

LABORATORY

2016 DOE Hydrogen and Fuel Cells Program Review

Tailored High Performance Low-PGM Alloy Cathode Catalysts

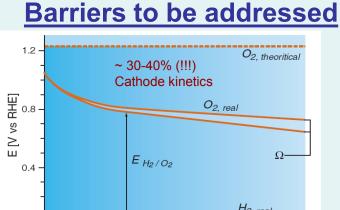
Pls: Vojislav R. Stamenkovic Nenad M. Markovic

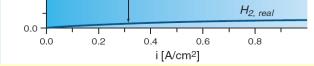
Materials Science Division

Argonne National Laboratory

Project ID# FC140

This presentation does not contain any proprietary, confidential, or otherwise restricted information




Timeline

- Project start: 10/2015
- Project end: 10/2018

Budget

- Total Project funding \$3.6M
- Funding for FY16: \$1.2M

- 1) Durability of fuel cell stack (<40% activity loss)
- 2) Cost (total loading of PGM 0.125 mg_{PGM} / cm²)

3) Performance (mass activity @ 0.9V 0.44 A/mg_{Pt})

Partners:

- Argonne National Laboratory MERF CSE Greg Krumdick, Debbie Myers
- Lawrence Berkeley National Laboratory Peidong Yang
- Los Alamos National Laboratory Rod Borup, Plamen Atanassov (UNM)
- Oak Ridge National Laboratory Karren More

Project Lead:

• Argonne National Laboratory - MSD – V.Stamenkovic / N.Markovic

Relevance

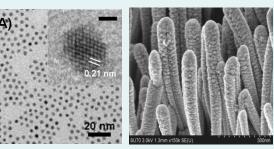
<u>Objectives</u> The main focus of ongoing DOE Hydrogen & Fuel Cell Program is development of highly-efficient and durable Pt-Alloy *catalysts* for the ORR *with low-Pt content*

Table 3.4.13 Technical Targets: Electrocatalysts for Transportation Applications ^h				
Characteristic	Units	2011 Status	2020 Targets	
Platinum group metal total content (both electrodes) ^a	g / kW (rated)	0.19 ^b	0.125	
Platinum group metal (pgm) total loading ^a	mg PGM / cm ² electrode area	0.15 ^b	0.125	
Loss in initial catalytic activity ^c	% mass activity loss	48 ^b	<40	
Electro catalyst support stability ^d	% mass activity loss	<10 ^b	<10	
Mass activity ^e	A / mg Pt @ 900 mV _{iR-free}	0.24 ^b	0.44	
Non-Pt catalyst activity per volume of supported catalyst ^{e, f}	A / cm ³ @ 800 mV _{IR-free}	60 (measured at 0.8 V) ^g 165 (extrapolated from >0.85 V) ^g	300	

Source: Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan

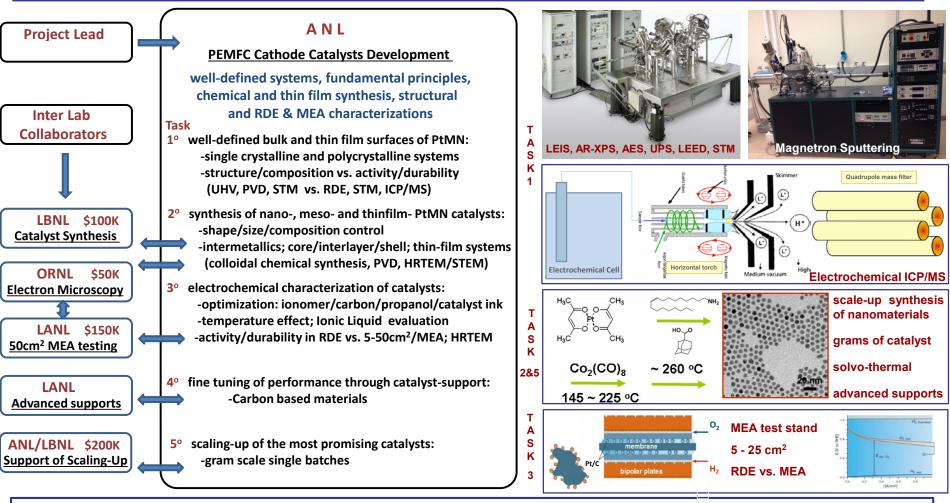
Relevance

<u>Objectives</u> The main focus of ongoing DOE Hydrogen & Fuel Cell Program is development of highly-efficient and durable Pt-Alloy *catalysts* for the ORR *with low-Pt content*


