian function H : T∗(S1)2 → R

1 defined on the
cotangent bundle of the configuration manifold.

(d) What are Hamilton’s equations for the particle on the torus?
(e) What are conserved quantities for the dynamical flow on T(S1)2?
(f) What are the equilibrium solutions of the dynamical flow on T(S1)2?
(g) What are linear dynamics that approximate the dynamics of the particle

on a torus in a neighborhood of an equilibrium solution?

4.18. A rigid circular wire can rotate, without friction, in three dimensions
about a fixed vertical axis that is a diameter of the wire; the radius of the
circular wire is r and the scalar moment of inertia of the wire, about its
vertical axis, is J . An ideal particle is constrained to slide, without friction,
on the wire; the mass of the particle is m. Assume constant uniform gravity.
The configuration manifold is (S1)2.

(a) Determine the Lagrangian function L : T(S1)2 → R
1 of the particle on a

wire defined on the tangent bundle of the configuration manifold.
(b) What are the Euler–Lagrange equations for the wire and particle?
(c) Determine the Hamiltonian function H : T∗(S1)2 → R

1 defined on the
cotangent bundle of the configuration manifold.

(d) What are Hamilton’s equations for the wire and particle?
(e) What are conserved quantities for the dynamical flow on T(S1)2?
(f) What are the equilibrium solutions of the dynamical flow on T(S1)2?
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(g) What are linear dynamics that approximate the dynamics of the wire and
particle in a neighborhood of an equilibrium solution?

4.19. Consider a flat plate that is constrained to rotate in three dimensions
about a horizontal axis that is fixed in the plate. An ideal particle is con-
strained to translate on a circle fixed to the surface of the flat plate. Assume
constant uniform gravity. The radius of the circle is r. The moment of inertia
of the flat plate about its axis is J and m is the mass of the particle. The
configuration manifold is (S1)2.

(a) Determine the Lagrangian function L : T(S1)2 → R
1 of the flat plate and

particle defined on the tangent bundle of the configuration manifold.
(b) What are the Euler–Lagrange equations for the flat plate and the particle?
(c) Determine the Hamiltonian function H : T∗(S1)2 → R

1 defined on the
cotangent bundle of the configuration manifold.

(d) What are Hamilton’s equations for the flat plate and the particle?
(e) What are conserved quantities for the dynamical flow on T(S1)2?
(f) What are the equilibrium solutions of the dynamical flow on T(S1)2?
(g) What are linear dynamics that approximate the dynamics of the flat plate

and particle in a neighborhood of an equilibrium solution?

4.20. Consider the dynamics of a particle that is constrained to move on
a circle in an inertially fixed plane under the influence of a gravitational
field. Consider a two-dimensional inertial Euclidean frame for this plane,
whose origin is located at the center of the circle. There is a gravitational
field G : R2 → TR2. That is, the gravitational force on a particle, located
at x ∈ R

2 in the inertial frame, is given by mG(x), where m denotes the
constant mass of the particle. The configuration manifold is S1.

(a) What are the Euler–Lagrange equations for the particle?
(b) What are Hamilton’s equations for the particle?
(c) What are the conditions for an equilibrium solution of a particle in a

gravitational field?
(d) Suppose that the gravitational field is constant. What are the conditions

for an equilibrium solution of a particle?

4.21. Consider the dynamics of a charged particle, with mass m, that is con-
strained to move on a circle in an inertially fixed plane under the influence of
an electric and a magnetic field. Consider a two-dimensional Euclidean frame
for this plane, whose origin is located at the center of the circle. The charged
particle moves in the presence of an electric field E : R2 → TR2 and a mag-
netic field given, in the inertial frame, by B : R2 → R

1 (This can be thought
of as the magnitude of a magnetic field in three dimensions that is orthogonal
to the plane of the constraining circle). The Lorentz force on a particle lo-
cated at x ∈ R

2 in the inertial frame is given by Q(E(x)+SẋB(x)), where Q
denotes the constant charge on the particle. The configuration manifold is S1.
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(a) What are the Euler–Lagrange equations for the particle?
(b) What are Hamilton’s equations for the particle?
(c) What are the conditions for an equilibrium solution of a particle in an

electric field and a magnetic field?
(d) Suppose that the electric field and the magnetic field are constant. What

are the conditions for an equilibrium solution of a particle?

4.22. Consider the problem of finding the curve(s) [0, 1] → S1 of shortest
length that connect two fixed points in S1. Such curves are referred to as
geodesic curve(s) on S1.

(a) If the curve is parameterized by t → q(t) ∈ S1, show that the incremen-
tal arc length of the curve is ds = ‖dq‖ so that the geodesic curve(s)

minimize
∫ 1

0

√
‖q̇‖2dt among all curves on S1 that connect the two fixed

points.
(b) Show that the geodesic curve(s) necessarily satisfy the variational prop-

erty δ
∫ 1

0
‖q̇‖ dt = 0 for all smooth curves t → q(t) ∈ S1 that satisfy the

boundary conditions q(0) = q0 ∈ S1, q(1) = q1 ∈ S1.
(c) What are the Euler–Lagrange equations and Hamilton’s equations that

geodesic curves in S1 must satisfy?
(d) Suppose that q0 ∈ S1, q1 ∈ S1 do not lie on a common diameter of the

sphere. Show that there is a unique geodesic curve in S1. Describe the
geodesic curve. Show that the geodesic curve is actually a minimum of∫ 1

0
‖q̇‖ dt.

(e) Suppose that q0 ∈ S1, q1 ∈ S1 lie on a common diameter of the sphere.
Show that there are two geodesic curves in S1. Describe each geodesic

curve. Show that each geodesic curve is actually a minimum of
∫ 1

0
‖q̇‖ dt.

4.23. Consider the problem of finding the geodesic curve(s) of shortest length
that lies on the torus, with major radius R > 0 and minor radius 0 < r < R,
embedded in R

3 and connects two fixed points on the torus. The position
vector x ∈ R

3 of a point on the torus is described with respect to a Euclidean
frame using the configuration manifold (S1)2 as described previously in this
chapter, where the torus is viewed as a manifold embedded in R

3.

(a) If the curve is parameterized by t → q(t) ∈ (S1)2, show that the incremen-

tal arc length of the curve is ds =

√
‖dx‖2 so that the geodesic curve(s)

minimize
∫ 1

0

√
‖ẋ‖2dt.

(b) Show that the geodesic curve(s) necessarily satisfy the variational prop-

erty δ
∫ 1

0
‖ẋ‖ dt = 0 for all smooth curves t → q(t) ∈ (S1)2 that satisfy

the boundary conditions q(0) = q0 ∈ (S1)2, q(1) = q1 ∈ (S1)2.
(c) What are the Euler–Lagrange equations and Hamilton’s equations that

geodesic curves in S1 must satisfy?
(d) What conditions on q0 ∈ (S1)2, q1 ∈ (S1)2 guarantee that there is a

unique geodesic? Describe the geodesic curve.
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(e) What conditions on q0 ∈ (S1)2, q1 ∈ (S1)2 guarantee that there are mul-
tiple geodesics? Describe the geodesic curves.

4.24. A planar four-bar linkage consists of three rigid links with one end
of each of two of the links constrained to rotate in a fixed horizontal plane
about a fixed pivot. The other link can rotate subject to the fact that its ends
are pinned to the opposite ends of the first two links. The pivots and joint
connections are assumed to be frictionless and to allow constrained rotation
of the three links within a common horizontal plane. The two links with an
inertially fixed end are assumed to have length L with mass m concentrated
at the mid points of the links. The connecting link is assumed to have length
2.5L with mass m

2 concentrated at its mid point. The distance between the
two fixed pivots is 2.5L. We assume there are no collisions between links
or with the inertial base. Choose an inertially fixed two-dimensional frame
with origin located at the first fixed pivot point and with its first axis in the
direction of the second fixed pivot point. With respect to the inertially fixed
frame, let qi ∈ S1 denote the attitude as a direction vector of the i-th link
with respect to the inertial frame for i = 1, 2, 3.

(a) Show that Lagrangian function, ignoring the holonomic constraint defined
by the locations of the fixed pivots, can be written as

L(q, q̇) =
1

2
m

∥∥∥∥L2 q̇1
∥∥∥∥
2

+
1

2

(m
2

)∥∥∥∥5L2 q̇2

∥∥∥∥
2

+
1

2
m

∥∥∥∥L2 q̇3
∥∥∥∥
2

.

(b) Show that the holonomic constraint that arises from the fixed locations
of the pivots can be written as

Lq1 + 2.5Lq2 + Lq3 − 2.5Le1 = 0.

(c) Describe the constraint manifold M embedded in (S1)3 and the aug-
mented Lagrangian La : TM → R

1 on the tangent bundle of the con-
straint manifold.

(d) Introduce the angular velocity vector associated with the three attitude
vectors and express the augmented Lagrangian function in terms of the
angular velocity vector.

(e) What are the Euler–Lagrange equations, expressed in terms of the angular
velocity vector?

(f) What are Hamilton’s equations, expressed in terms of momenta conjugate
to the angular velocity vector?

(g) What are conserved quantities for the dynamical flow on TM?
(h) What are the equilibrium solutions of the dynamical flow on TM?

4.25. Consider the dynamics of an ideal particle that evolves on a manifold
M that is a smooth deformation of the embedded manifold S1 in R

2 in the
sense that it is the image of a diffeomorphism φ : S1 → M . Suppose that the
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Lagrangian function is L : TM → R
1. Use the form for the Lagrangian dy-

namics on S1 and this diffeomorphism to show that the Lagrangian dynamics
on M satisfy

(I2×2 − qqT )

(
∂φ(q)

∂q

){
d

dt

(
∂L(x, ẋ)

∂ẋ

)
− ∂L(x, ẋ)

∂x

}
= 0,

where q = φ−1(x); here φ−1 : M → S1 is the inverse of the diffeomorphism.

4.26. Consider an ideal particle, of mass m, that is constrained to move on
an elliptical curve given by M = {q ∈ R

2 : ( q1a )2 + ( q2b )
2 − 1 = 0} embedded

in R
2. Assume one axis of the ellipse is vertical and one axis of the ellipse is

horizontal. Constant, uniform gravity acts on the particle.

(a) Determine the Lagrangian function L : TM → R
1 defined on the tangent

bundle of the configuration manifold.
(b) Use the results of the previous problem; what are the Euler–Lagrange

equations for the particle on the ellipse?
(c) Determine the Hamiltonian function H : T∗M → R

1 defined on the
cotangent bundle of the configuration manifold.

(d) What are Hamilton’s equations for the particle on the ellipse?
(e) What are conserved quantities for the dynamical flow on TM?
(f) What are the equilibrium solutions of the dynamical flow on TM?

4.27. Suppose the configuration manifold is (S1)n and the kinetic energy
has the form of a general quadratic function in the time derivative of the
configuration vector so that the Lagrangian function L : T(S1)n → R

1 is
given by

L(q, q̇) =
1

2

n∑
i=1

n∑
j=1

mij(q)q̇
T
i q̇j +

n∑
i=1

ai(q)q̇i − U(q),

where q = [q1, . . . , qn]
T ∈ R

n and mij(q) = mji(q) > 0, i = 1, . . . , n, j =
1, . . . , n, ai(q), i = 1, . . . , n are vector functions and U(q) is a real scalar
function.

(a) What are the Euler–Lagrange equations for this Lagrangian function?
(b) What are Hamilton’s equations for this Lagrangian?
(c) Determine the modified Lagrangian function expressed in terms of angular

velocity vector.
(d) What are the Euler–Lagrange equations for this modified Lagrangian?
(e) What are Hamilton’s equations for the modified Hamiltonian associated

with this modified Lagrangian?



Chapter 5

Lagrangian and Hamiltonian Dynamics
on (S2)n

This chapter introduces an important modification to the results presented
in the preceding chapter. In particular, the configuration of a Lagrangian or
Hamiltonian system is assumed to lie in the product of an arbitrary number
of two-spheres in R

3. The product of spheres in R
3, denoted by (S2)n, is

a manifold with a conceptually simple geometry. Euler–Lagrange equations
and Hamilton’s equations are developed. The development in this chapter
is somewhat similar to the development in Chapter 4, where the dynamics
evolve on (S1)n. In spite of the apparent similarities in the development, since
the dynamics evolve on (S2)n here, there are important differences that make
the development in this chapter more complicated. The results are illustrated
by several examples of Lagrangian and Hamiltonian dynamics that evolve on
(S2)n.

The key ideas of the development in this chapter were first presented in
published form in [19, 46, 54, 58]; those results are expanded and simplified
in the presentation to follow. An earlier treatment of dynamics on spheres
was given in [14].

5.1 Configurations as Elements in (S2)n

We develop Euler–Lagrange equations for systems evolving on the configu-
ration manifold (S2)n. Since the dimension of the configuration manifold is
2n, there are 2n degrees of freedom. A review of basic differential geometric
concepts for (S2)n is now given.

The two-sphere, as a manifold in R
3, is

S2 = {q ∈ R
3 : ‖q‖ = 1}.

© Springer International Publishing AG 2018
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The product of n spheres in R
3, denoted by (S2)n = S2 × · · · × S2, consists

of all ordered n-tuples of vectors q = (q1, . . . , qn), with qi ∈ S2, i = 1, . . . , n.
This manifold is also described as

(S2)n =
{
q ∈ R

3n : qi ∈ S2, i = 1, . . . , n
}
.

As discussed in Chapter 1, the tangent space of (S2)n at q ∈ (S2)n is

Tq(S
2)n =

{
(ξ1, . . . , ξn) ∈ R

3n : (qi · ξi) = 0, i = 1, . . . , n
}
,

and any ξ ∈ Tq(S
2)n is referred to as a tangent vector to (S2)n at q ∈ (S2)n.

Also

T(S2)n =
{
(q, ξ) ∈ R

3n : q ∈ (S2)n, ξ ∈ Tq(S
2)n

}
,

denotes the tangent bundle of (S2)n. In addition,

T∗
q(S

2)n =
{
ζ ∈ (R3n)∗ : (ζ · ξ) → R

1, ξ ∈ Tq(S
2)n

}
,

is the cotangent space to (S2)n at q ∈ (S2)n; any ζ ∈ T∗
q(S

2)n is referred to
as a cotangent vector to (S2)n at q ∈ (S2)n. Also

T∗(S2)n =
{
(q, ζ) ∈ R

3n × (R3n)∗ : q ∈ (S2)n, ζ ∈ T∗
q(S

2)n
}
,

is the cotangent bundle of (S2)n. This geometry is important in our subse-
quent development of variational calculus on (S2)n.

5.2 Kinematics on (S2)n

Since the unit sphere in R
3 is the set of points that are unit distance from

the origin of R3, the tangent space TqS
2 for q ∈ S2 is the plane tangent to

the sphere at the point q ∈ S2. Thus, a time-parameterized curve t → q ∈ S2

and its time derivative t → q̇ ∈ TqS
2 satisfies q · q̇ = 0 for all t. This fact

implies that there exists an angular velocity vector function t → ω ∈ R
3 such

that the time derivative of this curve can be written as

q̇ = ω × q,

or equivalently

q̇ = S(ω)q,

where S(ω) is the 3× 3 skew symmetric matrix function defined in (1.8):

S(ω) =

⎡
⎣ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤
⎦ .
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Without loss of generality, the angular velocity t → ω ∈ R
3 can be con-

strained to be orthogonal to q, i.e., q · ω = 0. Therefore, it follows that q, q̇
and ω are mutually orthogonal. This convention is followed throughout.

Consider a time-parameterized curve t → q = (q1, . . . , qn) ∈ (S2)n and its
time derivative t → q̇ = (q̇1, . . . , q̇n) ∈ Tq(S

2)n; thus q · q̇ =
∑n

i=1(qi · q̇i) = 0
for all t. This is an important fact which implies that there is a vector function
t → ω = (ω1, . . . , ωn) ∈ (R3)n such that the time derivatives can be written
as

q̇i = S(ωi)qi, i = 1, . . . , n, (5.1)

where the angular velocity vectors ωi ∈ R
3, i = 1, . . . , n, satisfy qi · ωi =

0, i = 1, . . . , n. These equations describe the rotational kinematics on the
configuration manifold (S2)n.

Premultiplying (5.1) by S(qi) and using the matrix identity S(qi)
2 =

qiq
T
i − I3×3, it follows that the angular velocity vectors can be expressed

as

ωi = S(qi)q̇i, i = 1, . . . , n. (5.2)

These relationships can be summarized as follows. For each (q, q̇) ∈ T(S2)n,
there exists an ω ∈ R

3n such that (q, S(ω1)q1, . . . , S(ωn)qn) = (q, q̇). In
this sense, we use the angular velocity vector as an alternative to the time
derivative of the configuration vector and we can view (q, ω) ∈ T(S2)n.

5.3 Lagrangian Dynamics on (S2)n

A Lagrangian function is introduced. Euler–Lagrange equations are derived
using Hamilton’s principle; that is, the variation of the action integral is zero.
The Euler–Lagrange equations are first obtained in terms of a Lagrangian ex-
pressed in terms of the configuration vector and the time derivative of the con-
figuration vector. A second form of the Euler–Lagrange equations is obtained
in terms of a modified Lagrangian expressed in terms of the configuration
vector and the angular velocity vector. In each case, these Euler–Lagrange
equations are simplified for the important case that the kinetic energy func-
tion is a quadratic function of the time derivative of the configuration vector.

5.3.1 Hamilton’s Variational Principle in Terms of (q, q̇)

The Lagrangian function L : T(S2)n → R
1 is defined on the tangent bundle

of the configuration manifold. We assume that the Lagrangian function

L(q, q̇) = T (q, q̇)− U(q),
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is given by the difference between a kinetic energy function T (q, q̇), defined on
the tangent bundle, and a configuration-dependent potential energy function
U(q).

The subsequent development describes variations of curves or functions
with values in (S2)n. The unit sphere in R

3 is not a Lie group, but the
special orthogonal group SO(3) = {R ∈ GL(3) : RTR = I, det[R] = 1} acts
on the unit sphere transitively, i.e., for any q1, q2 ∈ S2, there exists R ∈ SO(3)
such that q2 = Rq1. This is an example of a homogeneous manifold, which
will be treated in greater generality in Chapter 8. Therefore, we can express
the variation of a curve with values in S2 in terms of a curve on so(3) or a
curve on R

3 using the matrix exponential map. This observation allows us to
develop expressions for variations of curves on (S2)n.

Let q = (q1, . . . , qn) : [t0, tf ] → (S2)n be a differentiable curve. The vari-
ation of qi is defined by qεi : (−c, c) × [t0, tf ] → S2 for c > 0, such that
q0i (t) = qi(t) for any t ∈ [t0, tf ] and qεi (t0) = qi(t0), q

ε
i (tf ) = q(tf ) for any

ε ∈ (−c, c).
If q = (q1, . . . , qn) : [t0, tf ] → (S2)n is a differentiable curve on (S2)n,

then its variation is qε = (qε1, . . . , q
ε
n) : [t0, tf ] → (S2)n. Similarly, the time

derivative is q̇ = (q̇1, . . . , q̇n) ∈ Tq(S
2)n, and its variation is q̇ε = (q̇ε1, . . . , q̇

ε
n) :

[t0, tf ] → Tq(S
2)n.

The variation can be expressed using the matrix exponential map as fol-
lows:

qεi (t) = eεS(γi(t)) qi(t), i = 1, . . . , n,

for differentiable curves γi : [t0, tf ] → R
3, satisfying γi(t0) = γi(tf ) = 0, i =

1, . . . , n. Since the exponent εS(γi) ∈ so(3) for any γi ∈ R
3, the exponential

matrix is in SO(3) and thus eεS(γi) : S2 → S2 is a local diffeomorphism. There
is no loss of generality in requiring that γi(t) · qi(t) = 0 for all t0 ≤ t ≤ tf ;
that is, γi and qi are orthogonal, i = 1, . . . , n. The variations vanish at the
end points of the time interval since γi(t0) = γi(tf ) = 0, i = 1, . . . , n.

The infinitesimal variations are computed as

δqi(t) =
d

dε
qε(t)

∣∣∣∣
ε=0

= S(γi(t))qi(t), i = 1, . . . , n, (5.3)

where γi(t0) = γi(tf ) = 0, i = 1, . . . , n. The infinitesimal variations vanish at
the end points of the time interval since γi(t0) = γi(tf ) = 0, i = 1, . . . , n.

Since the variation and differentiation commute, the expression for the
infinitesimal variation of the time derivative is given by

δq̇i(t) =
d

dε
q̇ε(t)

∣∣∣∣
ε=0

= S(γ̇i(t))qi(t) + S(γi(t))q̇i(t). (5.4)
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These expressions define the infinitesimal variations for a vector function
(q, q̇) = (q1, . . . , qn, q̇1, . . . , q̇n) : [t0, tf ] → T(S2)n. The infinitesimal varia-
tions are important ingredients to derive the Euler–Lagrange equations on
(S2)n. To simplify the notation, we will subsequently suppress the time ar-
gument.

The action integral is the integral of the Lagrangian function along a mo-
tion of the system over a fixed time period. The variations are taken over all
differentiable curves with values in (S2)n for which the initial and final values
are fixed. The action integral along a motion is

G =

∫ tf

t0

L(q1, . . . , qn, q̇1, . . . , q̇n) dt.

The action integral along a variation of a motion is

Gε =

∫ tf

t0

L(qε1, . . . , q
ε
n, q̇

ε
1, . . . , q̇

ε
n) dt.

The value of the action integral can be expressed as a power series in ε as

Gε = G+ εδG+O(ε2),

where the infinitesimal variation of the action integral is

δG =
d

dε
Gε

∣∣∣∣
ε=0

.

Hamilton’s principle states that the infinitesimal variation of the action in-
tegral along any motion of the system is zero:

δG =
d

dε
Gε

∣∣∣∣
ε=0

= 0, (5.5)

for all possible differentiable functions γi : [t0, tf ] → R
3 satisfying γi · qi = 0

and γi(t0) = γi(tf ) = 0, i = 1, . . . , n.
The infinitesimal variation of the action integral can be expressed in terms

of the infinitesimal variations of the motion as

δG =

∫ tf

t0

{
n∑

i=1

∂L(q, q̇)

∂q̇i
· δq̇i +

n∑
i=1

∂L(q, q̇)

∂qi
· δqi

}
dt.

We now substitute the expressions for the infinitesimal variations of the mo-
tion (5.3) and (5.4) into the above expression for the infinitesimal variation
of the action integral. The result is simplified to obtain the Euler–Lagrange
equations expressed in terms of (q, q̇).
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5.3.2 Euler–Lagrange Equations Expressed in Terms of (q, q̇)

Substitute (5.3) and (5.4) to obtain

δG =

∫ tf

t0

n∑
i=1

{
(S(γ̇i)qi + S(γi)q̇i) · ∂L(q, q̇)

∂q̇i
+ (S(γi)qi) · ∂L(q, q̇)

∂qi

}
dt.

This can be written as

δG =

∫ tf

t0

n∑
i=1

{
γ̇i ·

(
S(qi)

∂L(q, q̇)

∂q̇i

)

+ γi ·
(
S(q̇i)

∂L(q, q̇)

∂q̇i
+ S(qi)

∂L(q, q̇)

∂qi

)}
dt.

Integrating the first term on the right by parts, the infinitesimal variation of
the action integral is given by

δG =
n∑

i=1

γi ·
(
S(qi)

∂L(q, q̇)

∂q̇i

) ∣∣∣∣
tf

t0

−
n∑

i=1

∫ tf

t0

γi ·
(
S(qi)

{
d

dt

(
∂L(q, q̇)

∂q̇i

)
− ∂L(q, q̇)

∂qi

})
dt.

According to Hamilton’s principle, δG = 0 for all continuous infinitesimal
variations γi : [t0, tf ] → R

3, that satisfy (γi · qi) = 0 and vanish at t0 and
tf for i = 1, . . . , n. The fundamental lemma of the calculus of variations, as
described in Appendix A, implies that

S(qi)

{
d

dt

(
∂L(q, q̇)

∂q̇i

)
− ∂L(q, q̇)

∂qi

}
= 0, i = 1, . . . , n. (5.6)

Taking the cross product with qi yields a preliminary form for the Euler–
Lagrange equations

S(qi)
2

{
d

dt

(
∂L(q, q̇)

∂q̇i

)
− ∂L(q, q̇)

∂qi

}
= 0, i = 1, . . . , n.

Using the cross-product matrix identity S(qi)
2 = qiq

T
i − I3×3, the Euler–

Lagrange equations for a motion that evolves on (S2)n can be written in the
following form.

Proposition 5.1 The Euler–Lagrange equations for a Lagrangian function
L : T(S2)n → R

1 are

(
I3×3 − qiq

T
i

){
d

dt

(
∂L(q, q̇)

∂q̇i

)
− ∂L(q, q̇)

∂qi

}
= 0, i = 1, . . . , n. (5.7)
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The matrix (I3×3 − qiqi
T ) is a projection of R3 onto Tqi(S

2) in the sense
that for any qi ∈ S2 and any q̇i ∈ Tqi(S

2):

(I3×3 − qiq
T
i )qi = 0,

(I3×3 − qiq
T
i )q̇i = q̇i.

Equations (5.7) recall the classical Euler–Lagrange equations in Chapter 3,
modified to reflect the fact that the configuration manifold is (S2)n, and
they also recall the analogous version of the Euler–Lagrange equations (4.6)
defined on the configuration manifold (S1)n in Chapter 4.

We now consider the important case that the kinetic energy is a quadratic
function of the derivative of the configuration vector, that is the Lagrangian
function L : T(S2)n → R

1 is

L(q, q̇) =
1

2

n∑
j=1

n∑
k=1

q̇Tj mjk(q)q̇k − U(q), (5.8)

where the scalar inertial terms mjk : (S2)n → R
1 satisfy the symmetry con-

dition mjk(q) = mkj(q) and the quadratic form in the time derivative of the
configuration vector is positive-definite on (S2)n.

We first determine the derivatives of the Lagrangian function

∂L(q, q̇)

∂q̇i
=

n∑
j=1

mij(q)q̇j ,

∂L(q, q̇)

∂qi
=

1

2

∂

∂qi

n∑
j=1

n∑
k=1

q̇Tj mjk(q)q̇k − ∂U(q)

∂qi
,

and thus

d

dt

{
∂L(q, q̇)

∂q̇i

}
=

n∑
j=1

mij(q)q̈j +

n∑
j=1

ṁij(q)q̇j .

It follows that the Euler–Lagrange equations can be written in a form that
follows from (5.7):

(I3×3 − qiq
T
i )

{ n∑
j=1

mij(q)q̈j +

n∑
j=1

ṁij(q)q̇j

− 1

2

∂

∂qi

n∑
j=1

n∑
k=1

q̇Tj mjk(q)q̇k +
∂U(q)

∂qi

}
= 0, i = 1, . . . , n. (5.9)

Since qTi q̇i = 0, it follows that d
dt (q

T
i q̇i) = (qTi q̈i) + ‖q̇i‖2 = 0; thus we obtain
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(I3×3 − qiq
T
i )q̈i = q̈i − (qiq

T
i )q̈i

= q̈i + ‖q̇i‖2 qi, i = 1, . . . , n.

Expand the time derivative expression from (5.9) to obtain the Euler–
Lagrange equations on T(S2)n:

mii(q)q̈i + (I3×3 − qiq
T
i )

n∑
j=1
j �=i

mij(q)q̈j +mii(q) ‖q̇i‖2 qi

+ (I3×3 − qiq
T
i )Fi(q, q̇) + (I3×3 − qiq

T
i )

∂U(q)

∂qi
= 0, i = 1, . . . , n, (5.10)

where the vector-valued functions

Fi(q, q̇) =

n∑
j=1

ṁij(q)q̇j − 1

2

∂

∂qi

n∑
j=1

n∑
k=1

q̇Tj mjk(q)q̇k, i = 1, . . . , n,

are quadratic in the time derivative of the configuration vector. As in Chap-
ter 3, these functions can be expressed in terms of Christoffel terms. Note
that if the inertia terms are constants independent of the configuration vector,
then Fi(q, q̇) = 0, i = 1, . . . , n.

The Euler–Lagrange equations given by (5.10) describe the evolution of
the dynamical flow (q, q̇) ∈ T(S2)n on the tangent bundle of the configuration
manifold (S2)n.

If the inertia terms and the potential terms in (5.10) are globally defined
on (R3)n, then the domain of definition of (5.10) on T(S2)n can be extended
to T(R3)n. This extension is natural and useful in that it defines a Lagrangian
vector field on the tangent bundle T(R3)n. Alternatively, the manifold T(S2)n

is an invariant manifold of this Lagrangian vector field on T(R3)n and its
restriction to this invariant manifold describes the Lagrangian flow of (5.10)
on T(S2)n.

5.3.3 Hamilton’s Variational Principle in Terms of (q, ω)

An alternate expression for the Euler–Lagrange equations is now obtained in
terms of the angular velocity vector introduced in (5.1).

We express the action integral in terms of the modified Lagrangian function

L̃(q, ω) = L(q, q̇),

where the kinematics equations are given by (5.1). We use the notation
q̇ = (q̇1, . . . , q̇n) ∈ Tq(S

2)n and, as described previously, we view ω =
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(ω1, . . . , ωn) ∈ Tq(S
2)n. Hence, the modified Lagrangian L̃(q, ω) is defined

on the tangent bundle T(S2)n using the kinematics (5.1).
The infinitesimal variation of the modified action integral can be written as

δG̃ =

∫ tf

t0

n∑
i=1

{
∂L̃(q, ω)

∂ωi
· δωi +

∂L̃(q, ω)

∂qi
· δqi

}
dt.

The infinitesimal variations of the motion are given by

δqi = S(γi)qi, i = 1, . . . , n, (5.11)

δq̇i = S(γ̇i)qi + S(γi)q̇i, i = 1, . . . , n (5.12)

for curves γi : [t0, tf ] → R
3, i = 1, . . . , n that satisfy (γi · qi) = 0 and

γi(t0) = γi(tf ) = 0, i = 1, . . . , n.
Next, we derive expressions for the infinitesimal variation of the angular

velocity vector. Using the fact that ωi = S(qi)q̇i, the infinitesimal variation
of the angular velocity vectors is given by

δωi = S(δqi)q̇i + S(qi)δq̇i, i = 1, . . . , n.

Substituting (5.3) and (5.4) and rearranging, we obtain

δωi = (S(γi)qi)× q̇i + S(qi)(S(γ̇i)qi + S(γi)q̇i).

By expanding each term using the triple cross product vector identity,
S(x)(S(y)z) = (x · z)y − (x · y)z for any x, y, z ∈ R

3, we obtain

δωi = −(q̇i · qi)γi + (q̇i · γi)qi + (qi · qi)γ̇i − (qi · γ̇i)qi
+ (qi · q̇i)γi − (qi · γi)q̇i, i = 1, . . . , n.

Since qi · qi = 1 and qi · q̇i = qi · γi = 0, this reduces to

δωi = (q̇i · γi)qi + γ̇i − (qi · γ̇i)qi, i = 1, . . . , n.

Substitute (5.1) and use the vector identity, x · (S(y)z) = y · (S(z)x) =
z · (S(x)y) for any x, y, z ∈ R

3 to obtain

δωi = (γi · (S(ωi)qi))qi + (I3×3 − qiq
T
i )γ̇i

= (qi · (S(γi)ωi))qi + (I3×3 − qiq
T
i )γ̇i

= qiq
T
i (S(γi)ωi) + (I3×3 − qiq

T
i )γ̇i, i = 1, . . . , n.

The matrix qiq
T
i corresponds to the orthogonal projection along qi. Since

both γi and ωi are orthogonal to qi, the infinitesimal variation of the angular
velocity vector is
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δωi = −S(ωi)γi + (I3×3 − qiq
T
i )γ̇i, i = 1, . . . , n. (5.13)

The infinitesimal variation of ωi is composed of two parts: the first term
γi×ωi is collinear with qi, and it represents the variations due to the change
of qi; the second term corresponds to the orthogonal projection of γ̇i onto the
space orthogonal to qi, and it is due to the time rate change of the variation
of qi.

5.3.4 Euler–Lagrange Equations in Terms of (q, ω)

Substitute (5.11) and (5.13) to obtain

δG̃ =

∫ tf

t0

n∑
i=1

{
(S(γi)ωi + (I3×3 − qiq

T
i )γ̇i) ·

∂L̃(q, ω)

∂ωi

+ S(γi)qi · ∂L̃(q, ω)
∂qi

}
dt

=

∫ tf

t0

{
n∑

i=1

{
S(qi)

∂L̃(q, ω)

∂qi
+ S(ωi)

∂L̃(q, ω)

∂ωi

}
· γi

+

{
(I3×3 − qiq

T
i )

∂L̃(q, ω)

∂ωi

}
· γ̇i

}
dt.

Integrating the terms in the integral that multiply γ̇i by parts, the infinites-
imal variation of the modified action integral is given by

δG̃ =
n∑

i=1

γi · (I3×3 − qiq
T
i )

∂L̃(q, ω)

∂ωi

∣∣∣∣
tf

t0

+

n∑
i=1

∫ tf

t0

γi ·
{
− d

dt

(
(I3×3 − qiq

T
i )

∂L̃(q, ω)

∂ωi

)

+ S(qi)
∂L̃(q, ω)

∂qi
+ S(ωi)

∂L̃(q, ω)

∂ωi

}
dt.

According to Hamilton’s principle, δG̃ = 0 for all differentiable functions
γi : [t0, tf ] → R

3, i = 1, . . . , n that satisfy (γi · qi) = 0 and vanish at t0
and tf , i = 1, . . . , n. The fundamental lemma of the calculus of variations, as
described in Appendix A, implies that each expression in the braces should
be orthogonal to the tangent space TqiS

2, or equivalently collinear with qi.
Thus
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S(qi)

{
d

dt

(
S2(qi)

∂L̃(q, ω)

∂ωi

)
+ S(ωi)

∂L̃(q, ω)

∂ωi
+ S(qi)

∂L̃(q, ω)

∂qi

}
= 0,

for i = 1, . . . , n. Multiply both sides of these equations by S(qi),

S(qi)
4 d

dt

(
∂L̃(q, ω)

∂ωi

)
+ S(qi)

2S(ωi)
∂L̃(q, ω)

∂ωi

+ S(qi)
2 {S(q̇i)S(qi) + S(qi)S(q̇i)} ∂L̃(q, ω)

∂ωi
+ S(qi)

3 ∂L̃(q, ω)

∂qi
= 0,

for i = 1, . . . , n. Using S(qi)
3 = −S(qi), this can be written as

− S(qi)
2 d

dt

(
∂L̃(q, ω)

∂ωi

)
+ S(qi)

2S(ωi)
∂L̃(q, ω)

∂ωi

+ S(qi)
2 {S(q̇i)S(qi) + S(qi)S(q̇i)} ∂L̃(q, ω)

∂ωi
− S(qi)

∂L̃(q, ω)

∂qi
= 0,

for i = 1, . . . , n. To further simplify these expressions we use the matrix
identities in Chapter 1 and the fact that (ωi · qi) = 0 to obtain

S(qi)S(ωi)S(qi) = S(qi){−ωT
i qI3×3 + qiω

T
i } = 0.

From this it follows that

S(qi)S(q̇i) = S(qi){S(ωi)S(qi)− S(qi)S(ωi)}
= S(qi)S(ωi)S(qi)− S(qi)

2S(ωi)

= −S(qi)
2S(ωi),

and

S(q̇i)S(qi) = {S(ωi)S(qi)− S(qi)S(ωi)}S(qi)
= S(ωi)S(qi)

2 − S(qi)S(ωi)S(qi)

= S(ωi)S(qi)
2.

Consequently, these results can be used to obtain

S(qi)
2{S(q̇i)S(qi) + S(qi)S(q̇i)} = −S(qi)

4S(ωi) = S(qi)
2S(ωi).

Substituting this into the above expressions to simply the Euler–Lagrange
equations we obtain
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−S(qi)
2 d

dt

(
∂L̃(q, ω)

∂ωi

)
+ 2S(qi)

2S(ωi)
∂L̃(q, ω)

∂ωi

− S(qi)
∂L̃(q, ω)

∂qi
= 0, i = 1, . . . , n.

Hence, the Euler–Lagrange equations take the following form.

Proposition 5.2 The Euler–Lagrange equations for a modified Lagrangian
function L̃ : T(S2)n → R

1 are given by

(I3×3 − qiq
T
i )

{
d

dt

(
∂L̃(q, ω)

∂ωi

)
− 2S(ωi)

∂L̃(q, ω)

∂ωi

}

− S(qi)
∂L̃(q, ω)

∂qi
= 0, i = 1, . . . , n. (5.14)

Thus, the Lagrangian flow on the tangent bundle T(S1)n is obtained from
the kinematics equations (5.1) and the Euler–Lagrange equations (5.14).

If ∂L̃(q,ω)
∂ωi

is orthogonal to qi, the second term of the above equation van-
ishes to obtain

(I3×3 − qiq
T
i )

d

dt

(
∂L̃(q, ω)

∂ωi

)
− S(qi)

∂L̃(q, ω)

∂qi
= 0, i = 1, . . . , n. (5.15)

The Euler–Lagrange equations (5.14) on (S2)n, expressed in terms of the
angular velocity vector, can be obtained in a different way directly from the
Euler–Lagrange equations given in (5.7) by viewing the kinematics (5.1) as
defining a change of variables from the time derivative of the configuration
vector to the angular velocity vector. This shows the equivalence of the Euler–
Lagrange equations (5.14) and the Euler–Lagrange equations (5.7) and (5.1).
The details of this derivation are not given.

Now consider the important case that the kinetic energy is a quadratic
function of the time derivatives of the configuration where the Lagrangian
function has the form given in (5.8). The expression for the modified La-
grangian function is

L̃(q, ω) =
1

2

n∑
i=1

n∑
j=1

ωT
i S(qi)

Tmij(q)S(qj)ωj − U(q). (5.16)

Since qTi ωi = 0, it follows that

ωT
i S(qi)

TS(qi)ωi = ωT
i

(
I3×3 − qiq

T
i

)
ωi = ωT

i ωi.
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Thus, the modified Lagrangian can be expressed as

L̃(q, ω) =
1

2

n∑
i=1

ωT
i mii(q)ωi +

1

2

n∑
i=1

n∑
j=1
j �=i

ωT
i S(qi)

Tmij(q)S(qj)ωj − U(q).

We first determine the derivatives of the modified Lagrangian function

∂L̃(q, ω)

∂ωi
=

n∑
j=1

S(qi)
Tmij(q)S(qj)ωj

= mii(q)ωi +
n∑

j=1
j �=i

S(qi)
Tmij(q)S(qj)ωj ,

∂L̃(q, ω)

∂qi
=

1

2

∂

∂qi

n∑
j=1

n∑
k=1

ωT
j S(qj)

Tmjk(q)S(qk)ωk − ∂U(q)

∂qi

=
n∑

j=1

S(ωi)
Tmij(q)S(qj)ωj

+
1

2

n∑
j=1

n∑
k=1

(ωT
j S(qj)

TS(qk)ωk)
∂mjk(q)

∂qi
− ∂U(q)

∂qi
,

and thus

d

dt

{
∂L̃(q, ω)

∂ωi

}
= mii(q)ω̇i +

n∑
j=1
j �=i

S(qi)
Tmij(q)S(qj)ω̇j

+
n∑

j=1

S(qi)
T ṁij(q)S(qj)ωj −

n∑
j=1
j �=i

mij(q) {S(q̇i)S(qj) + S(qi)S(q̇j)}ωj .

We now use the relationship

(I3×3 − qiq
T
i )ω̇i = ω̇i,

and we use several identities to simplify:

(I3×3 − qiq
T
i ) {S(q̇i)S(qj) + S(qi)S(q̇j)}ωj

= −S(qi)
2 {S(q̇i)S(qj) + S(qi)S(q̇j)}ωj

= −S(qi)
2 {S(S(ωi)qi)S(qj) + S(qi)S(S(ωj)qj)}ωj

= −S(qi)
2{S(ωi)S(qi)− S(qi)S(ωi)}S(qj)

+ S(qi){S(ωj)S(qj)− S(qj)S(ωj)}ωj .
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We use the identity S(ωi)S(qi) = −ωT
i qiI3×3 + qiω

T
i to obtain

S(qi)S(ωi)S(qi) = S(qi)(−ωT
i qiI3×3 + qiω

T
i ) = 0,

so that

(I3×3 − qiq
T
i ) {S(q̇i)S(qj) + S(qi)S(q̇j)}ωj

= S(qi)
3S(ωi)S(qj)ωj − S(qi)

3 {S(ωj)S(qj)− S(qj)S(ωj)}ωj

= −S(qi)S(ωi)S(qj)ωj + S(qi)S(ωj)S(qj)ωj

= S(qi) {−S(ωi)S(qj)ωj + S(ωj)S(qj)ωj}
= S(qi)

{−S(ωi)S(qj)ωj +
(−ωT

j qjI3×3 + qjω
T
j

)
ωj

}
= S(qi)

{
−S(ωi)S(qj)ωj + ‖ωj‖2 qj

}
.

Using these relationships, we obtain

(I3×3 − qiq
T
i )

d

dt

{
∂L̃(q, ω)

∂ωi

}
= mii(q)ω̇i

+

n∑
j=1
j �=i

S(qi)
Tmij(q)S(qj)ω̇j +

n∑
j=1

S(qi)
T ṁij(q)S(qj)ωj

+

n∑
j=1
j �=i

mij(q)S(qi)
{
S(ωi)S(qj)ωj − ‖ωj‖2 qj

}
.

Also, we have

(I3×3 − qiq
T
i )S(ωi)

∂L̃(q, ω)

∂ωi
=

n∑
j=1
j �=i

mij(q)S(qi)
2S(ωi)S(qi)S(qj)ωj = 0,

which follows since S(qi)S(ωi)S(qi) = 0. Substituting these expressions into
(5.14) yields

mii(q)ω̇i +

n∑
j=1
j �=i

S(qi)
Tmij(q)S(qj)ω̇j +

n∑
j=1

S(qi)
T ṁij(q)S(qj)ωj

+

n∑
j=1
j �=i

mij(q)S(qi)
{
S(ωi)S(qj)ωj − ‖ωj‖2 qj

}

− S(qi)

n∑
j=1

S(ωi)
Tmij(q)S(qj)ωj

− 1

2
S(qi)

n∑
j=1

n∑
k=1

(ωT
j S(qj)

TS(qk)ωk)
∂mjk(q)

∂qi
+ S(qi)

∂U(q)

∂qi
= 0.
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This can be rearranged as

mii(q)ω̇i +

n∑
j=1
j �=i

mij(q)S(qi)
TS(qj)ω̇j

+

n∑
j=1
j �=i

mij(q)S(qi)
{
S(ωi)S(qj)ωj + S(ωi)S(ωj)qj − ‖ωj‖2 qj

}

+mii(q)S(qi)S(ωi)
2qi + S(qi)

{
−

n∑
j=1

ṁij(q)S(qj)ωj

− 1

2

n∑
j=1

n∑
k=1

(ωT
j S(qj)

TS(qk)ωk)
∂mjk(q)

∂qi
+

∂U(q)

∂qi

}
= 0.

The result can be simplified using S(qi)S(ωi)
2qi = S(qi)(−‖ωi‖2 qi) = 0 and

S(qj)ωj+S(ωj)qj = 0. This leads to a convenient form of the Euler–Lagrange
equations on T(S2)n, which consists of the kinematics equations (5.1) and

mii(q)ω̇i +

n∑
j=1
j �=i

S(qi)
Tmij(q)S(qj)ω̇j −

n∑
j=1
j �=i

mij(q)S(qi) ‖ωj‖2 qj

+ S(qi)

{
Fi(q, ω) +

∂U(q)

∂qi

}
= 0, i = 1, . . . , n, (5.17)

where

Fi(q, ω) =

n∑
j=1

ṁij(q)S(ωj)qj

− 1

2

n∑
j=1

n∑
k=1

(qTj S(ωj)
TS(ωk)qk)

∂mjk(q)

∂qi
, i = 1, . . . , n,

are quadratic in the angular velocity vector. If the inertial terms are constants
and independent of the configuration, then Fi(q, ω) = 0, i = 1, . . . , n.

This version of the Euler–Lagrange differential equations describe the dy-
namical flow (q, ω) ∈ T(S2)n on the tangent bundle T(S2)n.

Assuming that the inertia terms and the potential terms in (5.17) are
globally defined on (R3)n, then the domain of definition of (5.17) on T(S2)n

can be extended to T(R3)n. This extension is natural and useful in that it
defines a Lagrangian vector field on the tangent bundle T(R3)n. Conversely,
the manifold T(S2)n is an invariant manifold of this Lagrangian vector field on
T(R3)n and its restriction to this invariant manifold describes the Lagrangian
flow of (5.17) on T(S2)n.
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Equations (5.17) and the kinematics (5.1) can be shown to be equivalent
to (5.10) by viewing the kinematics as defining a transformation from (q, q̇)
to (q, ω). This can provide an alternate derivation of (5.17).

5.4 Hamiltonian Dynamics on (S2)n

The Legendre transformation is introduced to derive Hamilton’s equations
for the dynamics that evolve on the cotangent bundle T∗(S2)n. The deriva-
tion is based on the phase space variational principle, a natural modifica-
tion of Hamilton’s principle for Lagrangian dynamics. Two forms of Hamil-
ton’s equations are obtained. One form is expressed in terms of a momen-
tum μ = (μ1, . . . , μn) ∈ T∗

q(S
2)n that is conjugate to the velocity vector

q̇ = (q̇1, . . . , q̇n) ∈ Tq(S
2)n, where q ∈ (S2)n. The other form of Hamilton’s

equations are expressed in terms of a momentum π = (π1, . . . , πn) ∈ T∗
q(S

2)n

that is conjugate to the angular velocity vector ω = (ω1, . . . , ωn) ∈ Tq(S
2)n.

5.4.1 Hamilton’s Phase Space Variational Principle in Terms of
(q, μ)

As in the prior section, we begin with a Lagrangian function L : T(S2)n →
R

1, which is a real-valued function defined on the tangent bundle of the
configuration manifold (S2)n; we assume that the Lagrangian function

L(q, q̇) = T (q, q̇)− U(q),

is given by the difference between a kinetic energy function T (q, q̇), defined on
the tangent bundle, and a configuration-dependent potential energy function
U(q).

The Legendre transformation of the Lagrangian function L(q, q̇) leads to
the Hamiltonian form of the equations of motion in terms of a conjugate
momentum. For q ∈ (S2)n, the corresponding conjugate momentum μ ∈
T∗
q(S

2)n lies in the dual space T∗(S2)n. We identify the tangent space Tq(S
2)n

and its dual space T∗
q(S

2)n by using the usual dot product in R
3n.

The Legendre transformation maps q̇ = (q̇1, . . . , q̇n) ∈ Tq(S
2)n → μ =

(μ1, . . . , μn) ∈ T∗
q(S

2)n and satisfies

μi · q̇i = ∂L(q, q̇)

∂q̇i
· q̇i, i = 1, . . . , n.

Since the component of μi collinear with qi has no effect on the inner product
above, the vector representing μi is selected to be orthogonal to qi; that is μi

is equal to the projection of ∂L(q,q̇)
∂q̇i

onto the cotangent space T∗
qiS

2. Thus
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μi =
∂L(q, q̇)

∂q̇i
− (qi · ∂L(q, q̇)

∂q̇i
)qi, i = 1, . . . , n,

which can be written as

μi = (I3×3 − qiq
T
i )

∂L(q, q̇)

∂q̇i
, i = 1, . . . , n, (5.18)

using the projections (I3×3 − qiq
T
i ) from (R3)∗ to T∗

qiS
2 for i = 1, . . . , n.

The Lagrangian function is assumed to be hyperregular; that is, the Leg-
endre transformation, viewed as a map Tq(S

2)n → T∗
q(S

2)n, is invertible.
The Hamiltonian function H : T∗(S2)n → R

1 is given by

H(q, μ) =
n∑

i=1

μi · q̇i − L(q, q̇), (5.19)

where the right-hand side is expressed in terms of (q, μ) using the Legendre
transformation (5.18).

The Legendre transformation can be viewed as defining a transformation
(q, q̇) ∈ T(S2)n → (q, μ) ∈ T∗(S2)n, which implies that the Euler–Lagrange
equations can be written in terms of the transformed variables; this is effec-
tively Hamilton’s equations. However, Hamilton’s equations can be obtained
using Hamilton’s phase space variational principle, and this approach is now
introduced.

Consider the action integral in the form,

G =

∫ tf

t0

{
n∑

i=1

μi · q̇i −H(q, μ)

}
dt.

The infinitesimal variation of the action integral is given by

δG =

n∑
i=1

∫ tf

t0

{
μi · δq̇i − ∂H(q, μ)

∂qi
· δqi +

(
q̇i − ∂H(μ, p)

∂μi

)
· δμi

}
dt.

We can integrate the first term on the right-hand side by parts, so that
Hamilton’s phase space variational principle is:

δG =
n∑

i=1

μi · δqi
∣∣∣∣
tf

t0

+

n∑
i=1

∫ tf

t0

{(
−μ̇i − ∂H(q, μ)

∂qi

)
· δqi +

(
q̇i − ∂H(μ, p)

∂μi

)
· δμi

}
dt = 0,

for all allowable differentiable variations satisfying δqi(t0) = δqi(tf ) = 0 for
all i = 1, . . . , n.
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According to the definition of the conjugate momenta μi given by (5.18),
we have qi · μi = 0, which implies that δqi · μi + qi · δμi = 0. To impose
this constraint on the infinitesimal variations, we decompose δμi into the
sum of two orthogonal components: one component collinear with qi, namely
δμC

i = qiq
T
i δμi, and the other component orthogonal to qi, namely δμM

i =
(I3×3 − qiq

T
i )δμi. Satisfaction of the above constraint implies that qTi δμ

C
i =

qTi δμi = −μT
i δqi, and δμM

i = (I3×3 − qiq
T
i )δμi is otherwise unconstrained.

Recall the prior expression for the infinitesimal variation of a motion on
(S2)n:

δqi = S(γi)qi, i = 1, . . . , n,

for differentiable curves γi : [t0, tf ] → R
3 satisfying γi · qi = 0 and γi(t0) =

γi(tf ) = 0 for i = 1, . . . , n.
These results can be summarized as: the infinitesimal variation of the

action integral is zero for all possible differentiable curves γi : [t0, tf ] → R
3

and δμM
i : [t0, tf ] → R

3 satisfying γi · qi = 0, δμM
i · qi = 0 and γi(t0) =

γi(tf ) = 0 for all i = 1, . . . , n.

5.4.2 Hamilton’s Equations in Terms of (q, μ)

Substituting the expressions for the infinitesimal variations of the motion and
using the fact that the infinitesimal variations of the motion vanish at the
endpoints, the infinitesimal variation of the action integral can be rewritten
as

δG =
n∑

i=1

∫ tf

t0

{(
−μ̇i − ∂H(q, μ)

∂qi

)
· δqi +

(
qiq

T
i

(
q̇i − ∂H(q, μ)

∂μi

))
· δμC

i

+

(
(I3×3 − qiq

T
i )

(
q̇i − ∂H(q, μ)

∂μi

))
· δμM

i

}
dt

=

n∑
i=1

∫ tf

t0

{(
−μ̇i − ∂H(q, μ)

∂qi

)
· δqi −

(
qTi

∂H(q, μ)

∂μi

)
· (qTi δμC

i )

+

(
q̇i − (I3×3 − qiq

T
i )

∂H(q, μ)

∂μi

)
· δμM

i

}
dt.

Since qTi δμ
C
i = −μT

i δqi and δqi = S(γi)qi = −S(qi)γi,

δG =
n∑

i=1

∫ tf

t0

{(
−μ̇i − ∂H(q, μ)

∂qi

)
· δqi +

(
qTi

∂H(q, μ)

∂μi

)
· (μT

i δqi)
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+

(
q̇i − (I3×3 − qiq

T
i )

∂H(q, μ)

∂μi

)
· δμM

i

}
dt

=

n∑
i=1

∫ tf

t0

{
S(qi)

(
−μ̇i − ∂H(q, μ)

∂qi
+ μiq

T
i

∂H(q, μ)

∂μi

)
· γi

+

(
q̇i − (I3×3 − qiq

T
i )

∂H(q, μ)

∂μi

)
· δμM

i

}
dt.

We now invoke Hamilton’s phase space variational principle that δG = 0
for all possible functions γi : [t0, tf ] → R

3 satisfying γi · qi = 0 and δμM
i :

[t0, tf ] → R
3 that are always orthogonal to qi for i = 1, . . . , n.

According to the fundamental lemma of the calculus of variations, in Ap-
pendix A, the first condition gives

S(qi)

(
μ̇i +

∂H(q, μ)

∂qi
− μiq

T
i

∂H(q, μ)

∂μi

)
= 0, i = 1, . . . , n.

We multiply this by S(qi) and use a matrix identity for S(qi)
2 to obtain

(I3×3 − qiq
T
i )

(
μ̇i +

∂H(q, μ)

∂qi
− μiq

T
i

∂H(q, μ)

∂μi

)
= 0, i = 1, . . . , n.

Since both terms multiplying δμM
i in the above variational expression are

necessarily orthogonal to qi, it follows that

q̇i − (I3×3 − qiq
T
i )

∂H(q, μ)

∂μi
= 0, i = 1, . . . , n.

We now determine an expression for μ̇i. The above equation only determines
the component of μ̇i that is in the dual of the tangent space T∗

qiS
1. The

component of μ̇i that is orthogonal to this tangent space, that is collinear
with qi, is determined as follows. The time derivative of qi · μi = 0 gives
qi · μ̇i = −q̇i · μi which allows computation of the component of μ̇i that is
collinear with qi. Thus, μ̇i is the sum of two components:

μ̇i = (I3×3 − qiq
T
i )

(
−∂H(q, μ)

∂qi
+ μiq

T
i

∂H(q, μ)

∂μi

)
− (μT

i q̇i)qi

= −(I3×3 − qiq
T
i )

∂H(q, μ)

∂qi
+ μiq

T
i

∂H(q, μ)

∂μi
−

(
μT
i

∂H(q, μ)

∂μi

)
qi

= −(I3×3 − qiq
T
i )

∂H(q, μ)

∂qi
+

∂H(q, μ)

∂μi
× (μi × qi) ,

where the last step makes use of the triple cross product identity. In summary,
Hamilton’s equations are given as follows.
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Proposition 5.3 Hamilton’s equations for a Hamiltonian function H :
T∗(S2)n → R

1 are

q̇i = (I3×3 − qiq
T
i )

∂H(q, μ)

∂μi
, i = 1, . . . , n, (5.20)

μ̇i = −(I3×3 − qiq
T
i )

∂H(q, μ)

∂qi
+

∂H(q, μ)

∂μi
× (μi × qi) , i = 1, . . . , n.

(5.21)

Thus, equations (5.20) and (5.21) describe the Hamiltonian flow in terms of
(q, μ) ∈ T∗(S2)n on the cotangent bundle of (S2)n.

The following property follows directly from the above formulation of
Hamilton’s equations on the configuration manifold (S2)n:

dH(q, μ)

dt
=

n∑
i=1

∂H(q, μ)

∂qi
· q̇i + ∂H(q, μ)

∂μi
· μ̇i

=
n∑

i=1

∂H(q, μ)

∂μi
·
{
∂H(q, μ)

∂μi
× (μi × qi)

}

= 0.

Thus, the Hamiltonian function is constant along each solution of Hamilton’s
equation. As before, this property does not hold if the Hamiltonian function
has a nontrivial explicit dependence on time.

Now consider the important case that the kinetic energy function is a
quadratic function of the time derivative of the configuration vector so that
the Lagrangian function is given by

L(q, q̇) =
1

2

n∑
j=1

n∑
k=1

q̇Tj mjk(q)q̇k − U(q), (5.22)

where the scalar inertial terms mjk(q) : (S2)n → R
1 satisfy the symmetry

condition mjk(q) = mkj(q) and the quadratic form is positive-definite on
(S2)n. Thus, the conjugate momentum is defined by the Legendre transfor-
mation

μi = (I3×3 − qiq
T
i )

∂L(q, q̇)

∂q̇i

= (I3×3 − qiq
T
i )

n∑
j=1

mij(q)q̇j

= mii(q)q̇i + (I3×3 − qiq
T
i )

n∑
j=1
j �=i

mij(q)q̇j , i = 1, . . . , n. (5.23)
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We assume that the algebraic equations (5.23), viewed as a mapping from
q̇ = (q̇1, . . . , q̇n) ∈ Tq(S

2)n to μ = (μ1, . . . , μn) ∈ T∗
q(S

2)n, can be inverted
and expressed in the form

q̇i = (I3×3 − qiq
T
i )

n∑
j=1

mI
ij(q)μj , i = 1, . . . , n, (5.24)

where mI
ij : (S2)n → R

3×3, for i = 1, . . . , n, j = 1, . . . , n are the entries
in the matrix inverse obtained from (5.23). There is no loss of generality in
including the indicated projection in (5.24) since the projection guarantees
that if (μ1, . . . , μn) ∈ T∗

q(S
2)n then (q̇1, . . . , q̇n) ∈ Tq(S

2)n.
The Hamiltonian function can be written as

H(q, μ) =

n∑
i=1

q̇i · μi − 1

2

n∑
i=1

n∑
j=1

q̇Ti mij(q)q̇j + U(q)

=

n∑
i=1

q̇i · μi − 1

2

n∑
i=1

q̇i ·
n∑

j=1

mij(q)q̇j + U(q)

=

n∑
i=1

q̇i · μi − 1

2

n∑
i=1

q̇i · (I3×3 − qiq
T
i )

n∑
j=1

mij(q)q̇j + U(q)

=
1

2

n∑
i=1

q̇i · μi + U(q).

The third step uses the fact that the inner product μi ·
∑n

j=1 mij(q)q̇j is not
changed by projecting the vector defined by the sum onto the tangent space
TqiS

2. The Hamiltonian function can be expressed as

H(q, μ) =
1

2

n∑
j=1

n∑
k=1

μT
j m

I
jk(q)μk + U(q).

From (5.20) and (5.21), Hamilton’s equations, expressed in terms of the evo-
lution of (q, μ) on the cotangent bundle T∗(S2)n, are given by

q̇i = (I3×3 − qiq
T
i )

n∑
j=1

mI
ij(q)μj , i = 1, . . . , n, (5.25)

μ̇i =
n∑

j=1

(
mI

ij(q)μj

)× (μi × qi)− (I3×3 − qiq
T
i )

1

2

∂

∂qi

n∑
j=1

n∑
k=1

μT
j m

I
jk(q)μk

− (I3×3 − qiq
T
i )

∂U(q)

∂qi
, i = 1, . . . , n. (5.26)
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The summation terms on the right-hand side of (5.26) are quadratic in the
conjugate momenta.

Hamilton’s equations (5.25) and (5.26) describe the Hamiltonian flow in
terms of (q, μ) ∈ T∗(S2)n on the cotangent bundle T∗(S2)n.

If the Legendre transformation is globally invertible and the potential
terms in (5.25) and (5.26) are globally defined on (R3)n, then the domain
of definition of (5.25) and (5.26) on T∗(S2)n can be extended to T∗(R3)n.
This extension is natural in that it defines a Hamiltonian vector field on the
cotangent bundle T∗(R3)n. Alternatively, the manifold T∗(S2)n is an invari-
ant manifold of this Hamiltonian vector field on T∗(R3)n and its restriction
to this invariant manifold describes the Hamiltonian flow of (5.25) and (5.26)
on T∗(S2)n.

5.4.3 Hamilton’s Phase Space Variational Principle in Terms
of (q, π)

We now present an alternate version of Hamilton’s equations using the Leg-
endre transformation of the modified Lagrangian function L̃(q, ω) to define
the conjugate momentum. The Legendre transformation ω = (ω1, . . . , ωn) ∈
Tq(S

2)n → π = (π1, . . . , πn) ∈ T∗
q(S

2)n is defined by

πi = (I3×3 − qiq
T
i )

∂L̃(q, ω)

∂ωi
, i = 1, . . . , n. (5.27)

Assume the Lagrangian function is hyperregular; that is the Legendre trans-
formation, viewed as a map Tq(S

2)n → T∗
q(S

2)n, is invertible.
The modified Hamiltonian function given by

H̃(q, π) =

n∑
j=1

πj · ωj − L̃(q, ω),

where the right-hand side is expressed in terms of (q, π) using the Legendre
transformation (5.27).

Consider the modified action integral

G̃ =

∫ tf

t0

⎧⎨
⎩

n∑
j=1

πj · ωj − H̃(q, ω)

⎫⎬
⎭ dt.

The infinitesimal variation of the action integral is given by

δG̃ =
n∑

i=1

∫ tf

t0

{
πi · δωi − ∂H̃(q, π)

∂qi
· δqi +

(
ωi − ∂H̃(q, π)

∂πi

)
· δπi

}
dt.
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Recall from (5.3) and (5.13) that the infinitesimal variations can be written
as

δqi = S(γi)qi, i = 1, . . . , n,

δωi = −S(ωi)γi + (I3×3 − qiq
T
i )γ̇i, i = 1, . . . , n,

for differentiable curves γi : [t0, tf ] → R
3, i = 1, . . . , n satisfying γi · qi = 0

and γi(t0) = γi(tf ) = 0, i = 1, . . . , n.

5.4.4 Hamilton’s Equations in Terms of (q, π)

Substitute the expressions for δqi and δωi into the infinitesimal variation of
the modified action integral and integrate by parts to obtain

δG̃ =

n∑
j=1

∫ tf

t0

(
ωi − ∂H̃(q, π)

∂πi

)
· δπi

+

(
−π̇i + S(ω)πi − S(qi)

∂H̃(q, π)

∂qi

)
· γi dt,

using the fact that (I3×3 − qiq
T
i )πi = πi since πi is orthogonal to qi by the

definition (5.27). The orthogonality condition πi ·qi = 0 also implies that δqi ·
πi + qi · δπi = 0. To impose this constraint on the infinitesimal variations, we
decompose δπi into a component orthogonal to the tangent space TqiS

2, that
is collinear with qi, namely δπC

i = qiq
T
i δπi, and a component in the tangent

space TqiS
2, that is orthogonal to qi, namely δπM

i = (I3×3 − qiq
T
i )δπi. From

the above constraint, we have qTi δπi = −πT
i δqi = −πT

i S(γi)qi = πT
i S(qi)γi.

Therefore δπC
i = qiq

T
i δπi = qiπ

T
i S(qi)γi.

Using these facts, the variation of the action integral can be rewritten as

δG̃ =

n∑
i=1

∫ tf

t0

{
−π̇i + S(ωi)πi − S(qi)

∂H̃(q, π)

∂qi

}
· γi

+

{
qiq

T
i

(
ωi − ∂H̃(q, π)

∂πi

)}
· δπC

i

+

{
(I3×3 − qiq

T
i )

(
ωi − ∂H̃(q, π)

∂πi

)}
· δπM

i dt.

Since qi · ωi = 0 and (I3×3 − qiq
T
i )ωi = ωi,
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δG̃ =

n∑
i=1

∫ tf

t0

{
−π̇i + S(ωi)πi − S(qi)

∂H̃(q, π)

∂qi
+ S(qi)πiq

T
i

∂H̃(q, π)

∂πi

}
· γi

+

{
ωi − (I3×3 − qiq

T
i )

∂H̃(q, π)

∂πi

}
· δπM

i dt.

Hamilton’s phase space variational principle gives: δG̃ = 0 for all possible
functions γi : [t0, tf ] → R

3 and δπM
i : [t0, tf ] → R

3 that are in the cotangent
space T∗

qiS
2 and satisfy γi(t0) = γi(tf ) = 0, i = 1, . . . , n. This implies that

the expression in each of the parentheses of the above equation should be
collinear with qi, or equivalently,

(I3×3 − qiq
T
i )

(
−π̇i + S(ωi)πi − S(qi)

∂H̃(q, π)

∂qi
+ S(qi)πiq

T
i

∂H̃(q, π)

∂πi

)
= 0,

ωi = (I3×3 − qiq
T
i )

∂H̃(q, π)

∂πi
= −S(qi)

2 ∂H̃(q, π)

∂πi
.

Using the fact that (I3×3 − qiq
T
i )S(qi) = −S(qi)

3 = S(qi) and (I3×3 −
qiq

T
i )S(ωi)πi = −S(qi){qi × (ωi × πi)} = −S(qi){(qi · πi)ωi − (qi ·ωi)πi} = 0,

the first equation of the above reduces to

−(I3×3 − qiq
T
i )π̇i − S(qi)

∂H̃(q, π)

∂qi
+ S(qi)πiq

T
i

∂H̃(q, π)

∂πi
= 0.

However, this is incomplete since it only determines the component of π̇i

that is orthogonal to qi. The component of π̇i that is collinear with qi is
determined by taking the time derivative of qi·πi = 0 to obtain qi·π̇i = −q̇i·πi.
Therefore, qiq

T
i π̇i = −qiπ

T
i q̇i. By combining these, Hamilton’s equations on

the configuration manifold (S2)n can be written in terms of (q, π) as

q̇i = −S(qi)ωi

= S(qi)
3 ∂H̃(q, π)

∂πi

= −S(qi)
∂H̃(q, π)

∂πi
,

π̇i = −S(qi)
∂H̃(q, π)

∂qi
+ S(qi)πiq

T
i

∂H̃(q, π)

∂πi
+ qiπ

T
i S(qi)

∂H̃(q, π)

∂πi

= −S(qi)
∂H̃(q, π)

∂qi
+

∂H̃(q, π)

∂πi
× ((S(qi)πi)× qi)

= −S(qi)
∂H̃(q, π)

∂qi
+

∂H̃(q, π)

∂πi
× (−S(qi)

2πi).

But −S(qi)
2πi = πi since πi is orthogonal to qi. In summary, Hamilton’s

equations are given as follows.
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Proposition 5.4 Hamilton’s equations for a modified Hamiltonian function
H̃ : T∗(S2)n → R

1 are

q̇i = −S(qi)
∂H̃(q, π)

∂πi
, i = 1, . . . , n, (5.28)

π̇i = −S(qi)
∂H̃(q, π)

∂qi
+

∂H̃(q, π)

∂πi
× πi, i = 1, . . . , n. (5.29)

Thus, equations (5.28) and (5.29) describe the Hamiltonian flow in terms of
(q, π) ∈ T∗(S2)n on the cotangent bundle T∗(S2)n.

The following property follows directly from the above formulation of
Hamilton’s equations on (S2)n:

dH̃(q, π)

dt
=

n∑
i=1

∂H̃(q, π)

∂qi
· q̇i + ∂H̃(q, π)

∂πi
· π̇i

=

n∑
i=1

∂H̃(q, π)

∂πi
·
{
∂H̃(q, π)

∂πi
× π

}

= 0.

The modified Hamiltonian function is constant along each solution of Hamil-
ton’s equation. This property does not hold if the modified Hamiltonian func-
tion has a nontrivial explicit dependence on time.

Let the kinetic energy be a quadratic function of the angular velocity
vector in the form that arises from the Lagrangian given by (5.22). Thus,
the modified Lagrangian function, expressed in terms of the angular velocity
vector, is

L̃(q, ω) =
1

2

n∑
j=1

n∑
k=1

ωT
j S(qj)

Tmjk(q)S(qk)ωk − U(q). (5.30)

The conjugate momentum is defined by the Legendre transformation

πi = (I3×3 − qiq
T
i )

∂L̃(q, ω)

∂ωi

= (I3×3 − qiq
T
i )

n∑
j=1

S(qi)
Tmij(q)S(qj)ωj

=

n∑
j=1

S(qi)
Tmij(q)S(qj)ωj

= mii(q)ωi +
n∑

j=1
j �=i

S(qi)
Tmij(q)S(qj)ωj , i = 1, . . . , n. (5.31)
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The algebraic equations (5.31), viewed as a linear mapping from ω =
(ω1, . . . , ωn) ∈ Tq(S

2)n to π = (π1, . . . , πn) ∈ T∗
q(S

2)n, can be inverted and
expressed in the form

ωi =
n∑

j=1

mI
ij(q)πj , i = 1, . . . , n,

where mI
ij : (S2)n → R

3×3, for i = 1, . . . , n, j = 1, . . . , n, are the entries of
the matrix inverse obtained from (5.31).

The modified Hamiltonian function can be expressed as

H̃(q, π) =
1

2

n∑
i=1

n∑
j=1

πT
i m

I
ij(q)πj + U(q). (5.32)

Hamilton’s equations, expressed in terms of (q, π), describe the Hamiltonian
flow on the cotangent bundle T(S2)n according to:

q̇i = −S(qi)

⎧⎨
⎩

n∑
j=1

mI
ij(q)πj

⎫⎬
⎭ , i = 1, . . . , n, (5.33)

π̇i = −1

2
S(qi)

∂

∂qi

n∑
j=1

n∑
k=1

πT
j m

I
jk(q)πk

+

⎧⎨
⎩

n∑
j=1

mI
ij(q)πj

⎫⎬
⎭× πi − S(qi)

∂U(q)

∂qi
, i = 1, . . . , n. (5.34)

If the Legendre transformation is globally invertible and the potential
terms in (5.33) and (5.34) are globally defined on (R3)n, then the domain
of definition of (5.33) and (5.34) on T∗(S2)n can be extended to T∗(R3)n.
This extension is natural in that it defines a Hamiltonian vector field on the
cotangent bundle T∗(R3)n. Alternatively, the manifold T∗(S2)n is an invari-
ant manifold of this Hamiltonian vector field on T∗(R3)n and its restriction
to this invariant manifold describes the Hamiltonian flow of (5.33) and (5.34)
on T∗(S2)n.

5.5 Linear Approximations of Dynamics on (S2)n

Geometric forms of the Euler–Lagrange equations and Hamilton’s equations
on the configuration manifold (S2)n have been presented. These equations
of motion provide insight into the geometry of the global dynamics of the
associated Lagrangian vector field on T(S2)n or the Hamiltonian vector field
on T∗(S2)n.
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Let (qe, 0) ∈ T(S2)n be an equilibrium solution of the Lagrangian vector
field. It is possible to develop a linear vector field that approximates the
Lagrangian vector field, at least locally in an open subset of T(S2)n.

A common approach in much of the literature on dynamical systems on
(S2)n introduces 2n local coordinates, such as angle coordinates, to describe
the configuration. These descriptions involve complicated trigonometric or
transcendental expressions and introduce additional complexity in the anal-
ysis and computations.

Although the main emphasis throughout this book is on global methods,
we make use of local coordinates as a way of describing a linear vector field
that approximates a nonlinear vector field on a manifold, at least in the
neighborhood of an equilibrium solution. This approach is used subsequently
in the chapter to study the local flow properties near an equilibrium. As
further background for the subsequent development, Appendix B summarizes
a linearization procedure for a Lagrangian vector field defined on TS2.

5.6 Dynamics on (S2)n

In this section, several Lagrangian and Hamiltonian systems with configu-
ration manifolds given by (S2)n are introduced. In each case, the physical
description and assumptions are made clear. The Euler–Lagrange equations
are expressed in two different forms and Hamilton’s equations are obtained
in two different forms. These follow directly from the expression for the La-
grangian function in each example, and the general form of the equations
of motion for dynamics on (S2)n developed earlier in this chapter. Special
features of these equations are described.

5.6.1 Dynamics of a Spherical Pendulum

A spherical pendulum consists of a rigid link connected to a frictionless, two
degree of freedom ideal pivot; the mass of the spherical pendulum is assumed
to be concentrated at the end of the massless link. The spherical pendulum
acts under uniform, constant gravity.

Introduce an inertial Euclidean frame in three dimensions; the first two
axes of the frame are horizontal and the third axis is vertical; the origin of
the inertial frame is located at the pivot of the spherical pendulum. Most
conventional treatments of the spherical pendulum define the attitude con-
figuration in terms of two angles. Although this choice is natural for small
angle motions of the spherical pendulum, it is problematic for large rotational
motions of the spherical pendulum.
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Here we introduce a globally defined notion of the attitude of the spher-
ical pendulum. The attitude vector q ∈ S2 is a unit vector from the pivot
point to the concentrated pendulum mass defined with respect to the inertial
Euclidean frame. The configuration manifold is the sphere S2, viewed as an
embedded manifold in R

3. Thus, the spherical pendulum has two degrees of
freedom. A schematic of a spherical pendulum is shown in Figure 5.1.

q ∈ S2

Fig. 5.1 Spherical pendulum

Uniform gravity acts on the concentrated mass of the pendulum; g is the
constant acceleration of gravity. The distance from the pivot to the pendulum
mass is L and m is the mass of the pendulum. No forces, other than gravity,
act on the spherical pendulum.

To illustrate the several possible formulations of the equations of motion,
we present two equivalent versions of the Euler–Lagrange equations and two
equivalent versions of Hamilton’s equations.

5.6.1.1 Euler–Lagrange Equations in Terms of (q, q̇)

The Lagrangian function L : TS2 → R
1 for a spherical pendulum can be

written as the difference of the kinetic energy function and the gravitational
potential energy function:

L(q, q̇) =
1

2
mL2 ‖q̇‖2 −mgLeT3 q. (5.35)

The Euler–Lagrange equation for the spherical pendulum is obtained from
(5.10) as

mL2q̈ +mL2 ‖q̇‖2 q +mgL(I3×3 − qqT )e3 = 0. (5.36)

This equation describes the Lagrangian dynamics of the spherical pendulum
in terms of (q, q̇) ∈ TS2 on the tangent bundle of the configuration mani-
fold S2.
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5.6.1.2 Euler–Lagrange Equations in Terms of (q, ω)

A convenient form of the Euler–Lagrange equations can also be obtained in
terms of the angular velocity vector of the spherical pendulum ω ∈ TqS

2

which satisfies the rotational kinematics

q̇ = S(ω)q. (5.37)

Recall that the angular velocity vector satisfies ωT q = 0 and S(ω) is the 3×3
skew-symmetric matrix function.

The modified Lagrangian function can be expressed in terms of the angular
velocity vector of the spherical pendulum as

L̃(q, ω) =
1

2
mL2 ‖ω‖2 −mgLeT3 q.

The Euler–Lagrange equation, expressed in terms of the angular velocity
vector, consists of the rotational kinematics (5.37) and the equation obtained
from (5.17), which can be written as

mL2ω̇ +mgLS(q)e3 = 0. (5.38)

These equations (5.37) and (5.38) describe the Lagrangian dynamics of the
spherical pendulum in terms of (q, ω) ∈ TS2 on the tangent bundle of S2.

5.6.1.3 Hamilton’s Equations in Terms of (q, μ)

Define the conjugate momentum

μ = (I3×3 − qqT )
∂L(q, q̇)

∂q̇
= mL2q̇,

using the Legendre transformation. The Hamiltonian function can be ex-
pressed as

H(q, μ) =
1

2mL2
‖μ‖2 +mgLeT3 q.

Then, Hamilton’s equations of motion for the spherical pendulum are given
by (5.25) and (5.26), which can be written in this case as

q̇ =
μ

mL2
, (5.39)

μ̇ = −‖μ‖2
mL2

q −mgL(I3×3 − qqT )e3. (5.40)
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Hamilton’s equations (5.39) and (5.40) describe the Hamiltonian dynamics
of the spherical pendulum (q, μ) ∈ T∗S2 on the cotangent bundle of the
configuration manifold.

5.6.1.4 Hamilton’s Equations in Terms of (q, π)

Define the angular momentum

π = (I3×3 − qqT )
∂L̃(q, ω)

∂ω
= mL2ω,

using the Legendre transformation. The modified Hamiltonian function is

H̃(q, π) =
1

2mL2
‖π‖2 +mgLeT3 q.

Hamilton’s equations of motion for the spherical pendulum, obtained from
(5.33) and (5.34), are

q̇ =
1

mL2
S(π)q, (5.41)

π̇ = mgLS(e3)q. (5.42)

Thus, the Hamiltonian flow of the spherical pendulum is described by (5.41)
and (5.42) in terms of the evolution of (q, π) ∈ T∗S2 on the cotangent bundle
of S2.

5.6.1.5 Conservation Properties

The Hamiltonian, which coincides with the total energy E in this case, is
conserved, that is

H =
1

2
mL2 ‖q̇‖2 +mgLeT3 q

is constant along each solution of the dynamical flow of the spherical pendu-
lum.

It is also easy to show that the vertical component of the angular momen-
tum, namely

eT3 π = mL2e3
Tω

is constant along each solution of the dynamical flow of the spherical pendu-
lum. This arises as a consequence of Noether’s theorem, due to the invariance
of the Lagrangian with respect to the lifted action of rotations about the
gravity direction.
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5.6.1.6 Equilibrium Properties

An important feature of the dynamics of the spherical pendulum is its equi-
librium configurations in S2. The conditions for an equilibrium are that the
time derivative of the configuration vector, or equivalently the angular ve-
locity vector or the momentum, is zero and the equilibrium configuration
satisfies:

(I3×3 − qqT )e3 = 0,

which implies that the time derivatives of the angular velocity or momentum
both vanish as well. Hence, there are two equilibrium solutions given by
(−e3, 0) ∈ TS2 and by (e3, 0) ∈ TS2. A configuration is an equilibrium if and
only if it is collinear with the direction of gravity. The equilibrium (−e3, 0) ∈
TS2 is referred to as the hanging equilibrium of the spherical pendulum;
the equilibrium (e3, 0) ∈ TS2 is the inverted equilibrium of the spherical
pendulum.

The stability properties of each equilibrium are studied in turn using
(5.47). We first linearize (5.36) about the inverted equilibrium (e3, 0) ∈ TS2

to obtain

mL2ξ̈1 −mgLξ1 = 0,

mL2ξ̈2 −mgLξ2 = 0,

defined on the tangent space of TS2 at (e3, 0) ∈ TS2. These linear differential
equations approximate the local dynamics of the spherical pendulum in a
neighborhood of the inverted equilibrium (e3, 0) ∈ TS2. The eigenvalues are
easily determined to be +

√
g
L , −

√
g
L , +

√
g
L , −

√
g
L . Since there are positive

eigenvalues, the inverted equilibrium (e3, 0) ∈ TS2 is unstable.
We now linearize (5.36) about the hanging equilibrium (−e3, 0) ∈ TS2.

This gives the resulting linearized differential equations

mL2ξ̈1 +mgLξ1 = 0,

mL2ξ̈2 +mgLξ2 = 0,

defined on the tangent space of TS2 at (−e3, 0) ∈ TS2. These linear differen-
tial equations approximate the local dynamics of the spherical pendulum in
a neighborhood of the hanging equilibrium (−e3, 0) ∈ TS2. The eigenvalues
are easily determined to be +j

√
g
L , −j

√
g
L , +j

√
g
L , −j

√
g
L . Since the eigen-

values are purely imaginary no conclusion can be drawn about the stability
of the hanging equilibrium.

We now describe a Lyapunov method to demonstrate the stability of the
hanging equilibrium. The total energy of the spherical pendulum can be
shown to have a strict local minimum at the hanging equilibrium on TS2,
and the sublevel sets in TS2 in a neighborhood of the hanging equilibrium
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are compact. Further, the time derivative of the total energy along the flow
given by (5.36) is zero, that is the total energy does not increase along the
flow. According to standard results, this guarantees that the hanging equi-
librium (−e3, 0) ∈ TS2 is stable.

These stability results confirm the physically intuitive conclusions about
the local flow properties of these two equilibrium solutions.

5.6.2 Dynamics of a Particle Constrained to a Sphere
That Rotates with Constant Angular Velocity

A particle, with mass m, is constrained to move, without friction, on a rigid
spherical surface of radius L > 0. The sphere rotates about an inertially
fixed diameter with a constant angular speed Ω ∈ R

1. This example can
be compared with the prior example in Chapter 4 of a particle constrained
to move on a rotating circular hoop. This example can be interpreted as a
spherical pendulum whose pivot rotates at a constant angular velocity. Since
spherical pendulum models usually include gravity effect, and the particle on
a rotating sphere does not include gravity effects in the current formulation,
the subsequent results are interpreted in terms of a particle constrained to a
sphere that rotates with a constant angular velocity.

Introduce a rotating sphere-fixed Euclidean frame and an inertial Eu-
clidean frame in three dimensions; the origins of the two frames are located at
the fixed center of the rotating sphere. The third axes of the two frames are in
the fixed direction of the angular velocity vector of the rotating sphere. The
first two axes of the two frames are selected to form a right-hand Euclidean
frame.

We use a globally defined notion of the configuration of the particle on
a sphere: the attitude vector q = (q1, q2, q3) ∈ S2 is a unit vector from the
center of the sphere to the location of the particle defined with respect to
the rotating sphere-fixed Euclidean frame. The configuration manifold is S2,
viewed as an embedded manifold in R

3. Thus, the particle on a rotating
sphere has two degrees of freedom. The position vector of the particle with
respect to the sphere-fixed frame is Lq ∈ R

3 and the position vector of the
particle with respect to the inertial frame is x ∈ R

3. A schematic of a particle
on a rotating sphere is shown in Figure 5.2.

A conventional treatment of particle motion on a sphere would define the
configuration in terms of latitude and longitude angles. Although this choice
is natural for small angle motions, it is problematic for large motions through
or near the poles.
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q ∈ S2

Fig. 5.2 Particle on a rotating sphere

5.6.2.1 Euler–Lagrange Equations in Terms of (q, q̇)

Assume that, initially, the first two axes of the sphere-fixed frame are aligned
with the first two axes of the inertial frame. The position vector of the par-
ticle in the three-dimensional inertial frame can be expressed in terms of the
configuration vector of the particle by

x = L

⎡
⎣cosΩt − sinΩt 0
sinΩt cosΩt 0

0 0 1

⎤
⎦ q,

where the transformation matrix is the rotation matrix from the sphere-fixed
frame to the inertial frame. Thus, it follows that

ẋ = L

⎡
⎣cosΩt − sinΩt 0
sinΩt cosΩt 0

0 0 1

⎤
⎦ (S(Ωe3)q + q̇),

since Ωe3 ∈ R
3 is the angular velocity vector of the sphere in the sphere-fixed

frame.
The kinetic energy of the particle on a rotating sphere can be expressed

as

T (q, q̇) =
1

2
m ‖ẋ‖2 =

1

2
mL2

{
‖q̇‖2 + 2qTST (Ωe3)q̇ +Ω2

(
qTCq

)}
,

where
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C =

⎡
⎣1 0 0
0 1 0
0 0 0

⎤
⎦ .

There is no potential energy so that the Lagrangian L : TS2 → R
1 is

L(q, q̇) =
1

2
mL2

{
‖q̇‖2 + 2qTST (Ωe3)q̇ +Ω2

(
qTCq

)}
.

Although there is no potential, the Lagrangian function is a quadratic func-
tion in the configuration rate vector and the configuration vector; the second
term in the Lagrangian expression adds additional complexity to the resulting
dynamics.

The Euler–Lagrange equation is obtained from (5.7), following the same
approach indicated previously to obtain (5.10). After some algebra, the Euler–
Lagrange equation for the particle on a rotating sphere can be written as

mL2q̈ +mL2 ‖q̇‖2 q + 2mL2(I3×3 − qqT )S(Ωe3)q̇

−mL2Ω2(I3×3 − qqT )Cq = 0. (5.43)

This equation describes the Lagrangian dynamics of the particle on a rotating
sphere in terms of (q, q̇) ∈ TS2 on the tangent bundle of the configuration
manifold S2. The dynamics can also be used to describe the motion of the
particle with respect to the inertial frame using the above relationships.

5.6.2.2 Euler–Lagrange Equations in Terms of (q, ω)

The Euler–Lagrange equations can also be expressed in terms of the angular
velocity vector, which satisfies the rotational kinematics

q̇ = S(ω)q, (5.44)

where the angular velocity vector satisfies ωT q = 0 and S(ω) is the 3 × 3
skew-symmetric matrix function.

The modified Lagrangian function can be expressed in terms of the angular
velocity vector as

L̃(q, ω) =
1

2
mL2

{
‖ω‖2 + 2qTS(Ωe3)S(q)ω +Ω2

(
qTCq

)}
.

The Euler–Lagrange equation, expressed in terms of the angular velocity
vector ω, consists of the rotational kinematics (5.44) and an equation that can
be obtained from (5.14); this is a lengthy equation, not given here, suggesting
that it is not so convenient in this case to describe the Lagrangian dynamics
in terms of the angular velocity vector.



5.6 Dynamics on (S2)n 241

5.6.2.3 Hamilton’s Equations in Terms of (q, μ)

Define the momentum

μ = (I3×3 − qqT )
∂L(q, q̇)

∂q̇
= mL2{q̇ + S(Ωe3)q},

using the Legendre transformation. Thus, μ ∈ T∗
qS

2 is conjugate to q̇ ∈ TqS
2.

The Hamiltonian function is

H(q, μ) = μT q̇ − 1

2
mL2{‖q̇‖2 − 2qTS(Ωe3)q̇ +Ω2

(
qTCq

)}
=

1

2
mL2{‖q̇‖2 −Ω2

(
qTCq

)},
which can be expressed as

H(q, μ) =
1

2mL2

∥∥μ−mL2S(Ωe3)q
∥∥2 − 1

2
mL2Ω2

(
qTCq

)
.

