
3

Chapter 1

TAKING CONTROL
OF AUTOCAD

All consistent axiomatic formulations of number theory
include undecidable propositions.

— Kurt Gödel

It is fitting, I suppose, that having begun my professional life as an architect, I
continue to look for the elegance of structural details. Later in this book you
will find this predilection reflected in examples demonstrating the use of
AutoCAD objects. Buckminster Fuller’s vector equilibrium, a deceptively sim-
ple structure defined by the close packing of spheres, is almost infinitely scala-
ble in the form of the geodesic dome. In Chapter 9 we use it to demonstrate
AutoCAD’s PolyfaceMesh entity.

In his book Gödel, Escher, Bach: An Eternal Golden Braid, Douglas
Hofstadter discusses metamathematics in relation to music, visual art, and
computer programming. The common thread in his dialogues is that under-
standing such systems generally requires jumping out of them in order to view
them from a higher level. This is suggestive of an ancient model of creation, in
which this world of action is contained within another, that of formation.
AutoCAD’s object model is built upon a similar and ingenious organizational
foundation, the Component Object Model (COM). In the domain that is the
subject of this book, the center of that next-higher shell has the appropriate
name IUnknown.

7040_Ch01 11/8/01 9:45 PM Page 3

Prentice Hall PTR
This is a sample chapter of VBA for AutoCAD 2002: Writing AutoCAD MacrosISBN: 0-13-065201-6For the full text, visit http://www.phptr.com©2001 Pearson Education. All Rights Reserved.

The development of integrated solutions in Visual Basic and VBA depends
on COM. The AutoCAD 2002 object model is constructed according to the
rules of COM, which provides the shell in which it operates. A short course in
COM may not be what you signed on for here, but understanding its basic
concepts is important if you really want to take control of AutoCAD and make
it work with other applications. Its fundamentals are simpler than you might
imagine.

C o m p o n e n t s a n d A u t o m a t i o n

COM establishes a standardized means by which one piece of software can call
upon another for services. A server application shares its objects with other
applications. Conversely, a program that uses other applications’ objects is
called a client application. This sharing of objects is accomplished through the
COM technology known as Automation.

As Figure 1-1 illustrates, AutoCAD and Excel can fill the role of either
client or server in VBA. The client application is the one that is launched by
the user, which then calls upon the objects in the server application through
COM interfaces. The components from both object models are then executed
in-process with the client application. We will see examples of both configura-
tions in later chapters.

By contrast, a Visual Basic application executes in its own memory space
but calls upon the object models of other applications through the same COM
interfaces. This is not to say that a VBA procedure cannot access more than
one server application. It can. But a VB application runs independently, out-
of-process, as an EXE program. In either case the actual components are
located in dynamic link libraries (DLLs) or ActiveX controls.

Since the focus of this book is on AutoCAD VBA macros, most of the exam-
ples we present are written in that context. Later in this chapter, though, we
look at a short VB program that passes information from Excel into AutoCAD
without either application ever being visible. First, however, let’s delve a little
more deeply into COM.

The Foundation
To understand how Automation works, we need to look above the AutoCAD
object model (which is the subject of Chapter 4) to see how COM-enabled
applications communicate.

1 • Taking Control of AutoCAD

4

7040_Ch01 11/8/01 9:45 PM Page 4

Characteristics of Objects

First, what is an Object? Objects are fundamentally regions of computer mem-
ory. A particular object is a specific region of memory with a name, a defined
set of code and data (the object’s attributes), and an interface. Each object is
an instance, a specific occurrence of a (general) class. When an object is cre-
ated, it is said to be instantiated from its class. Each object in C++, the lan-
guage in which AutoCAD itself is now written, supports a single interface with
a single set of methods. A COM object, on the other hand, has multiple inter-
faces, each set of which is identified by a different Class.

We speak of computer languages as being object-oriented. In addition to
creating objects made up of methods and data, then organizing them accord-
ing to classes, object orientation requires that three additional characteristics
be present. Inheritance is one of them. COM objects support interface inheri-
tance, which allows a child object to build on the features of the parent object,
making them specific. In AutoCAD, for example, a Line is a special case of an
Entity. But there is more to this hierarchy, as we shall see momentarily.