Table 3.4.13 Technical Targets: Electrocatalysts for Transportation Applications ^h				
Characteristic	Units	2011 Status	2020 Targets	
Platinum group metal total content (both electrodes) ^a		0.19 ^b	0.125	
Platinum group metal (pgm) total loading ^a	mg PGM / cm ² electrode area	0.15 ^b	0.125	
Loss in initial catalytic activity ^c	% mass activity loss	48 ^b	<40	
Electro catalyst support stability ^d	% mass activity loss	<10 ^b	<10	
Mass activity ^e	A / mg Pt @ 900 mV _{iR-free}	0.24 ^b	0.44	
Non-Pt catalyst activity per volume of supported catalyst ^{e, f}	A / cm ³ @ 800 mV _{IR-free}	60 (measured at 0.8 V) ⁹ 165 (extrapolated from >0.85 V) ⁹	300	

Source: Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan

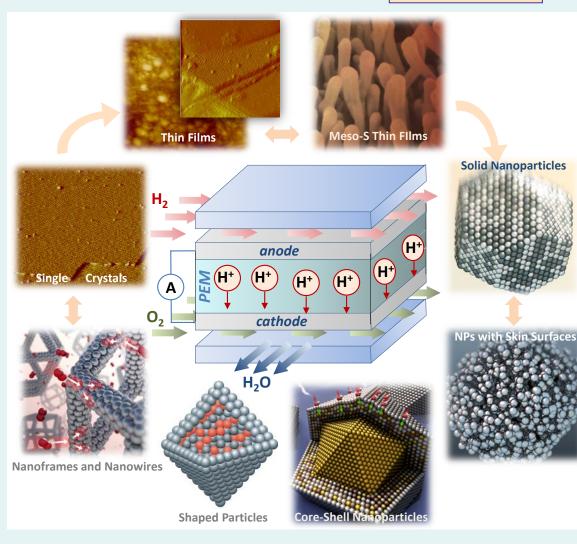
Argonne


ANL Technical Targets

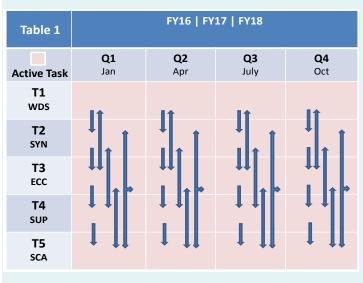
- Total PGM loading 2020 DOE target 0.125 mg_{PGM}/cm²
- Loss in initial mass activity 2020 DOE target <40%
- Mass activity @ 0.9V_{iR-free}
 2020 DOE target 0.44 A/mg_{Pt}

Approach

Materials-by-design approach - to design, characterize, understand, synthesize/fabricate, test and develop tailored high performance low platinum-alloy nanoscale catalysts

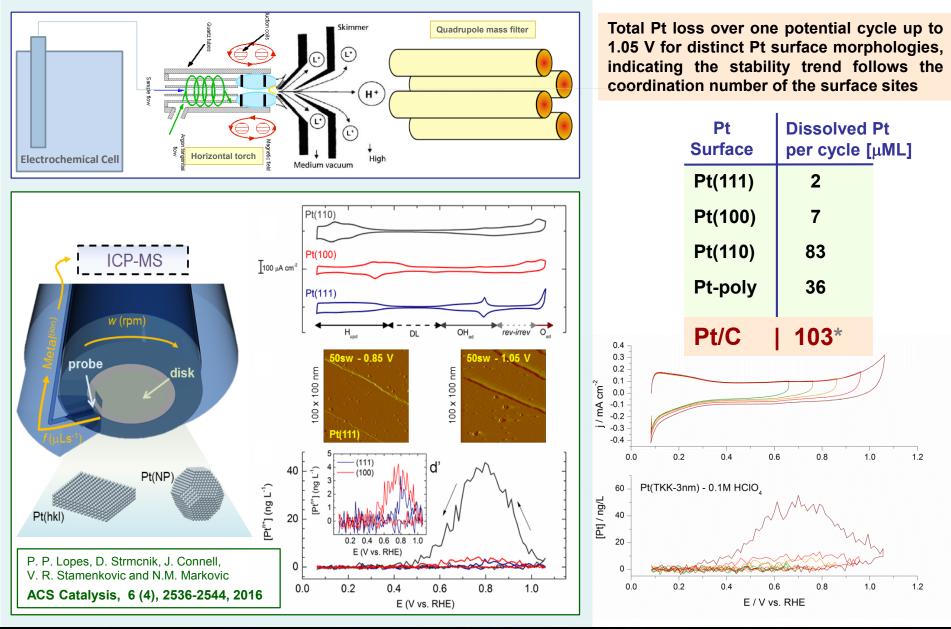


- Rational synthesis based on well-defined systems
- Addition of the elements that hinder Pt dissolution
- Prevent loss of TM atoms without activity decrease