Then, Hamilton’s equations of motion for the particle on a rotating sphere
are given by (5.20) and (5.21), which can be written in this case as

q̇ =
1

mL2
(μ−mL2S(Ωe3)q), (5.45)

μ̇ = −(I3×3 − qqT )S(Ωe3)(μ−mL2S(Ωe3)q)

+
1

mL2
(μ−mL2S(Ωe3)q)× (μ× q) +mL2Ω2(I3×3 − qqT )Cq. (5.46)

Hamilton’s equations (5.45) and (5.46) describe the Hamiltonian dynamics of
the particle on a rotating sphere in terms of (q, μ) ∈ T∗S2 on the cotangent
bundle of the configuration manifold.

5.6.2.4 Hamilton’s Equations in Terms of (q, π)

Define the angular momentum

π = (I3×3 − qqT )
∂L̃(q, ω)

∂ω
= mL2{ω + S(q)S(Ωe3)q},

using the Legendre transformation. Thus, π ∈ T∗
qS

2 is conjugate to the an-
gular velocity ω ∈ TqS

2. The modified Hamiltonian function is

H̃(q, π) = πTω − 1

2
mL2

{
‖ω‖2 + 2qTS(Ωe3)S(q)ω +Ω2

(
qTCq

)}

=
1

2
mL2

{
‖ω‖2 −Ω2(qTCq)

}
,
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which can be expressed as

H̃(q, π) =
1

2mL2

∥∥π −mL2S(q)S(Ωe3)q
∥∥2 − 1

2
mL2Ω2(qTCq).

Hamilton’s equations, expressed in terms of the conjugate momentum π, can
be obtained from (5.28) and (5.29). This is a lengthy equation, not given here,
suggesting that it is not so convenient in this case to describe the Lagrangian
dynamics in terms of the angular velocity vector.

5.6.2.5 Conservation Properties

Equation (5.43) suggests that the dynamics of the particle on a rotating
sphere do not depend on the mass value of the particle or the radius of the
sphere but do depend on the constant angular velocity Ω of the rotating
sphere.

It is easy to show that the Hamiltonian

H =
1

2
mL2

{
‖q̇‖2 + 2qTST (Ωe3)q̇ +Ω2

(
qTCq

)}

which coincides with the total energy E in this case is constant along each
solution of the dynamical flow of a particle on a rotating sphere.

5.6.2.6 Equilibrium Properties

We now determine the equilibrium configurations of the particle on a rotating
sphere in S2. The conditions for an equilibrium are that the time derivative
of the configuration vector, or equivalently the angular velocity vector or the
momentum, is zero and the equilibrium configuration satisfies:

−(I3×3 − qqT )Cq =

⎡
⎣ −q1q

2
3

−q2q
2
3

q3(1− q23)

⎤
⎦ =

⎡
⎣00
0

⎤
⎦ ,

which implies that the time derivatives of the angular velocity and momentum
both vanish as well. Hence, an equilibrium vector in TS2 is either a polar
equilibrium: (e3, 0) ∈ TS2 or (−e3, 0) ∈ TS2 or an equatorial equilibrium
(q, 0) ∈ TS2 that satisfies

q21 + q22 = 1,

q3 = 0.

A configuration vector is an equilibrium configuration if and only if it is either
collinear or orthogonal to the angular velocity vector of the rotating sphere.
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The stability properties of each equilibrium are studied in turn using
(5.43). We first linearize (5.43) about the polar equilibrium (e3, 0) ∈ TS2

to obtain

ξ̈1 −Ω2ξ1 = 0,

ξ̈2 −Ω2ξ2 = 0,

restricted to the tangent space of TS2 at (e3, 0) ∈ TS2. These linear differen-
tial equations approximate the local dynamics of the particle on a rotating
sphere in a neighborhood of the equilibrium (e3, 0) ∈ TS2. The eigenval-
ues are easily determined to be +Ω, +Ω, −Ω, −Ω. Since there are positive
eigenvalues, the polar equilibrium (e3, 0) ∈ TS2 is unstable.

It can be shown that the local dynamics of the particle on a rotating sphere
in a neighborhood of the polar equilibrium (−e3, 0) ∈ TS2 are also given by

ξ̈1 −Ω2ξ1 = 0,

ξ̈2 −Ω2ξ2 = 0,

so that this equilibrium is also unstable.
We now linearize (5.43) about the equatorial equilibrium (e1, 0) ∈ TS2.

This gives the resulting linearized differential equations

ξ̈2 = 0,

ξ̈3 +Ω2ξ3 = 0,

restricted to the tangent space of TS2 at (e1, 0) ∈ TS2. These linear differen-
tial equations approximate the local dynamics of the particle on a rotating
sphere in a neighborhood of the equilibrium (e1, 0) ∈ TS2. The eigenvalues
are easily determined to be jΩ, −jΩ, 0, 0. Since the eigenvalues have zero
real parts no conclusion can be drawn about the stability of this equatorial
equilibrium.

It can be shown that the local dynamics of the particle on a rotating
sphere in a neighborhood of any equatorial equilibrium have a similar form
with eigenvalues jΩ, −jΩ, 0, 0.

5.6.3 Dynamics of a Spherical Pendulum Connected to Three
Elastic Strings

An example of a spherical pendulum connected to three elastic strings is
studied in detail in [90]. One end of a spherical pendulum, viewed as a thin,
rigid link or rod, is connected to a spherical pivot joint at a fixed inertial
position while three elastic strings, in tension, connect the other end of the
pendulum link to fixed inertial positions. The pivot of the spherical pendulum
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and the fixed ends of the three elastic strings are assumed to lie in a fixed
horizontal plane. Gravity acts on the rigid rod.

This example of a spherical pendulum connected to three elastic strings
is used to demonstrate basic properties of a class of structures referred to as
tensegrity structures in [90]. Our subsequent development of the tensegrity
example has considerable overlap with the results presented in [90].

Introduce an inertial Euclidean frame in three dimensions; the first two
axes of the frame are horizontal and the third axis is vertical; the origin of
the inertial frame is located at the pivot of the pendulum link.

We introduce a globally defined notion of the attitude of the pendulum
link. Let q ∈ S2 be a unit vector from the pivot point in the direction of
the center of mass of the pendulum link; it is defined with respect to the
inertial Euclidean frame and referred to as the attitude vector of the link.
The configuration manifold is the sphere S2, viewed as an embedded manifold
in R

3. Thus, the pendulum link has two degrees of freedom.
Uniform gravity acts on the center of mass of the pendulum link; g is the

constant acceleration of gravity. The length of the pendulum link is L and m
is the mass of the pendulum link; the rod is assumed to be uniform so that
its center of mass is located at the midpoint of the rod. The scalar moment
of inertia of the pendulum link about its pivot is denoted by J .

Additional forces due to the three elastically connected strings act on the
pendulum link. Each elastic string is connected to the free end of the pendu-
lum link; the other end of the elastic string is connected to a fixed inertial
support. The inertial supports are located at the vertices of an equilateral
triangle within the horizontal plane containing the pivot of the pendulum
link at the center of the equilateral triangle. These three support locations
are given with respect to the inertial frame by

z1 =

⎡
⎣ −L

2

− L
2
√
3

0

⎤
⎦ , z2 =

⎡
⎣

L
2

− L
2
√
3

0

⎤
⎦ , z3 =

⎡
⎣ 0

L√
3

0

⎤
⎦ .

Each elastic string is assumed to have elastic stiffness κ and un-stretched
length L. A schematic of a spherical pendulum connected to three elastic
strings is shown in Figure 5.3.

q ∈ S2

Fig. 5.3 Spherical pendulum connected to three elastic strings
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To illustrate the several possible formulations of the equations of motion,
we present two equivalent versions of the Euler–Lagrange equations and two
equivalent versions of Hamilton’s equations.

5.6.3.1 Euler–Lagrange Equations in Terms of (q, q̇)

The Lagrangian function L : TS2 → R
1 for a pendulum link can be written

as the difference of the kinetic energy and the potential energy. The kinetic
energy function is

T (q, q̇) =
1

2
J ‖q̇‖2 .

The potential energy consists of the sum of the gravitational potential
energy of the pendulum link and the elastic potential energy in the three
strings. The gravitational potential energy function is

Ug(q) =
mgL

2
eT3 q.

The elastic potential energy of the three strings is described as follows. Define
the string vectors si ∈ R

3 by

si = zi − Lq, i = 1, 2, 3.

These are geometric vectors from the ends of the three pendulum links to
the attachment points of the three elastic strings in the inertial frame. The
elastic potential energy of the three strings is

Ue(q) =

3∑
i=1

1

2
κ(‖si‖ − L)2.

The tension forces that arise from the deformation of the three strings are

Fi = − ∂

∂(Lq)

(
1

2
κ(‖si‖ − L)2

)

= −κ(‖si‖ − L)
∂‖si‖
∂si

∂si
∂(Lq)

= κ(‖si‖ − L)
si

‖si‖ , i = 1, 2, 3.

It is assumed throughout that all three strings remain in tension. This as-
sumption requires that ‖si‖ > L, i = 1, 2, 3. If this condition is violated for a
string, then the tension force on that string is necessarily zero; this could be
incorporated into the above expressions. Thus, the Lagrangian function is
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L(q, q̇) = T (q, q̇)− Ug(q)− Ue(q)

=
1

2
J ‖q̇‖2 − mgL

2
eT3 q −

3∑
i=1

1

2
κ(‖si‖ − L)2.

Following the prior development in Chapter 5, the Euler–Lagrange equa-
tion for the pendulum link with three elastically connected strings can be
written as

Jq̈+J ‖q̇‖2 q + (I3×3 − qqT )

{
mgL

2
e3 − L(F1 + F2 + F3)

}
= 0. (5.47)

This equation describes the Lagrangian dynamics of the pendulum link and
three elastically connected strings in terms of (q, q̇) ∈ TS2 on the tangent
bundle of the configuration manifold S2.

5.6.3.2 Euler–Lagrange Equations in Terms of (q, ω)

A convenient form of the Euler–Lagrange equations can also be obtained in
terms of the angular velocity vector of the pendulum link which satisfies the
rotational kinematics

q̇ = S(ω)q, (5.48)

where the angular velocity vector satisfies ωT q = 0 and S(ω) is the 3 × 3
skew-symmetric matrix function.

The modified Lagrangian function can be expressed in terms of the angular
velocity vector of the pendulum link as

L̃(q, ω) =
1

2
J ‖ω‖2 − mgL

2
eT3 q −

3∑
i=1

1

2
κ(‖si‖ − L)2.

The Euler–Lagrange equation, expressed in terms of the angular velocity
vector, consists of the rotational kinematics (5.48) and the equation

Jω̇ + S(q)

{
mgL

2
e3 − L(F1 + F2 + F3)

}
= 0. (5.49)

These equations (5.48) and (5.49) describe the Lagrangian dynamics of the
spherical pendulum and three elastically connected strings in terms of (q, q̇) ∈
TS2 on the tangent bundle of S2.
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5.6.3.3 Hamilton’s Equations in Terms of (q, μ)

Define the momentum

μ = (I3×3 − qqT )
∂L(q, q̇)

∂q̇
= Jq̇,

using the Legendre transformation. Thus, μ ∈ T∗S2 is conjugate to q̇ ∈ TS2.
The Hamiltonian function can be expressed as

H(q, μ) =
1

2J
‖μ‖2 + mgL

2
eT3 q +

3∑
i=1

1

2
κ(‖si‖ − L)2.

Then, Hamilton’s equations of motion for the spherical pendulum and three
elastically connected strings are

q̇ =
μ

J
, (5.50)

μ̇ = −‖μ‖2
J

q − (I3×3 − qqT )

{
mgL

2
e3 − L(F1 + F2 + F3)

}
. (5.51)

Hamilton’s equations (5.50) and (5.51) describe the Hamiltonian dynamics
of the spherical pendulum and three elastically connected strings in terms of
(q, μ) ∈ T∗S2 on the cotangent bundle of the configuration manifold.

5.6.3.4 Hamilton’s Equations in Terms of (q, π)

Define the angular momentum

π = (I3×3 − qqT )
∂L̃(q, ω)

∂ω
= Jω,

using the Legendre transformation. Thus, π ∈ T∗S2 is conjugate to the an-
gular velocity ω ∈ TS2. The modified Hamiltonian function is

H̃(q, π) =
1

2J
‖π‖2 + mgL

2
eT3 q +

3∑
i=1

1

2
κ(‖si‖ − L)2.

Hamilton’s equations of motion for the spherical pendulum and three elasti-
cally connected strings are

q̇ =
1

J
S(π)q, (5.52)

π̇ = −S(q)

{
mgL

2
e3 − L(F1 + F2 + F3)

}
. (5.53)
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Thus, the Hamiltonian flow of the spherical pendulum and three elastically
connected strings is described by (5.52) and (5.53) in terms of the evolution
of (q, π) ∈ T∗S2 on the cotangent bundle of S2.

5.6.3.5 Conservation Properties

It is easy to show that the Hamiltonian

H =
1

2
J ‖q̇‖2 + mgL

2
eT3 q +

3∑
i=1

1

2
κ(‖si‖ − L)2,

which coincides with the total energy E in this case, is constant along each
solution of the dynamical flow of the spherical pendulum connected to three
elastic strings.

5.6.3.6 Equilibrium Properties

An important feature of the dynamics of the spherical pendulum and three
elastically connected strings is its equilibrium configurations lie in S2. The
conditions for an equilibrium are that the time derivative of the configuration
vector, or equivalently the angular velocity vector or the momentum, is zero
and the equilibrium configuration satisfies:

(I3×3 − qqT )

{
mgL

2
e3 − L(F1 + F2 + F3)

}
= 0,

which implies that the time derivatives of the angular velocity and momentum
both vanish as well. This implies the condition: mgL

2 e3−L(F1+F2+F3) ∈ R
3

and q ∈ S2 are collinear. If F1 + F2 + F3 ∈ R
3 and e3 ∈ R

3 are collinear,
then there are two equilibrium solutions given by (−e3, 0) ∈ TS2 and by
(e3, 0) ∈ TS2. The equilibrium (−e3, 0) ∈ TS2 is referred to as the hanging
equilibrium. At the hanging equilibrium, the string vectors are

s1 =

⎡
⎣ −L

2

− L
2
√
3

L

⎤
⎦ , s2 =

⎡
⎣

L
2

− L
2
√
3

L

⎤
⎦ , s3 =

⎡
⎣ 0

L√
3

L

⎤
⎦ .

Thus, the tension force in each string can be computed and it can be shown
that the net tension force, in the inertial frame, is

(F1 + F2 + F3) =
3(2−√

3)

2
κLe3.
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The equilibrium (e3, 0) ∈ TS2 is the inverted equilibrium. At the inverted
equilibrium, the string vectors are

s1 =

⎡
⎣ −L

2

− L
2
√
3

−L

⎤
⎦ , s2 =

⎡
⎣

L
2

− L
2
√
3

−L

⎤
⎦ , s3 =

⎡
⎣ 0

L√
3

−L

⎤
⎦ .

Thus, the tension force in each string can be computed and it can be shown
that the net tension force, in the inertial frame, is

(F1 + F2 + F3) = −3(2−√
3)

2
κLe3.

The local solution and stability properties of each equilibrium are studied
in turn using (5.47). We first linearize (5.47) about the inverted equilibrium
(e3, 0) ∈ TS2 to obtain

mL2ξ̈1 +

{
3(2−√

3)

2
κL2 − mgL

2

}
ξ1 = 0,

mL2ξ̈2 +

{
3(2−√

3)

2
κL2 − mgL

2

}
ξ2 = 0,

restricted to the tangent space of TS2 at (e3, 0) ∈ TS2. These linear differ-
ential equations approximate the local dynamics of the spherical pendulum
and three elastically connected strings in a neighborhood of the inverted
equilibrium (e3, 0) ∈ TS2. If (3(2 − √

3)κL2 > mgL, the eigenvalues are
purely imaginary and, at least to first-order, the solutions in a neighborhood
of the inverted equilibrium are oscillatory, but not necessarily periodic. If
3(2−√

3)κL2 < mgL, there is a positive eigenvalue and the inverted equilib-
rium (e3, 0) ∈ TS2 is unstable.

We now linearize (5.47) about the hanging equilibrium (−e3, 0) ∈ TS2.
This gives the resulting linearized differential equations

mL2ξ̈1 +

{
3(2−√

3)

2
κL2 − mgL

2

}
ξ1 = 0,

mL2ξ̈2 +

{
3(2−√

3)

2
κL2 − mgL

2

}
ξ2 = 0,

restricted to the tangent space of TS2 at (−e3, 0) ∈ TS2. These linear differ-
ential equations approximate the local dynamics of the spherical pendulum
and three elastically connected strings in a neighborhood of the hanging equi-
librium (−e3, 0) ∈ TS2. The eigenvalues are purely imaginary so, at least to
first-order, the solutions in a neighborhood of the hanging equilibrium are
oscillatory, but not necessarily periodic.
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These local solution and stability results confirm the physically intuitive
conclusions about the local flow properties of these two equilibrium solutions.

5.6.4 Dynamics of Two Elastically Connected Spherical
Pendulums

Two identical pendulums are attached to a common inertially fixed support
by a frictionless pivot. The origin of an inertial Euclidean frame is located
at the common pivot. Each pendulum can rotate in three dimensions. Grav-
itational effects are ignored, but an elastic restoring force acts on the two
pendulums. Each pendulum is assumed to be a thin rigid link of concen-
trated mass m located at distance L from the pivot. A schematic of the two
elastically connected spherical pendulums is shown in Figure 5.4.

q ∈ (S2)2

Fig. 5.4 Two elastically connected spherical pendulums

Let qi ∈ S2, i = 1, 2 denote the attitude of the i-th pendulum link in the
inertial frame. Consequently, the configuration vector of the two pendulums
is given by q = (q1, q2) ∈ (S2)2. Thus, the configuration manifold is (S2)2

and the dynamics of the elastically connected spherical pendulums have four
degrees of freedom.

5.6.4.1 Euler–Lagrange Equations in Terms of (q, q̇)

The total kinetic energy is the sum of the kinetic energies of the two spherical
pendulums

T (q, q̇) =
1

2
mL2 ‖q̇1‖2 + 1

2
mL2 ‖q̇2‖2 .
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The elastic potential energy is assumed to be proportional to (1 − cos θ),
where θ is the angle between the two pendulum links. Since cos θ = qT1 q2, the
elastic potential energy can be expressed in terms of the configuration as

U(q) = κ(1− qT1 q2),

where κ is a positive elastic stiffness constant. Note that the elastic potential
energy has zero gradient, and hence the force vanishes, when the two pendu-
lums are collinear, that is the angle between the two pendulums is either 0
radians or π radians.

The Lagrangian function for the two elastically connected spherical pen-
dulum is thus given by

L(q, q̇) =
1

2
mL2 ‖q̇1‖2 + 1

2
mL2 ‖q̇2‖2 − κ(1− qT1 q2).

The inertia matrix is constant so that the Euler–Lagrange equations, accord-
ing to (5.10), are

mL2q̈1 +mL2 ‖q̇1‖2 q1 − κ(I3×3 − q1q
T
1 )q2 = 0, (5.54)

mL2q̈2 +mL2 ‖q̇2‖2 q2 − κ(I3×3 − q2q
T
2 )q1 = 0. (5.55)

This version of the Euler–Lagrange equations describes the Lagrangian dy-
namics of the two elastically connected spherical pendulums in terms of
(q, q̇) ∈ T(S2)2 on the tangent bundle of the configuration manifold (S2)2.

5.6.4.2 Euler–Lagrange Equations in Terms of (q, ω)

An alternative version of the Euler–Lagrange equations of motion for the
two elastically connected spherical pendulums is expressed in terms of the
angular velocity vector of the two links. The rotational kinematics are given
by

q̇1 = S(ω1)q1, (5.56)

q̇2 = S(ω2)q2, (5.57)

where the angular velocity vector ω = (ω1, ω2) ∈ Tq(S
2)2.

The modified Lagrangian can be expressed in terms of the angular velocity
vector as

L̃(q, ω) =
1

2
mL2 ‖ω1‖2 + 1

2
mL2 ‖ω2‖2 − κ(1− qT1 q2).

Following the prior results in (5.17), the Euler–Lagrange equations for the
elastically connected spherical pendulums, expressed in terms of the angular
velocity vector, are
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mL2ω̇1 + κS(q2)q1 = 0, (5.58)

mL2ω̇2 + κS(q1)q2 = 0. (5.59)

Equations (5.56), (5.57), (5.58), and (5.59) also describe the Lagrangian dy-
namics of the two elastically connected spherical pendulums in terms of
(q, ω) ∈ T(S2)2 on the tangent bundle of (S2)2.

5.6.4.3 Hamilton’s Equations in Terms of (q, μ)

Hamilton’s equations on the cotangent bundle T∗(S2)2 are obtained by defin-
ing the conjugate momenta according to the Legendre transformation

μ1 = (I3×3 − q1q
T
1 )

∂L(q, q̇)

∂q̇1
= mL2q̇1,

μ2 = (I3×3 − q2q
T
2 )

∂L(q, q̇)

∂q̇2
= mL2q̇2,

where the momentum μ = (μ1, μ2) ∈ T∗
q(S

2)2.
The Hamiltonian function is

H(q, μ) =
1

2

‖μ1‖2
mL2

+
1

2

‖μ2‖2
mL2

+ κ(1− qT1 q2).

Hamilton’s equations of motion, obtained from (5.25) and (5.26), are given
by the kinematics equations

q̇1 =
μ1

mL2
, (5.60)

q̇2 =
μ2

mL2
, (5.61)

and the dynamics equations

μ̇1 = −‖μ1‖2
mL2

q1 + κ(I3×3 − q1q
T
1 )q2, (5.62)

μ̇2 = −‖μ2‖2
mL2

q2 + κ(I3×3 − q2q
T
2 )q1. (5.63)

This form of Hamilton’s equations, given by (5.60), (5.61), (5.62), and (5.63),
describes the Hamiltonian dynamics of the two elastically connected spherical
pendulums in terms of (q, μ) ∈ T∗(S2)2 on the cotangent bundle of (S2)n.
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5.6.4.4 Hamilton’s Equations in Terms of (q, π)

A different form of Hamilton’s equations on the cotangent bundle T∗(S2)2

can be obtained by defining the momentum according to the Legendre trans-
formation π = (π1, π2) ∈ T∗

q(S
2)2 that is conjugate to the angular velocity

vector ω = (ω1, ω2) ∈ Tq(S
2)2. This gives

π1 = (I3×3 − q1q
T
1 )

∂L̃(q, ω)

∂ω1
= mL2ω1,

π2 = (I3×3 − q2q
T
2 )

∂L̃(q, ω)

∂ω2
= mL2ω2.

The modified Hamiltonian function is

H̃(q, π) =
1

2

‖π1‖2
mL2

+
1

2

‖π2‖2
mL2

+ κ(1− qT1 q2).

Hamilton’s equations of motion for the elastically connected spherical pendu-
lums, according to (5.33) and (5.34), are given by the kinematics equations

q̇1 =
S(π1)

mL2
q1, (5.64)

q̇2 =
S(π2)

mL2
q2, (5.65)

and the dynamics equations

π̇1 = −κS(q2)q1, (5.66)

π̇2 = −κS(q1)q2. (5.67)

The Hamiltonian flow of the elastically connected spherical pendulums is de-
scribed by equations (5.64), (5.65), (5.66), and (5.67) in terms of the evolution
of (q, π) ∈ T∗(S2)2 on the cotangent bundle of (S2)2.

5.6.4.5 Conservation Properties

It is easy to show that the Hamiltonian of the two elastically connected
spherical pendulums

H =
1

2
mL2 ‖q̇1‖2 + 1

2
mL2 ‖q̇2‖2 + k(1− qT1 q2),

which coincides with the total energy E in this case, is constant along each
solution of the dynamical flow.

It is also easy to see that the total angular momentum of the two elastically
connected spherical pendulums
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π1 + π2 = mL2(ω1 + ω2)

is constant along each solution of the dynamical flow. This arises as a con-
sequence of Noether’s theorem, due to the invariance of the Lagrangian with
respect to the lifted action of rotations about the pivot.

5.6.4.6 Equilibrium Properties

The equilibrium solutions of the elastically connected spherical pendulums
occur when the time derivative of the configuration vector, or equivalently the
angular velocity vector or momenta, is zero, and the configuration satisfies:

(I3×3 − q1q
T
1 )q2 = 0,

(I3×3 − q2q
T
2 )q1 = 0,

which implies that the time derivatives of the angular velocity and momenta
both vanish as well. This is equivalent to

q1 × q2 = 0.

Consequently, equilibrium solutions occur when the pendulum links are sta-
tionary in an arbitrary direction but with the angle between them either 0
radians or π radians. There are two disjoint manifolds of equilibrium config-
urations given by

{
(q1, q2) ∈ (S2)2 : q1 = q2

}
,{

(q1, q2) ∈ (S2)2 : q1 = −q2
}
.

In the former case, the pendulum links are said to be in phase, while in the
latter case they are said to be out of phase.

The stability properties of two typical equilibrium solutions are studied
using (5.54) and (5.55). Without loss of generality, we first develop a lin-
earization of (5.54) and (5.55) at the equilibrium (e3,−e3, 0, 0) ∈ T(S2)2;
this equilibrium corresponds to the pendulum links out of phase. We use the
notation qi = (qi1, qi2) ∈ S2, i = 1, 2 so that the first index of each double
subscript refers to the pendulum index.

First, consider the out of phase equilibrium solution (e3,−e3, 0, 0) ∈
T(S2)2. The linearized differential equations can be shown to be

mL2ξ̈11 − κ(ξ21 + ξ11) = 0,

mL2ξ̈12 = 0,

mL2ξ̈21 − κ(ξ11 + ξ21) = 0,

mL2ξ̈22 = 0,
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restricted to the tangent space of T(S2)2 at (e3,−e3, 0, 0) ∈ T(S2)2. These
linearized differential equations approximate the local dynamics of the elas-
tically connected spherical pendulums in a neighborhood of the out of phase
equilibrium (e3,−e3, 0, 0) ∈ T(S2)2. The eigenvalues of these linearized equa-

tions are +
√

2κ
mL2 , −

√
2κ

mL2 , +
√

2κ
mL2 , −

√
2κ

mL2 , 0, 0, 0, 0. Since there are

positive eigenvalues, this equilibrium with out of phase pendulum links is un-
stable. Similarly, it can be shown that all out of phase equilibrium solutions
are unstable.

Without loss of generality, we now develop a linearization of (5.54) and
(5.55) at the equilibrium (e3, e3, 0, 0) ∈ T(S2)2; this equilibrium corresponds
to the pendulum links in phase. The resulting linearized differential equations
are

mL2ξ̈11 − κ(ξ21 − ξ11) = 0,

mL2ξ̈12 = 0,

mL2ξ̈21 − κ(ξ11 − ξ21) = 0,

mL2ξ̈22 = 0,

restricted to the tangent space of T(S2)2 at (e3, e3, 0, 0) ∈ T(S2)2. These
linearized differential equations approximate the local dynamics of the elas-
tically connected spherical pendulum links in a neighborhood of the in phase
equilibrium (e3, e3, 0, 0) ∈ T(S2)2. The eigenvalues can be shown to be

+j
√

2κ
mL2 , −j

√
2κ

mL2 , +j
√

2κ
mL2 , −j

√
2κ

mL2 , 0, 0, 0, 0. Since the eigenvalues

are purely imaginary or zero, no conclusion can be made about the stability
of this equilibrium on the basis of this analysis.

We mention that a Lyapunov approach, using the total energy of the elas-
tically connected planar pendulums, does not provide a positive result in this
case since the in phase equilibrium is not a strict local minimum of the total
energy function on the tangent bundle T(S2)2.

Relative equilibrium solutions occur when the angular velocity vector of
the two pendulums are identically equal and constant and the angle between
them is either 0 radians or π radians. This corresponds to a constant rotation
of the pendulum links about their common pivot, as a rigid system. An
analysis of the stability of these relative equilibrium solutions could follow
the developments in [70].

5.6.5 Dynamics of a Double Spherical Pendulum

A double spherical pendulum is defined by two rigid, massless links serially
connected by a frictionless spherical joint with the first link connected to an
inertially fixed frictionless spherical pivot. The mass of each link is concen-
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trated at the outboard end of the link. The double spherical pendulum is
acted on by uniform, constant gravity.

The dynamics of a double spherical pendulum has been studied in [73]
using angle representations for the configuration; our approach here follows
the prior geometric development of this chapter allowing for global charac-
terization of the dynamics.

An inertial Euclidean frame is selected with origin located at the fixed
pivot with the first two axes in a horizontal plane and the third axis ver-
tical. The vector q1 ∈ S2 represents the attitude of the first link, from the
pivot to the first mass, and the vector q2 ∈ S2 represents the attitude of
the second link, from the first mass to the second mass, each vector being
defined with respect to the inertial Euclidean frame. Thus, the configuration
manifold is the product of two spheres, namely (S2)2 and the configura-
tion vector q = (q1, q2) ∈ (S2)2. The time derivative of the configuration
q̇ = (q̇1, q̇2) ∈ Tq(S

2)2. The double spherical pendulum has four degrees of
freedom. A schematic of a double spherical pendulum is shown in Figure 5.5.

q1 ∈ S2

q2 ∈ S2

Fig. 5.5 Double spherical pendulum

Let the masses and the lengths of the two pendula be m1,m2 and L1, L2,
respectively; the constant acceleration of gravity is denoted by g.

5.6.5.1 Euler–Lagrange Equations in Terms of (q, q̇)

The kinetic energy is the sum of the kinetic energies for each link and is given
by

T (q, q̇) =
1

2
m1 ‖L1q̇1‖2 + 1

2
m2 ‖L1q̇1 + L2q̇2‖2

=
1

2
(m1 +m2)L

2
1 ‖q̇1‖2 +m2L1L2(q̇1 · q̇2) + 1

2
m2L

2
2 ‖q̇2‖2
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=
1

2

[
q̇1
q̇2

]T [
(m1 +m2)L

2
1I3×3 m2L1L2I3×3

m2L1L2I3×3 m2L
2
2I3×3

] [
q̇1
q̇2

]
.

The gravitational potential energy is

U(q) = m1ge
T
3 (L1q1) +m2ge

T
3 (L1q1 + L2q2)

= (m1 +m2)gL1e
T
3 q1 +m2gL2e

T
3 q2.

Thus, the Lagrangian function L : T(S2)2 → R
1 is

L(q, q̇) =
1

2

[
q̇1
q̇2

]T [
(m1 +m2)L

2
1I3×3 m2L1L2I3×3

m2L1L2I3×3 m2L
2
2I3×3

] [
q̇1
q̇2

]

− (m1 +m2)gL1e
T
3 q1 −m2gL2e

T
3 q2.

The inertia matrix is constant so that the Euler–Lagrange equations, accord-
ing to (5.10), are:

[
(m1 +m2)L

2
1I3×3 m2L1L2(I3×3 − q1q

T
1 )

m2L1L2(I3×3 − q2q
T
2 ) m2L

2
2I3×3

] [
q̈1
q̈2

]

+

[
(m1 +m2)L

2
1 ‖q̇1‖2 q1

m2L
2
2 ‖q̇2‖2 q2

]
+

[
(m1 +m2)gL1(I3×3 − q1q

T
1 )e3

m2gL2(I3×3 − q2q
T
2 )e3

]
=

[
0
0

]
.

(5.68)

This version of the Euler–Lagrange equations, given by (5.68), describes the
Lagrangian dynamics of the double spherical pendulum in terms of (q, q̇) ∈
T(S2)2 on the tangent bundle of the configuration manifold.

5.6.5.2 Euler–Lagrange Equations in Terms of (q, ω)

An alternate version of the Euler–Lagrange equations for the double spherical
pendulum is expressed in terms of the angular velocity vector of the two links.
The rotational kinematics for each pendulum link are given by

q̇1 = S(ω1)q1, (5.69)

q̇2 = S(ω2)q2, (5.70)

where ω = (ω1, ω2) ∈ Tq(S
2)2.

The modified Lagrangian L̃ : TS2 ×R
3 → R

1 can be expressed in terms of
the angular velocity vector as

L̃(q, ω) =
1

2

[
ω1

ω2

]T [
(m1 +m2)L

2
1I3×3 m2L1L2S(q1)

TS(q2)
m2L1L2S(q2)

TS(q1) m2L
2
2I3×3

] [
ω1

ω2

]

− (m1 +m2)gL1e
T
3 q1 −m2gL2e

T
3 q2.
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Following the prior results in (5.17), the Euler–Lagrange equations for the
double spherical pendulum, expressed in terms of the angular velocity vector,
are

[
(m1 +m2)L

2
1I3×3 m2L1L2S

T (q1)S(q2)
m2L1L2S

T (q2)S(q1) m2L
2
2I3×3

] [
ω̇1

ω̇2

]

+

[
m2L1L2 ‖ω2‖2 S(q2)q1
m2L1L2 ‖ω1‖2 S(q1)q2

]
+

[
(m1 +m2)gL1S(q1)e3

m2gL2S(q2)e3

]
=

[
0
0

]
. (5.71)

Equations (5.69), (5.70), and (5.71) describe the Lagrangian dynamics of the
double spherical pendulum in terms of (q, ω) ∈ T(S2)2 on the tangent bundle
of (S2)2.

5.6.5.3 Hamilton’s Equations in Terms of (q, μ)

Hamilton’s equations on the cotangent bundle T∗(S2)2 are obtained by defin-
ing the conjugate momentum according to the Legendre transformation

[
μ1

μ2

]
=

[
(I3×3 − q1q

T
1 )

∂L(q,q̇)
∂q̇1

(I3×3 − q2q
T
2 )

∂L(q,q̇)
∂q̇2

]
,

=

[
(m1 +m2)L

2
1I3×3 m2L1L2(I3×3 − q1q

T
1 )

m2L1L2(I3×3 − q2q
T
2 ) m2L

2
2I3×3

] [
q̇1
q̇2

]
,

so that the momentum μ = (μ1, μ2) ∈ T∗
q(S

2)2. This can be inverted in the
form [

q̇1
q̇2

]
=

[
(I3×3 − q1q

T
1 )

(
mI

11(q)μ1 +mI
12(q)μ2

)
(I3×3 − q2q

T
2 )

(
mI

21(q)μ1 +mI
22(q)μ2

)
]
, (5.72)

where

[
mI

11(q) m
I
12(q)

mI
21(q) m

I
22(q)

]
=

[
(m1 +m2)L

2
1I3×3 m2L1L2(I3×3 − q1q

T
1 )

m2L1L2(I3×3 − q2q
T
2 ) m2L

2
2I3×3

]−1

denotes the 6× 6 inverse matrix.
The Hamiltonian function H : T∗(S2)2 → R

1 is

H(q, μ) =
1

2

[
μ1

μ2

]T [
mI

11(q) m
I
12(q)

mI
21(q) m

I
22(q)

] [
μ1

μ2

]

+ (m1 +m2)gL1e
T
3 q1 +m2gL2e

T
3 q2.

Hamilton’s equations of motion, obtained from (5.25) and (5.26), are given
by the kinematics equations (5.72) and the dynamics equations
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[
μ̇1

μ̇2

]
=

⎡
⎢⎢⎣

2∑
j=1

(
mI

1j(q)μj

)× (μ1 × q1)− (I3×3 − q1q
T
1 )

1
2

∂
∂q1

2∑
j,k=1

μT
j m

I
jk(q)μk

2∑
j=1

(
mI

2j(q)μj

)× (μ2 × q2)− (I3×3 − q2q
T
2 )

1
2

∂
∂q2

2∑
j,k=1

μT
j m

I
jk(q)μk

⎤
⎥⎥⎦

−
[
(m1 +m2)gL1(I3×3 − q1q

T
1 )e3

m2gL2(I3×3 − q2q
T
2 )e3

]
. (5.73)

Hamilton’s equations (5.72) and (5.73) describe the Hamiltonian dynamics of
the double spherical pendulum in terms of (q, μ) ∈ T∗(S2)2 on the cotangent
bundle of (S2)2.

5.6.5.4 Hamilton’s Equations in Terms of (q, π)

A different form of Hamilton’s equations on the cotangent bundle T∗(S2)2 can
be obtained by defining the conjugate momentum according to the Legendre
transformation

[
π1

π2

]
=

[
(I3×3 − q1q

T
1 )

∂L̃(q,ω)
∂ω1

(I3×3 − q2q
T
2 )

∂L̃(q,ω)
∂ω2

]

=

[
(m1 +m2)L

2
1I3×3 m2L1L2S

T (q1)S(q2)
m2L1L2S

T (q2)S(q1) m2L
2
2I3×3

] [
ω1

ω2

]
,

so that the momentum π = (π1, π2) ∈ T∗
q(S

2)2 is conjugate to the angular
velocity vector ω = (ω1, ω2) ∈ Tq(S

2)2. Thus, we obtain

[
ω1

ω2

]
=

[
mI

11(q) m
I
12(q)

mI
21(q) m

I
22(q)

] [
π1

π2

]
,

where

[
mI

11(q) m
I
12(q)

mI
21(q) m

I
22(q)

]
=

[
(m1 +m2)L

2
1I3×3 m2L1L2S

T (q1)S(q2)
m2L1L2S

T (q2)S(q1) m2L
2
2I3×3

]−1

is the 6× 6 inverse matrix.
The modified Hamiltonian function is

H̃(q, π) =
1

2

[
π1

π2

]T [
mI

11(q) m
I
12(q)

mI
21(q) m

I
22(q)

] [
π1

π2

]

+ (m1 +m2)gL1e
T
3 q1 +m2gL2e

T
3 q2.

Thus, Hamilton’s equations of motion for the double spherical pendulum,
according to (5.33) and (5.34), consist of the kinematics equations
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[
q̇1
q̇2

]
=

[−S(q1)m
I
11(q) −S(q1)m

I
12(q)

−S(q2)m
I
21(q) −S(q2)m

I
22(q)

] [
π1

π2

]
, (5.74)

and the dynamical equations

[
π̇1

π̇2

]
=

[
−S(q1)

1
2

∂
∂q1

∑2
j=1

∑2
k=1 π

T
j m

I
jk(q)πk

−S(q2)
1
2

∂
∂q2

∑2
j=1

∑2
k=1 π

T
j m

I
jk(q)πk

]

+

[
(
∑2

j=1 m
I
1j(q)πj)× π1

(
∑2

j=1 m
I
2j(q)πj)× π2

]
+

[
(m1 +m2)gL1S(e3)q1

m2gL2S(e3)q2

]
. (5.75)

The Hamiltonian flow of the double spherical pendulum is described by equa-
tions (5.74) and (5.75) in terms of the evolution of (q, π) ∈ T∗(S2)2 on the
cotangent bundle of (S2)2.

5.6.5.5 Conservation Properties

It is easy to show that the Hamiltonian of the double spherical pendulum

H =
1

2

[
q̇1
q̇2

]T [
(m1 +m2)L

2
1I3×3 m2L1L2I3×3

m2L1L2I3×3 m2L
2
2I3×3

] [
q̇1
q̇2

]

+ (m1 +m2)gL1e
T
3 q1 +m2gL2e

T
3 q2,

which coincides with the total energy E in this case, is constant along each
solution of the Lagrangian flow.

In addition, the vertical component of angular momentum is preserved as
a consequence of Noether’s theorem, due to the invariance of the Lagrangian
with respect to the lifted action of rotations about the gravity direction.

5.6.5.6 Equilibrium Properties

The equilibrium solutions of the double spherical pendulum occur when
the time derivative of the configuration vector, or equivalently the an-
gular velocity vector or momenta, is zero, and the direction vectors of
the two pendulum links are collinear with the direction vector e3, which
implies that the time derivatives of the angular velocity and momenta
both vanish as well. Thus, there are four distinct equilibrium solutions:
(−e3,−e3, 0, 0), (−e3, e3, 0, 0), (e3,−e3, 0, 0), and (e3, e3, 0, 0) in T(S2)2.

The total energy can be shown to have a strict local minimum at the first
equilibrium (−e3,−e3, 0, 0) ∈ T(S2)2 on the tangent bundle T(S2)2. Since the
time derivative of the total energy is zero along the flow of (5.68), it follows
that this equilibrium is stable.
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The other three equilibrium solutions are unstable. We demonstrate this
fact only for the equilibrium solution (e3, e3, 0, 0) ∈ T(S2)2 by analysis of the
properties of the linearized differential equations at this equilibrium. The lin-
earized equations, restricted to the eight-dimensional tangent space of T(S2)2

at (e3, e3, 0, 0) ∈ T(S2)2, are

[
(m1 +m2)L

2
1I2×2 m2L1L2I2×2

m2L1L2I2×2 m2L
2
2I2×2

] [
ξ̈1
ξ̈2

]

−
[
(m1 +m2)gL1I2×2 0

0 m2gL2I2×2

] [
ξ1
ξ2

]
=

[
0
0

]
.

These linearized differential equations approximate the local dynamics of the
double planar pendulum in a neighborhood of the equilibrium (e2, e2, 0, 0) ∈
T(S1)2. The characteristic equation can be shown to be

det

[
(m1 +m2)(L

2
1λ

2 − gL1)I2×2 m2L1L2λ
2I2×2

m2L1L2λ
2I2×2 m2(L

2
2λ

2 − gL2)I2×2

]
= 0.

This characteristic equation is quadratic in λ2 with sign changes in its coeffi-
cients. This guarantees that there are one or more eigenvalues with positive
real parts. Consequently, this equilibrium solution (e3, e3, 0, 0) ∈ T(S2)2 is un-
stable. A similar analysis shows that the other equilibrium solutions, namely
(e3,−e3, 0, 0) ∈ T(S2)2 and (−e3, e3, 0, 0) ∈ T(S2)2, are also unstable.

5.7 Problems

5.1. Starting with the Euler–Lagrange equations (5.6), view the kinematics
equations (5.1) as defining a change of variables (q, q̇) ∈ T(S2)n → (q, ω) ∈
T (S2)n. Show that this change of variables can be used to derive the Euler–
Lagrange equations in the form (5.14) according to the following:

(a) Show that

∂L(q, q̇)

∂q̇i
= −S(qi)

∂L̃(q, ω)

∂ωi
, i = 1, . . . , n,

∂L(q, q̇)

∂qi
=

∂L̃(q, ω)

∂qi
+ S(q̇i)

∂L̃(q, ω)

∂ωi
, i = 1, . . . , n.

(b) Substitute these expressions into (5.6) and simplify using several of the
matrix identities in Chapter 1 to obtain the equations (5.14).
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5.2. Show that the Euler–Lagrange equation (5.7) can be expressed as

d

dt

(
∂L(q, q̇)

∂q̇i

)
− qi

d

dt

(
qTi

∂L(q, q̇)

∂q̇i

)

− qiq̇
T
i

∂L(q, q̇)

∂q̇i
− (

I3×3 − qiq
T
i

) ∂L(q, q̇)

∂qi
= 0, i = 1, . . . , n.

5.3. In Chapter 4, the definition of the conjugate momentum πi ∈ TqiS
1

given in (4.23) is the derivative of the modified Lagrangian with respect to
ωi. In this chapter, the definition of the conjugate momentum πi ∈ TqiS

2

given in (5.27) is the gradient of the modified Lagrangian with respect to
ωi projected onto the tangent space TqiS

2. That is, no projection appears
in the definition used in Chapter 4. Why are these two definitions, in fact,
analogous even though there is no projection operator required in the results
of Chapter 4? Give an argument that the apparent difference in definitions
is due to the different geometries of S1 in Chapter 4 and S2 in Chapter 5.

5.4. Consider the dynamics of a particle, with mass m, constrained to move,
without friction, on a sphere of radius R that rotates about a diameter with
constant angular velocity. The origin of an inertial Euclidean frame is located
at the center of the sphere. Assume uniform, constant gravity acts along the
direction −e3 of the inertial frame. The configuration vector is the direction
of the particle in the inertial frame, so that the configuration manifold is S2.
The angular velocity vector of the sphere, in the inertial frame, is Ωe3 ∈ R

3

where Ω is a real constant.

(a) Determine the Lagrangian function L : TS2 → R
1 defined on the tangent

bundle of the configuration manifold.
(b) What are the Euler–Lagrange equations for the particle constrained to

a sphere that rotates with constant angular velocity under the action of
uniform, constant gravity?

(c) Determine the Hamiltonian function H : T∗S2 → R
1 defined on the

cotangent bundle of the configuration manifold.
(d) What are Hamilton’s equations for the particle constrained to a sphere

that rotates with constant angular velocity under the action of uniform,
constant gravity?

(e) What are conserved quantities for the dynamical flow on TS2?
(f) What are the equilibrium solutions of the dynamical flow on TS2?
(g) For one equilibrium solution, what are linearized equations that approx-

imate the dynamical flow in a neighborhood of that equilibrium?

5.5. Consider the dynamics of a particle, with mass m, constrained to move,
without friction, on a sphere of radius R that rotates about a diameter with
constant angular velocity. The origin of an inertial Euclidean frame is located
at the center of the sphere. Assume Newtonian gravity, in the sense that the
gravity force on the particle always has constant magnitude with direction
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opposite to the radius vector from the center of the sphere to the location
of the particle on the sphere. The configuration vector is the direction of the
particle in the inertial frame, so that the configuration manifold is S2. The
angular velocity vector of the sphere, in the inertial frame, is Ωe3 ∈ R

3 where
Ω is a real constant.

(a) Determine the Lagrangian function L : TS2 → R
1 defined on the tangent

bundle of the configuration manifold.
(b) What are the Euler–Lagrange equations for the particle constrained to

a sphere that rotates with constant angular velocity under the action of
Newtonian gravity?

(c) Determine the Hamiltonian function H : T∗S2 → R
1 defined on the

cotangent bundle of the configuration manifold.
(d) What are Hamilton’s equations for the particle constrained to a sphere

that rotates with constant angular velocity under the action of Newtonian
gravity?

(e) What are conserved quantities for the dynamical flow on TS2?
(f) What are the equilibrium solutions of the dynamical flow on TS2?
(g) For one equilibrium solution, what are linearized equations that approx-

imate the dynamical flow in a neighborhood of that equilibrium?

5.6. Consider the dynamics of a Foucault pendulum, modeled as a particle of
mass m, constrained to move without friction on a sphere of radius L about a
center or pivot that is fixed to the surface of the Earth An inertial frame has
its first two axes horizontal and third axis in the direction of the North pole
(assumed to be the rotation axis of the Earth). The first axis of an Earth-
fixed frame is in the direction of the local vertical. It is convenient to assume
the origin of the inertial frame is located at the Earth’s center and the origin
of the Earth-fixed frame is located at the pivot on the Earth’s surface. The
pivot point is located at a latitude angle β. The Earth rotates about its North-
South axis with constant angular velocity vector Ωe3 in the inertial frame;
the constant radius of the Earth is r. Assume uniform, constant gravity acts
along the direction −e1 of the Earth-fixed frame. The configuration vector
of the Foucault pendulum is the direction of the particle in the Earth-fixed
frame, so that the configuration manifold is S2.

(a) Show that the Lagrangian function L : TS2 → R
1 defined on the tangent

bundle of the configuration manifold is given by

L(q, q̇) =
1

2
m ‖Lq̇ + S(Ωeβ)(re1 + Lq)‖2 −mgLeT1 q,

where the axis of rotation of the Earth, expressed in the Earth-fixed frame,
is given by the unit vector

eβ =

⎡
⎣sinβ0
cosβ

⎤
⎦ .
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(b) What are the Euler–Lagrange equations for the Foucault pendulum?
Hint: Use care in the variational analysis noting that this Lagrangian
is quadratic in (q, q̇) ∈ TS2 with nontrivial product terms.

(c) Simplify these Euler–Lagrange equations for the Foucault pendulum as-
suming that L  r and rΩ2  g. Show that these simplified Euler–
Lagrange equations also define a Lagrangian flow on the tangent bundle
TS2.

(d) What are conserved quantities for the dynamical flow on TS2?
(e) Show that there are two equilibrium solutions of the dynamical flow on

TS2. Identify one as a hanging equilibrium and the other as an inverted
equilibrium. Show that these equilibrium solutions are not necessarily
exactly aligned with the local vertical direction of gravity.

(f) For the hanging equilibrium solution, what are linearized equations that
approximate the dynamical flow in a neighborhood of that equilibrium?
Obtain these linearized equations using the approximated form of the
Euler–Lagrange equations.

5.7. Consider the dynamics of a spherical pendulum where the end of the
pendulum link is connected to four elastic strings in tension. The mass of the
pendulum is m, its moment of inertia about its fixed spherical pivot is J , and
its length is L. Uniform gravity acts on the pendulum. The frictionless pivot
of the spherical pendulum is located at the origin of an inertial Euclidean
frame, where the third axis of the frame is vertical. One end of each of the
four elastic strings is connected to the free end of the pendulum while the
other end of the each string is connected to a fixed support; the locations of
the four string supports are

z1 =

⎡
⎢⎣
−

√
2L
2

−
√
2L
2
0

⎤
⎥⎦ , z2 =

⎡
⎢⎣

√
2L
2

−
√
2L
2
0

⎤
⎥⎦ , z3 =

⎡
⎢⎣
−

√
2L
2√
2L
2
0

⎤
⎥⎦ , z4 =

⎡
⎢⎣

√
2L
2√
2L
2
0

⎤
⎥⎦ ,

with respect to the inertial frame. Thus, the string connections are the ver-
tices of a square of side

√
2L in the ground plane, with the pivot of the

spherical pendulum located at the center of the square. This can be viewed
as another example of a tensegrity structure.

(a) Determine the Lagrangian function L : TS2 → R
1 defined on the tangent

bundle of the configuration manifold.
(b) Determine expressions for the tension forces in the four strings.
(c) What are the Euler–Lagrange equations for the spherical pendulum con-

nected to four strings in tension?
(d) Determine the Hamiltonian function H : T∗S2 → R

1 defined on the
cotangent bundle of the configuration manifold.

(e) What are Hamilton’s equations for the spherical pendulum connected to
four strings in tension?

(f) What are conserved quantities for the dynamical flow on TS2?
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(g) What are the equilibrium solutions of the dynamical flow on TS2?
(h) For one equilibrium solution, what are linearized equations that approx-

imate the dynamical flow in a neighborhood of that equilibrium?

5.8. Consider two identical particles, each of mass m, that translate in R
3.

Each particle is constrained to translate, without friction, on its own sphere
embedded in R

3. The two spheres have a common center; the radius of the
first sphere is R1 > 0 and the radius of the second sphere is R2 > R1 >
0. The position vector of the first particles in an inertial Euclidean frame
is x1 = R1q1 ∈ R

3 and the position vector of the second particle in the
inertial Euclidean frame is x2 = R2q2 ∈ R

3, where q = (q1, q2) ∈ (S2)2. The
configuration manifold is given by (S2)2. The two particles act under the
influence of a mutual potential function given by

U(x) = K ‖x1 − x2‖2 ,

where K > 0 is constant.

(a) Determine the Lagrangian function L : T(S2)2 → R
1 defined on the

tangent bundle T(S2)2 of the configuration manifold.
(b) What are the resulting Euler–Lagrange equations?
(c) Determine the Hamiltonian function H : T∗(S2)2 → R

1 defined on the
cotangent bundle T∗(S2)2 of the configuration manifold.

(d) What are Hamilton’s equations?
(e) What are conservation properties of the dynamical flow on T(S2)2?
(f) What are the equilibrium solutions of the dynamical flow on T(S2)2?

5.9. Consider the dynamics of two elastically connected spherical pendulums,
with colocated pivots, under the influence of uniform, constant gravity. The
pendulum masses are m1 and m2 and the pendulum lengths are L1 and L2.
The attitudes of the two pendulum links in an inertial Euclidean frame with
origin located at the pivot are q1 ∈ S2 and q2 ∈ S2. Thus, the configuration
manifold is (S2)2. The potential energy for the elastic connection between
the two pendulum links is given by U(q) = κ(1− qT1 q2), where κ is an elastic
stiffness constant.

(a) Determine the Lagrangian function L : T(S2)2 → R
1 defined on the

tangent bundle of the configuration manifold.
(b) What are the Euler–Lagrange equations for the elastically connected pen-

dulums?
(c) Determine the Hamiltonian function H : T∗(S2)2 → R

1 defined on the
cotangent bundle of the configuration manifold.

(d) What are Hamilton’s equations for the elastically connected pendulums?
(e) What are conserved quantities for the dynamical flow on T(S2)2?
(f) What are the equilibrium solutions of the dynamical flow on T(S2)2?
(g) For one equilibrium solution, what are linearized equations that approx-

imate the dynamical flow in a neighborhood of that equilibrium?
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5.10. Consider the dynamics of two elastically connected spherical pendu-
lums, with colocated frictionless pivots. The pendulum masses arem1 andm2

and the pendulum lengths are L1 and L2. The attitudes of the two pendulum
links in an inertial Euclidean frame with origin located at the colocated pivots
are q1 ∈ S2 and q2 ∈ S2. Thus, the configuration manifold is (S2)2. The poten-

tial energy for the elastic connection is given by U(q) = κ(1−
√

1− (qT1 q2)
2),

where κ is an elastic stiffness constant.

(a) Determine the Lagrangian function L : T(S2)2 → R
1 defined on the

tangent bundle of the configuration manifold.
(b) What are the Euler–Lagrange equations for the elastically connected pen-

dulums?
(c) Determine the Hamiltonian function H : T∗(S2)2 → R

1 defined on the
cotangent bundle of the configuration manifold.

(d) What are Hamilton’s equations for the elastically connected pendulums?
(e) What are conserved quantities for the dynamical flow on T(S2)2?
(f) What are the equilibrium solutions of the dynamical flow on T(S2)2?
(g) For one equilibrium solution, what are linearized equations that approx-

imate the dynamical flow in a neighborhood of that equilibrium?

5.11. Consider the dynamics of a double spherical pendulum as previously
studied in this chapter, but without gravity. The pendulum masses are m1

and m2 and the pendulum lengths are L1 and L2. The configuration manifold
is (S2)2.

(a) Determine the Lagrangian function L : T(S2)2 → R
1 defined on the

tangent bundle of the configuration manifold.
(b) What are the Euler–Lagrange equations for the double spherical pendu-

lum?
(c) Determine the Hamiltonian function H : T∗(S2)2 → R

1 defined on the
cotangent bundle of the configuration manifold.

(d) What are Hamilton’s equations for the double spherical pendulum?
(e) What are conserved quantities for the dynamical flow on T(S2)2?
(f) What are the equilibrium solutions of the dynamical flow on T(S2)2?
(g) For one equilibrium solution, what are linearized equations that approx-

imate the dynamical flow in a neighborhood of that equilibrium?

5.12. Consider the dynamics of a double spherical pendulum as previously
studied in this chapter, without gravity but with an elastic joint between the
two pendulum links that resists bending. The pendulum masses are m1 and
m2 and the pendulum lengths are L1 and L2. The potential for the elastic
connection is given by U(q) = κ(1 − qT1 q2), where κ is a elastic stiffness
constant. The configuration manifold is (S2)2.

(a) Determine the Lagrangian function L : T(S2)2 → R
1 defined on the

tangent bundle of the configuration manifold.
(b) What are the Euler–Lagrange equations for the double spherical pendu-

lum?
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(c) Determine the Hamiltonian function H : T∗(S2)2 → R
1 defined on the

cotangent bundle of the configuration manifold.
(d) What are Hamilton’s equations for the double spherical pendulum?
(e) What are conserved quantities for the dynamical flow on T(S2)2?
(f) What are the equilibrium solutions of the dynamical flow on T(S2)2?
(g) For one equilibrium solution, what are linearized equations that approx-

imate the dynamical flow in a neighborhood of that equilibrium?

5.13. Consider the dynamics of a particle in three dimensions. The particle is
constrained to move on an inertially fixed sphere, under a gravitational field
given, in an inertial frame with origin located at the center of the sphere, by
the gravitational field G : R3 → TR3. That is, the gravitational force on a
particle located at x ∈ R

3 is given by mG(x), where m denotes the constant
mass of the particle. The configuration manifold is S2.

(a) Determine the Lagrangian function L : TS2 → R
1 of the particle defined

on the tangent bundle of the configuration manifold.
(b) What are the Euler–Lagrange equations for the particle?
(c) Determine the Hamiltonian function H : T∗S2 → R

1 of the particle de-
fined on the cotangent bundle of the configuration manifold.

(d) What are Hamilton’s equations for the particle?
(e) What are the conditions for an equilibrium solution of a particle in a

gravitational field?
(f) Suppose that the gravitational field is constant. What are the conditions

for an equilibrium solution of a particle?

5.14. Consider the dynamics of a charged particle, with mass m, in three
dimensions. The particle is constrained to move on an inertially fixed sphere,
under an electric field given, in an inertial frame with origin located at the
center of the sphere, by an electric field E : R

3 → TR3 and a magnetic
field given, in the inertial frame, by B : R3 → TR3. The Lorentz force on a
particle located at x ∈ R

3 is given by Q(E(x) + ẋ×B(x)), where Q denotes
the constant charge on the particle. The configuration manifold is S2.

(a) Determine the Lagrangian function L : TS2 → R
1 of the particle defined

on the tangent bundle of the configuration manifold.
(b) What are the Euler–Lagrange equations for the particle?
(c) Determine the Hamiltonian function H : T∗S2 → R

1 of the particle de-
fined on the cotangent bundle of the configuration manifold.

(d) What are Hamilton’s equations for the particle?
(e) What are the conditions for an equilibrium solution of a particle in an

electric field and a magnetic field?
(f) Suppose that the electric field and the magnetic field are constant. What

are the conditions for an equilibrium solution of a particle?
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5.15. Consider the problem of finding the curve(s) [0, 1] → S2 of shortest
length that connect two fixed points in S2. Such curves are referred to as
geodesic curve(s) on S2.

(a) If the curve is parameterized by t → q(t) ∈ S2, show that the incremental

arc length of the curve is ds =

√
‖dq‖2 so that the geodesic curve(s)

minimize
∫ 1

0

√
‖q̇‖2dt among all curves on S2 that connect the two fixed

points.
(b) Show that the geodesic curve(s) necessarily satisfy the variational prop-

erty δ
∫ 1

0
‖q̇‖ dt = 0 for all smooth curves t → q(t) ∈ S2 that satisfy the

boundary conditions q(0) = q0 ∈ S2, q(1) = q1 ∈ S2.
(c) What are the Euler–Lagrange equations and Hamilton’s equations that

geodesic curves in S2 must satisfy?
(d) Suppose that q0 ∈ S2, q1 ∈ S2 do not lie on a common diameter of the

sphere. Show that there is a unique geodesic curve in S2. Describe the
geodesic curve. Show that the geodesic curve is actually a minimum of∫ 1

0
‖q̇‖ dt.

(e) Suppose that q0 ∈ S2, q1 ∈ S2 lie on a common diameter of the sphere.
Show that there are two geodesic curves in S2. Describe each geodesic

curve. Show that each geodesic curve is actually a minimum of
∫ 1

0
‖q̇‖ dt.

5.16. A thin rigid rod, under uniform, constant gravity, is supported at its
ends by two identical spherical pendulums. Each pendulum is attached to an
inertially fixed support by a frictionless pivot; the two pivots are assumed
to lie in a common horizontal plane. An inertial frame in three dimensions
is selected; its origin is located on the midpoint of the line between the two
pivots; the first axis is along this line in the horizontal plane; the second
axis is orthogonal to the first axis in the horizontal plane and the third axis
is vertical. The two fixed pivots are a distance L apart. Each pendulum is
assumed to be a rigid, massless link with length L. The ends of the rigid rod
are attached to the ends of the pendulums through spherical joints. The rod
has length L and it has concentrated mass m located at each end of the rigid
rod, so that the total mass of the rod is 2m. Let q1 ∈ S2 denote the attitude
of the first pendulum in the inertial frame; let q2 ∈ S2 denote the attitude of
the second pendulum in the inertial frame. The rigidity of the rod imposes a
holonomic constraint given by ‖q1−q2‖2 = 1, so that the constraint manifold
M = {(q1, q2) ∈ (S2)2 : ‖q1 − q2‖2 = 1} is embedded in R

6.

(a) Show that the augmented Lagrangian function La : TM × R
1 → R

1 is

La(q, q̇) =
1

2
m ‖Lq̇1‖2 + 1

2
m ‖Lq̇2‖2 −mgLeT3 q1 −mgLeT3 q2

+ λ
(
‖q1 − q2‖2 − 1

)
.

(b) What are the Euler–Lagrange equations for the rigid rod?
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(c) Determine the augmented Hamiltonian function Ha : T∗M ×R
1 → R

1 of
the rigid rod, including a Lagrange multiplier.

(d) What are Hamilton’s equations for the rigid rod?
(e) What are conserved quantities for the rigid rod?
(f) What are the equilibrium solutions on the tangent bundle of the con-

straint manifold?

5.17. A four bar linkage in three dimensions consists of three rigid links with
one end of each of two of the links constrained to rotate in three dimensions
about its fixed pivot. The fourth link can rotate subject to the fact that its
two ends are pinned to the ends of the opposite ends of the first two links.
The pivots and joint connections are assumed to be frictionless and to allow
rotation of the three links in three dimensions. The two links with an inertially
fixed end are assumed to have length L with mass m concentrated at the mid
points of the links. The connecting link is assumed to have length 2.5L with
mass m

2 concentrated at its mid point. The distance between the two fixed
pivots is 2.5L. We assume there are no collisions between links or with the
inertial base, and we ignore all gravity effects. Choose an inertially fixed
three-dimensional Euclidean frame with origin located at the first fixed pivot
point and with its first axis in the direction of the second fixed pivot point.
With respect to the inertially fixed frame, let qi ∈ S2 denote the attitude
vector of the i-th link with respect to the inertial frame, for i = 1, 2, 3. The
configuration vector is q = (q1, q2, q3) ∈ (S2)3.

(a) Show that Lagrangian function L : T(S2)3 → R
1, ignoring the holonomic

constraint defined by the locations of the fixed pivots, can be written as

L(q, q̇) =
1

2
m

∥∥∥∥L2 q̇1
∥∥∥∥
2

+
1

2

(m
2

)∥∥∥∥5L2 q̇2

∥∥∥∥
2

+
1

2
m

∥∥∥∥L2 q̇3
∥∥∥∥
2

.

(b) Show that the vector holonomic constraint that arises from the locations
of the fixed pivots can be written as

Lq1 + 2.5Lq2 + Lq3 − 2.5Le1 = 0.

(c) Describe the constraint manifold M embedded in (S2)3.
(d) Determine the augmented Lagrangian function La : M ×R

3 → R
1 on the

tangent bundle of the constraint manifold, including Lagrange multipliers.
(e) What are the Euler–Lagrange equations for the four-bar linkage?
(f) Determine the augmented Hamiltonian function Ha : T∗M × R

3 → R
1

on the cotangent bundle of the constraint manifold, including Lagrange
multipliers.

(g) What are Hamilton’s equations for the four bar linkage?
(h) What are conserved quantities for the four bar linkage?
(i) What are the equilibrium solutions of the dynamical flow?
(j) For one equilibrium solution, what are linearized equations that approx-

imate the dynamical flow in a neighborhood of that equilibrium?
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5.18. Consider the dynamics of an ideal particle that evolves on a manifold
M that is a smooth deformation of the embedded manifold S2 in R

3 in the
sense that it is the image of a diffeomorphism φ : S2 → M . Suppose that the
Lagrangian function is L : TM → R

1. Use the form for the Lagrangian dy-
namics on S2 and this diffeomorphism to show that the Lagrangian dynamics
on M satisfy

(I3×3 − qqT )

(
∂φ(q)

∂q

){
d

dt

(
∂L(x, ẋ)

∂ẋ

)
− ∂L(x, ẋ)

∂x

}
= 0,

where q = φ−1(x) is the inverse of the diffeomorphism.

5.19. Consider an ideal particle that is constrained to move on the surface of
an ellipsoid, identified as the configuration manifold M = {q ∈ R

3 : { q1
a }2 +

{ q2
b }2 + { q3

c }2 − 1 = 0} embedded in R
3. Assume one axis of the ellipsoid is

vertical and the other two axes of the ellipsoid are horizontal and uniform
gravity acts on the particle.

(a) Determine the Lagrangian function L : TM → R
1 defined on the tangent

bundle of the configuration manifold.
(b) Use the results of the previous problem to determine the Euler–Lagrange

equations for the particle on the ellipsoid.
(c) Determine the Hamiltonian function H : T∗M → R

1 defined on the
cotangent bundle of the configuration manifold.

(d) What are Hamilton’s equations for the particle on the ellipsoid?
(e) What are conserved quantities of the dynamical flow on TM?
(f) What are the equilibrium solutions of the dynamical flow on TM?
(g) For one equilibrium solution, what are linearized equations that approx-

imate the dynamical flow in a neighborhood of that equilibrium?

5.20. Suppose the configuration manifold is (S2)n and the kinetic energy
has the form of a general quadratic function in the time derivative of the
configuration vector, so that the Lagrangian function L : T(S2)n → R

1 is
given by

L(q, q̇) =
1

2

n∑
i=1

n∑
j=1

mij(q)q̇
T
i q̇j +

n∑
i=1

ai(q)
T q̇i − U(q),

where q = (q1, . . . , qn) ∈ (S2)n and mij(q) = mji(q) > 0, i = 1, . . . , n, j =
1, . . . , n, ai(q), i = 1, . . . , n are vector functions and U(q) is a real scalar
function.

(a) What are the Euler–Lagrange equations for this Lagrangian?
(b) What are Hamilton’s equations for the Hamiltonian associated with this

Lagrangian?
(c) Determine a modified Lagrangian function expressed in terms of angular

velocity vector.
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(d) What are the Euler–Lagrange equations for this modified Lagrangian?
(e) Determine the modified Hamiltonian function expressed in terms of the

momentum conjugate to the angular velocity vector.
(f) What are Hamilton’s equations for this modified Hamiltonian function?



Chapter 6

Lagrangian and Hamiltonian Dynamics
on SO(3)

This chapter treats the Lagrangian dynamics and Hamiltonian dynamics of
a rotating rigid body. A rigid body is a collection of mass particles whose
relative positions do not change, that is the body does not deform when
acted on by external forces. A rigid body is a useful idealization.

The most general form of rigid body motion consists of a combination of
rotation and translation. In this chapter, we consider rotational motion only.
Combined rotational and translational dynamics of a rigid body are studied
in the subsequent chapter.

We begin by identifying the configurations of a rotating rigid body in
three dimensions as elements of the Lie group SO(3). Equations of motion
for the Lagrangian and Hamiltonian dynamics, expressed as Euler–Lagrange
(or Euler) equations and Hamilton’s equations, are developed for rigid body
rotations in three dimensions. These results are illustrated by several exam-
ples of the rotational dynamics of a rigid body.

There are many books and research papers that treat rigid body kinematics
and dynamics from both theoretical and applied perspectives. It is a common
approach in the published literature to describe rigid body kinematics and
dynamics in terms of rotation matrices, but not to fully exploit such geometric
representations. For example, books such as [5, 10, 26, 30, 32, 70] introduce
rotation matrices but make substantial use of local coordinates, such as Eu-
ler angles, in analysis and computations. The references [23, 40, 68, 77] are
notable for their emphasis on rotation matrices as the primary representation
for kinematics and dynamics of rigid body motion on SO(3) in applications
to spacecraft and robotics. In the context of multi-body spacecraft control,
[84] was one of the first publications formulating multi-body dynamics using
the configuration manifold (SO(3))n.

© Springer International Publishing AG 2018
T. Lee et al., Global Formulations of Lagrangian and Hamiltonian
Dynamics on Manifolds, Interaction of Mechanics and Mathematics,
DOI 10.1007/978-3-319-56953-6 6
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6.1 Configurations as Elements in the Lie Group SO(3)

Two Euclidean frames are introduced; these aid in defining the attitude con-
figuration of a rotating rigid body. A reference Euclidean frame is arbitrarily
selected; it is often selected to be an inertial frame but this is not essential.
A Euclidean frame fixed to the rigid body is also introduced; this fixed frame
rotates as the rigid body rotates. The origin of this body-fixed frame can be
arbitrarily selected, but it is often convenient to locate it at the center of
mass of the rigid body.

As a manifold embedded in GL(3) or R3×3, recall that

SO(3) =
{
R ∈ GL(3) : RTR = RRT = I3×3, det(R) = +1

}
,

has dimension three. The tangent space of SO(3) at R ∈ SO(3) is given by

TRSO(3) =
{
Rξ ∈ R

3×3 : ξ ∈ so(3)
}
,

and has dimension three. The tangent bundle of SO(3) is given by

TSO(3) =
{
(R,Rξ) ∈ SO(3)× R

3×3 : ξ ∈ so(3)
}
,

and has dimension six.
We can view R ∈ SO(3) as representing the attitude of the rigid body, so

that SO(3) is the configuration manifold for rigid body rotational motion. An
attitude matrix R ∈ SO(3) can be viewed as a linear transformation on R

3 in
the sense that a representation of a vector in the body-fixed frame is trans-
formed into a representation of the vector in the reference frame. Thus, the
transpose of an attitude matrix RT ∈ SO(3) denotes a linear transformation
from a representation of a vector in the reference frame into a representation
of the vector in the body-fixed frame. These two important properties are
summarized as:

• If b ∈ R
3 is a representation of a vector expressed in the body-fixed frame,

then Rb ∈ R
3 denotes the same vector in the reference frame.

• If x ∈ R
3 is a representation of a vector expressed in the reference frame,

then RTx ∈ R
3 denotes the same vector in the body-fixed frame.

These are important relationships that are used extensively in the subsequent
developments.

In addition, R ∈ SO(3) can be viewed as defining a rigid body rotation
on R

3 according to the rules of matrix multiplication. In this interpretation,
R ∈ SO(3) is viewed as a rotation matrix that defines a linear transformation
that acts on rigid body attitudes. This makes SO(3) a Lie group manifold
using standard matrix multiplication as the group operation, as discussed
in Chapter 1. Since the dimension of SO(3) is three, rigid body rotational
motion has three degrees of freedom.
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6.2 Kinematics on SO(3)

The rotational kinematics of a rotating rigid body are described in terms of
the time evolution of the attitude and attitude rate of the rigid body given
by (R, Ṙ) ∈ TSO(3). As in Chapter 2, the rotational kinematics equations
for a rotating rigid body are given by

Ṙ = Rξ,

where ξ ∈ so(3).
We make use of the isomorphism between the Lie algebra so(3) and R

3

given by ξ = S(ω) with ξ ∈ so(3), ω ∈ R
3. This perspective is utilized in

the subsequent development. This leads to the expression for the attitude or
rotational kinematics given by

Ṙ = RS(ω), (6.1)

where ω ∈ R
3 is referred to as the angular velocity vector of the rigid body

expressed in the body-fixed Euclidean frame.
It is sometimes convenient to partition the rigid body attitude or rotation

R ∈ SO(3) as a 3 × 3 matrix into its rows. We use the notation ri ∈ S2 to
denote the i-th column of RT ∈ SO(3) for i = 1, 2, 3. This is equivalent to
the partition

R =

⎡
⎣r

T
1

rT2
rT3

⎤
⎦ .

Thus, the rotational kinematics of a rotating rigid body can also be described
by the three vector differential equations

ṙi = −ξri, i = 1, 2, 3,

or equivalently by

ṙi = S(ri)ω, i = 1, 2, 3.

We subsequently describe the attitude configuration of a rotating rigid
body by the equivalent descriptions R ∈ SO(3) or ri ∈ S2, i = 1, 2, 3, de-
pending on whichever is the most convenient description.
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6.3 Lagrangian Dynamics on SO(3)

A Lagrangian function is introduced. Euler–Lagrange equations are derived
using Hamilton’s principle that the infinitesimal variation of the action inte-
gral is zero. The Euler–Lagrange equations are first expressed for an arbitrary
Lagrangian function; then Euler–Lagrange equations are obtained for the case
that the kinetic energy term in the Lagrangian function is a quadratic func-
tion of the angular velocity vector.

6.3.1 Hamilton’s Variational Principle

The Lagrangian function is defined on the tangent bundle of SO(3), that is
L : TSO(3) → R

1.
We identify the tangent bundle TSO(3) with SO(3)×so(3) or with SO(3)×

R
3 using the isomorphism between so(3) and R

3. Thus, we can express the
Lagrangian as a function L(R, Ṙ) = L(R,Rξ) = L(R,RS(ω)) defined on the
tangent bundle TSO(3). We make use of the modified Lagrangian function
L̃(R,ω) = L(R,RS(ω)), where we view L̃ : TSO(3) → R

1 according to the
kinematics (6.1).

In studying the dynamics of a rotating rigid body, the Lagrangian function
is the difference of a kinetic energy function and a potential energy function;
thus the modified Lagrangian function is

L̃(R,ω) = T (R,ω)− U(R),

where the kinetic energy function T (R,ω) is viewed as being defined on the
tangent bundle TSO(3) and the potential energy function U(R) is defined on
SO(3).

The subsequent development describes variations of functions with values
in the special orthogonal group SO(3); rather than using the abstract Lie
group formalism, we obtain the results explicitly for the rotation group. In
particular, we introduce variations of a rotational motion t → R(t) ∈ SO(3),
denoted by t → Rε(t) ∈ SO(3), by using the exponential map and the iso-
morphism between so(3) and R

3.
The variation of R : [t0, tf ] → SO(3) is a differentiable curve Rε : (−c, c)×

[t0, tf ] → SO(3) for c > 0 such that R0(t) = R(t), and Rε(t0) = R(t0),
Rε(tf ) = R(tf ) for any ε ∈ (−c, c).

The variation of a rotational motion can be described using the exponential
map as

Rε(t) = R(t)eεS(η(t)),
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where ε ∈ (−c, c) and η : [t0, tf ] → R
3 is a differentiable curve that vanishes

at t0 and tf . Consequently, S(η(t)) ∈ so(3) defines a differentiable curve with
values in the Lie algebra of skew symmetric matrices that vanishes at t0 and
tf , and eεS(η(t)) ∈ SO(3) defines a differentiable curve that takes values in
the Lie group of rotation matrices and is the identity matrix at t0 and tf .
Thus, the time derivative of the variation of the rotational motion of a rigid
body is

Ṙε(t) = Ṙ(t)eεS(η(t)) + εR(t)eεS(η(t))S(η̇(t)).

Suppressing the time dependence in the subsequent notation, the varied curve
satisfies

ξε = (Rε)T Ṙε

= e−εS(η)ξeεS(η) + εS(η̇)

= ξ + ε (S(η̇) + ξS(η)− S(η)ξ) +O(ε2).

Define the variation of the angular velocity by ξε = S(ωε) and use the fact
that ξ = S(ω) to obtain

S(ωε) = S(ω) + ε(S(η̇) + S(ω)S(η)− S(η)S(ω)) +O(ε2).

We use a skew symmetric matrix identity to obtain

S(ωε) = S(ω) + ε(S(η̇) + S(ω × η)) +O(ε2),

or equivalently

S(ωε) = S(ω + ε(η̇ + ω × η)) +O(ε2).

Thus, the variation of the angular velocity satisfies

ωε = ω + ε (η̇ + ω × η) +O(ε2).

From these expressions, we determine the infinitesimal variations

δR =
d

dε
Rε

∣∣∣∣
ε=0

= RS(η), (6.2)

δω =
d

dε
ωε

∣∣∣∣
ε=0

= η̇ + ω × η = η̇ + S(ω)η. (6.3)

This framework allows us to introduce the action integral and Hamilton’s
principle to obtain Euler–Lagrange equations that describe the rotational
dynamics of a rigid body.

The action integral is the integral of the Lagrangian function, or equiv-
alently the modified Lagrangian function, along a rotational motion of the
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rigid body over a fixed time period. The variations are taken over all differ-
entiable curves with values in SO(3) for which the initial and final values are
fixed.

The action integral along a rotational motion of a rotating rigid body is

G =

∫ tf

t0

L̃(R,ω) dt.

The action integral along a variation of a rotational motion of the rigid body is

Gε =

∫ tf

t0

L̃(Rε, ωε) dt.

The varied value of the action integral along a variation of a rotational motion
of the rigid body can be expressed as a power series in ε as

Gε = G+ εδG+O(ε2),

where the infinitesimal variation of the action integral is

δG =
d

dε
Gε

∣∣∣∣
ε=0

.

Hamilton’s principle states that the infinitesimal variation of the action in-
tegral along any rotational motion of the rigid body is zero:

δG =
d

dε
Gε

∣∣∣∣
ε=0

= 0, (6.4)

for all possible infinitesimal variations η : [t0, tf ] → R
3 satisfying η(t0) =

η(tf ) = 0.

6.3.2 Euler–Lagrange Equations: General Form

We first compute the infinitesimal variation of the action integral as

d

dε
Gε

∣∣∣∣
ε=0

=

∫ tf

t0

{
∂L̃(R,ω)

∂ω
· δω +

∂L̃(R,ω)

∂R
· δR

}
dt.

Examining the first term, we obtain
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∫ tf

t0

∂L̃(R,ω)

∂ω
· δω dt =

∫ tf

t0

∂L̃(R,ω)

∂ω
· (η̇ + ω × η) dt

= −
∫ tf

t0

{
d

dt

(
∂L̃(R,ω)

∂ω

)
+ S(ω)

∂L̃(R,ω)

∂ω

}
· η dt,

where the first term is integrated by parts, using the fact that η(t0) = η(tf ) =
0, and the second term is rewritten using a cross product identity.

The second term above is now rewritten. We use the notation ri ∈ S2 and
δri ∈ TriS

2 to denote the i-th column of RT ∈ SO(3) and δRT ∈ TRSO(3),
respectively. This is equivalent to partitioning R and δR into row vectors as

R =

⎡
⎣r

T
1

rT2
rT3

⎤
⎦ , δR =

⎡
⎣δr

T
1

δrT2
δrT3

⎤
⎦ .

We use the fact that δri = S(ri)η to obtain

∫ tf

t0

∂L̃(R,ω)

∂R
· δR dt =

∫ tf

t0

3∑
i=1

∂L̃(R,ω)

∂ri
· δri dt

=

∫ tf

t0

3∑
i=1

∂L̃(R,ω)

∂ri
· S(ri)η dt

= −
∫ tf

t0

3∑
i=1

(
S(ri)

∂L̃(R,ω)

∂ri

)
· η dt. (6.5)

Substituting, the expression for the infinitesimal variation of the action inte-
gral is obtained:

d

dε
Gε

∣∣∣∣
ε=0

= −
∫ tf

t0

{
d

dt

(
∂L̃(R,ω)

∂ω

)
+ S(ω)

∂L̃(R,ω)

∂ω
+

3∑
i=1

S(ri)
∂L̃(R,ω)

∂ri

}
· η dt.

From Hamilton’s principle, the above expression for the infinitesimal vari-
ation of the action integral should be zero for all differentiable variations
η : [t0, tf ] → R

3 with fixed endpoints. The fundamental lemma of the calcu-
lus of variations leads to the Euler–Lagrange equations.

Proposition 6.1 The Euler–Lagrange equations for a modified Lagrangian
function L̃ : TSO(3) → R

1 are

d

dt

(
∂L̃(R,ω)

∂ω

)
+ ω × ∂L̃(R,ω)

∂ω
+

3∑
i=1

ri × ∂L̃(R,ω)

∂ri
= 0. (6.6)
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This form of the Euler–Lagrange equations, together with the rotational kine-
matics equations (6.1), describe the Lagrangian flow of a rotating rigid body
on the tangent bundle TSO(3) in terms of (R,ω) ∈ TSO(3).

6.3.3 Euler–Lagrange Equations: Quadratic Kinetic Energy

We now determine a more explicit expression for the kinetic energy of a
rotating rigid body. This expression is used to obtain a standard form of the
Euler–Lagrange equations. For simplicity, the reference frame is assumed to
be an inertial frame, and the origin of the body-fixed frame is assumed to be
located at the center of mass of the rigid body.

Let ρ ∈ B ⊂ R
3 be a vector from the origin of the body-fixed frame to

a mass element of the rigid body expressed in the body-fixed frame. Here
B denotes the set of material points that constitute the rigid body in the
body-fixed frame. Thus, Ṙρ is the velocity vector of this mass element in the
inertial frame. The kinetic energy of the rotating rigid body can be expressed
as the body integral

T (R,ω) =
1

2

∫
B
‖Ṙρ‖2 dm(ρ)

=
1

2

∫
B
‖RS(ρ)ω‖2 dm(ρ)

=
1

2
ωT

(∫
B
S(ρ)TS(ρ) dm(ρ)

)
ω,

where dm(ρ) denotes the mass of the incremental element located at ρ ∈ B.
Thus, we can express the kinetic energy as a quadratic function of the angular
velocity vector

T (R,ω) =
1

2
ωTJω,

where

J =

∫
B
S(ρ)TS(ρ) dm(ρ),

is the 3× 3 standard inertia matrix of the rigid body that characterizes the
rotational inertia of the rigid body in the body-fixed frame.

The inertia matrix can be shown to be a symmetric and positive-definite
matrix. It has three positive eigenvalues and three eigenvectors that form an
orthonormal basis for R3. This special basis defines the principal axes of the
rigid body and it is sometimes convenient to select the body-fixed frame to
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be aligned with the principal axes of the body. In this case, the inertia matrix
is diagonal.

Consequently, the modified Lagrangian function has the special form

L̃(R,ω) =
1

2
ωTJω − U(R). (6.7)

This gives the standard form of the equations for a rotating rigid body, often
referred to as the Euler equations for rigid body rotational dynamics, as

Jω̇ + S(ω)Jω −
3∑

i=1

S(ri)
∂U(R)

∂ri
= 0. (6.8)

These Euler equations (6.8), together with the rotational kinematics (6.1),
describe the Lagrangian flow of a rotating rigid body in terms of the evolution
of (R,ω) ∈ TSO(3) on the tangent bundle TSO(3).

If the potential energy terms in (6.8) are globally defined on R
3×3, then

the domain of definition of the rotational kinematics (6.1) and the Euler
equations (6.8) on TSO(3) can be extended to TR3×3. This extension is nat-
ural and useful in that it defines a Lagrangian vector field on the tangent
bundle TR3×3 Alternatively, the manifold TSO(3) is an invariant manifold
of this Lagrangian vector field on TR3×3 and its restriction to this invariant
manifold describes the Lagrangian flow of (6.1) and (6.8) on TSO(3).

6.4 Hamiltonian Dynamics on SO(3)

We introduce the Legendre transformation to obtain the angular momen-
tum and the Hamiltonian function. We make use of Hamilton’s phase space
variational principle to derive Hamilton’s equations for a rotating rigid body.

6.4.1 Hamilton’s Phase Space Variational Principle

As in the prior section, we begin with a modified Lagrangian function L̃ :
TSO(3) → R

1, which is a real-valued function defined on the tangent bundle
of the configuration manifold SO(3); we assume that the modified Lagrangian
function

L̃(R,ω) = T (R,ω)− U(R),

is given by the difference between a kinetic energy function T (R,ω) defined on
the tangent bundle and a configuration dependent potential energy function
U(R).
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The angular momentum of the rotating rigid body in the body-fixed frame
is defined by the Legendre transformation

Π =
∂L̃(R,ω)

∂ω
, (6.9)

where we assume the Lagrangian has the property that the map ω ∈ so(3) →
Π ∈ so(3)∗ is invertible. The angular momentum is viewed as being conjugate
to the angular velocity vector.

The modified Hamiltonian function H̃ : T∗SO(3) → R
1 is defined on the

cotangent bundle of SO(3) by

H̃(R,Π) = Π · ω − L̃(R,ω),

using the Legendre transformation.
Consider the modified action integral of the form,

G̃ =

∫ tf

t0

{
Π · ω − H̃(R,Π)

}
dt.

The infinitesimal variation of the action integral is given by

δG̃ =

∫ tf

t0

{
Π · δω − ∂H̃(R,Π)

∂R
· δR+ δΠ ·

(
ω − ∂H̃(R,Π)

∂Π

)}
dt.

Recall from (6.2) and (6.3) that the infinitesimal variations can be written as

δR = RS(η),

δω = η̇ + S(ω)η,

for differentiable curves η : [t0, tf ] → R
3. Following the arguments used to

obtain (6.5),

∫ tf

t0

∂H̃(R,Π)

∂R
· δR dt = −

∫ tf

t0

3∑
i=1

(
S(ri)

∂H̃(R,Π)

∂ri

)
· η dt.

6.4.2 Hamilton’s Equations: General Form

We now derive Hamilton’s equations. Substitute the preceding expressions
into the expression for the infinitesimal variation of the modified action inte-
gral and integrate by parts to obtain

δG̃ =

∫ tf

t0

Π · (η̇ + S(ω)η) +

3∑
i=1

(
S(ri)

∂H̃(R,Π)

∂ri

)
· η
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+ δΠ ·
(
ω − ∂H̃(R,Π)

∂Π

)
dt

=

∫ tf

t0

{
−Π̇ − S(ω)Π +

3∑
i=1

(
S(ri)

∂H̃(R,Π)

∂ri

)}
· η

+ δΠ ·
(
ω − ∂H̃(R,Π)

∂Π

)
dt.

Invoke Hamilton’s phase space variational principle that δG̃ = 0 for all
possible functions η : [t0, tf ] → R

3 and δΠ : [t0, tf ] → R
3 that satisfy

η(t0) = η(tf ) = 0. This implies that the expression in each of the braces
of the above equation should be zero. We thus obtain Hamilton’s equations,
expressed in terms of (R,Π).

