
www.iar.com

Take full control of your

MCU software development

Ryan Sheng

ryan.sheng@iar.com

www.iar.com

IAR Systems

168 Employees with HQ in Uppsala, Sweden

Listed on Stockholm/NASDAQ

R&D investment 32% of revenue

34 years in the embedded industry

Distributor representation in

43 countries

Global technical support in

9 languages

Stability and growth

0%

5%

10%

15%

20%

25%

0

2

4

6

8

10

12

14

16

18

20

2010 2011 2012 2013 2014
License # Operating Margin

Licenses

thousands

Operating

margin 2010-2014

Uppsala San Francisco

Munich Los Angeles

Paris Dallas

Tokyo Boston

Shanghai

Seoul

www.iar.com

IAR Embedded Workbench

C/C++ compiler and debugger toolchain

Outstanding optimization for both

compact code size and

high performance

Comprehensive

debugger

User-friendly features

and broad ecosystem

integration

Global technical support

MISRA-C checker

ARM ABI compliant

www.iar.com

• IAR Embedded Workbench for ARM
• LPC, Kinetis

• i.MX, Vybrid

• S32K, MAC57D5xx

• IAR Embedded Workbench for ColdFire
• V1, V2, V3, ColdFire+

• IAR Embedded Workbench for HCS12
• 16-bit HC12, S12 devices

• IAR Embedded Workbench for S08
• 8-bit S08 devices

• IAR Embedded Workbench for 8051
• 8-bit LPC7xx, LPC9xx, …

IAR Embedded Workbench

Device support for NXP MCU/MPU

www.iar.com

IAR Embedded Workbench for ARM

Cortex-A17

Cortex-A15

Cortex-A9

Cortex-A8

Cortex-A7

Cortex-A5

Cortex-R8

Cortex-R7

Cortex-R5

Cortex-R4

Cortex-M7

Cortex-M4

Cortex-M3

Cortex-M1

Cortex-M33

Cortex-M23

Cortex-M0/M0+

ARM10/11

ARM7/9

• Unique independence with support for all available ARM cores,

from all major vendors including NXP, ST, TI, Cypress, Microchip,

Renesas, SiLabs, Toshiba, etc.

• 5,000+ supported devices

• Close cooperation with SoC vendors

IAR KickStart Kit

www.iar.com

IAR Embedded Workbench for ARM

Recent updates and highlights

• Updated IDE look and feel

• Support C11 (ISO/IEC 9899:2011) standard

• Support C++14 (ISO/IEC 14882:2014) standard

• Enhanced compiler optimizations (for speed)

• Support Cortex-M23 & Cortex-M33 (ARMv8-M)

• CMSIS-Pack

• I-jet Trace for ARM (Cortex-A/R/M)

• Flash breakpoint

• Multi-core debugging

• Stack usage analysis

• Enhanced static and runtime code analysis

www.iar.com

IAR Embedded Workbench for ARM

Outstanding compiler optimization

•Leading compiler optimizations enable IAR Embedded Workbench to generate

the most compact and fast performing code.

• Smaller memory size

• Better real-time reaction

• Lower power consumption

•EEMBC proved code

performance: Find the

leading CoreMark®

scores on the website.

www.eembc.org/

coremark

Cortex-M7

Cortex-M4

Cortex-M0+

Cortex-M0+

www.iar.com

IAR Embedded Workbench for ARM

Advanced debugging & trace

Function profiling

Data log

Interrupt log

ETM trace

Call stack

Code coverage

www.iar.com

Functional safety certified edition of

IAR Embedded Workbench for ARM

• IEC 61508

• ISO 26262

• EN 50128

Simplified validation

• Functional safety certificate

• Report of the certificate

• Safety Guide

Guaranteed support through
the product life cycle

• Prioritized technical support

• Validated service packs

• Regular report of known problems

IAR Embedded Workbench for ARM

Functional safety certification

www.iar.com

I-jet Trace delivers large trace memory

capacities and high-speed communication
via SuperSpeed USB 3.0.

I-jet provides an

exceptionally fast

debugging
platform.

I-scope
for ARM

I-scope is a small probe that

adds current & voltage

measurement

capabilities to I-jet.