Activity boost by lower surface coverage of spectators

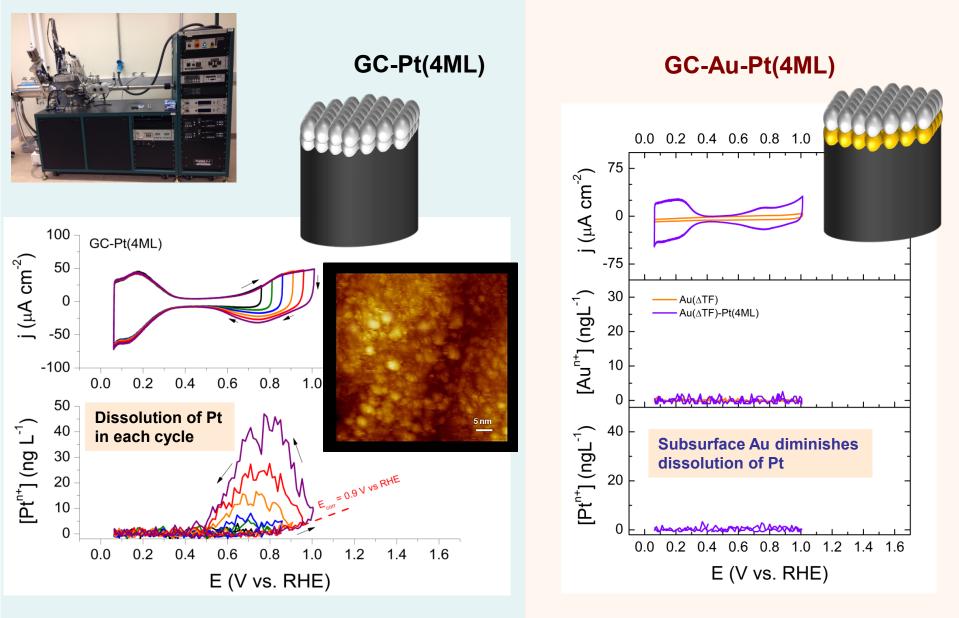
Approach

Project Management

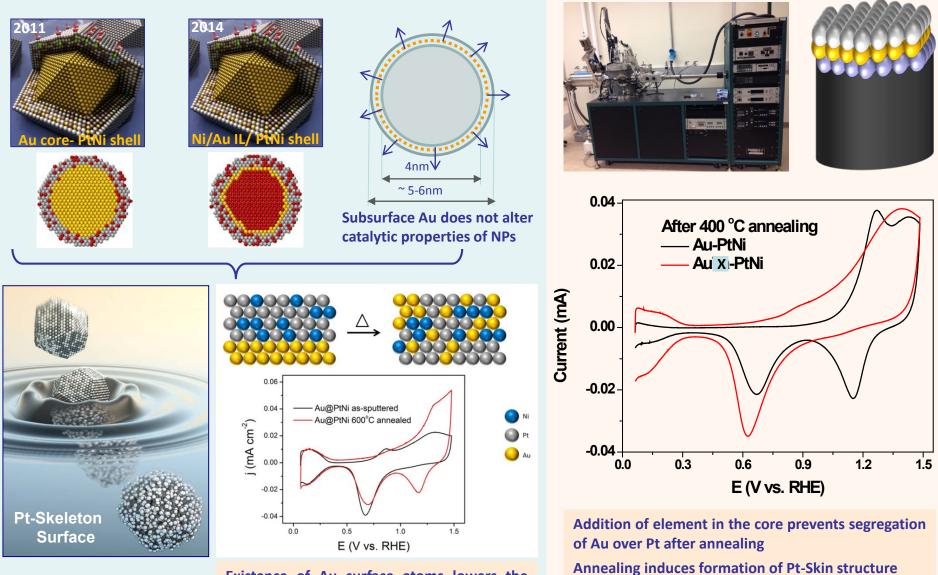

Task 1 - Well-Defined Systems (WDS) Task 2 - Synthesis of Materials (SYN) Task 3 - Electrochemical Characterization (ECC) Task 4 - Novel Support/Catalyst (SUP) Task 5 - Scaling Up of Materials (SCA)

- From fundamentals to real-world materials
- Simultaneous effort in five Tasks

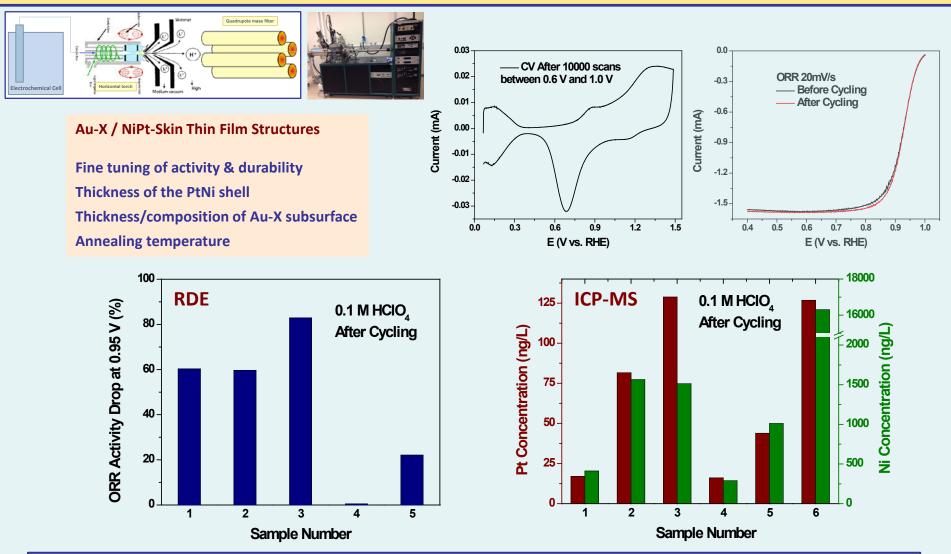
- Go-No Go evaluation
- Progress measures are quarterly evaluated