Proposition 6.2 Hamilton’s equations for a modified Hamiltonian function
H̃ : T∗SO(3) → R

1 are

ṙi = ri × ∂H̃(R,Π)

∂Π
, i = 1, 2, 3, (6.10)

Π̇ = Π × ∂H̃(R,Π)

∂Π
+

3∑
i=1

ri × ∂H̃(R,Π)

∂ri
. (6.11)

Thus, equations (6.10) and (6.11) define Hamilton’s equations of motion for
the dynamics of the Hamiltonian flow in terms of the evolution of (R,Π) ∈
T∗SO(3) on the cotangent bundle TSO(3).

The following property follows directly from the above formulation of
Hamilton’s equations on SO(3):

dH̃(R,Π)

dt
=

3∑
i=1

∂H̃(R,Π)

∂ri
· ṙi + ∂H̃(R,Π)

∂Π
· Π̇

=
∂H̃(R,Π)

∂Π
· S(Π)

∂H̃(R,Π)

∂Π
= 0.

The modified Hamiltonian function is constant along each solution of Hamil-
ton’s equation. This property does not hold if the modified Hamiltonian func-
tion has a nontrivial explicit dependence on time.
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6.4.3 Hamilton’s Equations: Quadratic Kinetic Energy

Suppose the kinetic energy is a quadratic in the angular velocity vector

L̃(R,ω) =
1

2
ωTJω − U(R).

The Legendre transformation gives

Π = Jω,

and the modified Hamiltonian function can be expressed as

H̃(R,Π) =
1

2
ΠTJ−1Π + U(R). (6.12)

Hamilton’s equations for a rotating rigid body are described on the cotangent
bundle T∗SO(3) as:

ṙi = ri × J−1Π, i = 1, 2, 3, (6.13)

Π̇ = Π × J−1Π +

3∑
i=1

ri × ∂U(R)

∂ri
. (6.14)

Equations (6.13) and (6.14) define Hamilton’s equations of motion for rigid
body dynamics and they describe the Hamiltonian flow in terms of the evo-
lution of (R,Π) ∈ T∗SO(3) on the cotangent bundle T∗SO(3).

If the potential energy terms in (6.14) are globally defined on R
3×3, then

the domain of definition of (6.13) and (6.14) on T∗SO(3) can be extended
to T∗

R
3×3. This extension is natural and useful in that it defines a Hamilto-

nian vector field on the cotangent bundle T∗
R

3×3 Alternatively, the manifold
T∗SO(3) is an invariant manifold of this Hamiltonian vector field on T∗

R
3×3

and its restriction to this invariant manifold describes the Hamiltonian flow
of (6.13) and (6.14) on T∗SO(3).

6.5 Linear Approximations of Dynamics on SO(3)

Geometric forms of the Euler–Lagrange equations and Hamilton’s equations
on the configuration manifold SO(3) have been presented. This yields equa-
tions of motion that provide insight into the geometry of the global dynamics
on SO(3).

A linear vector field can be determined that approximates the Lagrangian
vector field on TSO(3), at least locally in an open subset of TSO(3). Such lin-
ear approximations allow a straightforward analysis of local dynamics prop-
erties.
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A common approach in the literature on the dynamics of rotating rigid
bodies involves introducing local coordinates in the form of three angle coor-
dinates; the most common local coordinates are Euler angles, but exponential
local coordinates have some advantages as described in Appendix B. These
descriptions often involve complicated trigonometric or transcendental ex-
pressions and introduce complexity in the analysis and computations.

Although our main emphasis is on global methods, we make use of local
coordinates as a way of describing a linear vector field that approximates
a vector field on TSO(3), at least in the neighborhood of an equilibrium
solution. This approach is used subsequently in this chapter to study the
local flow properties near an equilibrium. As further background, linearized
equations are developed in local coordinates for SO(3) in Appendix B.

6.6 Dynamics on SO(3)

We study several physical examples of a rotating rigid body in three dimen-
sions. In each, the configuration manifold is SO(3); consequently each of the
dynamics has three degrees of freedom. Lagrangian and Hamiltonian formu-
lations of the equations of motion are presented; a few simple flow properties
are identified.

6.6.1 Dynamics of a Freely Rotating Rigid Body

We consider a freely rotating rigid body, also referred to as the free rigid
body, in the sense that no moments act on the body. In this case, the prior
development holds with zero potential energy U(R) = 0. This is the simplest
case of a rotating rigid body in three dimensions.

An inertial Euclidean frame is selected arbitrarily. The origin of the body-
fixed Euclidean frame is assumed to be located at the center of mass of the
rigid body which is assumed to be fixed in the inertial frame. A schematic of
a freely rotating rigid body is shown in Figure 6.1.

6.6.1.1 Euler–Lagrange Equations

The attitude kinematics equation for the free rigid body is described by

Ṙ = RS(ω). (6.15)

The modified Lagrangian function L̃ : TSO(3) → R
1 is

L̃(R,ω) =
1

2
ωTJω.
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R ∈ SO(3)

Fig. 6.1 Freely rotating rigid body

Following the results in (6.8) with zero potential energy, the Euler–Lagrange
equations of motion for the free rigid body, referred to as the Euler equations,
are given by

Jω̇ + ω × Jω = 0, (6.16)

where J =
∫
B S(ρ)TS(ρ)dm(ρ) is the standard 3 × 3 inertia matrix of the

rigid body in the body-fixed frame. These equations of motion (6.15) and
(6.16) define the Lagrangian flow for the free rigid body dynamics described
by the evolution of (R,ω) ∈ TSO(3) on the tangent bundle of SO(3).

6.6.1.2 Hamilton’s Equations

Using the Legendre transformation, let

Π =
∂L̃(R,ω)

∂ω
= Jω

be the angular momentum of the free rigid body expressed in the body-fixed
frame. The modified Hamiltonian is

H̃(R,Π) =
1

2
ΠTJ−1Π.

The rotational kinematics equation can be written as

Ṙ = RS(J−1Π). (6.17)

Using (6.16), Hamilton’s equations are given by

Π̇ = Π × J−1Π, (6.18)
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Thus, Hamilton’s equations of motion (6.17) and (6.18) describe the Hamil-
tonian dynamics of the free rigid body as (R,Π) ∈ T∗SO(3) as they evolve
on the cotangent bundle of SO(3).

6.6.1.3 Conservation Properties

There are two conserved quantities, or integrals of motion, for the rotational
dynamics of a free rigid body. First, the Hamiltonian, which is the rotational
kinetic energy and coincides with the total energy E in this case, is conserved;
that is

H =
1

2
ωTJω

is constant along each solution of the dynamical flow of the free rigid body.
In addition, there is a rotational symmetry: the Lagrangian is invariant

with respect to the tangent lift of arbitrary rigid body rotations. This sym-
metry leads to conservation of the angular momentum in the inertial frame;
that is

RΠ = RJω

is constant along each solution of the dynamical flow of the free rigid body.
Consequently the magnitude of the angular momentum in the body-fixed
frame is also conserved, that is

‖Jω‖2

is constant along each solution of the dynamical flow of the free rigid body.
These results are well known for the free rigid body and they guarantee that
the free rigid body is integrable [10].

There are additional conservation properties if the distribution of mass in
the rigid body has a symmetry. There are many published results for such
cases.

6.6.1.4 Equilibrium Properties

The equilibria or constant solutions are easily identified. The free rigid body
is in equilibrium at any attitude in SO(3) if the angular velocity vector is
zero.

To illustrate the linearization of the dynamics of a rotating rigid body, con-
sider the equilibrium solution (I3×3, 0) ∈ TSO(3). According to Appendix B,
θ = (θ1, θ2, θ3) ∈ R

3 are exponential local coordinates for SO(3) in a neigh-
borhood of I3×3 ∈ SO(3). Following the results in Appendix B, the linearized
differential equations defined on the six-dimensional tangent space of TSO(3)
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at (I3×3, 0) ∈ TSO(3) are given by

Jξ̈ = 0.

These linearized differential equations approximate the rotational dynamics
of the rigid body in a neighborhood of (I3×3, 0) ∈ TSO(3). These simple
linear dynamics are accurate to first-order in the perturbations expressed in
local coordinates. Higher-order coupling effects are important for large per-
turbations of the angular velocity vector of the rigid body from equilibrium.

Solutions for which the angular velocity vector are constant can also be
identified; these are referred to as relative equilibrium solutions and they
necessarily satisfy

ω × Jω = 0.

Thus, the relative equilibrium solutions occur when the angular velocity vec-
tor is collinear with an eigenvector of the inertia matrix J . A comprehensive
treatment of relative equilibria of the free rigid body is given in [36].

6.6.2 Dynamics of a Three-Dimensional Pendulum

A three-dimensional pendulum is a rigid body supported by a fixed, fric-
tionless pivot, acted on by uniform, constant gravity. The terminology three-
dimensional pendulum refers to the fact that the pendulum is a rigid body,
with three rotational degrees of freedom, that rotates under uniform, constant
gravity. The formulation of a three-dimensional pendulum seems first to have
been introduced in [87] and its dynamics developed further in [18, 20, 21, 58].
The development that follows is based on these sources.

An inertial Euclidean frame is selected so that the first two axes lie in
a horizontal plane and the third axis is vertical. The origin of the inertial
Euclidean frame is selected to be the location of the pendulum pivot. The
body-fixed frame is selected so that its origin is located at the center of mass
of the rigid body. Let m be the mass of the three-dimensional pendulum and
let ρ0 ∈ R

3 be the nonzero vector from the center of mass of the body to the
pivot, expressed in the body-fixed frame. Let J be the constant 3× 3 inertia
matrix of the rigid body described subsequently. As before, g denotes the con-
stant acceleration of gravity. A schematic of a three-dimensional pendulum
is shown in Figure 6.2.

The attitude of the rigid body is R ∈ SO(3) and ω ∈ R
3 is the angular

velocity vector of the rigid body. The attitude kinematics equation for the
three-dimensional pendulum is

Ṙ = RS(ω). (6.19)
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R ∈ SO(3)

Fig. 6.2 Three-dimensional pendulum

6.6.2.1 Euler–Lagrange Equations

Let ρ ∈ R
3 be a vector from the origin of the body-fixed frame to a mass

element of the rigid body expressed in the body-fixed frame. Thus, Ṙ(−ρ0+ρ)
is the velocity vector of this mass element in the inertial frame. The kinetic
energy of the rotating rigid body can be expressed as the body integral

T (R,ω) =
1

2

∫
B
‖Ṙ(−ρ0 + ρ)‖2 dm(ρ)

=
1

2

∫
B
‖RS(−ρ0 + ρ)ω‖2 dm(ρ)

=
1

2
ωTJω,

where the moment of inertia matrix is

J =

∫
B
S(ρ)TS(ρ)dm(ρ) +mST (ρ0)S(ρ0).

The gravitational potential energy of the three-dimensional pendulum
arises from the gravitational field acting on each material particle in the
pendulum body. This can be expressed as

U(R) = −
∫
B
geT3 Rρdm(ρ) = −mgeT3 Rρ0.

The modified Lagrangian function of the three-dimensional pendulum can
be expressed as:

L̃(R,ω) =
1

2
ωTJω +mgeT3 Rρ0.

The Euler–Lagrange equations for the three-dimensional pendulum are given
by

Jω̇ + ω × Jω −mgρ0 ×RT e3 = 0. (6.20)
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These equations (6.19) and (6.20) define the rotational kinematics and
the Lagrangian dynamics of the three-dimensional pendulum described by
(R,ω) ∈ TSO(3).

6.6.2.2 Hamilton’s Equations

Hamilton’s equations of motion are easily obtained. According to the Legen-
dre transformation,

Π =
∂L̃(R,ω)

∂ω
= Jω

is the angular momentum of the three-dimensional pendulum expressed in
the body-fixed frame. Thus, the modified Hamiltonian is

H̃(R,Π) =
1

2
ΠTJ−1Π −mgS(ρ0)R

T e3.

Hamilton’s equations of motion are given by the rotational kinematics

Ṙ = RS(J−1Π). (6.21)

and

Π̇ = Π × J−1Π +mgρ0 ×RT e3, (6.22)

Thus, the Hamiltonian dynamics of the three-dimensional pendulum, de-
scribed by equations (6.21) and (6.22), characterize the evolution of (R,Π)
on the cotangent bundle T∗SO(3).

6.6.2.3 Conservation Properties

There are two conserved quantities, or integrals of motion, for the three-
dimensional pendulum. First, the Hamiltonian, which coincides with the total
energy E in this case, is conserved, that is

H =
1

2
ωTJω −mgρT0 R

T e3,

and it is constant along each solution of the dynamical flow of the three-
dimensional pendulum.

In addition, the modified Lagrangian is invariant with respect to the lifted
action of rotations about the vertical or gravity direction. By Noether’s the-
orem, this symmetry leads to conservation of the component of angular mo-
mentum about the vertical or gravity direction; that is
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h = ωTJRT e3,

and it is constant along each solution of the dynamical flow of the three-
dimensional pendulum.

6.6.2.4 Equilibrium Properties

The equilibrium or constant solutions of the three-dimensional pendulum are
easily obtained. The conditions for an equilibrium solution are:

ω × Jω −mgρ0 ×RT e3 = 0,

RS(ω) = 0.

Since R ∈ SO(3) is non-singular, it follows that the angular velocity vector
ω = 0. Thus, an equilibrium attitude satisfies

ρ0 ×RT e3 = 0,

which implies that

RT e3 =
ρ0
‖ρ0‖ ,

or

RT e3 = − ρ0
‖ρ0‖ .

An attitude R is an equilibrium attitude if and only if the vertical direction
or equivalently the gravity direction RT e3, resolved in the body-fixed frame,
is collinear with the body-fixed vector ρ0 from the center of mass of the
rigid body to the pivot. If RT e3 is in the opposite direction to the vector
ρ0, then (R, 0) ∈ TSO(3) is an inverted equilibrium of the three-dimensional
pendulum; if RT e3 is in the same direction to the vector ρ0, then (R, 0) is a
hanging equilibrium of the three-dimensional pendulum.

Without loss of generality, it is convenient to assume that the constant
center of mass vector, in the body-fixed frame, satisfies

ρ0
‖ρ0‖ = −e3.

Consequently, if R ∈ SO(3) defines an equilibrium attitude for the three-
dimensional pendulum, then an arbitrary rotation of the three-dimensional
pendulum about the vertical is also an equilibrium attitude. In summary,
there are two disjoint equilibrium manifolds for the three-dimensional pen-
dulum.
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The manifold {
R ∈ SO(3) : RT e3 =

ρ0
‖ρ0‖

}
,

is referred to as the inverted equilibrium manifold, since the center of mass
is directly above the pivot.

We now obtain linearized equations at the inverted equilibrium (I3×3, 0) ∈
TSO(3). According to Appendix B, θ = (θ1, θ2, θ3) ∈ R

3 are exponential
local coordinates for SO(3) in a neighborhood of I3×3 ∈ SO(3). Following
the results in Appendix B, the linearized differential equations for the three-
dimensional pendulum are defined on the six-dimensional tangent space of
TSO(3) at (I3×3, 0) ∈ TSO(3) and are given by

Jξ̈ −mg ‖ρ0‖
⎡
⎣1 0 0
0 1 0
0 0 0

⎤
⎦ ξ = 0.

These linearized differential equations approximate the rotational dynamics
of a rotating rigid body in a neighborhood of (I3×3, 0) ∈ TSO(3). These linear
dynamics are accurate to first-order in the perturbations expressed in local
coordinates.

The eigenvalues of the linearized equations can be shown to have the fol-
lowing pattern: two pairs of eigenvalues that are real with equal magnitudes
and opposite signs and one pair of eigenvalues at the origin. Since there is a
positive eigenvalue, this inverted equilibrium solution is unstable.

Next, the manifold

{
R ∈ SO(3) : RT e3 = − ρ0

‖ρ0‖
}
,

is referred to as the hanging equilibrium manifold, since the center of mass
is directly below the pivot.

We obtain linearized differential equations at the hanging equilibrium
(−I3×3, 0) ∈ TSO(3). According to Appendix B, θ = (θ1, θ2, θ3) ∈ R

3 are
exponential local coordinates for SO(3) in a neighborhood of −I3×3 ∈ SO(3).
The linearized differential equations for the three-dimensional pendulum are
defined on the six-dimensional tangent space of TSO(3) at (−I3×3, 0) ∈
TSO(3) and are given by

Jξ̈ +mg ‖ρ0‖
⎡
⎣1 0 0
0 1 0
0 0 0

⎤
⎦ ξ = 0.

These linearized differential equations approximate the rotational dynam-
ics of a rotating rigid body in a neighborhood of the hanging equilib-
rium (−I3×3, 0) ∈ TSO(3). These linear dynamics, with two pairs of purely
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imaginary eigenvalues and one pair of zero eigenvalues, are accurate to first-
order in the perturbations expressed in local coordinates.

Solutions for which the angular velocity vector are constant can also be
identified; these are relative equilibrium solutions and they necessarily satisfy

ω × Jω −mgρ0 ×RT e3 = 0.

Thus, the relative equilibrium solutions occur when the angular velocity vec-
tor is collinear with an eigenvector of the inertia matrix J , and the direction
of this angular velocity vector, in the inertial frame, is collinear with the
gravity direction.

6.6.3 Dynamics of a Rotating Rigid Body in Orbit

Consider the rotational motion of a rigid body in a circular orbit about a
large central body. A Newtonian gravity model is used, which gives rise to a
differential gravity force on each mass element of the rigid body; this grav-
ity gradient moment is included in our subsequent analysis. The subsequent
development follows the presentations in [50, 51].

Three Euclidean frames are introduced: an inertial frame whose origin is
at the center of the central body, a body-fixed frame whose origin is located
at the center of mass of the orbiting rigid body, and a so-called local vertical,
local horizontal (LVLH) frame, whose first axis is tangent to the circular
orbit, the second axis is perpendicular to the plane of the orbit, and the
third axis is along the orbit radius vector. The origin of the LVLH frame is
located at the center of mass of the rigid body and remains on the circular
orbit, so that the LVLH frame necessarily rotates at the orbital rate. The
LVLH frame is not an inertial frame, but it does have physical significance;
it is used to describe the gravity gradient moment. A schematic of a rotating
rigid body in a circular orbit is shown in Figure 6.3.

Fig. 6.3 Rotating rigid body in a circular orbit
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We define three sets of rotation matrices in SO(3): Rbi ∈ SO(3) denotes a
rotation matrix from the body-fixed frame to the inertial frame, Rli ∈ SO(3)
denotes a rotation matrix from the LVLH frame to the inertial frame, and
Rbl ∈ SO(3) denotes a rotation matrix from the body-fixed frame to the
LVLH frame. Thus, the three rotation matrices satisfy Rbl = (Rli)TRbi. We
show that the dynamics of a rotating rigid body in a circular orbit can be
expressed in terms of the rotation matrix Rbi ∈ SO(3), so that SO(3) is the
configuration manifold.

Let ω ∈ R
3 be the angular velocity of the rigid body expressed in the

body-fixed frame. The 3×3 constant matrix J is the standard inertia matrix
of the rigid body in the body-fixed frame. The scalar orbital angular velocity

is ω0 =
√

GM
r30

, where M denotes the mass of the central body, G is the

universal gravitational constant, and r0 is the constant radius of the circular
orbit. The inertial frame is selected so that the orbital plane is orthogonal
to the second inertial axis; hence the orbital angular velocity vector is ω0e2
in the inertial frame. The LVLH frame is selected so that the orbit radius
vector of the body is r0e3 in the LVLH frame.

6.6.3.1 Euler–Lagrange Equations

Based on the prior developments in this chapter, the on-orbit rigid body
rotational kinematics equations are given as follows. The attitude of the body-
fixed frame with respect to the inertial frame is described by the rotational
kinematics

Ṙbi = RbiS(ω),

the attitude of the LVLH frame with respect to the inertial frame is described
by the rotational kinematics

Ṙli = RliS(ω0e2),

and the attitude of the body-fixed frame with respect to the LVLH frame is
described by the rotational kinematics

Ṙbl =RblS(ω − ω0R
blT e2).

The modified Lagrangian L̃ : TSO(3) → R
1 is given by

L̃(Rbi, ω) =
1

2
ωTJω − U(Rbi),

where U(Rbi) is the gravitational potential energy of the rigid body in orbit.
Thus, the Euler–Lagrange equations of motion are given by
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Jω̇ + ω × Jω = Mg,

where

Mg =
3∑

i=1

ri × ∂U(Rbi)

∂ri
,

is the gravity gradient moment on the rigid body due to the gravity poten-
tial U(Rbi). In the gravity gradient moment expression, r1, r2, r3 denote the
column partitions of (Rbi)T ∈ SO(3).

Since the orbital angular velocity ω0 is constant, the rotational kinematics
equation for Rli ∈ SO(3) can be explicitly solved to obtain

Rli(t) = Rli(t0)e
S(ω0e2)(t−t0).

This describes the rotation of the LVLH frame with respect to the inertial
frame.

The gravity potential for the full orbiting rigid body is obtained by inte-
grating the gravity potential for each element in the body over the body; this
leads to

U(Rbi) = −
∫
B

GM

‖x+Rbiρ‖ dm(ρ),

where x ∈ R
3 is the position of the center of mass of the orbiting rigid body

in the inertial frame, and ρ ∈ R
3 is a vector from the center of mass of the

rigid body to the body element with mass dm(ρ) in the body-fixed frame.
We now derive a closed form approximation for the gravitational moment

Mg using the fact that the rigid body is in a circular orbit so that the norm
of x is constant. The size of the rigid body is assumed to be much smaller
than the orbital radius.

Since the rigid body position vector in the LVLH frame is r0e3, the position
vector of the rigid body in the inertial frame is given by x = r0R

lie3. Using
this expression, the matrix of derivatives of the gravitational potential energy
is

∂U(Rbi)

∂Rbi
=

∫
B

GM r0R
li e3ρ

T

‖ r0e3 +Rblρ ‖3
dm(ρ)

=
GM

r0

∫
B

(
Rlie3ρ̂

T
) ‖ρ‖

r0[
1 + 2

(
eT3 R

blρ̂
) ‖ρ‖

r0
+ ‖ρ‖2

r20

] 3
2

dm(ρ),

where ρ̂ = ρ
‖ρ‖ ∈ R

3 is the unit vector along the direction of ρ. Since the size

of the rigid body is significantly smaller than the orbital radius, it follows

that ‖ρ‖
r0

 1. Using a Taylor series expansion, we obtain the second-order
approximation:
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∂U(Rbi)

∂Rbi
=

GM

r0

∫
B
Rlie3ρ̂

T

{
‖ρ‖
r0

− 3eT3 R
blρ̂

‖ρ‖2
r20

}
dm(ρ).

Since the body-fixed frame is located at the center of mass of the rigid body,∫
B ρ dm(ρ) = 0. Therefore, the first term in the above equation vanishes.

Since eT3 R
blρ is a scalar, it can be shown that the above partial derivative

matrix can be written as

∂U(Rbi)

∂Rbi
= −3ω2

0R
lie3e

T
3 R

bl

(
1

2
tr[J ] I3×3 − J

)
.

This can be used to obtain an expression for the gravity gradient moment on
the full rigid body:

Mg =

3∑
i=1

ri × ∂U(Rbi)

∂ri
= 3ω2

0R
blT e3 × JRblT e3.

In summary, the Euler equations can be written as

Jω̇ + ω × Jω = 3ω2
0R

blT e3 × JRblT e3, (6.23)

and the attitude kinematics equation with respect to the LVLH frame is

Ṙbl = RblS(ω − ω0R
blT e2). (6.24)

These rotational equations of motion (6.23) and (6.24) define the Lagrangian
flow of an on-orbit rigid body as the dynamics described by (Rbl, ω) ∈ TSO(3)
evolve on the tangent bundle of SO(3). Rotational dynamics that describe the
attitude of the rigid body in the inertial frame or in the body-fixed frame
can be obtained from the above development.

6.6.3.2 Hamilton’s Equations

Hamilton’s equations are easily obtained by defining the angular momentum

Π =
∂L̃(R,ω)

∂ω
= Jω.

Thus, the modified Hamiltonian function is

H̃(Rbi, Π) =
1

2
ΠTJ−1Π + U(Rbi).

Hamilton’s equations of motion for the on-orbit rigid body can be written as
the attitude kinematics equation with respect to the LVLH frame, namely
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Ṙbl = RblS(J−1Π − ω0R
blT e2), (6.25)

and the Euler equations

Π̇ = Π × J−1Π + 3ω2
0R

blT e3 × JRblT e3. (6.26)

These equations (6.25) and (6.26) define the Hamiltonian flow of the rota-
tional dynamics of an on-orbit rigid body as described by (Rbl, Π) ∈ T∗SO(3)
on the cotangent bundle of SO(3). Rotational dynamics that describe the at-
titude of the rigid body in the inertial frame or in the body-fixed frame can
be obtained from the above development.

6.6.3.3 Conservation Properties

The Hamiltonian, which coincides with the total energy E in this case, is

H =
1

2
ωTJω + U(Rbi);

the Hamiltonian is constant along each solution of the dynamical flow.

6.6.3.4 Equilibrium Properties

The orbiting rigid body is in a relative equilibrium when the attitude of the
body with respect to the LVLH frame is constant. The relative equilibria can
be obtained by assuming that (Rbl, ω) are constant in (6.23) and (6.24). This
leads to the requirement that the constant angular velocity of the orbiting
body is

ω = ω0R
blT e3,

and the attitude of the rigid body in the LVLH frame is such that the gravity
moment on the rigid body is zero, namely

RblT e3 × JRblT e3 = 0.

Thus, an attitude Rbl ∈ SO(3) is a relative equilibrium of the orbiting rigid

body if RblT e3 ∈ R
3 is an eigenvector of the inertia matrix J .
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6.6.4 Dynamics of a Rigid Body Planar Pendulum

A rigid body planar pendulum is a rigid body that is constrained to ro-
tate about an inertially fixed revolute joint under the influence of uniform,
constant gravity. Since the revolute joint allows one degree of freedom rota-
tion about its axis, each material point in the rigid body necessarily rotates
along a circular arc, centered at the closest point on the axis, in a fixed
two-dimensional plane. This motivates the designation of rigid body planar
pendulum. This is a generalization of the lumped mass planar pendulum ex-
ample that was introduced in Chapter 4 using the configuration manifold
S1.

As usual we consider an inertial Euclidean frame in R
3 and we select

a body-fixed frame. The inertial frame is selected so that the third axis is
vertical. For convenience, the origin of the inertial frame is located on the
axis of the revolute joint at the point on the axis that is closest to the center
of mass of the rigid body; the origin of the body-fixed frame coincides with
the center of mass of the rigid body. We denote the direction vector of the
axis of the revolute joint, in the inertial frame, by a ∈ S2 and we denote the
vector from the center of mass of the rigid body to the origin of the inertial
frame, expressed in the body-fixed frame, by ρ0 ∈ R

3. The mass of the rigid
body is m and the inertia matrix of the rigid body, computed subsequently,
is denoted by J . A schematic of a rigid body planar pendulum is shown in
Figure 6.4.

R ∈ M

Fig. 6.4 Rigid body planar pendulum

It is an important observation that rotations of the rigid body about the
axis leave material points in the rigid body located on the axis unchanged. If
R ∈ SO(3) denotes the attitude of the rigid body, then it follows that Ra = a
expresses the fact that the direction of the revolute joint axis is unchanged
under rotations about that axis. Thus, the configuration manifold for the
rigid body planar pendulum is
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M = {R ∈ SO(3) : Ra = a} .

This is a differentiable submanifold of SO(3) with dimension one. Conse-
quently, the rigid body planar pendulum has one degree of freedom.

6.6.4.1 Kinematics and Variations

Since the configuration manifold is a submanifold of SO(3), the kinematics
and the expressions for the infinitesimal variations must be suitably modified
from the prior development in this chapter.

The angular velocity vector of the rigid body Ω ∈ R
3 is introduced ac-

cording to the usual rigid body kinematics

Ṙ = RS(Ω).

We first see that the constraint Ra = a implies that Ṙa = 0; thus S(Ω)a = 0,
that is Ω × a = 0. This implies that Ω is collinear with a, that is there is
ω : [t0, tf ] → R

1 such that

Ω = ωa,

where ω is the scalar angular velocity of the rigid body about its rotation
axis. Thus, the rigid body angular velocity vector, in the body-fixed frame,
has magnitude given by the scalar angular velocity in the direction of the
axis of rotation. Thus, the rotational kinematics of the rigid body can be
expressed as

Ṙ = RS(ωa). (6.27)

From the prior analysis in this chapter, it follows that the infinitesimal
variation of the rigid body attitude is

δR = RS(η),

where η : [t0, tf ] → R
3 is a differentiable curve that vanishes at its endpoints.

Since Ra = a, it follows that

δRa = 0.

This constraint is satisfied if S(a)η = 0, or equivalently η = βa, where β :
[t0, tf ] → R is a differentiable curve that vanishes at its endpoints. Thus,

δR = RS(βa).
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Further, the infinitesimal variation of the angular velocity vector is

δΩ = η̇ + S(ωa)η

= β̇a+ ωS(a)βa

= β̇a,

since S(a)a = 0. Thus,

δω = aT δΩ = β̇.

6.6.4.2 Euler–Lagrange Equations

We now derive Euler–Lagrange equations for the rigid body planar pendulum.
The above expressions for the infinitesimal variations play a key role.

The inertial position of a material point located in the rigid body at ρ ∈ B
is given by R(−ρ0 + ρ) ∈ R

3. The kinetic energy of the rigid body is

T =
1

2

∫
B

∥∥∥Ṙ(−ρ0 + ρ)
∥∥∥2

dm(ρ)

=
1

2

∫
B
‖RS(Ω)(−ρ0 + ρ)‖2 dm(ρ)

=
1

2
ΩTJΩ,

where the rigid body moment of inertia matrix is

J =

∫
B
ST (ρ)S(ρ) dm(ρ) +mST (ρ0)S(ρ0).

The gravitational potential energy of the rigid body is

U(R) =

∫
B
geT3 R(−ρ0 + ρ) dm(ρ)

= −mgeT3 Rρ0.

The modified Lagrangian function is

L̃(R,Ω) =
1

2
ΩTJΩ +mgeT3 Rρ0,

or equivalently

L̃(R,ω) =
1

2
aTJaω2 +mgeT3 Rρ0.

The infinitesimal variation of the action integral is
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d

dε
Gε

∣∣∣∣
ε=0

=

∫ tf

t0

aTJaω δω +mgρT0 δR
T e3 dt.

Use the expression

δRT e3 = −S(βa)RT e3 = βS(RT e3)a

to obtain the infinitesimal variation of the action integral:

d

dε
Gε

∣∣∣∣
ε=0

=

∫ tf

t0

aTJaωβ̇ +mgρT0 S(R
T e3)aβ dt.

Integrating by parts and using the fact that the variations vanish at the
endpoints, we obtain

d

dε
Gε

∣∣∣∣
ε=0

= −
∫ tf

t0

{
aTJaω̇ −mgρT0 S(R

T e3)a
} · β dt.

Hamilton’s principle and the fundamental lemma of the calculus of variations
give the Euler–Lagrange equation

aTJa ω̇ −mgaT (ρ0 ×RT e3) = 0. (6.28)

The equations (6.27) and (6.28) describe the dynamical flow of the rigid body
planar pendulum on the tangent bundle TM .

6.6.4.3 Hamilton’s Equations

According to the Legendre transformation,

π =
∂L̃(R,ω)

∂ω
= aTJaω

is the scalar angular momentum of the rigid body pendulum about its axis
of rotation. Thus, the modified Hamiltonian is

H̃(R, π) =
1

2

π2

aTJa
−mgeT3 Rρ0.

Hamilton’s equations of motion are given by the rotational kinematics

Ṙ = RS
( πa

aTJa

)
, (6.29)

and

π̇ = mgaT (ρ0 ×RT e3). (6.30)
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The Hamiltonian dynamics of the rigid body planar pendulum, characterized
by equations (6.29) and (6.30), are described by the evolution of (R, π) on
the cotangent bundle T ∗M .

6.6.4.4 Reduced Equations for the Rigid Body Planar Pendulum

As we have shown, each material point in the rigid body rotates along a planar
circular arc about a center on the axis of the revolute joint. In particular,
the center of mass vector ρ0 rotates along a planar circular arc, with center
at the origin of the inertial frame. The two-dimensional plane containing
each such circular arc is inertially fixed and orthogonal to the axis a ∈ S2.
This suggests that it should be possible to describe such rotations in terms of
planar rotations in S1 as discussed previously in Chapter 4. This connection is
clarified in the following development, where the rigid body planar pendulum
equations are used to obtain reduced equations that evolve on S1.

To this end, define the direction of the position vector of the center of
mass of the rigid body, expressed in the inertial frame:

ζ =
Rρ0

‖Rρ0‖ =
Rρ0
‖ρ0‖ ,

which follows since ‖Rρ0‖ = ‖ρ0‖. Thus, ζ ∈ S2.
It is easy to see that the rotational kinematics (6.27) can be used to obtain

ζ̇ = ṘRT ζ

= RS(ωa)RT ζ

= S(Rωa)ζ

= S(ωa)ζ,

where we have used a matrix identity and the fact that a = Ra.
We now construct a Euclidean orthonormal basis for the inertial frame

given by the ordered triple in S2:

a1, a2, a.

Since aT ζ = 0, we can express

ζ = q1a1 + q2a2,

where q = (q1, q2) ∈ S1. Substituting this into the above rotational kinemat-
ics, we obtain

q̇1a1 + q̇2a2 = ωS(a) {q1a1 + q2a2}
= ω {q1a2 − q2a1} .
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Consequently,

q̇1 = −ωq2,

q̇2 = ωq1.

In vector form, this can be written as

q̇ = ωSq, (6.31)

where S is the constant 2× 2 skew-symmetric matrix used in Chapter 4.
We now express the Euler–Lagrange equation (6.28) in a different form.

Consider the expression

−mgaT (ρ0 ×RT e3) = mgaTS(RT e3)ρ0

= mgaTRTS(e3)Rρ0

= mg ‖ρ0‖ aTS(e3)ζ
= mg ‖ρ0‖

{
aTS(e3)a1q1 + aTS(e3)a2q2

}
,

where we have used a matrix identity and the fact that Ra = a. The Euler–
Lagrange equation can be expressed as

aTJa ω̇ +mg ‖ρ0‖
{
aTS(e3)a1q1 + aTS(e3)a2q2

}
= 0. (6.32)

Thus, the rotational kinematics (6.31) and the Euler–Lagrange equation (6.32)
describe the dynamics of the rigid body planar pendulum in terms of
(q, ω) ∈ TS1. These are referred to as reduced equations since they describe
only the dynamics of the position vector of the center of mass of the rigid
body in the inertial frame.

Following a similar development, a reduced form for Hamilton’s equations
can be obtained that describe the evolution on the cotangent bundle T∗M .
These results require introduction of the reduced Lagrangian, expressed on
the tangent bundle TS1, definition of the conjugate momentum using the
Legendre transformation, and derivation of the reduced Hamilton’s equations
on T∗S1. These details are not given here.

6.6.4.5 Conservation Properties

The Hamiltonian, which coincides with the total energy E in this case, is
conserved. This can be expressed as

H =
1

2
aTJaω2 −mgeT3 Rρ0,

which is constant along each solution of the dynamical flow of the rigid body
planar pendulum.
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6.6.4.6 Equilibrium Properties

The equilibrium or constant solutions of the rigid body planar pendulum
occur when the angular velocity ω = 0 and the rigid body attitude satisfies
the algebraic equations on the configuration manifold M :

mgaT (ρ0 ×RT e3) = 0,

which implies that the time derivative of the angular velocity vanishes. This
requires that the direction of gravity, expressed in the body-fixed frame, and
the center of mass vector ρ0 be collinear.

6.7 Problems

6.1. In this problem, we derive an alternative expression of the moment
caused by an attitude-dependent potential, summarized in Proposition 6.1.

(a) Consider two matrices A,B ∈ R
3×3. Let ai, bi ∈ R

3 be the i-th column of
AT and BT for i ∈ {1, 2, 3}, respectively, such that the matrices A and
B are partitioned into

A =

⎡
⎣a

T
1

aT2
aT3

⎤
⎦ , B =

⎡
⎣b

T
1

bT2
bT3

⎤
⎦ .

Show that

BTA−ATB =

3∑
i=1

bia
T
i − aib

T
i =

3∑
i=1

S(ai × bi).

(b) Using the above identify, show that the moment caused by an attitude-
dependent potential can be rewritten as

−
3∑

i=1

ri × ∂L̃(R,ω)

∂ri
=

(
RT ∂L̃(R,ω)

∂R
− ∂L̃(R,ω)

∂R

T

R

)∨

,

where ∂L̃(R,ω)
∂R ∈ R

3×3 is defined such that its i, j-th element corresponds to
the derivative of L(R,ω) with respect to the i, j-th element of R for i, j ∈
{1, 2, 3}.
6.2. Consider the attitude dynamics of a rigid body described in Section 6.3.3.
Here, we rederive the Euler–Lagrange equation given in (6.8) to include the ef-
fects of an external moment according to the Lagrange–d’Alembert principle.
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Suppose that there exists an external moment M ∈ R
3 acting on the rigid

body. Assume it is resolved in the body-fixed frame.

(a) Let ρ ∈ R
3 be the vector from the mass center of the rigid body to a mass

element dm(ρ). Let dF (ρ) ∈ R
3 be the force acting on dm(ρ). Assume

that both of ρ and dF (ρ) are expressed in the body-fixed frame. As there
is no external force,

∫
B dF (ρ) = 0. Due to the external moment, we have∫

B ρ×dF (ρ) = M . Show that the virtual work due to the external moment
is given by

δW =

∫
B
RdF (ρ) · δRρ =

∫
B
η · (ρ× dF (ρ)) = η ·M,

where δR = Rη̂ for η ∈ R
3.

(b) From the Lagrange–d’Alembert principle, show that the Euler–Lagrange
equation is given by

Jω̇ + S(ω)Jω −
3∑

i=1

S(ri)
∂U(R)

∂ri
= M.

6.3. Consider the dynamics of a rotating rigid body that is constrained to
planar rotational motion in R

2. That is, the configuration manifold is taken
as the Lie group of 2× 2 orthogonal matrices with determinant +1, namely
SO(2). The rotational kinematics, expressed in terms of the rotational motion
t → R ∈ SO(2), are given by

Ṙ = RSω,

for some scalar angular velocity t → ω ∈ R
1; as before, S is the standard

2× 2 skew-symmetric matrix. The modified Lagrangian function is given by

L̃(R,ω) =
1

2
Jω2 − U(R),

where J is the scalar moment of inertia of the rigid body and U(R) is the
configuration dependent potential energy function.

(a) What are expressions for the infinitesimal variations of R ∈ SO(2), Ṙ ∈
TRSO(2), and ω ∈ R

1?
(b) Use Hamilton’s principle to derive the Euler equations for the planar

rotations of the rigid body.
(c) Use the Legendre transformation to derive Hamilton’s equations for the

planar rotations of the rigid body.
(d) What are conserved quantities of the dynamical flow on TSO(2)?
(e) What are conditions that define equilibrium solutions of the dynamical

flow on TSO(2)?
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6.4. Consider a planar pendulum, with scalar moment of inertia J , under
constant, uniform gravity. Assume the configuration manifold of the planar
pendulum is taken to be the Lie group SO(2). Use the results in the prior
problem for the following.

(a) What are the Euler equations for the planar pendulum on the tangent
bundle TSO(2)?

(b) What are Hamilton’s equations for the planar pendulum on the cotangent
bundle T∗SO(2)?

(c) What are the conserved quantities of the dynamical flow on TSO(2)?
(d) What are the equilibrium solutions of the dynamical flow on TSO(2)?

6.5. Consider a double planar pendulum under constant, uniform gravity.
The first link rotates about an inertially fixed one degree of freedom revolute
joint. The two links are connected by another revolute joint fixed in the two
links, constraining the two links to rotate in a common vertical plane. The
scalar moments of inertia of the two pendulums are J1 and J2 about the
two joint axes. Assume the configuration manifold of the planar pendulum
is taken to be the Lie group product (SO(2))2. Use the results in the prior
problem for the following.

(a) What are the Euler–Lagrange equations for the double planar pendulum

on the tangent bundle T (SO(2))2?
(b) What are Hamilton’s equations for the double planar pendulum on the

cotangent bundle T∗ (SO(2))2?
(c) What are the conserved quantities of the dynamical flow on T (SO(2))2?

(d) What are the equilibrium solutions of the dynamical flow on T (SO(2))2?

6.6. Consider the rigid body planar pendulum considered in subsection 6.6.4.
The configuration manifold is M = {R ∈ SO(3) : Ra = a}.
(a) Show that the configuration manifold M , which is a submanifold of the

Lie group SO(3), is a one-dimensional matrix Lie group.
(b) Show that the configuration manifold M is diffeomorphic to SO(2).

6.7. Consider the free rotational motion of a symmetric rigid body in R
3.

Assume the moment of inertia in the body-fixed frame is J = JsI3×3, where
Js > 0 is a scalar.

(a) What are the Euler equations for the free rotational motion of a symmetric
rigid body?

(b) Given initial conditions ω(t0) = ω0 ∈ R
3, R(t0) = R0 ∈ SO(3), determine

analytical expressions for the angular velocity and for the rigid body
attitude, the latter described using exponential matrices.

6.8. Consider the free rotational motion of an asymmetric rigid body in R
3.

Assume the body-fixed frame is selected so that the moment of inertia is
J = diag(J1, J2, J3), where Ji > 0, i = 1, 2, 3, are distinct.
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(a) What are the Euler equations for the free rotational motion of an asym-
metric rigid body?

(b) What are the equilibrium solutions for the dynamical flow defined by the
Euler equations? These equilibrium solutions of the Euler equations can
be viewed as relative equilibrium solutions for the complete rotational
dynamics of the asymmetric rigid body.

(c) For each equilibrium solution of the Euler equations, describe the time
dependence of the resulting rigid body attitude in SO(3).

6.9. Consider the free rotational motion of a rigid body, with an axis of
symmetry, in R

3. Assume the body-fixed frame is selected so that the moment
of inertia is J = diag(J1, J1, J2), where Ji > 0, i = 1, 2, are distinct.

(a) What are the Euler equations for the free rotational motion of a rigid
body with an axis of symmetry?

(b) What are the equilibrium solutions for dynamical flow defined by the
Euler equations? These equilibrium solutions of the Euler equations can
be viewed as relative equilibrium solutions for the complete rotational
dynamics of the rigid body with an axis of symmetry.

(c) For each equilibrium solution of the Euler equations, describe the time
dependence of the resulting rigid body attitude in SO(3).

6.10. Consider the rotational motion of a rigid body in R
3. Let b ∈ B ⊂ R

3

denote the location of a material point in the body, expressed in the body-
fixed frame.

(a) Assume an external force F ∈ R
3, expressed in the inertial frame, acts

on the rigid body at the single point in the rigid body denoted by b ∈ B.
Show that the component of the force RTF ∈ R

3 in the direction b ∈ B
does not influence the rotational dynamics of the rigid body.

(b) What are the Euler equations for the rotational motion of a rigid body,
expressed in terms of the external force acting on the rigid body in the
inertial frame?

(c) Assume an external force F ∈ R
3, expressed in the body-fixed frame, acts

on the rigid body at the single point in the rigid body denoted by b ∈ B.
Show that the component of the force F ∈ R

3 in the direction b ∈ B does
not influence the rotational dynamics of the rigid body.

(d) What are the Euler equations for the rotational motion of a rigid body,
expressed in terms of the external force acting on the rigid body in the
body-fixed frame?

6.11. Consider the dynamics of a rigid body, consisting of material points
denoted by B in a body-fixed frame, under the influence of a gravitational
field. The configuration R ∈ SO(3) denotes the attitude of the rigid body.
Assume the origin of the body-fixed frame is located at the center of mass of
the rigid body. A gravitational force acts on each material point in the rigid
body. The net moment of all of the gravity forces is obtained by integrating
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the gravity moment for each mass increment of the body over the whole
body. The gravitational field, expressed in the inertial frame, is given by
G : R

3 → TR3. The incremental gravitational moment vector on a mass
increment dm(ρ) of the rigid body, located at ρ ∈ B in the body-fixed frame,
is given in the inertial frame by Rρ × dm(ρ)G(Rρ) or, equivalently in the
body-fixed frame, by ρ× dm(ρ)RTG(Rρ). Thus, the net gravity moment, in
the body-fixed frame, is

∫
B ρ×RTG(Rρ) dm(ρ).

(a) What are the Euler equations for the rotational dynamics of the rigid
body in the gravitational field?

(b) What are Hamilton’s equations for the rotational dynamics of the rigid
body in the gravitational field?

(c) What are the conditions for an equilibrium solution of a rotating rigid
body in the gravitational field?

(d) Suppose the gravitational field G(x) = −ge3 is constant. What are the
simplified Euler equations for the rotational dynamics of the rigid body?
What are the conditions for an equilibrium solution of a rotating rigid
body in a constant gravitational field?

6.12. Consider the dynamics of a charged rigid body, consisting of material
points denoted by B in a body-fixed frame, under the influence of an electric
field and a magnetic field. The configuration R ∈ SO(3) denotes the attitude
of the rigid body. Assume the origin of the body-fixed frame is located at
the center of mass of the rigid body. An electric force and a magnetic force
act on each material point in the rigid body. The net moment of all of the
electric and magnetic forces is obtained by integrating the incremental elec-
tric and magnetic moments for each volume increment of the body over the
whole body. The electric field, expressed in the inertial frame, is given by
E : R3 → TR3; the magnetic field, expressed in the inertial frame, is given
by B : R3 → TR3 The incremental electric and magnetic moment vector
on a volume increment with charge dQ, located at ρ ∈ B in the body-fixed
frame, is given in the inertial frame by Rρ × dQ(E(Rρ) + Ṙρ × B(Rρ)) or,
equivalently in the body-fixed frame, by ρ × dQRT (E(Rρ) + Ṙρ × B(Rρ)).
Thus, the total electric and magnetic moment, in the body-fixed frame, is∫
B ρ×RT (E(Rρ) + Ṙρ×B(Rρ)) dQ.

(a) What are the Euler equations for the rotational dynamics of the rigid
body in the electric field and the magnetic field?

(b) What are Hamilton’s equations for the rotational dynamics of the rigid
body in the electric field and the magnetic field?

(c) What are the conditions for an equilibrium solution of a rotating rigid
body in the electric and the magnetic field?

(d) Suppose the electric field E(x) = −Ee3 and the magnetic field B(x) =
Be2 are constant, where E and B are scalar constants. What are the
simplified Euler equations for the rotational dynamics of the rigid body?
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What are the conditions for an equilibrium solution of a rotating rigid
body in this constant electric and magnetic field?

6.13. Consider the rotational motion of a rigid body in R
3 acted on by a

force F ∈ R
3. The Euler equations are

Jω̇ + ω × Jω = r × F.

In the body-fixed frame, r =
∑3

i=1 aiei is a constant vector and F =∑3
i=1 fiR

T ei is the force. These are expressed in terms of scalar constants
ai, fi, i = 1, 2, 3.

(a) Show that the moment vector is constant in the inertial frame.
(b) What are conditions on the constants ai, fi, i = 1, 2, 3 that guarantee

that the Euler equations have an equilibrium solution?
(c) What are conditions on the constants ai, fi, i = 1, 2, 3 that guarantee

that the rigid body dynamical flow on TSO(3) has an equilibrium solution
(R,ω) = (I3×3, 0) ∈ TSO(3)? Are there other equilibrium solutions in this
case? What are they?

6.14. Consider the rotational motion of a rigid body in R
3 acted on by a

moment vector that is constant in the body-fixed frame. The Euler equations
are

Jω̇ + ω × Jω = M,

where M =
∑3

i=1 aiei is the constant moment vector for scalar constants
ai, i = 1, 2, 3.

(a) Confirm that the moment vector is constant in the body-fixed frame.
(b) Assume the rigid body is asymmetric so that the moment of inertia matrix

J = diag(J1, J2, J3) with distinct entries. Obtain algebraic equations that
characterize when the Euler equations have relative equilibrium solutions;
that is, the angular velocity vector is constant.

6.15. Consider two concentric rigid spherical shells with common inertially
fixed centers. The shells, viewed as rigid bodies, are free to rotate subject to
a potential that depends only on the relative attitude of the two spherical
shells. The configuration manifold is (SO(3))2 and the modified Lagrangian
function L̃ : T(SO(3))2 → R

1 is given by

L̃(R1, R1, ω1, ω2) =
1

2
ωT
1 J1ω1 +

1

2
ωT
2 J2ω2 −Ktrace(RT

1 R2 − I3×3),

where (Ri, ωi), i = 1, 2, denote the attitudes and angular velocity vectors
of the two spherical shells and J1, J2 are 3 × 3 inertia matrices of the two
spherical shells and K is an elastic constant.
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(a) What are the Euler–Lagrange equations for the two concentric shells on

the tangent bundle T (SO(3))2?
(b) What are Hamilton’s equations for the two concentric shells on the cotan-

gent bundle T∗ (SO(3))2?
(c) What are the conserved quantities of the dynamical flow on T (SO(3))2?

(d) What are the equilibrium solutions of the dynamical flow on T (SO(3))2?
(e) Determine the linearization that approximates the dynamical flow in a

neighborhood of a selected equilibrium solution.

6.16. It can be shown that the problem of finding the geodesic curves on the
Lie group SO(3) is equivalent to the problem of finding smooth curves on

SO(3) that minimize
∫ 1

0
‖ω‖2 dt and connect two fixed points in SO(3).

(a) Using curves described on the interval [0, 1] by t → R(t) ∈ SO(3), show

that geodesic curves satisfy the variational property δ
∫ 1

0
‖ω‖2 dt = 0 for

all smooth curves t → R(t) ∈ SO(3) that satisfy the boundary conditions
R(0) = R0 ∈ SO(3), R(1) = R1 ∈ SO(3).

(b) What are the Euler–Lagrange equations and Hamilton’s equations that
geodesic curves on SO(3) must satisfy?

(c) Use the equations and boundary conditions for the geodesic curves to
describe the geodesic curves on SO(3).

6.17. Consider the problem of finding the geodesic curves on the Lie group

SO(3) that minimize
∫ 1

0
ωTJω dt and connect two fixed points in SO(3). Here

J is a symmetric, positive-definite 3× 3 matrix that is not a scalar multiple
of the identity I3×3.

(a) Using curves described on the interval [0, 1] by t → R(t) ∈ SO(3), show

that geodesic curves satisfy the variational property δ
∫ 1

0
ωTJω dt = 0 for

all smooth curves t → R(t) ∈ SO(3) that satisfy the boundary conditions
R(0) = R0 ∈ SO(3), R(1) = R1 ∈ SO(3).

(b) What are the Euler–Lagrange equations and Hamilton’s equations that
such geodesic curves on SO(3) must satisfy?

(c) Describe the impediments in obtaining an analytical expression for such
geodesics on SO(3).

6.18. Consider n rotating rigid bodies that are coupled through the potential
energy; the configuration manifold is (SO(3))n. With respect to a common
inertial Euclidean frame, the attitudes of the rigid bodies are given by Ri ∈
SO(3), i = 1, . . . , n, and we use the notation R = (R1, . . . , Rn) ∈ (SO(3))n;
similarly, ω = (ω1, . . . , ωn) ∈ (R3)n. Suppose the kinetic energy of the rigid
bodies is a quadratic function in the angular velocities of the bodies, so that
the modified Lagrangian function L̃ : T(SO(3))n → R

1 is given by

L̃(R,ω) =
1

2

n∑
i=1

ωT
i Jiωi +

n∑
i=1

aTi ωi − U(R),
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where Ji are 3 × 3 symmetric and positive-definite matrices, i = 1, . . . , n,
ai ∈ R

3, i = 1, . . . , n, and U : (SO(3))n → R
1 is the potential energy that

characterizes the coupling of the rigid bodies.

(a) What are the Euler–Lagrange equations for this modified Lagrangian for
n coupled rigid bodies?

(b) What are Hamilton’s equations for the modified Hamiltonian associated
with this modified Lagrangian for n coupled rigid bodies?



Chapter 7

Lagrangian and Hamiltonian Dynamics
on SE(3)

We now study the Lagrangian and Hamiltonian dynamics of a rotating and
translating rigid body. A rigid body that is simultaneously translating and
rotating is said to undergo Euclidean motion. We begin by identifying the
configuration of a translating and rotating rigid body in three dimensions as
an element of the Lie group SE(3). Lagrangian and Hamiltonian dynamics
for such general rigid body motion in three dimensions, expressed as Euler
equations and Hamilton’s equations, are obtained. Several specific illustra-
tions of Lagrangian dynamics and Hamiltonian dynamics of a rotating and
translating rigid body are studied.

Publications that treat Euclidean rigid body motion are numerous, but
many of these make use of local coordinates to describe rigid body rotational
motion. Two publications that treat Euclidean motion in a unified way using
the geometry of SE(3) are [5, 77].

7.1 Configurations as Elements in the Lie Group SE(3)

As in the prior chapter, two Euclidean frames are introduced; these aid in
defining the configuration of a rotating and translating rigid body. An inertial
Euclidean frame is arbitrarily selected. A Euclidean frame fixed in the rigid
body is also introduced. The origin of this body-fixed frame can be arbitrarily
selected, but it is often convenient to locate it at the center of mass of the
rigid body. The body-fixed frame translates and rotates with the rigid body.

As a manifold, recall that

SE(3) =
{
(R, x) ∈ GL(3)× R

3 : RTR = RRT = I3×3, det(R) = +1
}
,
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has dimension six. The tangent space of SE(3) at (R, x) ∈ SE(3) is given by

T(R,x)SE(3) =
{
(Rξ, ζ) ∈ R

3×3 × R
3 : ξ ∈ so(3)

}
,

and has dimension six. The tangent bundle of SE(3) is given by

TSE(3) =
{
(R, x,Rξ, ζ) ∈ GL(3)× R

3 × R
3×3 × R

3 : R ∈ SO(3), ξ ∈ so(3)
}
,

and has dimension twelve.
By partitioning the elements (R, x) ∈ SE(3) into a 4 × 4 homogenous

matrix

G =

[
R x
0 1

]
, (7.1)

as demonstrated in Chapter 1, SE(3) can be viewed as a Lie group mani-
fold embedded in GL(4) or R

4×4, where matrix multiplication is the group
operation.

Thus, we can view (R, x) ∈ SE(3) as representing a configuration in the
sense that R ∈ SO(3) is the attitude of a rigid body and x ∈ R

3 is the location
of the origin of the body-fixed frame in the inertial frame. Consequently, SE(3)
can be viewed as the configuration manifold for a rotating and translating
rigid body.

In addition, the pair (R, x) ∈ SE(3), represented as a homogeneous matrix,
can also be viewed as defining a rigid body transformation that describes a
Euclidean motion (rotation and translation) on R

3 according to the rules of
matrix multiplication of homogeneous matrices. In this interpretation, R ∈
SO(3) is viewed as a rotational transformation that acts on the attitude of the
rigid body and x ∈ R

3 is viewed as a translational transformation of the rigid
body. Consequently, a rigid body transformation, consisting of both rotation
and translation, acts on a rigid body configuration to give a transformed
configuration according to matrix multiplication of homogeneous matrices.
This makes SE(3) a Lie group manifold, as discussed in Chapter 1. Since the
dimension of SE(3) is six, Euclidean motion of a rigid body has six degrees
of freedom.

7.2 Kinematics on SE(3)

The rotational and translational kinematics of a rigid body are described in
terms of the Euclidean motion given by t → (R, x, Ṙ, ẋ) ∈ TSE(3), where
R ∈ SO(3) is the attitude of the rigid body and x ∈ R

3 is the position vector
of the origin of the body-fixed frame, expressed in the inertial frame.
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As in the prior chapter, the rotational kinematics equation can be de-
scribed as

Ṙ = RS(ω), (7.2)

where ω ∈ R
3 is the angular velocity vector in the body-fixed frame.

The translational velocity vector of the origin of the body-fixed frame,
sometimes referred to as the translational velocity vector of the rigid body,
is the time derivative of the inertial position vector from the origin of the
inertial frame to the origin of the body-fixed frame. In the inertial frame, the
translational velocity vector ẋ ∈ R

3 of the rigid body is

ẋ = Rv, (7.3)

where v ∈ R
3 denotes the translational velocity vector of the rigid body,

expressed in the body-fixed frame. These are referred to as the translational
kinematics of a rigid body.

Equations (7.2) and (7.3) can be rewritten as

[
Ṙ ẋ
0 0

]
=

[
R x
0 1

] [
S(ω) v
0 0

]
, (7.4)

or equivalently,

Ġ = GV, (7.5)

where the 4× 4 matrix V is an element of the Lie algebra se(3), defined as

se(3) =

{[
S(ω) v
0 0

]
∈ R

4×4 : ω, v ∈ R
3

}
.

From the above definition, it is straightforward to see that the Lie algebra
se(3) can be identified with R

6, and therefore, the tangent bundle TSE(3)
can be identified with SE(3)×R

6. The isomorphism between R
6 and se(3) is

denoted by S : R3 × R
3 → se(3), defined as

V = S
([

ω
v

])
= S(ω, v) =

[
S(ω) v
0 0

]
.

These representations are used interchangeably. This induces an inner prod-
uct on se(3) from the standard inner product on R

3 as

S(ω1, v1) · S(ω2, v2) = ω1 · ω2 + v1 · v2,

for any ω1, v1, ω2, v2 ∈ R
3. This inner product notation is extensively used in

the subsequent variational analysis. This relationship implies that the dual
space se(3)∗ can be identified with se(3).
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7.3 Lagrangian Dynamics on SE(3)

We now consider the dynamics of a rotating and translating rigid body as
it evolves on the configuration manifold SE(3). The Lagrangian function is
defined on the tangent bundle of SE(3), that is L : TSE(3) → R

1. Using the
associations: TSE(3) with SE(3) × se(3), SE(3) with SO(3) × R

3, and se(3)
with so(3)×R

3, the Lagrangian function can be viewed as L : SO(3)×R
3 ×

so(3)× R
3 → R

1.

7.3.1 Hamilton’s Variational Principle

We can express the Lagrangian as a function L(G, Ġ) = L(G,GV ) defined
on the tangent bundle TSE(3). We make use of the modified Lagrangian
function L̃(G,V ) = L(G,GV ). This is a traditional point of view in formu-
lating Euclidean rigid body dynamics and it is followed in the subsequent
development.

In studying the dynamics of a rotating and translating rigid body, the
modified Lagrangian function is the difference of a kinetic energy function
and a potential energy function

L̃(G,V ) = T (G,V )− U(G),

where the kinetic energy function T (G,V ) is defined on the tangent bundle
TSE(3) and the potential energy function U(G) is defined on SE(3).

The variations of a Euclidean motion G : [t0, tf ] → SE(3) are differentiable
curves Gε : (−c, c)× [t0, tf ] → SE(3), for c > 0, such that G0(t) = G(t), and
Gε(t0) = G(t0), G

ε(tf ) = G(tf ) for any ε ∈ (−c, c). It can be described using
the exponential map as

Gε(t) = G(t)eεΓ (t),

where Γ : [t0, tf ] → se(3) denotes a differentiable curve, with values in se(3)
that vanishes at t0 and tf , of the form

Γ = S(η, χ) =
[
S(η) χ
0 0

]
,

where η : [t0, tf ] → R
3 and χ : [t0, tf ] → R

3 denote differentiable curves
that vanish at t0 and tf . From this, the infinitesimal variation of a Euclidean
motion is given by

δG =
d

dε
Gε

∣∣∣∣
ε=0

= GΓ, (7.6)
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or equivalently

[
δR δx
0 0

]
=

[
R x
0 1

] [
S(η) χ
0 0

]
=

[
RS(η) Rχ

0 0

]
. (7.7)

Next, we find the variation of V ∈ se(3). Taking the time derivative of (7.6),
we obtain

δĠ = ĠΓ +GΓ̇ = GV Γ +GΓ̇ .

Also, taking the variation of the kinematics equation (7.5),

δĠ = δGV +GδV = GΓV +GδV.

By combining these, the variation of V is seen to be given by

δV = Γ̇ + V Γ − ΓV. (7.8)

The last two terms of (7.8) can be rewritten as

V Γ − ΓV =

[
S(ω) v
0 0

] [
S(η) χ
0 0

]
−

[
S(η) χ
0 0

] [
S(ω) v
0 0

]

=

[
S(ω)S(η)− S(η)S(ω) S(ω)χ− S(η)v

0 0

]

=

[
S(ω × η) S(ω)χ− S(η)v

0 0

]

= S(ω × η, ω × χ− η × v)

= S
([

S(ω) 0
S(v) S(ω)

] [
η
χ

])
.

For any η0, χ0 ∈ R
3, we have the following property:

(V Γ − ΓV ) · S(η0, χ0) = ηT0 (ω × η) + χT
0 (ω × χ− η × v)

= ηT (η0 × ω + χ0 × v) + χT (χ0 × ω)

=

[
η
χ

]T [−S(ω) −S(v)
0 −S(ω)

] [
η0
χ0

]

= Γ · S
([−S(ω) −S(v)

0 −S(ω)

] [
η0
χ0

])
. (7.9)

This framework allows us to introduce the action integral and Hamilton’s
principle to obtain equations for the Euclidean dynamics of a rigid body.

The action integral is the integral of the Lagrangian function, or equiv-
alently the modified Lagrangian function, along a Euclidean motion of the
rigid body over a fixed time period. The variations are taken over all differ-
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entiable curves with values in SE(3) for which the initial and final values are
fixed. The action integral along a Euclidean motion of a rigid body is

G =

∫ tf

t0

L̃(G,V ) dt.

The action integral along a variation of a Euclidean motion of the rigid body
is

Gε =

∫ tf

t0

L̃(Gε, V ε) dt.

The varied value of the action integral along a variation of a rotational and
translational motion of the rigid body can be expressed as a power series in
ε as

Gε = G+ εδG+O(ε2),

where the infinitesimal variation of the action integral is

δG =
d

dε
Gε

∣∣∣∣
ε=0

.

Hamilton’s principle states that the infinitesimal variation of the action in-
tegral along any Euclidean motion of the rigid body is zero:

δG =
d

dε
Gε

∣∣∣∣
ε=0

= 0, (7.10)

for all possible differentiable variations in SE(3), that is for all possible in-
finitesimal variations Γ : [t0, tf ] → se(3), satisfying Γ (t0) = Γ (tf ) = 0.

7.3.2 Euler–Lagrange Equations: General Form

The infinitesimal variation of the action integral is

d

dε
Gε

∣∣∣∣
ε=0

=

∫ tf

t0

{
∂L̃(G,V )

∂V
· δV +

∂L̃(G,V )

∂G
· δG

}
dt.

Examining the first term, and using (7.8), we obtain
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∫ tf

t0

∂L̃(G,V )

∂V
· δV dt

=

∫ tf

t0

S
(
∂L̃(G,V )

∂ω
,
∂L̃(G,V )

∂v

)
· (Γ̇ + V Γ − ΓV ) dt

=

∫ tf

t0

S
(
− d

dt

[
∂L̃(G,V )

∂ω
∂L̃(G,V )

∂v

]
+

[−S(ω) −S(v)
0 −S(ω)

] [
∂L̃(G,V )

∂ω
∂L̃(G,V )

∂v

])
· Γ dt,

where the first term is integrated by parts, using the fact that Γ (t0) =
Γ (tf ) = 0, and the second term is obtained using (7.9).

The second term above is given by

∫ tf

t0

∂L̃(G,V )

∂G
· δGdt =

∫ tf

t0

∂L̃(G,V )

∂R
· δR+

∂L̃(G,V )

∂x
· δx dt.

By using (7.6) and (7.7), it can be rewritten as

∫ tf

t0

∂L̃(G,V )

∂G
· δGdt =

∫ tf

t0

−
3∑

i=1

(
S(ri)

∂L̃(G,V )

∂ri

)
· η +

∂L̃(G,V )

∂x
·Rχdt

=

∫ tf

t0

S
([

−∑3
i=1 S(ri)

∂L̃(G,V )
∂ri

RT ∂L̃(G,V )
∂x

])
· Γ dt.

Substituting these two results, the expression for the infinitesimal variation
of the action integral is given by

d

dε
Gε

∣∣∣∣
ε=0

=

∫ tf

t0

S
(

− d

dt

[
∂L̃(G,V )

∂ω
∂L̃(G,V )

∂v

]
+

[−S(ω) −S(v)
0 −S(ω)

] [
∂L̃(G,V )

∂ω
∂L̃(G,V )

∂v

]

+

[
−∑3

i=1 S(ri)
∂L̃(G,V )

∂ri

RT ∂L̃(G,V )
∂x

])
· Γ dt.

From Hamilton’s principle, the above expression for the infinitesimal vari-
ation of the action integral should be zero for all infinitesimal variations
Γ : [t0, tf ] → se(3) that vanish at the endpoints. The fundamental lemma of
the calculus of variations gives the Euler–Lagrange equations

d

dt

⎡
⎢⎣
∂L̃(G,V )

∂ω
∂L̃(G,V )

∂v

⎤
⎥⎦+

[
S(ω) S(v)
0 S(ω)

]⎡
⎢⎣
∂L̃(G,V )

∂ω
∂L̃(G,V )

∂v

⎤
⎥⎦−

⎡
⎢⎢⎣
−

3∑
i=1

S(ri)
∂L̃(G,V )

∂ri

RT ∂L̃(G,V )

∂x

⎤
⎥⎥⎦ = 0.

This can be written as follows.



320 7 Lagrangian and Hamiltonian Dynamics on SE(3)

Proposition 7.1 The Euler–Lagrange equations for a modified Lagrangian
function L̃ : TSE(3) → R

1 are

d

dt

(
∂L̃(G,V )

∂ω

)
+ ω × ∂L̃(G,V )

∂ω

+v × ∂L̃(G,V )

∂v
+

3∑
i=1

ri × ∂L̃(G,V )

∂ri
= 0, (7.11)

d

dt

(
∂L̃(G,V )

∂v

)
+ ω × ∂L̃(G,V )

∂v
−RT ∂L̃(G,V )

∂x
= 0. (7.12)

Thus, (7.11) and (7.12), together with the rotational kinematics (7.2) and
the translational kinematics (7.3), describe the Lagrangian flow of the rota-
tional and translational dynamics of a rigid body in terms of the evolution
of (R, x, ω, v) ∈ TSE(3) on the tangent bundle TSE(3).

7.3.3 Euler–Lagrange Equations: Quadratic Kinetic Energy

We now determine an expression for the kinetic energy of a rotating and
translating rigid body. This expression is used to obtain a standard form of
the Euler–Lagrange equations.

Let ρ ∈ R
3 be a vector from the origin of the body-fixed frame to a mass

element, with mass dm(ρ), of the rigid body expressed in the body-fixed
frame. The position vector of this mass element, in the inertial frame, is
x + Rρ ∈ R

3, and the velocity vector of this mass element, in the inertial
frame, is ẋ + Ṙρ ∈ R

3. The kinetic energy of the rigid body is obtained by
integrating the kinetic energy of each mass element of the body over the
material points in the body denoted by B:

T (R, x, ω, ẋ) =
1

2

∫
B
‖ẋ+ Ṙρ‖2 dm(ρ)

=
1

2

∫
B
‖ẋ+RS(ω)ρ‖2 dm(ρ)

=
1

2
m‖ẋ‖2 −mẋTRS(ρcm)ω +

1

2
ωTJω,

where J =
∫
B S(ρ)TS(ρ)dm(ρ) is the 3×3 standard moment of inertia of the

rigid body and ρcm is the location of the center of mass of the body in the
body-fixed frame defined by

ρcm =

∫
B ρ dm(ρ)∫
B dm(ρ)

.

The total mass of the rigid body is m =
∫
B dm(ρ).
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The kinetic energy can also be written as a quadratic function in terms
of the translational velocity vector of the origin of the body-fixed frame v =
RT ẋ ∈ R

3 and the angular velocity vector ω ∈ R
3:

T (R, x, ω, v) =
1

2
m‖v‖2 −mvTS(ρcm)ω +

1

2
ωTJω.

The potential energy of the rigid body can be obtained by integrating the
potential energy of each body element over the body. The potential energy of
the translating and rotating rigid body is assumed to depend on the config-
uration G = (R, x) ∈ SE(3). Consequently, the modified Lagrangian function
can be expressed in the equivalent forms:

L̃(R, x, ω, ẋ) =
1

2
ωTJω +mωTS(ρcm)RT ẋ+

1

2
m ‖ẋ‖2 − U(R, x). (7.13)

and

L̃(R, x, ω, v) =
1

2
ωTJω +mωTS(ρcm)v +

1

2
m ‖v‖2 − U(R, x). (7.14)

Equations (7.11) and (7.12) can be simplified to obtain a standard form
of the Euler–Lagrange equations for the Euclidean motion of a rigid body as
it evolves on the tangent bundle TSE(3):

Jω̇ +mρcm × v̇ + ω × (Jω +mS(ρcm)v)

−mS(v)S(ρcm)ω −
3∑

i=1

ri × ∂U(G)

∂ri
= 0, (7.15)

mv̇ −mρcm × ω̇ +mω × (v − ρcm × ω) +RT ∂U(G)

∂x
= 0. (7.16)

These equations (7.15) and (7.16), together with the rotational kinemat-
ics (7.2) and the translational kinematics (7.3), describe the dynamical
flow of a rotating and translating rigid body in terms of the evolution of
(R, x, ω, v) ∈ TSE(3) on the tangent bundle of SE(3).

It is sometimes convenient to express the equations of motion in terms of
the translational velocity vector in the inertial frame. The Euler–Lagrange
equations can also be expressed as

Jω̇ +mρcm ×RT ẍ+ ω × Jω −
3∑

i=1

ri × ∂U(G)

∂ri
= 0, (7.17)

mẍ−mRρcm × ω̇ −mRS(ω)S(ρcm)ω +
∂U(G)

∂x
= 0. (7.18)

These equations (7.17) and (7.18), together with the rotational kinemat-
ics (7.2) and the translational kinematics (7.3), describe the dynamical
flow of a rotating and translating rigid body in terms of the evolution of
(R, x, ω, ẋ) ∈ TSE(3) on the tangent bundle of SE(3).
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In the special case that the origin of the body-fixed frame is located at the
center of mass of the rigid body, ρcm = 0, we obtain a simplified form of the
Euler–Lagrange equations

Jω̇ + ω × Jω −
3∑

i=1

ri × ∂U(G)

∂ri
= 0, (7.19)

mv̇ +mω × v +RT ∂U(G)

∂x
= 0. (7.20)

The Euler–Lagrange equations when the origin of the body-fixed frame is
located at the center of mass of the rigid body can also be expressed in terms
of the translational velocity vector in the inertial frame as:

Jω̇ + ω × Jω −
3∑

i=1

ri × ∂U(G)

∂ri
= 0, (7.21)

mẍ+
∂U(G)

∂x
= 0. (7.22)

In this case, the coupling between the rotational dynamics and the transla-
tional dynamics occurs only through the potential energy.

If the potential terms in (7.15) and (7.16) are globally defined on R
3×3×R

3,
the domain of definition of the rotational kinematics (7.2) and the Euler–
Lagrange equations (7.15) and (7.16) on TSE(3) can be extended to T(R3×3×
R

3). This extension is natural in that it defines a Lagrangian vector field
on the tangent bundle T(R3×3 × R

3). Alternatively, the manifold TSE(3)
is an invariant manifold of this Lagrangian vector field on T(R3×3 × R

3)
and its restriction to this invariant manifold describes the Lagrangian flow
of (7.2), (7.15), and (7.16) on TSE(3). Such extensions can also be made in
the other Lagrangian formulations above as well.

7.4 Hamiltonian Dynamics on SE(3)

We introduce the Legendre transformation to obtain the angular momentum
and the Hamiltonian function. We make use of Hamilton’s phase space varia-
tional principle to derive Hamilton’s equations for a rotating and translating
rigid body.

7.4.1 Hamilton’s Phase Space Variational Principle

The Legendre transformation is introduced for a rotating and translating
rigid body. The Legendre transformation gives the conjugate momentum as
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P =
∂L̃(G,V )

∂V
= S(Π, p) =

[
S(Π) p
0 0

]
,

where the Legendre transformation V ∈ se(3) → P ∈ se(3)∗ is assumed to be
invertible. This shows that the angular momentum in the body-fixed frame
and the translational momentum in the body-fixed frame are

Π =
∂L̃(G,V )

∂ω
, (7.23)

p =
∂L̃(G,V )

∂v
. (7.24)

The modified Hamiltonian function H̃ : T∗SE(3) → R
1, defined on the cotan-

gent bundle of T∗SE(3), is

H̃(G,P ) = P · V − L̃(G,V ),

using the Legendre transformation.

7.4.2 Hamilton’s Equations: General Form

Consider the modified action integral

G̃ =

∫ tf

t0

{
P · V − H̃(G,P )

}
dt.

The infinitesimal variation of the action integral is given by

δG̃ =

∫ tf

t0

{
P · δV − ∂H̃(G,P )

∂G
· δG+ δP ·

(
V − ∂H̃(G,P )

∂P

)}
dt. (7.25)

Recall from (7.8) that the infinitesimal variations δV can be written as

δV = Γ̇ + V Γ − ΓV,

for differentiable curves Γ : [t0, tf ] → se(3). Therefore, the first term of (7.25)
can be written as

∫ tf

t0

P · δV dt =

∫ tf

t0

S(Π, p) · (Γ̇ + V Γ − ΓV ) dt

=

∫ tf

t0

S
(
−

[
Π̇
ṗ

]
+

[−S(ω) −S(v)
0 −S(ω)

] [
Π
p

])
· Γ dt,
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where the first term is integrated by parts, using the fact that Γ (t0) =
Γ (tf ) = 0, and the second term is obtained by using (7.9).

The second term of (7.25) is given by

∫ tf

t0

∂H̃(G,P )

∂G
· δGdt =

∫ tf

t0

∂H̃(G,P )

∂R
· δR+

∂H̃(G,P )

∂x
· δx dt.

By using (6.5) and (7.7), this can be rewritten as

∫ tf

t0

∂H̃(G,P )

∂G
· δGdt =

∫ tf

t0

[
−

3∑
i=1

(
S(ri)

∂H̃(G,P )

∂ri

)
· η

+
∂H̃(G,P )

∂x
·Rχ

]
dt

=

∫ tf

t0

S
([

−∑3
i=1 S(ri)

∂H̃(G,P )
∂ri

RT ∂H̃(G,P )
∂x

])
· Γ dt.

Substituting these two results, the expression for the infinitesimal variation
of the action integral is obtained:

d

dε
Gε

∣∣∣∣
ε=0

=

∫ tf

t0

S
(
−

[
Π̇
ṗ

]
+

[−S(ω) −S(v)
0 −S(ω)

] [
Π
p

]

−
[
−∑3

i=1 S(ri)
∂H̃(G,P )

∂ri

RT ∂H̃(G,P )
∂x

])
· Γ + δP ·

(
V − ∂H̃(G,P )

∂P

)
dt.

From Hamilton’s principle, the above expression for the infinitesimal vari-
ation of the action integral should be zero for all infinitesimal variations
Γ : [t0, tf ] → se(3) and δP : [tf , tf ] → se(3)∗ that satisfy Γ (t0) = Γ (tf ) = 0.
The fundamental lemma of the calculus of variations gives Hamilton’s equa-
tions,

V =
∂H̃(G,P )

∂P
,

[
Π̇
ṗ

]
= −

[
S(ω) S(v)
0 S(ω)

] [
Π
p

]
−

[
−∑3

i=1 S(ri)
∂H̃(G,P )

∂ri

RT ∂H̃(G,P )
∂x

]
.

Thus, we obtain the general form of Hamilton’s equations for a rotating and
translating rigid body.

Proposition 7.2 Hamilton’s equations for a modified Hamiltonian function
H̃ : T∗SE(3) → R

1 are

ṙi = ri × ∂H̃(G,P )

∂Π
, i = 1, 2, 3, (7.26)
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ẋ = R
∂H̃(G,P )

∂p
, (7.27)

Π̇ = Π × ∂H̃(G,P )

∂Π
+ p× ∂H̃(G,P )

∂p
+

3∑
i=1

ri × ∂H̃(G,P )

∂ri
, (7.28)

ṗ = p× ∂H̃(G,P )

∂Π
−RT ∂H̃(G,P )

∂x
. (7.29)

Equations (7.26), (7.27), (7.28), and (7.29) define Hamilton’s equations
for the Euclidean dynamics of a rigid body in terms of the evolution of
(R, x,Π, p) ∈ T∗SE(3) on the cotangent bundle T∗SE(3).

The following property follows directly from the above formulation of
Hamilton’s equations on SE(3):

dH̃(G,P )

dt
=

3∑
i=1

∂H̃(G,P )

∂ri
· ṙi + ∂H̃(G,P )

∂Π
· Π̇

+
∂H̃(G,P )

∂x
· ẋ+

∂H̃(G,P )

∂p
· ṗ,

= 0.

The modified Hamiltonian function is constant along each solution of Hamil-
ton’s equation. This property does not hold if the modified Hamiltonian func-
tion has a nontrivial explicit dependence on time.

7.4.3 Hamilton’s Equations: Quadratic Kinetic Energy

If the kinetic energy function is quadratic in (ω, ẋ), then the Legendre trans-
formation is

[
Π
p

]
=

∂L̃(G,P )

∂P
=

[
J mS(ρcm)RT

mRS(ρcm)T mI3×3

] [
ω
ẋ

]
,

and we assume that this can be inverted to give

[
ω
ẋ

]
=

[
M I

11 M I
12

M I
21 M I

22

] [
Π
p

]
,

where

[
M I

11 M I
12

M I
21 M I

22

]
=

[
J mS(ρcm)RT

mRS(ρcm)T mI3×3

]−1

.

The modified Hamiltonian function is
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H̃(G,P ) =
1

2

[
Π
p

]T [
M I

11 M I
12

M I
21 M I

22

] [
Π
p

]
+ U(G). (7.30)

Hamilton’s equations for the Euclidean dynamics of a rigid body as they
evolve on the cotangent bundle T∗SE(3) are:

Ṙ = RS(M I
11Π +M I

12p), (7.31)

ẋ = R(M I
21Π +M I

22p), (7.32)

Π̇ = Π × (M I
11Π +M I

12p) + p× (M I
21Π +M I

22p)

+

3∑
i=1

ri × ∂U(G)

∂ri
, (7.33)

ṗ = p× (M I
11Π +M I

12p)−RT ∂U(G)

∂x
. (7.34)

Hamilton’s equations describe the Hamiltonian flow of the Euclidean dynam-
ics of a rigid body in terms of the evolution of (R, x,Π, p) ∈ T∗SE(3) on the
cotangent bundle T∗SE(3).

In the special case that the origin of the body-fixed frame is located at the
center of mass of the rigid body, S(ρcm) = 0, and we obtain a simplification
of Hamilton’s equations

Ṙ = RS(J−1Π), (7.35)

ẋ =
1

m
Rp, (7.36)

Π̇ = Π × J−1Π +

3∑
i=1

ri × ∂U(G)

∂ri
, (7.37)

ṗ = p× J−1Π −RT ∂U(G)

∂x
. (7.38)

The relative simplicity of this form of Hamilton’s equations for Euclidean
motion of a rigid body motivates the choice of a body-fixed Euclidean frame
whose origin is located at the center of mass of the rigid body.

If the potential terms in (7.33) and (7.34) are globally defined on R
3×3×R

3,
the domain of definition of (7.31), (7.32), (7.33), and (7.34) on T∗SE(3) can
be extended to T∗(R3×3 × R

3). This extension is natural and useful in that
it defines a Hamiltonian vector field on the cotangent bundle T∗(R3×3×R

3).
The manifold T∗SE(3) is an invariant manifold of this Hamiltonian vector
field on T∗(R3×3×R

3) and its restriction to this invariant manifold describes
the Hamiltonian flow of (7.31), (7.32), (7.33), and (7.34) on T∗SE(3).
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7.5 Linear Approximations of Dynamics on SE(3)

Geometric forms of the Euler–Lagrange equations and Hamilton’s equations
on SE(3) have been presented that provide insight into the geometry of the
global dynamics on the configuration manifold SE(3). It is possible to deter-
mine a linear vector field that approximates the Lagrangian vector field on
TSE(3), at least locally in an open subset of TSE(3).

7.6 Dynamics on SE(3)

In this section, we present examples of a rigid body undergoing Euclidean
motion in three dimensions. In each case, the configuration manifold is SE(3);
consequently, each of the illustrated dynamics has six degrees of freedom.
Lagrangian and Hamiltonian formulations of the equations of motion are
presented; a few simple flow properties are identified for each illustration.

7.6.1 Dynamics of a Rotating and Translating Rigid Body

A rigid body can rotate and translate in three dimensions under the action of
uniform, constant gravity. We also consider the special case that the gravity
force is zero.

The dynamics of such a rigid body are described using an inertial Euclidean
frame and a body-fixed Euclidean frame. The first two axes of the inertial
frame are selected to lie in a horizontal plane and the third axis is selected
to be vertical. The origin of the body-fixed frame is located at the center of
mass of the rigid body. The mass of the rigid body is m and the standard
inertia matrix in the body-fixed frame is J .

Let R ∈ SO(3) define the attitude of the rigid body as the linear transfor-
mation from the body-fixed frame to the inertial frame. Let x ∈ R

3 denote
the position vector from the center of the inertial frame to the center of mass
of the rigid body, in the inertial frame. Thus, the configuration of the rotating
and translating rigid body is (R, x) ∈ SE(3) and SE(3) is the configuration
manifold. The rigid body has three translational degrees of freedom and three
rotational degrees of freedom.

7.6.1.1 Euler–Lagrange Equations

The modified Lagrangian function is

L̃(R, x, ω, ẋ) =
1

2
ωTJω +

1

2
m ‖ẋ‖2 −mgeT3 x.



328 7 Lagrangian and Hamiltonian Dynamics on SE(3)

Following the prior results in (7.21) and (7.22), the Euler–Lagrange equa-
tions of motion for the Euclidean motion of a rigid body under the action of
constant gravity are given by

Jω̇ + ω × Jω = 0, (7.39)

mẍ+mge3 = 0. (7.40)

The moment due to the gravity potential is zero since the gravity potential
is attitude independent; the gravity force on the rigid body can be viewed as
acting on the center of mass of the rigid body.

The rotational kinematics equation for the rigid body are

Ṙ = RS(ω). (7.41)

These equations (7.39), (7.40), and (7.41) describe the Lagrangian dynamics
of the rigid body in terms of (R, x, ω, ẋ) ∈ TSE(3) on the tangent bundle of
SE(3).

Even in the presence of constant gravity, the translational dynamics and
the rotational dynamics of a rigid body are decoupled. Thus, the rotational
dynamics of the rigid body are not influenced by the translational motion
and the translational dynamics are not influenced by the rotational motion.
The translational motion and the rotational motion evolve independently.

7.6.1.2 Hamilton’s Equations

Hamilton’s equations of motion are obtained by introducing the rotational
and translational momenta defined according to the Legendre transformation
by Π = Jω, p = mẋ. Thus, the modified Hamiltonian is

H̃(R, x,Π, p) =
1

2
ΠTJ−1Π +

1

2m
‖p‖2 +mgeT3 x.

Following the results in (7.35), (7.36), (7.37), and (7.38), Hamilton’s equations
consist of the rotational kinematics equations

Ṙ = RS(J−1Π), (7.42)

the translational kinematics equations

ẋ =
p

m
, (7.43)

the rotational dynamics equations

Π̇ = Π × J−1Π, (7.44)
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and the translational dynamics equations

ṗ = −mge3. (7.45)

These equations (7.44), (7.45), (7.42), and (7.43) describe the Hamiltonian
dynamics of the rigid body under gravity in terms of (R, x,Π, p) ∈ T∗SE(3)
on the cotangent bundle of SE(3).

7.6.1.3 Conservation Properties

Conserved quantities, or integrals of motion, exist for the rotational and
translational dynamics of a rigid body acting under constant gravity. The
Hamiltonian, which coincides with the energy in this case, is given by

H =
1

2
ωTJω +

1

2
m ‖ẋ‖2 +mgeT3 x,

which is constant along each solution of the dynamical flow.
In addition, there is a rotational symmetry: the Lagrangian is invariant

with respect to the tangent lift of any rigid body rotation about the center
of mass. This symmetry leads to conservation of the angular momentum in
the inertial frame; that is

RΠ = RJω

is constant along each solution of the dynamical flow of the rigid body under
the action of constant gravity. From this, it follows that the square of the
magnitude of the angular momentum

‖Jω‖2 ,

is also constant along each solution of the dynamical flow.
Finally, there is a translational symmetry: the Lagrangian is invariant with

respect to the tangent lift of translations in the horizontal plane. This sym-
metry leads to conservation of the two horizontal components of the transla-
tional momentum in the inertial frame; that is the horizontal projections of
the translational momentum in the inertial frame

meTi ẋ, i = 1, 2,

are constant along each solution of the dynamical flow for the Euclidean
motion of a rigid body under constant gravity.