I-jet for ARM

CMSIS-DAP

Segger J-Link / J-Trace

P&E Micro Multilink

P&E Micro Cyclone

......

3rd-Party Debuggers

I-jet Trace
 for ARM

IAR I-jet & I-jet Trace

Hardware debuggers for ARM

www.iar.com

Generate IAR example projects

using NXP MCUXpresso Tools

www.iar.com

MCUXpresso Software and Tools

MCUXpresso IDE
Edit, compile, debug and optimize in an intuitive and powerful IDE

MCUXpresso Software and Tools
for Kinetis and LPC microcontrollers

MCUXpresso SDK

Runtime software including peripheral drivers, middleware, RTOS,

demos and more

MCUXpresso Config Tools

Online and desktop tool suite for system configuration and

optimization

www.iar.com

MCUXpresso Config Tools

• mcuxpresso.nxp.com/zh/welcome

http://mcuxpresso.nxp.com/zh/builder

www.iar.com

Create a new configuration

• mcuxpresso.nxp.com/zh/builder

• Select from:

•Boards

•Processors

•Kits

• Select configuration

• Specify configuration settings

• Jump start you configuration

http://mcuxpresso.nxp.com/zh/builder

www.iar.com

Configuration settings

www.iar.com

Download a SDK archive

www.iar.com

Download an existing example project

www.iar.com

Advanced debugging & trace on

LPC & Kinetis Microcontrollers

www.iar.com

Cortex-M3/M4 trace system

MIPI-20

Cable

4 Watchpoints

PC Sampler

Interrupt Trace

ETM Trigger

DWT

Software Trace

Timestamp

ITM TPIU

Trace

Port

Interface

Unit

Bus

Matrix

Cortex-M3/M4

Core
ETM

DAP Bus
AHB-AP DP

ATB

ATB ATB

CPU I/F

System

Bus

Trigger

IAR

I-jet Trace

System

Bus

MIPI-10 or MIPI-20

Cable

4-bit

Trace

Port

JTAG

SWD

SWO

IAR

I-jet

www.iar.com

MIPI-10 0.05”

Standard 20-pin

0.1”

MIPI-20 0.05”

JTAG/SWD/ETM

JTAG/SWD

JTAG/SWD

Trace pins in different connector

www.iar.com

• SWO (Serial Wire Output)

•A serial high speed signal that transmits ITM packets

•Events and sampling based

•Supported by Cortex-M3/M4 architectures

•Supported by IAR I-jet and other debuggers

• Trace information going through SWO

•DWT (Data Watchpoint and Trace)

•Watchpoint: 4 independent comparators for address and data

•PC sampler: Sampling the PC register at regular intervals

•Interrupt trace: Logging the enter and exit of each interrupt

• ITM (Instrumentation Trace Macrocell)

•Generate ITM events on 32 independent ports

•Packetize and timestamp the DWT events

SWO trace

www.iar.com

• DWT generates trace events when one of the watchpoint finds a match

on specified address/data.

• Up to four different static variables can be monitored together.

• C-SPY displays the collected trace information in the Data Log window

and the graphical Timeline window.

Static variables monitoring

www.iar.com

Using data log breakpoints

Right-click on the name of

a variable to be monitored:

Check the status and edit the

properties of the breakpoint in

View Breakpoints:

variable

name

variable address access

type

The breakpoint is

triggered when

the variable at

0x20002DE0 is

read or written as

a word (4 bytes).

DWT will generate

an event but the

execution will not

be stopped.

www.iar.com

• DWT generates trace events when entering or leaving any interrupt.

• C-SPY displays the collected trace information in the Interrupt Log

window and the graphical Timeline window.

• Useful to find interrupts which can be fine-tuned to execute faster and

analyze problems with nested interrupts.

Interrupt logging

www.iar.com

• Code profiling information of each C function is retrieved by counting
the number of PC samples generated by the PC sampler of DWT.

• Useful to find where the CPU is spending its time.

• Functions where the most time is spent should be carefully optimized
or moved to more efficient memory to increase the performance.

Function profiling

www.iar.com

• The target application can send data directly to the host debugger

through ITM stimulus ports.