Components and Automation

5

Figure 1-1
COM Automation

7040_Ch01 11/8/01 9:45 PM Page 5

The second characteristic, polymorphism, allows a single object to appear
in different guises at different times. COM allows Visual Basic objects to
implement multiple interfaces, thus an Entity can be a Line, or it can be a
Circle, or it can be a PolyfaceMesh! Moreover, COM provides for the evolu-
tion of software applications so that new functionality can be introduced with-
out breaking old code.

The third defining characteristic of objects is encapsulation. The only way
to access an object is through its methods, properties, or events. Methods are
actions that you can tell the object to perform. Properties are characteristics
that an object possesses, some of which you can set or modify. Events occur
when an object changes its state, and you can create code that will execute
when triggered by a specific event. The object’s internal operation, however, is
always concealed from the user in order to protect the object’s data from being
modified either accidentally or by design. (Visual Basic and VBA modules
themselves implement another kind of encapsulation by defining procedures
as being either public or private.)

Classes and Interfaces

But what, then, is a Class? A Class is a user-defined data type, an aggregation
of standard data types (byte, double, string, etc.) used together for a specific
purpose. COM classes are the means of defining interfaces with objects, com-
plete with their own methods, properties, and events. An object’s class defines
whether the object is public and in what circumstances it can be created. Type
libraries, the contents of which can be viewed using object browsers, are used
to store descriptions of classes and their interfaces.

Automation Interfaces

An Automation interface, or simply interface, is a defined group of member
functions through which clients communicate with component objects. It is
important not to confuse the interface with the classes or objects themselves.
An interface represents the functionality and expected behavior of a COM
object in a definite (and permanent) manner. The uniqueness of each inter-
face is guaranteed by its globally unique identifier (GUID), a 128-bit value
assigned when the interface is initially defined. Once defined, interfaces are
never changed. If a new version of an interface is required for whatever rea-
son, a new interface is defined with its own GUID, and the old interface
remains in place. Thus applications relying on the old interface can continue
to function.

1 • Taking Control of AutoCAD

6

7040_Ch01 11/8/01 9:45 PM Page 6

Binding

When you use an object in Visual Basic or VBA, you first declare it as an
object and then create a reference to the object in an object variable. This
process is known as binding. There are two types of binding, early and
late, and as you might guess, late binding is the slower of the two. For
example:

Dim xAP As Object
Set xAP = CreateObject(“Excel.Application”)

When a variable is declared simply as object or as variant, VB/VBA does not
have enough information to determine at compile time what sort of object ref-
erence the variable will ultimately contain. This determination must be made
at run time, hence the term late binding.

Early binding occurs when a specific type of object is specified in the dec-
laration, as in the following code fragment:

Dim xAP as Excel.Application
Set xAP as Excel.Application

It follows, of course, that a variable declared as belonging to a specific class
may only contain references to objects of that class. Whether object references
are early or late bound is completely dependent on the way the variables are
declared and has nothing to do with the manner of creating the objects. Use of
early binding in creating the AutoCAD Application object is recommended, as
the VB example later in this chapter shows.

Early binding is further subdivided into two types: vtable and DispID.
Every property or method in a type library has a procedure identification
number or DispID (dispatch identifier). DispID binding uses this number.
If a component is represented in a type library but does not support vtable
binding, VB uses the DispID during compilation to locate and bind the
function.

With vtable binding, the fastest method, an offset address into a virtual
function table provides direct access to the function. In general, if a client
application declares object variables using explicit class names, vtable binding
is assured. This is the method recommended in most circumstances and the
one used by AutoCAD 2002. This is fortunate, because although you can con-
trol whether early or late binding is used by the way you declare object vari-
ables, the use of vtable versus DispID binding is controlled by the component
object.

Components and Automation

7

7040_Ch01 11/8/01 9:45 PM Page 7

A High-Level View
Except when it comes to the question of bandwidth, it doesn’t matter whether
COM components are in the same place or on the other side of the planet.
The terms COM and DCOM (Distributed COM) are often confused because
the very concept of component implies distribution. Strictly speaking, COM
becomes DCOM when network protocols replace local procedure calls.
George Gilder, the pundit of the telecosm, tells us that soon we will enjoy infi-
nite bandwidth at zero cost. Then it really won’t matter!