330 7 Lagrangian and Hamiltonian Dynamics on SE(3)

7.6.1.4 Equilibrium Properties

If there is a constant nonzero gravity force on the rigid body, there are no
equilibrium solutions.

7.6.1.5 Conservation and Equilibrium Properties in Zero Gravity

The prior results hold if gravity is absent, that is if g = 0. This case is
referred to as the dynamics of a free rigid body. In this special case, there are
additional conservation and equilibrium properties that are now identified.

The free rigid body has several conservation properties due to symmetries
in the Lagrangian function. There is a rotational symmetry due to the fact
that the Lagrangian is invariant with respect to the tangent lift of any rota-
tion of the rigid body. This symmetry leads to conservation of the angular
momentum in the inertial frame as indicated above. There is a translational
symmetry: the Lagrangian is invariant with respect to the tangent lift of any
rigid body translation. This symmetry leads to conservation of the transla-
tional momentum in the inertial frame; that is the translational velocity ẋ
and the translational momentum p are constant along each solution of the
dynamical flow of the free rigid body.

The equilibria or constant solutions of a freely rotating and translating
rigid body are easily identified. The free rigid body is in equilibrium if the
configuration in SE(3) is constant, that is the angular velocity vector ω = 0
and the translational velocity vector ẋ = 0; the rigid body can be in equilib-
rium for any configuration in SE(3).

To illustrate the linearization of the dynamics of a freely rotating and
translating rigid body, we consider the equilibrium solution (I3×3, 0, 0, 0) ∈
TSE(3). The linearized differential equations on the twelve-dimensional tan-
gent space of TSE(3) at (I3×3, 0, 0, 0) ∈ TSE(3) are given by

Jξ̈ = 0,

mχ̈ = 0.

These linearized differential equations approximate the rotational and trans-
lational dynamics of the rigid body in a neighborhood of (I3×3, 0, 0, 0) ∈
TSE(3).

Solutions for which the angular velocity vector and the translational veloc-
ity vector are constant can also be identified; these are referred to as relative
equilibrium solutions and they necessarily satisfy

ω × Jω = 0,

ẍ = 0.
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Thus, the relative equilibrium solutions occur when the angular velocity vec-
tor is collinear with an eigenvector of the inertia matrix J and the transla-
tional velocity vector is constant.

In particular, consider the initial-value problem for the freely rotating and
translating rigid body given by R(t0) = R0, ω(t0) = ω0, ẋ(t0) = v0, where we
assume that ω0 ∈ R

3 is an eigenvector of the inertia matrix J . The resulting
rotational motion of the free rigid body can be expressed as

R(t) = R0e
S(ω0)(t−t0),

x(t) = x0 + v0(t− t0),

ω(t) = ω0,

ẋ(t) = v0,

which verifies that the rotational and translational velocity vectors are con-
stant.

7.6.2 Dynamics of an Elastically Supported Rigid Body

Consider a rigid body that is supported by multiple elastic connections. The
rigid body is acted on by uniform constant gravity. The elastic connections
are characterized by n elastic springs: one end of each spring is attached to a
fixed point on the rigid body while the other end of the spring is attached to
a fixed inertial support. Each spring is assumed to be massless with a known
elastic stiffness, and the spring always remains straight. Each spring can
be in either compression or tension, and the restoring force in each spring is
proportional to the axial deflection of the spring in the direction of the vector
between its two attachment points.

An inertial three-dimensional Euclidean frame is constructed so that the
first two axes lie in a fixed horizontal and the third axis is vertical, opposite
to the direction of gravity. A Euclidean frame is fixed in the rigid body, with
its origin at the center of mass of the body.

Let m denote the mass of the rigid body and J denote the standard mo-
ment of inertia matrix of the rigid body with respect to its body-fixed frame.
The springs are ordered, so that κi denotes the linear elastic stiffness and
Li denotes the natural length of the i-th spring, for i = 1, . . . , n. The i-th
spring is connected to the rigid body at location ρi ∈ R

3 in the body-fixed
frame and to an inertial support at location zi ∈ R

3 in the inertial frame, for
i = 1, . . . , n.

Let R ∈ SO(3) denote the attitude of the rigid body and let x ∈ R
3 denote

the position vector of the center of mass of the rigid body, expressed in the
inertial frame. The configuration is (R, x) ∈ SE(3) and the configuration
manifold of an elastically supported rigid body is SE(3). This system has six
degrees of freedom.
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As a special case, consider the case n = 1 of a rigid body with a single
elastic support. For simplicity, we locate the origin of the inertial frame at
the inertial support point of the spring. A schematic of a rigid body with a
single elastic support is shown in Figure 7.1.

(R, x) ∈ SE(3)

Fig. 7.1 Rigid body with a single elastic support

7.6.2.1 Euler–Lagrange Equations

The rotational kinematics of the rigid body are given by

Ṙ = RS(ω), (7.46)

where ω ∈ R
3 is the angular velocity vector of the rigid body in the body-fixed

frame.
We use the Lagrange–d’Alembert principle to obtain the equations of mo-

tion, viewing the elastic forces as external forces and the gravitational force
as arising from a potential.

The modified Lagrangian function of a rotating and translating rigid body
L̃ : TSE(3) → R

1 is the sum of the rotational kinetic energy and the transla-
tional kinetic energy minus the gravitational potential energy:

L̃(R, x, ω, ẋ) =
1

2
m ‖ẋ‖2 + 1

2
ωTJω −mgeT3 x.

The Euler–Lagrange equations can be obtained using the prior results in (7.21)
and (7.22) to obtain

Jω̇ + ω × Jω =

n∑
i=1

Mi,

mẍ+mgeT3 x =

n∑
i=1

Fi.
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Here, Mi ∈ R
3 is the moment vector on the rigid body produced by the i-th

elastic spring, expressed in the body-fixed frame. And Fi ∈ R
3 is the force on

the rigid body produced by the i-th elastic spring, for i = 1, . . . , n, expressed
in the inertial frame.

Based on the assumptions, the elastic force of the i-th spring on the rigid
body is given by

Fi = κi{‖si‖ − Li} si
‖si‖ , i = 1, . . . , n,

where the vectors in the inertial frame, defined by the spring attachment
points, are

si = zi − (x+Rρi), i = 1, . . . , n.

Thus, if ‖si‖ > Li, it follows that the i-th elastic spring is in tension and
Fi ∈ R

3 is proportional to the extension in the direction si ∈ R
3; if ‖si‖ <

Li, it follows that the i-th elastic spring is in compression and Fi ∈ R
3 is

proportional to the compression in the direction −si ∈ R
3; if ‖si‖ = Li, then

Fi = 0.
The elastic forces, expressed in the body-fixed frame, are RTFi, i =

1, . . . , n. Thus, the elastic moments on the rigid body, expressed in the body-
fixed frame, are given by

Mi = ρi ×RTFi, i = 1, . . . , n.

These expressions for the elastic forces and moments are the same expressions
used for elastic cables or spring in tension; see [90] where these same elastic
relations are used to describe tensegrity structures.

In summary, the Euler–Lagrange equations for an elastically supported
rigid body are

Jω̇ + ω × Jω +

n∑
i=1

κiρi × {‖zi − x−Rρi‖ − Li}R
T (x− zi) + ρi

‖zi − x−Rρi‖ = 0,

(7.47)

mẍ+mgeT3 x+
n∑

i=1

κi{‖zi − x−Rρi‖ − Li} (x− zi) +Rρi
‖zi − x−Rρi‖ = 0. (7.48)

These equations assume that the vectors defined by the spring attachment
points are never zero. We assume that there are no collisions between the
rigid body, the inertially fixed spring attachment points, or the springs. This
assumption limits the global validity of the equations of motion on the tan-
gent bundle. With this qualification, the dynamics of an elastically supported
rigid body are described by the rotational kinematics (7.46) and the Euler–
Lagrange equations (7.47) and (7.48) in terms of the evolution of (R, x, ω, ẋ)
on the tangent bundle TSE(3).
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In the case of a rigid body with a single elastic support, the Euler–Lagrange
equations are

Jω̇ + ω × Jω + κS(ρ){‖x+Rρ‖ − L} RTx+ ρ

‖x+Rρ‖ = 0, (7.49)

mẍ+mgeT3 x+ κ{‖x+Rρ‖ − L} x+Rρ

‖x+Rρ‖ = 0. (7.50)

7.6.2.2 Hamilton’s Equations

Hamilton’s equations are determined by introducing the Legendre transfor-
mation

p = mẋ,

Π = Jω,

where (p,Π) ∈ se(3)∗ is conjugate to (ẋ, ω) ∈ se(3). Thus, Hamilton’s equa-
tions consist of the kinematics equations

ẋ =
p

m
, (7.51)

Ṙ = RS(J−1Π), (7.52)

and the dynamics equations

Π̇ = Π × J−1Π −
n∑

i=1

κiρi × {‖zi − x−Rρi‖ − Li}R
T (x− zi) + ρi

‖zi − x−Rρi‖ ,

(7.53)

ṗ = −mgeT3 x−
n∑

i=1

κi{‖zi − x−Rρi‖ − Li} (x− zi) +Rρi
‖zi − x−Rρi‖ . (7.54)

These equations (7.51), (7.52), (7.53), and (7.54) describe the Hamiltonian
flow of an elastically supported rigid body in terms of the evolution of
(R, x,Π, p) ∈ T∗SE(3) on the cotangent bundle of the configuration mani-
fold.

In the case of a rigid body with a single elastic support, Hamilton’s equa-
tions are

ẋ =
p

m
, (7.55)

Ṙ = RS(J−1Π), (7.56)
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and

Π̇ = Π × J−1Π − κρ× {‖x+Rρ‖ − L} RTx+ ρ

‖x+Rρ‖ , (7.57)

ṗ = −mgeT3 x− κ{‖x+Rρ‖ − L} x+Rρ

‖x+Rρ‖ . (7.58)

7.6.2.3 Conservation Properties

The Hamiltonian, which coincides with the total energy E in this case, is
conserved along the dynamical flow. Since the expression for the elastic energy
is complicated, we do not present an expression for the Hamiltonian.

7.6.2.4 Equilibrium Properties

The equilibrium solutions of an elastically supported rigid body occur when
the rigid body is stationary, that is the translational and rotational velocity
vectors and their time derivatives are zero. The equilibrium configurations
satisfy the algebraic equations

0 =

n∑
i=1

κiρi × {‖zi − x−Rρi‖ − Li}R
T (x− zi) + ρi

‖zi − x−Rρi‖ , (7.59)

0 =
n∑

i=1

κi{‖zi − x−Rρi‖ − Li} (x− zi) +Rρi
‖zi − x−Rρi‖ +mgeT3 x. (7.60)

The first equilibrium condition implies that the net elastic moment on the
rigid body is zero. The second equilibrium condition implies that the net
elastic force on the rigid body balances the weight of the body.

It is possible to obtain linear differential equations that approximate the
dynamical flow in a neighborhood of any equilibrium solution; this analysis
would follow the methods described in Appendix B. Such developments are
left to the reader.

The equilibrium solutions for a rigid body with a single elastic support
occur when the rigid body is stationary, so that the following algebraic con-
ditions holds:

0 = ρ×RTx,

0 = κ{‖x+Rρ‖ − L} x+Rρ

‖x+Rρ‖ +mgeT3 x.
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The first condition implies that the position vector of the center of mass of
the rigid body and the vector to the point at which the spring is attached to
the rigid body are collinear. The second condition implies that the point at
which the elastic support is attached to the rigid body is collinear with the
direction of gravity, and the elastic extension (or compression) balances the
gravitational force on the rigid body. Consequently, there are four distinct
manifolds that describe the equilibrium configurations, namely

{(R, x) ∈ SE(3) :
RT ρ

‖Rρ‖ = −e3, x = −
(
L+

mg

κ

)
e3},

{(R, x) ∈ SE(3) :
RT ρ

‖Rρ‖ = −e3, x =
(
L− mg

κ

)
e3},

{(R, x) ∈ SE(3) :
RT ρ

‖Rρ‖ = e3, x = −
(
L+

mg

κ

)
e3},

{(R, x) ∈ SE(3) :
RT ρ

‖Rρ‖ = e3, x =
(
L− mg

κ

)
e3}.

The first and third equilibrium manifolds correspond to extension of the
spring; the second and fourth equilibrium manifolds correspond to compres-
sion of the spring. The first and second equilibrium manifolds correspond to
the point of attachment of the spring below the center of mass of the rigid
body; the third and fourth equilibrium manifolds correspond to the point of
attachment of the spring above the center of mass of the rigid body.

Note that if (R, x) ∈ SE(3) is an equilibrium configuration then any ro-
tation of the rigid body about the vertical direction is also an equilibrium
configuration.

7.6.3 Dynamics of a Rotating and Translating Rigid Dumbbell
Satellite in Orbit

A dumbbell satellite, consisting of two identical rigid spherical bodies con-
nected by a massless rigid link, can translate and rotate in three dimensions
acted on by gravity forces that arises from an inertially fixed central body.
Assuming the mass of the central body M is much larger than the total
mass m of the dumbbell satellite, this model is referred to as a restricted full
two-body model for the dumbbell satellite. It has the important feature that
the rotational dynamics and the translational dynamics are coupled through
the gravitational potential that depends on the position and attitude of the
orbiting rigid body.

We introduce an inertial Euclidean frame and a body-fixed Euclidean
frame. The origin of the inertially fixed frame is located at the center of the
large central spherical body. The body-fixed frame is aligned with the princi-
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pal axes of the body, with the third body-fixed axis along the line between the
centers of mass of the two rigid spherical bodies. Thus, the standard inertial
matrix J of the dumbbell satellite is diagonal. The center of the body-fixed
frame is located at the center of mass of the dumbbell at the midpoint of the
link between the two spherical bodies.

We use R ∈ SO(3) to denote the attitude of the rigid body as a rotation
matrix from the body-fixed frame to the inertial frame and we use x ∈ R

3 to
denote the position vector from the center of the central body to the center
of mass of the rigid body in the inertial frame. This defines the configuration
(R, x) in the configuration manifold SE(3). The orbiting dumbbell satellite
has three translational degrees of freedom and three rotational degrees of
freedom. A schematic of a rotating and translating rigid dumbbell satellite
in orbit is shown in Figure 7.2.

(R, x) ∈ SE(3)

Fig. 7.2 Rotating and translating rigid dumbbell satellite in orbit

The subsequent development follows the presentations in [50, 51], where
full body dynamics are treated in detail.

7.6.3.1 Euler–Lagrange Equations

The modified Lagrangian function is

L̃(R, x, ω, ẋ) =
1

2
ωTJω +

1

2
m ‖ẋ‖2 − U(R, x).

The Newtonian gravity potential is the sum of the gravitational potentials of
the two spherical bodies that define the dumbbell satellite; it can be shown
to be

U(R, x) = −GMm

2

2∑
i=1

‖x+Rρi‖−1
,
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where G is the universal gravitational constant, and ρi ∈ R
3 is a vector from

the origin of the body-fixed frame to the center of the i-th sphere of the
dumbbell satellite in the body-fixed frame for i = 1, 2. From the assumption
that the third body-fixed axis is along the line between the centers of mass
of the two spherical bodies that define the dumbbell satellite, we have ρ1 =
L
2 e3, ρ2 = −L

2 e3 with L being the axial length of the dumbbell satellite.
The Euler–Lagrange equations for the dumbbell satellite can be obtained

from (7.21) and (7.22) as

Jω̇ + ω × Jω − GMm

2

2∑
i=1

ρi × (x+Rρi)

‖x+Rρi‖3
= 0, (7.61)

mẍ+
GMm

2

2∑
i=1

x+Rρi

‖x+Rρi‖2
= 0. (7.62)

The rotational kinematics are

Ṙ = RS(ω). (7.63)

These equations (7.61), (7.62), and (7.63) describe the Lagrangian dynamics
of a rigid body acted on by Newtonian gravity in terms of (R, x, ω, ẋ) ∈
TSE(3) on the tangent bundle of SE(3).

7.6.3.2 Hamilton’s Equations

Hamilton’s equations of motion are obtained using the Legendre transfor-
mation to introduce the rotational and translational momenta defined by
Π = Jω, p = mẋ. The modified Hamiltonian is

H̃(R, x,Π, p) =
1

2
ΠTJ−1Π +

1

2m
‖p‖2 − GMm

2

2∑
i=1

‖x+Rρi‖−1
.

Hamilton’s equations for the Euclidean motion of a rigid body in Newtonian
gravity are obtained from (7.35), (7.36), (7.37), and (7.38); they consist of
the rotational kinematics equations

Ṙ = RS(J−1Π), (7.64)

the translational kinematics equations

ẋ =
p

m
, (7.65)

and the dynamics equations
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Π̇ = Π × J−1Π +
GMm

2

2∑
i=1

ρi × (x+Rρi)

‖x+Rρi‖3
, (7.66)

ṗ = −GMm

2

2∑
i=1

x+Rρi

‖x+Rρi‖2
. (7.67)

These differential equations (7.64), (7.65), (7.66), and (7.67) describe the
Hamiltonian dynamics for the dumbbell satellite in a Newtonian gravity po-
tential in terms of (R, x,Π, p) ∈ T∗SE(3) on the cotangent bundle of SE(3).

The equations of motion illustrate that the translational, or orbital, dy-
namics and the rotational dynamics of the dumbbell satellite are coupled
through the Newtonian gravity. This coupling can give rise to complicated
full body dynamics.

7.6.3.3 Conservation Properties

The Hamiltonian of the dumbbell satellite, which coincides with the total
energy E in this case, is conserved; that is

H =
1

2
ωTJω +

1

2
m ‖ẋ‖2 − GMm

2

2∑
i=1

‖x+Rρi‖−1

is constant along each solution of the dynamical flow of the dumbbell satellite.

7.6.3.4 Equilibrium Properties

There are no equilibrium solutions, but there are important relative equi-
librium solutions. For example, these equations can be used to determine
solutions for which the dumbbell satellite is in a circular orbit in a fixed or-
bital plane, that is the center of each spherical body of the satellite (and its
center of mass) follow a circular path in R

3 in a fixed orbital plane. Such
solutions require the angular velocity of the dumbbell satellite to be identi-
cal to the orbital angular velocity, and the body-fixed axes of the dumbbell
satellite to be properly aligned with the orbital position vector. Such relative
equilibrium solutions involve a complicated interplay between the rotational
motion and the translational motion of the dumbbell satellite.

7.7 Problems

7.1. Consider a rotating and translating rigid body, with the configuration
(R, x) ∈ SE(3) defined with respect to an inertial frame and a body-fixed
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frame whose origin is located at the center of mass of the rigid body. The
rigid body has mass m and moment of inertia matrix J . Assume the modified
Lagrangian is separable in the sense that

L̃(R, x, ω, ẋ) =
1

2
ωTJω +

1

2
m ‖ẋ‖2 − Ur(R)− Ut(x).

(a) What are the Euler–Lagrange equations for the rigid body?
(b) What is the modified Hamiltonian function defined on the cotangent bun-

dle of the configuration manifold?
(c) What are Hamilton’s equations for the rigid body?
(d) Confirm from these equations of motion that the rotational dynamics and

the translational dynamics of the rigid body are completely decoupled in
the sense that the rotational dynamics do not depend on the translational
motion and the translational dynamics do not depend on the rotational
motion.

(e) What are conserved quantities for the rigid body rotational and transla-
tional dynamics?

7.2. Consider the dynamics of a rigid body that is constrained to planar
rotational and translational motion in R

2. This is Euclidean motion of a
rigid body where each material point in the body is constrained to move
in an inertially fixed two-dimensional plane. Assume the configuration is
(R, x) ∈ SE(2), where R ∈ SO(2) is a 2 × 2 attitude matrix and x ∈ R

2

is the position vector of the center of mass of the rigid body. The configu-
ration is defined with respect to a two-dimensional inertial Euclidean frame
and a two-dimensional body-fixed frame. The modified Lagrangian function
is

L̃(R, x, ω, ẋ) =
1

2
Jω2 +

1

2
m ‖ẋ‖2 − U(R, x),

where J is the scalar moment of inertia of the rigid body and m is the mass
of the rigid body.

(a) What are expressions for the infinitesimal variations of (R,ω) ∈ TSO(2)
and (x, ẋ) ∈ TR2?

(b) What are the Euler–Lagrange equations for planar rotation and transla-
tion of a rigid body on the tangent bundle of the configuration manifold?

(c) What is the modified Hamiltonian function defined on the cotangent bun-
dle of the configuration manifold?

(d) What are Hamilton’s equations for planar rotation and translation of a
rigid body on the cotangent bundle of the configuration manifold?

(e) What are conserved quantities of the dynamical flow on TSE(2)?
(f) What are the conditions for an equilibrium solution of the dynamical flow

on TSE(2)?

7.3. Consider a rigid body, constrained to move within a fixed vertical plane,
under constant, uniform gravity. Use the formulation and results of the prior
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problem. The mass of the rigid body is m and the scalar moment of inertia
of the rigid body is J . Assume the configuration manifold of the rigid body,
assuming planar rotation and translation, is taken to be the Lie group SE(2).

(a) What are the Euler–Lagrange equations for planar rotation and transla-
tion of a rigid body?

(b) What are Hamilton’s equations for the planar rotation and translation of
a rigid body?

(c) What are the conserved quantities of the dynamical flow on TSE(2)?

7.4. Consider the Euclidean dynamics of a rigid body, consisting of material
points denoted by B in a body-fixed frame, under a gravitational field. The
configuration (R, x) ∈ SE(3). Assume the origin of the body-fixed frame is
located at the center of mass of the rigid body. A gravitational force acts on
each material point in the rigid body. The net force and net moment of all
the gravity forces is obtained by integrating the gravity force and moment
for each mass increment of the body over the whole body. The gravitational
field, expressed in the inertial frame, is given by G : R3 → TR3. The in-
cremental gravitational force on a mass increment dm(ρ) of the rigid body,
located at ρ ∈ B in the body-fixed frame, is given in the inertially fixed
frame by dm(ρ)G(Rρ). Thus, the net gravity force, in the inertial frame, is∫
B G(Rρ) dm(ρ). The incremental gravitational moment vector on a mass in-
crement dm(ρ) of the rigid body, located at ρ ∈ B in the body-fixed frame,
is given in the inertially fixed frame by Rρ× dm(ρ)G(Rρ) or, equivalently in
the body-fixed frame, by ρ×dm(ρ)RTG(Rρ). Thus, the net gravity moment,
in the body-fixed frame, is

∫
B ρ×RTG(Rρ) dm(ρ).

(a) What are the Euler–Lagrange equations for the Euclidean dynamics of
the rigid body in the gravitational field?

(b) What are Hamilton’s equations for the Euclidean dynamics of the rigid
body in the gravitational field?

(c) What are the conditions for an equilibrium solution of the Euclidean
motion of a rigid body in the gravitational field?

(d) Suppose the gravitational field G(x) = −ge3 is constant. What are the
simplified Euler–Lagrange equations for the Euclidean dynamics of the
rigid body? What are the conditions for an equilibrium solution of a rigid
body in a constant gravitational field?

7.5. Consider the Euclidean dynamics of a charged rigid body, consisting of
material points denoted by B in a body-fixed frame, under an electric field
and a magnetic field. The configuration is denoted by (R, x) ∈ SE(3). Assume
the origin of a body-fixed frame is located at the center of mass of the rigid
body. The mass of the rigid body is m and J is the standard inertia matrix
of the rigid body. An electric force and a magnetic force act on each material
point in the rigid body. The net force and the net moment of all of the electric
and magnetic forces is obtained by integrating the incremental electric and
magnetic forces and moments for each volume increment of the body over
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the whole body. The electric field, expressed in the inertial frame, is given
by E : R

3 → TR3; the magnetic field, expressed in the inertial frame, is
given by B : R3 → TR3. The incremental electric and magnetic force on a
volume increment with charge dQ, located at ρ ∈ B in the body-fixed frame,
is given in the inertially fixed frame by dQ(E(Rρ) + Ṙρ × B(Rρ)). Thus,
the net electric and magnetic force, in the inertial frame, is

∫
B(E(Rρ) +

Ṙρ × B(Rρ)) dQ. The incremental electric and magnetic moment vector on
a volume increment with charge dQ, located at ρ ∈ B in the body-fixed
frame, is given in the body-fixed frame by ρ× dQRT (E(Rρ) + Ṙρ×B(Rρ)).
Thus, the total electric and magnetic moment, in the body-fixed frame, is∫
B ρ×RT (E(Rρ) + Ṙρ×B(Rρ)) dQ.

(a) What are the Euler–Lagrange equations for the Euclidean dynamics of
the rigid body in the electric field and the magnetic field?

(b) What are Hamilton’s equations for the Euclidean dynamics of the rigid
body in the electric field and the magnetic field?

(c) What are the conditions for an equilibrium solution of the Euclidean
motion of a rigid body in the electric field and the magnetic field?

(d) Suppose the electric field E(x) = −Ee3 and the magnetic field B(x) =
Be2 are constant, where E and B are scalar constants. What are the
simplified Euler–Lagrange equations for the Euclidean dynamics of the
rigid body? What are the conditions for an equilibrium solution of a rigid
body in a constant electric field and a constant magnetic field?

7.6. Consider the Euclidean motion of a rigid body in R
3, with configuration

(R, x) ∈ SE(3), acted on by a force that is constant in the inertial frame.
Assume the origin of the body-fixed frame is located at the center of mass of
the rigid body. The Euler–Lagrange equations are

Jω̇ + ω × Jω = r × F,

mẍ = F.

where r =
∑3

i=1 aiei is a constant vector in the body-fixed frame and F =∑3
i=1 fiR

T ei is an external force. Here, ai, fi, i = 1, 2, 3 are scalar constants.

(a) What are conditions on the constants ai, fi, i = 1, 2, 3, that guarantee
the rigid body has an equilibrium solution? What are the resulting equi-
librium solutions?

(b) What are conditions on the constants ai, fi, i = 1, 2, 3, that guaran-
tee the rigid body has a relative equilibrium solution, i.e., the rotational
and translational velocity vectors defining the configuration are constant?
What are the resulting relative equilibrium solutions?

7.7. Consider the Euclidean motion of a rigid body in R
3, with configuration

(R, x) ∈ SE(3), acted on by a force that is constant in the body-fixed frame.
Assume the origin of the body-fixed frame is located at the center of mass of
the rigid body. The Euler–Lagrange equations are
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Jω̇ + ω × Jω = r × F,

mv̇ +mω × v = F,

where r =
∑3

i=1 aiei is a constant vector in the body-fixed frame and F =∑3
i=1 fiei is an external force. Here ai, fi, i = 1, 2, 3, are scalar constants.

As previously, v = RT ẋ ∈ R
3 denotes the translational velocity vector of the

center of mass of the rigid body in the body-fixed frame.

(a) What are conditions on the constants ai, fi, i = 1, 2, 3, that guarantee
the rigid body has an equilibrium solution? What are the resulting equi-
librium solutions?

(b) What are conditions on the constants ai, fi, i = 1, 2, 3, that guaran-
tee the rigid body has a relative equilibrium solution, i.e., the rotational
and translational velocity vectors defining the configuration are constant?
What are the resulting relative equilibrium solutions?

7.8. A uniform rigid cube, acted on by uniform, constant gravity, is supported
by an elastic foundation. The rigid cube can rotate and translate so that its
configuration is (R, x) ∈ SE(3). An inertial frame is constructed with its third
axis opposite to the direction of gravity. The origin of the body-fixed frame
for the rigid cube is located at the center of mass of the cube and its axes
are principle axes of the cube. The length of each edge of the cube is L, the
mass of the cube is m and the scalar matrix JI3×3, where the scalar J > 0,
denotes the standard inertia matrix of the rigid body. The elastic foundation
that supports the cube is described as follows. Four elastic springs connect
the four bottom corners of the cube to four fixed inertial supports. The four
connection points of the elastic springs to the cube are given, in the body-
fixed frame, by:

b1 =
L

2
e1 +

L

2
e2 − L

2
e3,

b2 =
L

2
e1 − L

2
e2 − L

2
e3,

b3 = −L

2
e1 +

L

2
e2 − L

2
e3,

b4 = −L

2
e1 − L

2
e2 − L

2
e3.

The connection points of the elastic springs to the inertial supports are given,
in the inertial frame, by:
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c1 =
L

2
e1 +

L

2
e2,

c2 =
L

2
e1 − L

2
e2,

c3 = −L

2
e1 +

L

2
e2,

c4 = −L

2
e1 − L

2
e2.

These four pairs of points are connected to the four vertices on one side of the
cube by linearly elastic springs. These springs can deform axially with identi-
cal elastic stiffness κ; they have zero elastic axial forces when the scalar axial
deflection is D. Assume these elastic springs satisfy the inequality 4κD > mg.
In addition, each of the four elastic springs that support the cube is con-
structed so that there is an elastic vertical restoring moment proportional to
the angle between the axis of the spring and the vertical; the elastic stiffness
K for this moment is the same for the four springs.

(a) Show that the four elastic spring vectors from the inertial attachment
points to their respective attachment points on the cube are given, in the
inertial frame, by

si = x+Rbi − ci, i = 1, 2, 3, 4.

(b) Show that the four elastic axial forces Fi ∈ R
3, in the inertial frame, that

act on the cube are

Fi = κ(‖si‖ −D)
si
‖si‖ , i = 1, 2, 3, 4.

(c) Show that the four elastic moment vectors Mi ∈ R
3 on the cube, due to

these axial forces, are

Mi = κ(‖si‖ −D)bi ×RT si
‖si‖ , i = 1, 2, 3, 4,

expressed in the body-fixed frame.
(d) Show that the restoring moment vector M ∈ R

3 on the cube, due to
the vertical restoring moments on the four elastic springs, is given in the
body-fixed frame by

M =

4∑
i=1

Kbi ×RT e3.

(e) Show that the Euler–Lagrange equations, including the forces and mo-
ments due to gravity and the elastic foundation, are given by



7.7 Problems 345

Jω̇ + ω × Jω =
4∑

i=1

κ(‖si‖ −D)bi ×RT si
‖si‖ +

4∑
i=1

Kbi ×RT e3,

mẍ+mge3 =

4∑
i=1

κ(‖si‖ −D)
si
‖si‖ ,

for the rotational and translational dynamics of a cube on an elastic
foundation.

(f) Show that (R,ω, x, ẋ) = (I3×3, 0,
mge3
4κ , 0) ∈ TSE(3) defines an equilib-

rium of the cube on an elastic foundation.
(g) What are linearized dynamics that approximate the dynamical flow of the

cube on an elastic foundation in a neighborhood of the above equilibrium?

7.9. It is often convenient to consider flight of a fixed-wing aircraft in R
3

by viewing it as a rigid body so that the configuration manifold is SE(3).
The inertial frame is chosen so that the third axis is vertical; the body-fixed
frame is chosen so that the first axis points along the nose of the aircraft
and the first and third axes define a plane of mass symmetry of the aircraft.
Suppose the origin of the body-fixed frame is located at the center of mass
of the aircraft. Without going into detail, the important forces that act on
the aircraft in flight arise from aerodynamics, thrust, and gravity. Using the
notation introduced in this chapter, the aerodynamics force, including both
lift and drag effects, is most conveniently described as a vector function with
values in the body-fixed frame that depends on the aircraft rotational and
translational velocity vectors in the body-fixed frame, that is Fa : R3×R

3 →
T∗

R
3; further Fa(v, ω) lies in the plane of mass symmetry of the aircraft. The

aerodynamics moment vector, including both lift and drag effects, is described
as a vector function with values in the body-fixed frame that depends on the
aircraft rotational and translational velocity vectors in the body-fixed frame,
that is Ma : R3×R

3 → T∗
R

3. The thrust force is most conveniently described
as a vector function with values in the body-fixed frame that depends on the
aircraft translational velocity vector in the body-fixed frame, that is T : R3 →
T∗

R
3; further T (v) has a fixed direction in the plane of mass symmetry of

the aircraft. A constant gravity force also acts on the aircraft in flight.

(a) What are the rotational kinematics? What are the translational kinemat-
ics?

(b) Suppose that the aerodynamics force and the thrust force have nontrivial
moment arms. Introduce suitable notation to describe the rotational dy-
namics of the aircraft in terms of the configuration (R, x, ω, v) ∈ TSE(3).

(c) Describe the translational dynamics of the aircraft in terms of the con-
figuration variables (R, x, ω, v) ∈ TSE(3).

(d) Describe the translational dynamics of the aircraft in terms of the con-
figuration variables (R,ω, ẋ) ∈ TSE(3).
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(e) What algebraic conditions characterize the relative equilibrium solutions,
i.e., solutions for which the attitude is constant, the angular velocity vec-
tor is zero, and the aircraft translational velocity vector is constant?

(f) What complications arise if the origin of the body-fixed frame is not
located at the center of mass of the aircraft? What modifications need to
be made in the rotational and translations equations of motion?

7.10. Consider the rigid body maneuver problem of finding curve(s) on the
Lie group SE(3) that connects two fixed points in SE(3) and minimizes∫ 1

0
{‖ω‖2 + ‖ẋ‖2}dt. The origin of the body-fixed frame is located at the

center of mass of the rigid body.

(a) If the curve is described on the interval [0, 1] by t → (R(t), x(t)) ∈
SE(3), show that the minimizing curves satisfy the variational prop-

erty δ
∫ 1

0
{‖ω‖2 + ‖ẋ‖2}dt = 0 for all smooth curves t → (R(t), x(t)) ∈

SE(3) that satisfy the boundary conditions (R(0), x(0)) = (R0, x0) ∈
SE(3), (R(1), x(1)) = (R1, x1) ∈ SE(3).

(b) What are the Euler–Lagrange equations and Hamilton’s equations that
the minimizing curves must satisfy?

(c) Use the above equations and boundary conditions to determine analytical
expressions for the minimizing curves.

7.11. Consider n rotating and translating rigid bodies that are coupled
through the potential energy; the configuration manifold is (SE(3))n. With
respect to a common inertial Euclidean frame, the attitudes of the rigid bod-
ies are given by Ri ∈ SO(3), i = 1, . . . , n, the position vectors of the centers
of mass of the rigid bodies are xi ∈ R

3, i = 1, . . . , n, and we use the nota-
tion R = (R1, . . . , Rn) ∈ (SO(3))n and x = (x1, . . . , xn) ∈ (R3)n; similarly,
ω = (ω1, . . . , ωn) ∈ (so(3))n. Suppose the kinetic energy of the rigid bodies
is a quadratic function in the angular velocity vectors of the bodies and the
translational velocity vectors of the bodies, so that the modified Lagrangian
function L̃ : T(SE(3))n → R

1 is given by

L̃(R, x, ω, ẋ) =
1

2

n∑
i=1

ωT
i Jiωi +

n∑
i=1

aTi ωi +
1

2

n∑
i=1

ẋT
i miẋi

+
n∑

i=1

bTi ẋi − U(R, x),

where Ji are 3 × 3 symmetric and positive-definite matrices, i = 1, . . . , n,
ai ∈ R

3, i = 1, . . . , n, mi > 0, i = 1, . . . , n, are scalars, bi ∈ R
3, i = 1, . . . , n,

and U : (SE(3))n → R
1 is the potential energy that characterizes the coupling

of the rigid bodies.

(a) What are the Euler–Lagrange equations for this modified Lagrangian?
(b) What are Hamilton’s equations for the modified Hamiltonian associated

with this modified Lagrangian?



Chapter 8

Lagrangian and Hamiltonian Dynamics
on Manifolds

In Chapters 3 through 7, we developed Lagrangian and Hamiltonian dy-
namics for systems that evolve on specific configuration manifolds, namely
R

n, (S1)n, (S2)n, SO(3), SE(3). These developments were direct in that they
made use of variational calculus and the geometric features of these particu-
lar configuration manifolds. The observant reader should recognize a common
pattern in those variational developments and should expect that all of these
developments can be viewed as special cases of a more abstract result. In
this chapter, such results are obtained. The development is built around the
concept of a configuration manifold M , embedded in R

n, and a Lagrangian
function L : TM → R

1 defined on the tangent bundle of the configuration
manifold.

We obtain two different forms of variational conditions that characterize
curves that lie in a configuration manifold and connect two fixed points in
the manifold for which the action integral is stationary; such curves are said
to be extremal. Both sets of variational conditions are expressed in terms of
an orthogonal projection operator: for each x ∈ M the orthogonal projection
operator maps R

n onto the tangent space TxM [62]. Euler–Lagrange equa-
tions are derived that are expressed in terms of the Lagrangian function and
the orthogonal projection operator. Hamilton’s equations are obtained that
are expressed in terms of a Hamiltonian function, obtained from the Legendre
transformation, and the orthogonal projection operator.

We next consider special cases where the configuration manifold has a
product structure: a product of linear manifolds embedded in R

3, a product
of copies of the manifold S1 embedded in R

2, and a product of copies of the
manifold S2 embedded in R

3 [63]. We obtain Euler–Lagrange equations and
Hamilton’s equations that evolve on such configuration manifolds.

Then, we develop abstract variational results for a configuration manifold
that is a Lie group, and we obtain Euler–Lagrange equations and Hamil-
ton’s equations. Additionally, abstract variational results are developed for
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a configuration manifold that is a homogeneous manifold, and we obtain
Euler–Lagrange equations and Hamilton’s equations for this case.

Geometric mechanics, as presented in this text, emphasizes the develop-
ment of Lagrangian and Hamiltonian equations of motion, expressed in terms
of configuration vectors in a configuration manifold. These variational results
are based on the geometric properties of the embedded configuration manifold
and the Lagrangian function defined on the tangent bundle of the configura-
tion manifold or the Hamiltonian function defined on the cotangent bundle
of the configuration manifold. In many cases, the variational equations can
be globally extended in the sense they can be naturally extended from defin-
ing flows on the embedded configuration manifold to flows on the embedding
vector space.

The classical approach to Lagrangian and Hamiltonian dynamics on man-
ifolds is obtained by imposing manifold evolution via algebraic constraints.
There is a long history of such developments; see [94, 95, 96, 98]; these and
other classical developments are primarily analytical and do not make use of
differential geometric features of the manifolds.

Alternatively, Lagrangian and Hamiltonian dynamics on manifolds have
been investigated using methods of geometric mechanics as in [5, 10, 11, 16,
37, 38, 39, 69, 72, 92]. These references use geometric concepts in the analysis
of solutions and flow properties, but not in the formulation of the basic equa-
tions of motion as is emphasized here. This text is primarily concerned with
the formulation of Lagrangian and Hamiltonian dynamics in a form that is
consistent with fact that the configuration manifold is embedded in a vector
space. The text does not delve deeply into the use of differential geometry in
analysis of solution properties: a comprehensive treatment that combines the
role of differential geometry in both the formulation and advanced analysis
of Lagrangian dynamics and Hamiltonian dynamics remains to be developed.

8.1 Lagrangian Dynamics on a Manifold

An abstract version of the Euler–Lagrange equations that evolve on the tan-
gent bundle TM is given in [5]. This result, expressed in terms of infinitesimal
variations, is derived. It is then used, together with an orthogonal projec-
tion operator, to obtain several different but equivalent forms of the Euler–
Lagrange equations.

8.1.1 Variations on the Tangent Bundle TM

AssumeM is a differentiable manifold embedded in R
n; we denote the tangent

space at x ∈ M by TxM and we denote the tangent bundle of M by TM .
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The subsequent development describes variations of functions with values
in the manifold M . Let x : [t0, tf ] → M be a differentiable curve. The family
of variations of x is defined by differentiable mappings xε : (−c, c)× [t0, tf ] →
M for c > 0; since M is an embedded manifold, each member of the family
can be shown to have the power series

xε(t) = x(t) + εδx(t) +O(ε2), t0 ≤ t ≤ tf ,

for a differentiable curve δx : [t0, tf ] → R
n that satisfies δx(t) ∈ Tx(t)M, t0 ≤

t ≤ tf , and δx(t0) = δx(tf ) = 0. It is easy to see that the variations satisfy
x0(t) = x(t), t0 ≤ t ≤ tf , and xε(t0) = x(t0) and xε(tf ) = x(tf ) for any
ε ∈ (−c, c).

Suppose that (x, ẋ) : [t0, tf ] → TM is a differentiable curve on the tangent
bundle. This construction also allows us to define variations of (x, ẋ) by the
family of differentiable mappings (xε, ẋε) : (−c, c) × [t0, tf ] → TM in the
natural way.

8.1.2 Lagrangian Variational Conditions

Consider a Lagrangian L : TM → R
1. We now derive variational conditions

according to Hamilton’s principle, namely that solution curves correspond to
extremal curves of the action integral, i.e., the infinitesimal variation of the
action integral is zero.

Define the action integral along a motion that evolves on the manifold
M as

G =

∫ tf

t0

L(x, ẋ) dt.

Hamilton’s principle is that a solution curve (x, ẋ) : [t0, tf ] → TM satisfies
the variational condition

δG =
d

dε

∫ tf

t0

L(xε, ẋε) dt
∣∣
ε=0

= 0.

The infinitesimal variation of the action integral can be written as

δG =

∫ tf

t0

{
∂L(x, ẋ)

∂ẋ
· δẋ+

∂L(x, ẋ)

∂x
· δx

}
dt.

Integrating the first term on the right by parts, and using the fact that δx
vanishes at t = t0 and tf , the infinitesimal variation of the action integral is
given by

δG =

∫ tf

t0

{
− d

dt

(
∂L(x, ẋ)

∂ẋ

)
+

∂L(x, ẋ)

∂x

}
· δx dt.
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The fundamental lemma of the calculus of variations on a configuration man-
ifold M implies the following:

Proposition 8.1 Consider a differentiable manifold M embedded in R
n and

assume (x, ẋ) : [t0, tf ] → TM . Then, (x, ẋ) : [t0, tf ] → TM is an extremal
curve of the action integral if and only if

{
d

dt

(
∂L(x, ẋ)

∂ẋ

)
− ∂L(x, ẋ)

∂x

}
· δx = 0, δx ∈ TxM. (8.1)

This is an abstract condition, essentially in the form given by [5], that char-
acterizes the Lagrangian flow that evolves on the tangent bundle of the con-
figuration manifold. In geometric terms, the condition can also be stated as
requiring that for each (x, ẋ) ∈ TM , the Euler–Lagrange expression

{
d

dt

(
∂L(x, ẋ)

∂ẋ

)
− ∂L(x, ẋ)

∂x

}

always lies in the orthogonal complement of the tangent space TxM .
We now introduce the orthogonal projection matrix for each x ∈ M as

P (x) : Rn → TxM which satisfies the orthogonality condition: for each y ∈
R

n

(y − P (x)y) · z = 0, for all z ∈ TxM. (8.2)

We assume the orthogonal projection, viewed as an operator from M to
R

n×n, is a differentiable matrix-valued function. The projection matrix P (x)
is symmetric as follows. From the orthogonality, we have

0 = (y − P (x)y) · P (x)z = yT (In×n − P (x)T )P (x)z

= yT (P (x)− P (x)TP (x))z.

Since this is satisfied for any y, z ∈ R
n, we have P (x) = P (x)TP (x), so

that PT (x) = (P (x)TP (x))T = P (x)TP (x) = P (x). The transpose of the
orthogonal projection can be viewed as P (x)T : Rn → T∗

xM , and this form
is often used to clarify that the result is a covector.

Thus, Proposition 8.1 holds for all infinitesimal variations at x ∈ M given
by δx = P (x)y, y ∈ R

n. This implies that Proposition 8.1 can also be ex-
pressed in terms of the orthogonal projection operator as follows.

Proposition 8.2 Consider a differentiable manifold M embedded in R
n and

assume (x, ẋ) : [t0, tf ] → TM . Then, (x, ẋ) : [t0, tf ] → TM is an extremal
curve of the action integral if and only if

P (x)T
{

d

dt

(
∂L(x, ẋ)

∂ẋ

)
− ∂L(x, ẋ)

∂x

}
= 0. (8.3)
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This is an abstract condition that characterizes the Lagrangian flow that
evolves on the tangent bundle of the configuration manifold. Propositions 8.1
and 8.2 provide different but equivalent geometric characterizations.

8.1.3 Euler–Lagrange Equations on TM

We now derive Euler–Lagrange equations that describe solution curves on the
tangent bundle TM . These Euler–Lagrange equations are expressed in terms
of the Lagrangian function L : TM → R

1 and the orthogonal projection
operator P (x) : Rn → TxM defined for each x ∈ M . We show that these
Euler–Lagrange equations define a smooth vector field, called the Lagrangian
vector field, on the tangent bundle TM .

To this end, we can write

d

dt

(
∂L(x, ẋ)

∂ẋ

)
=

∂2L(x, ẋ)

∂ẋ2
ẍ+

∂

∂x

(
∂L(x, ẋ)

∂ẋ

)
ẋ,

so that (8.3) is rewritten as

P (x)T
{
∂2L(x, ẋ)

∂ẋ2
ẍ+

∂

∂x

(
∂L(x, ẋ)

∂ẋ

)
ẋ− ∂L(x, ẋ)

∂x

}
= 0. (8.4)

However, ẍ is not uniquely determined by (8.4) since the projection operator
P (x) is not invertible.

To determine ẍ, we require an additional constraint on ẍ. Since ẋ ∈ TxM ,
it follows that (In×n − P (x))ẋ = 0 from the definition of the orthogonal
projection operator. Taking the time-derivative, we obtain

(In×n − P (x))ẍ− ∂(P (x)ẋ)

∂x
ẋ = 0, (8.5)

which provides a constraint on the component of ẍ that is normal to TxM .
We now solve (8.4) and (8.5) together. These two expressions can be rear-

ranged into the following matrix equation:

[
P (x)T ∂2L(x,ẋ)

∂ẋ2

In×n − P (x)

]
ẍ =

[
−P (x)T

(
∂
∂x

(
∂L(x,ẋ)

∂ẋ

)
ẋ− ∂L(x,ẋ)

∂x

)
∂(P (x)ẋ)

∂x ẋ

]
. (8.6)

The Lagrangian is hyperregular so that the Hessian of the Lagrangian is
positive-definite; consequently, the 2n × n matrix function on the left-hand
side of equation (8.6) has full column rank (see Problem 8.1). Multiply (8.6)
by the transpose of this 2n×nmatrix to obtain the Euler–Lagrange equations.



352 8 Lagrangian and Hamiltonian Dynamics on Manifolds

Proposition 8.3 Consider a differentiable manifold M embedded in R
n and

a hyperregular Lagrangian L : TM → R
1. Assume (x, ẋ) : [t0, tf ] → TM .

Then, (x, ẋ) : [t0, tf ] → TM is an extremal curve of the action integral if and
only if

{
In×n − P (x) +

∂2L(x, ẋ)

∂ẋ2
P (x)

∂2L(x, ẋ)

∂ẋ2

}
ẍ

+
∂2L(x, ẋ)

∂ẋ2
P (x)T

(
∂

∂x

(
∂L(x, ẋ)

∂ẋ

)
ẋ− ∂L(x, ẋ)

∂x

)

− (In×n − P (x))
∂(P (x)ẋ)

∂x
ẋ = 0. (8.7)

This abstract version of the Euler–Lagrange equations (8.7) characterizes the
Lagrangian flow on the tangent bundle of the configuration manifold. Since
the n × n matrix function that multiplies ẍ in (8.7) is necessarily invertible
for all x ∈ M , it follows that the Euler–Lagrange equations (8.7) determines
a unique vector field on TM ; that is, for each (x, ẋ) ∈ TM there is a unique
(x, ẋ, ẍ) ∈ T(TM). This map from TM to T(TM) defines a smooth vector
field on TM that is denoted by F |TM .

8.1.4 Extension of the Lagrangian Vector Field from TM to TRn

Assume the Lagrangian function can be defined everywhere on the embedding
tangent bundle TRn and assume the orthogonal projection operator P (x) can
be globally extended so that it is defined for each x ∈ R

n. These extensions
are made without changing the Lagrangian on TM and without changing the
orthogonal projection property on M .

Then, the extended differential equation (8.7) can be viewed as defining
a smooth Lagrangian vector field F : TRn → T(TRn). This globally defined
vector field necessarily has an invariant manifold TM and the restriction of
the global Lagrangian vector field F to TM is in fact the Lagrangian vector
field F |TM on TM that is of primary interest. This vector field F on TRn

can be viewed as an extension of the Lagrangian vector field F |TM on TM .
It should be emphasized that Propositions 8.1 and 8.2, under the stated

assumptions, only guarantee the existence of a Lagrangian vector field on
the tangent bundle TM . The additional assumptions that the Lagrangian
function and the orthogonal projection operator are globally defined on TRn

are required to guarantee that the Lagrangian vector field on TM can be
extended to a vector field on TRn.

Global extension of the Lagrangian vector field is possible for many physi-
cal systems such as multi-body connections of mass particles and rigid bodies.
The implications are important in that many classical analytical and com-
putational methods can be utilized for the extended Lagrangian vector field
on TRn, while maintaining the understanding that the results are only of
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interest on the tangent bundle TM . As a practical matter, even if a global
extension to the entire embedding vector space is not possible, a local exten-
sion to a tubular neighborhood of the embedded configuration manifold can
still be useful.

8.2 Hamiltonian Dynamics on a Manifold

An abstract version of Hamilton’s equations that evolve on the cotangent
bundle T∗M is obtained by introducing the Legendre transformation and the
Hamiltonian function. Hamilton’s equations are expressed in terms of the
Hamiltonian function and the orthogonal projection operator.

8.2.1 Legendre Transformation and the Hamiltonian

For a hyperregular Lagrangian function L : TM → R
1, the Legendre trans-

formation FL : TM → T∗M is defined as

FL(x, ẋ) = (x, μ), (8.8)

where μ ∈ (TxM)∗, referred to as the momentum conjugate to ẋ ∈ TxM , is
given by

μ = P (x)T
∂L(x, ẋ)

∂ẋ
. (8.9)

Since the Lagrangian is hyperregular on TM for each x ∈ M , the Legendre
transformation ẋ → μ is a diffeomorphism from TxM to (TxM)∗.

It is convenient to introduce the Hamiltonian function H : T∗M → R
1 as

H(x, μ) = μ · ẋ− L(x, ẋ),

using the Legendre transformation (8.9).

8.2.2 Variations on the Cotangent Bundle T∗M

Suppose that (x, ẋ) : [t0, tf ] → TM is a differentiable curve on the tan-
gent bundle. Using the Legendre transformation, there is a corresponding
differentiable curve (x, μ) : [t0, tf ] → T∗M on the cotangent bundle. The
construction of the family of variations (xε, ẋε) : (−c, c) × [t0, tf ] → TM
on the tangent bundle also allows us to define the family of variations
(xε, με) : (−c, c)× [t0, tf ] → T∗M on the cotangent bundle.
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8.2.3 Hamilton’s Phase Space Variational Principle

Hamilton’s equations on a manifold can be most directly obtained from a
variational principle on T∗M . Hamilton’s phase space variational principle
states that solution curves are extremal curves of the action integral, where
the Lagrangian in the action integral is expressed in terms of the Hamiltonian.
That is to say that the infinitesimal variation of the action integral

G =

∫ tf

t0

{μ · ẋ−H(x, μ)} dt

along any solution curve with fixed end points is zero. Equivalently, a solution
curve (x, μ) : [t0, tf ] → T∗M satisfies the variational condition

δG =
d

dε

∫ tf

t0

{με · ẋε −H(xε, με)} dt
∣∣
ε=0

= 0.

8.2.4 Hamilton’s Equations on T∗M

We now derive Hamilton’s equations that describe solution curves on the
cotangent bundle T∗M . Hamilton’s equations are expressed in terms of the
Hamiltonian function H : T∗M → R

1 and the orthogonal projection operator
P (x)T : Rn → (TxM)∗ defined for each x ∈ M . We show that these Hamil-
ton’s equations define a smooth vector field, called the Hamiltonian vector
field, on the cotangent bundle T∗M .

To this end, the infinitesimal variation of the action integral can be written
as

δG =

∫ tf

t0

{
μ · δẋ− ∂H(x, μ)

∂x
· δx+ δμ ·

(
ẋ− ∂H(x, μ)

∂μ

)}
dt.

Integrating the first term on the right by parts, the infinitesimal variation of
the action integral is given by

δG = μ · δx
∣∣∣∣
tf

t0

+

∫ tf

t0

{(
−μ̇− ∂H(x, μ)

∂x

)
· δx+ δμ ·

(
ẋ− ∂H(x, μ)

∂μ

)}
dt.

Using the definition (8.9) of μ, P (x)Tμ = μ, or equivalently, (In×n −
P (x)T )μ = 0. Thus, the infinitesimal variations satisfy

−
(
∂P (x)Tμ

∂x

)
δx+ (In×n − P (x)T )δμ = 0.
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The first term of the above equation can be viewed as a weighted linear
combination of matrices acting on μ. This term can also be written as

(
n∑

i=1

∂P (x)T

∂xi
δxi

)
μ =

[
∂P (x)T

∂x1
μ

∣∣∣∣ · · ·
∣∣∣∣ ∂P (x)T

∂xn
μ

]
δx

=

(
∂P (x)Tμ

∂x

)
δx, (8.10)

where
(

∂P (x)Tμ
∂x

)
is a n× n matrix that is the Jacobian of the vector-valued

function P (x)Tμ. Equivalently, the first term is obtained by concatenating
column vectors that are given by matrix-vector products of the matrices
∂P (x)T

∂xi
and the vector μ for i = 1, . . . , n.

To impose this constraint on the infinitesimal variations, we decompose
the variation δμ into the sum of two orthogonal components: one component
in T∗

xM , namely δμM = P (x)T δμ, and the other component orthogonal to
T∗
xM , namely δμC = (In×n − P (x)T )δμ. Then, satisfying the constrained

variation implies that δμC = (In×n − P (x)T )δμ =
(

∂P (x)Tμ
∂x

)
δx.

From Hamilton’s phase space variational principle, (x, μ) : [t0, tf ] → T∗M
is a solution curve if and only if δG = 0 for all continuous infinitesimal vari-
ations δx : [t0, tf ] → R

n, δμ : [t0, tf ] → R
n, that satisfy (δx(t), δμ(t)) ∈

T(x(t),μ(t))T
∗M and δx(t0) = δx(tf ) = 0. The vanishing infinitesimal vari-

ations δx at the endpoints mean that the boundary terms vanish, and by
decomposing the variation δμ, we obtain,

δG =

∫ tf

t0

(
−μ̇− ∂H(x, μ)

∂x

)
· δx+ δμM ·

(
ẋ− ∂H(x, μ)

∂μ

)

+ δμC ·
(
ẋ− ∂H(x, μ)

∂μ

)
dt

=

∫ tf

t0

(
−μ̇− ∂H(x, μ)

∂x

)
· δx+ (P (x)T δμ) ·

(
ẋ− ∂H(x, μ)

∂μ

)

+

(
ẋ− ∂H(x, μ)

∂μ

)
·
((

∂P (x)Tμ

∂x

)
δx

)
dt

=

∫ tf

t0

(
−μ̇− ∂H(x, μ)

∂x
+

(
∂P (x)Tμ

∂x

)T (
ẋ− ∂H(x, μ)

∂μ

))
· δx

+ δμ · P (x)

(
ẋ− ∂H(x, μ)

∂μ

)
dt.

Then, the fundamental lemma of the calculus of variations on a configuration
manifold M implies that
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P (x)T

(
−μ̇− ∂H(x, μ)

∂x
+

(
∂P (x)Tμ

∂x

)T (
ẋ− ∂H(x, μ)

∂μ

))
= 0, (8.11)

P (x)

(
ẋ− ∂H(x, μ)

∂μ

)
= 0. (8.12)

The projections P (x) and P (x)T in the equations above arise from the fact
that we only require that the variation of the action vanishes for infinitesimal
variations that satisfy (δx, δμ) ∈ T(x,μ)T

∗M . Since ẋ ∈ TxM , it follows that
P (x)ẋ = ẋ, and we can rewrite (8.12) as

ẋ = P (x)
∂H(x, μ)

∂μ
. (8.13)

Equation (8.11) is incomplete since it only determines the component of μ̇
projected onto T∗

xM . The remaining component is determined by taking the
time derivative of (In×n − P (x)T )μ = 0 to obtain

−
(
∂P (x)Tμ

∂x

)
ẋ+ (In×n − P (x)T )μ̇ = 0,

which yields

(In×n − P (x)T )μ̇ =

(
∂P (x)Tμ

∂x

)
ẋ =

(
∂P (x)Tμ

∂x

)
P (x)

∂H(x, μ)

∂μ
. (8.14)

Combining (8.11) with (8.14), and substituting (8.13), we obtain

μ̇ = P (x)T μ̇+ (In×n − P (x)T )μ̇

= −P (x)T
∂H(x, μ)

∂x
+ P (x)T

(
∂P (x)Tμ

∂x

)T (
ẋ− ∂H(x, μ)

∂μ

)

+

(
∂P (x)Tμ

∂x

)
ẋ

= −P (x)T
∂H(x, μ)

∂x
− P (x)T

(
∂P (x)Tμ

∂x

)T
∂H(x, μ)

∂μ

+

(
P (x)T

(
∂P (x)Tμ

∂x

)T

+

(
∂P (x)Tμ

∂x

))
P (x)

∂H(x, μ)

∂μ

= −P (x)T
∂H(x, μ)

∂x
+

{
P (x)T

(
∂P (x)Tμ

∂x

)T

P (x)

+

(
∂P (x)Tμ

∂x

)
P (x)− P (x)T

(
∂P (x)Tμ

∂x

)T
}

∂H(x, μ)

∂μ
.

In summary, Hamilton’s equations are given in the following.
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Proposition 8.4 Consider a differentiable manifold M embedded in R
n and

a Hamiltonian H : T∗M → R
1. Then, (x, μ) : [t0, tf ] → T∗M is an extremal

curve of the action integral if and only if

ẋ = P (x)
∂H(x, μ)

∂μ
, (8.15)

μ̇ = −P (x)T
∂H(x, μ)

∂x
+

{
P (x)T

(
∂P (x)Tμ

∂x

)T

P (x)

+

(
∂P (x)Tμ

∂x

)
P (x)− P (x)T

(
∂P (x)Tμ

∂x

)T
}

∂H(x, μ)

∂μ
. (8.16)

This abstract version of Hamilton’s equations (8.15) and (8.16) characterizes
the Hamiltonian flow that evolves on the cotangent bundle of the configura-
tion manifold. Equations (8.15) and (8.16) determine a unique vector field on
T∗M ; that is, for each (x, μ) ∈ T∗M there is a unique (x, μ, ẋ, μ̇) ∈ T(T∗M).
This map from T∗M to T(T∗M) defines a smooth vector field on T∗M that
is denoted by F ∗|T∗M .

8.2.5 Invariance of the Hamiltonian

The following property follows directly from Hamilton’s equation on T∗M :

dH(x, μ)

dt
=

∂H(x, μ)

∂x
· ẋ+

∂H(x, μ)

∂μ
· μ̇

=
∂H(x, μ)

∂x
· ẋ+ P (x)T

∂H(x, μ)

∂μ
· P (x)T μ̇

+ (I − P (x)T )
∂H(x, μ)

∂μ
· (I − P (x)T )μ̇,

where μ̇ is decomposed into two parts using the orthogonality of the projec-
tion. Substituting (8.11), (8.14), and (8.15),

dH(x, μ)

dt
=

∂H(x, μ)

∂x
· P (x)T

∂H(x, μ)

∂μ
− P (x)T

∂H(x, μ)

∂μ
· P (x)T

∂H(x, μ)

∂x

+ P (x)T
∂H(x, μ)

∂μ
· P (x)T

(
∂P (x)Tμ

∂x

)T (
ẋ− ∂H(x, μ)

∂μ

)

+ (I − P (x)T )
∂H(x, μ)

∂μ
·
(
∂P (x)Tμ

∂x

)
P (x)

∂H(x, μ)

∂μ
.
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Since P (x)P (x)T = P (x)T , the first two terms of the above equation add to
zero. Also, substituting (8.15), and rearranging with P (x)P (x)T = P (x)T =
P (x), the result reduces to

dH(x, μ)

dt
= P (x)

∂H(x, μ)

∂μ
·
(
∂P (x)Tμ

∂x

)T

(P (x)− I)
∂H(x, μ)

∂μ

+ (I − P (x)T )
∂H(x, μ)

∂μ
·
(
∂P (x)Tμ

∂x

)
P (x)

∂H(x, μ)

∂μ
.

Rearranging the first term and using the symmetry of the projection yields

dH(x, μ)

dt
= 0.

Therefore, the Hamiltonian function is constant along each solution of Hamil-
ton’s equations. This property does not hold if the Hamiltonian function has
a nontrivial explicit dependence on time.

8.2.6 Extension of the Hamiltonian Vector Field from T∗M
to T∗

R
n

Assume the Hamiltonian function can be defined everywhere on the embed-
ding cotangent bundle T∗

R
n and assume the orthogonal projection operator

P (x) can be globally extended so that it is defined for each x ∈ R
n. These

extensions are made without changing the Hamiltonian on T∗M and without
changing the orthogonal projection property on M .

The extended differential equations (8.15) and (8.16) can be viewed as
defining a smooth Hamiltonian vector field F : T∗

R
n → T(T∗

R
n). This

globally defined vector field necessarily has an invariant manifold T∗M and
the restriction of the global Hamiltonian vector field F ∗ on T∗

R
n is in fact

the Hamiltonian vector field F ∗|T∗M on T∗M that is of primary interest.
This vector field F ∗ defined on T∗

R
n can be viewed as an extension of the

Hamiltonian vector field F ∗|T∗M on T∗M .
It should be emphasized that Hamilton’s equations, under the stated as-

sumptions, only guarantee the existence of a Hamiltonian vector field on the
cotangent bundle T∗M . Additional assumptions that the Hamiltonian func-
tion and the constraint functions that define the configuration manifold are
globally defined on T∗

R
n are required to guarantee that the Hamiltonian

vector field on T∗M can be extended to a vector field on T∗
R

n.
Global extension of the Hamiltonian vector field is possible for many phys-

ical systems, such as multi-body systems. The implications are important in
that many classical analytical and computational methods can be utilized for
the extended Hamiltonian vector field on T∗

R
n, while maintaining the under-

standing that the only results of interest are for the Hamiltonian vector field
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restricted to T∗M . As a practical matter, even if a global extension to the
entire embedding vector space is not possible, a local extension to a tubular
neighborhood of the embedded configuration manifold can still be useful.

8.3 Lagrangian and Hamiltonian Dynamics on Products
of Manifolds

In many multi-body systems, it is convenient to view the configuration man-
ifold as a product of embedded manifolds. Let M1, . . . ,Mn denote differ-
entiable manifolds and suppose that the configuration manifold is given by
M = M1×· · ·×Mn. That is, the configuration vector is x = (x1, . . . , xn) ∈ M
where xi ∈ Mi, i = 1, . . . , n. Suppose that the corresponding orthogonal pro-
jection operators are denoted by Pi(xi) for xi ∈ Mi with i = 1, . . . , n. The
Lagrangian function is given by L : TM → R

1.
The development used to obtain Proposition 8.2 can be easily followed to

obtain an Euler–Lagrange condition for extremals on a configuration manifold
with this product structure.

Proposition 8.5 Consider a differentiable manifold M = M1 × · · · × Mn

and a hyperregular Lagrangian L : TM → R
1. Then, (x, ẋ) : [t0, tf ] → TM

is an extremal curve of the action integral if and only if

Pi(xi)
T

{
d

dt

(
∂L(x, ẋ)

∂ẋi

)
− ∂L(x, ẋ)

∂xi

}
= 0, i = 1, . . . , n. (8.17)

Similarly, the development used to obtain Proposition 8.4 can be easily fol-
lowed to obtain Hamilton’s equations for extremal curves on a configuration
manifold with this product structure. The Legendre transformation is

μi = Pi(xi)
T ∂L(x, ẋ)

∂ẋi
, i = 1, . . . , n, (8.18)

and the Hamiltonian function H : T∗M → R
1 is

H(x, μ) =
n∑

i=1

μi · ẋi − L(x, ẋ), (8.19)

using the Legendre transformation (8.18).

Proposition 8.6 Consider a differentiable manifold M = M1 × · · · × Mn

and a Hamiltonian H : T∗M → R
1. Then, (x, μ) : [t0, tf ] → T∗M is an

extremal curve of the action integral if and only if
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ẋi = Pi(xi)
∂H(x, μ)

∂μi
, i = 1, . . . , n, (8.20)

μ̇i = −Pi(xi)
T ∂H(x, μ)

∂xi
+

{
Pi(xi)

T

(
∂Pi(xi)

Tμi

∂xi

)T

Pi(xi)

+

(
∂Pi(xi)

Tμi

∂xi

)
P (xi)− Pi(xi)

T

(
∂Pi(xi)

Tμi

∂xi

)T
}

∂H(x, μ)

∂μi
,

i = 1, . . . , n. (8.21)

These results are now used to obtain the Euler–Lagrange equations and
Hamilton’s equations for several categories of configuration manifolds with a
product structure. These are not the most general possible results, but they
clearly demonstrate the power of the prior abstract developments.

8.3.1 Lagrangian and Hamiltonian Dynamics on a Product
of Linear Manifolds

Suppose that Ai, i = 1, . . . , n are full rank matrices with three columns and
either one or two rows, and suppose bi, i = 1, . . . , n, are compatible vectors.
Consider n linear manifolds, each embedded in R

3, defined by

Mi =
{
xi ∈ R

3 : Aixi = bi
}
, i = 1, . . . , n.

The configuration manifold M = M1 × · · · ×Mn is a product of linear mani-
folds embedded in R

3n.
The Lagrangian function L : TM → R

1 is given by

L(x, ẋ) =
1

2

n∑
i=1

n∑
j=1

mij ẋ
T
i ẋj − U(x).

Here, mij ∈ R
1, i, j = 1, . . . , n, and viewed as an n × n array they form a

symmetric, positive-definite matrix. The potential function U : R3n → R
1.

Since the tangent space of the linear manifold Mi can be identified with
the null space N (Ai), the orthogonal projection matrices Pi : R

3 → N (Ai)
are given by the 3× 3 constant matrices

Pi = I3×3 −AT
i (AiA

T
i )

−1Ai, i = 1, . . . , n.
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Thus,

Pi(x)
d

dt

(
∂L(x, ẋ)

∂ẋi

)
=

(
I3×3 −AT

i (AiA
T
i )

−1Ai

) n∑
j=1

mij ẍj

= miiẍi +
(
I3×3 −AT

i (AiA
T
i )

−1Ai

) n∑
j �=i

mij ẍj ,

where we have used the fact that Aiẍi = 0, i = 1, . . . , n. According to Propo-
sition 8.4, the Euler–Lagrange equation (8.17) can be written as:

miiẍi +
(
I3×3 −AT

i (AiA
T
i )

−1Ai,
) n∑

j �=i

mij ẍj

+
(
I3×3 −AT

i (AiA
T
i )

−1Ai,
) ∂U(x)

∂xi
= 0, i = 1, . . . , n. (8.22)

Equation (8.22) is defined only on the tangent bundle TM . Since the potential
function is viewed as being defined on R

3n, equation (8.22) can be viewed
as defining a Lagrangian vector field on TR3n. In this sense, the Lagrangian
vector field on TM is extended to a Lagrangian vector field on TR3n.

The Legendre transformation FL : TM → TM∗, according to (8.18), is

μi = miiẋi +
(
I3×3 −AT

i (AiA
T
i )

−1Ai

) n∑
j �=i

mij ẋj , i = 1, . . . , n.

This can be inverted as

ẋi =
n∑

j=1

mI
ijμj , i = 1, . . . , n,

where the 3n× 3n partitioned matrix

⎡
⎢⎣
mI

11 · · · mI
1n

...
. . .

...
mI

n1 · · · mI
nn

⎤
⎥⎦

=

⎡
⎢⎣

m11I3×3 · · · m1n(I3×3 −AT
1 (A

T
1 A1)

−1A1)
...

. . .
...

mn1(I3×3 −AT
n (A

T
nAn)

−1An) · · · mnnI3×3

⎤
⎥⎦
−1

.

The Hamiltonian function H : TM∗ → R
1, according to (8.19), is

H(x, μ) =
1

2

n∑
i=1

n∑
j=1

μT
i m

I
ijμj + U(x).
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Thus, Hamilton’s equations, following equations (8.20) and (8.21), can be
written as

ẋi =

n∑
j=1

mI
ijμj , i = 1, . . . , n, (8.23)

μ̇i = − (
I3×3 −AT

i (AiA
T
i )

−1Ai

) ∂U(x)

∂xi
, i = 1, . . . , n. (8.24)

Equations (8.23) and (8.24) are defined on the cotangent bundle T∗M . Since
the potential function is defined on R

3n, equations (8.23) and (8.24) can be
viewed as defining a Hamiltonian vector field on T∗

R
3n. In this sense, the

Hamiltonian vector field on T∗M is extended to a Hamiltonian vector field
on T∗

R
3n.

8.3.2 Lagrangian and Hamiltonian Dynamics on (S1)n

The configuration manifold M = S1 × · · · × S1, denoted by M = (S1)n, is
embedded in R

2n. The Lagrangian function L : T(S1)n → R
1 is given by

L(x, ẋ) =
1

2

n∑
i=1

n∑
j=1

mij ẋ
T
i ẋj − U(x).

Here, mij ∈ R
1, i, j = 1, . . . , n, and when viewed as an n × n array form a

symmetric, positive-definite matrix. The potential function U : R2n → R
1.

The orthogonal projections are given by the 2× 2 matrix functions

Pi(xi) = I2×2 − xix
T
i , i = 1, . . . , n.

Differentiate xT
i xi = 1 twice to obtain xT

i ẍi = −‖ẋi‖2; then we obtain

Pi(x)
d

dt

(
∂L(x, ẋ)

∂ẋi

)
=

(
I2×2 − xix

T
i

) n∑
j=1

mij ẍj

= mii

(
ẍi − xix

T
i ẍi

)
+

(
I2×2 − xix

T
i

) n∑
j �=i

mij ẍj

= mii

(
ẍi + ‖ẋi‖2 xi

)
+

(
I2×2 − xix

T
i

) n∑
j �=i

mij ẍj .

According to Proposition 8.4, the Euler–Lagrange equation (8.17) can be
shown to be:
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miiẍi +
(
I2×2 − xix

T
i

) n∑
j �=i

mij ẍj

+mii ‖ẋi‖2 xi +
(
I2×2 − xix

T
i

) ∂U(x)

∂xi
= 0, i = 1, . . . , n. (8.25)

Equation (8.25) is defined on the tangent bundle T(S1)n. Since the potential
function is viewed as being defined on R

2n, equation (8.25) can be viewed
as defining a Lagrangian vector field on TR2n. In this sense, the Lagrangian
vector field on T(S1)n is extended to a Lagrangian vector field on TR2n.
Equation (8.25) is a special case of the Euler–Lagrange equation (4.9) derived
in Chapter 4.

Using (8.18), the Legendre transformation FL : TM → TM∗ is introduced
to define the conjugate momenta

μi = miiẋi +
(
I2×2 − xix

T
i

) n∑
j �=i

mij ẋj , i = 1, . . . , n.

This can be inverted as

ẋi =

n∑
j=1

mI
ijμj , i = 1, . . . , n,

where the 2n× 2n partitioned matrix function

⎡
⎢⎣
mI

11 · · · mI
1n

...
. . .

...
mI

n1 · · · mI
nn

⎤
⎥⎦ =

⎡
⎢⎣

m11I2×2 · · · m1n(I2×2 − x1x
T
1 )

...
. . .

...
mn1(I2×2 − xnx

T
n ) · · · mnnI2×2

⎤
⎥⎦
−1

.

The Hamiltonian function H : T∗(S1)n → R
1, according to (8.19), is

H(x, μ) =
1

2

n∑
i=1

n∑
j=1

μT
i m

I
ijμj + U(x).

We now simplify (8.21) using the orthogonal projection. The derivative of
the projection operator term in (8.21) is

(
∂PT (xi)μi

∂xi

)
=

∂(I2×2 − xix
T
i )μi

∂xi

= −(xT
i μi)I2×2 − xiμ

T
i

= −xiμ
T
i ,

where we have used the fact that xT
i μi = 0. Substituting into the expression

in the braces of (8.21), we obtain
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PT (xi)

(
∂PT (xi)μi

∂xi

)T

P (xi) +

(
∂PT (xi)μi

∂xi

)
P (xi)

− PT (xi)

(
∂PT (xi)μi

∂xi

)T

= −(I3×3 − xix
T
i )μix

T
i (I3×3 − xix

T
i )

− xiμ
T
i (I2×2 − xix

T
i ) + (I3×3 − xix

T
i )μix

T
i

= −μix
T
i + μix

T
i xix

T
i − xiμ

T
i + μix

T
i

= μix
T
i − xiμ

T
i ,

where we have used the facts that μT
i xi = 0 and xT

i xi = 1. Thus, Hamilton’s
equations, following equations (8.20) and (8.21), can be written as

ẋi =

n∑
j=1

mI
ijμj , i = 1, . . . , n, (8.26)

μ̇i = (μix
T
i − xiμ

T
i )

n∑
j=1

mI
ijμj −

(
I2×2 − xix

T
i )

) ∂U(x)

∂xi
, i = 1, . . . , n.

(8.27)

Equations (8.26) and (8.27) are defined on the cotangent bundle T∗(S1)n.
Since the potential function is defined on R

2n, equations (8.26) and (8.27)
can be viewed as defining a Hamiltonian vector field on T∗

R
2n. In this sense,

the Hamiltonian vector field on T∗(S1)n is extended to a Hamiltonian vector
field on T∗

R
2n. Hamilton’s equations (8.26) and (8.27) are a special case of

Hamilton’s equations (4.21) and (4.22) derived in Chapter 4.

8.3.3 Lagrangian and Hamiltonian Dynamics on (S2)n

The configuration manifold M = S2 × · · · × S2, denoted by M = (S2)n, is
embedded in R

3n. The Lagrangian function L : T(S2)n → R
1 is given by

L(x, ẋ) =
1

2

n∑
i=1

n∑
j=1

mij ẋ
T
i ẋj − U(x).

Here, mij ∈ R
1, i, j = 1, . . . , n, and viewed as an n × n array form a sym-

metric, positive-definite matrix. The potential function U : R3n → R
1.

The orthogonal projections are given by the 3× 3 matrix functions

Pi(xi) = I3×3 − xix
T
i , i = 1, . . . , n.

Differentiate xT
i xi = 1 twice to obtain xT

i ẍi = −‖ẋi‖2; then we obtain
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Pi(x)
d

dt

(
∂L(x, ẋ)

∂ẋi

)
=

(
I3×3 − xix

T
i

) n∑
j=1

mij ẍj

= mii

(
ẍi − xix

T
i ẍi

)
+

(
I3×3 − xix

T
i

) n∑
j �=i

mij ẍj

= mii

(
ẍi + ‖ẋi‖2 xi

)
+

(
I3×3 − xix

T
i

) n∑
j �=i

mij ẍj .

According to Proposition 8.4, the Euler–Lagrange equation (8.17) can be
shown to be:

miiẍi +
(
I3×3 − xix

T
i

) n∑
j �=i

mij ẍj

+mii ‖ẋi‖2 xi +
(
I3×3 − xix

T
i

) ∂U(x)

∂xi
= 0, i = 1, . . . , n. (8.28)

Equation (8.28) is defined on the tangent bundle T(S2)n. Since the potential
function is viewed as being defined on R

3n, equation (8.28) can be viewed
as defining a Lagrangian vector field on TR3n. In this sense, the Lagrangian
vector field on T(S2)n is extended to a Lagrangian vector field on TR3n. Equa-
tion (8.28) is a special case of the Euler–Lagrange equation (5.10) derived in
Chapter 5.

According to (8.18), the Legendre transformation FL : TM → TM∗ is
introduced to define the conjugate momenta

μi = miiẋi +
(
I3×3 − xix

T
i

) n∑
j �=i

mij ẋj , i = 1, . . . , n.

This can be inverted as

ẋi =
n∑

j=1

mI
ijμj , i = 1, . . . , n,

where the 3n× 3n partitioned matrix function

⎡
⎢⎣
mI

11 · · · mI
1n

...
. . .

...
mI

n1 · · · mI
nn

⎤
⎥⎦ =

⎡
⎢⎣

m11I3×3 · · · m1n(I3×3 − x1x
T
1 )

...
. . .

...
mn1(I3×3 − xnx

T
n ) · · · mnnI3×3

⎤
⎥⎦
−1

.

Using (8.19), the Hamiltonian function H : T∗(S2)n → R
1 is

H(x, μ) =
1

2

n∑
i=1

n∑
j=1

μT
i m

I
ijμj + U(x).
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Equation (8.21) is simplified using the orthogonal projection. The deriva-
tive of the projection operator term in (8.21) is

(
∂PT (xi)μi

∂xi

)
=

∂(I3×3 − xix
T
i )μi

∂xi

= −(xT
i μi)I3×3 − xiμ

T
i

= −xiμ
T
i ,

where we have used the fact that xT
i μi = 0. Substituting this into the ex-

pression in the braces of (8.21), we obtain

PT (xi)

(
∂PT (xi)μi

∂xi

)T

P (xi) +

(
∂PT (xi)μi

∂xi

)
P (xi)

− PT (xi)

(
∂PT (xi)μi

∂xi

)T

= −(I3×3 − xix
T
i )μix

T
i (I3×3 − xix

T
i )

− xiμ
T
i (I3×3 − xix

T
i ) + (I3×3 − xix

T
i )μix

T
i

= −μix
T
i + μix

T
i xix

T
i − xiμ

T
i + μix

T
i

= μix
T
i − xiμ

T
i ,

where we have used the facts that μT
i xi = 0 and xT

i xi = 1. Thus, we can
write{

Pi(xi)
T

(
∂Pi(xi)

Tμi

∂xi

)T

Pi(xi)

+

(
∂Pi(xi)

Tμi

∂xi

)
P (xi)− Pi(xi)

T

(
∂Pi(xi)

Tμi

∂xi

)T
}

∂H(x, μ)

∂μi

=
(
μix

T
i − xiμ

T
i

) ∂H(x, μ)

∂μi
,

=
∂H(x, μ)

∂μi
× (μi × xi) .

Hamilton’s equations, following equations (8.20) and (8.21), can be written as

ẋi =
n∑

j=1

mI
ijμj , i = 1, . . . , n,

(8.29)

μ̇i =

(
n∑

j=1

mI
ijμj

)
× (μi × xi)−

(
I3×3 − xix

T
i

) ∂U(x)

∂xi
, i = 1, . . . , n.

(8.30)
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Equations (8.29) and (8.30) are defined on the cotangent bundle T∗(S2)n.
Since the potential function is defined on R

3n, equations (8.29) and (8.30)
can be viewed as defining a Hamiltonian vector field on T∗

R
3n. In this sense,

the Hamiltonian vector field on T∗(S2)n is extended to a Hamiltonian vector
field on T∗

R
3n. Hamilton’s equations (8.29) and (8.30) are a special case of

Hamilton’s equations (5.25) and (5.26) derived in Chapter 5.

8.4 Lagrangian and Hamiltonian Dynamics Using
Lagrange Multipliers

We revisit the classical Euler–Lagrange equations and Hamilton’s equations,
with holonomic constraints, that are expressed using Lagrange multipliers [30,
32]. We show that Proposition 8.2 in the prior section can be used to obtain
these classical results.

Recall, the configuration manifold M embedded in R
n can be described

by algebraic equations expressed in terms of the configuration as

fi(x) = 0, i = 1, . . . ,m, (8.31)

where fi : R
n → R

1, i = 1, . . . ,m, are continuously differentiable functions
with linearly independent gradient functions for all x ∈ M .

According to Proposition 8.2, equation (8.3) can be rewritten as

d

dt

(
∂L(x, ẋ)

∂ẋ

)
− ∂L(x, ẋ)

∂x
+

m∑
i=1

λi
∂fi(x)

∂x
= 0. (8.32)

The Euler–Lagrange differential equations (8.32) and the algebraic equa-
tions (8.31) have been shown to have index two and thus define a continuous
vector field on the tangent bundle of the constraint manifold TM .

As in Chapter 3, these equations can be expressed in terms of an aug-
mented Lagrangian function La : T∗M × R

m → R
1 given by

La(x, ẋ, λ) = L(x, ẋ) +

m∑
i=1

λifi(x).

The Euler–Lagrange equations can be expressed as

d

dt

(
∂La(x, ẋ, λ)

∂ẋ

)
− ∂La(x, ẋ, λ)

∂x
= 0. (8.33)
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The augmented Euler–Lagrange equations (8.33), together with the m alge-
braic constraint equations given in (8.31), can be shown to be index two
differential-algebraic equations. They guarantee that the constrained La-
grangian dynamics described by (x, ẋ) ∈ TM evolve on the tangent bundle
of the constraint manifold TM .

If we use the classical definition of the Legendre transformation

μ =
∂L(x, ẋ)

∂ẋ
,

and the classical definition of the Hamiltonian function

H(x, μ) = μ · ẋ− L(x, ẋ),

then Hamilton’s equations can be described by differential-algebraic equa-
tions that depend on Lagrange multipliers as

ẋ =
∂H(x, μ)

∂μ
, (8.34)

μ̇ = −∂H(x, μ)

∂x
−

m∑
i=1

λi
∂fi(x)

∂x
, (8.35)

together with the algebraic equations (8.31). These differential-algebraic
equations can be shown to have index two and thus define a smooth vec-
tor field on the cotangent bundle of the constraint manifold T∗M .

As in Chapter 3 these equations can be expressed in terms of the aug-
mented Hamiltonian function Ha : T∗M × R

m → R
1 as

Ha(x, μ, λ) = μ · ẋ− La(x, ẋ, λ),

so that we obtain Hamilton’s equations

ẋ =
∂Ha(x, μ, λ)

∂μ
, (8.36)

μ̇ = −∂Ha(x, μ, λ)

∂x
. (8.37)

Hamilton’s equations (8.36) and (8.37), together with the m algebraic con-
straint equations (8.31), are also index two differential-algebraic equations
that guarantee the constrained Hamiltonian dynamics evolve on the cotan-
gent bundle of the constraint manifold T∗M .

These classical variational results, expressed in terms of Lagrange multi-
pliers, have been previously introduced in Chapter 3. Here, we derived these
classical variational results from the abstract variational results earlier in this
chapter.
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8.5 Lagrangian and Hamiltonian Dynamics on SO(3)

In the preceding sections of this chapter, the configuration manifold has been
assumed to be embedded in R

n and we have derived Lagrangian and Hamil-
tonian equations of motion using the orthogonal projection operator. These
same ideas can be applied to a configuration manifold that is viewed as an
embedding in a vector space of matrices. This is best illustrated in the case
where the configuration manifold is SO(3).

Instead of viewing SO(3) as embedded in R
9 as in Proposition 8.2, we

assume that the embedding space of SO(3) is R3×3. This avoids transforming
a 3 × 3 attitude or rotation matrix R ∈ SO(3) into the corresponding 9 ×
1 vector; the resulting Euler–Lagrange equation is written in terms of the
matrix R directly.

Suppose the configuration manifold is the special orthogonal group SO(3) =
{R ∈ R

3×3 : RTR = I3×3, det[R] = 1}. Recall the tangent space at R is given
by TRSO(3) = {V ∈ R

3×3 : RTV + V TR = 0}, and for any V ∈ TRSO(3),
there exists v ∈ R

3 such that V = RS(v).
We recall the definitions of the inner product and the projection operator

on R
3×3 as follows. The inner-product is defined as an element-wise operation.

More explicitly, for V,W ∈ TRSO(3),

V ·W = tr
[
V TW

]
=

3∑
i=1

3∑
j=1

VijWij .

The projection operator acts on Y ∈ R
3×3 at TRSO(3). That is, P (R, Y ) :

SO(3)× R
3×3 → TRSO(3) can be written as

P (R, Y ) =
1

2
R(RTY − Y TR) =

1

2
(Y −RY TR). (8.38)

The projection is orthogonal since

(Y − P (R, Y )) ·RS(z) =
1

2
tr
[
(Y +RY TR)S(z)RT

]

=
1

2
tr
[
(RTY + Y TR)S(z)

]
= 0,

for any z ∈ R
3, where we have used the facts that the trace is invariant under

transpose and cyclic permutation, and the trace of the product of any sym-
metric matrix and any compatible skew-symmetric matrix is zero. The above
equation states that the difference between Y and its projection P (R, Y ) is
normal to the tangent space TRSO(3), and hence, it implies orthogonality of
the projection. The projection is also symmetric since for any Z ∈ R

3×3,
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Z · P (R, Y ) =
1

2
tr
[
(Y −RY TR)ZT

]

=
1

2
tr
[
Y T (Z −RZTR)

]
= Y · P (R,Z).

To illustrate this, consider the attitude dynamics of a freely rotating rigid
body described in Section 6.6.1. The Lagrangian is given by

L̃(R,ω) =
1

2
ωTJω,

where J ∈ R
3×3 is the standard inertia matrix of the rigid body, and ω =

S−1(RT Ṙ) ∈ R
3 corresponds to the angular velocity vector. To rewrite the

Lagrangian in terms of (R, Ṙ), define a nonstandard inertia matrix Jd =
1
2 tr[J ] I3×3−J as in [50]. The Lagrangian of the rigid body corresponding to

the rotational kinetic energy can be rewritten in terms of (R, Ṙ) as

L(R, Ṙ) =
1

2
tr
[
ṘJdṘ

T
]
=

1

2
Ṙ · ṘJd.