• Each of the 32 ITM ports has its own address (based at 0xE0000000).

• C-SPY displays the data sent from ITM port #1~#4 in the Event Log

window and the graphical Timeline window.

Direct output via ITM stimulus ports

#include <arm_itm.h>

……

for (x=0; x<10; x++)

{

 for (y=1; y<5; y++)

 {

 ITM_EVENT8(y, x);

 }

}

www.iar.com

• Use the functionality of ITM events to measure the time consumption

of a piece of code.

• Send two ITM packets before and after the code to be measured and

the actual execution time is the interval between them.

• Easy, accurate and no additional equipments are required!

Execution time measurement

• Time consumption of CodeToBeMeasured() on a 100MHz CPU:

• (476367457 – 382817996) / 100000000 = 0.935 (s)

#include <arm_itm.h>

……

ITM_EVENT8(1, 0x55);

CodeToBeMeasured();

ITM_EVENT8(1, 0xAA);

www.iar.com

Instruction trace

• Collect a sequence of every executed instruction continuously for a

selected portion of the program.

• Developers can inspect the program flow up to a specific state and

locate the origin of the problem.

• Very useful for locating errors that have irregular symptoms and occur

sporadically.

• Illegal instructions and data aborts

• Runaway programs

• Interrupt/exception problems

• Context switch problems

• ……

• Also helpful for analyzing dynamic system behaviors

• Code profiling

• Code coverage

www.iar.com

Instruction trace techniques

• ETM (Embedded Trace Macrocell)

• Off-chip trace buffer (in the probe, 2~32 MB)

• 4~16-bit data bus at CPUCLK or CPUCLK/2

• High requirement on the board design, e.g. for acceptable signal quality

• Expensive trace probes required (e.g. JTAGjet-Trace)

• ETB (Embedded Trace Buffer)

• On-chip dedicated trace buffer (small – a few Kbytes)

• No extra pins, no requirement for trace probes

• Cortex-M3, Cortex-M4

• MTB (Micro Trace Buffer)

• On-chip configurable trace buffer (small – a few Kbytes)

• No extra pins, no requirement for trace probes

• Cortex-M0+

www.iar.com

Collect executed instructions

• Go to “ETM Trace” window to check the recorded instructions

together with mixed C source code.

Trace Packet Number

Cycles Counter

Instruction Address

Source/Disassembly

Trace Enable/Disable

www.iar.com

View the trace data at function-level

• Go to “ETM Function Trace” window to view function-level information.

• Useful to find the internal process of complex functions, or the actual

calling sequence of interrupt / task switches.

Trace Packet Number

Cycles Counter

Function Address

Function Name

Trace Enable/Disable

www.iar.com

Using trace start/stop breakpoints

Right-click in the source

or disassembly window:

Check the status and edit the

properties of the breakpoint in

View Breakpoints:

location in

the source

address of

the instruction

The breakpoint is

triggered when

the instruction at

the specified

address is

fetched.

www.iar.com

Graphical call stack

Posting a semaphore

Pending on a semaphore

Implementation of

printf()

www.iar.com

Code coverage

Project Name

Module Name

Function Name

Column/Line Number

Enable/Disable
• Red

0% of the module or

function has been executed.

• Green
100% of the module or

function has been executed.

• Red & Green
Some part of the module or

function has been executed.

• Yellow
The statement in C/C++

source code that has not

been executed.

www.iar.com

EWARM debugging environment

www.iar.com

Multi-core debugging

• Symmetric multicore debugging (SMP)

•Debugging two or more identical cores;

•One single debug probe;

•One single instance of IAR EWARM IDE.

• Asymmetric multicore debugging (AMP)

•Debugging two different cores;

•One single debug probe;

•Two cooperating instances of

IAR EWARM IDE.

www.iar.com

Multi-core debugging: Configuration

SMP:

Number of cores

AMP:

Set the direction

to the slave

project in the

master project.

www.iar.com

Execution

State :
Start all cores

Stop all cores

Execute command

for each core

Multi-core debugging: LPC54114

www.iar.com

Keeping Safe at C:

Static & Runtime Code Analysis

www.iar.com

Integrated code analysis add-on tools

• Static code analysis: C-STAT

• Analyze the C/C++ source code without executing the program.