Figure 1-2a illustrates an in-process client call with no intermediaries and
therefore no overhead. Different processes that need to interact introduce
some overhead because of the need to protect the processes from one another.
This is the function of the operating system, which manages interprocess com-

1 • Taking Control of AutoCAD

8

Figure 1-2
Component Object Model

7040_Ch01 11/8/01 9:45 PM Page 8

munication through run-time libraries while providing the required shielding.
Figure 1-2b shows this link as a local procedure call (LPC).

When the client and the components reside on different machines, the
COM run-time uses the operating system’s security provider, together with
remote procedure calls (RPCs) to generate network packets in accordance
with the DCOM wire-protocol standard. This arrangement is pictured in
Figure 1-2c. The only essential difference between Figure 1-2b and c is the
length of the connecting fiber.

Details
There are two COM interfaces above the AutoCAD object model that are
essential to its operation: IDispatch and IUnknown. (Interface names begin
with the letter I by convention.) These primary interfaces are located in
your Windows\System subdirectory in a type library file called StdOle2.tlb.

Explicitly declared object variables provide access to an identification num-
ber called a procedure ID, or DISPID, for every property and method belong-
ing to the object. AutoCAD’s DISPIDs are found in its type library, Acad.tlb,
and establish the necessary link to IDispatch through early binding. If an
object variable is not explicitly declared, as an entity for example, without
specifying what kind of entity, the method or property is accessed by name at
run time, which is known as late binding.

IDispatch

All the interfaces in AutoCAD’s object model except one, IAcadObjectEvents,
inherit methods from the IDispatch interface that allow for late binding. If
declared explicitly, they obtain type information from the Acad.tlb type library at
compile time, supporting direct access through early vtable binding. For this rea-
son they are said to support dual interfaces. As we have seen, the type of binding
used is determined by the manner in which object variables are declared.

The IDispatch interface supports four methods:

1. GetTypeInfoCount
Retrieves the number of type information interfaces that the object provides
(either 1 or 0); always 1 for AutoCAD objects.

2. GetTypeInfo
Retrieves the type information for an object, which can then be used to get the
type information for an interface.

Components and Automation

9

7040_Ch01 11/8/01 9:45 PM Page 9

3. GetIDsOfNames
Maps a single member, along with an optional set of argument names, to a cor-
responding set of DispIDs (integers), which caches them for later use in sub-
sequent calls to the Invoke method. GetIDsOfNames is used in late binding,
when an IDispatch client binds to names at run time.

4. Invoke
Provides access to the methods and properties exposed by an object.

IUnknown

The IUnknown interface is quite literally the center of the COM universe. It
allows clients to obtain pointers to other interfaces belonging to a given object
and manages the existence of every object throughout its lifetime. All inter-
faces, including IDispatch, inherit from IUnknown, whose three methods con-
stitute the uppermost entries in the vtable for all other interfaces. These three
methods are as follows:

1. QueryInterface
Returns a pointer to the specific interface on an object to which a client cur-
rently holds an interface pointer. When a client accesses a component object
to perform a function, all aspects of its internal behavior are hidden. Only
through the interface pointer can the client access the functions exposed in the
interface. It is this enforced encapsulation that enables COM to provide both
local and remote transparency through an effective binary standard.

2. AddRef
Increments the reference count of calls to an object’s interface.

3. Release
Decrements the reference count of calls to an interface on an object.

AddRef and Release together control the life spans of the objects in an
executing program. This provides the mechanism by which, through inheri-
tance, references to all components are dynamically resolved. These two
methods simply maintain a count of the references to each component
object while it is using the interface. As long as the reference count is greater
than zero, the object must remain in memory. When the reference count
decrements to zero, no other components reference the object, which can
then unload safely.

1 • Taking Control of AutoCAD

10

7040_Ch01 11/8/01 9:45 PM Page 10

[
odl,
uuid(00000000-0000-0000-C000-000000000046),
hidden

]
interface IUnknown
{[restricted] HRESULT _stdcall QueryInterface

([in] GUID* riid,
[out] void** ppvObj);

[restricted] unsigned long _stdcall AddRef();
[restricted] unsigned long _stdcall Release();

};

Example 1-1. IUnknown

Example 1-1 illustrates IUnknown. It is written in IDL (Interface
Development Language), which looks something like C/C++ and nothing like
Visual Basic. A distinguishing feature is the use of attributes, which are the
keywords in square brackets that specify the characteristics of the interface
together with the data and methods within. The standard format in IDL
begins with a header containing the interface attributes followed by the body
of the interface enclosed in braces (curly brackets).