Thus,

∂L

∂Ṙ
= ṘJd.

From (8.3), and (8.38), we obtain

1

2
(R̈Jd −RJdR̈

TR) = 0,

which can be rearranged into

RT R̈Jd − JdR̈
TR = 0. (8.39)

Next, we show that this is equivalent to (6.16) when it is written in terms
of the standard inertia matrix J and the angular velocity vector. Since Ṙ =
RS(ω), we have R̈ = RS(ω)2 + RS(ω̇). Therefore, RT R̈ = S(ω)2 + S(ω̇).
Substituting and rearranging, we obtain

S(ω̇)Jd + JdS(ω̇) + S(ω)2Jd − JdS(ω)
2 = 0.

Use the identities of the skew-symmetric matrix function S(·); we have
S(ω̇)Jd+JdS(ω̇) = S((tr[Jd] I3×3−Jd)ω̇) = S(Jω̇), and S(ω)2Jd−JdS(ω)

2 =
S(Jdω)S(ω)−S(ω)S(Jdω) = −S(Jω)S(ω)+S(ω)S(Jω) = S(ω×Jω). There-
fore, the above equation reduces to

Jω̇ + ω × Jω = 0,
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which is equivalent to (6.16), that was derived in Section 6.6.1; this describes
the Lagrangian flow on TSO(3). This example illustrates that Proposition 8.2
can also be applied to SO(3), viewing the embedding space as R3×3.

Hamilton’s equations for the Hamiltonian flow on T∗SO(3) can be easily
obtained using the Legendre transformation and the definition of the Hamil-
tonian function. The details are omitted here.

This development provides a natural transition to the general case that
the configuration manifold is a matrix Lie group. This is the topic of the next
section.

8.6 Lagrangian and Hamiltonian Dynamics on a Lie
Group

We now present an abstract geometric formulation for Lagrangian and Hamil-
tonian systems where the configuration manifold is a Lie group G embedded
in R

n×n. The results in the prior sections can be utilized since a Lie group is
a manifold; however, we provide a complete development, following the same
line of arguments, to emphasize the special structure that arises from the Lie
group assumption. See [22] for a different treatment of variational methods
on Lie groups.

The action integral is defined in terms of a Lagrangian, and Hamilton’s
principle is used to derive an abstract version of the Euler–Lagrange equations
on the Lie group G using variational calculus. The Legendre transformation
is introduced, Hamilton’s function is defined, and Hamilton’s equations are
derived.

8.6.1 Additional Material on Lie Groups and Lie Algebras

A Lie group is a group that is also a manifold, where the group operations
are smooth maps with respect to the manifold structure. Thus, the elements
in a Lie group satisfy both group properties and manifold properties. A Lie
group, as a manifold, supports the definition of tangent bundle and cotangent
bundle, but they have additional properties in this case. An element in the
Lie group and an element of its tangent space, viewed as a pair, lie in the
tangent bundle.

Let G denote a Lie group, for which the group operation is differentiable.
A Lie algebra g is a vector space associated with this Lie group. This Lie
algebra g is the tangent space of the Lie group G at the identity element
e ∈ G, with a Lie bracket [·, ·] : g × g → g that is bilinear, skew symmetric,
and satisfies the Jacobi identity.
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For g, h ∈ G, the left translation map Lh : G → G is defined as Lhg = hg.
Similarly, the right translation map Rh : G → G is defined as Rhg = gh. Given
ξ ∈ g, define a vector field Xξ : G → TG such that Xξ(g) = TeLg · ξ, and
let the corresponding unique integral curve passing through the identity e at
t = 0 be denoted by γξ(t).

We can represent an element in the Lie group G in terms of the exponential
map of an element in the associated Lie algebra g. The exponential map
is denoted by exp : g → G or by the common notation eξ = γξ(1). The
exponential map is a local diffeomorphism from a neighborhood of zero in g
onto a neighborhood of the identity e in G.

Define the inner automorphism ig : G → G as ig(h) = ghg−1. The adjoint
operator Adg : g → g is the differential of ig(h) with respect to h at h = e
along the direction η ∈ g, i.e., Adgη = Teig ·η. The adjoint operator adξ : g →
g is obtained by differentiating Adgη with respect to g at e in the direction
ξ, i.e., adξη = Te(Adgη) · ξ. In terms of the Lie bracket, adξη = [ξ, η].

Let 〈·, ·〉 be the pairing between a tangent vector and a cotangent vec-
tor. The coadjoint operator Ad∗g : G × g∗ → g∗ is defined by

〈
Ad∗gα, ξ

〉
=

〈α, Adgξ〉 for α ∈ g∗. The coadjoint operator ad∗ : g× g∗ → g∗ is defined by〈
ad∗ηα, η

〉
= 〈α, adηξ〉 for α ∈ g∗.

As we will see below, one important consequence of the structure of a Lie
group is we can identify the tangent bundle TG of a Lie group G with G× g
by left trivialization. Therefore, by choosing a basis for the Lie algebra g, we
can explicitly parameterize the tangent space at any point of the Lie group
and thereby avoid the need for projections.

Accessible expanded introductions to Lie groups can be found in Chapter 9
of [70] or Chapter 1 of [78], and more in-depth expositions of the mathematical
foundations can be found in [28, 35, 97].

8.6.2 Variations on a Lie Group

The configuration manifold is a Lie group G. We identify the tangent bun-
dle TG with G × g by left trivialization. A tangent vector (g, ġ) ∈ TgG is
expressed as

ġ = TeLg · ξ = gξ, (8.40)

for ξ ∈ g. These can be thought of as the kinematics equation that relates
the velocity variable ξ ∈ g in the Lie algebra to the configuration variables
g ∈ G in the Lie group. Thus, any differentiable motion g : [t0, tf ] → G with
values in the Lie group G necessarily satisfies the kinematics equation (8.40)
for some function ξ : [t0, tf ] → g with values in the Lie algebra g.

The subsequent development describes variations of functions with values
in the Lie group G. Let g : [t0, tf ] → G be a differentiable curve. The family of
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variations of g is defined by a differentiable mapping gε : (−c, c)×[t0, tf ] → G,
for c > 0, defined using the exponential map as

gε(t) = geεη(t),

for a curve η : [t0, tf ] → g. It is easy to show that the family of curves gε is well
defined for some constant c as the exponential map is a local diffeomorphism
between g and G. Furthermore, the family of curves satisfies gε(t0) = g(t0),
gε(tf ) = g(tf ) for any ε ∈ (−c, c), provided η(t0) = η(tf ) = 0. It is also
guaranteed that the family of varied curves have values in G.

The infinitesimal variation of g is defined by

δg(t) =
d

dε
gε(t)

∣∣∣∣
ε=0

= TeLg(t) · d

dε
eεη(t)

∣∣∣∣
ε=0

= g(t)η(t). (8.41)

For each t ∈ [t0, tf ], the infinitesimal variation δg(t) lies in the tangent space
Tg(t)G. Using this expression, the family of variations of ξ(t) ∈ g is

ξε(t) = ξ(t) + εδξ(t) +O(ε2),

where the infinitesimal variation of ξ : [t0, tf ] → g is

δξ(t) = η̇(t) + adξ(t)η(t). (8.42)

Equations (8.41) and (8.42) define the variations of (g(t), ξ(t)) : [t0, tf ] →
G× g.

8.6.3 Euler–Lagrange Equations

The Lagrangian function L : G×g → R
1 is the difference of the kinetic energy

T : G× g → R
1 and the potential energy U : G → R

1:

L(g, ξ) = T (g, ξ)− U(g).

Define the action integral along a motion that evolves on the Lie group con-
figurations G as

G =

∫ tf

t0

L(g, ξ) dt.

The action integral along a variation of the motion is

Gε =

∫ tf

t0

L(gε, ξε) dt.
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The varied value of the action integral can be expressed as a power series in
ε as

Gε = G+ εδG+O(ε2),

where the infinitesimal variation of the action integral is

δG =
d

dε
Gε

∣∣∣∣
ε=0

.

Hamilton’s principle states that the infinitesimal variation of the action in-
tegral along any motion is zero, i.e.,

δG =
d

dε
Gε

∣∣∣∣
ε=0

= 0, (8.43)

for all possible differentiable infinitesimal variations in g, i.e., for all possi-
ble differentiable infinitesimal variations η : [t0, tf ] → g satisfying η(t0) =
η(tf ) = 0.

Since variation and integration commute, the variation of the action inte-
gral can be written as

δG =
d

dε
Gε

∣∣∣∣
ε=0

=

∫ tf

t0

{(
∂L(g, ξ)

∂g
· δg

)
+

(
∂L(g, ξ)

∂ξ
· δξ

)}
dt,

where ∂L(g,ξ)
∂g ∈ T∗G denotes the derivative of the Lagrangian with respect

to g, given by

d

dε
L(gε, ξ)

∣∣∣∣
ε=0

=

(
∂L(g, ξ)

∂g
· δg

)
,

and ∂L(g,ξ)
∂ξ ∈ g∗ denotes the derivative of the Lagrangian with respect to ξ,

given by

d

dε
L(g, ξε)

∣∣∣∣
ε=0

=

(
∂L(g, ξ)

∂ξ
· δξ

)
.

Since T(Lg ◦ Lg−1) = TLg ◦ TLg−1 is equal to the identity map on TG, this
can be written as

δG =

∫ tf

t0

{〈
∂L(g, ξ)

∂g
, δg

〉
+

〈
∂L(g, ξ)

∂ξ
, δξ

〉}
dt

=

∫ tf

t0

{〈
∂L(g, ξ)

∂g
, (TeLg ◦ TgLg−1) · δg

〉
+

〈
∂L(g, ξ)

∂ξ
, δξ

〉}
dt.
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Substituting (8.41) and (8.42), we obtain

δG =

∫ tf

t0

{〈
∂L(g, ξ)

∂g
, TeLg · η

〉
+

〈
∂L(g, ξ)

∂ξ
, η̇ + adξη

〉}
dt

=

∫ tf

t0

{〈
T∗
eLg ·

∂L(g, ξ)

∂g
+ ad∗ξ ·

∂L(g, ξ)

∂ξ
, η

〉
+

〈
∂L(g, ξ)

∂ξ
, η̇

〉}
dt.

(8.44)

Integrating by parts, the infinitesimal variation of the action integral is given
by

δG =

∫ tf

t0

{〈
T∗
eLg ·

∂L(g, ξ)

∂g
+ ad∗ξ ·

∂L(g, ξ)

∂ξ
, η

〉
+

〈
∂L(g, ξ)

∂ξ
, η̇

〉}
dt

=

〈
∂L(g, ξ)

∂ξ
, η

〉 ∣∣∣∣
tf

t0

+

∫ tf

t0

〈
T∗
eLg ·

∂L(g, ξ)

∂g
+ ad∗ξ ·

∂L(g, ξ)

∂ξ
, η

〉

−
〈

d

dt

∂L(g, ξ)

∂ξ
, η

〉
dt.

Since η(t0) = 0 and η(tf ) = 0, the first term of the above equation vanishes.
Thus, we obtain

δG =

∫ tf

t0

〈
T∗
eLg ·

∂L(g, ξ)

∂g
+ ad∗ξ ·

∂L(g, ξ)

∂ξ
, η

〉
−

〈
d

dt

∂L(g, ξ)

∂ξ
, η

〉
dt.

From Hamilton’s principle, δG = 0 for all η : [t0, tf ] → g. According to the
fundamental lemma of the calculus of variations, as described in Appendix A
for a configuration manifold that is a Lie group, it follows that

〈
d

dt

(
∂L(g, ξ)

∂ξ

)
− ad∗ξ ·

∂L(g, ξ)

∂ξ
− T∗

eLg ·
∂L(g, ξ)

∂g
, η

〉
= 0, η ∈ g.

This implies that the first term in the above pairing is necessarily the zero
linear functional in g∗. Recognizing this fact, the Euler–Lagrange equations
on the Lie group configuration manifold G can be written as an equation with
values in g∗:

d

dt

(
∂L(g, ξ)

∂ξ

)
− ad∗ξ ·

∂L(g, ξ)

∂ξ
− T∗

eLg ·
∂L(g, ξ)

∂g
= 0, (8.45)

and the kinematics equation with values in g:

ġ = gξ. (8.46)



376 8 Lagrangian and Hamiltonian Dynamics on Manifolds

Thus, the Euler–Lagrange equations (8.45) and the kinematics equations
(8.46) define the Lagrangian flow on the tangent bundle described by
(g, ξ) ∈ TG.

The essential idea of this development is expressing the variation of a curve
in G using the exponential map. The expression for the variation is carefully
chosen such that the varied curve lies on the configuration manifold G. The
use of the exponential map exp : g → G is desirable in two aspects: (i) since
the variation is obtained by a group operation, it is guaranteed to lie on G,
and (ii) the variation is parameterized by a curve in a linear vector space g.

These equations are obtained using the left trivialization. Therefore, the
velocity ξ may be considered as a quantity expressed in the body-fixed frame.
We can develop similar equations using the right trivialization to obtain the
equations of motion expressed in the fixed or inertial frame. This is summa-
rized by the following statement.

The tangent bundle TG is identified with G×g by right trivialization. Sup-
pose that the Lagrangian is defined as L(g, ς) : G×g → R. The corresponding
Euler–Lagrange equations are given by

ġ = ςg, (8.47)

d

dt

(
∂L(g, ς)

∂ς

)
+ ad∗ς ·

∂L(g, ς)

∂ς
− T∗

eRg · ∂L(g, ς)
∂g

= 0. (8.48)

Thus, the kinematics equations (8.47) and the Euler–Lagrange equations
(8.48) define the Lagrangian flow on the tangent bundle described by
(g, ς) ∈ TG.

8.6.4 Legendre Transformation and Hamilton’s Equations

We identify the tangent bundle TG with G × g using the left trivialization.
Using this, the cotangent bundle T∗G can be identified with G × g∗. For
the given Lagrangian, the Legendre transformation FL : G × g → G × g∗ is
defined as

FL(g, ξ) = (g, μ), (8.49)

where μ ∈ g∗ is given by

μ =
∂L(g, ξ)

∂ξ
. (8.50)

The Legendre transformation is assumed to be a diffeomorphism, that is
the corresponding Lagrangian is hyperregular, which induces a Hamiltonian
system on G× g∗.

Consider a system evolving on a Lie group G. We identify the tangent
bundle TG with G × g by left trivialization. Since the Lagrangian given by
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L(g, ξ) : G × g → R is hyperregular, the Legendre transformation yields
Hamilton’s equations that are equivalent to the Euler–Lagrange equations.
These can be written as

μ̇ = ad∗ξμ+ T∗
eLg ·

∂L(g, ξ)

∂g
.

It is convenient to introduce the Hamiltonian function H : G× g∗ → R
1 as

H(g, μ) = μ · ξ − L(g, ξ),

using the Legendre transformation (8.50). Thus, Hamilton’s equations can be
written as

ġ = g
∂H(g, μ)

∂μ
, (8.51)

μ̇ = ad∗ξμ− T∗
eLg ·

∂H(g, μ)

∂g
. (8.52)

Hamilton’s equations (8.51) and (8.52), using the Legendre transforma-
tion (8.50), define the Hamiltonian flow on the cotangent bundle described
by (g, μ) ∈ T∗G.

8.6.5 Hamilton’s Phase Space Variational Principle

An alternative derivation of Hamilton’s equations is now provided. The
Hamilton’s phase space variational principle states that the infinitesimal vari-
ation of the action integral,

Gε =

∫ tf

t0

μ · ξ −H(g, μ) dt,

subject to fixed endpoints for g(t), along any motion is zero. The infinitesimal
variation of the action integral can be written as

δG =

∫ tf

t0

{
μ · δξ − ∂H(g, μ)

∂g
· δg +

(
ξ − ∂H(g, μ)

∂μ

)
· δμ

}
dt.

Because ξ = g−1ġ, the variations of ξ are related to the variations of g, and
in Section 8.6.2, we obtained expressions (8.41) and (8.42) for the variation
of g and ξ, respectively, expressed in terms of a curve η : [t0, tf ] → g that
vanishes at the endpoints. Using these expressions, we obtain

δG =

∫ tf

t0

{
〈μ, η̇ + adξη〉 −

〈
∂H(g, μ)

∂g
, TeLg · η

〉

+

(
ξ − ∂H(g, μ)

∂μ

)
· δμ

}
dt
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=

∫ tf

t0

{
〈μ, η̇〉+

〈
ad∗ξμ− T∗

eLg ·
∂H(g, μ)

∂g
, η

〉

+

(
ξ − ∂H(g, μ)

∂μ

)
· δμ

}
dt.

Integrating the first term on the right by parts, the infinitesimal variation of
the action integral is given by

δG = 〈μ, η〉
∣∣∣∣
tf

t0

+

∫ tf

t0

{〈
−μ̇+ ad∗ξμ− T∗

eLg ·
∂H(g, μ)

∂g
, η

〉

+

(
ξ − ∂H(g, μ)

∂μ

)
· δμ

}
dt.

Since η(t0) = 0 and η(tf ) = 0, the boundary terms vanish. Thus, we obtain,

δG =

∫ tf

t0

{〈
−μ̇+ ad∗ξμ− T∗

eLg ·
∂H(g, μ)

∂g
, η

〉
+

(
ξ − ∂H(g, μ)

∂μ

)
· δμ

}
dt.

Then, by Hamilton’s phase space variational principle and the fundamental
lemma of the calculus of variations, we recover Hamilton’s equations (8.51)
and (8.52) on the cotangent bundle of the Lie group G.

The following property follows directly from Hamilton’s equations (8.51)
and (8.52),

dH(g, μ)

dt
=

∂H(g, μ)

∂g
· ġ + ∂H(g, μ)

∂μ
· μ̇

=
∂H(g, μ)

∂g
· TeLg

∂H(g, μ)

∂μ
+

∂H(g, μ)

∂μ
· ad∗ξ μ

− ∂H(g, μ)

∂μ
· T∗

eLg
∂H(g, μ)

∂g
,

where the shorthand notation for the left-trivialized derivative described
by (8.40) has been applied. Therefore, the first and the third terms cancel.

From (8.46) and (8.51), it is clear that ξ = ∂H(g,μ)
∂μ . Substituting this,

dH(g, μ)

dt
= ξ · ad∗ξ μ = adξξ · μ = [ξ, ξ] · μ = 0.

This formulation exposes an important property of the Hamiltonian flow on
the cotangent bundle of the Lie group G: the Hamiltonian function is constant
along each solution of Hamilton’s equation. It should be emphasized that this
property does not hold if the Hamiltonian function has a nontrivial explicit
dependence on time.
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8.6.6 Reassessment of Results in the Prior Chapters

In this section, we provide a reassessment of the formulation of Euler–
Lagrange equations on the Lie group configuration manifolds SO(3) and SE(3)
by rederiving those results using the abstract results in this section. This re-
assessment provides a confirmation of the validity of the prior results, while
also demonstrating the power of the abstract results.

8.6.6.1 Lagrangian and Hamiltonian Dynamics on SO(3)

The Euler–Lagrange equations derived in Chapter 6 for the configuration
manifold SO(3) can be obtained using the abstract Lie group formulation of
this section. In particular, the configuration manifold SO(3) is a Lie group
with Lie algebra so(3). Further, the Lagrangian L : TSO(3) → R

1 can be
expressed as L(R, ξ) where R ∈ SO(3), ξ ∈ so(3). Equation (8.45) can be
rewritten in this case as an equation with values in so(3)∗. Using the iden-
tification ξ = S(ω), we obtain the Euler–Lagrange equations on SO(3) given
in Chapter 6, namely

d

dt

(
∂L(R,ω)

∂ω

)
+ ω × ∂L(R,ω)

∂ω
+

3∑
i=1

ri × ∂L(R,ω)

∂ri
= 0. (8.53)

Hamilton’s equations on SO(3) were derived in Chapter 6. They also follow
from the abstract results above using the Legendre transformation

Π =
∂L(R,ω)

∂ω
,

and the Hamiltonian function

H(q, p) = Π · ω − L(R,ω),

to obtain Hamilton’s equations on SO(3)

ṙi = ri × ∂H(R,Π)

∂Π
, i = 1, 2, 3, (8.54)

Π̇ = Π × ∂H(R,Π)

∂Π
+

3∑
i=1

ri × ∂H(R,Π)

∂ri
. (8.55)

Here, ri ∈ S2 are the columns of RT ∈ SO(3).
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8.6.6.2 Lagrangian and Hamiltonian Dynamics on SE(3)

The Euler–Lagrange equations derived in Chapter 7 for the configuration
manifold SE(3) can be obtained using the abstract formulation of this sec-
tion. In particular, the configuration manifold SE(3) is a Lie group with Lie
algebra se(3). Further, the Lagrangian L : TSE(3) → R

1 can be expressed as
L(R, x, ξ, ẋ) where R ∈ SO(3), x ∈ R

3, ξ ∈ so(3), ẋ ∈ R
3. Equation (8.45)

can be rewritten in this case as an equation with values in se(3)∗.
Using the identification ξ = S(ω), we obtain the Euler–Lagrange equations

on SE(3) given in Chapter 7:

d

dt

(
∂L(R, x, ω, ẋ)

∂ω

)
+ ω × ∂L(R, x, ω, ẋ)

∂ω
+

3∑
i=1

ri × ∂L(R, x, ω, ẋ)

∂ri
= 0,

(8.56)

d

dt

(
∂L(R, x, ω, ẋ)

∂ẋ

)
− ∂L(R, x, ω, ẋ)

∂x
= 0. (8.57)

Hamilton’s equations on SE(3) were derived in Chapter 7. They also follow
from the abstract results above using the Legendre transformation

Π =
∂L(R, x, ω, ẋ)

∂ω
,

p =
∂L(R, x, ω, ẋ)

∂ẋ
,

where we assume the Lagrangian has the property that the map (ω, ẋ) →
(Π, p) is invertible. The Hamiltonian function is defined as

H(R, x,Π, p) = Π · ω + p · ẋ− L(R, x, ω, ẋ),

using the Legendre transformation. Thus, Hamilton’s equations on SE(3) are

ṙi = ri × ∂H(R, x,Π, p)

∂Π
, i = 1, 2, 3, (8.58)

ẋ =
∂H(R, x,Π, p)

∂p
, (8.59)

Π̇ = Π × ∂H(R, x,Π, p)

∂Π
+

3∑
i=1

ri × ∂H(R, x,Π, p)

∂ri
, (8.60)

ṗ = −∂H(R, x,Π, p)

∂x
. (8.61)

Here, ri ∈ S2, i = 1, 2, 3, are the columns of RT ∈ SO(3).
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8.7 Lagrangian and Hamiltonian Dynamics
on a Homogeneous Manifold

We now formulate Lagrangian dynamics on an abstract homogeneous mani-
fold. This extension is shown to arise in a natural way from the prior results
when the configuration manifold is a Lie group. In addition, these results
apply to many important Lagrangian systems with configuration manifolds
that have the homogeneity property.

The development is constructed around a configuration manifold Q that
is a homogenous manifold and a Lagrangian function L : TQ → R

1 defined
on the tangent bundle of the configuration manifold.

We present an abstract geometric formulation for Lagrangian systems
where the configuration manifold is a homogeneous manifold Q associated
with a Lie group G and its Lie algebra g. The action integral is defined in
terms of a Lagrangian and we show that the action integral can also be
expressed in terms of a Lagrangian function L̄ : TG → R

1 lifted to TG.
Hamilton’s principle and the results of the prior chapter are used to derive
an abstract version of the Euler–Lagrange equations on TG. This leads to
the same abstract form of the Euler–Lagrange equations in the prior section
for Lagrangian systems that evolve on a Lie group. Specific properties of the
homogeneous manifold can be used to obtain Euler–Lagrange equations on
TQ.

8.7.1 Additional Material on Homogeneous Manifolds

A left action Φ : G × Q → Q of a Lie group G on a manifold Q is a smooth
map satisfying Φ(e, q) = q and Φ(gh, q) = Φ(g, Φ(h, q)) for any g, h ∈ G, the
identity element e ∈ G, and q ∈ Q. It is also written as Φ(g, q) = gq for
convenience. A right action can be defined similarly.

An action is called transitive if any two points on Q are connected by the
group action, i.e., for any q1, q2 ∈ Q, there exists g ∈ G such that gq1 = q2.
A homogeneous manifold Q is a manifold with a transitive action of a Lie
group G.

Any homogeneous manifold can be regarded as a set of cosets as follows.
Given q0 ∈ Q, define H = {g ∈ G : gq0 = q0}, i.e., H is the isotropy subgroup
of G at q0. Then, we can show that Q is diffeomorphic to G/H = {gH : g ∈ G},
that is all left cosets of H in G. Let π : G → G/H be the projection given by
π(g) = gH and let the origin o = π(e).

The diffeomorphism between G/H and Q can be made explicit once we
pick an element q0 ∈ Q to identify with the origin o ∈ G/H. By an abuse of
notation, let us denote the projection from G to Q by π : G → Q, and this is
given by π(g) = gq0.
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8.7.2 A Lifting Process

Let q : [t0, tf ] → Q define a differentiable curve on Q. Then, its tangent
vector q̇(t) ∈ Tq(t)Q at each t can be represented in terms of an element in
the Lie algebra g as follows. Since the action is transitive, there is a curve
g : [t0, tf ] → G (defined up to isotropy) such that q(t) = g(t)q(t0). Suppose
that the kinematics equation for the lifted curve is given by

ġ(t) = TeRg(t)ς(t) = ς(t)g(t), (8.62)

for ς(t) ∈ g. Consequently, we obtain the kinematics equation on Q as

q̇(t) =
d

dε
Φ(exp(ες(t))g(t), q(t0))

∣∣∣∣
ε=0

=
d

dε
Φ(exp(ες(t)), g(t)q(t0))

∣∣∣∣
ε=0

=
d

dε
Φ(exp(ες(t)), q(t))

∣∣∣∣
ε=0

.

The above equation is written as

q̇ = ςq. (8.63)

Conversely, given a differential curve g : [t0, tf ] → G such that g(t0) = e, and
the initial point q(t0) ∈ Q, we obtain a differentiable curve q : [t0, tf ] → Q
on Q, given by q(t) = g(t)q(t0), i.e., q(·) = π ◦ g(·), where q0 = q(t0). This
yields a projection from the space of differentiable curves on G with initial
point e to the space of differentiable curves Q with a prescribed initial point
q(t0), and this allows us to lift an action integral defined on curves on Q to
an action integral defined on curves on G.

8.7.3 Euler–Lagrange Equations

We assume that a Lagrangian function, the kinetic energy minus the po-
tential energy, can be expressed as a function on the tangent bundle of the
configuration manifold. That is the Lagrangian function L : TQ → R

1 is
the difference of the kinetic energy T : TQ → R

1 and the potential energy
U : Q → R

1:

L(q, q̇) = T (q, q̇)− U(q). (8.64)

Define a Lagrangian lifted to (or pulled back to) TG as follows:
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L̄(g, ς) = (L ◦ Tπ)(g, ς) = (Tπ)∗L(g, ς). (8.65)

The resulting Lagrangian on TG is degenerate in the isotropy direction, and
as such, there will not be a unique curve in G which satisfies Hamilton’s
principle. However, any curve g in G that satisfies Hamilton’s principle (or
equivalently, the Euler–Lagrange equations) is equally valid for our purpose,
since we are only interested in the induced curve q on the homogeneous
manifold Q, given by q = π ◦ g, which is well defined.

The solution q of the Euler–Lagrange equation with L(q, q̇) corresponds
to the projection of the curve g in G satisfying the Euler–Lagrange equation
with L̄(g, ς), since

δ

∫ tf

t0

L(q, q̇) dt = δ

∫ tf

t0

L̄(g, ġ g−1) dt.

The resulting Euler–Lagrange equations for the lifted curve are equivalent
to (8.48) and it is repeated below for ease of reference:

d

dt

(
∂L̄(g, ς)

∂ς

)
+ ad∗ς ·

∂L̄(g, ς)

∂ς
− T∗

eRg · ∂L̄(g, ς)
∂g

= 0. (8.66)

However, as noted earlier, the curve that satisfies the resulting Euler–
Lagrange equations on G are only unique up to isotropy. In practice, the issue
of uniqueness of the curve in G can be addressed by constraining ς(t) ∈ g
that we use in (8.62) to lie in a horizontal subspace l that is transverse to
the Lie subalgebra h corresponding to the isotropy subgroup H. Then, we
obtain a decomposition of the Lie algebra g = h ⊕ l. This is equivalent to
introducing a principle bundle connection on π : G → G/H, and requiring
that the curves in G are horizontal with respect to that connection. While
the resulting curve on G depends on the choice of connection, the induced
curve on Q is independent of the choice of connection.

More concretely, the equations for the curve on the Lie group G are given
by the Euler–Lagrange equations (8.48) and the kinematics equation (8.47)
on G, together with the horizontal space constraint

ġ = ςg, (8.67)

d

dt

∂L̄(g, ς)

∂ς
+ ad∗ς ·

∂L̄(g, ς)

∂ς
− T∗

eRg · ∂L̄(g, ς)
∂g

= 0, (8.68)

ς(t) ∈ l. (8.69)

The induced curve on the homogeneous space Q is obtained from the solution
g(t) of the above equations by projection q(t) = g(t)q0.
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8.7.4 Reassessment of Results in the Prior Chapters

In this section, we provide a reassessment of the formulation of Euler–
Lagrange equations on the homogeneous manifolds S1 and S2 by deriving
these results using the abstract results in this chapter.

8.7.4.1 Lagrangian Dynamics on S1

The Euler–Lagrange equations derived in the variational setting of Chapter 4
on the configuration manifold S1 can be obtained using the abstract formu-
lation of this chapter. The configuration manifold S1 is not a Lie group but
we can characterize the variations using exponential maps. This allows the
development of the results in Chapter 4 for the case n = 1 following the
procedures described in this chapter. We use the notation of Chapter 4.

We first view S1 as a homogeneous manifold. The group G = SO(2) acts
on S1 transitively. The isotropy subgroup of e1 = [1, 0] ∈ S1 consists of all
elements in SO(2) of the form:

[
1 0
0 A

]
,

where A ∈ SO(1). It is easy to check that in this case, the only element of the
isotropy subgroup is the identity matrix. But it is still helpful to take this
point of view since it generalizes to higher-dimensional spheres. Hence, S1 can
be considered as diffeomorphic to the quotient SO(2)/SO(1). For R ∈ SO(2),
the projection is given by π(R) = Re1.

The variation of a curve on SO(2) can be written as

δR =
d

dε
exp(εηS)R

∣∣∣∣
ε=0

= ηSR = RSη,

where η ∈ R
1 and defines a basis of so(2); S ∈ R

2×2 is the skew-symmetric
matrix introduced in Chapter 4:

S =

[
0 −1
1 0

]
.

Suppose that the configuration manifold is given by Q = S1, and the
Lagrangian is given by L(q, q̇). The lifted Lagrangian on T(SO(2)× so(2)) is

L̄(R,ω) = L(Re1, ωSRe1).

The derivatives of the lifted Lagrangian are given by
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∂L̄

∂ω
· δω =

∂L(q, q̇)

∂q̇
· δωSRe1

= −qTS
∂L(q, q̇)

∂q̇
· δω,

(T∗
eRR · ∂L̄

∂R
) · η =

∂L(q, q̇)

∂q
· ηSRei +

∂L(q, q̇)

∂q̇
· ωηS2Rei

= (−qTS
∂L(q, q̇)

∂q
+ ωqTS2

∂L(q, q̇)

∂q̇
) · η.

Substituting these into (8.66), we obtain

ωqTS2
∂L(q, q̇)

∂q̇
− qTS

d

dt

(
∂L(q, q̇)

∂q̇

)
+ qTS

∂L(q, q̇)

∂q
− ωqTS2

∂L(q, q̇)

∂q̇
= 0.

This reduces to

−qTS

{
d

dt

(
∂L(q, q̇)

∂q̇

)
− ∂L(q, q̇)

∂q

}
= 0, (8.70)

which is equivalent to (4.5) in Chapter 4. As in Chapter 4, this can be written
as

(I2×2 − qqT )

{
d

dt

(
∂L(q, q̇)

∂q̇

)
− ∂L(q, q̇)

∂q

}
= 0. (8.71)

8.7.4.2 Lagrangian Dynamics on S2

The Euler–Lagrange equations derived in the variational setting of Chap-
ter 5 on the configuration manifold S2 can be obtained using the abstract
formulation of this chapter. The configuration manifold S2 is not a Lie group
but variations can be characterized using matrix exponential maps. This al-
lows the development of the results in Chapter 5 following the procedures
described in this chapter.

We first view S2 as a homogeneous manifold. The group G = SO(3) acts
on S2 transitively. The isotropy subgroup of e1 = [1, 0, 0] ∈ S2 consists of all
elements in SO(3) of the form:

[
1 0
0 A

]
,

where A ∈ SO(2). Hence, S2 is diffeomorphic to the quotient SO(3)/SO(2).
The projection is given by π(R) = Re1.

Suppose that the configuration manifold is given by Q = S2, and the
Lagrangian is given by L(q, q̇). The lifted Lagrangian on T(SO(3)× so(3)) is

L̄(R,ω) = L(Re1, ω̂Re1).
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The derivatives of the lifted Lagrangian are given by

∂L̄

∂ω
· δω =

∂L(q, q̇)

∂q̇
· S(δω)Re1

=

(
S(q)

∂L(q, q̇)

∂q̇

)
· δω,

(T∗
eRR · ∂L̄

∂R
) · η =

∂L(q, q̇)

∂q
· S(η)Re1 +

∂L(q, q̇)

∂q̇
· S(ω)S(η)Re1

=

(
S(q)

∂L(q, q̇)

∂q
− S(q)

(
S(ω)

∂L(q, q̇)

∂q̇

))
· η.

Substituting these into (8.66), we obtain

S(q)
d

dt

(
∂L(q, q̇)

∂q̇

)
+ S(q̇)

∂L(q, q̇)

∂q̇
− S(ω)

(
S(q)

∂L(q, q̇)

∂q̇

)

− S(q)
∂L(q, q̇)

∂q
+ S(q)

(
S(ω)

∂L(q, q̇)

∂q̇

)
= 0.

But, we have

− S(ω)

(
S(q)

∂L(q, q̇)

∂q̇

)
+ S(q)

(
S(ω)

∂L(q, q̇)

∂q̇

)

= −(S(ω)S(q)− S(q)S(ω))
∂L(q, q̇)

∂q̇

= −S(S(ω)q)
∂L(q, q̇)

∂q̇

= −S(q̇)
∂L(q, q̇)

∂q̇
.

Therefore, we obtain

S(q)
d

dt

(
∂L(q, q̇)

∂q̇

)
− S(q)

∂L(q, q̇)

∂q
= 0, (8.72)

which recovers (5.6) in Chapter 5. As in Chapter 5 this can also be written
as

(
I3×3 − qqT

){
d

dt

(
∂L(q, q̇)

∂q̇

)
− ∂L(q, q̇)

∂q

}
= 0. (8.73)
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8.8 Lagrange–d’Alembert Principle

We describe a modification of Hamilton’s principle to incorporate the effects
of external forces that need not be derivable from a potential. An external
moment is the cross product of a moment arm vector and an external force.
For appropriate configuration manifolds where the physical work done is ex-
pressed as the integrated dot product of a moment vector and a configuration
vector, it is convenient to express external moments in terms of equivalent
external forces.

We assume the dynamics evolves on a configuration manifoldM embedded
in R

n. As in Chapter 3, this modification is referred to as the Lagrange–
d’Alembert’s principle. It states that the infinitesimal variation of the action
integral over a fixed time period equals the virtual work done by the external
forces along an infinitesimal variation in the configuration during the same
time period. This reduces to Hamilton’s principle when there are no external
forces. This version of the variational principle requires determination of the
virtual work corresponding to an infinitesimal variation of the configuration.

Let x : [t0, tf ] → M denote a differentiable curve. The external forces
are described by a vertical mapping on the cotangent bundle T∗M satisfying
Q : [t0, tf ] → T∗

xM . The vertical assumption implies that the kinematics
are unchanged, while the external forces affect only the dynamics. Thus, the
virtual work along an infinitesimal variation of the configuration is given by

∫ tf

t0

QT δx dt.

The Lagrange–d’Alembert principle states that

δ

∫ tf

t0

L(x, ẋ)dt = −
∫ tf

t0

QT δx dt,

holds for all possible differentiable infinitesimal variations δx(t) : [t0, tf ] →
R

n satisfying δx(t) ∈ Tx(t)M and δx(t0) = δx(tf ) = 0.
Following the prior development, this leads to

{
d

dt

(
∂L(x, ẋ)

∂ẋ

)
− ∂L(x, ẋ)

∂x
−Q

}
· δx = 0, (8.74)

for all δx ∈ TxM . This is a form of the Euler–Lagrange equation, including
external forces, that characterizes the Lagrangian flow that evolves on the
tangent bundle of the configuration manifold.

In specifying values of the external forces in the cotangent space, it is
clear that the component of the force orthogonal to the tangent space at
each point is irrelevant. That is, there is no loss in generality in assuming
that the external force always lies in the appropriate cotangent space.
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Many, but not all, of the results described for the autonomous case, without
inclusion of external forces, hold for this case. But it is important to be
careful. For instance, if there are external forces it is not necessarily true that
the Hamiltonian is conserved, unless the forces are always perpendicular to
the motion and therefore do no work.

In practice, this version of the Euler–Lagrange equations that include ex-
ternal forces is important. Physical effects such as friction and other forms of
energy dissipation can be incorporated into the equations of motion. Finally,
external forces and moments can be used to model the effects of control ac-
tions and external disturbances. Such modifications significantly broaden the
application of the Lagrangian and Hamiltonian approaches to dynamics.

8.9 Problems

8.1. Consider the following matrix that appears on the left-hand side of (8.6),

[
PTM

In×n − P

]
,

where the matrix P ∈ R
n×n corresponds to the projection operator, and the

matrix M ∈ R
n×n is symmetric and positive-definite. Show that the above

matrix has full column rank by verifying the following two conditions.

(a) Suppose

[
PTM

In×n − P

]
v = 0,

for some v ∈ R
n. Show that this implies:

vTMv = 0.

(b) Using the fact that M is symmetric, positive-definite, show v = 0.

8.2. Let 0 ≤ m ≤ n and let {a1, . . . , am, . . . , an} denote an orthonormal basis
for R

n. Define a linear manifold M = span{a1, . . . , am}. Assume M is the
configuration manifold for a Lagrangian function L : TM → R

1 given by
L(x, ẋ) = 1

2m ‖ẋ‖2 − U(x), where (x, ẋ) ∈ TM .

(a) Determine the Euler–Lagrange equations, expressed in terms of differential-
algebraic equations with Lagrange multipliers, that describe the evolution
of the dynamical flow on the tangent bundle TM . Show that the index is
two.

(b) Determine Hamilton’s equations, expressed as differential-algebraic equa-
tions with Lagrange multipliers, that describe the evolution of the dy-
namical flow on the cotangent bundle T∗M . Show that the index is two.
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(c) Determine the Euler–Lagrange equations, as differential equations, that
describe the evolution of the dynamical flow on the tangent bundleTM .

(d) Determine Hamilton’s equations, as differential equations, that describe
the evolution of the dynamical flow on the cotangent bundle T∗M .

(e) Show that the Lagrangian vector field on TM in (a) and the Lagrangian
vector field on TM in (c) are identical.

(f) Show that the Hamiltonian vector field on T∗M in (b) and the Hamilto-
nian vector field on T∗M in (d) are identical.

8.3. A particle of mass m translates on a parabolic curve embedded in R
2

described by the manifold M =
{
x ∈ R

2 : x1 − (x2)
2 = 0

}
. The particle is

influenced by a potential function U : R2 → R
1.

(a) Describe the translational kinematics of the particle on the curve in terms
of a single kinematics parameter.

(b) What is the Lagrangian function L : TM → R
1 defined on the tangent

bundle of the configuration manifold?
(c) What are the Euler–Lagrange equations that describe the dynamical flow

on TM?
(d) What is the Hamiltonian function H : T∗M → R

1?
(e) What are Hamilton’s equations that describe the dynamical flow on T∗M?

8.4. A particle of mass m translates on a plane embedded in R
3 described

by the manifold M =
{
x ∈ R

3 : x1 + x2 + x3 − 1 = 0
}
. The particle is influ-

enced by a potential function U : R3 → R
1.

(a) Describe the translational kinematics of the particle on the plane in terms
of two kinematics parameters.

(b) What is the Lagrangian function L : TM → R
1 defined on the tangent

bundle of the configuration manifold?
(c) What are the Euler–Lagrange equations that describe the dynamical flow

on TM?
(d) What is the Hamiltonian function H : T∗M → R

1?
(e) What are Hamilton’s equations that describe the dynamical flow on T∗M?

8.5. A particle of mass m translates on a plane embedded in R
3 described

by the manifold M =
{
x ∈ R

3 : x1 − x2 + x3 − 1 = 0
}
. The particle is influ-

enced by a potential function U : R3 → R
1.

(a) Describe the translational kinematics of the particle on the plane in terms
of two kinematics parameters.

(b) What is the Lagrangian function L : TM → R
1 defined on the tangent

bundle of the configuration manifold?
(c) What are the Euler–Lagrange equations that describe the dynamical flow

on TM?
(d) What is the Hamiltonian function H : T∗M → R

1?
(e) What are Hamilton’s equations that describe the dynamical flow on T∗M?
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8.6. A particle of mass m translates on a parabolic surface embedded in R
3

described by the manifold M =
{
x ∈ R

3 : (x1)
2 − x2 + x3 = 0

}
. The particle

is influenced by a potential function U : R3 → R
1.

(a) Describe the translational kinematics of the particle on the surface in
terms of two kinematics parameters.

(b) What is the Lagrangian function L : TM → R
1 defined on the tangent

bundle of the configuration manifold?
(c) What are the Euler–Lagrange equations that describe the dynamical flow

on TM?
(d) What is the Hamiltonian function H : T∗M → R

1?
(e) What are Hamilton’s equations that describe the dynamical flow on T∗M?

8.7. A particle of mass m translates on a parabolic surface embedded in
R

3 described by the manifold M =
{
x ∈ R

3 : (x1)
2 + (x2)

2 − x3 = 0
}
. The

particle is influenced by a potential function U : R3 → R
1.

(a) Describe the translational kinematics of the particle on the surface in
terms of two kinematics parameters.

(b) What is the Lagrangian function L : TM → R
1 defined on the tangent

bundle of the configuration manifold?
(c) What are the Euler–Lagrange equations that describe the dynamical flow

on TM?
(d) What is the Hamiltonian function H : T∗M → R

1?
(e) What are Hamilton’s equations that describe the dynamical flow on T∗M?

8.8. A particle of mass m is constrained to translate on the surface of a
hyperbolic paraboloid embedded in R

3 that is described by the manifold
M =

{
x ∈ R

3 : −(x1)
2 + (x2)

2 − x3 = 0
}
. The particle is influenced by a

potential function U : R3 → R
1.

(a) Describe the translational kinematics of the particle on the surface in
terms of two kinematics parameters.

(b) What is the Lagrangian function L : TM → R
1 defined on the tangent

bundle of the configuration manifold?
(c) What are the Euler–Lagrange equations that describe the dynamical flow

on TM?
(d) What is the Hamiltonian function H : T∗M → R

1?
(e) What are Hamilton’s equations that describe the dynamical flow on T∗M?

8.9. A particle of massm is constrained to translate on a line embedded in R
3

described by the manifold M =
{
x ∈ R

3 : x1 − x2 = 0, x1 + x2 − x3 = 0
}
.

The particle is influenced by a potential function U : R3 → R
1.

(a) Describe the translational kinematics of the particle on the line in terms
of one kinematics parameter.

(b) What is the Lagrangian function L : TM → R
1 defined on the tangent

bundle of the configuration manifold?
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(c) What are the Euler–Lagrange equations that describe the dynamical flow
on TM?

(d) What is the Hamiltonian function H : T∗M → R
1?

(e) What are Hamilton’s equations that describe the dynamical flow on T∗M?

8.10. A particle of mass m is constrained to translate on a parabolic curve
embedded in R

3 that is described by the manifold
M =

{
x ∈ R

3 : x1 − x2 = 0, (x1)
2 + (x2)

2 − x3 = 0
}
. The particle is influ-

enced by a potential function U : R3 → R
1.

(a) Describe the translational kinematics of the particle on the curve in terms
of one kinematics parameter.

(b) What is the Lagrangian function L : TM → R
1 defined on the tangent

bundle of the configuration manifold?
(c) What are the Euler–Lagrange equations that describe the dynamical flow

on TM?
(d) What is the Hamiltonian function H : T∗M → R

1?
(e) What are Hamilton’s equations that describe the dynamical flow on T∗M?

8.11. Let R > 0 and L > 0. A particle of mass m is constrained to
translate on a helical curve embedded in R

3 described by the manifold
M =

{
x ∈ R

3 : x1 = R cos
(
2πx3

L

)
, x2 = R sin

(
2πx3

L

)}
. The particle is influ-

enced by a potential function U : R3 → R
1.

(a) Describe the translational kinematics of the particle on the curve in terms
of one kinematics parameter.

(b) What is the Lagrangian function L : TM → R
1 defined on the tangent

bundle of the configuration manifold?
(c) What are the Euler–Lagrange equations that describe the dynamical flow

on TM?
(d) What is the Hamiltonian function H : T∗M → R

1?
(e) What are Hamilton’s equations that describe the dynamical flow on T∗M?

8.12. Let a > 0, b > 0. A particle of mass m is constrained to translate
on an elliptical curve embedded in R

2 that is given by M = {q ∈ R
2 :

{ q1
a }2 + { q2

b }2 − 1 = 0}. The particle is influenced by a potential function
U : R2 → R

1.

(a) Describe the translational kinematics of the particle on the curve in terms
of one kinematics parameter.

(b) What is the Lagrangian function L : TM → R
1 defined on the tangent

bundle of the configuration manifold?
(c) What are the Euler–Lagrange equations that describe the dynamical flow

on TM?
(d) What is the Hamiltonian function H : T∗M → R

1?
(e) What are Hamilton’s equations that describe the dynamical flow on T∗M?
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8.13. Let a > 0, b > 0, c > 0. A particle of mass m is constrained to translate
on an ellipsoidal surface given by M = {q ∈ R

3 : { q1
a }2+{ q2

b }2+{ q3
c }2−1 =

0}. The particle is influenced by a potential function U : R3 → R
1.

(a) Describe the translational kinematics of the particle on the surface in
terms of two kinematics parameters.

(b) What is the Lagrangian function L : TM → R
1 defined on the tangent

bundle of the configuration manifold?
(c) What are the Euler–Lagrange equations that describe the dynamical flow

on TM?
(d) What is the Hamiltonian function H : T∗M → R

1?
(e) What are Hamilton’s equations that describe the dynamical flow on T∗M?

8.14. Consider the kinematics of a rigid rod that is constrained to translate
and rotate within a fixed plane described by a two-dimensional Euclidean
frame. Let A, B, and C denote three fixed points on the rigid rod: point A of
the rigid rod is constrained to translate, without friction, along one axis of
the Euclidean frame while point B of the rigid rod is constrained to translate,
without friction, along the other axis of the Euclidean frame. The distance
between points A and B is denoted by L, while the distance between point
B and C is denoted by D. As previously, this mechanism is referred to as the
Trammel of Archimedes [4] . Assume point C on the rigid rod is the center of
mass of the rod. The mass of the rigid rod is m and the scalar inertia of the
rigid rod, defined with respect to a body-fixed frame whose origin is located
at the center of mass of the rod, is J .

(a) Let (x1, x2) ∈ R
2 denote the position vector of the center of mass of the

rigid rod in the Euclidean frame. What is the holonomic constraint that
this position vector must satisfy? What is the configuration manifold M
embedded in R

2? Show that this mechanism has one degree of freedom.
Describe the geometry of the configuration manifold M .

(b) Describe the kinematics relationship of the center of mass of the rod, by
expressing the time derivative of the configuration in terms of the scalar
angular velocity of the rigid rod and the configuration.

(c) Ignoring potential energy, what is the modified Lagrangian function L :
TM → R

1 of the translating and rotating rigid rod taking into account
the constraints?

(d) What are the Euler–Lagrange equations that describe the dynamical flow
on TM?

(e) What is the Hamiltonian function H : T∗M → R
1?

(f) What are Hamilton’s equations that describe the dynamical flow on T∗M?
(g) What are conserved quantities for the dynamical flow on the tangent

bundle TM?

8.15. Consider the dynamics of a rigid body that is constrained to planar ro-
tational motion in R

2. Assume R ∈ SO(2), where the configuration manifold
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is taken as the Lie group SO(2). Thus, the rigid body attitude is R ∈ SO(2)
and the rotational kinematics are given by

Ṙ = RSω,

for some scalar angular velocity ω ∈ R
1. Assume the modified Lagrangian

L̃(R,ω) = 1
2Jω

2 −U(R), where J is the scalar moment of inertia of the rigid
body about its axis of rotation.

(a) Use the abstract results of this chapter to obtain an explicit form for
the Euler–Lagrange equations that describe the dynamical flow on the
tangent bundle TSO(2).

(b) Use the abstract results of this chapter to obtain an explicit form for
Hamilton’s equations that describe the dynamical flow on the cotangent
bundle T∗SO(2).

8.16. Consider the dynamics of a rigid body that is constrained to planar
translation and rotational motion in R

2. Assume (R, x) ∈ SE(2), where the
configuration manifold is taken as the Lie group SE(2). Thus, the rigid body
attitude is R ∈ SO(2) and the position vector of the center of mass of the
rigid body in the inertial frame is x ∈ R

2. The rotational kinematics are
given by

Ṙ = RSω,

for some scalar angular velocity ω ∈ R
1. Assume the modified Lagrangian

L̃(R, x, ω, ẋ) = 1
2Jω

2 + 1
2m ‖ẋ‖2 − U(R, x), where J is the scalar moment of

inertia of the rigid body about its axis of rotation and m is the mass of the
rigid body.

(a) Use the abstract results of this chapter to obtain an explicit form for
the Euler–Lagrange equations that describe the dynamical flow on the
tangent bundle TSE(2).

(b) Use the abstract results of this chapter to obtain an explicit form for
Hamilton’s equations that describe the dynamical flow on the cotangent
bundle T∗SE(2).

8.17. Consider n particles, of mass mi, i = 1, . . . , n, each constrained to
translate on manifolds Mi, i = 1, . . . , n, embedded in R

3. For i = 1, . . . , n, let
xi ∈ R

3 denote the position vector of the i-th particle in an inertial Euclidean
frame. Assume the existence of an orthogonal projection map Pi(xi) : R

3 →
Txi

Mi for each xi ∈ Mi, i = 1, . . . , n. The configuration manifold is the
product manifold M = M1 × . . .Mn and the Lagrangian function L : TM →
R

1 is given by L(x, ẋ) =
∑n

i=1 mi ‖ẋi‖2 − U(x).

(a) Show that the Euler–Lagrange equations are given by

miẍi −miṖi(xi)ẋi + Pi(xi)
∂U(x)

∂xi
= 0, i = 1, . . . , n,

and they define a dynamical flow on the tangent bundle TM .
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(b) What is the Hamiltonian function H : T∗M → R
1?

(c) Determine Hamilton’s equations that define a dynamical flow on the
cotangent bundle T∗M .

(d) Suppose the above Lagrangian function is globally defined on TR3n. Show
that the Euler–Lagrange equations above can be extended to define a
Lagrangian vector field on TR3n. Show that Hamilton’s equations above
can be extended to define a Hamiltonian vector field on T∗

R
3n.

8.18. In each of the following, assume that the vector b ∈ S2 is nonzero.

(a) Show that Q = {q ∈ R
3 : bT q = 0, ‖q‖2 = 1} is diffeomorphic to S1 and

it is a homogeneous manifold where the associated Lie group is G = {R ∈
SO(3) : Rb = b}.

(b) Show that Q = {q ∈ R
3 : q = RT b, R ∈ SO(3)} is diffeomorphic to

S2 and it is a homogeneous manifold where the associated Lie group is
G = SO(3).

(c) Show that Q = {(q, x) ∈ R
3×R

3 : bT q = 0, ‖q‖2 = 1} is diffeomorphic to
S1×R

3 and it is a homogeneous manifold where the associated Lie group
is G = {(R, x) ∈ SE(3) : Rb = b}.

(d) Show that Q = {(q, x) ∈ R
3 × R

3 : ‖q‖2 = 1} is diffeomorphic to S2 × R
3

and it is a homogeneous manifold where the associated Lie group is SE(3).

(e) Show that Q = {(q, x) ∈ R
3 × R

3 : xT q = 0, ‖q‖2 = 1, ‖x‖2 = 1} is
diffeomorphic to S1 × S2 and it is a homogeneous manifold where the
associated Lie group is G = {(R, x) ∈ SE(3) : x ∈ S2, Rx = x}.

8.19. Consider a Lagrangian function L : TQ → R
1 where Q = {q ∈ R

3 :

bT q = 0, ‖q‖2 = 1} is a homogeneous manifold and L(q, q̇) = 1
2J ‖q̇‖2−U(q).

Assume J > 0.

(a) What are the Euler–Lagrange equations that describe the dynamical flow
on the tangent bundle of this homogeneous manifold?

(b) What are Hamilton’s equations that describe the dynamical flow on the
cotangent bundle of this homogeneous manifold?

8.20. Consider a Lagrangian function L : TQ → R
1 where Q = {q ∈ R

3 : q =
RT b, R ∈ SO(3)} is a homogeneous manifold and L(q, q̇) = 1

2 q̇
TJq̇ − U(q).

Assume J ∈ R
3×3 is symmetric and positive-definite.

(a) What are the Euler–Lagrange equations that describe the dynamical flow
on the tangent bundle of this homogeneous manifold?

(b) What are Hamilton’s equations that describe the dynamical flow on the
cotangent bundle of this homogeneous manifold?

8.21. Consider a Lagrangian function L : TQ → R
1 where Q = {(q, x) ∈

R
3 × R

3 : bT q = 0, ‖q‖2 = 1} is a homogeneous manifold and L(q, x, q̇, ẋ) =
1
2J ‖q̇‖2 + 1

2m ‖ẋ‖2 − U(q, x). Assume J > 0, m > 0.
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(a) What are the Euler–Lagrange equations that describe the dynamical flow
on the tangent bundle of this homogeneous manifold?

(b) What are Hamilton’s equations that describe the dynamical flow on the
cotangent bundle of this homogeneous manifold?

8.22. Consider a Lagrangian function L : TQ → R
1 where Q = {(q, x) ∈

R
3 × R

3 : ‖q‖2 = 1} is a homogeneous manifold and L(q, x, q̇, ẋ) = 1
2 q̇

TJq̇ +
1
2m ‖ẋ‖2−U(q, x). Assume J ∈ R

3×3 is symmetric and positive-definite, and
m > 0.

(a) What are the Euler–Lagrange equations that describe the dynamical flow
on the tangent bundle of this homogeneous manifold?

(b) What are Hamilton’s equations that describe the dynamical flow on the
cotangent bundle of this homogeneous manifold?

8.23. Consider a Lagrangian function L : TQ → R
1 where Q = {(q, x) ∈

R
3 × R

3 : bT q = 0, ‖q‖2 = 1, ‖x‖2 = 1} is a homogeneous manifold and

L(q, x, q̇, ẋ) = 1
2J ‖q̇‖2 + 1

2m ‖ẋ‖2 − U(q, x). Assume J > 0, m > 0.

(a) What are the Euler–Lagrange equations that describe the dynamical flow
on the tangent bundle of this homogeneous manifold?

(b) What are Hamilton’s equations that describe the dynamical flow on the
cotangent bundle of this homogeneous manifold?

8.24. Consider n particles, of mass mi, i = 1, . . . , n, where each particle is
constrained to translate so that its inertial position vector xi ∈ R

3 lies in a
two-dimensional linear manifold Mi = {xi ∈ R

3 : ai · xi = di}, embedded in
R

3 for i = 1, . . . , n. We assume ai ∈ R
3 satisfies ‖ai‖ = 1 for i = 1, . . . , n.

The particles are influenced by a potential function U : (R3)n → R
1.

(a) What are the orthogonal projection maps Pi(xi) : R
3 → Txi

Mi, i =
1, . . . , n?

(b) What is the Lagrangian function L : TM → R
1 defined on the tangent

bundle of the configuration manifold?
(c) What are the Euler–Lagrange equations that describe the dynamical flow

on TM?
(d) What is the Hamiltonian function H : T∗M → R

1?
(e) What are Hamilton’s equations that describe the dynamical flow on T∗M?
(f) Suppose the above Lagrangian function is globally defined on TR3n. Show

that the Euler–Lagrange equations above can be extended to define a
Lagrangian vector field on TR3n. Show that Hamilton’s equations above
can be extended to define a Hamiltonian vector field on T∗

R
3n.

8.25. Consider n particles, of mass mi, i = 1, . . . , n, where each particle is
constrained to translate so that its inertial position vector xi ∈ R

3 lies in
a one-dimensional linear manifold Mi = {xi ∈ R

3 : ai · xi = di, bi · xi =
ei}, embedded in R

3 for i = 1, . . . , n. We assume ai, bi ∈ R
3 are linearly

independent and di, ei ∈ R
1 for i = 1, . . . , n. The particles are influenced by

a potential function U : (R3)n → R
1.
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(a) What are the orthogonal projection maps Pi(xi) : R
3 → Txi

Mi, i =
1, . . . , n?

(b) What is the Lagrangian function L : TM → R
1 defined on the tangent

bundle of the configuration manifold?
(c) What are the Euler–Lagrange equations that describe the dynamical flow

on TM?
(d) What is the Hamiltonian function H : T∗M → R

1?
(e) What are Hamilton’s equations that describe the dynamical flow on T∗M?
(f) Suppose the above Lagrangian function is globally defined on TR3n. Show

that the Euler–Lagrange equations above can be extended to define a
Lagrangian vector field on TR3n. Show that Hamilton’s equations above
can be extended to define a Hamiltonian vector field on T∗

R
3n.

8.26. Consider n particles, of mass mi, i = 1, . . . , n, where each particle
is constrained to translate in a circle in a fixed plane in R

3. The iner-
tial position vector of the i-th particle, in an inertial Euclidean frame, is

xi ∈ Mi =
{
xi ∈ R

3 : aTi xi = bi, ‖xi‖2 = r2i

}
, i = 1, . . . , n; here the vectors

a1, . . . , an ∈ R
3 are distinct, nonzero vectors, and b1, . . . , bn, r1, . . . , rn are

real scalars. The vector x = (x1, . . . , xn) ∈ M = M1 × · · · × Mn so that
M is the configuration manifold. The particles are influenced by a potential
function U : M → R

1.

(a) What are the orthogonal projection maps Pi(xi) : R
3 → Txi

Mi, i =
1, . . . , n?

(b) What is the Lagrangian function L : TM → R
1 defined on the tangent

bundle of the configuration manifold?
(c) What are the Euler–Lagrange equations that describe the dynamical flow

on TM?
(d) What is the Hamiltonian function H : T∗M → R

1?
(e) What are the Hamilton’s equations that define a dynamical flow on T∗M?
(f) Suppose the above Lagrangian function is globally defined on TR3n. Show

that the Euler–Lagrange equations above can be extended to define a
Lagrangian vector field on TR3n. Show that Hamilton’s equations above
can be extended to define a Hamiltonian vector field on T∗

R
3n.

8.27. Consider n rigid bodies, each with standard moment of inertia Ji ∈
R

3×3 defined with respect to a body-fixed frame whose origin is located at the
center of mass of the body for i = 1, . . . , n. The rigid bodies can only rotate in
R

3, with their motion influenced by a potential function U : (SO(3))n → R
1.

(a) What is the Lagrangian function L : T(SO(3))n → R
1 defined on the

tangent bundle of the configuration manifold?
(b) What are the Euler–Lagrange equations that define a dynamical flow on

T(SO(3))n?
(c) What is the Hamiltonian function H : T∗(SO(3))n → R

1?
(d) What are the Hamilton’s equations that define a dynamical flow on

T∗(SO(3))n?
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(e) Suppose the above Lagrangian function is globally defined on T(R3×3)n.
Show that the Euler–Lagrange equations above can be extended to define
a Lagrangian vector field on T(R3×3)n. Show that Hamilton’s equations
above can be extended to define a Hamiltonian vector field on T∗(R3×3)n.

8.28. Consider n rigid bodies, each with mass mi and standard moment of
inertia Ji ∈ R

3×3 defined with respect to a body-fixed frame whose origin is
located at the center of mass of the body for i = 1, . . . , n. The rigid bodies
can translate and rotate in R

3, with their motion influenced by a potential
function U : (SE(3))n → R

1.

(a) What is the Lagrangian function L : T(SE(3))n → R
1 defined on the

tangent bundle of the configuration manifold?
(b) What are the Euler–Lagrange equations that define a dynamical flow on

T(SE(3))n?
(c) What is the Hamiltonian function H : T∗(SE(3))n → R

1?
(d) What are the Hamilton’s equations that define a dynamical flow on

T∗(SE(3))n?
(e) Suppose the above Lagrangian function is globally defined on T(R3×3 ×

R
3)n. Show that the Euler–Lagrange equations above can be extended to

define a Lagrangian vector field on T(R3×3×R
3)n. Show that Hamilton’s

equations above can be extended to define a Hamiltonian vector field on
T∗(R3×3 × R

3)n

8.29. Let G be a Lie group. Consider a Lagrangian system defined on the con-
figuration manifold given by the product G×G with hyperregular Lagrangian
function L : T(G× G) → R

1.

(a) What are the Euler–Lagrange equations for the dynamical flow of this
abstract Lagrangian system on T(G× G)?

(b) What is the Hamiltonian function H : T∗(G× G) → R
1?

(c) What are the Hamilton’s equations for the dynamical flow of this abstract
Lagrangian system on T∗(G× G)?

(d) Show that the Hamiltonian is a conserved quantity of the dynamical flow
on T(G× G).

(e) What conditions do the equilibrium solutions of the dynamical flow on
T(G× G) satisfy?

8.30. Let G be a Lie group. Consider a Lagrangian system defined on the
configuration manifold given by the product G×G with separable Lagrangian
function L : T(G× G) → R given by

L(g1, g2, ξ1, ξ2) = L1(g1, g2, ξ1) + L2(g1, g2, ξ2),

where each Li : TG → R
1, i = 1, 2, is hyperregular.

(a) What are the Euler–Lagrange equations for the dynamical flow of this
abstract Lagrangian system on T(G× G)?
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(b) What are the Hamilton’s equations for the dynamical flow of this abstract
Lagrangian system on T∗(G× G)?

(c) What is the Hamiltonian function H : T∗(G× G) → R
1?

(d) Show that the Hamiltonian is a conserved quantity of the dynamical flow
on T(G× G).

(e) What conditions do the equilibrium solutions of the dynamical flow on
T(G× G) satisfy?

8.31. Let Q be a homogeneous manifold associated with the Lie group G.
Consider a Lagrangian system defined on the configuration manifold given by
the product Q×Q with hyperregular Lagrangian function L : T(Q×Q) → R

1.

(a) What are the Euler–Lagrange equations for this abstract Lagrangian sys-
tem on T(Q× Q)?

(b) What is the Hamiltonian function H : T∗(Q× Q) → R
1?

(c) What are the Hamilton’s equations for this abstract system on T∗(Q×Q)?
(d) Show that the Hamiltonian is a conserved quantity of the dynamical flow

on T(Q× Q).
(e) What conditions do the equilibrium solutions of the dynamical flow on

T(Q× Q) satisfy?



Chapter 9

Rigid and Multi-Body Systems

Although the prior chapters have illustrated the theoretical and analytical
benefits of using the geometric formulation that has been introduced, the
benefits of this approach are even more apparent when used to study the dy-
namics of an interconnection of multiple bodies, that is multi-body systems.
This chapter considers the detailed dynamics of several examples of rigid
body and multi-body systems. In each case, a physical mechanical system
is described and viewed from the perspective of geometric mechanics; the
configuration manifold is identified and equations of motion are obtained.
Euler–Lagrange equations, defined on the tangent bundle of the configura-
tion manifold, and Hamilton’s equations, defined on the cotangent bundle of
the configuration manifold, are obtained. Conserved quantities are identified
for the dynamical flow. Where appropriate, equilibrium solutions are deter-
mined. Linear vector fields are described that approximate the dynamical
flow in a neighborhood of an equilibrium solution.

As in prior chapters, multi-body systems can consist of connections of
lumped mass components and rigid body components. Lumped mass com-
ponents are massless rigid links and concentrated mass elements; rigid body
components are rigid but with spatially distributed mass. Typically, lumped
mass components are used to simplify the resulting physics. The examples
considered in the prior chapters, and the examples subsequently considered
in this chapter, include different categories of assumptions about multi-body
systems.

There is much published literature on rigid and multi-body systems. The
references [3, 86] provide a traditional treatment of multi-body dynamics
and demonstrate the extreme complexity that arises in both describing and
analyzing multi-body dynamics. In contrast to much of the existing literature
on rigid and multi-body systems, the following examples, developed from the
perspective of geometric mechanics, illustrate an alternative approach that
makes important use of the geometry of the identified configuration manifold

© Springer International Publishing AG 2018
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x

rq L

Fig. 9.1 Two masses connected by a rigid link with ends constrained to slide along
a straight line and a circle

as an embedded manifold. This approach leads to novel formulations of the
equations of motion that provide a basis for analyzing the dynamics globally
on the configuration manifold.

9.1 Dynamics of a Planar Mechanism

A planar mechanism consists of two masses connected by a massless rigid link.
One mass element is constrained to slide, without friction, along a straight
line; the other mass element is constrained to slide, without friction, along
a circle. For simplicity, assume that the straight line and the circle lie in a
common vertical plane, with the straight line horizontal and passing through
the center of the circle. The two mass elements are connected by a rigid,
massless link. If the mass element constrained to the circle is made to rotate
at a constant rate, this is referred to as a slider-crank mechanism since the
end of the other mass element undergoes periodic motion along the straight
line; the mechanism converts rotational motion of the first mass into linear
or translational motion of the other mass. Here, we study the dynamics of
the mechanism, under the action of uniform, constant gravity; an external
force acts on the mass constrained to move on the circle and an external force
acts on the mass contained to slide along a straight line. This mechanism is
illustrated in Figure 9.1.

A two-dimensional inertial frame in the fixed vertical plane is constructed
with the first axis along the horizontal straight line and the second axis
vertical; the origin of the frame is located at the center of the circle. As
usual, e1, e2 denote the standard basis for R2.

Let m1 denote the mass of the element that slides on the circle; let m2

denote the mass of the element that slides on the straight line. Also, L denotes
the length of the link and the radius of the circle is r. We assume that L > r.

Let q ∈ S1 denote the direction vector of the mass element that moves on
the circle in the inertial frame, and let x ∈ R

1 denote the position of the mass
element that moves on the straight line in the inertial frame. The geometry of
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the mechanism implies that the position of the sliding element always satisfies
L− r ≤ x ≤ L+ r or −L− r ≤ x ≤ −L+ r. Since these regions are disjoint,
there are two distinct regions of operation. In the subsequent analysis, we
study only the region where L− r ≤ x ≤ L+ r.

In addition, the two mass elements satisfy the constraint defined by the
length of the rigid link, namely

‖rq − xe1‖2 − L2 = 0,

where e1 = [1, 0]T ∈ R
2.

The configuration manifold is given by

M = {(q, x) ∈ S1 × R
1 : ‖rq − xe1‖2 − L2 = 0, L− r ≤ x ≤ L+ r},

and the tangent plane at (q, x) ∈ M is

T(q,x)M =
{
(q̇, ẋ) ∈ T(q,x)(S

1 × R
1) : (rq − xe1)

T (rq̇ − ẋe1) = 0
}
.

Thus, the dimension of the configuration manifold is one and the mechanism
has one degree of freedom. The dynamics of the connected mass elements
constrained to slide along a straight line and circle evolve on the tangent
bundle of the configuration manifold TM .

It can be shown that the manifolds M and S1 are diffeomorphic, so that
we could also choose the latter as the configuration manifold. We use M
as the configuration manifold since this choice leads to slightly less compli-
cated expressions. In any event, the dynamics of the one degree of freedom
mechanism are surprising complicated.

As shown from the kinematics analysis of this mechanism in Chapter 2,
there exists an ω ∈ R

1 such that the kinematics of the mechanism are given
by

[
q̇
ẋ

]
= ω

[
I2×2
−rxeT1

(reT1 q−x)

]
Sq. (9.1)

We also assume that external forces act on the two mass elements. An
external force with magnitude denoted by F1 ∈ R

1 acts on the mass element
constrained to move on the fixed circle. The direction of this external force is
assumed to lie in the tangent plane TqS

1; consequently this force is F1Sq ∈ R
2.

An external force with magnitude denoted by F2 ∈ R
1 acts on the mass

element constrained to move on the fixed straight line. This external force is
F2e1 ∈ R

2.
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9.1.1 Euler–Lagrange Equations

The modified Lagrangian function L̃ : TM → R
1 is the sum of the kinetic

energy of the mass elements minus the gravitational potential energy. It can
be expressed as

L̃(q, x, ω, ẋ) =
1

2
m1r

2ω2 +
1

2
m2ẋ

2 −m1rge
T
2 q,

where e2 = [0, 1]T ∈ R
2. Using the kinematic expression for ẋ, the modified

Lagrangian function can be written as

L̃(q, x, ω) =
1

2
{m1 +m2N(q, x)} r2ω2 −m1rge

T
2 q,

where

N(q, x) =
(xeT1 Sq)

2

(reT1 q − x)2
.

We obtain the Euler–Lagrange equations from the Lagrange–d’Alembert
principle and the expressions for the Lagrangian function and the virtual
work done by the external forces. The infinitesimal variation of the action
integral is

δG =

∫ tf

t0

[
{m1 +m2N(q, x)}r2ωδω

+
1

2
m2r

2ω2

{
∂N(q, x)

∂q
+

∂N(q, x)

∂x

∂x

∂q

}T

δq −m1rge
T
2 δq

]
dt.

The virtual work done by the two external forces is

∫ tf

t0

{F1q
TST rδq + F2δx} dt =

∫ tf

t0

{
F1rSq + F2

∂x

∂q

}T

δq dt.

In the above expressions, it is easy to show that

∂x

∂q
=

rxe1
(x− reT1 q)

.

The partial derivatives of N(q, x) can also be determined to obtain

∂N(q, x)

∂q
+

∂N(q, x)

∂x

∂x

∂q
=

1

(x− reT1 q)
4

[
2r(xeT1 Sq)

2(x− 2reT1 q)
−2x2eT1 Sq(x− reT1 q)

2

]
.
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Thus, the Lagrange–d’Alembert principle gives

∫ tf

t0

[
{m1 +m2N(q, x)}r2ωδω +

1

2
m2r

2ω2
{∂N(q, x)

∂q
+

∂N(q, x)

∂x

∂x

∂q

}T
δq

−m1rge
T
2 δq

]
dt = −

∫ tf

t0

{
F1rSq + F2

∂x

∂q

}T

δq dt,

for all infinitesimal variations δq : [t0, tf ] → TqS
1 that vanish at the end-

points, δq(t0) = δq(tf ) = 0.
We use the expressions for the infinitesimal variations in S1,

δq = γSq,

δω = γ̇,

for differentiable curves γ : [t0, tf ] → R
2 satisfying γ(t0) = γ(tf ) = 0. Sub-

stitute these into the expression for the variational principle. Integrating the
result by parts and using the fundamental lemma of the calculus of variations,
described in Appendix A, leads to the dynamical equations, which consist of
the rotational kinematics given by (9.1), and the Euler–Lagrange equation

{m1 +m2N(q, x)} r2ω̇ +
1

2
m2r

2ω2

(
∂N(q, x)

∂q
+

∂N(q, x)

∂x

∂x

∂q

)T

Sq

+m1rge
T
2 Sq = F1r + F2

(
∂x

∂q

)T

Sq. (9.2)

The dynamics of the mechanism are described by the differential equa-
tions (9.1) and (9.2); these equations describe the dynamics of the mech-
anism expressed in terms of (q, x, q̇, ẋ) ∈ TM on the tangent bundle of the
configuration manifold M .

9.1.2 Hamilton’s Equations

Hamilton’s equations are determined by introducing the Legendre transfor-
mation

π =
∂L̃(q, x, ω)

∂ω
= (m1 +m2N(q, x))r2ω.

Here, π ∈ T∗
(q,x)M is conjugate to ω ∈ T(q,x)M . The modified Hamiltonian

function H̃ : T∗M → R
1 is

H̃(q, x, π) =
1

2

π2

(m1 +m2N(q, x))r2
+m1rge

T
2 q.
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Thus, from (4.24) and (4.25), Hamilton’s equations are given by

q̇ =
πSq

(m1 +m2N(q, x))r2
, (9.3)

π̇ = −1

2

m2π
2

(m1 +m2N(q, x))2r2
qTS

(
∂N(q, x)

∂q
+

∂N(q, x)

∂x

∂x

∂q

)
+m1rgq

TSe2

+ F1r + F2

(
∂x

∂q

)T

Sq. (9.4)

These differential equations, together with (9.1), describe the Hamiltonian
flow of the mechanism in terms of (q, x, q̇, ẋ) ∈ T∗M on the cotangent bundle
of the configuration manifold M .

9.1.3 Conservation Properties

The Hamiltonian given by

H =
1

2
m1r

2ω2 +
1

2
m2ẋ

2 +m1rge
T
2 q

which coincides with the total energy E in this case is constant along each
solution of the dynamical flow.

9.1.4 Equilibrium Properties

We consider the case where the external forces vanish, F1 = F2 = 0. The
set of equilibrium solutions of the system occur when the mass elements are
stationary, and the moment due to gravity vanishes. The condition for an
equilibrium configuration is given by

eT2 Sq = 0.

Thus, there are two equilibrium configurations in M , namely (−e2,
√
L2 − r2)

and (e2,
√
L2 − r2). Furthermore, the two equilibrium solutions in TM are

(−e2,
√
L2 − r2, 0, 0) and (e2,

√
L2 − r2, 0, 0).

We examine the equilibrium solution (−e2,
√
L2 − r2, 0, 0) ∈ TM , follow-

ing the development in Appendix B. Equation (9.2) can be linearized to
obtain the linear differential equation

(m1 +m2)r
2ξ̈1 +m1gξ1 = 0,

which is defined on the two-dimensional tangent space of TM at the equilib-
rium point (−e2,

√
L2 − r2, 0, 0) ∈ TM . This linear vector field approximates

the Lagrangian vector field of the planar mechanism in a neighborhood of this
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equilibrium solution. The eigenvalues are purely imaginary. This equilibrium
solution can be shown to be stable since the total energy has a strict local
minimum at the equilibrium with zero time derivative, thereby guaranteeing
stability of the equilibrium solution.

A similar development can be carried out for the second equilibrium solu-
tion given by (e2,

√
L2 − r2, 0, 0) ∈ TM . Equation(9.2) can be linearized to

obtain the linear differential equation

(m1 +m2)r
2ξ̈1 −m1gξ1 = 0,

which is defined on the two-dimensional tangent space of TM at the equilib-
rium point (e2,

√
L2 − r2, 0, 0) ∈ TM . This linear vector field approximates

the Lagrangian vector field of the planar mechanism in a neighborhood of this
equilibrium solution. This equilibrium solution can be shown to be unstable
since the linearized differential equation has a positive eigenvalue.

9.2 Dynamics of a Horizontally Rotating Pendulum
on a Cart

A planar pendulum can rotate in a fixed horizontal plane about a fixed fric-
tionless joint whose vertical axis goes through the center of mass of a cart,
viewed as a flat plate, that can translate without friction in a horizontal plane.
The planar pendulum is assumed to be rigid with its mass concentrated at
the end of the pendulum. Since the axis of the pendulum goes through the
center of mass of the cart, the pendulum exerts no moment on the cart; hence
we assume the cart translates without rotating.

A two-dimensional inertial Euclidean frame lies in the horizontal plane
of motion of the cart. The position vector of the center of mass of the cart
in the horizontal inertial frame is given by x ∈ R

2 and the attitude vector
of the planar pendulum in this inertial frame is given by q ∈ S1. Thus, the
configuration is described by (x, q) ∈ R

2 ×S1 and the configuration manifold
is R2 × S1. There are three degrees of freedom. A schematic of a horizontally
rotating planar pendulum on a cart is shown in Figure 9.2.

The length of the planar pendulum is L; the mass of the pendulum, con-
centrated at its end, is m; the mass of the cart is M .

9.2.1 Euler–Lagrange Equations

The position vector of the pendulum mass and the center of mass of the cart
are x + Lq ∈ R

2 and x ∈ R
2, respectively, in the inertial frame. Thus, the
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q ∈ S1

x ∈ R2

Fig. 9.2 Horizontally rotating pendulum on a cart

velocity vector of the pendulum mass is ẋ+ Lq̇ ∈ R
2 and the velocity vector

of the center of mass of the cart is ẋ ∈ R
2.

The Lagrangian function L : T(R2 × S1) → R
1 is the sum of the kinetic

energy of the cart and the kinetic energy of the pendulum mass; no forces act
on the pendulum or the cart. Thus, the Lagrangian function L : T(R2×S1) →
R

1 is

L(x, q, ẋ, q̇) =
1

2
M ‖ẋ‖2 + 1

2
m ‖ẋ+ Lq̇‖2

=
1

2
(M +m) ‖ẋ‖2 +mLẋT q̇ +

1

2
mL2 ‖q̇‖2 .

It is convenient to introduce the angular velocity of the horizontal pendu-
lum, ω ∈ R

1. The rotational kinematics are

q̇ = ωSq, (9.5)

where S is the 2×2 skew-symmetric matrix used in prior chapters. Thus, the
modified Lagrangian can be expressed in terms of the angular velocity of the
pendulum as

L̃(x, q, ẋ, ω) =
1

2
(M +m) ‖ẋ‖2 +mLẋTSqω +

1

2
mL2ω2.

The Euler–Lagrange equations can be obtained using Hamilton’s principle:

δG =

∫ tf

t0

[
{(M +m)ẋ+mLSqω}T δẋ

+
{
mLẋTSq +mL2ω

}
δω +

{
mLẋTSω

}
δq

]
dt = 0,

for all infinitesimal variations δx : [t0, tf ] → TxR
2 and δq : [t0, tf ] → TqS

1

that vanish at the endpoints, δx(t0) = δx(tf ) = 0 and δq(t0) = δq(tf ) = 0.
We use the expressions for the infinitesimal variations in S1 in Chapter 4,

δq = γSq,

δω = γ̇,
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for differentiable curves γ : [t0, tf ] → R
2 that vanish at the endpoints, γ(t0) =

γ(tf ) = 0. The infinitesimal variations in R
2 are differentiable functions δx :

[t0, tf ] → R
2 that vanish at the endpoints, δx(t0) = δx(tf ) = 0.

Integrating by parts and using the fundamental lemma of the calculus of
variations in Appendix A leads to the Euler–Lagrange equations

d

dt
{(M +m)ẋ+mLSqω} = 0,

d

dt

{
mLẋTSq +mL2ω

}
+mLẋT qω = 0,

which can be expanded to obtain the equations in matrix-vector form

[
(M +m)I2×2 mLSq

mLqTST mL2

] [
ẍ
ω̇

]
+

[−mLqω2

0

]
=

[
0
0

]
. (9.6)

Thus, the Euler–Lagrange equations (9.6) and the kinematics (9.5) de-
scribe the dynamical flow of the horizontal pendulum on a cart in terms
of (x, q, ẋ, q̇) ∈ T(R2 × S1) on the tangent bundle of R2 × S1.

9.2.2 Hamilton’s Equations

Hamilton’s equations on the cotangent bundle T∗(R2 × S1) are obtained by
defining the momentum according to the Legendre transformation, which is
given by

[
p
π

]
=

[
∂L̃(x,q,ẋ,ω)

∂ẋ
∂L̃(x,q,ẋ,ω)

∂ω

]
=

[
(M +m)I2×2 mLSq

mLqTST mL2

] [
ẋ
ω

]
.

Here, the momenta (p, π) ∈ T∗
(x,q)(R

2 × S1) are conjugate to (ω, ẋ) ∈
T(x,q)(R

2 × S1). Consequently,

[
ẋ
ω

]
=

[
M I

11(q) M
I
12(q)

M I
21(q) M I

22

] [
p
π

]
,

where

[
M I

11(q) M
I
12(q)

M I
21(q) M I

22

]
=

[
(M +m)I2×2 mLSq

mLqTST mL2

]−1

=

[
MI2×2+mSqqT ST

M(M+m) − Sq
ML

−qT ST

ML
M+m
MmL2

]
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is the inverse of the indicated 3× 3 partitioned matrix. The modified Hamil-
tonian function H̃ : T∗(R2 × S1) → R

1 is

H̃(x, q, p, π) =
1

2

[
p
π

]T [
M I

11(q) M
I
12(q)

M I
21(q) M I

22

] [
p
π

]
.

Thus, Hamilton’s equations for the horizontal pendulum on a cart are

[
ẋ
q̇

]
=

[
M I

11(q) M I
12(q)

SqM I
21(q) SqM I

22

] [
p
π

]
, (9.7)

and

ṗ = 0, (9.8)

π̇ =

(
m

M(M +m)
qTST p− 1

ML
π

)
qT p. (9.9)

The Hamiltonian dynamical flow for the horizontal pendulum on a cart is
described by equations (9.7), (9.8), and (9.9), in terms of (x, q, p, π) ∈ T∗(R2×
S1) on the cotangent bundle of (R2 × S1).

9.2.3 Conservation Properties

The Hamiltonian of the horizontal pendulum and the cart, which coincides
with the total energy E in this case, is given by

H =
1

2
(M +m) ‖ẋ‖2 +mLẋTSqω +

1

2
mL2ω2,

and it is constant along each solution of the dynamical flow.
Hamilton’s equations demonstrate that the translational momentum of the

system is conserved. That is, the translational momentum

p = (M +m)ẋ+mLSqω

is constant along each solution of the dynamical flow. This can be viewed as
a consequence of Noether’s theorem applied to the translational invariance
of the Lagrangian function.

9.2.4 Equilibrium Properties

The equilibrium solutions of the horizontal pendulum on a cart are easily
determined. It is clear that any configuration of the system is an equilibrium
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solution so long as the velocity is zero. That is, the horizontal pendulum is
in equilibrium for any constant horizontal position of the cart and for any
constant attitude of the horizontal pendulum.

We do not study the linearized dynamics for an equilibrium solution. Since
there is no potential, the eigenvalues of the linearized dynamics are necessarily
all zero.

9.3 Dynamics of a Connection of a Planar Pendulum
and Spherical Pendulum

A planar pendulum can rotate in a fixed vertical plane about a fixed fric-
tionless joint whose axis is perpendicular to the vertical plane. One end of
a spherical pendulum is connected to the end of the planar pendulum by a
frictionless joint so that it can rotate in three dimensions. Each of the two
pendulum links is assumed to be rigid with its mass concentrated at the end
of the link.

An inertial Euclidean frame is constructed so that the first two axes lie in
the horizontal plane containing the joint connection of the planar pendulum,
and the third axis is vertical. The plane of rotation of the planar pendulum
is defined by the second and third axes of the inertially fixed frame.

The configuration of the planar pendulum q1 ∈ S1 is defined by the atti-
tude vector of the planar pendulum with respect to the second and third axes
of the inertial frame; thus S1 is the configuration manifold of the planar pen-
dulum. The configuration of the spherical pendulum q2 ∈ S2 is defined by the
attitude vector of the spherical pendulum with respect to the inertial frame
so that S2 is the configuration manifold of the spherical pendulum. Thus, the
configuration is described by q = (q1, q2) ∈ S1 × S2 and the configuration
manifold is S1 × S2. The connection of a planar pendulum and a spherical
pendulum has three degrees of freedom. A schematic of a serial connection
of a planar pendulum and a spherical pendulum is shown in Figure 9.3.

q1 ∈ S1

q2 ∈ S2

Fig. 9.3 Serial connection of a planar pendulum and a spherical pendulum
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The length of the planar pendulum is L1 and its mass is m1; the length of
the spherical pendulum is L2 and its mass is m2. Here, g denotes the constant
acceleration of gravity.

9.3.1 Euler–Lagrange Equations

The position vector of the first mass element in the inertial frame is given by

x1 = L1Qq1 ∈ R
3,

where the matrix Q ∈ R
3×2 is defined as

Q =

⎡
⎣0 0
1 0
0 1

⎤
⎦ ,

which defines an embedding of R2 into R
3, and it satisfies QTQ = I2×2. The

position vector of the second mass element in the inertial frame is given by

x2 = x1 + L2q2 ∈ R
3.

The Lagrangian function L : T(S1 × S2) → R
1 is given by

L(q, q̇) =
1

2
m1 ‖ẋ1‖2 + 1

2
m2 ‖ẋ2‖2 −m1ge

T
3 x1 −m2ge

T
3 x2

=
1

2
(m1 +m2)L

2
1 ‖q̇1‖2 +m2L1L2q̇

T
1 Q

T q̇2 +
1

2
m2L

2
2 ‖q̇2‖2

− (m1 +m2)gL1e
T
3 Qq1 −m2gL2e

T
3 q2.