1º Accomplishments and Progress: In-Situ EC-ICP-MS Pt(hkl)-Surfaces vs. Pt/C



1º Accomplishments and Progress: In-Situ EC-ICP-MS Pt-Surface/Au Subsurface

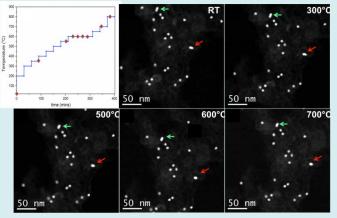

2º Accomplishments and Progress: Catalysts Structures with Subsurface Au

Au remains in the subsurface

Existence of Au surface atoms lowers the number of Pt active sites for adsorption of O₂

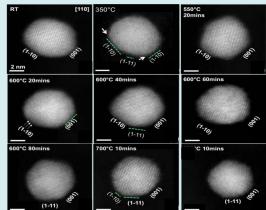
2º Accomplishments and Progress: Catalysts Structures with Subsurface Au

Sample 4 of AuX/NiPt-Skin after 10K cycles to OCP shows the best activity-stability at room temperature Input to nanoscale synthesis about the structure/composition of the core-shell catalyst

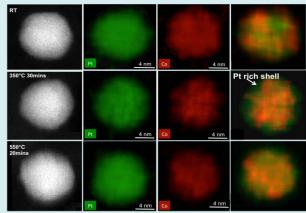


3º Accomplishments and Progress: *Pt*₃Co catalysts Structures

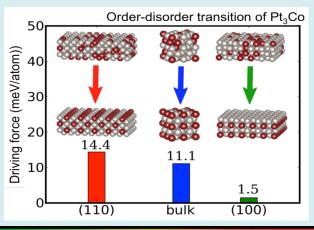
in collaboration with M. Chi and K.L. More, ORNL


Annealing sequence of Pt₃Co NP

CAK RIDGE



(001)


HAADF at different T and t(min)

HAADF and EDS elemental mapping

110 110 110 111 (001) (001) (001) (10) 110 Projection at {110}

<u>2 nm</u> (1-11) (1-2(001)) (12(110)) (

[110]

M. Chi, C. Wang, Y. Lei, G. Wang, K.L. More, A. Lupini, L.F. Allard, N.M. Markovic, and V.R. Stamenkovic **Nature Communications 6 (2015)** *No.* 8925 Dynamic of structural and chemical evolution at the atomic scale of Pt₃Co NPs during in-situ annealing distinct behavior at critical stages:

{111}, {110}, {100} facets play different roles during the evolution of structure

formation of a Pt-Skin shell with an alloyed disordered core;

the nucleation of ordered domains;

the establishment of an ordered $L1_2$ phase followed by pre-melting

3º Accomplishments and Progress:

(111)

40

30

(200)

50

Two Theta (deg)

60

____ 9 nm

(220)