The most significant part of IUnknown’s header is its UUID, the universally
unique identifier (same as GUID). This is its 128-bit ID in the form of a five-
node string comprised of 8 hexadecimal digits followed by three groups of 4
digits, and finally 12 digits. Hidden suppresses the display of the item in an
object browser, as it cannot be accessed directly. The ODL attribute is no
longer required but remains for backward compatibility.

The body of IUnknown contains the declarations of the three remote pro-
cedures in the interface, along with their data types. The restricted keyword
specifies that a method cannot be called arbitrarily. In the QueryInterface
method, riid is the requested interface identifier of the client program passing
data into the remote procedure. ppvObj contains the address of the pointer
variable requested in riid, which is passed out of the remote procedure.

So What Does this Mean to AutoCAD?

Earlier we pointed out that all except one of the interfaces in AutoCAD’s
object model inherit methods from the IDispatch interface, which in turn
inherits from IUnknown. Figure 1-3 uses the IAcadObject interface to illus-

Components and Automation

11

7040_Ch01 11/8/01 9:45 PM Page 11

trate how AutoCAD objects inherit the necessary methods that allow them to
interoperate through COM.

IAcadObject inherits IDispatch’s four methods along with the three belong-
ing to IUnknown. These methods are thus passed down to all the objects that
inherit from IAcadObject. There are 13 methods and properties to which
IAcadObject provides direct access, of which you will see only 11 in the VBA
object browser. The method and property designated with an H are hidden,
meaning that they serve internal functions in AutoCAD and are not directly
accessible. The Database property returns the database object, and the Erase
property erases the entity object. These member functions, which are essential
to maintaining the AutoCAD database, are inherited by virtually all the objects
in AutoCAD along with the visible ones.

C r e a t i n g a D r a w i n g
w i t h V i s u a l B a s i c

Before we complete our discussion of COM, let us see how VB and COM
can be used to pass data from one application to another. Example 1-2 is a
short but interesting VB procedure that reads some text data from an Excel

1 • Taking Control of AutoCAD

12

Figure 1-3
Object Inheritance

7040_Ch01 11/8/01 9:45 PM Page 12

Sub Main()
Dim xAP As Excel.Application
Dim xWB As Excel.Workbook
Dim xWS As Excel.Worksheet
Set xAP = Excel.Application
Set xWB = xAP.Workbooks.Open(“C:\A2K2_VBA\IUnknown.xls”)
Set xWS = xWB.Worksheets(“Sheet1”)
MsgBox “Excel says: ”“” & Cells(1, 1) & “”“”

Dim A2K As AcadApplication
Dim A2Kdwg As AcadDocument
Set A2K = CreateObject(“AutoCAD.Application”)
Set A2Kdwg = A2K.Application.Documents.Add
MsgBox A2K.Name & “ version ” & A2K.Version & _

“ is running.”

Dim Height As Double
Dim P(0 To 2) As Double
Dim TxtObj As AcadText
Dim TxtStr As String
Height = 1
P(0) = 1: P(1) = 1: P(2) = 0
TxtStr = Cells(1, 1)
Set TxtObj = A2Kdwg.ModelSpace.AddText(TxtStr, _

P, Height)

A2Kdwg.SaveAs “C:\A2K2_VBA\IUnknown.dwg”
A2K.Documents.Close
A2K.Quit
Set A2K = Nothing

xAP.Workbooks.Close
xAP.Quit
Set xAP = Nothing

End Sub

Example 1-2. Visual Basic Automation

Creating a Drawing with Visual Basic

13

7040_Ch01 11/8/01 9:45 PM Page 13

spreadsheet, creates an AutoCAD drawing, places the text into the drawing,
and then saves the drawing. What is interesting is that except for the two
message boxes that are included to let you know when Excel and AutoCAD
are running, neither application is ever visible. Before you can run this pro-
gram, you will need to create an Excel worksheet with some text in the first
cell (A1), then save the workbook to a desired location and exit from Excel.
(Any text is OK, but “Hello, World!” is the traditional choice.)