It is convenient to introduce the angular velocities of the pendulums. As
shown in Chapter 4, the scalar angular velocity of the planar pendulum about
its joint axis is a scalar-valued function ω1 ∈ Tq1S

1, such that

q̇1 = ω1Sq1. (9.10)

As shown in Chapter 5, the angular velocity of the spherical pendulum is a
vector function ω2 ∈ Tq2S

2, necessarily satisfying ωT
2 q2 = 0, such that

q̇2 = S(ω2)q2. (9.11)

We use the notation ω = (ω1, ω2) ∈ R
1 ×R

3. Thus, the modified Lagrangian
can be expressed in terms of the angular velocity vector as

L̃(q, ω) =
1

2
(m1 +m2)L

2
1ω

2
1 −m2L1L2ω1q

T
1 S

TQTS(q2)ω2 +
1

2
m2L

2
2 ‖ω2‖2

− (m1 +m2)gL1e
T
3 Qq1 −m2gL2e

T
3 q2.
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The Euler–Lagrange equations can be obtained using Hamilton’s principle
where the infinitesimal variation of the action integral is given by

δG =

∫ tf

t0

[ {
(m1 +m2)L

2
1ω1 −m2L1L2q

T
1 S

TQTS(q2)ω2

}
δω1

− {
m2L1L2ω

T
2 S

T (q2)QSω1 + (m1 +m2)gL1e
T
3 Q

}
δq1

+
{−m2L1L2ω1S

T (q2)QSq1 +m2L
2
2ω2

}T
δω2

+
{
m2L1L2ω1S

T (ω2)QSq1 −m2gL2e3
}T

δq2

]
dt = 0, (9.12)

for all infinitesimal variations δq1 : [t0, tf ] → Tq1S
1 and δq2 : [t0, tf ] → Tq2S

2

that vanish at the endpoints, δq1(t0) = δq1(tf ) = 0 and δq2(t0) = δq2(tf ) = 0.
The infinitesimal variations in S1 and in S2 can be written as

δq1 = γ1Sq1,

δω1 = γ̇1,

δq2 = S(γ2)q2,

δω2 = S(γ2)ω2 + (I − q2q
T
2 )γ̇2,

for differentiable curves γ1 : [t0, tf ] → R
1 satisfying γ1(t0) = γ1(tf ) = 0,

and for differentiable curves γ2 : [t0, tf ] → R
3 satisfying γ2(t0) = γ2(tf ) = 0.

Substitute these into the above variational principle. Integrate the result by
parts and use the fundamental lemma of the calculus of variations, as in
Appendix A, to obtain the Euler–Lagrange equations

d

dt

{
(m1 +m2)L

2
1ω1 −m2L1L2q

T
1 S

TQT (q2 × ω2)
}

+m2L1L2ω
T
2 (q2 ×Qω1q1) + (m1 +m2)gL1e

T
3 QSq1 = 0,

(I2×2 − q2q
T
2 )

d

dt

{−m2L1L2ω1S
T (q2)QSq1 +m2L

2
2ω2

}
−q2 ×

{
m2L1L2ω1S

T (ω2)QSq1 −m2gL2e3
}
= 0.

These can be further expanded and rearranged to obtain the following ex-
pression

[
(m1 +m2)L

2
1 −m2L1L2q

T
1 S

TQTS(q2)
−m2L1L2S

T (q2)QSq1 m2L
2
2I3×3

] [
ω̇1

ω̇2

]

+

[ −m2L1L2q
T
1 SQ

TS(ω2)
2q2

m2L1L2q2 ×
{−Qq1ω

2
1 + ω1S(q2)S(QSq1)S(ω2)q2 + ω1S(ω2)QSq1

}]

+

[
(m1 +m2)gL1e

T
3 QSq1

m2gL2q2 × e3

]
= 0. (9.13)
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Thus, the Euler–Lagrange equations (9.13) and the kinematics (9.10) and
(9.11) describe the dynamical flow for the connection of a planar pendulum
and a spherical pendulum in terms of (q1, q2, q̇1, q̇2) ∈ T(S1 × S2) on the
tangent bundle of S1 × S2.

9.3.2 Hamilton’s Equations

Hamilton’s equations can be determined by introducing the Legendre trans-
formation

[
π1

π2

]
=

[
∂L̃(q,ω)

∂ω1

(I3×3 − q2q
T
2 )

∂L̃(q,ω)
∂ω2

]

=

[
(m1 +m2)L

2
1 −m2L1L2q

T
1 S

TQTS(q2)
−m2L1L2S

T (q2)QSq1 m2L
2
2I3×3

] [
ω1

ω2

]
,

where π1 ∈ T∗
q1S

1 and π2 ∈ T∗
q2S

2 are momenta that are conjugate to ω1 ∈
Tq1S

1 and ω2 ∈ Tq2S
2. Consequently,

[
ω1

ω2

]
=

[
M I

11(q) M
I
12(q)

M I
21(q) M

I
22(q)

] [
π1

π2

]
,

where

[
M I

11(q) M
I
12(q)

M I
21(q) M

I
22(q)

]
=

[
(m1 +m2)L

2
1 −m2L1L2q

T
1 S

TQTS(q2)
−m2L1L2S

T (q2)QSq1 m2L
2
2I3×3

]−1

is the inverse of the indicated 4× 4 partitioned matrix. The modified Hamil-
tonian function H̃ : T∗(S1 × S2) → R

1 is

H̃(q, π) =
1

2

[
π1

π2

] [
M I

11(q) M
I
12(q)

M I
21(q) M

I
22(q)

] [
π1

π2

]

+ (m1 +m2)gL1e
T
3 Qq1 +m2gL2e

T
3 q2.

Thus, from (4.24) and (5.28), we obtain

[
q̇1
q̇2

]
=

[
Sq1M

I
11(q) Sq1M

I
12(q)

−S(q2)M
I
21(q) −S(q2)M

I
22(q)

] [
π1

π2

]
, (9.14)

and also from (4.25) and (5.29), we obtain

[
π̇1

π̇2

]
=

[
qT1 S

∂H̃
∂q1

−q2 × ∂H̃
∂q2

+ ∂H̃
∂π2

× π2

]
.
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From (9.12), the above equation can be rewritten as

[
π̇1

π̇2

]
=

[ −m2L1L2ω
T
2 S(q2)Qω1q1

m2L1L2 {S(ω2)S(q2)− S(q2)S(ω2)}QSq1ω1

]

+

[−(m1 +m2)gL1e
T
3 QSq1

−m2gL2q2 × e3

]
. (9.15)

These equations (9.14) and (9.15) describe the dynamical flow for a planar
pendulum connected to a spherical pendulum in terms of the evolution of
(q1, q2, π1, π2) ∈ T∗(S1 × S2) on the cotangent bundle of S1 × S2.

9.3.3 Conservation Properties

The Hamiltonian given by

H =
1

2
(m1 +m2)L

2
1ω

2
1 −m2L1L2ω1q

T
1 S

TQTS(q2)ω2 +
1

2
m2L

2
2 ‖ω2‖2

+ (m1 +m2)gL1e
T
3 Qq1 +m2gL2e

T
3 q2,

which coincides with the total energy E in this case, is constant along each
solution of the dynamical flow.

9.3.4 Equilibrium Properties

It is clear that the equilibrium solutions correspond to the derivative of the
configuration vector, or equivalently the angular velocity vector, vanishing,
and the attitudes of the two pendulums satisfying

qT1 SQ
T e3 = 0,

e3 × q2 = 0,

which implies that the moments due to gravity vanish. This happens when the
directions of the pendulums are aligned with or opposite to the direction of
gravity. The hanging equilibrium solution is given by (−QT e3,−e3, 0, 0) ∈
T(S1 × S2). The other three equilibrium solutions are (−QT e3, e3, 0, 0),
(QT e3,−e3, 0, 0), (Q

T e3, e3, 0, 0) ∈ T(S1 × S2).
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We examine the first equilibrium solution, following the development in
Appendix B. Equations (9.13) and the kinematics (9.10) and (9.11) can be
linearized at this equilibrium to obtain

⎡
⎣(m1 +m2)L

2
1 m2L1L2 0

m2L1L2 m2gL2 0
0 0 m2gL2

⎤
⎦

⎡
⎣ ξ̈1
ξ̈21
ξ̈22

⎤
⎦

+

⎡
⎣(m1 +m2)gL1 0 0

0 m2gL2 0
0 0 m2gL2

⎤
⎦

⎡
⎣ ξ1
ξ21
ξ22

⎤
⎦ =

⎡
⎣00
0

⎤
⎦ .

This describes the linear vector field that is defined on the six-dimensional
tangent space of T(S1 × S2) at (−QT e3,−e3, 0, 0) ∈ T(S1 × S2). This linear
vector field approximates the Lagrangian vector field for the two pendulum in
a neighborhood of (−QT e3,−e3, 0, 0) ∈ T(S1×S2). This equilibrium solution
can be shown to be stable since the total energy has a strict local minimum
at the equilibrium with zero time derivative, thereby guaranteeing stability
of the equilibrium solution.

Following a similar development for the second equilibrium solution given
by (−QT e3, e3, 0, 0) ∈ T(S1 ×S2), equations (9.13) and the kinematics (9.10)
and (9.11) can be linearized to obtain the linear differential equation

⎡
⎣(m1 +m2)L

2
1 m2L1L2 0

m2L1L2 m2gL2 0
0 0 m2gL2

⎤
⎦

⎡
⎣ ξ̈1
ξ̈21
ξ̈22

⎤
⎦

+

⎡
⎣−(m1 +m2)gL1 0 0

0 m2gL2 0
0 0 m2gL2

⎤
⎦

⎡
⎣ ξ1
ξ21
ξ22

⎤
⎦ =

⎡
⎣00
0

⎤
⎦ .

This describes the linear vector field that is defined on the six-dimensional
tangent space of T(S1 × S2) at (−QT e3, e3, 0, 0) ∈ T(S1 × S2). This linear
vector field approximates the Lagrangian vector field for the two pendulum
in a neighborhood of (−QT e3, e3, 0, 0) ∈ T(S1 × S2). As a consequence, this
equilibrium solution can be shown to be unstable since the linearized differ-
ential equation has a positive eigenvalue. Similarly, the equilibrium solutions
(−QT e3, e3, 0, 0), (Q

T e3, e3, 0, 0) ∈ T(S1 × S2) can each be shown to be un-
stable.
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9.4 Dynamics of a Spherical Pendulum on a Cart

Consider the dynamics of a spherical pendulum on a cart that moves on
a horizontal plane. We assume that the spherical pendulum is a thin rigid
rod or link with mass concentrated at the outboard end of the link. One
end of the spherical pendulum is attached to a spherical joint or pivot that
is connected to a cart that can translate, without friction, on a horizontal
plane. A constant gravitational force acts on the spherical pendulum.

We demonstrate that globally valid Euler–Lagrange equations can be de-
rived for the spherical pendulum on a cart system, and they can be expressed
in a compact form without local parameterization or constraints. The results
provide an intrinsic framework to study the global dynamics of a spherical
pendulum on a cart system.

x ∈ R2

q ∈ S2

Fig. 9.4 Spherical pendulum on a cart

The cart of mass M can translate, without friction, on a horizontal plane.
A spherical pendulum is attached to a pivot located at the center of mass of
the cart, where the mass of the pendulum link is m and the link length is
L. For simplicity, we assume that the mass of the link is concentrated at the
outboard end of the link.

An inertial frame is chosen such that the first two axes are horizontal and
the third axis is vertical, opposite to the direction of gravity. The direction
vector of the link in the inertial frame is given by q ∈ S2. The vector x ∈ R

2

denotes the position vector of the pivot of the pendulum in the horizontal two-
dimensional plane. The configuration of the spherical pendulum on a cart is
described by (q, x) ∈ S2 × R

2, so that the configuration manifold is S2 × R
2.

Thus, this system has four degrees of freedom. Collisions of the spherical
pendulum and the cart are ignored. A schematic of a spherical pendulum on
a cart is shown in Figure 9.4.

The rotational kinematics equation for the attitude vector of the pendulum
link is given by

q̇ = S(ω)q, (9.16)

where ω ∈ TqS
2 is the angular velocity vector of the pendulum link satisfying

ωT q = 0.



416 9 Rigid and Multi-Body Systems

9.4.1 Euler–Lagrange Equations

Consider the 3× 2 matrix

C =

⎡
⎣1 0
0 1
0 0

⎤
⎦ .

As usual, {e1, e2, e3} denote the standard basis elements in R
3.

The location of the center of mass of the cart, which is also the pendulum
pivot, is given by Cx ∈ R

3 in the inertial frame. Let xL ∈ R
3 be the position

of the mass element of the spherical pendulum in the inertial frame. It can
be written as

xL = Cx+ Lq.

The total kinetic energy is composed of the kinetic energy of the cart and
the kinetic energy of the mass element defining the spherical pendulum:

T (q, x, q̇, ẋ) =
1

2
M‖ẋ‖2 + 1

2
m‖ẋL‖2.

This can be written as

T (q, x, q̇, ẋ) =
1

2
(M +m)‖ẋ‖2 +mLẋTCT q̇ +

1

2
mL2‖q̇‖2.

The potential energy is the gravitational potential energy of the mass of the
spherical pendulum link:

U(q, x) = mgLeT3 q.

The Lagrangian function for the spherical pendulum on a cart L : T(S2 ×
R

2) → R
1 is

L(q, x, q̇, ẋ) =
1

2
(M +m)‖ẋ‖2 +mLẋTCT q̇ +

1

2
mL2‖q̇T ‖2 −mgLeT3 q.

The modified Lagrangian function can be expressed in terms of the angular
velocity vector of the pendulum link as

L̃(q, x, ω, ẋ) =
1

2
(M +m)‖ẋ‖2 −mLẋTCTS(q)ω +

1

2
mL2‖ω‖2 −mgLeT3 q.

Note that the Lagrangian does not depend on the position of the cart; this
property reflects a translational symmetry in the dynamics.
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The infinitesimal variation of the action integral satisfies

δG =

∫ tf

t0

[
{(M +m)ẋ−mLCTS(q)ω}T δẋ+ {mLS(q)Cẋ+mL2ω}T δω

+ {−mLS(ω)Cẋ−mgLe3}T δq
]
dt = 0,

for all infinitesimal variations δq : [t0, tf ] → TqS
2 and δx : [t0, tf ] → R

2 that
vanish at the endpoints, δq(t0) = δq(tf ) = 0 and δx(t0) = δx(tf ) = 0. The
infinitesimal variations in S2 can be written as

δω = (I3×3 − qqT )γ̇ + S(γ)ω,

δq = S(γ)q,

for differentiable curves γ : [t0, tf ] → R
3 satisfying γ(t0) = γ(tf ) = 0. Substi-

tuting these into the infinitesimal variation of the action integral yields

δG =

∫ tf

t0

[
{(M +m)ẋ−mLCTS(q)ω}T δẋ

+ {mLS(q)Cẋ+mL2ω}T {(I3×3 − qqT )γ̇ + S(γ)ω}
+ {−mLS(ω)Cẋ−mgLe3}TS(γ)q

]
dt.

Since (I3×3−qqT ) is the orthogonal projection onto the tangent manifold of S2

at q ∈ S2 and the expression {mLS(q)Cẋ+mL2ω} is necessarily orthogonal
to TqS

2, we have

(I3×3 − qqT ){mLS(q)Cẋ+mL2ω} = {mLS(q)Cẋ+mL2ω}.

Therefore,

δG =

∫ tf

t0

[
{(M +m)ẋ−mLCTS(q)ω}T δẋ

+ {mLS(q)Cẋ+mL2ω}T γ̇ + {mLS(ω)S(q)Cẋ}T γ
+ {mLS(ω)Cẋ+mgLe3}TS(q)γ

]
dt.

Integrating by parts and using the boundary conditions, we obtain

δG =

∫ tf

t0

[
− d

dt
{(M +m)ẋ−mLCTS(q)ω}T δx

− d

dt
{mLS(q)Cẋ+mL2ω}T γ

+ {mLS(ω)S(q)Cẋ− S(q)(mLS(ω)Cẋ+mgLe3)}T γ
]
dt.
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According to Hamilton’s principle, the infinitesimal variation of the ac-
tion integral is zero for all differentiable curves γ : [t0, tf ] → R

3 and
δx : [t0, tf ] → R

2 which vanish at t0 and tf . The fundamental lemma of
variational calculus, as in Appendix A, leads to the dynamical equations for
the spherical pendulum on a cart, consisting of the rotational kinematics of
the spherical pendulum (9.16) and the Euler–Lagrange equations

d

dt
{mLS(q)Cẋ+mL2ω}+mLS(Cẋ)S(ω)q +mgLq × e3 = 0,

d

dt
{(M +m)ẋ−mLCTS(q)ω} = 0.

These can be rearranged in matrix-vector form as

[
mL2I3×3 −mLST (q)C

−mLCTS(q) (M +m)I2×2

] [
ω̇
ẍ

]
+

[
mgLq × e3

mLCTS(ω)2q

]
=

[
0
0

]
. (9.17)

The kinematic equations are given by (9.16) and the Euler–Lagrange equa-
tions are given by (9.17). Together, they describe the dynamical flow of
the spherical pendulum on a cart in terms of the evolution of (q, x, q̇, ẋ) ∈
T(S2 × R

2) on the tangent bundle of S2 × R
2.

9.4.2 Hamilton’s Equations

The Legendre transformation is used to define the momenta as follows

[
π
p

]
=

[
(I3×3 − qqT )∂L̃(q,x,ω,ẋ)

∂ω
∂L̃(q,x,ω,ẋ)

∂ẋ

]
=

[
mL2I3×3 −mLST (q)C

−mLCTS(q) (M +m)I2×2

] [
ω
ẋ

]
.

Thus, the momenta (π, p) ∈ T∗
(q,x)(S

2 × R
2) are conjugate to the velocity

vectors (ω, ẋ) ∈ T(q,x)(S
2 × R

2). This can be inverted to yield

[
ω
ẋ

]
=

[
M I

11(q) M
I
12(q)

M I
21(q) M

I
22(q)

] [
π
p

]
,

where

[
M I

11(q) M
I
12(q)

M I
21(q) M

I
22(q)

]
=

[
mL2I3×3 −mLST (q)C

−mLCTS(q) (M +m)I2×2

]−1
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is the inverse of the indicated 5× 5 partitioned matrix. The modified Hamil-
tonian function H̃ : T∗(S2 × R

2) → R
1 is

H̃(q, x, π, p) =
1

2

[
π
p

]T [
M I

11(q) M
I
12(q)

M I
21(q) M

I
22(q)

] [
π
p

]
+mgLeT3 q.

Thus, from (5.28) and (3.12), Hamilton’s equations can be written in matrix-
vector form as [

q̇
ẋ

]
=

[−S(q)M I
11(q) −S(q)M I

11(q)
M I

21(q) M I
22(q)

] [
π
p

]
, (9.18)

and from (5.29) and (3.13),

[
π̇
ṗ

]
=

[−mLS(Cẋ)S(ω)q −mgLq × e3
0

]
, (9.19)

where the first term is expressed in terms of the momenta using the Legendre
transformation. Hamilton’s equations (9.18) and (9.19) describe the Hamil-
tonian flow of the spherical pendulum on a cart in terms of the evolution
of (q, x, π, p) ∈ T∗(S2 × R

2) on the cotangent bundle of the configuration
manifold S2 × R

2.

9.4.3 Conservation Properties

The Hamiltonian of the spherical pendulum on a cart is given by

H =
1

2
(M +m)‖ẋ‖2 −mLẋTCTS(q)ω +

1

2
mL2‖ω‖2 +mgLeT3 q,

which coincides with the total energy E in this case, and it is constant along
each solution of the dynamical flow of the spherical pendulum on a cart.

As seen from Hamilton’s equations, the translational momentum given by

p = (M +m)ẋ−mLCTS(q)ω

is also constant along each solution of the dynamical flow. This can be viewed
as a consequence of Noether’s theorem and the translational invariance of the
Lagrangian.
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9.4.4 Equilibrium Properties

We can determine the equilibria of the spherical pendulum on a cart. Assum-
ing the configuration is constant, the equilibrium configurations in S2 × R

2

correspond to the cart in an arbitrary location with the attitude of the spher-
ical pendulum satisfying

q × e3 = 0,

which implies that the moment due to gravity vanishes.
An equilibrium for which the direction of the pendulum link is in the

gravity direction, −e3, is referred to as a hanging equilibrium; an equilibrium
for which the direction of the pendulum link is e3, that is opposite to the
gravity direction, is referred to as an inverted equilibrium.

We first examine the inverted equilibrium (e3, 0, 0, 0) ∈ T(S2 × R
2), fol-

lowing the development in Appendix B. Equations (9.17) and the kinemat-
ics (9.16) can be linearized at this equilibrium to obtain

⎡
⎢⎢⎣
mL2 0 mL 0
0 mL2 0 mL

mL 0 (m+M) 0
0 mL 0 (m+M)

⎤
⎥⎥⎦

⎡
⎢⎢⎣
ξ̈1
ξ̈2
ξ̈3
ξ̈4

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
−mgL 0 0 0

0 −mgL 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
ξ1
ξ2
ξ3
ξ4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0
0
0
0

⎤
⎥⎥⎦ .

This describes the linear vector field defined on the eight-dimensional tangent
space of T(S2 × R

2) at (e3, 0, 0, 0) ∈ T(S2 × R
2). This linear vector field

approximates the Lagrangian vector field of the spherical pendulum on a
cart in a neighborhood of the inverted equilibrium solution. This equilibrium
solution can be shown to be unstable since the linearized differential equations
have a positive eigenvalue. This conclusion applies to any inverted equilibrium
solution.

Following a similar development for the hanging equilibrium (−e3, 0, 0, 0) ∈
T(S2 × R

2), equations (9.17) and the kinematics (9.16) can be linearized at
this equilibrium to obtain the linear differential equations

⎡
⎢⎢⎣
mL2 0 mL 0
0 mL2 0 mL

mL 0 (m+M) 0
0 mL 0 (m+M)

⎤
⎥⎥⎦

⎡
⎢⎢⎣
ξ̈1
ξ̈2
ξ̈3
ξ̈4

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
mgL 0 0 0
0 mgL 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
ξ1
ξ2
ξ3
ξ4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0
0
0
0

⎤
⎥⎥⎦ .

This describes the linear vector field defined on the eight-dimensional tan-
gent space of T(S2 × R

2) at (−e3, 0, 0, 0) ∈ T(S2 × R
2). This linear vector

field approximates the Lagrangian vector field of the spherical pendulum on
a cart in a neighborhood of the hanging equilibrium solution. These linear
differential equations have two imaginary eigenvalues and two zero eigenval-
ues. Since all the eigenvalues of the linearization have zero real part, stability
of the hanging equilibrium cannot be determined based on a spectral analysis
of the linearization.
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9.5 Dynamics of a Rotating Rigid Body with Appendage

We consider the attitude dynamics of a rigid body rotating in three dimen-
sions about its center of mass. A proof mass element, viewed as an ideal
particle with mass, is constrained to translate within a frictionless slot fixed
in the rigid body; a linear elastic spring connects the proof mass element and
the rigid body in the slot. The elastically constrained proof mass represents
a flexible appendage of the rigid body.

We select two Euclidean frames in R
3: an inertially fixed frame and a frame

fixed to the rigid body; the origin of the body-fixed frame is located at the
center of mass of the rigid body, ignoring the proof mass element. The slot
is assumed to lie along the first axis of the body-fixed frame. If the distance
between the center of mass and the proof mass element is L, the spring exerts
no restoring force on the proof mass. Let m denote the mass of the particle
in the slot and let J be the 3×3 inertia matrix of the rigid body without the
particle.

We let R ∈ SO(3) be the attitude of the rigid body and let x ∈ R
1 be the

displacement of the proof mass element along the slot from its location when
the spring exerts no force; the position vector of the proof mass element in the
body-fixed frame is (L + x)e1 ∈ R

3. Thus, the configuration of the rotating
rigid body with an appendage is described by the pair (R, x) ∈ SO(3)×R

1 and
the configuration manifold is SO(3)×R

1. There are four degrees of freedom.
A schematic of a rotating rigid body with an elastic appendage is shown
in Figure 9.5.

R ∈ SO(3)

x ∈ R
1

Fig. 9.5 Rotating rigid body with an elastic appendage

9.5.1 Euler–Lagrange Equations

The rotational kinematics of the rigid body are

Ṙ = RS(ω), (9.20)
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where ω ∈ TRSO(3) is the angular velocity vector of the rigid body with
respect to the body-fixed frame.

The kinetic energy of the rigid body is 1
2ω

TJω. Since the location of the
particle in the inertially fixed frame is given by (L+x)Re1 ∈ R

3, the velocity
vector of the particle in the inertial frame is given by ẋRe1+(L+x)RS(ω)e1 ∈
R

3. The rotational kinetic energy is

T (R, x, ω, ẋ) =
1

2
ωTJω +

1

2
m‖ẋRe1 + (L+ x)RS(ω)e1‖2

=
1

2
ωTJω +

1

2
mẋ2 −mẋ(L+ x)eT1 S(e1)ω

+
1

2
m(L+ x)2ωTST (e1)S(e1)ω

=
1

2
ωT

(
J +m(L+ x)2ST (e1)S(e1)

)
ω +

1

2
mẋ2,

where the third step follows since eT1 S(e1) = 0. The potential energy is the
energy stored in the elastic spring and is given by 1

2κx
2, where the positive

constant κ is the elastic coefficient of the restoring spring. The resulting
modified Lagrangian function is given by

L̃(R, x, ω, ẋ) =
1

2
ωT

(
J +m(L+ x)2ST (e1)S(e1)

)
ω +

1

2
mẋ2 − 1

2
κx2.

Note that the Lagrangian function is independent of the rigid body attitude,
indicating a rotational symmetry of the dynamics.

The infinitesimal variation of the action integral is given by

δG =

∫ tf

t0

[
ωT

{
J +m(L+ x)2ST (e1)S(e1)

}
δω

+mẋT δẋ+
{
m(L+ x)ωTST (e1)S(e1)ω − κx

}T
δx

]
dt.

The infinitesimal variation in SO(3) can be written as

δω = η̇ + S(ω)η,

for a differentiable curve η : [t0, tf ] → R
3 that vanishes at the endpoints,

η(t0) = η(tf ) = 0, and the infinitesimal variation in R
1 is described by

δx : [t0, tf ] → R
1 that vanishes at the endpoints, δx(t0) = δx(tf ) = 0.

Substituting these into the above and integrating by parts, we obtain

δG =

∫ tf

t0

[
− {(J +m(L+ x)2ST (e1)S(e1))ω̇ + 2m(L+ x)ST (e1)S(e1)ωẋ

+ S(ω)((J +m(L+ x)2ST (e1)S(e1))ω)}T η
− {mẍ−m(L+ x)ωTST (e1)S(e1)ω + κx}δx

]
dt.
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According to Hamilton’s principle, the infinitesimal variation of the ac-
tion integral is zero for all differentiable curves η : [t0, tf ] → R

3 and
δx : [t0, tf ] → R

1 that vanish at t0 and tf . Using the fundamental lemma of
variational calculus, as in Appendix A, the dynamics is described by the rota-
tional kinematics of the rigid body (9.20) and the Euler–Lagrange equations

{J +m(L+ x)2ST (e1)S(e1)}ω̇ + 2m(L+ x)ST (e1)S(e1)ωẋ

+ω × {
J +m(L+ x)2ST (e1)S(e1)

}
ω = 0,

mẍ−m(L+ x)ωTST (e1)S(e1)ω + κx = 0.

The Euler–Lagrange equations, in matrix-vector form, consist of the rota-
tional kinematics (9.20) and

[
(J +m(L+ x)2ST (e1)S(e1)) 0

0 m

] [
ω̇
ẍ

]

+

[
2m(L+ x)ST (e1)S(e1)ωẋ+ ω × {

J +m(L+ x)2ST (e1)S(e1)
}
ω

−m(L+ x)ωTST (e1)S(e1)ω

]

+

[
0
κx

]
=

[
0
0

]
. (9.21)

Equations (9.20) and (9.21) describe the dynamical flow of the rotating rigid
body with an elastic appendage in terms of the evolution of (R, x, ω, ẋ) on
the tangent bundle T(SO(3)× R

1).

9.5.2 Hamilton’s Equations

Hamilton’s equations of motion can be obtained by introducing the Legendre
transformation

Π =
∂L̃(R, x, ω, ẋ)

∂ω
=

{
J +m(L+ x)2ST (e1)S(e1)

}
ω,

p =
∂L̃(R, x, ω, ẋ)

∂ẋ
= mẋ,

where the momenta (Π, p) ∈ T∗
R,x)(SO(3) × R

1) are conjugate to (ω, ẋ) ∈
TR,x)(SO(3)× R

1). The modified Hamiltonian function is

H̃(R, x,Π, p) =
1

2
ΠT

{
J +m(L+ x)2ST (e1)S(e1)

}−1
Π +

1

2

p2

m
+

1

2
κx2.

From (6.10) and (3.12), Hamilton’s equations can be shown to be given by
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ṙi = ri ×
{
J +m(L+ x)2ST (e1)S(e1)

}−1
Π, i = 1, 2, 3, (9.22)

ẋ =
p

m
, (9.23)

and from (6.11) and (3.13),

Π̇ = S(Π)
{
J +m(L+ x)2ST (e1)S(e1)

}−1
Π, (9.24)

ṗ = m(L+ x)ωTST (e1)S(e1)ω − κx, (9.25)

where ω =
{
J +m(L+ x)2ST (e1)S(e1)

}−1
Π and ri ∈ S2 is the i-th column

of RT ∈ SO(3). These differential equations describe the dynamical flow of
a rotating rigid body with a flexible appendage in terms of the evolution of
(R, x,Π, p) ∈ T∗(SO(3)× R

1) on the cotangent bundle of (SO(3)× R
1).

9.5.3 Conservation Properties

The Hamiltonian

H =
1

2
ωT

{
J +m(L+ x)2ST (e1)S(e1)

}
ω +

1

2
mẋ2 +

1

2
κx2,

which coincides with the total energy E in this case, is conserved along each
solution of the rotating rigid body with flexible appendage.

In addition, there is a rotational symmetry: the Lagrangian is invariant
with respect to arbitrary rigid body rotations. This symmetry leads to con-
servation of the angular momentum in the inertial frame; that is

RΠ = R
{
J +m(L+ x)2ST (e1)S(e1)

}
ω

is constant along each solution. Since R ∈ SO(3), the magnitude of the an-
gular momentum in the body-fixed frame is also conserved, that is

‖Π‖ = ‖{
J +m(L+ x)2ST (e1)S(e1)

}
ω‖

is constant along each solution.

9.5.4 Equilibrium Properties

The equilibrium solutions occur when the angular velocity vector of the rigid
body is zero, the linear velocity of the proof mass is zero, and when the elastic
restoring force is zero. The system can be in equilibrium at any fixed attitude
of the rigid body.
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Linearization of the dynamics in a neighborhood of the prototypical equi-
librium point (I3×3, 0, 0, 0) ∈ T(SO(3)×R

1) is obtained. Following the results
in Appendix B, the linearized differential equations are given by

{J +mL2ST (e1)S(e1)}ξ̈1 = 0,

mξ̈2 + κξ2 = 0.

These linearized differential equations, defined on the eight-dimensional tan-
gent space of T(SO(3)× R

1) at (I3×3, 0, 0, 0) ∈ T(SO(3)× R
1), approximate

the rotational dynamics of the rigid body and appendage in a neighborhood
of the equilibrium. These linear dynamics are accurate only to first order
in the perturbations. Higher-order coupling effects are important for larger
deviations from the equilibrium. In particular, the linearized rotational dy-
namics of the rigid body and the linearized translational dynamics of the
sliding particle are uncoupled, an apparent inconsistency with the conserva-
tion of the total energy that is resolved when considering higher-order terms
in the expansion.

9.6 Dynamics of a Three-Dimensional Pendulum
on a Cart

A three-dimensional pendulum on a cart consists of a rigid body that can
rotate about a frictionless pivot that is fixed in a cart that can translate
without friction on a horizontal plane. The pivot is located at the center of
mass of the cart. Hence, we assume the cart translates but does not rotate in
the horizontal plane. Uniform constant gravity acts on the three-dimensional
pendulum.

We define two Euclidean frames: an inertial frame and a body-fixed frame
attached to the pendulum. The first two axes of the inertial frame lie in the
horizontal plane within which the cart moves, while the third axis of the
inertial frame is vertical. The origin of the pendulum-fixed frame is located
at the center of mass of the pendulum.

The following notation is used: ρ0 ∈ R
3 is the constant vector from the

center of mass of the pendulum to the pivot in the pendulum-fixed frame;
the constant matrix

Q =

⎡
⎣1 0
0 1
0 0

⎤
⎦

maps vectors in R
2 into vectors in R

3; m is the mass of the three-dimensional
pendulum, and M is the mass of the cart.
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Let R ∈ SO(3) define the attitude of the three-dimensional pendulum as
a rotation matrix from the pendulum-fixed frame to the inertial frame. Let
x ∈ R

2 be the position vector of the center of mass of the cart in the horizontal
plane. The configuration is described by (R, x) ∈ SO(3)×R

2 and SO(3)×R
2

is the configuration manifold. Hence, there are five degrees of freedom for the
three-dimensional pendulum on a cart. A schematic of a three-dimensional
pendulum on a cart is shown in Figure 9.6.

R ∈ SO(3)

x ∈ R2

Fig. 9.6 Three-dimensional pendulum on a cart

9.6.1 Euler–Lagrange Equations

The rotational kinematics of the three-dimensional pendulum are

Ṙ = RS(ω), (9.26)

where ω ∈ TRSO(3) is the angular velocity vector of the three-dimensional
pendulum in the pendulum-fixed frame.

The kinetic energy of the system is the sum of the kinetic energy of the cart
and the kinetic energy of the three-dimensional pendulum. Since the cart is
assumed to only translate in a horizontal plane, its kinetic energy is given by

Tcart =
1

2
M ‖ẋ‖2 .

To determine the kinetic energy of the three-dimensional pendulum, we
need to integrate the kinetic energy of each mass element. Let ρ ∈ R

3 be the
vector from the center of mass of the three-dimensional pendulum to a mass
element in the three-dimensional pendulum represented in the pendulum-
fixed frame. The vector from the origin of the inertial frame to the mass
element in the three-dimensional pendulum is given by Qx + R(−ρ0 + ρ).
Then, the kinetic energy of the three-dimensional pendulum is obtained from
the body integral:
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Tpend =
1

2

∫
B

∥∥∥Qẋ+ Ṙ(−ρ0 + ρ)
∥∥∥2

dm(ρ)

=
1

2

∫
B
‖ẋ‖2 dm(ρ)

+
1

2

∫
B
trace

{
S(ω)(−ρ0 + ρ)(−ρ0 + ρ)TS(ω)T

}
dm(ρ)

+

∫
B
ẋTQTRS(ω)(−ρ0 + ρ) dm(ρ).

From the definition of the center of mass,
∫
B dm(ρ) = m and

∫
B ρ dm(ρ) = 0.

This simplifies the expression for the kinetic energy of the three-dimensional
pendulum to

Tpend =
1

2
m ‖ẋ‖2 + 1

2
ωTJω −mẋTQTRS(ω)ρ0,

where J =
∫
B S(ρ)TS(ρ) dm(ρ) + mS(ρ0)

TS(ρ0) is an inertia matrix of the
pendulum. The total kinetic energy is

T (R, x, ω, ẋ) =
1

2
(M +m) ‖ẋ‖2 + 1

2
ωTJω −mẋTQTRS(ω)ρ0.

The potential energy is the gravitational potential energy of the three-
dimensional pendulum:

U(R) = −mgeT3 Rρ0.

Thus, the modified Lagrangian L̃ : T(SO(3)× R
2) → R

1 is given by

L̃(R, x, ω, ẋ) =
1

2
(M +m) ‖ẋ‖2 + 1

2
ωTJω +mẋTQTRS(ρ0)ω +mgeT3 Rρ0.

Note that the Lagrangian function does not depend on the position vector of
the center of mass of the cart. This reflects a symmetry in the dynamics of
the three-dimensional pendulum on a cart.

The infinitesimal variation of the action integral is

δG =

∫ tf

t0

[ {
Jω −mS(ρ0)R

TQẋ
}T

δω +mẋTQT δRS(ρ0)ω +mgeT3 δRρ0

− {
mQTRS(ρ0)

Tω + (M +m)ẋ
}T

δẋ
]
dt.

The infinitesimal variations in SO(3) can be written as

δR = RS(η),

δω = η̇ + S(ω)η,
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for differentiable curves η : [t0, tf ] → R
3 satisfying η(t0) = η(tf ) = 0, and

the infinitesimal variations in R
2 can be expressed as δx : [t0, tf ] → R

2

satisfying δx(t0) = δx(tf ) = 0. Substituting these expressions into the above
and integrating by parts, we obtain

δG =

∫ tf

t0

[
−

{
d

dt
(Jω −mS(ρ0)R

TQẋ)

}T

η

− {S(ω)(Jω −mS(ρ0)R
TQẋ)}T η −mẋTQTR(−ρ0ω

T − ωρT0 )η

−mgeT3 RS(ρ0)η −
{

d

dt
(−mQTRST (ρ0)ω + (M +m)ẋ)

}T

δx

]
dt.

According to Hamilton’s principle, the infinitesimal variation of the action
integral is zero for all differentiable curves η(t) ∈ R

3 and δx(t) ∈ R
2. Using the

fundamental lemma of variational calculus, as in Appendix A, it can be shown
that the Euler–Lagrange equations for the three-dimensional pendulum on a
cart are

Jω̇ −mS(ρ0)R
TQẍ+ ω × Jω −mgρ0 ×RT e3 = 0,

−mQTRST (ρ0)ω̇ + (M +m)ẍ−mQTRS(ω)2ρ0 = 0.

The Euler–Lagrange equations can be written in matrix-vector form

[
J −mS(ρ0)R

TQ
−mQTRST (ρ0) (M +m)I2×2

] [
ω̇
ẍ

]
+

[
ω × Jω

−mQTRS(ω)2ρ0

]

+

[−mgρ0 ×RT e3
0

]
=

[
0
0

]
. (9.27)

Equations (9.27) and the rotational kinematics equations (9.26) describe the
dynamical flow of the three-dimensional pendulum on a cart in terms of the
evolution of (R, x, ω, ẋ) ∈ T(SO(3)×R

2) on the tangent bundle of SO(3)×R
2.

9.6.2 Hamilton’s Equations

Hamilton’s equations for the three-dimensional pendulum on a cart can also
be obtained. The Legendre transformation is given by

[
Π
p

]
=

[
∂L̃(R,x,ω,ẋ)

∂ω
∂L̃(R,x,ω,ẋ)

∂ẋ

]
=

[
J −mS(ρ0)R

TQ
−mQTRS(ρ0) (M +m)I2×2

] [
ω
ẍ

]
.

Thus, the angular momentum (Π, p) ∈ T∗
(R,x)(SO(3) × R

2) is conjugate to

(ω, ẋ) ∈ T(R,x)(SO(3)× R
2). The above expression also gives
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[
ω
ẋ

]
=

[
M I

11 M I
12

M I
21 M I

22

] [
Π
p

]
,

where

[
M I

11 M I
12

M I
21 M I

22

]
=

[
J −mS(ρ0)R

TQ
−mQTRS(ρ0) (M +m)I2×2

]−1

is the partitioned inverse of the 5 × 5 matrix given above. The modified
Hamiltonian function H̃ : T∗(SO(3)× R

2) → R
1 is

H̃(R, x,Π, p) =
1

2

[
Π
p

]T [
M I

11 M I
12

M I
21 M I

22

] [
Π
p

]
−mgρT0 R

T eT3 .

From (6.10) and (3.12), Hamilton’s equations are given by

ṙi = ri ×
(
M I

11Π +M I
12p

)
, i = 1, 2, 3, (9.28)

ẋ = M I
21Π +M I

22p, (9.29)

and also from (6.11) and (3.13),

Π̇ = Π × (
M I

11Π +M I
12p

)
+

3∑
i=1

ri × ∂

∂ri

[
Π
p

]T [
M I

11 M I
12

M I
21 M I

22

] [
Π
p

]

+mgS(ρ0)R
T e3, (9.30)

ṗ = 0. (9.31)

Equations (9.28), (9.29), (9.30), and (9.31) describe the Hamiltonian flow
of a three-dimensional pendulum on a cart in terms of the evolution of
(R, x,Π, p) ∈ T∗(SO(3)× R

2) on the cotangent bundle of SO(3)× R
2.

9.6.3 Conservation Properties

The Hamiltonian for the three-dimensional pendulum on a cart is

H =
1

2
(M +m) ‖ẋ‖2 + 1

2
ωTJω +mẋTQTRS(ρ0)ω −mgeT3 Rρ0,

which coincides with the total energy E in this case, and it can be shown to
be constant along each solution of the dynamical flow.

In addition, the translational momentum of the three-dimensional pendu-
lum on a cart is

p = −mQTRS(ρ0)
Tω + (M +m)ẋ,
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and it can be shown to be constant along each solution of the dynamical flow.
This is a consequence of Noether’s theorem, and the fact that the Lagrangian
does not depend on the position vector of the center of mass of the cart, which
corresponds to invariance of the Lagrangian with respect to the tangent lift
of translations in R

2.

9.6.4 Equilibrium Properties

The equilibrium solutions of the three-dimensional pendulum on a cart have
the property that the horizontal position of the cart is arbitrary, and the
attitude of the three-dimensional pendulum satisfies:

ρ0 ×RT e3 = 0,

which implies that the moment due to gravity vanishes. Additionally, the an-
gular velocity vector of the three-dimensional pendulum and the translation
velocity of the cart must be zero.

An attitude R is an equilibrium attitude if and only if the attitude vector
RT e3 is collinear with the vector ρ0. If R

T e3 is in the opposite direction to the
vector ρ0, then we obtain an inverted equilibrium of the three-dimensional
pendulum; if the attitude vector RT e3 is in the same direction to the vector
ρ0, then we have a hanging equilibrium of the three-dimensional pendulum.

Note that if R ∈ SO(3) defines an equilibrium attitude for the three-
dimensional pendulum, then a rotation of the three-dimensional pendulum
about the vertical by an arbitrary angle is also an equilibrium. Consequently,
there are two disjoint equilibrium manifolds of the three-dimensional pendu-
lum. As in Chapter 6, the inverted equilibrium manifold is characterized by
the center of mass directly above the pivot. The hanging equilibrium manifold
corresponds to the center of mass directly below the pivot.

We do not develop the linearized equations at an equilibrium. However,
we do state the result: the linearized equations at an inverted equilibrium
can be shown to have a positive eigenvalue. Thus, each inverted equilibrium
is necessarily unstable.

9.7 Dynamics of Two Rigid Bodies Constrained to Have
a Common Material Point

Consider two rigid bodies that can translate and rotate in three dimensions.
The rigid bodies are connected by a universal joint, a connection of the two
rigid bodies at common material points, that constrains the two bodies to
remain in contact; otherwise, the two bodies are unconstrained. We assume
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that the connection is frictionless. There are no external forces or moments
on the two connected bodies.

We define three Euclidean frames; an inertial frame, and a body-fixed
frame for each rigid body. The origin of each body-fixed frame is located
at the point of connection in that body. Let Ri ∈ SO(3) be the rotation or
attitude matrix from the i-th body-fixed frame to the inertial frame, i =
1, 2, and let x ∈ R

3 be the position vector of the connection point in the
inertial frame. Ignoring collisions of the two rigid bodies, the configuration
is (R1, R2, x) ∈ SO(3) × SO(3) × R

3 so that the configuration manifold is
SO(3)× SO(3)×R

3. This connection of two rigid bodies has nine degrees of
freedom. A schematic of two rigid bodies connected by a common material
point is shown in Figure 9.7.

R1 ∈ SO(3)

R2 ∈ SO(3)

x ∈ R3

Fig. 9.7 Two rigid bodies connected by a common material point

Also, let di ∈ R
3 be the constant vector from the connection point to the

center of mass of the i-th body in the i-th body-fixed frame and let mi be
the scalar mass of the i-th body for i = 1, 2. The 3× 3 inertia matrix of the
i-th body is Ji for i = 1, 2; these are described subsequently.

9.7.1 Euler–Lagrange Equations

The angular velocity vector ω = (ω1, ω2) ∈ T(R1,R2)(SO(3))
2 of the two rigid

bodies satisfy

Ṙ1 = R1S(ω1), (9.32)

Ṙ2 = R2S(ω2). (9.33)

To compute the kinetic energy of each rigid body, let ρi ∈ R
3 denote the

vector from the center of mass of the i-th body to a mass element expressed
in the i-th body-fixed frame. The vector to the mass element from the origin
of the inertial frame is given by x+ Ri(di + ρi). Thus, the kinetic energy of
the i-th body is given by
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Ti(Ri, xi, ωi) =
1

2

∫
Bi

∥∥∥ẋ+ Ṙi(di + ρi)
∥∥∥2

dm(ρi)

=
1

2
mi ‖ẋ‖2 + 1

2
ωT
i Jiωi +miẋ

TRiS(ωi)di, i = 1, 2,

where Ji = miS
T (di)S(di)+

∫
Bi

ST (ρi)S(ρi) dm(ρi) is the 3×3 inertia matrix
of the i-th body.

The modified Lagrangian of the connected two rigid bodies L̃ : T(SO(3)×
SO(3)× R

3) → R
1 is given by

L̃(R, x, ω, ẋ) =
1

2
(m1 +m2) ‖ẋ‖2 + 1

2
ωT
1 J1ω1 +

1

2
ωT
2 J2ω2

+ ẋT {m1R1S(ω1)d1 +m2R2S(ω2)d2} .

Note that the Lagrangian does not depend on the inertial position vector of
the joint that connects the two rigid bodies. This implies the existence of a
translational symmetry in the resulting dynamics.
The infinitesimal variation of the action integral is given by

δG =

∫ tf

t0

[
∂L̃(R, x, ω, ẋ)

∂ω1
· δω1 +

∂L̃(R, x, ω, ẋ)

∂R1
· δR1 +

∂L̃(R, x, ω, ẋ)

∂ω2
· δω2

+
∂L̃(R, x, ω, ẋ)

∂R2
· δR2 +

∂L̃(R, x, ω, ẋ)

∂ẋ
· δẋ

]
dt,

where the infinitesimal variations can be written as

δR1 = R1S(η1),

δω1 = η̇1 + S(ω1)η1,

δR2 = R2S(η2),

δω2 = η̇2 + S(ω2)η2,

for differentiable curves η1 : [t0, tf ] → R
3 satisfying η1(t0) = η1(tf ) = 0

and η2 : [t0, tf ] → R
3 satisfying η2(t0) = η2(tf ) = 0, and the infinitesimal

variations in R
3 can be expressed by differentiable curves δx : [t0, tf ] →

R
3 satisfying δx(t0) = δx(tf ) = 0. Substituting these into the above and

integrating by parts we obtain

δG =

∫ tf

t0

[
{J1ω̇1 +m1S(d1)R

T
1 ẍ+ S(ω1)J1ω1}T η1

+ {J2ω̇2 +m2S(d2)R
T
2 ẍ+ S(ω2)J2ω2}T η2

+ {m1R1S
T (d1)ω̇1 +m2R2S

T (d2)ω̇2 + (m1 +m2)ẍ

−m1R1S
T (ω1)S(ω1)d1 −m2R2S

T (ω2)S(ω2)d2}T δx
]
dt.
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According to Hamilton’s principle, the infinitesimal variation of the action
integral is zero for all differentiable curves η1 : [t0, tf ] → R

3, η2 : [t0, tf ] → R
3

and δx : [t0, tf ] → R
3 that vanish at t0 and tf . Using the fundamental lemma

of variational calculus, as in Appendix A, it follows that the dynamics for the
connection of two rigid bodies are described by the rotational kinematics of
the two rigid bodies (9.32) and (9.33), and the Euler–Lagrange equations

J1ω̇1 +m1S(d1)R
T
1 ẍ+ ω1 × J1ω1 = 0,

J2ω̇2 +m2S(d2)R
T
2 ẍ+ ω2 × J2ω2 = 0,

m1R1S
T (d1)ω̇1 +m2R2S

T (d2)ω̇2 + (m1 +m2)ẍ

−m1R1S
T (ω1)S(ω1)d1 −m2R2S

T (ω2)S(ω2)d2 = 0.

In a matrix-vector form, these differential equations can be written as

⎡
⎣ J1 0 m1S(d1)R

T
1

0 J2 m2S(d2)R
T
2

m1R1S
T (d1) m2R2S

T (d2) (m1 +m2)I3×3

⎤
⎦

⎡
⎣ω̇1

ω̇2

ẍ

⎤
⎦

+

⎡
⎣ ω1 × J1ω1

ω2 × J2ω2

−m1R1S
T (ω1)S(ω1)d1 −m2R2S

T (ω2)S(ω2)d2

⎤
⎦ =

⎡
⎣00
0

⎤
⎦ . (9.34)

Thus, the Euler–Lagrange equations (9.34) and the two rotational kinematics
equations (9.32) and (9.33) describe the dynamical flow of the connected rigid
bodies in terms of the evolution of (R1, R2, x, ω1, ω2, ẋ) ∈ T(SO(3)×SO(3)×
R

3) on the tangent bundle of SO(3)× SO(3)× R
3.

9.7.2 Hamilton’s Equations

Hamilton’s equations can be obtained by introducing the Legendre transfor-
mation

⎡
⎣Π1

Π2

p

⎤
⎦ =

⎡
⎢⎣

∂L̃(R,x,ω,ẋ)
∂ω1

∂L̃(R,x,ω,ẋ)
∂ω2

∂L̃(R,x,ω,ẋ)
∂ẋ

⎤
⎥⎦=

⎡
⎣ J1 0 m1S(d1)R

T
1

0 J2 m2S(d2)R
T
2

m1R1S
T (d1) m2R2S

T (d2) (m1 +m2)I3×3

⎤
⎦

⎡
⎣ω1

ω2

ẋ

⎤
⎦ .

The angular momentum (Π1, Π2, p) ∈ T∗
(R1,R2,x)

(SO(3) × SO(3) × R
3) is

conjugate to (ω1, ω2, ẋ) ∈ T(R1,R2,x)(SO(3)× SO(3)× R
3); thus

⎡
⎣ω1

ω2

ẋ

⎤
⎦ =

⎡
⎣M

I
11 M I

12 M I
13

M I
21 M I

22 M I
23

M I
31 M I

32 M I
33

⎤
⎦

⎡
⎣Π1

Π2

p

⎤
⎦ ,
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where

⎡
⎣M

I
11 M I

12 M I
13

M I
21 M I

22 M I
23

M I
31 M I

32 M I
33

⎤
⎦ =

⎡
⎣ J1 0 m1S(d1)R

T
1

0 J2 m2S(d2)R
T
2

m1R1S
T (d1) m2R2S

T (d2) (m1 +m2)I3×3

⎤
⎦
−1

is the inverse of the 9 × 9 partitioned matrix given above. The modified
Hamiltonian function can be written as

H̃(R, x,Π, p) =
1

2

⎡
⎣Π1

Π2

p

⎤
⎦
T ⎡
⎣M

I
11 M I

12 M I
13

M I
21 M I

22 M I
23

M I
31 M I

32 M I
33

⎤
⎦

⎡
⎣Π1

Π2

p

⎤
⎦ .

From (6.10) and (3.12), Hamilton’s equations are given by

ṙ1i = r1i ×
{
M I

11Π1 +M I
12Π2 +M I

13p
}
, i = 1, 2, 3, (9.35)

ṙ2i = r2i ×
{
M I

21Π1 +M I
22Π2 +M I

23p
}
, i = 1, 2, 3, (9.36)

ẋ = M I
31Π1 +M I

32Π2 +M I
33p, (9.37)

and also from (6.11) and (3.13),

Π̇1 = Π1 ×
(
M I

11Π1 +M I
12Π2 +M I

13p
)
+

3∑
i=1

r1i × ∂H̃

∂r1i
, (9.38)

Π̇2 = Π2 ×
(
M I

21Π1 +M I
22Π2 +M I

23p
)
+

3∑
i=1

r2i × ∂H̃

∂r2i
, (9.39)

ṗ = 0. (9.40)

The kinematic equations (9.35), (9.36), and (9.37) and Hamilton’s equa-
tions (9.38), (9.39), and (9.40) describe the Hamiltonian flow of the con-
nected rigid bodies in terms of the evolution of (R1, R2, x,Π1, Π2, p) ∈
T∗(SO(3)× SO(3)× R

3) on the cotangent bundle of SO(3)× SO(3)× R
3.

9.7.3 Conservation Properties

The Hamiltonian for the connection of two rigid bodies through a universal
joint, which coincides with the total energy E in this case, is given by

H =
1

2
(m1 +m2) ‖ẋ‖2 + 1

2
ωT
1 J1ω1 +

1

2
ωT
2 J2ω2

+ ẋT {m1R1S(ω1)d1 +m2R2S(ω2)d2} .

It can be shown that this Hamiltonian is constant along each solution of the
dynamical flow.
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It is clear from Hamilton’s equations (9.40) that the translational momen-
tum

p = m1R1S
T (d1)ω1 +m2R2S

T (d2)ω2 + (m1 +m2)ẋ

is constant along each solution of the dynamical flow. This can viewed as
a consequence of Noether’s theorem and the translational invariance of the
Lagrangian.

9.7.4 Equilibrium Properties

The potential energy is identically zero. If the angular velocity vector of the
rigid body and the translational velocity vector of the connecting point are
zero, it follows that the configuration will remain constant. As such, any
constant attitude of each rigid body and any constant position of the rigid
bodies correspond to an equilibrium solution.

Suppose that (R1e, R2e, xe, 0, 0, 0) ∈ T(SO(3)× SO(3)×R
3) is an equilib-

rium solution. It can be shown that the linearized equations at this equilib-
rium are given by

⎡
⎣ J1 0 m1S(d1)R

T
1e

0 J2 m2S(d2)R
T
2e

m1R1eS
T (d1) m2R2eS

T (d2) (m1 +m2)I3×3

⎤
⎦

⎡
⎣ξ̈1ξ̈2
ξ̈3

⎤
⎦ =

⎡
⎣00
0

⎤
⎦ .

These linearized dynamics are defined on the eighteen-dimensional tangent
space of T(SO(3)×SO(3)×R

3) at (R1e, R2e, xe, 0, 0, 0) ∈ T(SO(3)×SO(3)×
R

3); the linear dynamics approximate the Lagrangian flow of the connected
rigid bodies in a neighborhood of the equilibrium. The nonlinear global dy-
namics of the connected rigid bodies, as described previously, provide much
better insight into the dynamics.

9.8 Dynamics of a Rotating and Translating Rigid Body
with an Appendage

A rigid body can rotate and translate freely in a three-dimensional space.
A proof mass element, viewed as an ideal particle, is constrained to move
within a frictionless slot that is fixed in the rigid body. A linear elastic spring
connects the proof mass element and the rigid body in the slot. The proof
mass element and linear elastic spring represent a flexible appendage of the
rigid body.

We select two Euclidean frames: an inertially fixed frame and a frame fixed
to the rigid body; the origin of the body-fixed frame is located at the center of



436 9 Rigid and Multi-Body Systems

mass of the rigid body, ignoring the proof mass element. The slot is assumed
to be along the first axis of the body-fixed frame. If the distance between the
center of mass and the proof mass element is L, the spring is not stretched
and it exerts no force on the proof mass. Let m denote the mass of the proof
mass element in the slot, let M denote the mass of the rigid body, and let J
be the 3× 3 inertia matrix of the rigid body without the mass element.

Let R ∈ SO(3) be the attitude of the rigid body, let y ∈ R
3 be the position

vector of the center of mass of the rigid body in the inertially fixed frame,
and let x ∈ R

1 be the displacement of the proof mass element along the slot
from the location at which the spring exerts no force; the position vector of
the proof mass element in the body-fixed frame is (L + x)e1 ∈ R

3. Thus,
the configuration of the rigid body and appendage is described by the triple
(R, y, x) ∈ SE(3) × R

1 and SE(3) × R
1 is the configuration manifold. There

are seven degrees of freedom. A schematic of a rotating and translating rigid
body with an elastic appendage is shown in Figure 9.8.

R ∈ SO(3)

y ∈ R1

x ∈ R1

Fig. 9.8 Rotating and translating rigid body with elastic appendage

9.8.1 Euler–Lagrange Equations

The rotation matrix for the rigid body attitude satisfies the kinematics equa-
tion

Ṙ = RS(ω), (9.41)

where ω ∈ TRSO(3) is the angular velocity vector of the rigid body repre-
sented with respect to the body-fixed frame.

The kinetic energy of only the rigid body is 1
2M‖ẏ‖2 + 1

2ω
TJω. Since the

location of the proof mass element in the inertially fixed frame is given by
y + (L + x)Re1 ∈ R

3, the velocity vector of the proof mass element in the
inertial frame is given by ẏ+ ẋRe1+(L+x)RS(ω)e1 ∈ R

3. The total kinetic
energy of the rigid body and proof mass is therefore given by
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T =
1

2
M‖ẏ‖2 + 1

2
ωTJω +

1

2
m‖ẏ + ẋRe1 + (L+ x)RS(ω)e1‖2

=
1

2
(M +m)‖ẏ‖2 + 1

2
ωTJω +

1

2
mẋ2

−mẋ(L+ x)eT1 S(e1)ω +mẏT {ẋRe1 + (L+ x)RS(ω)e1}
+

1

2
m(L+ x)2ωTST (e1)S(e1)ω

=
1

2
(M +m)‖ẏ‖2 + 1

2
ωT {J +m(L+ x)2ST (e1)S(e1)}ω +

1

2
mẋ2

+mẏT {ẋRe1 + (L+ x)RS(ω)e1}.

The potential energy is the energy stored in the elastic spring and is given
by U = 1

2κx
2.

The resulting modified Lagrangian function L̃ : T(SE(3) × R
1) → R

1 is
given by

L̃(R, y, x, ω, ẏ, ẋ) =
1

2
ωT {J +m(L+ x)2ST (e1)S(e1)}ω +

1

2
(M +m)‖ẏ‖2

+
1

2
mẋ2 +mẏTRe1ẋ−m(L+ x)ẏTRS(e1)ω − 1

2
κx2,

or in matrix-vector form

L̃(R, y, x, ω, ẏ, ẋ)

=
1

2

⎡
⎣ωẏ
ẋ

⎤
⎦
T ⎡
⎣J +m(L+ x)2ST (e1)S(e1) m(L+ x)S(e1)R

T 0
m(L+ x)RST (e1) (M +m)I3×3 mRe1

0 meT1 R
T m

⎤
⎦

⎡
⎣ωẏ
ẋ

⎤
⎦

− 1

2
κx2.

Note that the Lagrangian function is independent of the position vector of
the rigid body; this implies the existence of a translational symmetry in the
system. The infinitesimal variation of the action integral is given by

δG =

∫ tf

t0

[
{(J +m(L+ x)2ST (e1)S(e1))ω +m(L+ x)S(e1)R

T ẏ}T δω

+mẏT {ẋδRe1 + (L+ x)δRS(ω)e1}
+ {(M +m)ẏ +m(ẋRe1 + (L+ x)RS(ω)e1)}T δẏ
+ {mẋ+mẏTRe1}T δẋ
+ {m(L+ x)ωTST (e1)S(e1)ω +mẏTRS(ω)e1 − κx}T δx

]
dt.

The infinitesimal variations in SO(3) can be written as
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δR = RS(η),

δω = η̇ + S(ω)η,

for differentiable curves η : [t0, tf ] → R
3 satisfying η(t0) = η(tf ) = 0, the

infinitesimal variations in R
3 can be expressed as δy : [t0, tf ] → R

3 satisfying
δy(t0) = δy(tf ) = 0, and the infinitesimal variations in R

1 can be expressed
as δx : [t0, tf ] → R

1 satisfying δx(t0) = δx(tf ) = 0. Substituting these into
the above and integrating by parts, we obtain

δG =

∫ tf

t0

[
{(J +m(L+ x)2ST (e1)S(e1))ω̇ + 2m(L+ x)S(e1)S(e1)ωẋ

+m(L+ x)S(e1)R
T ÿ + S(ω)((J +m(L+ x)2ST (e1)S(e1))ω)}T η

+ {(M +m)ÿ +mRe1ẍ+ 2mẋRS(ω)e1

−m(L+ x)(RS(ω)TS(ω)e1 −RS(e1)ω̇)}T δy
+ {mẍ+meT1 R

T ÿ −m(L+ x)ωTST (e1)S(e1)ω + κx}T δx
]
dt.

According to Hamilton’s principle, the infinitesimal variation of the action
integral is zero for all differentiable curves η : [t0, tf ] → R

3, δy : [t0, tf ] → R
3,

and δx : [t0, tf ] → R
1 that vanish at t0 and tf . Using the fundamental lemma

of variational calculus, we obtain the following Euler–Lagrange equations for
the rotating and translating rigid body with a flexible appendage.

{J +m(L+ x)2ST (e1)S(e1)}ω̇ +m(L+ x)S(e1)R
T ÿ

+2m(L+ x)ST (e1)S(e1)ωẋ

+ω × {J +m(L+ x)2ST (e1)S(e1)}ω = 0,

m(L+ x)RST (e1)ω̇ + (M +m)ÿ +mRe1ẍ+ 2mẋRS(ω)e1

−m(L+ x)RS(ω)TS(ω)e1 = 0,

meT1 R
T ÿ +mẍ−m(L+ x)ωTST (e1)S(e1)ω + κx = 0.

These equations can be written in matrix-vector form

⎡
⎣J +m(L+ x)2ST (e1)S(e1) m(L+ x)S(e1)R

T 0
m(L+ x)RST (e1) (M +m)I3×3 mRe1

0 meT1 R
T m

⎤
⎦

⎡
⎣ω̇ÿ
ẍ

⎤
⎦

+

⎡
⎣2m(L+ x)ST (e1)S(e1)ωẋ+ ω × {

(J +m(L+ x)2ST (e1)S(e1))
}
ω

2mẋRS(ω)e1 −m(L+ x)RS(ω)TS(ω)e1
−m(L+ x)ωTST (e1)S(e1)ω

⎤
⎦

+

⎡
⎣ 0
0
κx

⎤
⎦ =

⎡
⎣00
0

⎤
⎦ . (9.42)
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The kinematic equations (9.41) and the Euler–Lagrange equations (9.42) de-
fine the dynamical flow of a rotating and translating rigid body with an elastic
appendage in terms of the evolution of (R, y, x, ω, ẏ, ẋ) ∈ T(SE(3) × R

1) on
the tangent bundle of SE(3)× R

1.

9.8.2 Hamilton’s Equations

We define the momenta (Π, p1, p2) ∈ T∗
(R,y,x)(SE(3)× R

1) by using the Leg-
endre transformation,

⎡
⎣Πp1
p2

⎤
⎦ =

⎡
⎢⎣

∂L̃(R,y,x,ω,ẏ,ẋ)
∂ω

∂L̃(R,y,x,ω,ẏ,ẋ)
∂ẏ

∂L̃(R,y,x,ω,ẏ,ẋ)
∂ẋ

⎤
⎥⎦

=

⎡
⎣J +m(L+ x)2ST (e1)S(e1) m(L+ x)S(e1)R

T 0
m(L+ x)RST (e1) (M +m)I3×3 0

0 0 m

⎤
⎦

⎡
⎣ωẏ
ẋ

⎤
⎦ .

The momentum (Π, p1, p2) ∈ T∗
R,y,x)(SE(3)×R

1) is conjugate to the velocity

vector (ω, ẏ, ẋ) ∈ TR,y,x)(SE(3)× R
1). Thus

⎡
⎣ωẏ
ẋ

⎤
⎦ =

⎡
⎣M

I
11 M I

12 M I
13

M I
21 M I

22 M I
23

M I
31 M I

32 M I
33

⎤
⎦

⎡
⎣Πp1
p2

⎤
⎦ ,

where

⎡
⎣M

I
11 M I

12 M I
13

M I
21 M I

22 M I
23

M I
31 M I

32 M I
33

⎤
⎦ =

⎡
⎣J +m(L+ x)2ST (e1)S(e1) m(L+ x)S(e1)R

T 0
m(L+ x)RST (e1) (M +m)I3×3 0

0 0 m

⎤
⎦
−1

is the inverse of the 7 × 7 partitioned matrix given above. The modified
Hamiltonian function H̃ : T∗(SE(3)× R

1) → R
1 is

H̃(R, y, x,Π, p1, p2) =
1

2

⎡
⎣Πp1
p2

⎤
⎦
T ⎡
⎣M

I
11 M I

12 M I
13

M I
21 M I

22 M I
23

M I
31 M I

32 M I
33

⎤
⎦

⎡
⎣Πp1
p2

⎤
⎦+

1

2
κx2.

Thus, we obtain Hamilton’s equations for the rotating and translating rigid
body with an elastic appendage; we express the rotational kinematics of the
rigid body in terms of the columns ri ∈ S2, i = 1, 2, 3, of the rigid body
attitude RT ∈ SO(3).
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ṙi = ri ×
{
M I

11Π +M I
12p1 +M I

13p2
}
, i = 1, 2, 3, (9.43)

[
ẏ
ẋ

]
=

[
M I

21 M I
22 M I

23

M I
31 M I

32 M I
33

]⎡
⎣Πp1
p2

⎤
⎦ , (9.44)

and also from (6.11) and (3.13),

Π̇ = Π × (
M I

11Π +M I
12p1 +M I

13p2
)
+

3∑
i=1

ri × ∂H̃

∂ri
,

ṗ1 = 0,

ṗ2 = −∂H̃

∂x
.

The above equations can be expressed as

⎡
⎣Π̇ṗ1
ṗ2

⎤
⎦ =

⎡
⎣ Π × ω +mS(RT ẏ) {(L+ x)S(e1)ω − e1ẋ}

0
m(L+ x)ωTST (e1)S(e1)ω −mẏTRS(e1)ω − κx

⎤
⎦ , (9.45)

where the right-hand side is evaluated using the Legendre transformation.
Thus, equations (9.43), (9.44), and (9.45) define the Hamiltonian flow of a
rotating and translating rigid body with an elastic appendage in terms of the
evolution of (R, y, x,Π, p1, p2) ∈ T(SE(3) × R

1) on the cotangent bundle of
SE(3)× R

1.

9.8.3 Conservation Properties

The Hamiltonian

H =
1

2
(M +m)‖ẏ‖2 + 1

2
ωT {J +m(L+ x)2ST (e1)S(e1)}ω +

1

2
mẋ2

+mẏT {ẋRe1 + (L+ x)RS(ω)e1}+ 1

2
κx2

which coincides with the total energy E in this case is conserved along any
solution of the dynamical flow of the rotating and translating rigid body with
an elastic appendage.

The total translational momentum in the inertial frame, namely

p1 = m(L+ x)RST (e1)ω + (M +m)ẏ +mRe1ẋ

is also conserved along each solution of the dynamical flow of the rotating
and translating rigid body with an elastic appendage. This is a consequence
of Noether’s theorem and the translational symmetry of the Lagrangian.
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9.8.4 Equilibrium Properties

The equilibrium solutions occur when the angular velocity vector and the
translational velocity vector of the rigid body are zero and the proof mass
element is located in the slot at the point where the elastic spring is not
deformed. The rigid body and appendage can be in equilibrium at any fixed
attitude of the rigid body and at any fixed position vector of the rigid body.

To illustrate the linearization of the dynamics of a translating and rotat-
ing rigid body with appendage, we follow the linearization development used
previously for a rotating rigid body with appendage. We examine the pro-
totypical equilibrium solution (I3×3, 0, 0, 0, 0, 0) ∈ T(SE(3) × R

1). Following
the results in Appendix B, the linearized equations are given by

⎡
⎣J +mL2ST (e1)S(e1) mLS(e1) 0

mLST (e1) (M +m)I3×3 me1
0 meT1 m

⎤
⎦

⎡
⎣ξ̈1ξ̈2
ξ̈3

⎤
⎦+

⎡
⎣0 0 0
0 0 0
0 0 κ

⎤
⎦

⎡
⎣ξ1ξ2
ξ3

⎤
⎦ =

⎡
⎣00
0

⎤
⎦ .

These linearized differential equations are defined on the fourteen-dimensional
tangent space of T(SE(3) × R

1) at (I3×3, 0, 0, 0, 0, 0) ∈ T(SE(3) × R
1).

These linear dynamics approximate the translational and rotational dynam-
ics of the rigid body with appendage in a neighborhood of the equilibrium
(I3×3, 0, 0, 0, 0, 0) ∈ T(SE(3) × R

1). These simple linear dynamics are accu-
rate only to first order in the perturbations. Higher-order coupling effects are
important for large perturbations from the equilibrium.

9.9 Dynamics of a Full Body System

Consider the full body rotational and translational dynamics for n rigid bod-
ies under the action of Newtonian gravitational forces between each pair of
bodies. Throughout the development, we ignore the possibility of collisions
between two or more bodies. Equations of motion for the full body dynamics
are derived in an inertial Euclidean frame, and they are expressed in both
Lagrangian and Hamiltonian form. The equations demonstrate the coupling
between the translational motion and the rotational motion of the n bodies.
The full body dynamics have 6n degrees of freedom. A schematic of a full
body system with n = 2 is shown in Figure 9.9. The full body problem was
introduced in [67]; the subsequent development follows [50, 51].

We introduce an inertial Euclidean frame in R
3 and a body-fixed frame for

each of the n bodies. The origin of the i-th body-fixed frame is located at the
center of mass of body Bi, i = 1, . . . , n. The configuration space of the i-th
rigid body is SE(3). We denote the position of the center of mass of body Bi in
the inertial frame by xi ∈ R

3, and we denote the attitude of Bi by Ri ∈ SO(3),
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(R1, x1)∈ SE(3) (R2, x2)∈ SE(3)

Fig. 9.9 Full body system

which is a rotation matrix from the i-th body-fixed frame to the inertial
frame, for i = 1, . . . , n. Thus, the full body configuration is described by
(R1, x1, . . . , Rn, xn) ∈ (SE(3))n, and the configuration manifold is (SE(3))n.
We use the notation R = (R1, . . . , Rn) ∈ SO(3)n and x = (x1, . . . , xn) ∈
(R3)n, so that (R, x) ∈ SE(3)n.

9.9.1 Euler–Lagrange Equations

To derive the equations of motion, we first construct a Lagrangian for the
full body dynamics. Given (xi, Ri) ∈ SE(3), the inertial position of a mass
element of Bi is given by xi + Riρi, where ρi ∈ R

3 denotes the position of
the mass element in the body-fixed frame. The kinetic energy of Bi can be
written as

Ti(ωi, ẋi) =
1

2

∫
Bi

‖ẋi + Ṙiρi‖2 dmi(ρi), i = 1, . . . , n.

Using the fact that
∫
Bi

ρidmi(ρi) = 0, and the kinematics equation

Ṙi = RiS(ωi), i = 1, . . . , n, (9.46)

where ωi ∈ TRSO(3) is the angular velocity vector of body Bi in its body-fixed
frame, the kinetic energy for each body can be rewritten as

Ti(ωi, ẋi) =
1

2

∫
Bi

‖ẋi‖2 + ‖S(ωi)ρi‖2 dmi(ρi)

=
1

2
mi ‖ẋi‖2 + 1

2
ωT
i Jωi,

where mi =
∫
Bi

dmi(ρi) is the mass of Bi, and Ji =
∫
Bi

S(ρi)
TS(ρi)dmi(ρi)

is the standard 3 × 3 inertia matrix of the i-th body for i = 1, . . . , n. Thus,
the modified Lagrangian of n full bodies L̃ : TSE(3)n → R

1 can be written
as

L̃(R, x, ω, ẋ) =
n∑

i=1

{
1

2
ωT
i Jωi +

1

2
mi ‖ẋi‖2

}
− U(R, x),

where ω = (ω1, . . . , ωn) ∈ TR(SO(3))
n and ẋ = (ẋ1, . . . , ẋn) ∈ Tx(R

3)n.
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The specific form of the Newtonian gravitational potential energy U :
SE(3)n → R

1 is described. It is the sum of the mutual potentials over all
pairs of distinct bodies given by

U(R, x) = −1

2

n∑
i=1

n∑
j=1
j �=i

∫
Bi

∫
Bj

Gdmj(ρj)dmi(ρi)

‖xi +Riρi − xj −Rjρj‖ ,

whereG is the universal gravitational constant and ρi ∈ R
3 denotes the vector

from the center of mass of the i-th body to the element of mass dmi(ρi) in
its body-fixed frame, i = 1, . . . , n.

The infinitesimal variation of the action integral is given by

δG =

∫ tf

t0

{
n∑

i=1

{ωT
i Jiδωi +miẋ

T
i δẋi} − δU(R, x)} dt.

The infinitesimal variations in SO(3) can be written as

δRi = RiS(ηi), i = 1, . . . , n,

δωi = η̇i + S(ωi)ηi, i = 1, . . . , n,

for differentiable curves ηi : [t0, tf ] → R
3 satisfying ηi(t0) = ηi(tf ) = 0,

for i = 1, . . . , n, and the infinitesimal variations in R
3 can be expressed as

δxi : [t0, tf ] → R
3 satisfying δxi(t0) = δxi(tf ) = 0, for i = 1, . . . , n.

The infinitesimal variation of the potential energy is

δU(R, x) =
1

2

n∑
i=1

n∑
j=1
j �=i

∫
Bi

∫
Bj

G(σi − σj)
T (δσi − δσj)

‖σi − σj‖3
dmj(ρj)dmi(ρi),

where

σi = xi +Riρi,

and

δσi = δxi + δRiρi = δxi −RiS(ρi)ηi.

After a careful rearrangement of terms,

δU(R, x) =
n∑

i=1

MT
i ηi +

n∑
i=1

FT
i δxi,

where
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Mi =

∫
Bi

n∑
j=1
j �=i

∫
Bj

GS(ρi)R
T
i (xi +Riρi − xj −Rjρj)dmj(ρj)dmi(ρi)

‖xi +Riρi − xj +Rjρj‖3
,

and

Fi =

∫
Bi

n∑
j=1
j �=i

∫
Bj

G(xi +Riρi − xj −Rjρj)dmj(ρj)dmi(ρi)

‖xi +Riρi − xj +Rjρj‖3
.

Here, Mi : SE(3)
n → R

3 can be interpreted as the gravitational moment on
the i-th rigid body due to all the other rigid bodies and Fi : SE(3)

n → R
3

can be interpreted as the gravitational force on the i-th rigid body due to all
the other rigid bodies.

Substituting these into the above and integrating by parts we obtain

δG =

n∑
i=1

∫ tf

t0

{{Jiω̇i + S(ωi)Jiωi −Mi}T ηi + {miẍi − Fi}T δxi} dt.

Consequently, the Euler–Lagrange equations are given by

Jiω̇i + ωi × Jiωi −Mi = 0, i = 1, . . . , n, (9.47)

miẍi − Fi = 0, i = 1, . . . , n, (9.48)

where the gravitational moments and forces were given previously by integral
expressions. Thus, the kinematic equations (9.46), and the Euler–Lagrange
equations (9.47) and (9.48) describe the dynamical flow of the full body
dynamics in terms of (R, x, ω, ẋ) ∈ TSE(3)n.

9.9.2 Hamilton’s Equations

Hamilton’s equations can be obtained using the Legendre transformation
defined by

Πi =
∂L(R, x, ω, ẋ)

∂ωi
= Jωi, i = 1, . . . , n,

pi =
∂L(R, x, ω, ẋ)

∂ẋi
= miẋi, i = 1, . . . , n,

where (Π, p) ∈ T∗
(R,x)(SE(3))

n are angular momenta and translational mo-

menta that are conjugate to (ω, ẋ) ∈ T(R,x)(SE(3))
n. The modified Hamilto-

nian function is
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H̃(R, x,Π, p) =

n∑
i=1

{
1

2
ΠT

i J
−1
i Πi +

1

2mi
‖pi‖2

}
+ U(R, x),

where we use the notation Π = (Π1, . . . , Πn) and p = (p1, . . . , pn). Hamil-
ton’s equations of motion can be written as

Ṙi = RiS(J
−1
i Πi), i = 1, . . . , n, (9.49)

ẋi =
pi
mi

, i = 1, . . . , n, (9.50)

Π̇i = Πi × J−1
i Πi +Mi, i = 1, . . . , n, (9.51)

ṗi = Fi, i = 1, . . . , n, (9.52)

with the gravitational moments and forces given previously. Hamilton’s equa-
tions (9.49), (9.50), (9.51), and (9.52) describe the Hamiltonian flow of the
full body dynamics in terms of (R, x,Π, p) ∈ T∗SE(3)n on the cotangent
bundle of SE(3)n.

9.9.2.1 Comments

The equations of motion are coupled through the gravitational potential,
which is described by a complicated expression that captures the most im-
portant feature of the full body dynamics. The complexity of the poten-
tial energy arises due to the presence of the body integrals and the body
summations. It is challenging to evaluate the gravitational potential and to
evaluate the gravitational moments and gravitational forces which entails
evaluating derivatives of the potential. Various approximations can be made
to simplify these expressions for the gravitational moments and gravitational
forces [50, 51].

These equations of motion for the full body dynamics can have complicated
solution properties that involve coupling between the rotational dynamics and
the translational or orbital dynamics. In particular, this is of importance in
understanding the orbital dynamics of certain binary asteroids.

9.9.3 Conservation Properties

The Hamiltonian, which coincides with the total energy E in this case, is
given by
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H =

n∑
i=1

{
1

2
mi ‖ẋi‖2 + 1

2
ωT
i Jωi

}

− 1

2

n∑
i=1

n∑
j=1
j �=i

∫
Bi

∫
Bj

Gdmj(ρj)dmi(ρi)

‖xi +Riρi − xj −Rjρj‖ .

The Hamiltonian is constant along each solution of the dynamical flow of the
n full bodies acting under their mutual gravity.

Depending on additional symmetry properties of the rigid bodies, there
can be additional conserved quantities, but these are not considered here.

9.9.4 Equilibrium Properties

There are no meaningful equilibrium solutions. The full body dynamics can
be extremely complicated but in special cases there exist important rela-
tive equilibrium solutions that correspond to solutions for which the relative
motion between the bodies is constant.

9.9.5 Relative Full Body Dynamics

The motion of the full rigid bodies depends only on the relative positions and
the relative attitudes of the bodies. This is a consequence of the fact that the
gravitational potential only depends on these relative variables, and hence,
the Lagrangian is invariant under rigid translations and rigid rotations. This
implies that the equations of motion can be expressed in one of the body-fixed
frames using only relative positions and relative attitudes of the bodies.

This leads to an interesting and useful alternative formulation for the
equations of motion of n full rigid bodies that is developed in detail in the
published literature [50, 51].

9.10 Dynamics of a Spacecraft with Reaction Wheel
Assembly

Consider a spacecraft with an arbitrary number of reaction control wheels
acted on by a disturbance force and a disturbance moment. The dynamics
of a spacecraft with reaction wheels have been studied widely [66]. However,
the dynamical models are often based on several simplifying assumptions.
For example, a reaction wheel is often assumed to be inertially symmetric
about its spin axis, and the spin axis corresponds to the principal axis of
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the spacecraft. The translational dynamics are often ignored. In some cases,
the definition of the angular momentum or inertia matrices are unclear and
confusing. For example, inertia matrices and reference frames for the reaction
wheels are not clearly and unambiguously specified.

Here, we present the equations of motion for spacecraft reaction wheels
without relying on any simplifying assumptions, according to our geometric
formulation of mechanics. In this section, the base spacecraft denotes the
spacecraft without reaction wheels, and the (whole) spacecraft refers to the
complete spacecraft including the base spacecraft and n reaction wheels.

Define an inertial Euclidean frame and a body-fixed frame whose origin is
located at the center of mass of the base spacecraft. The configuration of the
base spacecraft is described by (R, x) ∈ SE(3), where x ∈ R

3 is the position
vector of its center of mass with respect to the inertial frame, and R ∈ SO(3)
is the attitude matrix that transforms a vector from the body-fixed frame to
the inertial frame (Figure 9.10).

ρi ∈ R3

x ∈ R3

O

Inertial frame

c.g. of
base spacecraft

si ∈ S2

spin axis

i-th reaction
wheel

Fig. 9.10 Spacecraft with reaction wheels (only the i-th wheel is illustrated)

Next, we describe the configuration of the reaction wheels. Let ρi ∈ R
3 be

the vector from the origin of the body-fixed frame to a base point on the spin
axis of the i-th reaction wheel. The spin axis of the i-th reaction wheel is
denoted by the direction vector si ∈ S2. Since both ρi and si are represented
with respect to the body-fixed frame, they are fixed, i.e., ρ̇i = ṡi = 0, for
i = 1, . . . , n.

We introduce the i-th reaction wheel frame such that its first axis corre-
sponds to si, and the remaining two axes are chosen such that they constitute
an orthogonal frame. Define Qi ∈ SO(3) as the rotation matrix that trans-
forms a vector from the i-th reaction wheel frame to the body-fixed frame
for i = 1, . . . , n. According to the definition of Qi, we have si = Qie1, where
ej ∈ R

3 is the j-th standard basis of R3. It is assumed that the i-th reaction
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wheel frame is fixed to the wheel, i.e., it rotates about the spin axis. There-
fore, the attitude of the i-th reaction wheel can be represented by an element
of S1. More explicitly, let Q0

i ∈ SO(3) represent a fixed reference rotational
configuration of the i-th wheel for i = 1, . . . , n. Since the rotation matrices
Qi and Q0

i differ by a rotation about the spin axis, Qi can be written as

Qi = Q0
i [e1, Cqi, e1 × Cqi], i = 1, . . . , n,

where the matrix C ∈ R
3×2 is given by

C =

⎡
⎣0 0
1 0
0 1

⎤
⎦ ,

and the unit vector qi ∈ S1 corresponds to the last two components of the
second axis of Qi with respect to the frame defined by Q0

i , for i = 1, . . . , n.
The vector of reaction wheel attitudes, defined in this way, is given by q =
(q1, . . . , qn) ∈ (S1)n.

The corresponding configuration for the spacecraft and reaction wheel as-
sembly is described by (R, x, q) ∈ SE(3)× (S1)n and the configuration man-
ifold is SE(3) × (S1)n. Thus, there are n + 6 degrees of freedom. This is
described in greater detail in [48].

9.10.1 Euler–Lagrange Equations

The kinematics equations for the base spacecraft and the reaction wheels are
given by

Ṙ = RS(Ω), (9.53)

q̇i = qiSωi, i = 1, . . . , n, (9.54)

Q̇i = QiS(e1)ωi = S(si)Qiωi, i = 1, . . . , n, (9.55)

where Ω ∈ TRSO(3) is the angular velocity vector of the base spacecraft
represented with respect to the body-fixed frame, and ωi ∈ TqiS

1 denotes
the spin rate of the i-th reaction wheel, for i = 1, . . . , n. The corresponding
angular velocity vector of the i-th reaction wheel is ωisi with respect to the
body-fixed frame, or equivalently, it is ωie1 with respect to the i-th reaction
wheel frame, for i = 1, . . . , n. The vector of spin rates of the reaction wheels
is given by ω = (ω1, . . . , ωn) ∈ R

n.
Consider a mass element dm(ρ) of the base spacecraft, located with respect

to the body-fixed frame at ρ ∈ R
3. The position vector and the velocity vector

of the mass element are x + Rρ and ẋ + RS(Ω)ρ, respectively, with respect
to the inertial frame.
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Next, consider a mass element dmi(ξi) of the i-th reaction wheel that is
located at ξi with respect to the i-th reaction wheel frame. Since each reaction
wheel is rigid, the position vector of the mass element with respect to the
inertial frame is given by x+R(ρi+Qiξi) and its velocity vector with respect
to the inertial frame is ẋ+RS(Ω)(ρi+Qiξi)+RQiS(e1)ξiωi, for i = 1, . . . , n.

The kinetic energy is the sum of the kinetic energy of the base spacecraft
and the kinetic energy of the reaction wheels:

T =

∫
Bb

1

2
‖ẋ+RS(Ω)ρ‖2 dm(ρ)

+
n∑

i=1

∫
Bi

1

2
‖ẋ+RS(Ω)(ρi +Qiξi) +RQiS(e1)ξiωi)‖2 dmi(ξi),

where Bb and Bi denote the material points of the base spacecraft and the
i-th reaction wheel, respectively. Expanding the right-hand side of the above
expression and rearranging, we obtain

T =
1

2

{∫
Bb

dm(ρ) +

n∑
i=1

∫
Bi

dmi(ξi)

}
‖ẋ‖2

+ ẋTRS(Ω)

{∫
Bb

ρ dm(ρ) +

n∑
i=1

∫
Bi

(ρi +Qiξi) dmi(ξi)

}

+ ẋT
n∑

i=1

RQiS(e1)ωi

∫
Bi

ξi dmi(ξi)

+
1

2
ΩT

{∫
Bb

−S2(ρ)dm(ρ) +
n∑

i=1

∫
Bi

−S(ρi +Qiξi)
2dmi(ξi)

}
Ω

+
1

2

n∑
i=1

eT1

{∫
Bi

−S(ξi)
2 dmi(ξi)

}
e1ω

2
i

+
n∑

i=1

ΩT

{∫
Bi

−S(ρi +Qiξi)S(Qiξi) dmi(ξi)

}
siωi.