70

80

PtCo Structures Towards Intermetallics

3 nm

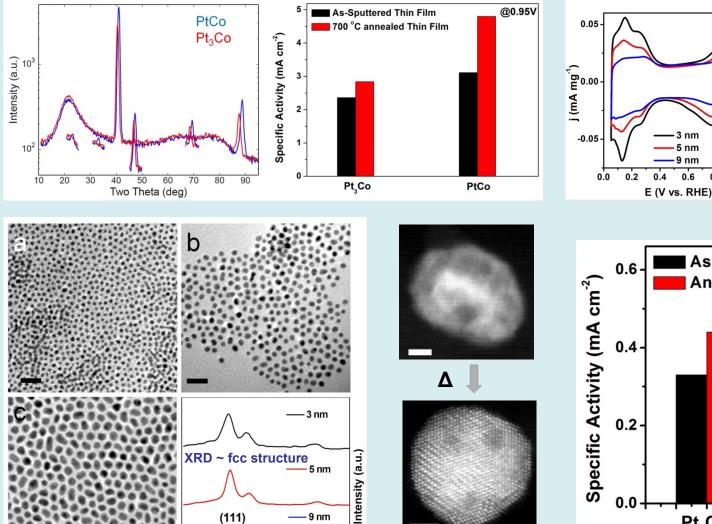
5 nm 9 nm

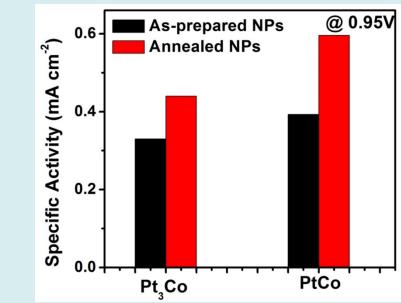
0.6

0.8

1.0

@ 0.90V

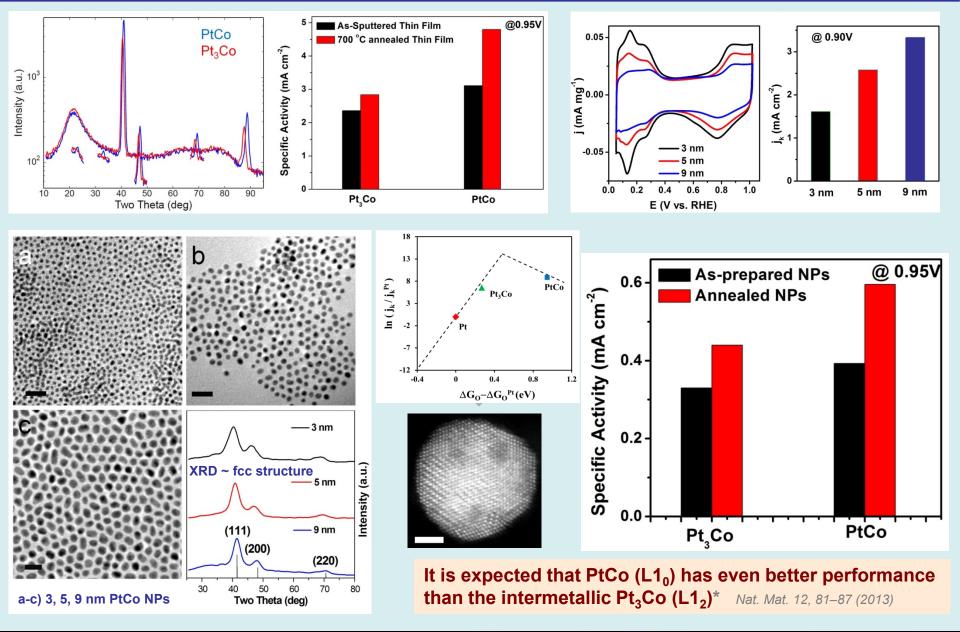

3 nm


5 nm

9 nm

3

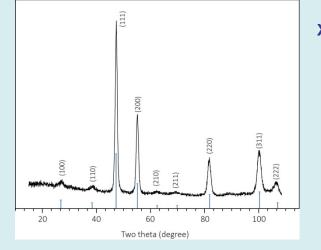
(mA cm⁻²)


It is expected that PtCo (L1₀) has even better performance than the intermetallic Pt₃Co (L1₂)* Nat. Mat. 12, 81–87 (2013)

a-c) 3, 5, 9 nm PtCo NPs

3° Accomplishments and Progress:

PtCo Structures Towards Intermetallics


3º Accomplishments and Progress: *PtCo Towards Novel Structures*

Pt seed
Pt@m-SiO2

Ordered Pt3Co@m-SiO2

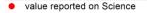
Image: Description of the second second

in collaboration with Peidong Yang, LBNL

XRD: Converted to intermetallic Pt₃Co after annealing treatment

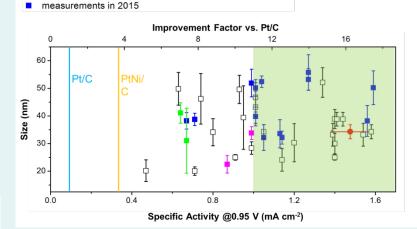
SiO₂ coating allows high T annealing w/o agglomeration
High surface to volume ratio
1-D branches protruding from the core
Elongated highly crystalline surfaces with Pt-Skin topmost layer
Tunable composition and structure, including intermetallics

m


4° Accomplishments and Progress:

in collaboration with Peidong Yang, LBNL

PtNi Nanoframe Surface Structure


A PtNi3 Polyhedra B PtNi Intermediates C Pt3Ni Nanoframes D Pt3Ni nanoframes/C with Pt-skin surfaces a ₁₅₀ а b b Pt₃Ni(1.0) Pt₃Ni(1.5) ц(Е) 1.2 - CO stripping Ar CV - CO stripping - Ar CV 100-100 (Yr) 50 (HI) 50 0.8 0.6 0.6 0.4 Pt₃Ni(1.0) 0.4 Pt3Ni(1.0) Pt₃Ni(1.5) - Pt₃Ni(1.5) 0.2 0.4 0.6 0.8 0.2 -0.0 0.0 0.2 0.4 0.6 0.8 1.0 E vs RHE (V) E vs RHE (V) С 0.0 Pt₃Ni(1.0) 8300 8320 8340 8360 8380 8400 8420 11540 11560 11580 11600 Pt₃Ni(1.5) Photon Energy (eV) Photon Energy (eV) С d ų 1.0 -3 0.8 0.6 0.4 Pt₃Ni(1.0) Pt₃Ni(1.0) 0.4 Pt3Ni(1.5) Pt3Ni(1.5) 0.2 0.0 0.2 0.4 0.6 0.8 10 E vs RHE (V) 8300 8320 8340 8360 8380 8400 8420 11580 Photon Energy (eV) Photon Energy (eV) e Pt3Ni(1.0) $Pt_3Ni(1.0) = Q_{CO}/Q_{Hupd} = 1.0$ Pt₃Ni(1.5 Pt₃Ni(1.0 $Pt_3Ni(1.5) = Q_{CO}/Q_{Hupd} = 1.5$ Pt₃Ni(1.5 ORR rate: $Pt_3Ni(1.0) < Pt_3Ni(1.5)$ 40 -20 0 20 40 60 8 Energy Relative to Ni K-edge (eV)

N. Becknell, Y. Kang, Chen Chen, J. Resasco, N. Kornienko, J. Guo, N.M. Markovic, G.A. Somorjai, V.R. Stamenkovic, P. Yang **JACS 137 (2015) 15817**

measurements in 2013 and 2014

- 5x scale up 30 mg of Catalysts per batch
- 10x scale up 60 mg of Catalysts per batch

In situ EXAFS:

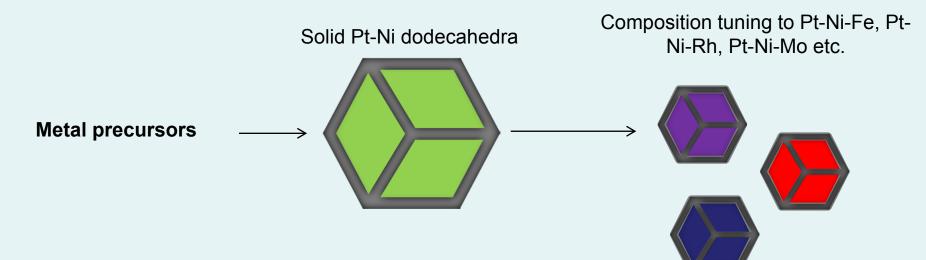
 $Pt_3Ni(1.0)$ has a larger extent of alloying vs. Pt3Ni(1.5), including surface Ni that becomes NiO

Pt₃Ni(1.5) has significant segregation of Pt with smoother morphology and the thickness of at least two atomic layers

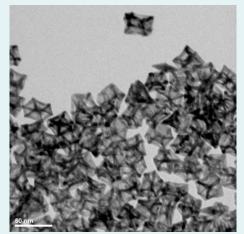
Pt₃Ni(1.0) has a thinner, rougher Pt surface caused by insufficient segregation of Pt to the surface

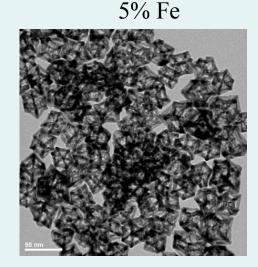
Pt₃Ni(1.5) exhibits extremely high ORR activity due to its significant segregation of Pt, forming of a Pt-skin

The activity of a given nanoframe sample is primarily pre-determined by the level of platinum surface enrichment


mm

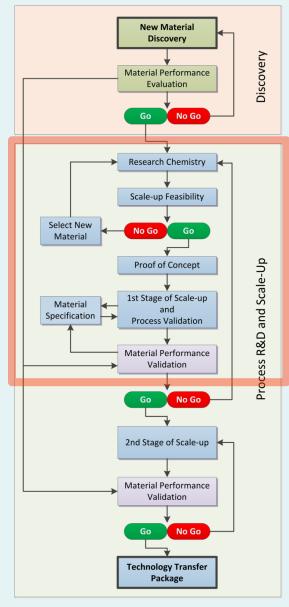
4° Accomplishments and Progress:


in collaboration with Peidong Yang, LBNL


Ternary Metal Nanoframes

1% Fe

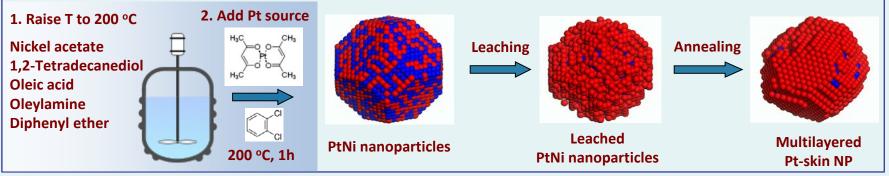
3% Fe



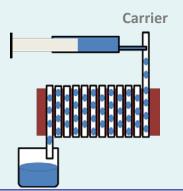
5° Accomplishments and Progress:

in collaboration with Greg Krumdick, ANL -MERF

- Argonne's Material Engineering Research Facility (MERF) was tasked with scaling up the new materials.
- The current process used in the discovery laboratory will be reviewed and scrutinized for scale up utility.
- MERF will conduct process R&D and develop scalable process for producing the material.
- The materials will be validated on each stage of scale up process and performance compared with the original sample.
- Detailed procedures for synthetizing, characterizing, and evaluating will be compiled into Technology Transfer Package.
- The materials will be available for both basic researches and industrial evaluators.