Setting Available References
In Visual Basic 6.0, which we are using for Example 1-2, you set references
to the available type libraries using a dialog box accessed through the
Project�References menu. The VB References dialog is illustrated in
Figure 1-4. [In AutoCAD VBA you use an identical dialog box, but it is
accessed using the Tools�References menu in the Visual Basic Editor.
AutoCAD’s Interactive Development Environment (IDE) is discussed in
Chapter 2.] For our example procedure, we need references to the
AutoCAD 2000 and Microsoft Excel type libraries, which have been
checked as shown in Figure 1-4.

Writing the Procedure
The procedure, which is called Main, is in five paragraphs. (Normally, a VB
project has a startup form. We do not use any forms in this example, so VB
requires that the Sub procedure be called Main.) The first paragraph sets up
Excel. You need to declare (Dim statements) three object variables for the
Excel components you are going to call: Application, Workbook, and
Worksheet. Then the Set statement is used to assign an object reference to
each variable. Setting xAP invokes Excel. Setting xWB calls the Excel
Workbooks property with the Open method to open a file containing the
desired spreadsheet. Here we’ve used the name C:\IUnknown.xls. You should
change this to the path and file name of the Excel Workbook you created ear-
lier. Setting xWS to the name of the specific worksheet (using the default
name Sheet1) completes this sequence. The standard VB/VBA message box
(MsgBox will become very familiar throughout the course of this book) pres-
ents a dialog box that displays the text being processed.

The second paragraph does the same thing for AutoCAD. A2K is the object
variable for the AutoCAD application object (AcadApplication) and A2Kdwg
names the instance of AcadDocument. (We discuss Application, which is the

1 • Taking Control of AutoCAD

14

7040_Ch01 11/8/01 9:45 PM Page 14

root object of AutoCAD’s object model, together with the Documents collec-
tion and Document object in Chapter 4.) Using the Set statement once again,
we instantiate the AutoCAD.Application and create a new drawing using the
Add method on the Documents collection. A second MsgBox tells us that
AutoCAD is now running.

The actual work is done in the third and central paragraph of our VB pro-
gram, where we declare the variables required for creating a Text object in
AutoCAD. (The Text object, along with AutoCAD’s other two dozen graphic
objects, or entities, is covered in Chapter 9.) Briefly, we need numeric vari-
ables to specify the height of the text and the point at which it is to be inserted
(an array for its X, Y, and Z coordinates). Also, we need an object variable for
the Text object and a string to contain the text itself. We specify the height and
the insertion point by assigning values to Height and the P() array. Then we
assign the string value of Cells(1, 1) to TextStr using Excel’s Cells method, and
finally, we set the Text object (TxtObj) using AutoCad’s AddText method. We
leave ModelSpace as a little mystery for the time being.

Creating a Drawing with Visual Basic

15

Figure 1-4
References Dialog

7040_Ch01 11/8/01 9:45 PM Page 15

One major difference between VB and VBA that we might mention at this
point is use of the A2Kdwg object variable to represent the active drawing. In
VBA the active drawing can always be referred to as ThisDrawing. This is not
the case in VB, where you must define explicit variables for the AutoCAD
application and the current document.

In the fourth paragraph we name and save our new drawing in the desired
location using AutoCAD’s SaveAs method. Here we’ve used the name
C:\ IUnknown.dwg. We then Close this single new member of the Documents
collection and Quit the application. In the final paragraph we use the corre-
sponding Excel methods to do the same thing to our spreadsheet. In both
cases, setting the application object variables to Nothing releases the memory
allocated to those processes.

M o r e A b o u t C o m p o n e n t s

In Chapter 4 we begin to examine AutoCAD’s object model in detail, working
our way from the Application object on down. First, however, we need to com-
plete the picture of how AutoCAD fits into the overall COM structure. We
conclude this chapter by introducing the tables of object methods and proper-
ties (and events) that conclude half the chapters in this book.

AutoCAD Inheritance
As we mentioned earlier, all AutoCAD objects inherit from Idispatch, with the
exception of IAcadObjectEvents, which inherits directly from IUnknown.
IAcadObjectEvents is the event interface for AutoCAD entities, which occurs
whenever an object is modified (the Modified event). There are two other
interfaces in the AutoCAD type library that handle events: _DAcad-
ApplicationEvents and _DAcadDocumentEvents. These are the event inter-
faces for AcadApplication and ThisDrawing. They are called dispinterfaces,
which means that they define a set of methods and properties (not in the
vtable for the object) that invoke a response to designated events. (In Chapter
13 we explore AutoCAD events in detail.)