Let mb,mi be the mass of the base spacecraft, and the mass of the i-th
reaction wheel, respectively. The total mass is given by m = mb +

∑n
i=1 mi.

Next, we introduce several variables that describe the mass distribution of
the base spacecraft and the reaction wheels. Since the origin of the body-
fixed frame is located at the center of mass of the base spacecraft, we have∫
Bb

ρdm(ρ) = 0. Let Jb ∈ R
3×3 be the inertia matrix of the base spacecraft

with respect to the body-fixed frame:

Jb =

∫
Bb

S(ρ)TS(ρ)dm(ρ).
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Note that it is defined with respect to the base spacecraft frame. Also, let
Ii ∈ R

3 and Ji ∈ R
3×3 be the first and the second mass moments of inertia

for the i-th reaction wheel:

Ii =

∫
Bi

ξi dmi(ξi), Ji =

∫
Bi

S(ξi)
TS(ξi) dmi(ξi), i = 1, . . . , n.

Introduce

J = Jb +

n∑
i=1

miS(ρi)
TS(ρi),

which corresponds to the inertia of the whole spacecraft when Ii = 0 and
Ji = 0, i.e., the reaction wheel is replaced by a point mass. Substituting and
using the notation Qie1 = si, the kinetic energy can be reexpressed as

T =
1

2
m‖ẋ‖2 + ẋTR

n∑
i=1

{S(Ω)(miρi +QiIi) +QiS(e1)Iiωi}

+
1

2
ΩT {J +

n∑
i=1

(S(ρi)
TS(QiIi) + S(QiIi)

TS(ρi) +QiJiQ
T
i )}Ω

+
1

2

n∑
i=1

eT1 Jie1ω
2
i +

n∑
i=1

ΩT (S(ρi)
TQiS(Ii) +QiJi)e1ωi.

The potential function U : SE(3) → R
1 depends on the attitude and the

position of the spacecraft but not on the attitudes of the reaction wheels.
The modified Lagrangian function is given by

L̃(R, x, q,Ω, ẋ, ω) = T (R, q,Ω, ẋ, ω)− U(R, x),

reflecting the assumption that the kinetic energy is independent of the inertial
position of the spacecraft and the potential energy is independent of the
attitudes of the reaction wheels.

The derivatives of the Lagrangian with respect to x and ẋ are given by

DxL(R, x, q,Ω, x, ω) = −∂U(R, x)

∂x
� fu,

DẋL(R, x, q,Ω, ẋ, ω) = mẋ+R

n∑
i=1

{Ω̂(miρi +QiIi) +Qiê1Iiωi}.

The variation of R is δR = RS(η) for differentiable curves η : [t0, tf ] →
R

3. Using the notation from Chapter 8, the left-trivialized derivative of the
Lagrangian with respect to R is given by
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(T∗
ILR ·DRL) · η

= DRL · δR
= DRL ·RS(η)

= ẋTRS(η)

n∑
i=1

{S(Ω)(miρi +QiIi) +QiS(e1)Iiωi}+Mu · η

= −S(RT ẋ)
n∑

i=1

{S(Ω)(miρi +QiIi) +QiS(e1)Iiωi}T η +MT
u η,

where Mu = −T∗
ILR ·DRU(R, x) denotes the moment due to the potential.

The derivative of the Lagrangian with respect to Ω can be written as

DΩL(R, x, q,Ω, ẋ, ω) = −S(RT ẋ)
n∑

i=1

(miρi +QiIi)

+ {J +

n∑
i=1

(S(ρi)
TS(QiIi) + ST (QiIi)S(ρi) +QiJiQ

T
i )}Ω

+
n∑

i=1

(S(ρi)
TQiS(Ii) +QiJi)e1ωi.

Since the i-th reaction wheel frame has one degree of freedom corresponding
to rotations about its spin axis, the infinitesimal variations of qi, Qi, and ωi

can be written as

δqi = Sqiγi,

δQi = QiS(e1)γi = S(si)Qiγi,

δωi = γ̇i.

Using these expressions for the infinitesimal variations, the derivative of the
Lagrangian with respect to the attitude of the i-th reaction wheel qi is given
by

DqiL(R, x, q,Ω, ẋ, ω) · δqi =
[
ẋTR{S(Ω)QiS(e1)Ii +QiS(e1)

2Iiωi}

+
1

2
ΩT {S(ρi)TS(QiS(e1)Ii) + S(QiS(e1)Ii)

TS(ρi)

+Qi(S(e1)Ji − JiS(e1))Q
T
i }Ω

+ΩT (S(ρi)
TQiS(e1)S(Ii) +QiS(e1)Ji)e1ωi

]
γi, i = 1, . . . , n.

The derivative of the Lagrangian with respect to ωi is

Dωi
L(R, x, q,Ω, ẋ, ω) = ẋTRQiS(e1)Ii + eT1 Jie1ωi

+ΩT (S(ρi)
TQiS(Ii) +QiJi)e1, i = 1, . . . , n.
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Let fe ∈ R
3 be the external disturbance force applied to the center of

mass of the base spacecraft, represented with respect to the inertial frame,
and let Me ∈ R

3 be the external disturbance moment on the base spacecraft,
represented with respect to the body-fixed frame. The control torque on the
i-th reaction wheel about its spin axis si is denoted by τi ∈ R, for i = 1 . . . , n.
The virtual work done by these force and moments is given by

δW = fe · δx+Me · η +
n∑

i=1

τiγi.

The Euler–Lagrange equations with forces are obtained using the Lagrange–
d’Alembert principle. The infinitesimal variation of the action integral is

δG =

∫ tf

0

{
DΩL · δΩ +DẋL · δẋ+DωL · γ̇
+ (T∗

ILR ·DRL) · η +DxL · δ x+DqL · γ} dt.

The expression for the infinitesimal variation of Ω is given by

δΩ = η̇ + S(Ω)η,

for differentiable curves η : [0, tf ] → R
3, δx : [0, tf ] → R

3, δθ : [0, tf ] → R
n

satisfying η(t0) = η(tf ) = 0, δx(t0) = δx(tf ) = 0, and δθ(t0) = δθ(tf ) = 0.
Substituting the infinitesimal variations and integrating by parts, we obtain
the Euler–Lagrange equations for the spacecraft with reaction wheels as

d

dt
DẋL(R, x, q,Ω, ẋ, ω)−DxL(R, x, q,Ω, ẋ, ω) = fe, (9.56)

d

dt
DΩL(R, x, q,Ω, ẋ, ω) + S(Ω)DΩL(R, x, q,Ω, ẋ, ω)

−T∗
ILR ·DRL(x,R, q, ẋ, Ω, ω) = Me, (9.57)

d

dt
Dωi

L(R, x, q,Ω, ẋ, ω)−DqiL(R, x, q,Ω, ẋ, ω) = τi, i = 1, . . . , n. (9.58)

We consider a few special cases. First, suppose that the base of the spin
axis corresponds to the center of mass of each reaction wheel, i.e., Ii = 0,
and the center of mass of the whole spacecraft including reaction wheels and
the center of mass of the base spacecraft are colocated, i.e.,

∑n
i=1 miρi = 0.

Also, assume the external moments and the potential are independent of the
position of the spacecraft. Then, the translational dynamics are decoupled
from the rotational attitude dynamics, and the Euler–Lagrange equations
can be written as
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(
Jb +

n∑
i=1

(miS(ρ)
TS(ρi) +QiJiQ

T
i )

)
Ω̇ +

n∑
i=1

QiJie1ω̇i

+
n∑

i=1

Qi(S(e1)Ji − JiS(e1))Q
T
i Ωωi +

n∑
i=1

QiS(e1)Jie1ω
2
i

+Ω × {Jb +
n∑

i=1

(miS(ρ)
TS(ρi) +QiJiQ

T
i ))Ω +

n∑
i=1

QiJie1ωi} = M,

(9.59)

eT1 Ji(Q
T
i Ω̇ − S(e1)Q

T
i Ω̇ωi + e1ω̇i)

− 1

2
ΩTQi(S(e1)Ji − JiS(e1))Q

T
i Ω

−ΩTQiS(e1)Jie1ωi = τi, i = 1, . . . , n, (9.60)

where M = Mu +Me ∈ R
3 denotes the total moment, that is the sum of the

moment due to the potential and the external disturbance moment. Here, the
mass distribution of each reaction wheel can be arbitrary, as long as the spin
axis passes through its center of mass.

Second, we further assume that each reaction wheel is inertially sym-
metric about its spin axis, i.e., the inertia matrix can be written as Ji =
diag[αi, βi, βi] for some αi, βi > 0. This implies that S(e1)Ji − JiS(e1) = 0,
QiJie1 = (eT1 Jie1)si = αisi, and QiJiQ

T
i = Ji. Also, assume the external

moments and the potential are independent of the spacecraft position. Then,
the above equations become completely independent of Qi and we obtain:

J ′Ω̇ +
n∑

i=1

αisiω̇i +Ω × (J ′Ω +
n∑

i=1

αisiωi) = M, (9.61)

αis
T
i Ω̇ + αiω̇i = τi, i = 1, . . . , n, (9.62)

where J ′ = Jb+
∑n

i=1(miS(ρ)
TS(ρi)+Ji) ∈ R

3×3 is the fixed inertial matrix
of the whole spacecraft, represented with respect the body-fixed frame. The
Euler–Lagrange equations (9.61), (9.62), describe the dynamical flow of the
spacecraft with reaction wheels in the special cases indicated. Together with
the kinematics equations, they are globally defined on the tangent bundle
T(SE(3)× (S1)n of the configuration manifold.

9.10.2 Hamilton’s Equations

Hamilton’s equations for the spacecraft with reaction wheels can also be ob-
tained. Define the following conjugate momenta, which depend on the kinetic
energy, according to the Legendre transformation
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p = DẋL(R, x, q,Ω, ẋ, ω),

Π = DΩL(R, x, q,Ω, ẋ, ω),

πi = DqiL(R, x, q,Ω, ẋ, ω), i = 1 . . . , n.

Then, the base spacecraft momentum (Π, p) ∈ T∗
(R,x)TSE(3) is conjugate

to (Ω, ẋ) ∈ T(R,x)TSE(3) and the reaction wheel momenta πi ∈ T∗
qiS

1 are
conjugate to ωi ∈ TqiS

1, for i = 1, . . . , n. From this, the Euler–Lagrange
equations are transformed into Hamilton’s equations:

ṗ = DxL(R, x, q,Ω, ẋ, ω) + fe, (9.63)

Π̇ = −S(Ω)Π + T∗
ILR ·DRL(R, x, q,Ω, ẋ, ω) +Me, (9.64)

π̇i = DqiL(R, x, q,Ω, ẋ, ω) + τi, i = 1, . . . , n. (9.65)

Together with the kinematics equations (9.53) and (9.55), these differential
equations describe the dynamical flow of the spacecraft with reaction wheels
on the cotangent bundle T∗(SE(3)× (S1)n).

For the second simplified case discussed above, where the reaction wheel
is axially symmetric about its spin axis, the Legendre transformation of the
attitude dynamics when there is one reaction wheel, i.e., n = 1, is given by

Π = J ′Ω + α1ω1s1,

π1 = α1s
T
1 Ω + α1ω1.

The corresponding Hamilton’s equations for a spacecraft with a single reac-
tion wheel are given by

Π̇ = −Ω ×Π +M,

π̇1 = τ1.

The above Hamilton’s equations describe the dynamical flow of the space-
craft with reaction wheels in the special cases indicated. Together with the
kinematics equations, they are globally defined on the cotangent bundle of
the configuration manifold.

9.10.3 Conservation Properties

In the absence of the external force, external moment, and control torque on
the reaction wheels, the Hamiltonian
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H =
1

2
m‖ẋ‖2 + ẋTR

n∑
i=1

{S(Ω)(miρi +QiIi) +QiS(e1)Iiωi}

+
1

2
ΩT {J +

n∑
i=1

(S(ρi)
TS(QiIi) + S(QiIi)

TS(ρi) +QiJiQ
T
i )}Ω

+
1

2

n∑
i=1

eT1 Jie1ω
2
i +

n∑
i=1

ΩT (S(ρi)
TQiS(Ii) +QiJi)e1ωi + U(R, x),

which coincides with the total energy E in this case, is conserved along each
solution of the dynamical flow of the spacecraft with reaction wheel assembly.

For the second simplified case discussed above, where the reaction wheel
is axially symmetric about its spin axis, this reduces to

E =
1

2
m‖ẋ‖2 + 1

2
ΩTJ ′Ω +

1

2

n∑
i=1

αiω
2
i +

n∑
i=1

αiωiΩ
T si + U(R, x).

Furthermore, if the potential energy is independent of the attitude of the
base spacecraft, the total angular momentum expressed in the inertial frame
is conserved:

Π = R(J ′Ω +

n∑
i=1

αiωisi).

This vector conservation property implies that the scalar magnitude of the
angular momentum in the spacecraft base frame

‖Π‖2 =

∥∥∥∥∥J ′Ω +

n∑
i=1

αiωisi

∥∥∥∥∥
2

is constant along each solution of the dynamical flow.

9.10.4 Equilibrium Properties

The equilibrium solutions occur when the velocity vector is zero and the
position and the attitude of spacecraft are chosen such that there is no force
and moment due to the potential.
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9.11 Dynamics of a Rotating Spacecraft and Control
Moment Gyroscope

A control moment gyroscope (CMG) is mounted on an otherwise rigid base
spacecraft. The rigid spacecraft is assumed to rotate in three dimensions.
The control moment gyroscope consists of a rotor that can rotate, without
friction, about a symmetry axis, and this rotation axis is mounted to a gimbal
that can rotate, without friction, about a gimbal support that is fixed to the
rigid base spacecraft [64].

The attitude of the base spacecraft is described by an attitude matrix R
in the Lie group SO(3). The vector qg ∈ S1 denotes the attitude vector of
the gimbal about its body-fixed axis. The vector qr ∈ S1 denotes the attitude
vector of the rotor about its gimbal-fixed axis. Thus, the configuration vector
(R, qg, qr) ∈ SO(3)×S1×S1. The configuration manifold for a spacecraft and
control moment gyroscope (SCCMG) is SO(3)×S1×S1. Consequently, there
are five degrees of freedom. No external moments act on the spacecraft, the
gimbal, or the rotor. A schematic of a control moment gyroscope is shown
in Figure 9.11; the gimbal axis of this control moment gyroscope, as shown
in the figure, is fixed with respect to the rigid spacecraft which is omitted
from the figure.

Gimbal axis e1

Spin axis a

Fig. 9.11 Control moment gyroscope

Variational methods and Hamilton’s principle are used to derive a geo-
metric form of the equations of motion for the attitude dynamics of a space-
craft and control moment gyroscope. These equations are globally defined on
the configuration manifold and expose important structural features of the
dynamics.
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9.11.1 Euler–Lagrange Equations

We consider an inertially fixed Euclidean frame and a Euclidean frame fixed
to the spacecraft base, with origin located at the center of mass of the space-
craft base.

Let R ∈ SO(3) denote the attitude matrix that transforms from the space-
craft base body-fixed frame to the inertial frame. If Ω ∈ TRSO(3) is the an-
gular velocity vector of the base body expressed in the spacecraft base body
frame, then the attitude kinematics of the spacecraft base body is given by

Ṙ = RS(Ω). (9.66)

The control moment gyroscope consists of an axially symmetric rotor ro-
tating about its symmetry axis, which in turn is rotating about a gimbal axis
fixed in the spacecraft base body frame. Without loss of generality, assume
that the base spacecraft frame is selected so that the gimbal axis is aligned
with the unit vector e1 = [1, 0, 0]T ∈ S2 fixed in the base spacecraft frame.
Let a ∈ S2 denote the direction vector of the instantaneous symmetry axis of
the rotor, expressed as a unit vector a ∈ R

3 in the base spacecraft frame. The
rotor axis a is always normal to the gimbal axis e1 and the three unit vectors
e1, a, e1 × a form a right-handed orthonormal gimbal-fixed frame. Define a
rotation matrix Rg ∈ SO(3) as

Rg =
[
e1, a, e1 × a1

]
,

which represents the linear transformation from the gimbal-fixed frame to
the base body-fixed frame. Let ωg ∈ R

1 be the scalar angular velocity of the
gimbal about the gimbal rotational axis so that the angular velocity vector
of the gimbal is

Ωg = ωge1 ∈ R
3,

expressed in the gimbal-fixed frame. Then the attitude kinematics equation
for the gimbal-fixed frame is given by

Ṙg = RgS(Ωg) = ωgRgS(e1).

Let qg ∈ S1 denote the planar attitude of the gimbal about its base body-
fixed axis e1 in the base spacecraft frame. It consists of the last two elements
of the gimbal axis a, i.e.,

a = Cqg,

where we used an embedding of R2 into R
3 defined by the 3× 2 matrix
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C =

⎡
⎣0 0
1 0
0 1

⎤
⎦ .

The planar rotational kinematics of the gimbal are given by

q̇g = ωgSqg, (9.67)

where the 2× 2 skew-symmetric matrix

S =

[
0 −1
1 0

]
.

Consider an orthonormal frame that is fixed to the rotor whose first axis
coincides with the gimbal axis, and its second axis corresponds to the spin
axis of the rotor. Let Rr ∈ SO(3) be the rotation matrix representing the
linear transformation from the rotor-fixed frame to the body-fixed frame.

Let ωr ∈ R
1 be the scalar angular velocity of the rotor about the rotor

rotational axis a ∈ S2. It is easy to see that the angular velocity vector of the
rotor, expressed in the base body-fixed frame, is

Ωr = ωge1 + ωra ∈ R
3.

The kinematics equation for the attitude of the rotor-fixed frame is given by

Ṙr = S(ωge1 + ωra)Rr.

In contrast to other attitude kinematics equations, such as (9.66), the angular
velocity term S(ωge1 +ωra) is placed left of Rr. This is because the rotation
matrix Rr represents the linear transformation from the rotor-fixed frame
to the body-fixed frame, and the angular velocity of the rotor-fixed frame,
namely ωge1 + ωra is resolved with respect to the body-fixed frame.

Let qr ∈ S1 denote the planar attitude of the rotor about its gimbal-fixed
axis a ∈ S3. The planar rotational kinematics of the rotor are

q̇r = ωrSqr. (9.68)

The Lagrangian function for a spacecraft and control moment gyroscope,
under the stated assumptions, is now derived. Denote the 3×3 inertia matrix
of the spacecraft base body expressed in the base body frame by Jb. The
rotational kinetic energy of the base body of the spacecraft is

Tb =
1

2
ΩTJbΩ. (9.69)

Consider a mass element dmg(ξg) of the gimbal located at ξg in the gimbal-
fixed frame. Let zg be the location of the mass element with respect to the
inertial frame, which can be written as
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zg = R(ρg +Rgξg).

The time derivative of zg is given by

żg = RS(Ω)(ρg +Rgξr) + ωgRRgS(e1)ξg

= RS(Ω)ρg +RRgS(R
T
g Ω + ωge1)ξg.

The kinetic energy of the gimbal can be written as

Tg =

∫
G

1

2
‖żg‖2 dmg(ξg)

=
1

2
mgΩ

TS(ρg)
TS(ρg)Ω

+
1

2
(RT

g Ω + ωge1)
T

{∫
G
S(ξg)

TS(ξg) dmg(ξg)

}
(RT

g Ω + ωge1),

where we used the fact that
∫
G ξgdmg(ξg) = 0, since the origin of the gimbal-

fixed frame coincides with the center of mass of the gimbal. Let Jg ∈ R
3×3 be

the inertia matrix of the gimbal about the origin of the gimbal-fixed frame
represented with respect to the gimbal-fixed frame:

Jg =

∫
G
ST (ξg)S(ξg) dmg(ξg).

Note that J̇g = 0 since the mass distribution of the gimbal is fixed with
respect to the gimbal-fixed frame. By substitution, the kinetic energy of the
gimbal can be expressed as

Tg =
1

2
mgΩ

TS(ρg)
TS(ρg)Ω +

1

2
(RT

g Ω + ωge1)
TJg(R

T
g Ω + ωge1)

=
1

2
ΩT (RgJgR

T
g +mgS

T (ρg)S(ρg))Ω +ΩTRgJge1ωg +
1

2
eT1 Jge1ω

2
g .

This expression reflects the fact that the inertia matrix of the gimbal repre-
sented with respect to the base body frame depends on the relative attitude
Rg of the gimbal with respect to the base spacecraft.

Consider a mass element dmr(ξr) of the rotor, located at ξr in the rotor-
fixed frame. Let zr ∈ R

3 be the vector from the origin of the rotor-fixed frame
to the mass element, expressed in the inertial frame. It is given by

zr = R(ρg +Rrξr).

The time derivative of zr can be written as

żr = RS(Ω)(ρg +Rrξr) +RS(ωge1 + ωra)Rrξr

= RS(Ω)ρg +RS(Ω + ωra+ ωge1)Rrξr.
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The kinetic energy of the rotor can be written as

Tr =
1

2
mrρ

T
g S(Ω)TS(Ω)ρg

+
1

2
(Ω + ωra+ ωge1)

TRr

∫
R
S(ξr)

TS(ξr) dmr(ξr)R
T
r (Ω + ωra+ ωge1).

Let Jr ∈ R
3×3 be the inertia matrix of the rotor about the origin of the

rotor-fixed axis represented with respect to the rotor-fixed frame:

Jr =

∫
R
S(ξr)

TS(ξr) dmr(ξr).

The kinetic energy of the rotor is given by

Tr =
1

2
ΩT (RrJrR

T
r +mrS(ρr)

TS(ρr))Ω +
1

2
(eT1 RrJrR

T
r e1)ω

2
g

+
1

2
(aTRrJrR

T
r a)ω

2
r +ΩT (RrJrR

T
r e1)ωg

+ΩT (RrJrR
T
r a)ωr + ωr(a

TRrJrR
T
r e1)ωg.

By assuming that the rotor is symmetric about its spin axis, we have

RrJrR
T
r = RgJrR

T
g .

By substitution, the kinetic energy of the rotor can be further simplified to

Tr =
1

2
ΩT (RgJrR

T
g +mrS(ρr)

TS(ρr))Ω +
1

2
(eT1 Jre1)ω

2
g +

1

2
(eT2 Jre2)ω

2
r

+ΩT (RgJre1)ωg +ΩT (RgJre2)ωr + ωr(e2Jre1)ωg.

The total kinetic energy is the sum of the above three kinetic energies:

T = Tg + Tr + Tb

=
1

2

⎡
⎣Ω
ωg

ωr

⎤
⎦
T

M(qg)

⎡
⎣Ω
ωg

ωr

⎤
⎦ .

The inertia matrix M(qg) ∈ R
5×5 is defined as

M(qg) =

⎡
⎣ J RgJgre1 RgJre2
eT1 JgrR

T
g eT1 Jgre1 eT1 Jre2

eT2 JrR
T
g eT2 Jre1 eT2 Jre2

⎤
⎦ ,

where Jgr, J are matrices defined by
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Jgr = Jg + Jr,

J = Jb +RgJgR
T
g +RrJrR

T
r +mgS(ρg)

TS(ρg) +mrS(ρr)
TS(ρr)

= Jb +RgJgrR
T
g +mgS(ρg)

TS(ρg) +mrS(ρg)
TS(ρg).

We ignore all external moments on the SCCMG so we take the potential
energy to be identically zero. Hence, the modified Lagrangian function, L̃ :
T(SO(3)× S1 × S1) → R

1, is given by

L̃(R, qg, qr, Ω, ωg, ωr) = T (Ω,ωg, ωr, qg).

Note that the Lagrangian function is invariant with respect to changes in R ∈
SO(3) and qr ∈ S1. These symmetry properties have important implications
for the attitude dynamics of the spacecraft and control moment gyroscope.

The Euler–Lagrange equations are obtained using Hamilton’s principle:
the infinitesimal variation of the action integral is zero for all infinitesimal
variations on SO(3) × S1 × S1 that vanish at t0 and tf . The infinitesimal
variation of the action integral is given by

δG =

∫ tf

0

{
∂T

∂Ω
· δΩ +

∂T

∂ωg
δωg +

∂T

∂ωr
δωr +

∂T

∂qg
· δqg

}
dt.

The expressions for the infinitesimal variations are given by

δΩ = η̇ + S(Ω)η,

δωg = γ̇g,

δωr = γ̇r,

δqg = γgSqg,

for differentiable curves η : [0, tf ] → R
3, γg : [0, tf ] → R

1, γr : [0, tf ] → R
1

satisfying η(t0) = η(tf ) = 0, γg(t0) = γg(tf ) = 0, and γr(t0) = γr(tf ) = 0.
Substituting the expressions for the infinitesimal variations, the variation of
the action integral can be written as

δG =

∫ tf

0

{
∂T

∂Ω
· (η̇ + S(Ω)η) +

∂T

∂ωg
γ̇g +

∂T

∂ωr
γ̇r +

∂T

∂qg
· γgSqg

}
dt.

Integrate by parts and use the boundary conditions to obtain the infinitesimal
variations for the action integral

δG =

∫ tf

0

(
− d

dt

∂T

∂Ω
− S(Ω)

∂T

∂Ω

)T

η −
(

d

dt

∂T

∂ωg
+ qgS

∂T

∂qg

)
γg

− d

dt

∂T

∂ωr
γr dt,
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where we have suppressed the arguments of the kinetic energy function. Using
the fundamental lemma of the calculus of variations leads to

d

dt

∂T (Ω,ωg, ωr, qg)

∂Ω
+Ω × ∂T (Ω,ωg, ωr, qg)

∂Ω
= 0,

d

dt

∂T (Ω,ωg, ωr, qg)

∂ωg
+ qgS

∂T (Ω,ωg, ωr, qg)

∂qg
= 0,

d

dt

∂T (Ω,ωg, ωr, qg)

∂ωr
= 0.

Thus, the Euler–Lagrange equations for the attitude dynamics of a rotating
spacecraft and CMG are

M(qg)V̇ +Mqg (qg)ωgV +

⎡
⎣Ω × {JΩ + (RgJgre1)ωg +RgJre2ωr}

− 1
2V

TMqg (qg)V
0

⎤
⎦ = 0,

(9.70)

where the velocity vector is given by

V =

⎡
⎣Ω
ωg

ωr

⎤
⎦ ,

and the derivative of the inertia matrix with respect to qg has the form

Mqg (qg) =

⎡
⎣Rg(S(e1)Jgr − JgrS(e1))R

T
g RgS(e1)Jgre1 RgS(e1)Jre2

−eT1 JgrS(e1)R
T
g 0 0

−eT2 JrS(e1)R
T
g 0 0

⎤
⎦ .

The Euler–Lagrange equations (9.70), together with the kinematics equa-
tions (9.66), (9.67), and (9.68), describe the dynamical flow for the space-
craft with control moment gyroscope in terms of (R, qg, qr, ω, ωg, ωr) ∈
T(SO(3)× S1 × S1) on the tangent bundle of the configuration manifold.

9.11.2 Hamilton’s Equations

Hamilton’s equations of motion for the attitude dynamics of a rotating space-
craft and CMG can also be obtained. Using the Legendre transformation, we
define the following conjugate momenta,

⎡
⎣Ππg

πr

⎤
⎦ =

⎡
⎣

∂T
∂Ω
∂T
∂ωg
∂T
∂ωr

⎤
⎦ =

⎡
⎣ J RgJgre1 RgJre2
eT1 JgrR

T
g eT1 Jgre1 eT1 Jre2

eT2 JrR
T
g eT2 Jre1 eT2 Jre2

⎤
⎦

⎡
⎣Ω
ωg

ωr

⎤
⎦ .
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The modified Hamiltonian function is

H̃(qg, Π, πg, πr) =
1

2

⎡
⎣Ππg

πr

⎤
⎦
T ⎡
⎣ J RgJgre1 RgJre2
eT1 JgrR

T
g eT1 Jgre1 eT1 Jre2

eT2 JrR
T
g eT2 Jre1 eT2 Jre2

⎤
⎦
−1 ⎡

⎣Ππg

πr

⎤
⎦ ,

and it is invariant with respect to changes in the configuration variables
R ∈ SO(3) and qr ∈ S1. Hamilton’s equations can be written as

Π̇ = Π ×Ω, (9.71)

π̇g =
1

2

⎡
⎣Ππg

πr

⎤
⎦
T

M(qg)
−1 Mqg (qg)M(qg)

−1

⎡
⎣Ππg

πr

⎤
⎦ , (9.72)

π̇r = 0, (9.73)

where the right-hand sides of these equations are expressed in terms of
the momenta using the Legendre transformation. Equations (9.71), (9.72),
and (9.73) describe the rotational dynamics of the spacecraft and control
moment gyroscope on the cotangent bundle T∗(SO(3)× S1 × S1).

9.11.3 Conservation Properties

The Hamiltonian of the spacecraft and control moment gyroscope,

H =
1

2

⎡
⎣Ω
ωg

ωr

⎤
⎦
T ⎡
⎣ J RgJgre1 RgJre2
eT1 JgrR

T
g eT1 Jgre1 eT1 Jre2

eT2 JrR
T
g eT2 Jre1 eT2 Jre2

⎤
⎦

⎡
⎣Ω
ωg

ωr

⎤
⎦ ,

which coincides with the total energy E in this case, can be shown to be
constant along each solution of the dynamical flow.

The equations of motion can be used to show that the angular momentum
in the inertial frame

RΠ = R {JΩ +RgJgre1ωg +RgJre2ωr}

is constant along each solution of the dynamical flow. This conservation prop-
erty implies that the scalar magnitude of the angular momentum in the space-
craft base frame

‖Π‖2 = ‖JΩ +RgJgre1ωg +RgJre2ωr‖2 (9.74)

is constant along each solution of the dynamical flow. This is a consequence
of Noether’s theorem and the invariance of the Lagrangian with respect to
rigid rotations of the spacecraft and control moment gyroscope.

Further, it is easy to see that the scalar angular momentum of the rotor
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πr = eT2 JrR
T
g Ω + eT2 Jre1ωg + eT2 Jre2ωr

is constant along each solution of the dynamical flow. This is a consequence
of Noether’s theorem and the invariance of the Lagrangian with respect to
the rotor attitude.

These conservation laws expose important properties of the attitude dy-
namics of the spacecraft and control moment gyroscope.

9.12 Dynamics of Two Quad Rotors Transporting
a Cable-Suspended Payload

A quad rotor aerial vehicle is a popular flight vehicle whose motion in three
dimensions can be controlled by four rotors and propellers. Consider two
controlled quad rotor aerial vehicles, transporting a cable-suspended payload
modeled as a rigid body. The quad rotors and the payload can rotate and
translate in three dimensions under the action of uniform, constant gravity.
The two cables supporting the payload are each assumed to be massless and
to remain straight without deformation.

The variables related to the payload are denoted by the subscript 0, and
the variables for the i-th quad rotor are denoted by the subscript i, for i = 1, 2.
We choose an inertial Euclidean frame and we attach body-fixed frames to
the payload and the two quad rotors. The third axis of the inertial frame is
vertical and the other axes are chosen to form an orthonormal frame. The
origin of the i-th body-fixed frame is located at the center of mass of the
payload for i = 0 and at the center of mass of each quad rotor for i = 1, 2.
The third axis of the body-fixed Euclidean frame for each quad rotor is defined
by the direction of the thrust on each quad rotor produced by the four rotors.
A schematic of the quad rotor vehicles transporting a rigid body payload is
shown in Figure 9.12.

Further details on the dynamics and control of quadrotors transporting a
cable-suspended rigid body can be found in [31, 47, 60].

The location of the center of mass of the payload is denoted by x0 ∈ R
3

in the inertial frame, and its attitude is given by R0 ∈ SO(3). Let ρi ∈ R
3

be the point on the payload where the i-th cable is attached, represented
in the payload body-fixed frame. The other end of the cable is attached to
the center of mass of the i-th quad rotor. The direction of the cable from
the center of mass of the i-th quad rotor to the point of contact with the
payload is the i-th cable attitude denoted by qi ∈ S2, and the scalar length of
the i-th cable is denoted by Li. Let xi ∈ R

3 be the location of the center of
mass of the i-th quad rotor with respect to the inertial frame. As the cable is
assumed to be rigid, we have xi = x0 +R0ρi −Liqi. The attitude of the i-th
quad rotor is described by the rotation matrix Ri ∈ SO(3) that transforms a
vector from the i-th body-fixed frame to the inertial frame.
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e1

e2

e3

x0 ∈ R3

m0, J0

R0 ∈ SO(3)

mi, Ji

Ri ∈ SO(3)

qi ∈ S2

ρi

Li

Fig. 9.12 Two quadrotors transporting a cable-suspended rigid body payload

The mass and the inertia matrix of the payload are denoted by m0 and
J0 ∈ R

3×3, respectively. The dynamical model of each quad rotor is identical
to the model introduced in [55]. The mass and the inertia matrix of the i-
th quad rotor are denoted by mi and Ji ∈ R

3×3, respectively. Each of the
four rotors for the i-th quad rotor generates a thrust vector −TiRie3 ∈ R

3

with respect to the inertial frame, where Ti is the total thrust magnitude
and e3 = [0, 0, 1]T ∈ R

3 is the direction of the thrust vector in the quad
rotor-fixed frame. The four rotors for each quad rotor vehicle also generate
a moment vector Mi ∈ R

3 with respect to its body-fixed frame. The thrust
magnitudes and moment vectors {Ti,Mi}1=1,2 are viewed as control inputs.

The configuration of the quad rotor vehicles and payload is given by
(x0, R0, q1, R1, q2, R2) ∈ SE(3) × (S2 × SO(3))2. The corresponding config-
uration manifold is SE(3)× (S2 × SO(3))2. Thus, there are sixteen degrees of
freedom for the two quad rotor vehicles and the rigid body payload.

9.12.1 Euler–Lagrange Equations

The kinematics equations for the payload, quad rotors, and cables are given
by

q̇i = S(ωi)qi, i = 1, 2, (9.75)

Ṙ0 = R0S(Ω0), (9.76)

Ṙi = RiS(Ωi), i = 1, 2, (9.77)
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where ωi ∈ TqiS
2 is the angular velocity vector of the i-th cable satisfying

ωT
i qi = 0 for i = 1, 2, and Ω0 ∈ TR0

SO(3), Ωi ∈ TRi
SO(3), i = 1, 2, are

the angular velocity vectors of the payload and the i-th quad rotor expressed
with respect to its body-fixed frame, respectively.

The translational velocity vector of the i-th quad rotor is given by

ẋi = ẋ0 + Ṙ0ρi − Liq̇i

= ẋ0 + Ṙ0ρi − LiS(ωi)qi, i = 1, 2.

The kinetic energy of the system is the sum of the translational kinetic energy
and the rotational kinetic energy of the payload and quad rotors; it is defined
on the tangent bundle of the configuration manifold as

T =
1

2
m0‖ẋ0‖2 + 1

2
ΩT

0 J0Ω0

+

2∑
i=1

{
1

2
mi‖ẋ0 + Ṙ0ρi − LiS(ωi)qi‖2 + 1

2
ΩT

i JiΩi

}
.

The gravitational potential energy is given by

U = m0ge
T
3 x0 +

2∑
i=1

mige
T
3 (x0 +R0ρi − Liqi).

The modified Lagrangian L̃ : T(SE(3)× (S2 × SO(3))2) → R
1 is

L̃ =
1

2
m0‖ẋ0‖2 + 1

2
ΩT

0 J0Ω0

+

2∑
i=1

{
1

2
mi‖ẋ0 +R0S(ω0)ρi − LiS(ωi)qi‖2 + 1

2
ΩT

i JiΩi

}

−m0ge
T
3 x0 −

2∑
i=1

mige
T
3 (x0 +R0ρi − Liqi),

which can now be used to obtain the Euler–Lagrange equations. The La-
grangian does not depend on the attitudes of the quad-rotor vehicles.

The key idea is to represent the infinitesimal variations of the cable atti-
tudes, as we have seen previously in Chapter 5, in the form

δqi = γi × qi, i = 1, 2,

δωi = −S(ωi)γ1 + (I − qiq
T
i )γ̇i, i = 1, 2,

for differentiable curves γi : [t0, tf ] → R
3 that satisfy γT

i qi = 0, for i = 1, 2.
Similarly, the infinitesimal variations of the attitude matrices describing the
attitude of the payload rigid body and the attitudes of the two quad rotor
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vehicles are given by

δRi = RiS(ηi), i = 0, 1, 2,

for differentiable curves ηi : [t0, tf ] → R
3, i = 0, 1, 2. The infinitesimal vari-

ation of the angular velocity vectors of the payload and the two quad rotor
vehicles can be written as

δΩi = η̇i + S(Ωi)ηi i = 0, 1, 2.

Using the above expressions, the infinitesimal variation of the action integral
can be written as

δG =

∫ tf

t0

[
Dẋ0

L · δẋ0 +Dx0
L · δx0

+DΩ0
L · (η̇0 + S(Ω0)η0) +

{
DR0

L ·R0S(η0)

+
2∑

i=1

Dωi
L · (−S(ωi)γi + (I − qiq

T
i )γ̇i) +

2∑
i=1

DqiL · (S(γi)qi)

+

2∑
i=1

DΩi
L · (η̇i + S(Ωi)ηi)

]
dt.

The derivatives of the Lagrangian are given by

Dẋ0
L = mT ẋ0 +

2∑
i=1

mi(R0S(Ω0)ρi − Liq̇i),

Dωi
L =

2∑
i=1

mi(L
2
iωi − LiS(qi)ẋ0 − LiS(qi)R0S(Ω0)ρi), i = 1, 2,

DΩ0
L = J̄0Ω0 +

2∑
i=1

miS(ρi)R
T
0 (ẋ0 − Liq̇i),

DΩi
L = JiΩi, i = 1, 2

Dx0
L = −mT ge3,

DqiL = +miLige3 +miLiS(ωi)(ẋ0 + Ṙ0ρi), i = 1, 2,

where J̄0 = J0+
∑2

i=1 miS(ρi)
TS(ρi). The derivative of the Lagrangian with

respect to the attitude of the rigid body payload can be written as
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DR0
L ·R0S(η0) =

2∑
i=1

miR0S(η0)S(Ω0)ρi · (ẋi − Liq̇i)−mige3 ·R0S(η0)ρi,

=

2∑
i=1

mi{S(S(Ω0)ρi)R
T
0 (ẋ0 − Liq̇i)− gS(ρi)R

T
0 e3} · η0,

� dR0
L · η0,

where dR0
L ∈ R

3 is referred to as the left-trivialized derivative.
The thrust force on the i-th quad rotor, with respect to the inertial frame,

is TiRie3 ∈ R
3, i = 1, 2. The moment vector, produced by the four rotors,

on the i-th quad rotor is Mi ∈ R
3, i = 1, 2. The corresponding virtual work

done by the external forces and moments can be written as

δW =

∫ tf

t0

2∑
i=1

{
Tie

T
3 R

T
i δxi +MT

i ηi
}
dt,

which can be expressed as

δW =

∫ tf

t0

2∑
i=1

{TiRie3 · (δx0 +R0S(η0)ρi − LiS(γi)qi) +Mi · ηi} dt.

According to the Lagrange–d’Alembert principle, we have δG = −δW for
variations with fixed end points. Integrate by parts and rearrange to obtain
the following Euler–Lagrange equations:

d

dt
Dẋ0

L−Dx0
L =

2∑
i=1

Rie3Ti,

d

dt
DΩ0

L+ S(Ω0)DΩ0
L− dR0

L =

2∑
i=1

S(ρ0)R
T
0 R

T
i e3Ti,

(I − qiq
T
i )

d

dt
Dωi

L− S(qi)DqiL = −LiS(qi)Rie3Ti, i = 1, 2,

d

dt
DΩi

L+ S(Ωi)DΩi
L = Mi, i = 1, 2.

Substituting the above expressions for the derivatives and rearranging using
the facts that I3×3 − qiq

T
i = −S(qi)

2 and S(qi)
2S(q̇i) = S(qi)S(ωi), for

i = 1, 2, the Euler–Lagrange equations are given by
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mT ẍ0 +
2∑

i=1

mi(−R0S(ρi)Ω̇0 + LiS(qi)ω̇i) +
2∑

i=1

miR0S(Ω0)
2ρi

+miLi‖ωi‖2qi +mT ge3 =

2∑
i=1

Rie3 Ti, (9.78)

J̄0Ω̇0 +

2∑
i=1

miS(ρi)R
T
0 (ẍ0 + LiS(qi)ω̇i + Li‖ωi‖2qi) +Ω0 × J̄0Ω0

+
2∑

i=1

ρi ×RT
0 mige3 =

2∑
i=1

ρi ×RT
0 Rie3 Ti, (9.79)

miLiω̇i −miS(qi)ẍ0 +miS(qi)R0S(ρi)Ω̇0 −miS(qi)R0S(Ω0)
2ρi

−S(qi)mige3 = −S(qi)Rie3 Ti, i = 1, 2, (9.80)

JiΩ̇i +Ωi × JiΩi = Mi, i = 1, 2, (9.81)

where mT = m0 +
∑2

i=1 mi and J̄0 = J0 +
∑2

i=1 miS(ρi)
TS(ρi) ∈ R

3×3.
Next, we substitute (9.80) into (9.78) and (9.79) to eliminate the de-

pendency of ω̇i in the expressions for ẍ0 and Ω̇0. Using the fact that
I3×3 + S(qi)

2 = qiq
T
i for any qi ∈ S2 and S(Ω0)S(ρi)Ω0 = −S(ρi)S(Ω0)

2ρi
for any Ω0, ρi ∈ R

3, we obtain the following form for the Euler–Lagrange
equations

M̄ẍ0 −
2∑

i=1

miqiq
T
i R0S(ρi)Ω̇0 +

2∑
i=1

mi

{
Li‖ωi‖2qi − qiq

T
i R0S(ω0)

2ρi
}

+M̄ge3 =

2∑
i=1

qiq
T
i Rie3Ti, (9.82)

(J0 +

2∑
i=1

miS(ρi)
TRT

0 qiq
T
i R0S(ρi))Ω̇0 +

2∑
i=1

miS(ρi)R
T
0 qiq

T
i ẍ0

+Ω0 × J0Ω0 +

2∑
i=1

S(ρi)R
T
0 (miLi‖ωi‖2qi +miqiq

T
i R0S(Ω0)

2ρi)

−
2∑

i=1

migS(ρi)R
T
0 qiq

T
i e3 =

2∑
i=1

S(ρi)R
T
0 qiq

T
i Rie3 Ti, (9.83)

miLiω̇i −miS(qi)(ẍ0 −R0S(ρi)Ω̇0 +R0S(Ω0)
2ρi)−migS(qi)e3

= −qi ×Rie3 Ti, i = 1, 2, (9.84)

JiΩ̇i +Ωi × JiΩi = Mi, i = 1, 2, (9.85)
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where M̄ = m0I3×3 +
∑2

i=1 miqiq
T
i ∈ R

3×3, which is symmetric, positive-
definite for any qi.

The dynamical equations for the two quad rotor vehicles supporting a rigid
body payload consist of the kinematics equations (9.75), (9.76), and (9.77)
and the Euler–Lagrange equations (9.82), (9.83), (9.84), and (9.85), which
describe the dynamical flow in terms of the evolution on the tangent bundle
T(SE(3)× (S2 × SO(3))2) of the configuration manifold.

9.12.2 Hamilton’s Equations

Due to the length of the calculations, we do not derive the Hamilton’s equa-
tions of motion for the quad rotor vehicles transporting a rigid body payload.

9.12.3 Conservation Properties

Since there are external forces and moments that act on the two quad rotor
vehicles, the total energy is not conserved; rather the change in total energy
of the system is equal to the work done by the external thrust and moment
on the quad rotors.

9.12.4 Equilibrium Properties

Assume that the thrust magnitude and moment for each quad rotor vehicle
are constant. The quad rotor vehicles and payload are in equilibrium if the
translational velocity vector and the angular velocity vectors of the quad rotor
vehicles and the payload are zero and the following equilibrium conditions
are satisfied:

M̄ge3 =

2∑
i=1

qiq
T
i Rie3Ti,

−
2∑

i=1

migρi ×RT
0 qiq

T
i e3 =

2∑
i=1

ρi ×RT
0 qiq

T
i Rie3 Ti,

migqi × e3 = qi ×Rie3 Ti, i = 1, 2,

Mi = 0, i = 1, 2.

It is possible to construct linearized dynamics that approximate the La-
grangian dynamics of the quad rotor in a neighborhood of any equilibrium
solution, but we do not derive them here.
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9.13 Problems

9.1. Consider the dynamics of a modified Furuta pendulum; the first link is
constrained to rotate, as a planar pendulum, in a fixed horizontal plane while
the rotation of the second link, as a spherical pendulum, is not constrained.
Include the gravitational forces. The pendulum masses are m1 and m2 and
the pendulum lengths are L1 and L2. The configuration manifold is S1 × S2.

(a) Determine the Lagrangian function L : T(S1 × S2) → R
1 on the tangent

bundle of the configuration manifold.
(b) What are the Euler–Lagrange equations for the modified Furuta pendu-

lum?
(c) Determine the Hamiltonian function H : T∗(S1×S2) → R

1 on the cotan-
gent bundle of the configuration manifold.

(d) What are Hamilton’s equations for the modified Furuta pendulum?
(e) What are conserved quantities for the dynamical flow on T(S1 × S2)?
(f) What are the equilibrium solutions of the dynamical flow on T(S1 × S2)?

Describe the linearized equations that approximate the dynamical flow in
a neighborhood of each equilibrium solution.

9.2. Assuming there are no external or potential forces and the reaction wheel
is axially symmetric about its spin axis, prove the following for a spacecraft
with a reaction wheel assembly:

(a) the Hamiltonian

H =
1

2
m‖ẋ‖2 + 1

2
ΩTJ ′Ω +

1

2

n∑
i=1

αiω
2
i +

n∑
i=1

αiωiΩ
T si

is conserved along each solution of the dynamical flow.
(b) the total angular momentum expressed in the inertial frame

π = R(J ′Ω +

n∑
i=1

αiωisi)

is conserved along each solution of the dynamical flow.

9.3. Consider the full body dynamics with n bodies.

(a) Determine an expression for the position vector of the center of mass
vector of all n bodies, expressed in the inertial frame.

(b) Describe the dynamics of the center of mass vector.
(c) What conservation properties are associated with the center of mass vec-

tor?

9.4. The full body dynamics of two dumbbell rigid bodies evolve due to
Newtonian gravity. Assume the origin of each body-fixed frame is located at



472 9 Rigid and Multi-Body Systems

the center of mass of the body and each body-fixed frame is aligned with the
principle axes of the body. The mass of each rigid body is mi and the inertia
matrix of each rigid body is Ji, for i = 1, 2. The gravity forces and moments
on the bodies are determined by two concentrated mass elements for each
dumbbell body.

(a) Determine the Lagrangian function L : T(SE(3))2 → R
1 defined on the

tangent bundle of the configuration manifold.
(b) What are the Euler–Lagrange equations for the full body dynamics of the

two dumbbell bodies?
(c) Determine the Hamiltonian function H : T∗(SE(3))2 → R

1 defined on the
cotangent bundle of the configuration manifold.

(d) What are Hamilton’s equations for the full body dynamics of the two
dumbbell bodies?

(e) What are conserved quantities for the full body dynamics?

9.5. Consider a modification of the planar rigid body pendulum, where the
rigid body is connected to an inertially fixed cylindrical joint. The cylin-
drical joint has a fixed axis that allows rotation of the rigid body about
this axis and translation of the rigid body along this axis. The axis of
the cylindrical joint, denoted by the direction vector a ∈ S2, is inertially
fixed. Let R ∈ SO(3) be the attitude of the rigid body, which must sat-
isfy Ra = a. Let x = ya be the displacement of the rigid body along the
axis of the cylindrical joint, where y ∈ R

1. The configuration manifold is
M =

{
(R, x) ∈ SE(3) : Ra = a, x = ya, y ∈ R

1
}
. This modification of the

planar rigid pendulum acts under uniform, constant gravity.

(a) Determine the Lagrangian function L : TM → R
1 defined on the tangent

bundle of the configuration manifold.
(b) What are the Euler–Lagrange equations for the planar rigid body pendu-

lum?
(c) Determine the Hamiltonian function H : T∗M → R

1 defined on the
cotangent bundle of the configuration manifold.

(d) What are Hamilton’s equations for the planar rigid body pendulum?
(e) Suppose that the axis of the cylindrical joint a ∈ S2 is horizontal, that is

aT e3 = 0. What are the equilibrium solutions of the dynamical flow on
TM? Describe the linearized equations that approximate the dynamical
flow in a neighborhood of each equilibrium solution.

9.6. An elastic spherical pendulum is a spherical pendulum for which a mass-
less link connects a concentrated mass element, viewed as an ideal particle,
to an inertially fixed pivot, but where the link is elastic rather than rigid. An
inertial Euclidean frame is selected with origin located at the fixed pivot of
the elastic spherical pendulum. Let x ∈ R

1 denote the length of the massless
link and let q ∈ S2 denote the attitude vector of the massless link, which is
assumed to remain straight. Thus, (x, q) ∈ R

1 × S2 so that R
1 × S2 is the

configuration manifold. The mass element acts under uniform and constant
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gravity. The elastic link is assumed to have elastic stiffness κ and has length
L when the elastic force in the link vanishes. Assume that the inequality
mg < kL holds.

(a) Determine the Lagrangian function L : T(R1 × S2) → R
1 defined on the

tangent bundle of the configuration manifold.
(b) What are the Euler–Lagrange equations for the elastic spherical pendu-

lum?
(c) Determine the Hamiltonian function H : T∗(R1 × S2) → R

1 defined on
the cotangent bundle of the configuration manifold.

(d) What are Hamilton’s equations for the elastic spherical pendulum?
(e) What are conserved quantities for the elastic spherical pendulum?
(f) What are the equilibrium solutions of the elastic spherical pendulum?
(g) For each equilibrium solution, determine linearized equations that approx-

imate the dynamics of the elastic spherical pendulum in a neighborhood
of that equilibrium.

9.7. Two concentrated mass elements, viewed as ideal particles of mass m1

and m2, are connected by a massless link; the link is assumed to remain
straight and it can deform elastically along its longitudinal axis. An inertial
Euclidean frame is selected. Let x ∈ R

3 denote the position vector of the first
particle; let y ∈ R

1 denote the length of the massless link and let q ∈ S2

denote the attitude vector of the massless link. The vector x+ yq ∈ R
3 is the

position vector of the second particle. Thus, (x, y, q) ∈ R
3 × R

1 × S2 so that
R

3 ×R
1 × S2 is the configuration manifold. The particles acts under uniform

and constant gravity. The elastic link is assumed to have elastic stiffness κ
and has length L when the elastic force in the link vanishes.

(a) Determine the Lagrangian function L : T(R3 ×R
1 × S2) → R

1 defined on
the tangent bundle of the configuration manifold.

(b) What are the Euler–Lagrange equations for the two particles connected
by a massless elastic link?

(c) Determine the Hamiltonian function H : T∗(R3 ×R
1 × S2) → R

1 defined
on the cotangent bundle of the configuration manifold.

(d) What are Hamilton’s equations for the two particles connected by a mass-
less elastic link?

(e) What are conserved quantities for the two particles connected by a mass-
less elastic link?

(f) Describe the dynamics of the position vector of the center of mass of the
two particles connected by a massless elastic link.

9.8. Consider the dynamics of a rigid link, with mass concentrated at its
midpoint, that can translate and rotate in three dimensions under the action
of uniform gravity. Each end of the rigid link is connected to two elastic
strings; the opposite ends of the elastic strings are connected to fixed inertial
supports. These supports for the elastic strings are located at d1, d2, d3, d4
in R

3 with respect to the inertial frame. The elastic strings are assumed to
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be in tension. Let q ∈ S2 denote the attitude vector of the rigid link in the
inertial frame; let x ∈ R

3 denote the position vector of the concentrated mass,
in the inertial frame. Thus, (q, x) ∈ S2 × R

3 and the configuration manifold
is S2 ×R

3. This can be viewed as another example of a tensegrity structure.

(a) Determine the Lagrangian function L : T(S2 × R
3) → R

1 defined on the
tangent bundle of the configuration manifold. Determine expressions for
the tension forces in the four elastic strings.

(b) What are the Euler–Lagrange equations for the rigid link connected to
four elastic strings?

(c) Determine the Hamiltonian function H : T∗(S2 × R
3) → R

1 defined on
the cotangent bundle of the configuration manifold.

(d) What are Hamilton’s equations for the rigid link connected to four elastic
strings?

(e) What are the equilibrium solutions of the rigid link connected to four
elastic strings?

(f) For each equilibrium solution, determine linearized equations that ap-
proximate the dynamics of the rigid link connected to four elastic strings
in a neighborhood of that equilibrium.

9.9. Consider the dynamics of a planar mechanism consisting of two ideal
particles, with mass, connected by a massless, rigid link; the ends of the
link are constrained to slide along a straight line and a circle. Assume the
mechanism lies in a fixed horizontal plane so that there are no gravitational
forces. The configuration manifold is S1 × R

1.

(a) Determine the Lagrangian function L : T(S1 × R
1) → R

1 defined on the
tangent bundle of the configuration manifold.

(b) What are the Euler–Lagrange equations for the planar mechanism in a
horizontal plane?

(c) Determine the Hamiltonian function H : T∗(S1 × R
1) → R

1 defined on
the cotangent bundle of the configuration manifold.

(d) What are Hamilton’s equations for the planar mechanism in a horizontal
plane?

(e) What are conserved quantities for the planar mechanism in a horizontal
plane?

(f) What are the equilibrium solutions of the planar mechanism in a hori-
zontal plane?

(g) For each equilibrium solution, determine linearized equations that ap-
proximate the dynamics of the planar mechanism in a neighborhood of
that equilibrium.

9.10. Consider the dynamics of an ideal particle constrained to move on the
surface of a right cylinder in R

3 and assume there are no gravitational forces.
The mass of the particle is m and the cylinder has radius R > 0. An inertial
frame is selected so that the third axis of the frame has a direction along the
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center line of the cylinder and the origin of the frame is located on the center
line of the cylinder. The configuration manifold is S1 × R

1.

(a) Show that the position vector of the particle in the inertial frame can be
expressed as x = (Rq, z), where q ∈ S1 and z ∈ R

1.
(b) Determine the Lagrangian function L : T(S1 × R

1) → R
1 on the tangent

bundle of the configuration manifold.
(c) What are the Euler–Lagrange equations for the particle on a cylinder,

without gravity?
(d) Determine the Hamiltonian function H : T∗(S1×R

1) → R
1 on the cotan-

gent bundle of the configuration manifold.
(e) What are Hamilton’s equations for the particle on a cylinder, without

gravity?
(f) What are conserved quantities for the particle on a cylinder, without

gravity?
(g) What are the equilibrium solutions of the dynamics of a particle on a

cylinder, without gravity?

9.11. Consider the dynamics of an ideal particle constrained to move on the
surface of a right cone in R

3 and assume there are no gravitational forces.
The mass of the particle is m. An inertial frame is selected so that the third
axis of the frame has a direction along the center line of the cone and the
origin of the frame is located on the vertex of the cone. The configuration
manifold is S1 × R

1.

(a) Show that the position vector of the particle in the inertial frame can be

expressed as x =

[
zq
z

]
, where q ∈ S1 and z ∈ R

1.

(b) Determine the Lagrangian function L : T(S1 × R
1) → R

1 on the tangent
bundle of the configuration manifold.

(c) What are the Euler–Lagrange equations for the particle on a right cone,
without gravity?

(d) Determine the Hamiltonian function H : T∗(S1×R
1) → R

1 on the cotan-
gent bundle of the configuration manifold.

(e) What are Hamilton’s equations for the particle on a right cone, without
gravity?

(f) Discuss the validity of the equations of motion near the vertex of the
cone, where z = 0.

(g) What are conserved quantities for the particle on a right cone, without
gravity?

(h) What are the equilibrium solutions of the dynamics of a particle on a
right cone, without gravity?

9.12. Consider the rotational and translational dynamics of two elastically
connected identical rigid links with concentrated masses that are constrained
to rotate and translate in a fixed horizontal two-dimensional plane. Let
qi ∈ S1 denote the attitude vector of the i-th link and let xi ∈ R

2 denote the
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position vector of the concentrated mass of the i-th link for i = 1, 2. The elas-
tic potential depends only on the relative attitude and the relative position
of the two links. Let J and m denote the scalar inertia and the mass of each
link; κ is the rotational stiffness constant and K is the translational stiffness
constant. The attitude vectors q = (q1, q2) ∈ (S1)2 and the position vectors
x = (x1, x2) ∈ (R2)2, so that the configuration manifold is (S1)2× (R2)2. The
Lagrangian function is given by

L(q, x, q̇, ẋ) =
1

2
J ‖q̇1‖2 + 1

2
J ‖q̇2‖2 + 1

2
m ‖ẋ1‖2 + 1

2
m ‖ẋ2‖2

− κ(1− qT1 q2)−
1

2
K ‖x1 − x2‖2 ,

on the tangent bundle of the configuration manifold.

(a) What are the Euler–Lagrange equations for the rotational and trans-
lational dynamics of the two elastically connected links in a horizontal
plane?

(b) Determine the Hamiltonian function H : T∗((S1)2 × (R2)2) → R
1 on the

cotangent bundle of the configuration manifold.
(c) What are Hamilton’s equations for the rotational and translational dy-

namics of two elastically connected links in a horizontal plane?
(d) What are conserved quantities for the dynamical flow?
(e) What are the equilibrium solutions of the dynamical flow?
(f) Select a specific equilibrium solution and determine the linearized dy-

namics that approximate the Lagrangian flow in a neighborhood of that
equilibrium.

9.13. Consider the dynamics of a spherical pendulum on a cart. Assume there
are no gravitational forces. The configuration manifold is S2 × R

2.

(a) Determine the Lagrangian function L : T(S2 × R
2) → R

1 defined on the
tangent bundle of the configuration manifold.

(b) Determine the Euler–Lagrange equations for the spherical pendulum on
a cart with no gravity.

(c) Determine the Hamiltonian function H : T∗(S2×R
2) → R

1 on the cotan-
gent bundle of the configuration manifold.

(d) What are Hamilton’s equations for the spherical pendulum on a cart with
no gravity?

(e) What are conserved quantities for the dynamical flow?
(f) What are the equilibrium solutions of the dynamical flow?
(g) Select a specific equilibrium solution and determine the linearized dy-

namics that approximate the Lagrangian flow in a neighborhood of that
equilibrium.

9.14. Consider the dynamics of a three-dimensional pendulum on a cart.
Assume there are no gravitational forces. The inertia matrix of the pendulum
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as a rigid body is the matrix J = diag(J1, J2, J3). The configuration manifold
is SO(3)× R

2.

(a) Determine the Lagrangian function L : T(SO(3) × R
2) → R

1 defined on
the tangent bundle of the configuration manifold.

(b) What are the Euler–Lagrange equations for the three-dimensional pen-
dulum on a cart, with no gravity?

(c) Determine the Hamiltonian function H : T∗(SO(3) × R
2) → R

1 on the
cotangent bundle of the configuration manifold.

(d) What are Hamilton’s equations for the three-dimensional pendulum on a
cart, with no gravity?

(e) What are conserved quantities for the dynamical flow?
(f) What are the equilibrium solutions of the dynamical flow?
(g) Select a specific equilibrium solution and determine the linearized dy-

namics that approximate the Lagrangian flow in a neighborhood of that
equilibrium.

9.15. Consider the full body dynamics for two identical dumbbell-shaped
rigid bodies; that is, each dumbbell body consists of two identical, uniform
spherical bodies connected by a rigid, massless link. The inertia matrix for
each rigid body is J = diag(J1, J2, J2), where two of the entries are equal due
to the rotational symmetry about each link, and the mass of each rigid body
is m. The configuration manifold is SE(3)2.

(a) Obtain an expression for the gravitation potential.

(b) Determine the Lagrangian function L : TSE(3)2 → R
1 defined on the

tangent bundle of the configuration manifold.
(c) What are the Euler–Lagrange equations for the full body dynamics?

(d) Determine the Hamiltonian function H : T∗SE(3)2 → R
1 defined on the

cotangent bundle of the configuration manifold.
(e) What are Hamilton’s equations for the full body dynamics?
(f) What are conserved quantities for the dynamical flow?
(g) What are conditions for relative equilibrium solutions of the dynamical

flow?

9.16. Consider the dynamics of a rigid body and an ideal mass particle.
An inertial frame and a body-fixed frame are introduced and used to define
the translational and rotational motion of the rigid body; the origin of the
body-fixed frame is assumed to be located at the center of mass of the rigid
body. The rigid body can translate and rotate in three dimensions. The mass
particle can translate, without constraint in three dimensions. Let (R, x) ∈
SE(3) denote the attitude of the rigid body and the position vector of the
center of mass of the rigid body in the inertial frame and let y ∈ R

3 denote the
position vector of the particle in the body-fixed frame; this is interpreted as
the position vector of the particle relative to the rigid body as expressed in the
rotating frame defined by the rigid body. Thus, the configuration manifold is
SE(3)×R

3. The mass of the rigid body isM and J is the standard 3×3 inertia
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matrix of the rigid body. The particle has mass m. There is a gravitational
potential energy function V (y).

(a) Determine the Lagrangian function L : T(SE(3) × R
3) → R

1 defined on
the tangent bundle of the configuration manifold.

(b) What are the Euler–Lagrange equations for the rigid body and mass
particle?

(c) Determine the Hamiltonian function H : T∗(SE(3) × R
3) → R

1 on the
cotangent bundle of the configuration manifold.

(d) What are Hamilton’s equations for the rigid body and mass particle?
(e) What are conserved quantities for the dynamical flow?

9.17. Consider the dynamics of a rigid, uniform sphere and an ideal mass
particle constrained to move on the surface of the sphere. The sphere can
translate and rotate in three dimensions. Assume there are no gravitational
forces on the sphere or the mass particle. Let (R, x) ∈ SE(3) denote the
attitude of the sphere and the position vector of the center of the sphere in
an inertial frame and let q ∈ S2 denote the direction of the position vector of
the particle in a sphere-fixed frame whose origin is located at the center of
the sphere. Thus, the configuration manifold is SE(3)× S2. The mass of the
sphere is M and J is the standard 3 × 3 inertia matrix of the rigid sphere.
The particle, of mass m, moves without friction on the surface of the sphere
of radius r.

(a) Determine the Lagrangian function L : T(SE(3) × S2) → R
1 defined on

the tangent bundle of the configuration manifold.
(b) What are the Euler–Lagrange equations for the sphere and mass particle?
(c) Determine the Hamiltonian function H : T∗(SE(3) × S2) → R

1 on the
cotangent bundle of the configuration manifold.

(d) What are Hamilton’s equations for the sphere and mass particle?
(e) What are conserved quantities for the dynamical flow?
(f) What are the equilibrium solutions of the dynamical flow?
(g) Select a specific equilibrium solution and determine the linearized dy-

namics that approximate the Lagrangian flow in a neighborhood of that
equilibrium.

9.18. Consider the dynamics of a single quad rotor vehicle transporting a
cable-suspended rigid body. Include a thrust force and a moment on the quad
rotor vehicle as control inputs. Make appropriate assumptions and suppose
that the configuration manifold is SE(3)× S2 × SO(3).

(a) Determine the Lagrangian function L : T(SE(3)× S2 × SO(3)) defined on
the tangent bundle of the configuration manifold.

(b) What are the Euler–Lagrange equations for the quad rotor vehicle trans-
porting a rigid body?

(c) Determine the Hamiltonian function H : T∗(SE(3) × S2 × SO(3)) → R
1

defined on the cotangent bundle of the configuration manifold.
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(d) What are Hamilton’s equations for the quad rotor vehicle transporting a
rigid body?

(e) For what values of the thrust magnitude provided by the rotors can the
quad rotor vehicle be in equilibrium? What are these equilibrium solu-
tions?

(f) Select a specific equilibrium solution and determine the linearized dy-
namics that approximate the Lagrangian flow in a neighborhood of that
equilibrium.

9.19. A rigid body consists of two particles, each of mass m, connected by a
massless link of length L. Assume uniform, constant gravity. Let x ∈ R

3 de-
notes the position vector of the first particle with respect to a fixed Euclidean
frame and q ∈ S2 denotes the attitude vector of the link. Thus, the config-
uration can be expressed in terms of (x, q) ∈ R

3 × S2 and the configuration
manifold is R3 × S2.

(a) Determine the Lagrangian function L : T(R3 × S2) → R
1 defined on the

tangent bundle of the configuration manifold.
(b) What are the Euler–Lagrange equations for the rigid body?
(c) Determine the Hamiltonian function H : T∗(SE(3) × S2 × SO(3)) → R

1

defined on the cotangent bundle of the configuration manifold.
(d) What are Hamilton’s equations for the rigid body?
(e) What are the conservation properties of the dynamical flow?
(f) Describe the dynamics of the center of mass of the rigid body and the

motion of the center of mass of the rigid body.

9.20. Consider the dynamics of a bead and rod in a fixed vertical plane
(sometimes referred to as a planar ball and beam) under uniform, constant
gravity. The rod is idealized as a rigid straight link that rotates, without
friction, in the vertical plane about a pivot located at its center of mass. The
bead, idealized as a concentrated mass element, is assumed to slide, without
friction, along the axis of the rod. Let J denote the scalar inertia of the link
about its center of mass and let m denote the mass of the bead. Let q ∈ S1

denote the attitude vector of the rod in its plane of rotation and let x ∈ R
1

denote the position of the bead on the rod with respect to the center of mass
of the link. The configuration manifold is S1 × R

1.

(a) What is the Lagrangian function L : T(S1 × R
1) → R

1 for the bead and
rod defined on the tangent bundle of the configuration manifold?

(b) What are the Euler–Lagrange equations for the bead and rod?
(c) Determine the Hamiltonian function H : T∗(S1 × R

1) → R
1 defined on

the cotangent bundle of the configuration manifold.
(d) What are Hamilton’s equations for the bead and rod?
(e) What are conserved quantities of the dynamical flow?
(f) What are the equilibrium solutions of the dynamical flow?
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(g) Select a specific equilibrium solution and determine the linearized dy-
namics that approximate the Lagrangian flow in a neighborhood of that
equilibrium.

9.21. Consider the dynamics of a bead and rod in three dimensions (a three-
dimensional version of the ball and beam) under uniform, constant gravity.
The rod is idealized as a rigid straight link that rotates in three dimensions,
without friction, about a spherical pivot located at its center of mass. The
bead, idealized as a concentrated mass element, is assumed to slide, without
friction, along the axis of the rod. Let J denote the scalar inertia of the rod
about its center of mass and let m denote the mass of the bead. Let q ∈ S2

denote the attitude vector of the rod with respect to an inertial frame and
let x ∈ R

1 denote the axial position of the bead on the rod with respect to
the center of mass of the rod. The configuration manifold is S2 × R

1.

(a) What is the Lagrangian function L : T(S2 × R
1) → R

1 for the bead and
rod defined on the tangent bundle of the configuration manifold?

(b) What are the Euler–Lagrange equations for the bead and rod?
(c) Determine the Hamiltonian function H : T∗(S2 × R

1) → R
1 defined on

the cotangent bundle of the configuration manifold.
(d) What are Hamilton’s equations for the bead and rod?
(e) What are conserved quantities of the dynamical flow?
(f) What are the equilibrium solutions of the dynamical flow?
(g) Select a specific equilibrium solution and determine the linearized dy-

namics that approximate the Lagrangian flow in a neighborhood of that
equilibrium.

9.22. Two ideal particles of concentrated massm1 andm2 are connected by a
massless, rigid link of length L. The first particle is constrained to translate
along a horizontal frictionless rail. The first axis of the inertial Euclidean
frame is aligned along the rail and lies in a horizontal plane; the third axis
is vertical. A linear elastic restoring force acts on the first mass along the
rail; the elastic stiffness is κ and the restoring force is zero when the particle
is located at the origin of the inertial frame. The second particle is free to
move in three dimensions, under uniform, constant gravity, subject to its
connection to the first particle. Let x ∈ R

1 denote the position vector of the
first particle on the rail and let q ∈ S2 denote the attitude vector of the link
connecting the two particles, expressed in the inertial Euclidean frame. Thus,
R

1 × S2 is the configuration manifold. The Lagrangian function is given by

L(x, q, ẋ, q̇) =
1

2
m1ẋ

2 +
1

2
m2 ‖ẋe1 + Lq̇‖2 − 1

2
κx2 −m2ge

T
3 q.

(a) What are the Euler–Lagrange equations for the two particles?
(b) Determine the Hamiltonian function H : T∗(R1 × S2) → R

1 defined on
the cotangent bundle of the configuration manifold.

(c) What are Hamilton’s equations for the two particles?
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(d) What are conserved quantities for the dynamical flow?
(e) What are the equilibrium solutions of the dynamical flow?
(f) Select a specific equilibrium solution and determine the linearized dy-

namics that approximate the Lagrangian flow in a neighborhood of that
equilibrium.

9.23. Consider the dynamics of an ideal particle of mass m that moves on
the surface of a right cylinder in R

3 under the influence of uniform, constant
gravity. Assume the axis of the cylinder is in the horizontal plane along the
positive first axis of an inertial Euclidean frame. The radius of the cylinder is
r > 0. Let q ∈ S1 denote the projection of the position vector of the particle
onto the circular cross section of the cylinder; let x ∈ R

1 denote the projection
of the position vector of the particle onto the first axis of the Euclidean
frame (the axis of the cylinder). The configuration is (q, x) ∈ S1×R

1 and the
configuration manifold is S1 × R

1.

(a) What is the position vector of the particle, expressed in the inertial Eu-
clidean frame, in terms of the configuration?

(b) What is the Lagrangian function L : T(S1 ×R
1) → R

1 for the particle on
the cylinder defined on the tangent bundle of the configuration manifold?

(c) Determine the Euler–Lagrange equations for the particle on the cylinder.
(d) Determine Hamilton’s equations for the particle on the cylinder.
(e) What are conserved quantities of the dynamical flow?
(f) What are the equilibrium solutions of the dynamical flow?
(g) Select a specific equilibrium solution and determine the linearized dy-

namics that approximate the Lagrangian flow in a neighborhood of that
equilibrium.

9.24. Consider the dynamics of an ideal massless, rigid link with length L and
concentrated masses m, viewed as ideal particles, located at each end of the
link. The link is constrained so that each end of the link moves on the surface
of a right cylinder in R

3 under the influence of uniform, constant gravity.
Assume the axis of the cylinder is in the horizontal plane along the positive
first axis of an inertial Euclidean frame. The radius of the cylinder is r > 0.
Let qi ∈ S1 denote the direction of the projection of the position vector of the
i-th particle onto the circular cross section of the cylinder; let xi ∈ R

1 denote
the projection of the position vector of the i-th particle onto the first axis
of the Euclidean frame (the axis of the cylinder). The configuration vector is
(q, x) = (q1, q2, x1, x2) ∈ M ⊂ (S1×R

1)2, where M is the constraint manifold
that includes the link length constraint.

(a) What is the position vector of each particle, expressed in the inertial
Euclidean frame, in terms of the configuration?

(b) Describe the constraint manifold M as an embedded manifold in (S1 ×
R

1)2 corresponding to the holonomic constraint imposed by the link
length.
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(c) Determine the augmented Lagrangian function La : T(M × R
1) → R

1

defined on the tangent bundle of the constraint manifold.
(d) What are the Euler–Lagrange equations for the rigid link constrained to

the cylinder?
(e) Determine the augmented Hamiltonian function Ha : T∗(M × R

1) → R
1

defined on the cotangent of the configuration manifold.
(f) What are Hamilton’s equations for the rigid link constrained to the cylin-

der?
(g) What are conserved quantities of the dynamical flow?
(h) What are the equilibrium solutions of the dynamical flow?

9.25. A frictionless pulley can rotate about an inertially fixed horizontal axis.
A massless, inextensible, flexible cable is partially wound around the pulley;
one end of the cable is fixed to the pulley while the other end of the cable
is attached to a mass element, viewed as an ideal particle. The cable is free
to rotate as a spherical pendulum with respect to the point where the cable
makes contact with the pulley; the cable is assumed to remain straight except
at the point of contact. The mass element attached to the end of the cable
acts under uniform, constant gravity. The pulley has scalar moment of inertia
J about its fixed axis of rotation, the pulley radius is r > 0, and the mass of
the pendulum element is m. Let x ∈ R

1 be the distance of the mass element
from the instantaneous point of contact of the cable with the pulley; this
is the instantaneous length of the spherical pendulum. Let q ∈ S2 denote
the attitude vector of the spherical pendulum in the inertial frame. Thus,
the configuration is (q, x) ∈ S2 × (0,∞) and the configuration manifold is
S2 × (0,∞). The Lagrangian function is

L(q, x, q̇, ẋ) =
1

2

J

r2
(ẋ)2 +

1

2
m‖ẋq + xq̇‖2 −mgx.

(a) What are the Euler–Lagrange equations for the pulley and spherical pen-
dulum?

(b) Determine the Hamiltonian function H : T∗(S2 × (0,∞)) → R
1 defined

on the cotangent bundle of the configuration manifold.
(c) What are Hamilton’s equations for the pulley and spherical pendulum?
(d) What are conserved quantities for the dynamical flow?

9.26. A rigid, massless cable is stretched over two frictionless rollers. Each
end of the cable is attached to a mass element, viewed as an ideal particle
of mass m. Assume the cable segment between the two rollers is always
horizontal, and the cable and mass elements hanging off of each roller can
rotate in three dimensions under uniform gravity as a spherical pendulum.
The inertia of the rollers is ignored; the total length of the cable is L and the
horizontal distance between the rollers is L

2 . Let x ∈ R
1 denote the hanging

length of the first element from the first roller so that L
2 −x ∈ R

1 denotes the
hanging length of the second mass element from the second roller. Assume
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that 0 < x < L
2 . An inertial frame is selected so that the third axis is

vertical. The attitudes of the two spherical pendulums, with variable lengths,
are q1 ∈ S2 and q2 ∈ S2. Thus, the configuration vector is (q, x) = (q1, q2, x) ∈
(S2)2×(0, L

2 ) and the configuration manifold is (S2)2×(0, L
2 ). The Lagrangian

function is

L(q, x, q̇, ẋ) =
1

2
m{(ẋ)2 + (x)2‖q̇1‖2}

+
1

2
m

{
(ẋ)2 +

(
L

2
− x

)2

‖q̇2‖2
}

− 2mgx.

(a) What are the Euler–Lagrange equations for the two mass elements con-
nected by a cable?

(b) Determine the Hamiltonian function H : T∗((S2)2 × (0, L
2 )) → R

1 on the
cotangent bundle of the configuration manifold.

(c) What are Hamilton’s equations for the two mass elements connected by
a cable?

(d) What are conserved quantities for the dynamical flow?
(e) What are the equilibrium solutions of the dynamical flow?

9.27. The frictionless pivots of two identical spherical pendulums are con-
strained to translate along a common horizontal, frictionless rail. The mass-
less pivots are separated by a linear elastic spring, with stiffness constant
κ, which is not stretched when the pivots are a distance D apart. The con-
centrated mass of each spherical pendulum is m, located at distance L from
its pivot. Constant, uniform gravity acts on the two pendulums. A three-
dimensional inertial frame is selected so that the horizontal rail lies along
its first axis, while the third axis is vertical. Ignore any collision of the two
spherical pendulums. Let x1, x2 ∈ R

1 denote the position vectors of the two
pivots along the first axis of the inertial frame; assume that x2 > x1. The
attitude vector of the first spherical pendulum is denoted by q1 ∈ S2 and
the attitude vector of the second spherical pendulum is denoted by q2 ∈ S2.
Thus, the configuration vector is (q, x) = (q1, q2, x1, x2) ∈ (S2)2 × (R1)2 and
the configuration manifold is (S2)2 × (R1)2. The Lagrangian function is

L(q, x, q̇, ẋ) =
1

2
m‖ẋ1e1 + Lq̇1‖2

+
1

2
m‖ẋ2e1 + Lq̇2‖2 + κ(x2 − x1 −D)2.

(a) What are the Euler—Lagrange equations for the two spherical pendulums
whose pivots are connected by an elastic spring?

(b) Determine the Hamiltonian function H : T∗((S2)2 × (R1)2) → R
1 on the

cotangent bundle of the configuration manifold.
(c) What are Hamilton’s equations for the two spherical pendulums whose

pivots are connected by an elastic spring?
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(d) What are conserved quantities for the dynamical flow?
(e) What are the equilibrium solutions of the dynamical flow?
(f) Select a specific equilibrium solution and determine the linearized dy-

namics that approximate the Lagrangian flow in a neighborhood of that
equilibrium.

9.28. This is an extension of a problem at the end of Chapter 2. A knife-edge
can slide on a horizontal plane without friction; the knife-edge is assumed to
have a single point of contact with the plane. The motion of the point of
contact of the knife-edge is constrained so that its velocity vector is always
in the direction of the axis of the knife-edge. This constraint on the direction
of the velocity vector is an example of a nonholonomic or non-integrable
constraint. The motion of the knife-edge is controlled by an axial force f ∈
R

1 and a rotational torque τ ∈ R
1 about the vertical. A two-dimensional

Euclidean frame is introduced for the horizontal plane, so that x ∈ R
2 denotes

the position vector of the contact point of the knife-edge; let q ∈ S1 denote the
direction vector of the knife-edge in the horizontal plane. The configuration
vector is (x, q) ∈ R

2 × S1 so that R2 × S1 is the configuration manifold. We
also introduce the scalar speed V of the knife-edge along its axis and the
scalar rotation rate ω of the knife-edge about the vertical. The knife-edge has
scalar mass M and scalar rotational inertia J .

(a) Describe the nonholonomic constraint by expressing ẋ in terms of V and
q.

(b) Describe the rotational kinematics of the knife-edge by expressing q̇ in
terms of ω and q.

(c) Develop the equations for the dynamics of the knife-edge. Assume the
Lagrangian function L : T(R2 × S1) → R

1 is given by the sum of the
translational kinetic energy and the rotational kinetic energy

L(x, q, ẋ, ω) =
1

2
M ‖ẋ‖2 + 1

2
J ‖ω‖2 .

Develop the equations of motion for the knife-edge dynamics using the
d’Alembert principle. Show that the work done by the axial force f and
the torque τ for a variation in the configuration is given by fδx + τδq;
show that the work done by the contact force of the horizontal plane
on the knife-edge is zero. Express your equations of motion in terms of
(x, q, V, ω), including the nonholonomic constraint equation.

(d) Suppose that the axial force f = 0 and the rotational torque τ = 0. De-
scribe the motion of the point of contact of the knife-edge in the horizontal
plane as it depends on the initial conditions.



Chapter 10

Deformable Multi-Body Systems

The developments introduced in the prior chapters can be applied to de-
formable bodies, that is bodies that deform or change their shape. A ge-
ometric formulation of Lagrangian dynamics and Hamiltonian dynamics of
deformable multi-body systems is provided, based on the assumption of a
finite-dimensional configuration manifold.

This chapter explores, in detail, the dynamics of several examples of de-
formable multi-body systems. In each case, the physical multi-body is de-
scribed and viewed from the perspective of geometric mechanics; the con-
figuration manifold is identified. Euler–Lagrange equations and Hamilton’s
equations are obtained for each example. Conserved quantities are identified
for the dynamical flows. Where appropriate, equilibrium solutions are deter-
mined. Linear vector fields are obtained that approximate the dynamical flow
in a neighborhood of an equilibrium solution.

10.1 Infinite-Dimensional Multi-Body Systems

These results can be extended to infinite-dimensional deformable multi-body
systems. Some publications that adopt a geometric perspective for dynamical
systems on an infinite-dimensional configuration manifold include [52, 56, 61,
88].

It is worth noting that the finite-dimensional multi-body systems that are
studied in this chapter can often be viewed as approximations of infinite-
dimensional multi-body systems. For example, an inextensible string with a
distributed mass can be approximated by mass lumping so that the mass
of the string is concentrated at a set of discrete points along the string. To
further simplify, we can approximate the string as being straight and inex-
tensible between two mass lumped points. This leads to a finite-dimensional
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model of a string as a chain of spherical pendula, which we discuss in the
next section.

More generally, given an infinite-dimensional variational problem, we can
construct a finite-dimensional approximation by projecting the problem onto
finite-dimensional subspaces of the infinite-dimensional configuration space.
In the setting of numerical solutions of partial differential equations, this is
referred to as a semi-discretization, or the method of lines, as the infinite-
dimensional degrees of freedom in the spatial directions are replaced by a
finite-dimensional approximation.

10.2 Dynamics of a Chain Pendulum

A chain pendulum is a connection of n rigid links, that are serially connected
by two degree of freedom spherical joints. We assume that each link of the
chain pendulum is a rigid link with mass concentrated at the outboard end
of the link. One end of the chain pendulum is connected to a spherical joint
that is supported by a fixed base. A constant gravity potential acts on each
link of the chain pendulum. A schematic of a chain pendulum is shown in
Figure 10.1.

q1 ∈ S2

qn ∈ S2

Fig. 10.1 A chain pendulum

We demonstrate that globally valid Euler–Lagrange equations can be de-
veloped for the chain pendulum, and they can be expressed in a compact
form. The results provide an intrinsic and unified framework to study the
dynamics of a chain pendulum, that is applicable for an arbitrary number of
links, and globally valid for any configuration of the links. This problem, in
a more general formulation, was first studied in [59].

The mass of the i-th link is denoted by mi and the link length is denoted
by Li. For simplicity, assume that the mass of each link is concentrated at
the outboard end of the link.

An inertial frame is chosen such that the first two axes are horizontal and
the third axis is vertical. The origin of the inertial frame is located at the
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fixed spherical joint. The vector qi ∈ S2 represents the attitude of the i-th
link in the inertial frame, i = 1, . . . , n. Thus, the configuration of the chain
pendulum is the n-tuple of link attitudes q = (q1, . . . , qn) ∈ (S2)n, so that
the configuration manifold is (S2)n. The chain pendulum has 2n degrees of
freedom. Collisions of the mass elements and links of the chain pendulum are
assumed not to occur.

10.2.1 Euler–Lagrange Equations

Let xi ∈ R
3 be the position of the outboard end of the i-th link in the inertial

frame. It can be written as

xi =
i∑

j=1

Ljqj .

The total kinetic energy is composed of the kinetic energy of each mass:

T (q, q̇) =
1

2

n∑
i=1

mi

∥∥∥∥∥
i∑

j=1

Lj q̇j

∥∥∥∥∥
2

.

This can be rewritten as

T (q, q̇) =
1

2

n∑
i,j=1

MijLiLj q̇
T
i q̇j ,

where the real inertia constants Mij are given by

Mij =

n∑
k=max{i,j}

mk, i, j = 1, . . . , n.

The potential energy consists of the gravitational potential energy of all the
mass elements. The potential energy can be written as

U(q) =

n∑
i=1

mige
T
3 xi =

n∑
i=1

n∑
j=i

mjgLie
T
3 qi.

The Lagrangian function L : T(S2)n → R
1 of the chain pendulum is

L(q, q̇) =
1

2

n∑
i=1

n∑
j=1

MijLiLj q̇
T
i q̇j −

n∑
i=1

n∑
j=i

mjgLie
T
3 qi.
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The rotational kinematics equation for the attitude vector of the i-th link
can be expressed in terms of the angular velocity vector of that link by

q̇i = S(ωi)qi, i = 1, . . . , n, (10.1)

where ωi ∈ TqiS
2 is the angular velocity vector of the i-th link, satisfying

ωT
i qi = 0, for i = 1, . . . , n. We use the notation ω = (ω1, . . . , ωn) ∈ Tq(S

2)n.

Thus, the modified Lagrangian function L̃ : T(S2)n → R
1 of a chain pendu-

lum can be expressed in terms of the angular velocity vector as

L̃(q, ω) =
1

2

n∑
i=1

n∑
j=1

ωT
i S

T (qi)MijLiLjS(qj)ωj −
n∑

i=1

n∑
j=i

mjgLie
T
3 qi.

This can be written as

L̃(q, ω) =
1

2

n∑
i=1

ωT
i MiiL

2
iωi +

1

2

n∑
i=1

n∑
j=1
j �=i

ωT
i S

T (qi)MijLiLjS(qj)ωj

−
n∑

i=1

n∑
j=i

mjgLie
T
3 qi.

The infinitesimal variation of the action integral is given by

δG =

∫ tf

t0

n∑
i=1

{
∂L̃(q, ω)

∂ωi
· δωi +

∂L̃(q, ω)

∂qi
· δqi

}
dt,

and the infinitesimal variations are given by

δqi = S(γi)qi, i = 1, . . . , n,

δωi = −S(ωi)γi + (I3×3 − qiq
T
i )γ̇i, i = 1, . . . , n,

for differentiable curves γi : [t0, tf ] → R
3 satisfying γi(t0) = γi(tf ) = 0, for

i = 1, . . . , n.
Following the procedure described in Chapter 5, we substitute the infinites-

imal variations into the expression for the infinitesimal variation of the action
integral, integrate by parts and carry out a simplification using various matrix
identities. Finally, we use Hamilton’s principle and the fundamental lemma
of the calculus of variations, as in Appendix A, to obtain the Euler–Lagrange
equations for the chain pendulum:

MiiL
2
i ω̇i +

n∑
j=1
j �=i

MijLiLjS
T (qi)S(qj)ω̇j −

n∑
j=1
j �=i

MijLiLj ‖ωj‖2 S(qi)qj
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−
n∑

j=i

mjgLiS(e3)qi = 0, i = 1, . . . , n,

or equivalently in matrix-vector form

⎡
⎢⎢⎢⎣

M11L
2
1I3 M12L1L2S

T (q1)S(q2) · · · M1nL1LnS
T (q1)S(qn)

M21L2L1S
T (q2)S(q1) M22L

2
2I3 · · · M2nL2LnS

T (q2)S(qn)
...