Argonne

5° Accomplishments and Progress:


Process R&D and Scale Up

in collaboration with Greg Krumdick, ANL -MERF

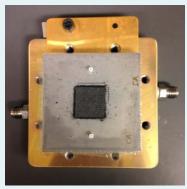
- Initial process R&D will focus on batch NP synthesis.
 - Investigate temperature and rate of addition on NP characteristic.
 - Nucleation rate vs. addition rate.
 - Improve safety of the process.
- Material selected for scale up is multilayered Pt-skin NP (Lab scale—0.1 g catalyst).
- 1st stage of scale up—1 g catalyst.
- 2nd stage of scale up—5 g catalyst.

Future target is to develop continuous process (flow reactor).

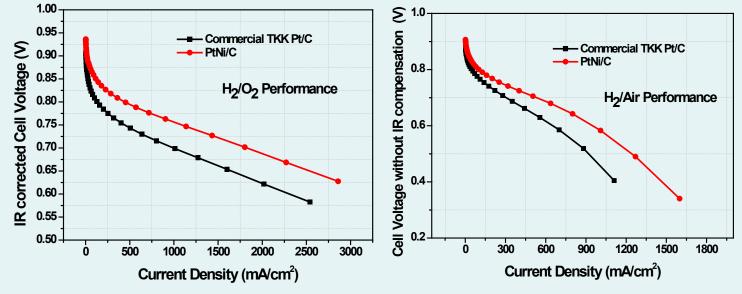
- Fast mass and heat transfer.
 - Accurate control of reaction temperature and duration.
 - Allow rapid optimization of reaction parameters.
 - Low usage of reagents in the optimization process.
 - Easy scalability by duplicating.
 - Capability for online quality monitoring.

Argonne 6° Accomplishments and Progress:

PtNi with Multilayered Pt-Skin


Performance	PtNi	TKK Pt
Specific Activity 0.9V/0.95V (mA/cm ²)	5.30/0.68	0.78/0.11
Mass Activity 0.9V/0.95V (A/mg)	3.5/0.49	0.56/0.11

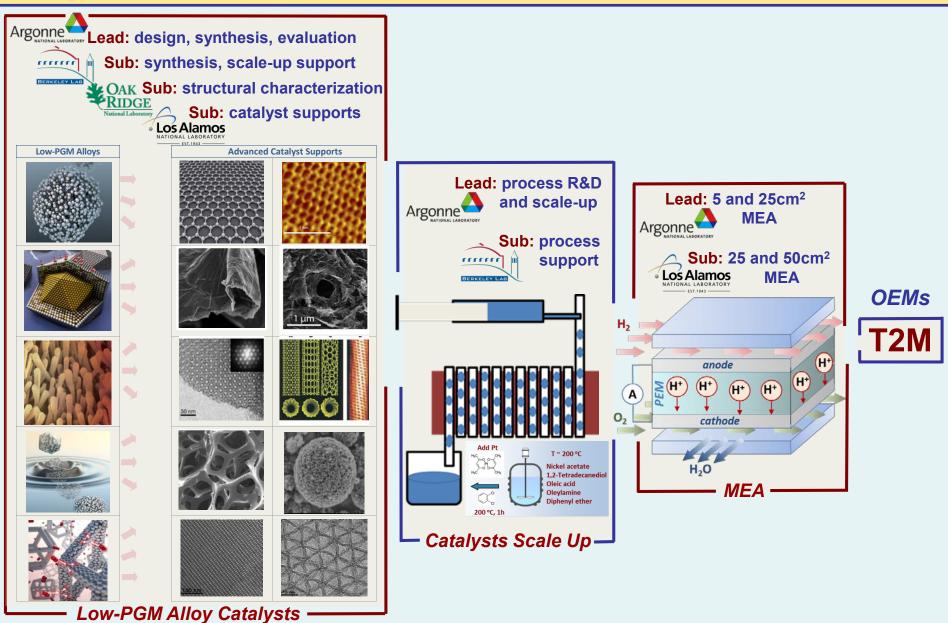
6° Accomplishments and Progress:


PtNi MEA Characterization

in collaboration with Debbie Myers, ANL - CSE

Argonne

Cathode Loading:	0.046 mg-Pt/cm ²
$I/C = 1, H_2/O_2$ (or	Air),
80°C, 150 kPa(abs)), 100%RH