• Fully integrated in IAR Embedded Workbench for ARM.

• Runtime code analysis: C-RUN

• Find C programming errors at runtime.

• Fully integrated in IAR Embedded Workbench for ARM.

www.iar.com

C-STAT and C-RUN

www.iar.com

Code analysis: Find bugs earlier

Top-level Design

Unit Design

Coding / Debugging

Unit Test

System Integration

System Test

Release

Bugs Found

Bugs Found

Requirement

Most bugs

are found

until Test

phases.

Find bugs

later =

Higher cost

Find more

bugs during

coding and

debugging !

www.iar.com

• Common Weakness Enumeration

• cwe.mitre.org

• An unified and measurable set of
software weaknesses.

• Enumerate design and architecture
weaknesses, as well as low-level
coding errors.

• Computer Emergency Response Team

• www.cert.org

• C/C++ secure coding standards, identifying
insecure constructs which could expose a
weakness or vulnerability in the software.

• Guidelines to avoid implementation, coding
as well as low-level design errors.

• Motor Industry Software Reliability Association

• www.misra.org.uk

• MISRA C:2004 (MISRA C2): Identify unsafe code constructs in the C89 standard.

• MISRA C:2012 (MISRA C3): Extend the support to C99 version of the programming
language whilst maintaining the guidelines for C89 standard.

• MISRA C++:2008: Identify unsafe code constructs in the 1998 C++ standard.

C-STAT: What does it check

http://cwe.mitre.org/index.html
http://www.mitre.org/
http://www.cert.org/
http://www.misra.org.uk/

www.iar.com

CWE/CERT rules

MISRA C/C++ rules

C-STAT: Options in IAR EWARM

www.iar.com

Enable or disable a set of

rules or any individual rule.

Highlight a rule and

press F1 to show the

detailed description.

C-STAT: Rules configuration

www.iar.com

Double click the C-STAT

message to direct to the

line of source code.

Highlight the C-STAT

message and press

F1 to show the related

rules information.

Filter the C-STAT messages by selecting a

level of severity: All, Low, Medium or High.

C-STAT: Result of analysis

www.iar.com

Arithmetic

checking

Heap

checking

Bounds

checking

C-RUN: What does it check

www.iar.com

• Traditional runtime analysis tools:
• Independent with compiler and debugger;

•Different applications and license models;

•Less knowledge about the target and optimization;

• Insert test code at the source code level;

•Large overhead in memory size and execution speed.

• C-RUN:
•Created by compiler and debugger experts;

•Fully integrated within IAR Embedded Workbench;

• Insert target optimized test code directly during compilation;

•Replace the C/C++ standard library with a dedicated library

which contains special functionality for runtime error checking;

•Result in minimized ROM/RAM overhead and speed penalty.

C-RUN: How does it work

www.iar.com

void main (void)

{

 int v1 = 0x7fffffff;

 unsigned int v2 = 0xffffffff;

 v1++; /* signed integer overflow */

 v2++; /* unsigned integer overflow */

}

Detecting integer overflow

www.iar.com

#include <stdlib.h>

#include <iar_dlmalloc.h>

void main (void)

{

 char *c = malloc(10);

 c = malloc(20); /* memory leak */

 free(c);

 /* check for memory leaks, manually called */

 __iar_check_leaks();

}

Detecting heap errors

www.iar.com

int main (void)

{

 int i, j;

 int a[3] = {1, 2, 3};

 for (i=0; a[i]!=0; i++) /* out of bounds */

 { /* when i==3 */

 j = a[i];

 }

 return j;

}

Detecting out-of-bounds

www.iar.com

Requirements Design Implementation Verification Maintenance

Investigate runtime errors

Let C-RUN analyze your project

Build and debug the application

Review potential issues

Let C-STAT analyze your code

Implement your design in code Release the application

100011001100011

110010101110011

101010110011001

01001

01110

01011

10011

11001

0011010111010

0011001100011

1100101011110

1010110011001

0101010101101

10001

00011

10010

10111

00111

Take full control of your development