...
. . .

...
Mn1LnL1S

T (qn)S(q1) Mn2LnL2S
T (qn)S(q2) · · · MnnL

2
nI3

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
ω̇1

ω̇2

...
ω̇n

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎢⎣

∑n
j=2 M1jL1Lj‖ωj‖2S(q1)qj∑n

j=1,j �=2 M2jL2Lj‖ωj‖2S(q2)qj
...∑n−1

j=1 MnjLnLj‖ωj‖2S(qn)qj

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎢⎢⎢⎣

∑n
j=1 mjgL1S(e3)q1∑n
j=2 mjgL2S(e3)q2

...
mnglnS(e3)qn

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣
0
0
...
0

⎤
⎥⎥⎥⎦ . (10.2)

These Euler–Lagrange equations (10.2) and the rotational kinematics (10.1)
describe the Lagrangian flow of the chain pendulum dynamics in terms of the
evolution of (q, q̇) ∈ T(S2)n on the tangent bundle of (S2)n.

10.2.2 Hamilton’s Equations

Hamilton’s equations for the chain pendulum dynamics as they evolve on the
cotangent bundle T∗(S1)2 can be obtained by considering the momentum
π = (π1, . . . , πn) ∈ T∗

q(S
2)n that is conjugate to the angular velocity vector

ω = (ω1, . . . , ωn) ∈ Tq(S
2)n. This is defined by the Legendre transformation,

which is given by

πi = (I3×3 − qiq
T
i )

∂L̃(q, ω)

∂ωi
, i = 1, . . . , n,

and which can be written in matrix form as⎡
⎢⎣
π1

...
πn

⎤
⎥⎦ =

⎡
⎢⎣

M11L
2
1I3 · · · M1nL1LnS

T (q1)S(qn)
...

. . .
...

Mn1LnL1S
T (qn)S(q1) · · · MnnL

2
nI3

⎤
⎥⎦

⎡
⎢⎣
ω1

...
ωn

⎤
⎥⎦ .
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Thus, we obtain

⎡
⎢⎣
ω1

...
ωn

⎤
⎥⎦ =

⎡
⎢⎣
M I

11(q) · · · M I
1n(q)

...
. . .

...
M I

n1(q) · · · M I
nn(q)

⎤
⎥⎦

⎡
⎢⎣
π1

...
πn

⎤
⎥⎦ , (10.3)

where

⎡
⎢⎣
MI

11(q) · · · MI
1n(q)

...
. . .

...
MI

n1(q) · · · MI
n1(q)

⎤
⎥⎦ =

⎡
⎢⎣

M11L
2
1I3 . . . M1nL1LnS

T (q1)S(qn)
...

. . .
...

Mn1LnL1S
T (qn)S(q1) . . . MnnL

2
nI3

⎤
⎥⎦

−1

.

Here, the functions M I
ij(q) denote the 3×3 matrices that partition the inverse

matrix above. The modified Hamiltonian function H̃ : T∗(S2)n → R
1 is

H̃(q, π) =
1

2

⎡
⎢⎣
π1

...
πn

⎤
⎥⎦
T ⎡
⎢⎣
M I

11(q) · · · M I
1n(q)

...
. . .

...
M I

n1(q) · · · M I
nn(q)

⎤
⎥⎦

⎡
⎢⎣
π1

...
πn

⎤
⎥⎦+

n∑
i=1

n∑
j=i

mjgLie
T
3 qi.

Thus, Hamilton’s equations can be obtained from (5.28) and (5.29) and writ-
ten as

q̇i = −S(qi)

n∑
j=1

M I
ijπj , i = 1, . . . , n, (10.4)

π̇i = −S(qi)

⎧⎨
⎩

1

2

∂

∂qi

n∑
j,k=1

πT
j M

I
jk(q)πk

⎫⎬
⎭

+

n∑
j=1

M I
ijπj × πi − S(qi)

n∑
j=i

mjgLie3, i = 1, . . . , n. (10.5)

The nongravitational terms on the right-hand side of (10.5) are quadratic in
the angular momenta. Hamilton’s equations (10.4) and (10.5) describe the
Hamiltonian flow of the chain pendulum dynamics in terms of the evolution
of (q, π) ∈ T∗(S2)n on the cotangent bundle of (S2)n.

10.2.3 Comments

The Euler–Lagrange equations and Hamilton’s equations for the chain pen-
dulum dynamics are valid for arbitrary deformations of the chain so long as
there are no collisions. Part or all of the chain pendulum may be above the
spherical joint support point while part or all of the chain pendulum may be
below the spherical joint support point.
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If there is a single link, n = 1, the spherical pendulum is obtained; if there
are two serial links, n = 2, the double spherical pendulum is obtained. The
resulting dynamics of the chain pendulum can be complicated due to the cou-
pling and the energy transfer between the links, and even the double spherical
pendulum can exhibit interesting and nontrivial dynamics as a consequence
of the coupling effects.

10.2.4 Conservation Properties

The Hamiltonian of the chain pendulum

H =
1

2

n∑
i=1

n∑
j=1

MijLiLj q̇
T
i q̇j +

n∑
i=1

n∑
j=i

mjgLie
T
3 qi,

which coincides with the total energy E in this case, is constant along each
solution of the Lagrangian flow.

10.2.5 Equilibrium Properties

We now determine the equilibrium solutions of the chain pendulum. These
arise when the velocity vector is zero, and the equilibrium configuration vector
in (S2)n satisfies

S(e3)qi = 0, i = 1, . . . , n,

which implies that the moments due to gravity vanishes. Consequently, there
are 2n equilibrium configurations that correspond to all the n link configura-
tions being aligned with either e3 or −e3.

The equilibrium configuration where all the n links are aligned with the
−e3 gravity direction is referred to as the hanging equilibrium. All other
equilibria correspond to at least one link oriented upwards, opposite to the
direction of gravity. Two interesting equilibrium solutions correspond to the
case that all adjacent links are counter-aligned, that is qTi qi+1 = −1. These
two equilibrium solutions, one with the first link pointing in the direction
of e3 and the other with the first link pointing in the direction of −e3, are
referred to as folded equilibria since the chain pendulum is completely folded
in each case.

Consider the hanging equilibrium (−e3,−e3, . . . ,−e3, 0, 0, . . . , 0) ∈ T(S2)n.
The linearized differential equations at this hanging equilibrium can be shown
to be

MiiL
2
i ξ̈i +

n∑
j=1
j �=i

MijLiLj ξ̈j +

n∑
j=i

mjgLiξi = 0, i = 1, . . . , n,
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defined on the 4n-dimensional tangent space of T(S2)n at the equilibrium
(−e3,−e3, . . . ,−e3, 0, 0, . . . , 0) ∈ T(S2)n. These linearized differential equa-
tions provide an approximation to the Lagrangian flow of the chain pendulum
in a neighborhood of the hanging equilibrium. All of the eigenvalues can be
shown to be purely imaginary. The hanging equilibrium can be shown to be
stable since the total energy has a strict local minimum at the hanging equi-
librium with compact level sets in a neighborhood and the derivative of the
total energy is identically zero.

Now consider the equilibrium (−e3, e3, . . . , e3, 0, 0, . . . , 0) ∈ T(S2)n where
the first link is in the direction of gravity while the direction of all other links
are vertical. The linearized differential equations at this equilibrium can be
shown to be

M11L
2
1ξ̈1 +

n∑
j=2

M1jL1Lj ξ̈j +
n∑

j=1

mjgL1ξ1 = 0,

MiiL
2
i ξ̈i +

n∑
j=1
j �=i

MijLiLj ξ̈j −
n∑

j=i

mjgLiξi = 0, i = 2, . . . , n,

defined on the 4n-dimensional tangent space of T(S2)n at the equilibrium
(−e3, e3, . . . , e3, 0, 0, . . . , 0) ∈ T(S2)n. These linearized differential equations
provide an approximation to the Lagrangian flow of the chain pendulum in
a neighborhood of this equilibrium. It can be shown that these linearized
equations have a positive eigenvalue, so that this equilibrium is unstable.
Similarly, it can be shown that all of the equilibrium solutions, except for the
hanging equilibrium, have at least one positive eigenvalue and are therefore
unstable.

10.3 Dynamics of a Chain Pendulum on a Cart

Consider the dynamics of a chain pendulum on a cart: a serial connection of n
rigid links, connected by two degree of freedom spherical joints, attached to a
cart that moves on a horizontal plane. We assume that each link of the chain
pendulum is a thin rigid rod with mass concentrated at the outboard end of
the link. One end of the chain pendulum is attached to a spherical joint that
is located at the center of mass of the cart. The cart can translate, without
friction, in the horizontal plane; it is assumed that the cart does not rotate in
the plane. Constant uniform gravity acts on each link of the chain pendulum.
A schematic of a chain pendulum on a cart is shown in Figure 10.2.

Globally valid Euler–Lagrange equations are developed for the chain pen-
dulum on a cart, and they are expressed in a compact form. The results
provide an intrinsic, unified framework to study the dynamics of a chain pen-
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q1 ∈ S2

qn ∈ S2

x ∈ R2

Fig. 10.2 Chain pendulum on a cart

dulum on a cart, that is applicable for an arbitrary number of links, and
globally valid for any configuration of the links. The dynamics of a chain
pendulum on a cart have been studied in [59].

A serial connection of n rigid links, connected by spherical joints, is at-
tached to the cart, where the mass of the i-th link is denoted by mi and
the link length is denoted by Li for i = 1, . . . , n. The mass of each link is
concentrated at the outboard end of the link.

An inertial frame is chosen with the first two axes horizontal and the third
axis vertical. The cart of mass m can translate in the horizontal plane defined
by the first two axes of the inertial frame. The position of the center of mass
in this horizontal plane is denoted by x ∈ R

2. The attitude vector of each link
in the inertial frame is given by qi ∈ S2 for i = 1, . . . , n. The configuration
of the chain pendulum on a cart is (x, q) = (x, q1, . . . , qn) ∈ R

2 × (S2)n, and
the configuration manifold is R2 × (S2)n. The chain pendulum on a cart has
2n+ 2 degrees of freedom. Collisions of the mass elements, links, and cart of
the chain pendulum on a cart are assumed not to occur.

10.3.1 Euler–Lagrange Equations

The 3× 2 matrix

C =

⎡
⎣1 0
0 1
0 0

⎤
⎦ ,

defines an embedding of R
2 into R

3. The location of the cart is given by
Cx ∈ R

3 in the inertial frame. Let xi ∈ R
3 be the position vector of the

outboard end of the i-th link in the inertial frame. It can be written as

xi = Cx+

i∑
j=1

Ljqj , i = 1, . . . , n.
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The total kinetic energy is composed of the kinetic energy of the cart and
the kinetic energy of the link masses; the total kinetic energy is

T (x, q, ẋ, q̇) =
1

2
m‖ẋ‖2 + 1

2

n∑
i=1

mi‖ẋi‖2

=
1

2
m‖ẋ‖2 + 1

2

n∑
i=1

mi

∥∥∥∥∥Cẋ+
i∑

j=1

Lj q̇j

∥∥∥∥∥
2

.

For simplicity, we first consider the part of the kinetic energy that is depen-
dent on the motion of the cart. The part of the cart kinetic energy that is
dependent on ẋ is given by

1

2

(
m+

n∑
i=1

mi

)
‖ẋ‖2 + ẋTCT

n∑
i=1

n∑
j=i

mjLiq̇i,

which can be written as

1

2
M00‖ẋ‖2 + ẋT

n∑
i=1

M0iq̇i,

where the inertia matrices M00 ∈ R
1, M0i ∈ R

2×3, and Mi0 ∈ R
3×2 are given

by

M00 = m+
n∑

i=1

mi, M0i = CT
n∑

j=i

mj , Mi0 = MT
0i,

for i = 1, . . . , n. The part of the kinetic energy that is independent of ẋ is
given by

1

2

n∑
i=1

mi

∥∥∥∥∥
i∑

j=1

Lj q̇j

∥∥∥∥∥
2

=
1

2

n∑
i=1

n∑
j=1

MijLiLj q̇
T
i q̇j ,

where the real-valued inertia constants Mij are given by

Mij =
n∑

k=max{i,j}
mk,

for i, j = 1, . . . , n. Thus, the total kinetic energy is given by

T (x, q, ẋ, q̇) =
1

2
M00‖ẋ‖2 + ẋT

n∑
i=1

M0iLiq̇i +
1

2

n∑
i=1

n∑
j=1

MijLiLj q̇
T
i q̇j .
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The potential energy consists of the gravitational potential energy of all the
mass elements. The potential energy can be written as

U(x, q) =

n∑
i=1

mige
T
3 xi =

n∑
i=1

n∑
j=i

mjgLie
T
3 qi.

The Lagrangian function L : T(R2 × (S2)n) → R
1 of a chain pendulum on

a cart is

L(x, q, ẋ, q̇) =
1

2
M00‖ẋ‖2 + ẋT

n∑
i=1

M0iLiq̇i

+
1

2

n∑
i=1

n∑
j=1

MijLiLj q̇
T
i q̇j −

n∑
i=1

n∑
j=i

mjgLie
T
3 qi.

Note that the Lagrangian does not depend on the position of the cart, which
implies a translational symmetry in the dynamics.

The rotational kinematics for the attitude vector of the i-th link can be
expressed in terms of the angular velocity vector of the i-th link as

q̇i = S(ωi)qi, i = 1, . . . , n, (10.6)

where ωi ∈ TqiS
2 is the angular velocity vector of the i-th link satisfying

ωT
i qi = 0. We use the notation ω = (ω1, . . . , ωn) ∈ Tq(S

2)n. Thus, the modi-

fied Lagrangian function L̃ : T(R2 × (S2)n) → R
1 of the chain pendulum on

a cart can be expressed in terms of the angular velocity vector as

L̃(x, q, ẋ, ω) =
1

2
M00‖ẋ‖2 − ẋT

n∑
i=1

M0iLiS(qi)ωi

+
1

2

n∑
i=1

n∑
j=1

ωT
i S

T (qi)MijLiLjS(qj)ωj −
n∑

i=1

n∑
j=i

mjgLie
T
3 qi.

This can be written as

L̃(x, q, ẋ, ω) =
1

2
M00‖ẋ‖2 − ẋT

n∑
i=1

M0iLiS(qi)ωi +
1

2

n∑
i=1

ωT
i MiiL

2
iωi

+
1

2

n∑
i=1

n∑
j=1
j �=i

ωT
i S

T (qi)MijLiLjS(qj)ωj

−
n∑

i=1

n∑
j=i

mjgLie
T
3 qi.
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The infinitesimal variation of the action integral is given by

δG =

∫ tf

t0

n∑
i=1

{
∂L̃(x, q, ẋ, ω)

∂ẋ
· δẋ+

∂L̃(x, q, ẋ, ω)

∂ωi
· δωi

+
∂L̃(x, q, ẋ, ω)

∂x
· δx+

∂L̃(x, q, ẋ, ω)

∂qi
· δqi

}
dt,

and the infinitesimal variations are given by

δqi = S(γi)qi, i = 1, . . . , n,

δωi = −S(ωi)γi + (I3×3 − qiq
T
i )γ̇i, i = 1, . . . , n,

with differentiable curves γi : [t0, tf ] → R
3 satisfying γi(t0) = γi(tf ) = 0, for

i = 1, . . . , n, and differentiable curves δx : [t0, tf ] → R
2 satisfying δx(t0) =

δx(tf ) = 0.
Following the procedure described in Chapters 3 and 5, we substitute the

infinitesimal variations into the expression for the infinitesimal variation of
the action integral, integrate by parts and carry out a simplification using
various matrix identities. Finally, we use Hamilton’s principle and the funda-
mental lemma of the calculus of variations, as in Appendix A, to obtain the
Euler–Lagrange equations for the chain pendulum:

M00ẍ+
n∑

i=1

M0iLiS
T (qi)ωi −

n∑
i=1

M0iLi ‖ωi‖2 qi = 0, (10.7)

MiiL
2
i ω̇i +

n∑
j=1
j �=i

MijLiLjS
T (qi)S(qj)ω̇j +Mi0LiS(qi)ẍ

−
n∑

j=1
j �=i

MijLiLj ‖ωj‖2 S(qi)qj +
n∑

j=i

mjgLiS(qi)e3 = 0, i = 1, . . . , n.

(10.8)

These Euler–Lagrange equations (10.7) and (10.8), and the rotational kine-
matics (10.6) describe the dynamical flow of the chain pendulum on a cart in
terms of the evolution of (x, q, ẋ, q̇) ∈ T(R2 × (S2)n) on the tangent bundle
of R2 × (S2)n.

10.3.2 Hamilton’s Equations

Hamilton’s equations for the chain pendulum on a cart describe the dynamics
on the cotangent bundle T∗(R2 × (S2)2), and can be obtained by considering
the momentum (p, π) = (p, π1, . . . , πn) ∈ T∗

(x,q)(R
2× (S2)n) that is conjugate
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to the velocity vector (ẋ, ω) = (ẋ, ω1, . . . , ωn) ∈ T(x,q)(R
2 × (S2)n). This is

defined by the Legendre transformation

p =
∂L̃(x, q, ẋ, ω)

∂ẋ
,

πi = (I3×3 − qiq
T
i )

∂L̃(x, q, ẋ, ω)

∂ωi
, i = 1, . . . , n,

which can be written in matrix form as⎡
⎢⎢⎢⎣
p
π1

...
πn

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

M00 −M01L1S(q1) · · · −M0nLnS(qn)
−M10L1S

T (q1) M11L
2
1I3 · · · M1nL1LnS

T (q1)S(qn)
...

...
. . .

...
−Mn0LnS

T (qn) Mn1LnL1S
T (qn)S(q1) · · · MnnL

2
nI3

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
ẋ
ω1

...
ωn

⎤
⎥⎥⎥⎦ .

Thus, we obtain

⎡
⎢⎢⎢⎣
ẋ
ω1

...
ωn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
M I

00 M I
01 · · · M I

0n

M I
10 M I

11 · · · M I
1n

...
...

. . .
...

M I
n0 M I

n1 · · · M I
nn

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
p
π1

...
πn

⎤
⎥⎥⎥⎦ , (10.9)

where⎡
⎢⎢⎢⎣
M I

00 M I
01 · · · M I

0n

M I
10 M I

11 · · · M I
1n

...
...

. . .
...

M I
n0 M I

n1 · · · M I
nn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

M00 −M01L1S(q1) · · · −M0nLnS(qn)
−M10L1S

T (q1) M11L
2
1I3 · · · M1nL1LnS

T (q1)S(qn)
...

...
. . .

...
−Mn0LnS

T (qn) Mn1LnL1S
T (qn)S(q1) · · · MnnL

2
nI3

⎤
⎥⎥⎥⎦

−1

.
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Here, the functions M I
ij denote the 3× 3 matrices that partition the inverse

matrix above. The modified Hamiltonian function H̃ : T∗(R2 × (S2)n) → R
1

can also be expressed as

H̃(x, q, p, π) =
1

2

⎡
⎢⎢⎢⎣
p
π1

...
πn

⎤
⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎣
M I

00 M I
01 · · · M I

0n

M I
10 M I

11 · · · M I
1n

...
...

. . .
...

M I
n0 M I

n1 · · · M I
nn

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
p
π1

...
πn

⎤
⎥⎥⎥⎦

+
n∑

i=1

n∑
j=i

mjgLie
T
3 qi.

Thus, Hamilton’s equations can be expressed in the following form

ẋ = M I
00p+

n∑
j=1

M I
0jπj , (10.10)

q̇i = −S(qi)

⎧⎨
⎩M I

i0p+

n∑
j=1

M I
ijπj

⎫⎬
⎭ , i = 1, . . . , n, (10.11)

ṗ = 0, (10.12)

π̇i = −S(qi)

⎧⎨
⎩

1

2

∂

∂qi
pTM I

00p+
∂

∂qi

n∑
j=1

pTM I
0jπj +

1

2

∂

∂qi

n∑
j,k=1

πT
j Mjkπj

⎫⎬
⎭

+

⎧⎨
⎩M I

i0p+
n∑

j=1

M I
ijπj

⎫⎬
⎭× πi − S(qi)

n∑
j=1

mjgLie3, i = 1, . . . , n.

(10.13)

The nongravitational terms on the right-hand side of (10.13) are quadratic
in the momenta. Hamilton’s equations (10.10), (10.11), (10.12), and (10.13)
describe the Hamiltonian flow of the chain pendulum on a cart in terms of
the evolution of (x, q, p, π) ∈ T∗(R2 × (S2)n) on the cotangent bundle of
R

2 × (S2)n.

10.3.3 Comments

The Euler–Lagrange equations and Hamilton’s equations given above for the
chain pendulum on a cart are valid for arbitrary deformations of the chain
with respect to the cart; part or all of the chain pendulum may be above the
cart while part or all of the chain pendulum may be below the cart. Collisions
of the chain pendulum with itself and of the chain pendulum with the cart
are ignored.
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If there is a single link, n = 1, the spherical pendulum on a cart is obtained;
if there are two serial links, n = 2, the double spherical pendulum on a cart
is obtained. The resulting dynamics of the chain pendulum on a cart for any
number of links can be very complicated due to the coupling between the
chain pendulum dynamics and the cart dynamics.

10.3.4 Conservation Properties

The Hamiltonian of the chain pendulum on a cart is given by

H =
1

2
M00‖ẋ‖2 − ẋT

n∑
i=1

M0iLiS(qi)ωi

+
1

2

n∑
i=1

n∑
j=1

ωT
i S

T (qi)MijLiLjS(qj)ωj +
n∑

i=1

n∑
j=i

mjgLie
T
3 qi,

which coincides with the total energy E in this case, and it is constant along
each solution of the dynamical flow.

As seen from Hamilton’s equations, the translational momentum in the
inertial frame, given by

p = M00ẋ+

n∑
i=1

M0iLiS
T (qi)ωi

is also constant along each solution of the dynamical flow. As observed earlier,
the Lagrangian is invariant under translations, and by Noether’s theorem, this
implies that the translational momentum is preserved along the flow.

10.3.5 Equilibrium Properties

The equilibrium solutions of the chain pendulum on a cart can be determined
using (10.7) and (10.8). If the velocity vector is zero, the equilibrium configu-
ration vector in (R2 × (S2)n) occurs for an arbitrary location of the cart and
for each link of the chain pendulum aligned vertically, i.e.,

S(qi)e3 = 0, i = 1, . . . , n,

which implies that the moments due to gravity vanish. For the typical equi-
librium condition where x = 0, there are 2n possible equilibrium link atti-
tudes that correspond to the case where all n links are vertical: qi = ±e3 for
i = 1, . . . , n. The equilibrium for which all links are aligned with the gravity
direction, qi = −e3 for i = 1, . . . , n, is referred to as the hanging equilib-
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rium; the equilibrium for which all links are aligned opposite to the gravity
direction qi = e3 for i = 1, . . . , n, is referred to as the inverted equilibrium.
All other equilibria correspond to at least one link oriented opposite to the
direction of gravity.

Consider the hanging equilibrium (0,−e3, . . . ,−e3, 0, 0, . . . , 0) ∈ T(R2 ×
(S2)n). The linearized differential equations at this hanging equilibrium can
be shown to be

M00ξ̈0 +
n∑

i=1

M0iLiSC
T ξ̈i = 0,

Mi0LiCST ξ̈0 +MiiL
2
i ξ̈i +

n∑
j=1
j �=i

MijLiLj ξ̈j +

n∑
j=i

mjgLiξi = 0, i = 1, . . . , n.

These linear differential equations are defined on the (4n + 4)-dimensional
tangent space of the manifold T(R2 × (S2)n) at the hanging equilibrium
(0,−e3, . . . ,−e3, 0, 0, . . . , 0) ∈ T(R2×(S2)n). They provide an approximation
to the Lagrangian flow of the chain pendulum on a cart in a neighborhood of
the hanging equilibrium. It can be shown that there are two zero eigenvalues
and all other eigenvalues are purely imaginary. We cannot establish stability
of the hanging equilibrium by Lyapunov techniques as the energy minimum
is not isolated, since all hanging equilibria have the same energy independent
of the cart position.

Now consider the equilibrium (0, e3,−e3, . . . ,−e3, 0, 0, 0, . . . , 0) ∈ T(R2 ×
(S2)n). The linearized differential equations at this equilibrium can be shown
to be

M00ξ̈0 +

n∑
j=1

M0jLjSC
T ξ̈j = 0,

M10L1CST ξ̈0 +M1iL
2
i ξ̈1 +

n∑
j=2

M1jL1Lj ξ̈j +

n∑
j=1

mjgL1ξ1 = 0,

Mi0LiCST ξ̈0 +MiiL
2
i ξ̈i +

n∑
j=1
j �=i

MijLiLj ξ̈j −
n∑

j=i

mjgLiξi = 0, i = 2, . . . , n.

These linear differential equations are defined on the (4n + 4)-dimensional
tangent space of the manifold T(R2 × (S2)n) at the equilibrium point
(0, e3,−e3, . . . ,−e3, 0, 0, . . . , 0) ∈ T(R2×(S2)n). They provide an approxima-
tion to the Lagrangian flow of the chain pendulum on a cart in a neighbor-
hood of this equilibrium. It can be shown that there is a positive eigenvalue so
that this equilibrium is unstable. It can also be shown that there is a positive
eigenvalue for each set of linearized equations, linearized at any equilibrium
other than the hanging equilibrium. Consequently, all equilibrium solutions,
other than the hanging equilibrium, are unstable.
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10.4 Dynamics of a Free-Free Chain

Consider the dynamics of a chain, viewed as a serial connection of n rigid
links, that is in free fall under uniform, constant gravity in three dimensions.
Each link of the chain is a thin rigid rod with mass concentrated at the out-
board end of the link. The motion of each end of the chain is unconstrained.

We demonstrate that globally valid Euler–Lagrange equations and Hamil-
ton’s equations can be derived for the chain dynamics, and they can yield
compact expressions that are more amenable to analysis. The results pro-
vide an intrinsic and unified framework to study the dynamics of a chain
that is applicable for an arbitrary number of links and globally valid for any
configuration of the links.

The chain is viewed as a serial connection of n rigid links, connected by
n−1 spherical joints. The mass of the i-th link is denoted by mi and the link
length is denoted by Li for i = 1, . . . , n. For simplicity, we assume that the
mass of each link is concentrated at the end of the link, with mass element
m0 located at the free end of the first link. The chain is referred to as a
free-free chain since the motion of each end of the chain is not constrained.
A schematic of a free-free chain is shown in Figure 10.3.

Fig. 10.3 A free-free chain under uniform gravity

An inertial frame is chosen such first two axes are horizontal and the
third axis is vertical. The inertial position vector of the free end of the first
link is x ∈ R

3. The attitude vector of each link in the inertial frame is
given by qi ∈ S2 for i = 1, . . . , n. The configuration of the chain is (x, q) =
(x, q1, . . . , qn) ∈ R

3 × (S2)n, so that the configuration manifold of the chain
is R3 × (S2)n. The free-free chain has 2n+3 degrees of freedom. Collisions of
the mass elements and links of the chain are assumed not to occur.
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10.4.1 Euler–Lagrange Equations

Let xi ∈ R
3 be the position of the i-th mass element in the inertial frame. It

can be written as

xi = x+
i∑

j=1

Ljqj , i = 1, . . . , n.

The total kinetic energy is the sum of the kinetic energies of the concentrated
mass at the end of each link:

T (x, q, ẋ, q̇) =
1

2
m0‖ẋ‖2 + 1

2

n∑
i=1

mi‖ẋi‖2

=
1

2
m0‖ẋ‖2 + 1

2

n∑
i=1

mi‖ẋ+

i∑
j=1

Lj q̇j‖2.

The kinetic energy can be written as

T (x, q, x, ẋ, q̇) =
1

2
M00‖ẋ‖2 + ẋT

n∑
i=1

M0iLiq̇i +
1

2

n∑
i,j=1

MijLiLj q̇
T
i q̇j ,

where the real inertia constants are

M00 =

n∑
i=0

mi, M0i =

n∑
j=i

mj , i = 1, . . . , n,

and

Mij =

n∑
k=max{i,j}

mk, i, j = 1, . . . , n.

The potential energy consists of the gravitational potential energy of all links
of the chain. The potential energy can be written as

U(x, q) = m0ge
T
3 x+

n∑
i=1

mige
T
3 xi

= M00ge
T
3 x+

n∑
i=1

n∑
j=i

mjgLie
T
3 qi.

The Lagrangian of the chain is

L(x, q, x, ẋ, q̇) =
1

2
M00‖ẋ‖2 + ẋT

n∑
i=1

M0iLiq̇i +
1

2

n∑
i=1

n∑
i=1

MijLiLj q̇
T
i q̇j
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−M00ge
T
3 x−

n∑
i=1

n∑
j=i

mjgLie
T
3 qi.

The rotational kinematics for the attitude vector of the i-th link are ex-
pressed in terms of the angular velocity vector of the i-th link as

q̇i = S(ωi)qi, i = 1, . . . , n, (10.14)

where ωi ∈ TqiS
2 is the angular velocity vector of the i-th link satisfying

ωT
i qi = 0 for i = 1, . . . , n. We use the notation ω = (ω1, . . . , ωn) ∈ Tq(S

2)n.

Thus, the modified Lagrangian function L̃ : T(R3 × (S2)n) → R
1 of the

free-free chain can be expressed in terms of the angular velocities as

L̃(x, q, ẋ, ω) =
1

2
M00‖ẋ‖2 − ẋT

n∑
i=1

M0iLiS(qi)ωi

+
1

2

n∑
i=1

n∑
j=1

ωT
i S

T (qi)MijLiLjS(qj)ωj

−M00ge
T
3 x−

n∑
i=1

n∑
j=i

mjgLie
T
3 qi.

This can be rewritten as

L̃(x, q, ẋ, ω) =
1

2
M00‖ẋ‖2 − ẋT

n∑
i=1

M0iLiS(qi)ωi +
1

2

n∑
i=1

ωT
i MiiL

2
iωi

+
1

2

n∑
i=1

n∑
j=1
j �=i

ωT
i S

T (qi)MijLiLjS(qj)ωj

−M00ge
T
3 x−

n∑
i=1

n∑
j=i

mjgLie
T
3 qi.

The infinitesimal variation of the action integral is given by

δG =

∫ tf

t0

n∑
i=1

{
∂L̃(x, q, ẋ, ω)

∂ẋ
· δẋ+

∂L̃(x, q, ẋ, ω)

∂ωi
· δωi

+
∂L̃(x, q, ẋ, ω)

∂x
· δx+

∂L̃(x, q, ẋ, ω)

∂qi
· δqi

}
dt,

where

δqi = S(γi)qi, i = 1, . . . , n,

δωi = −S(ωi)γi + (I3×3 − qiq
T
i )γ̇i, i = 1, . . . , n,
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for differentiable curves γi : [t0, tf ] → R
3 satisfying γi(t0) = γi(tf ) = 0, for

i = 1, . . . , n, and differentiable curves δx : [t0, tf ] → R
3 satisfying δx(t0) =

δx(tf ) = 0.
Following the procedure described in Chapters 3 and 5, we substitute the

infinitesimal variations into the expression for the infinitesimal variation of
the action integral, integrate by parts and carry out a simplification using
various matrix identities. Finally, we use Hamilton’s principle and the funda-
mental lemma of the calculus of variations, as in Appendix A, to obtain the
Euler–Lagrange equations for the free-free chain dynamics:

M00ẍ+
n∑

i=1

M0iLiS
T (qi)ωi −

n∑
i=1

M0iLi ‖ωi‖2 qi +M00ge3 = 0, (10.15)

MiiL
2
i ω̇i +

n∑
j=1
j �=i

MijLiLjS
T (qi)S(qj)ω̇j +M0iLiS(qi)ẍ

−
n∑

j=1
j �=i

MijLiLj ‖ωj‖2 S(qi)qj +
n∑

j=i

mjgLiS(qi)e3 = 0, i = 1, . . . , n.

(10.16)

These Euler–Lagrange equations (10.15), (10.16), and the rotational kinemat-
ics (10.14) describe the dynamical flow of the free-free chain under uniform
gravity in terms of (x, q, ẋ, ω) ∈ T(R3 × (S2)n) on the tangent bundle of
R

3 × (S2)n.

10.4.2 Hamilton’s Equations

Hamilton’s equations for the free-free chain dynamics as they evolve on the
cotangent bundle T∗(R3× (S2)2) can be obtained by considering the momen-
tum (p, π) = (p, π1, . . . , πn) ∈ T∗

(x,q)(R
3 × (S2)n) that is conjugate to the

velocity vector (ẋ, ω) = (ẋ, ω1, . . . , ωn) ∈ T(x,q)(R
3 × (S2)n). This is defined

by the Legendre transformation, which is given by

p =
∂L̃(x, q, ẋ, ω)

∂ẋ
,

πi = (I3×3 − qiq
T
i )

∂L̃(x, q, ẋ, ω)

∂ωi
, i = 1, . . . , n,
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which can be written as⎡
⎢⎢⎢⎣
p
π1

...
πn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

M00 −M01L1S(q1) · · · −M0nLnS(qn)
−M10L1S

T (q1) M11L
2
1I3 · · · M1nL1LnS

T (q1)S(qn)
...

...
. . .

...
−Mn0LnS

T (qn) Mn1LnL1S
T (qn)S(q1) · · · MnnL

2
nI3

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
ẋ
ω1

...
ωn

⎤
⎥⎥⎥⎦ .

Thus, we obtain

⎡
⎢⎢⎢⎣
ẋ
ω1

...
ωn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
M I

00 M I
01 · · · M I

0n

M I
10 M I

11 · · · M I
1n

...
...

. . .
...

M I
n0 M I

n1 · · · M I
nn

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
p
π1

...
πn

⎤
⎥⎥⎥⎦ , (10.17)

where⎡
⎢⎢⎢⎣
M I

00 M I
01 · · · M I

0n

M I
10 M I

11 · · · M I
1n

...
...

. . .
...

M I
n0 M I

n1 · · · M I
nn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

M00 −M01L1S(q1) · · · −M0nLnS(qn)
−M10L1S

T (q1) M11L
2
1I3 · · · M1nL1LnS

T (q1)S(qn)
...

...
. . .

...
−Mn0LnS

T (qn) Mn1LnL1S
T (qn)S(q1) · · · MnnL

2
nI3

⎤
⎥⎥⎥⎦

−1

.

Here, the functionsM I
ij denote 3×3 matrices that partition the inverse matrix

above. The modified Hamiltonian function H̃ : T∗(R3× (S2)n) → R
1 can also

be expressed as
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H̃(x, q, p, π) =
1

2

⎡
⎢⎢⎢⎣
p
π1

...
πn

⎤
⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎣
M I

00 M I
01 · · · M I

0n

M I
10 M I

11 · · · M I
1n

...
...

. . .
...

M I
n0 M I

n1 · · · M I
nn

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
p
π1

...
πn

⎤
⎥⎥⎥⎦

+M00ge
T
3 x+

n∑
i=1

n∑
j=i

mjgLie
T
3 qi.

Thus, Hamilton’s equations can be expressed in the following form

ẋ = M I
00p+

n∑
j=1

M I
0jπj , (10.18)

q̇i = −S(qi)

⎧⎨
⎩M I

i0p+

n∑
j=1

M I
ijπj

⎫⎬
⎭ , i = 1, . . . , n, (10.19)

ṗ = −M00ge3, (10.20)

π̇i = −S(qi)

⎧⎨
⎩

1

2

∂

∂qi
pTM I

00p+
∂

∂qi

n∑
j=1

pTM I
0jπj +

1

2

∂

∂qi

n∑
j,k=1

πT
j Mjkπk

⎫⎬
⎭

+

⎧⎨
⎩M I

i0p+

n∑
j=1

M I
ijπj

⎫⎬
⎭× πi − S(qi)

n∑
j=1

mjgLie3, i = 1, . . . , n.

(10.21)

The nongravitational terms on the right-hand side of (10.21) are quadratic
in the momenta. Hamilton’s equations (10.18), (10.19), (10.20), and (10.21)
describe the Hamiltonian flow of the free-free chain dynamics in terms of
the evolution of (x, q, p, π) ∈ T∗(R3 × (S2)n) on the cotangent bundle of
R

3 × (S2)n.

10.4.3 Conservation Properties

The Hamiltonian of the chain under uniform gravity is given by

H =
1

2
M00‖ẋ‖2 − ẋT

n∑
i=1

M0iS(qi)ωi

+
1

2

n∑
i,j=1

Mijω
T
i S

T (qi)S(qj)ωj +M00ge
T
3 x+

n∑
i=1

n∑
j=i

mjgLie
T
3 qi,

which coincides with the total energy E in this case, and it is constant along
each solution of the dynamical flow.
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Hamilton’s equations can be used to show that the horizontal components
of the translational momentum in the inertial frame are conserved along the
flow of the free-free chain dynamics under uniform gravity. That is, the scalar
components of the translational momentum

eT1 p =

{
M00ẋ+

n∑
i=1

M0iS
T (qi)ωi

}T

e1,

eT2 p =

{
M00ẋ+

n∑
i=1

M0iS
T (qi)ωi

}T

e2,

are each conserved along each solution of the dynamical flow. This can also be
viewed to be consequence of Noether’s theorem, applied to the translational
invariance of the system in the directions that are orthogonal to gravity.

10.4.4 Equilibrium Properties

Since the chain is in free fall, there are no equilibrium solutions.

10.5 Dynamics of a Fixed-Free Elastic Rod

The dynamics of a fixed-free elastic rod are studied, assuming bending defor-
mation of the elastic rod under the influence of gravity. We approximate the
elastic rod by n > 1 slender rigid rod elements that are serially connected
by spherical joints. This finite element approximation is geometrically exact
in the sense that its length, even as it deforms, is constant. Each rigid rod
element is modeled as a massless link with element mass concentrated at its
centroid. We assume that one end of the first rod element is fixed to a rigid
wall but with a spherical joint connection. Each spherical joint has two rota-
tional degrees of freedom; the tip of the i-th rod lies on a sphere centered at
the i-th connection.

A fixed inertial frame is constructed so that its first two axes lie in a
horizontal plane, its third axis is vertical; the origin of the inertial frame is
located at the point where the first rod element is attached to the rigid wall.
Let qi ∈ S2 be the attitude vector of the i-th rod element in the inertial frame,
i = 1, . . . , n. The configuration vector is q = (q1, . . . , qn) ∈ (S2)n, so that the
configuration manifold is (S2)n. Thus, the geometrically exact elastic rod has
2n degrees of freedom. A schematic of a fixed-free elastic rod is shown in
Figure 10.4.



508 10 Deformable Multi-Body Systems

Fig. 10.4 Geometrically exact fixed-free elastic rod

The mass of each rod element is mi and the length of each rod element is
Li for i = 1, . . . , n. The position vectors for the mass elements in the inertial
frame are given by L

2 q1 and
∑i−1

j=1 Ljqj+
L
2 qi for i = 2, . . . , n. The total length

of the fixed-free elastic rod is L =
∑n

i=1 Li.

10.5.1 Euler–Lagrange Equations

We now compute the kinetic energy and the potential energy of each rod
element to obtain the Lagrangian function.

Let s1 ∈ [0, L1] be the distance from the fixed joint of the first link to a
mass element dm1 in the first rod. Since the mass is uniformly distributed,
we have dm1 = m1

Li
ds1. The kinetic energy of the first rod is

T1(q1, q̇1) =
1

2

m1

L1

∫ L1

0

‖sq̇1‖2 ds1

=
1

6
m1L

2
1‖q̇1‖2.

Let si ∈ [0, Li] be the distance from the i-th joint to a mass element dmi in
the i-th rod. Since the mass is uniformly distributed, we have dmi =

mi

Li
dsi.

The kinetic energy of the i-th rod, i = 2, . . . , n, is given by

Ti(qi, q̇i) =
1

2

mi

Li

∫ Li

0

∥∥∥∥∥
i−1∑
j=1

Lj q̇j + siq̇i

∥∥∥∥∥
2

dsi

=
1

6
miL

2
i ‖q̇i‖2 +

1

2
miLi

i−1∑
j=1

Lj q̇
T
j q̇i +

1

2
mi

∥∥∥∥∥
i−1∑
j=1

Lj q̇j

∥∥∥∥∥
2

.

Using this, the total kinetic energy can be written as

T (q, q̇) =
1

2

n∑
i,j=1

Mij q̇
T
i q̇j ,
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where the inertia constants are defined as

Mii =

⎡
⎣1

3
mi +

n∑
p=i+1

mp

⎤
⎦L2

i , i = 1, . . . , n,

Mij =

⎡
⎣1

2
mi +

n∑
p=i+1

mp

⎤
⎦LiLj , i = 1, . . . , n, j = 1, . . . , i.

The remaining terms are defined by the symmetry Mij = Mji.
The potential energy is composed of a gravitational potential and a strain

energy. The position vector of the center of mass of the i-th rod is given by
L1q1 + · · ·+ Li−1qi−1 +

1
2Liqi. Thus, the gravitational potential is given by

Ug(q) =
n∑

i=1

mige
T
3

⎛
⎝i−1∑

j=1

qjLj +
1

2
Liqi

⎞
⎠ ,

which can be expressed as

Ug(q) =

n∑
i=1

⎛
⎝ n∑

j=i+1

mj +
1

2
mi

⎞
⎠ geT3 Liqi.

The strain potential energy for pure bending of an elastic rod is given by

Uε(q) =

∫ L

0

EI

2R2
ds,

where E is Young’s modulus, I is the sectional area moment, and R is the
radius of curvature. We assume that the radius of curvature is constant along
the i-th rod and is approximated by

Ri =
Li

sin( θi2 )
,

where θi denotes the angle between the i-th rod and the (i− 1)-th rod. The
strain potential energy is approximated as

Uε(q) =
n∑

i=1

EI sin2( θi2 )

2L2
i

Li

=

n∑
i=1

EI

4L2
i

(1− cos θi)

=
n∑

i=1

EI

4L2
i

(1− qTi−1qi).
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Therefore, the total potential energy is given by

U(q) =

n∑
i=1

⎛
⎝ n∑

j=i+1

mj +
1

2
mi

⎞
⎠ geT3 Liqi +

EI

4L2
i

(1− qTi−1qi).

Thus, the Lagrangian function L : T(S2)n → R
1 is

L(q, q̇) =
1

2

n∑
i=1

n∑
j=1

Mij q̇
T
i q̇j

−
n∑

i=1

⎛
⎝ n∑

j=i+1

mj +
1

2
mi

⎞
⎠ geT3 Liqi − EI

4L2
i

(1− qTi−1qi).

The rotational kinematics of each rod element is given by

q̇i = S(ωi)qi, i = 1, . . . , n, (10.22)

where the angular velocity vector ωi ∈ TqiS
2 satisfies ωT

i qi = 0 for i =
1, . . . , n. The Lagrangian can be expressed in terms of the angular velocity
vector as follows

L̃(q, ω) =
1

2

n∑
i=1

n∑
j=1

MijωiS
T (qi)S(qj)ωj

−
n∑

i=1

⎧⎨
⎩

⎛
⎝ n∑

j=i+1

mj +
1

2
mi

⎞
⎠ geT3 Liqi +

EI

4L2
i

(1− qTi−1qi)

⎫⎬
⎭ .

The results from Chapter 5 can be used to obtain the Euler–Lagrange
equations of motion based on the Lagrangian for the finite-element model of
the elastic rod

Miiω̇i +

n∑
j=1
j �=i

MijS
T (qi)S(qj)ω̇j)−

n∑
j=1
j �=i

Mij ‖ωj‖2 S(qi)qj

+S(qi)

⎧⎨
⎩

⎛
⎝ n∑

j=i+1

mj +
1

2
mi

⎞
⎠ gLie3 +

∂Uε(q)

∂qi

⎫⎬
⎭ = 0, i = 1, . . . , n, (10.23)

where

∂Uε(q)

∂qi
=

⎧⎪⎪⎨
⎪⎪⎩
− EI

4L2
i

qi−1 − EI

4L2
i+1

qi+1 i = 1, . . . , n− 1,

− EI

4L2
n

qn−1 i = n.
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These Euler–Lagrange equations (10.23), together with the rotational kine-
matics (10.22), describe the dynamics of the geometrically exact elastic rod
in terms of (q, ω) ∈ T(S2)n on the tangent bundle of (S2)n.

10.5.2 Hamilton’s Equations

The Legendre transformation

πi = (I3×3 − qiq
T
i )

∂L̃(q, ω)

∂ωi
, i = 1, . . . , n,

is used to define the momentum (π1, . . . , πn) ∈ T∗
q(S

2)n conjugate to (ω1, . . . ,
ωn) ∈ Tq(S

2)n by

⎡
⎢⎢⎢⎣
π1

π2

...
πn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

M11I3×3 M12S
T (q1)S(q2) · · · M1nS

T (q1)S(qn)
M21S

T (q2)S(q1) M22I3×3 · · · M2nS
T (q2)S(qn)

...
...

. . .
...

Mn1S
T (qn)S(q1) Mn2S

T (qn)S(q2) · · · MnnI3×3

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
ω1

ω2

...
ωn

⎤
⎥⎥⎥⎦ .

Thus, we can write

⎡
⎢⎢⎢⎣
ω1

ω2

...
ωn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
M I

11 M I
12 · · · M I

1n

M I
21 M I

22 · · · M I
2n

...
...

. . .
...

M I
n1 M I

n2 · · · M I
nn

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
π1

π2

...
πn

⎤
⎥⎥⎥⎦ ,

where ⎡
⎢⎢⎢⎣
M I

11 M I
12 · · · M I

1n

M I
21 M I

22 · · · M I
2n

...
...

. . .
...

M I
n1 M I

n2 · · · M I
nn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

M11I3×3 M12S
T (q1)S(q2) · · · M1nS

T (q1)S(qn)
M21S

T (q2)S(q1) M22I3×3 · · · M2nS
T (q2)S(qn)

...
...

. . .
...

Mn1S
T (qn)S(q1) Mn2S

T (qn)S(q2) · · · MnnI3×3

⎤
⎥⎥⎥⎦

−1

is the inverse of the indicated 3n × 3n partitioned matrix. The modified
Hamiltonian function is
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H̃(q, π) =
1

2

⎡
⎢⎢⎢⎣
π1

π2

...
πn

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
M I

11 M I
12 · · · M I

1n

M I
21 M I

22 · · · M I
2n

...
...

. . .
...

M I
n1 M I

n2 · · · M I
nn

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
π1

π2

...
πn

⎤
⎥⎥⎥⎦

+

⎧⎨
⎩

n∑
i=1

⎛
⎝ n∑

j=i+1

mj +
1

2
mi

⎞
⎠ geT3 Liqi +

EI

4L2
i

(1− qTi−1qi)

⎫⎬
⎭ .

Thus, Hamilton’s equations are

q̇i = −S(qi)

{
n∑

k=1

M I
ikπk

}
, i = 1, . . . , n, (10.24)

π̇i = −S(qi)

⎧⎨
⎩

1

2

∂

∂qi

n∑
j,k=1

πT
j Mjkπj

⎫⎬
⎭+

⎧⎨
⎩

n∑
j=1

M I
ijπj

⎫⎬
⎭× πi

− S(qi)

⎛
⎝ n∑

j=i+1

mj +
1

2
mi

⎞
⎠ gLie3 − S(qi)

∂Uε(q)

∂qi
, i = 1, . . . , n.

(10.25)

Hamilton’s equations (10.24) and (10.25) describe the Hamiltonian dynamics
of the geometrically exact elastic rod in terms of (q, π) ∈ T∗(S2)n on the
cotangent bundle of (S2)n.

10.5.3 Conservation Properties

The Hamiltonian of the elastic rod,

H =
1

2

n∑
i=1

Miiωiωi +
1

2

n∑
i=1

n∑
j=1
j �=i

MijωiS
T (qi)S(qj)ωj

+

n∑
i=1

⎧⎨
⎩

n∑
j=i+1

(mj +
1

2
mi)ge

T
3 Liqi +

EI

4L2
i

(1− qTi−1qi)

⎫⎬
⎭ ,

which coincides with the total energy E in this case, is constant along each
solution of the Lagrangian flow.
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10.5.4 Equilibrium Properties

For the elastic rod to be in equilibrium, the angular velocity vector of all the
rod elements must be zero, and the configuration must satisfy the conditions

S(qi)

⎧⎨
⎩

n∑
j=i+1

(mj +
1

2
mi)gLie3 +

∂Uε(q)

∂qi

⎫⎬
⎭ = 0, i = 1, . . . , n,

which imply that there is a balance between the gravity forces and the bend-
ing forces on each rod element.

It is possible to determine linearized differential equations that approxi-
mate the Lagrangian flow of the bending dynamics of the geometrically exact
elastic rod.

10.6 Problems

10.1. A planar version of a chain pendulum consists of a serial connection
of n rigid links. Each link is assumed to move within a fixed vertical plane;
a two-dimensional Euclidean frame is constructed within this vertical plane.
Each link is a rigid rod with mass mi concentrated at the outboard end of
the link; the link lengths are Li, i = 1, . . . , n. One end of the chain pendulum
is connected to a fixed pivot located at the origin of the Euclidean frame.
Constant gravity acts on each link of the chain pendulum. There is no friction
at any of the joints. Since the links are constrained to move within a fixed
vertical plane, qi ∈ S1, i = 1, . . . , n denotes the attitude of the i-th link in
the two-dimensional Euclidean frame, so that q = (q1, . . . , qn) ∈ (S1)n is the
configuration vector and (S1)n is the configuration manifold.

(a) Determine the Lagrangian function L : T(S1)n → R
1 on the tangent

bundle of the configuration manifold.
(b) What are the Euler–Lagrange equations for the planar chain pendulum?
(c) Determine the Hamiltonian function H : T∗(S1)n → R

1 on the cotangent
bundle of the configuration manifold.

(d) What are Hamilton’s equations for the planar chain pendulum?
(e) What are conserved quantities for the planar chain pendulum?
(f) Describe the hanging equilibrium solution and the inverted equilibrium

solution.
(g) What are the linear dynamics that approximate the planar chain pendu-

lum dynamics in a neighborhood of the hanging equilibrium solution?
(h) What are the linear dynamics that approximate the planar chain pendu-

lum dynamics in a neighborhood of the inverted equilibrium solution?
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10.2. A planar version of a chain pendulum on a cart consists of a serial
connection of n rigid links where one end of the chain is connected to a
cart. Each link is assumed to move within a fixed vertical plane; a two-
dimensional Euclidean frame is constructed within this vertical plane. The
cart can translate, without friction, along the first axis of the two-dimensional
Euclidean frame. Each link is a rigid rod with mass mi concentrated at the
outboard end of the link; the link lengths are Li, i = 1, . . . , n. One end of
the chain pendulum is connected to a pivot on the cart. Constant gravity
acts on each link of the chain pendulum. There is no friction at any of the
joints. Since the cart and links are constrained to move within a fixed vertical
plane, x ∈ R

1 denotes the position of the cart on the first axis of the Euclidean
frame and qi ∈ S1, i = 1, . . . , n denotes the attitude of the i-th link in the
two-dimensional Euclidean frame, so that (x, q) = (x, q1, . . . , qn) ∈ R

1×(S1)n

is the configuration vector and R
1 × (S1)n is the configuration manifold.

(a) Determine the Lagrangian function L : T(R1×(S1)n) → R
1 on the tangent

bundle of the configuration manifold.
(b) What are the Euler–Lagrange equations for the planar chain pendulum

on a cart?
(c) Determine the Hamiltonian function H : T∗(R1 × (S1)n) → R

1 on the
cotangent bundle of the configuration manifold.

(d) What are Hamilton’s equations for the planar chain pendulum on a cart?
(e) What are conserved quantities for the planar chain pendulum on a cart?
(f) Describe the hanging equilibrium solution and the inverted equilibrium

solution.
(g) What are the linear dynamics that approximate the planar chain pen-

dulum on a cart dynamics in a neighborhood of the hanging equilibrium
solution?

(h) What are the linear dynamics that approximate the planar chain pendu-
lum on a cart dynamics in a neighborhood of the inverted equilibrium
solution?

10.3. A planar version of a uniform chain is constrained to deform in a ver-
tical plane. The vertical plane rotates about an inertially fixed axis with
constant rotation rate Ω ∈ R

1. The chain consists of a serial connection of n
identical rigid links, each with mass m concentrated at the outboard end of
the link; each link has length L. There are no gravitational forces or friction
moments at the joints. The configuration vector q = (q1, . . . , qn) ∈ (S1)n is
the vector of attitudes of the n links, each expressed in the inertial frame.

(a) Determine the Lagrangian function L : T(S1)n → R
1 on the tangent

bundle of the configuration manifold.
(b) What are the Euler–Lagrange equations for the chain rotating at a con-

stant angular rate?
(c) Determine the Hamiltonian function H : T∗(S1)n → R

1 defined on the
cotangent bundle of the configuration manifold.
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(d) What are Hamilton’s equations for the chain rotating at a constant an-
gular rate?

(e) What are conserved quantities for the chain rotating at a constant angular
rate?

(f) What are the equilibrium solutions for the dynamics of a chain rotating
at a constant angular rate?

(g) What are the linear dynamics that approximate the rotating chain dy-
namics in a neighborhood of an equilibrium solution?

10.4. A planar version of a free-free chain consists of a serial connection of
n rigid links. Each link is assumed to move within a fixed vertical plane; a
two-dimensional Euclidean frame is constructed within this vertical plane.
Each link is a rigid rod with mass mi concentrated at the outboard end of
the link with mass m0 concentrated at the other end of the first link; the
link lengths are Li, i = 1, . . . , n. Constant gravity acts on each link of the
chain. There is no friction at any of the joints. Since the links are constrained
to move within a fixed vertical plane, let x ∈ R

2 denote the position vector
of the free end of the first link and let qi ∈ S1, i = 1, . . . , n denote the
attitude of the i-th link in the two-dimensional Euclidean frame, so that
(x, q) = (x, q1, . . . , qn) ∈ R

2×(S1)n is the configuration vector and R
2×(S1)n

is the configuration manifold.

(a) Determine the Lagrangian function L : T(R2×(S1)n) → R
1 on the tangent

bundle of the configuration manifold.
(b) What are the Euler–Lagrange equations for the planar free-free chain?
(c) Determine the Hamiltonian function H : T∗(R2 × (S1)n) → R

1 on the
cotangent bundle of the configuration manifold.

(d) What are Hamilton’s equations for the planar free-free chain?
(e) What are conserved quantities for the planar free-free chain?

10.5. A planar version of a fixed-free, geometrically exact elastic rod is viewed
as a serial connection of n rigid links. Each link is assumed to move within a
fixed vertical plane; a two-dimensional Euclidean frame is constructed within
this vertical plane. Each link is a rigid rod with mass mi concentrated at the
outboard end of the link; the link lengths are Li, i = 1, . . . , n. One end of the
elastic rod is connected to rigid wall, where the attachment point is located
at the origin of the Euclidean frame; the other end of the elastic rod is free.
Constant gravity acts on each link of the elastic rod. There is no friction
at any of the joints. Since the links are constrained to move within a fixed
vertical plane, qi ∈ S1, i = 1, . . . , n denotes the attitude of the i-th link in
the two-dimensional Euclidean frame, so that q = (q1, . . . , qn) ∈ (S1)n is the
configuration vector and (S1)n is the configuration manifold.

(a) Following the development in the text, obtain an approximate expression
for the strain potential energy of the elastic rod, which is used in (b).

(b) Determine the Lagrangian function L : T(S1)n → R
1 on the tangent

bundle of the configuration manifold.
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(c) What are the Euler–Lagrange equations for the planar fixed-free elastic
rod?

(d) Determine the Hamiltonian function H : T∗(S1)n → R
1 on the cotangent

bundle of the configuration manifold.
(e) What are Hamilton’s equations for the planar fixed-free elastic rod?
(f) What are conserved quantities for the planar fixed-free elastic rod?
(g) What algebraic equations characterize the equilibrium solutions of the

planar fixed-free elastic rod?

10.6. Consider the dynamics of n ideal particles, with the mass of the i-th
particle being mi, i = 1, . . . , n. The mass particles are constrained to move,
without friction, on the surface of a unit sphere in three dimensions. An
inertial Euclidean frame is selected with origin located at the center of the
sphere. Let qi ∈ S2 denote the direction vector of the i-th particle in the
inertial frame for i = 1, . . . , n; thus, q = (q1, . . . , qn) ∈ (S2)n and (S2)n is the
configuration manifold. There are forces between the i-th particle and the
j-th particle that arise from the potential U(q) = 1

2

∑n
i=1

∑
j �=i κij(1−qTi qj).

Here κij = κji, i �= j are constants that characterize the potential forces
between the i-th particle and the j-th particle. No other external forces act
on the mass particles.

(a) Characterize the potential forces in terms of the signs of the constants.
When are the forces attractive? When are the forces repellent?

(b) Determine the Lagrangian function L : T(S2)n → R
1 on the tangent

bundle of the configuration manifold.
(c) What are the Euler–Lagrange equations for the n mass particles on a

sphere?
(d) Determine the Hamiltonian function H : T∗(S1)n → R

1 on the cotangent
bundle of the configuration manifold.

(e) What are Hamilton’s equations for the n mass particles on a sphere?
(f) What are conserved quantities for the n mass particles on a sphere?
(g) What algebraic equations characterize the equilibrium solutions of n mass

particles on a sphere?

10.7. A chain pendulum, consisting of a serial connection of n rigid links,
is supported by multiple elastic strings in tension. Each link of the chain
pendulum is rigid with mass mi concentrated at the outboard end of the
link; the link length is Li. A three-dimensional inertial Euclidean frame is
defined. One end of the chain pendulum is connected to a spherical joint or
pivot supported at a fixed base located at the origin of the Euclidean frame.
Constant gravity acts on each link of the chain pendulum in the negative
direction of the third axis of the Euclidean frame. The vector qi ∈ S2, i =
1, . . . , n is the attitude of the i-th link in the inertial frame, so that q =
(q1, . . . , qn) ∈ (S2)n is the configuration vector and (S2)n is the configuration
manifold. The chain pendulum is supported in a neighborhood of its inverted
equilibrium by 4n massless elastic strings in tension. The 4n elastic strings
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connect the outboard end of the i-th link to the inertially fixed locations
(Di, 0,

∑i
j=1 Lj), (−Di, 0,

∑i
j=1 Lj),(0, Di,

∑i
j=1 Lj), (0,−Di,

∑i
j=1 Lj) for

i = 1, . . . , n. The elastic strings connected to the outboard end of the i-th
link have elastic stiffness κi; the restoring force in the elastic string is zero
when the string length is di < Di, i = 1, . . . , n. Assume all 4n elastic strings
remain in tension and ignore any collisions between the strings and links.
This is another example of a tensegrity structure.

(a) Determine the Lagrangian function L : T(S2)n → R
1 for the elastically

supported chain pendulum, viewing the forces of the elastic strings as
external forces.

(b) Use the Lagrange–d’Alembert principle to obtain the Euler–Lagrange
equations for the elastically supported chain pendulum.

(c) What are Hamilton’s equations for the elastically supported chain pen-
dulum?

(d) What algebraic conditions guarantee that the inverted equilibrium of the
chain pendulum is an equilibrium solution?

10.8. Consider a free-free elastic rod that undergoes elastic deformation by
bending under uniform, constant gravity. The elastic rod is modeled as a
serial connection of n links, where the connections are spherical joints with
proportional elastic restoring forces. Each link is a rigid rod with mass mi

concentrated at the outboard end of the link; the link lengths are Li, i =
1, . . . , n; a mass m0 is concentrated at the free end of the first link. A three-
dimensional inertial Euclidean frame is introduced. Gravity is assumed to act
in the negative direction of the third axis of the Euclidean frame. Let x ∈ R

3

denote the position vector of the free end of the first link and let qi ∈ S2, i =
1, . . . , n denote the attitude of the i-th link in the three-dimensional Euclidean
frame, so that (x, q) = (x, q1, . . . , qn) ∈ R

3× (S2)n is the configuration vector
and R

3 × (S2)n is the configuration manifold.

(a) Determine the Lagrangian function L : T(R3 × (S2)n) → R
1 defined on

the tangent bundle of the configuration manifold.
(b) What are the Euler–Lagrange equations for the free-free elastic rod?
(c) Determine the Hamiltonian function H : T∗(R3 × (S2)n) → R

1 defined
on the cotangent bundle of the configuration manifold.

(d) What are Hamilton’s equations for the free-free elastic rod?
(e) What are conserved quantities for the free-free elastic rod?

10.9. Consider a serial connection of n elastic spherical pendulums. Each
spherical pendulum consists of a massless elastic link and a mass element,
viewed as an ideal particle. The masses of the elements are denoted by
m1, . . . ,mn. The in-board end of the first massless elastic link is attached
to an inertially supported spherical pivot. The out-board end of the n-th
spherical pendulum is free. Each massless link is assumed to be elastic in
that it can deform axially while always remaining straight. An inertial Eu-
clidean frame is selected with origin located at the fixed pivot of the first
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elastic spherical pendulum. Let xi ∈ R
1 denote the length of the i-th mass-

less link and let qi ∈ S2 denote the attitude vector of the i-th massless link
for i = 1, . . . , n; each massless link is assumed to remain straight. Thus,
(x, q) = (x1, . . . , xn, q1, . . . , qn) ∈ R

n× (S2)n so that Rn× (S2)n is the config-
uration manifold. The mass particles act under uniform and constant grav-
ity. The elastic links are assumed to have elastic stiffness κi, ı = 1, . . . , n,
and lengths Li, i = 1, . . . , n, corresponding to zero elastic force in the links.
Assume that the inequalities mig < kiLi, i = 1, . . . , n, hold.

(a) Determine the Lagrangian function L : T(Rn × (S2)n) → R
1 defined on

the tangent bundle of the configuration manifold.
(b) What are the Euler–Lagrange equations for the serial connection of elastic

spherical pendulums?
(c) Determine the Hamiltonian function H : T∗(Rn × (S2)n) → R

1 defined
on the cotangent bundle of the configuration manifold.

(d) Determine Hamilton’s equations for the serial connection of elastic spher-
ical pendulums.

(e) Determine conserved quantities for the serial connection of elastic spher-
ical pendulums.

(f) What are the equilibrium solutions of the serial connection of elastic
spherical pendulums?

(g) For a selected equilibrium solution, determine linearized equations that
approximate the dynamics of the serial connection of elastic spherical
pendulums in a neighborhood of that equilibrium.

10.10. Consider a free-free serial connection of n mass elements, viewed as
ideal particles, with masses are denoted by m1, . . . ,mn. The mass elements
are connected by n− 1 massless elastic links; each link is assumed to remain
straight and it can deform elastically along its longitudinal axis. An inertial
Euclidean frame is selected. Let x ∈ R

3 denote the position vector of the first
mass element; let yi ∈ R

1 denote the length of the i-th massless link and let
qi ∈ S2 denote the attitude vector of the i-th massless link for i = 1, . . . , n.
Thus, x+

∑i
j=1 yjqj ∈ R

3 is the position vector of the i-th mass particle. The

configuration vector is (x, y, q) = (x, y1, . . . , yn, q1, . . . , qn) ∈ R
3×R

n × (S2)n

so that R3×R
n× (S2)n is the configuration manifold. The mass elements act

under uniform and constant gravity. The i-th elastic link is assumed to have
elastic stiffness κi and length Li corresponding to zero elastic force in the
link for i = 2, . . . , n. Thus, the massless link with elastic stiffness κi connects
the mass elements denoted by indices i− 1 and i.

(a) Determine the Lagrangian function L : T(R3 ×R
n× (S2)n) → R

1 defined
on the tangent bundle of the configuration manifold.

(b) What are the Euler–Lagrange equations for the free-free serial connection
of mass elements?

(c) Determine the Hamiltonian function H : T∗(R3 × R
n × (S2)n) → R

1

defined on the cotangent bundle of the configuration manifold.
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(d) Determine Hamilton’s equations for the free-free serial connection of mass
elements.

(e) Determine conserved quantities for the free-free serial connection of mass
elements.

(f) Describe the dynamics of the center of mass of the free-free serial connec-
tion of mass elements.

10.11. Consider a serial connection of n identical mass elements, viewed as
ideal particles, each of mass m, interlaced with n − 1 identical linear elastic
springs, each with stiffness κ. The mass elements translate along a horizontal
straight line, assumed to be the first axis of an inertial Euclidean frame. The
ends of the first and last elastic spring are inertially fixed. Each mass element
serves as the pivot point for n identical spherical pendulums, each of length
L and mass M assumed concentrated at the free end of each pendulum link.
Constant gravity acts on each of the spherical pendulums in the negative
direction of the third axis of the Euclidean frame. There is no friction on
any of the translating mass elements or at any of the pendulum pivots. Let
xi ∈ R

1, i = 1, . . . , n denote the one-dimensional positions of the translating
mass elements and let qi ∈ S2, i = 1, . . . , n denote the attitude vectors of the
pendulum links in the Euclidean frame, so that the configuration vector is
(x, q) = (x1, q1, . . . , xn, qn) ∈ (R1 × S2)n.

(a) Determine the Lagrangian function L : T(R1 × (S2)n) → R
1 defined on

the tangent bundle of the configuration manifold.
(b) What are the Euler–Lagrange equations for the serial connection of mass

elements and spherical pendulums?
(c) Determine the Hamiltonian function H : T∗(R3 × (S2)n) → R

1 defined
on the cotangent of the configuration manifold.

(d) What are Hamilton’s equations for the serial connection of mass elements
and spherical pendulums?

(e) What are conserved quantities for the serial connection of mass elements
and spherical pendulums?

(f) Describe the equilibrium solutions of the serial connection of mass ele-
ments and spherical pendulums.

(g) Consider the equilibrium solution corresponding to hanging equilibrium
of each spherical pendulum. Determine the linearized equations that ap-
proximate the dynamics of the serial connection of mass elements and
spherical pendulums in a neighborhood of this equilibrium.

10.12. Consider the dynamics of a uniform chain under the influence of uni-
form, constant gravity. The chain consists of a serial connection of n identical
rigid links. Each end of the chain is supported by an inertially fixed pivot;
this is referred to as a chain with inertially fixed ends. Each link is a rigid rod
with mass m concentrated at the mid-point of the link; each link length is L.
Each end of the chain is connected to a fixed pivot; one pivot is located at
the origin of a three-dimensional inertial Euclidean frame while the other end
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of the chain is connected to a fixed pivot located a distance d along the first
axis of the Euclidean frame. Constant gravity acts on each link of the chain
in the negative direction of the third axis of the Euclidean frame. There is
no friction at any of the joints. Let qi ∈ S2, i = 1, . . . , n denote the attitude
of the i-th link in the Euclidean frame, so that q = (q1, . . . , qn) ∈ (S2)n. The
fact that the ends of the chain are connected to fixed pivot locations defines
a holonomic constraint.

(a) Describe the constraint manifold M as a sub-manifold of (S2)n.
(b) Determine the augmented Lagrangian function La : TM × R

3 → R
1 on

the tangent bundle of the constraint manifold using Lagrange multipliers.
(c) What are the Euler–Lagrange equations for the chain with inertially fixed

ends?
(d) Determine the augmented Hamiltonian function Ha : T∗M × R

3 → R
1

on the cotangent bundle of the constraint manifold using Lagrange mul-
tipliers.

(e) What are Hamilton’s equations for the chain with inertially fixed ends?
(f) What algebraic equations characterize the equilibrium solutions of the

chain with inertially fixed ends?

10.13. Consider the dynamics of a uniform elastic rod that bends under
the influence of uniform, constant gravity. The elastic rod is viewed as a
serial connection of n identical rigid links, with elastic restoring moments as
described previously in this chapter. Each link is a rigid rod with mass m
concentrated at the mid-point of the link; each link length is L. An inertial
Euclidean frame is established, with the third axis of the frame vertical. The
position of one end of the elastic rod is inertially fixed at the origin of the
Euclidean frame; the other end of the elastic rod is allowed to translate,
without friction, along the first axis of the Euclidean frame. Let qi ∈ S2, i =
1, . . . , n denote the attitude vectors of the links, expressed in the Euclidean
frame, so that q = (q1, . . . , qn) ∈ (S2)n. The fact that one end of the elastic
rod is fixed while the other end of the elastic rod is constrained requires the
introduction of a holonomic constraint.

(a) Describe the constraint manifold M as a sub-manifold of (S2)n.
(b) Determine the augmented Lagrangian function La : TM × R

2 → R
1 on

the tangent bundle of the constraint manifold using Lagrange multipliers.
(c) What are the Euler–Lagrange equations for the constrained elastic rod?
(d) Determine the augmented Hamiltonian function Ha : T∗M × R

2 → R
1

on the cotangent bundle of the constraint manifold using Lagrange mul-
tipliers.

(e) What are Hamilton’s equations for the constrained elastic rod?
(f) What algebraic equations characterize the equilibrium solutions of the

constrained elastic rod?



Appendix A

Fundamental Lemmas of the Calculus
of Variations

Several versions of the fundamental lemma in the calculus of variations are
presented. The classical version of the fundamental lemma when the configu-
ration manifold is Rn is summarized first, and then versions are summarized
when the configuration manifold is an embedded manifold in R

n or a Lie
group embedded in R

n×n.

A.1 Fundamental Lemma of Variational Calculus on R
n

The fundamental lemma of the calculus of variations on R
n [5] is the following

statement. Let x : [t0, tf ] → R
n be continuous and suppose that F : [t0, tf ] →

R
n is continuous. If

∫ tf

t0

F (t) · δx(t) dt = 0,

holds for all continuous variations δx : [t0, tf ] → R
n satisfying δx(t0) =

δx(tf ) = 0, then it follows that

F (t) = 0, t0 ≤ t ≤ tf .

As usual, the notation F · δx indicates the inner or dot product of a covector
F ∈ (Rn)∗ and a vector δx ∈ R

n.
Suppose that the result is not true, that is F (t̄) �= 0 for some t0 ≤ t̄ ≤ tf .

Since F is continuous, it is necessarily nonzero and of a fixed sign in some
neighborhood of t̄. Then, an admissible variation can be constructed that is
zero outside of this neighborhood and leads to a violation of the assumption.
This contradiction proves the validity of the statement.
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A.2 Fundamental Lemma of the Calculus of Variations
on an Embedded Manifold

Let M be a differentiable manifold embedded in R
n. The fundamental

lemma of the calculus of variations on M [5] is the following statement.
Let x : [t0, tf ] → M be continuous and suppose that F : [t0, tf ] → (Rn)∗ is
continuous. If

∫ tf

t0

F (t) · ξ(t) dt = 0,

holds for all continuous variations ξ : [t0, tf ] → Tx(t)M satisfying ξ(t0) =
ξ(tf ) = 0, then it follows that

F (t) · ξ = 0, t0 ≤ t ≤ tf ,

that is F (t) is orthogonal to TxM for each t0 ≤ t ≤ tf . As usual, the notation
F · ξ indicates the inner or dot product of a covector F ∈ (Rn)∗ and a vector
ξ ∈ Tx(t)M .

The proof is essentially the same as the one above.

A.3 Fundamental Lemma of Variational Calculus
on a Lie Group

The fundamental lemma of the calculus of variations can also be applied to a
Lie group G, since we can associate the tangent space with the corresponding
Lie algebra g. Let g∗ denote the vector space of linear functionals on g. This
leads to the following statement.

The fundamental lemma of the calculus of variations on the Lie group G is
the following statement. Let g : [t0, tf ] → G be continuous and suppose that
F : [t0, tf ] → g∗ is continuous. If

∫ tf

t0

〈F (t) · η〉 dt = 0,

holds for all continuous variations η : [t0, tf ] → g satisfying η(t0) = η(tf ) = 0,
then it follows that

〈F (t) · η〉 = 0, t0 ≤ t ≤ tf ,

that is F (t) is orthogonal to g for each t0 ≤ t ≤ tf . As usual, the notation
〈F · η〉 indicates the pairing of a covector F ∈ g∗ and a vector η ∈ g.
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Linearization as an Approximation
to Lagrangian Dynamics on a Manifold

Linearization of a (typically) nonlinear vector field on R
n, in a neighborhood

of an equilibrium of the vector field, is a classical and widely used tech-
nique. It provides a way to approximate the local nonlinear dynamics near
an equilibrium solution, it may provide information about the stability of
the equilibrium according to the stable manifold theorem [33], and it pro-
vides the basis for developing mathematical equations that are widely used
in control applications. This technique is so widely used that we give special
attention to it in this Appendix. A summary of linearization has been given
in Chapter 1. Further background on linearization of a vector field on R

n is
given in [44, 76, 93].

Here, we apply the concept of linearization to a vector field defined on a
manifold in the form developed and studied in this book. We begin with a
vector field defined on an (n −m)-dimensional differentiable manifold M ⊂
R

n, where 1 ≤ m < n; the vector field is denoted by F : M → R
n and it has

the property that for each x ∈ M,F (x) ∈ TxM .
Consistent with the assumption that M is a manifold embedded in R

n,
we consider an extension of the vector field F on M to the embedding vector
space. We denote this extension vector field by F e : Rn → R

n. Thus, for
each x ∈ M , F e(x) = F (x). From the perspective of the embedding space,
M can be viewed as an invariant manifold of the vector field F e : Rn → R

n.
If xe ∈ M is an equilibrium of the vector field F , that is F (xe) = 0, then it
is also an equilibrium of the extended vector field F e.

Linearization of the vector field F : M → R
n in the neighborhood of an

equilibrium solution xe ∈ M leads to a linear vector field on Txe
M that is

first-order accurate in approximating F : M → R
n in a neighborhood of

xe ∈ M . It is convenient to describe the linear vector field on the (n −m)-
dimensional tangent space in terms of n−m basis vectors for Txe

M .
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There are two equivalent approaches that can be followed:

• Linearize the vector field F e on R
n at the equilibrium xe ∈ M ; then restrict

this linear vector field to the tangent space Txe
M by introducing a basis

for the tangent space Txe
M .

• Introduce n−m local coordinates on M in a neighborhood of the equilib-
rium xe ∈ M ; express the vector field F in terms of these local coordinates
and linearize at the equilibrium.

Either of these approaches leads to a linear vector field defined on an (n−m)-
dimensional subspace of Rn. The two approaches lead to equivalent realiza-
tions of the linearized vector field.

This linearized vector field can be viewed as approximating the original
nonlinear vector field on M , at least in a small neighborhood of the equi-
librium. In this sense, the linearized equations are viewed as describing local
perturbations of the dynamical flow near the equilibrium. This interpretation
provides important motivation for the linearization technique.

The second approach is most common in many engineering applications,
but it requires the introduction of local coordinates on the manifold M and
the description of the resulting vector field onM in terms of local coordinates;
this is often a challenging step. In this book we emphasize the first approach,
but we use whichever approach is most convenient for a particular case.

We now illustrate the linearization process for three classes of Lagrangian
vector fields with configuration manifolds that are studied in this book: S1,
S2, and SO(3). These illustrations provide the necessary background for lin-
earization on configuration manifolds that are products of these. We obtain
Euler–Lagrange equations that describe the dynamics for a particle or rigid
body under the action of a potential. In each case, linearized differential
equations are determined that approximate the dynamics on a manifold in a
neighborhood of an equilibrium solution.

B.1 Linearization on TS1

Consider an ideal particle, of mass m, that moves on a circle of radius r > 0
in a fixed plane in R

3, centered at the origin of an inertial frame, under the
action of a potential. The configuration manifold is S1, embedded in R

2. As
shown in Chapter 4, the Euler–Lagrange equation, using standard notation,
is given by

mL2q̈ +mr2 ‖q̇‖2 q + (I2×2 − qqT )
∂U(q)

∂q
= 0.

These differential equations define a Lagrangian vector field on the tangent
bundle of the configuration manifold TS1. Assume that qe ∈ S1 satisfies
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∂U(qe)
∂q = 0 so that (qe, 0) ∈ TS1 is an equilibrium of the Lagrangian vector

field. We obtain linearized equations following the first approach described
above.

We can view the above differential equations as defining an extended La-
grangian vector field on the tangent bundle TR2, assuming the potential
function is defined everywhere on R

2. We can linearize the extended differen-
tial equations at the equilibrium to obtain the linearized vector field defined
on TR2 as

mr2ξ̈ +
∂2U(qe)

∂q2
ξ = 0.

This linearization of the extended vector field can be restricted to the tangent
space of TS1 at (qe, 0) ∈ TS1, which can be described as

T(qe,0)TS
1 =

{
(ξ, ξ̇) ∈ R

4 : qTe ξ = 0, ξ̇ ∈ TqeS
1
}
.

The above description of the linearized vector field is in the form of
differential-algebraic equations. It is convenient to describe this linearized
vector field in a more accessible form by introducing a basis for the tangent
space T(qe,0)TS

1. To this end, select Sqe as a basis vector for TqeS
1 so that

any (ξ, ξ̇) ∈ T(qe,0)TS
1 can be written as

ξ = σSqe,

ξ̇ = σ̇Sqe,

where σ ∈ R
1 can be viewed as a local coordinate for TqeS

1. Thus, (ξ, ξ̇) ∈
T(qe,0)TS

1 for all σ ∈ D, where D ⊂ R
1 is an open set containing the origin.

Substituting these expressions into the equation for the linearization of the
extended vector field and taking the inner product with Sqe gives

mr2σ̈ +

{
qTe S

T ∂2U(qe)

∂q2
Sqe

}
σ = 0.

This scalar second-order differential equation describes the linearized vector
field of the original Lagrangian vector field on TS1. Thus, this differential
equation, expressed in terms of (σ, σ̇) ∈ TR1, describes the Lagrangian dy-
namics on the manifold TS1 in a neighborhood of (qe, 0) ∈ TS1 to first order
in the perturbations.

This linearized equation has been described as a second-order differential
equation in σ, consistent with the usual formulation of the Euler–Lagrange
equations. They can also be expressed as a system of first-order differential
equations by including perturbations of the angular velocity or momentum.
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B.2 Linearization on TS2

Consider an ideal particle, of mass m, that moves on a sphere in R
3 of radius

r > 0, centered at the origin of an inertial frame, under the action of a
potential. The configuration manifold is S2, embedded in R

3. As shown in
Chapter 5, the Euler–Lagrange equation, using standard notation, is

mr2q̈ +mr2 ‖q̇‖2 q + (I3×3 − qqT )
∂U(q)

∂q
= 0.

These differential equations define a Lagrangian vector field on the tangent
bundle of the configuration manifold TS2. Assume that qe ∈ S2 satisfies
∂U(qe)

∂q = 0 so that (qe, 0) ∈ TS2 is an equilibrium of the Lagrangian vector
field. We obtain linearized equations following the first approach described
above. The same approach, for different dynamics, is followed in [58].

We can view the above differential equations as defining an extended La-
grangian vector field on the tangent bundle TR3, assuming the potential
function is defined everywhere on R

3. We can linearize the extended differen-
tial equations at the equilibrium to obtain the linearized vector field defined
on TR3 as described by

mr2ξ̈ +
∂2U(qe)

∂q2
ξ = 0.

This linearization of the extended vector field can be restricted to the tangent
space of TS2 at (qe, 0) ∈ TS2, that is

T(qe,0)TS
2 =

{
(ξ, ξ̇) ∈ R

6 : qTe ξ = 0, ξ̇ ∈ TqeS
2
}
.

The above description of the linearized vector field is in the form of differential-
algebraic equations. It is convenient to describe this linearized vector field in a
more accessible form by introducing a basis for the tangent space T(qe,0)TS

2.
To this end, select ξ1, ξ2 as an orthonormal basis for T(qe,0)TS

2. Thus, any

(ξ, ξ̇) ∈ T(qe,0)TS
2 can be written as

ξ = σ1ξ1 + σ2ξ2,

ξ̇ = σ̇1ξ1 + σ̇2ξ2,

where σ = (σ1, σ2) ∈ R
2 can be viewed as local coordinates for TqeS

2. Thus,

(ξ, ξ̇) ∈ T(qe,0)TS
2 for all σ ∈ D, where D ⊂ R

2 is an open set containing the
origin. Substituting these expressions into the equation for the linearization of
the extended vector field and taking the inner product with the basis vectors
ξ1 and ξ2 gives
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mr2
[
σ̈1

σ̈2

]
+

[
ξT1

∂2U(qe)
∂q2 ξ1 ξT1

∂2U(qe)
∂q2 ξ2

ξT2
∂2U(qe)

∂q2 ξ1 ξT2
∂2U(qe)

∂q2 ξ2

] [
σ1

σ2

]
=

[
0
0

]
.

This system of second-order linear differential equations describe the lin-
earized vector field of the original Lagrangian vector field on TS2. Thus, this
differential equation, expressed in terms of (σ, σ̇) ∈ TR2, describes the La-
grangian dynamics on the manifold TS2 in a neighborhood of (qe, 0) ∈ TS2

to first order in the perturbations.
These linearized equations have been described as a system of second-order

differential equations, consistent with the usual formulation of the Euler–
Lagrange equations. They can also be expressed as a system of first-order
differential equations by including perturbations of the angular velocity vec-
tor or the momentum.

B.3 Linearization on TSO(3)

Consider a rigid body with moment of inertia J that rotates under the action
of a potential. The configuration manifold is SO(3), embedded in R

3×3. As
shown in Chapter 6, the rotational kinematics are

Ṙ = RS(ω),

and the Euler equations are

Jω̇ + ω × Jω −
3∑

i=1

ri × ∂U(R)

∂ri
= 0.

These differential equations define a vector field on TSO(3). Assume Re ∈
SO(3) satisfies ∂U(Re)

∂ri
= 0, i = 1, 2, 3, so that (Re, 0) ∈ TSO(3) is an equi-

librium of the vector field defined by the rotational kinematics and Euler’s
equations. We obtain linearized equations following the second approach de-
scribed above. The same approach, for different dynamics, is followed in [20].

We can linearize the above differential equations by first introducing local
coordinates on SO(3). We use the exponential representation

R = Ree
S(θ),

where θ = (θ1, θ2, θ3) ∈ D ⊂ R
3, and D is an open set containing the origin.

As indicated in Chapter 1, the exponential map θ ∈ D → R ∈ SO(3) is a
local diffeomorphism.

The kinematics of a rotating rigid body in SO(3) are now expressed in
terms of local coordinates in D ⊂ R

3. The angular velocity vector of the
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rotating rigid body can be expressed in terms of the time derivatives of the
local coordinates. The following implications

S(ω) = RT Ṙ

= e−S(θ)RT
e Ree

S(θ)S(θ̇)

= S(θ̇),

demonstrate that ω = θ̇, where we have used the fact that the skew-symmetric
function S : R3 → so(3) is locally invertible.

The Euler equations can be written in terms of local exponential coordi-
nates as

Jθ̈ + θ̇ × Jθ̇ −
3∑

i=1

Ree
−S(θ)ei × ∂U(Ree

S(θ))

∂ri
= 0.

These equations define the rotational dynamics of the rigid body on a subset
of TSO(3) in terms of local coordinates θ ∈ D ⊂ R

3. These are complicated
equations, but they can be easily linearized in a neighborhood of (Re, 0) ∈
TSO(3), or equivalently in terms of local coordinates in a neighborhood of
the origin in D. Linearization of the differential equations in local coordinates
gives

Jσ̈ −
3∑

i=1

rei × ∂2U(Re)

∂r2i
σ = 0.

Here, rei = RT
e ei ∈ S2, i = 1, 2, 3. This linear vector differential equation

describes the linearized vector field of the Lagrangian vector field on TSO(3);
it is expressed in terms of perturbations σ from the equilibrium (Re, 0) ∈
TSO(3).

These linearized equations have been described as a system of second-order
differential equations, consistent with the usual formulation of the Euler–
Lagrange equations. They can also be expressed as a system of first-order
differential equations by including perturbations of the angular velocity vec-
tor or the momentum.
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chain pendulum, 486
chain pendulum on cart, 492
classical particle, 110
double planar pendulum, 169
double spherical pendulum, 255
elastically connected planar

pendulums, 163
elastically connected spherical
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elastically supported rigid body, 331
fixed-free elastic rod, 507
free-free chain, 501
full body, 441
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horizontal pendulum on a cart, 405
particle constrained curved surface,
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planar mechanism, 400
planar pendulum, 152
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quad rotors transporting payload, 464
rigid body planar pendulum, 298
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orbit, 336
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strings, 243
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three-dimensional pendulum on cart,

425
three-dimensional revolute joint

robot, 187

two bodies with a common material
point, 430

eigenspaces, 3
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embedded manifold, vii, 13
equilibrium, 29, 32, 33, 399, 485, 523

asymptotically stable, 33
stable, 33
unstable, 33
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Euclidean motion, 26, 57, 313
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Euler equations, 281
Euler–Lagrange equations, viii, 92, 93,
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