TKK 20 wt%Pt/C

PtNi 16.7 wt%Pt/C

	Units	PtNi		PtNi TKI	
Pt loading	mg _{PGM} /cm² _{geo}		0.045		0.045
Mass Activity (H ₂ -O ₂)	A/mg _{PGM} @ 0.9 V _{iR-free}		0.60		0.27
Specific Activity (H ₂ -O ₂)	mA/cm ² _{PGM} @ 0.9 V _{iR-free}		1.85		0.39
MEA performance (H ₂ -Air)	mA/cm² @ 0.8 V	101			47
ECSA	m²/g _{PGM}		35.10		52.5

Collaborations

1) Durability of fuel cell stack (<40% activity loss)

2) Cost (total loading of PGM 0.125 mg_{PGM} / cm²)

3) Performance (mass activity @ 0.9V 0.44 A/mg_{Pt})

- **Differences** between RDE and MEA, surface chemistry, ionomer catalyst interactions
- Temperature effect on performance activity/durability
- High current density region needs improvements for MEA
- Support catalyst interactions
- Scale-up process for the most advanced structures

- Evaluation of activity/durability and optimization of MEA protocols at ANL and LANL
- Alternative approaches towards highly active and stable catalysts with low PGM content
- Tailoring of the structure/composition that can optimize durability/performance in Pt-alloys
- Synthesis of tailored low-PGM practical catalysts with alternative supports
- Structural characterization (in-situ XAS, HRTEM, XRD)
- Resolving the surface chemistry in MEA
- Electrochemical evaluation of performance (RDE, MEA)
- In-situ durability studies for novel catalyst-support structures (RDE-ICP/MS)
- Scale-up of chemical processes to produce gram quantities of the most promising catalysts

Technology Transfer Activities

US007871738B2 (12) United States Patent (19) Patent No.: US 7,871,738 B2	T2M	
Stamenkovic et al. (s) Date of Patent: Jan. 18, 2011 (s) MANNEGREGATIPEERENES AS CANANSISTOR PALICIELS: AS CANANSISTOR PALICIELS: (S) Neard M. Markerk, Hisskirk: Li (S) Neoretice States Catalogistic and Catalogistic and Ca		Auto OEMsImage: Descent of the sector
((22) United States Patent (23) United States Patent (24) Stamenkovic et al. (25) Patent No.: US 9,246,177 B2 (25) Stamenkovic et al. (25) Patent Patent Jan. 26, 2016		Auto OEMs in FY16
(4) BIMETALLIC ALLOY FLECTBOCATALYSTS (5) References Cited WITH MULTILARED PLAININ-SIXN U.S. PATENT DOCUMENTS (5) Invators: Vijbler R. Stannakovik, Napeville, IL (15) Stoward, Nave, I		Four OEM visits 3 NDA signed

• Constant build up of IP portfolio 5 issued patents, 4 pending

Argonne

S U M M A R Y

Approach

- From fundamentals to real-world materials
- Focus on addressing DOE Technical Targets
- Link between electrocatalysis in the RDE vs. MEA
- Rational design and synthesis of advanced materials with low content of precious metals

Accomplishments

- Established three new labs since 10/2015: EC-ICP/MS, MEA and Scale-Up process Lab
- Quantified durability, atom-by atom on different Pt surfaces
- Surfaces with highly corrugated morphology are less stable (Pt-Skeleton)
- Addition of subsurface Au diminishes Pt dissolution
- Novel Au core structures allow annealing of Pt-alloy shell w/o segregation Au while Pt-skin is formed
- In-situ annealing of Pt-alloy NP reveal transition from disordered alloy, Pt overlayer (Pt-Skin) to intermetallics
- Novel intermetallic structures with promising electrochemical properties have been synthesized
- In-situ EXAFS revealed the real surface structure of highly active PtNi nanoframe catalysts
- PtNi with multilayered Pt-Skin exceeded DOE 2020 Technical Target for mass activity and durability in MEA
- One patent issued in 2016, 5 articles published and 4 presentations at conferences

Collaborations

- Collaborative effort among the teams from four national laboratories is executed simultaneously in five tasks
- Ongoing exchange with Auto-OEMs
- Numerous contacts and collaborative exchanges with academia

Full time postdocs:

Partial time postdocs:

Dr. Dongguo Li (RDE, synthesis, thin films) Dr. Haifeng Lv (RDE, synthesis, MEA) Dr. Rongyue Wang (scale up syntehsis, RDE, MEA)

Dr. Pietro Papa Lopes (RDE-ICP-MS)

Partial time Staff:

Paul Paulikas (UHV, thin films)

Grad student: Nigel Becknell (synthesis, RDE, EXAFS)

Publications and Presentations FY16

5 Publications 4 Presentations 1 issued US patent 3 patent applications