IAcadIdPair and IAcadState

The IAcadState interface supports a special object (AcadState) that can be
used to monitor the state of AutoCAD from out-of-process applications (i.e.,

1 • Taking Control of AutoCAD

16

7040_Ch01 11/8/01 9:45 PM Page 16

VB). The IsQuiescent property or the GetAcadState method of the
Application object can be used to check to see whether AutoCAD is idle and
ready to accept automation calls. The IAcadIdPair interface, which returns
information pertaining to the process of copying objects, is discussed in
Chapter 12.

IAcadEntity and IAcadObject

Of particular interest to us in traversing AutoCAD’s object model is the
IAcadObject interface, which is the parent of just about everything else. All
nongraphic objects are direct descendants of IAcadObject, as is IAcadEntity.
All graphic objects descend from IAcadEntity, some, such as dimensions,
through other intermediate classes of objects. We have included IAcad-
Dimension in Figure 1-5 because it contains a unique set of dimensional enti-
ties. Blocks and BlockReferences are also major subclasses that can contain all
of AutoCAD’s entities. Blocks are the subject of Chapter 8, and Dimensions
are covered in Chapter 11.

M e t h o d , P r o p e r t y,
a n d E v e n t M a t r i c e s

The matrices shown in Figures 1-6 and 1-7 are the first of 10 sets that des-
ignate all the methods, properties, and events belonging to the objects
treated in their respective chapters. The matrices for this chapter include
the General methods and properties belonging to the objects discussed
above.

As a graphic aid to finding detailed information pertaining to each method
and property, the left-hand column of each matrix contains a bullet if the item
is treated in that chapter. From there it should be relatively easy to locate the
item based on the object or objects to which it belongs. (All events are dis-
cussed in Chapter 13.)

To make it easy to follow the inheritance of objects in the object model, dif-
ferent symbols are used to designate methods and properties belonging to
major subclasses of IAcadObject. A solid bullet (�) indicates that a method or
property is provided by the interface supporting that specific object. Table 1-1
provides descriptions of the symbols used.

Hidden methods or properties are those that are marked as such in the
AutoCAD type library and therefore do not normally appear in the VBA object

More about Components

17

7040_Ch01 11/8/01 9:45 PM Page 17

browser. Methods and properties suppressed by AutoCAD appear in the
object browser but cannot actually be invoked upon those objects. The best
example of this is the Delete method, which is inherited from the IAcadObject
interface but cannot be used with any of the intrinsic AutoCAD collections
because they cannot be deleted.

In Figure 1-6 you can clearly see the beginning of the inheritance from
IAcadObject to IAcadEntity and IAcadDimension.

1 • Taking Control of AutoCAD

18

Figure 1-5
AutoCAD Inheritance

7040_Ch01 11/8/01 9:45 PM Page 18

Methods, Property, and Event Matrices

19

Figure 1-6
General Methods

Figure 1-7
General Properties

7040_Ch01 11/8/01 9:45 PM Page 19

S u m m i n g U p …

In this chapter we have gained an understanding of Microsoft’s Component
Object Model (COM), which is the mechanism that allows AutoCAD to com-
municate with other applications using ActiveX Automation interfaces. COM
is the foundation upon which Visual Basic and VBA are built. Following the
rules of ActiveX, you can design macros that operate entirely within AutoCAD
or share information and processes with other programs as either client or
server applications.

In Chapter 2 we look at the two types of VBA projects in AutoCAD and its
development environment. Although one of the most attractive features of
VBA is its standardization among different applications, there are some fea-
tures that are unique to AutoCAD. These features relate principally to the
ways in which you can manage projects and invoke macros from the CAD
interface.

1 • Taking Control of AutoCAD

20

Table 1-1 Matrix Symbols

Symbol Interface Name or Description

� Locally defined method or property

� IacadBlock

� IAcadDimension

� IAcadEntity

❍ IAcadObject

� IAcadPlotConfiguration

❏ IAcadBlockReference

◗ IAcadDatabase

❖ IAcadIdPair

✼ IAcadState

× Hidden method or property

⊗ Method or property suppressed by AutoCAD

7040_Ch01 11/8/01 9:45 PM Page 20

