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1. INTRODUCTION 

The existence and computation of square roots modulo a composite number m are behind many 

of the theoretical and practical problems in number theory. The problem of how to calculate 

square roots is computationally equivalent to the factorization of m, which is considered to be a 

computationally hard problem. This problem is used in some cryptosystems. 

Several algorithms have been described for computing square roots modulo a prime number p, 

but no specific algorithms have been published for computing cube roots modulo p. The main 

algorithms for taking square roots are: general algorithms for factoring polynomials [l], Adleman- 

Manders-Miller algorithm [2], Tonelli-Shanks algorithm [3], Peralta algorithm [4], Schoof algo- 

rithm [5], and Lehmer algorithm [6]. 

This paper presents algorithms for taking cube roots on a field Z, for large p. These algorithms 

can be applied to compute cube roots in a ring Z, whenever the prime factorization of m is known. 

In Section 2, some general results on the subject are given. Peralta algorithms for square roots 

are generalized to cube roots in Section 3. In Section 4, the Tonelli and Shanks algorithm is 

generalized in the same way. 

2. CUBE ROOT IN iZm 

We wish to compute cube roots of a E Z,, that is, we wish to solve the equation 

x3 = amodm. 

Assume that the prime factorization of m is m = py’py . . .p?. Using the Chinese Remainder 

Theorem the existence of cube roots on .Z, is equivalent to the existence of the roots on Z,; I ; 
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for every i = l,..., n. This theorem provides a method for computing cube roots on Z, from 

the roots on every Z&,7,, . 
Hensel’s lemma [7] give us a method that can be used to find cube roots in every Z,? ; if they 

are known in Z&. 

The computation of cube roots in a Z, for a composite m is then reduced to the computation 

of cube roots in Z, for a prime p. When a 3 0 mod p or p = 2 or p = 3 the equation x3 s a mod p 

has an unique solution: x E a modp. If a $ 0 modp, and p # 2,3, two cases on p must be 

distinguished for the existence of cube roots and the discussion of the number of roots. 

If p s -1 mod 3 every number has one cube root and only one due to the fact that there is not 

any nontrivial cube roots of 1. In this case, the cube root is computed by 

* = a(2~- u/3 

or by the formula @i = fa(p+1)/6 where f means that there is only one possibility that has to 

be checked. This root can be computed using the square-and-multiply algorithm in a running 

time 0(log3p). 

If p E 1 mod 3, then -3 is a quadratic residue modulo p and E = (-1 + fl)/2 is a nontrivial 

cube root of 1. Then, it can be proved that one third of the p - 1 nonzero numbers have three 

cube roots and two thirds have no cube root. The existence of the cube roots depends on the 

value of the symbol [a/p] = a(P-1)/3 modp (multiplicative character). There exist cube roots for 

a f Omodp if and only if [a/p] = 1. If a cube root 20 is known, the other ones are XOE and 

xcc2 verifying xc + zce+ xc6 2 = 0 modp. The other values of the symbol are E and e2. One - 

third of the nonzero numbers have 1 as symbol, the second third e and the remaining third c2. 

For p E 1 mod 3, there is no formula for every prime and every a as a power of a, because in 

some cases cube roots are not in the multiplicative subgroup generated by a. However, there are 

formulae for some cases; for instance, for p E 7mod9 

In this paper, we generalize two of the fastest algorithms for computing square roots modulo a 

prime to algorithms for computing cube roots. The Peralta [4] randomized algorithm has been 

generalized in Section 3 using a ring analogous to the one constructed for square roots and with 

similar properties. This method allows us to compute cube roots in a fast way, particularly when 

p = 3eq + 1 (q $ 0 mod3) for big e. Two algorithms are proposed with running time 0(log3p). 

The Tonelli-Shanks [1,3] algorithm is a group theory based method for finding square roots, 

which is generalized in Section 4 for the purpose of finding cube roots. The running time of this 

algorithm is O(log4 p). 

3. PERALTA METHOD EXTENSION 

The Peralta method [4] is a fast way of computing square roots for a prime of the form 

p = 2eq + 1 (q $ 0 mod 2) for large e. Two algorithms are constructed to compute cube roots for 

a prime of the form p = 3eq + 1 (q f 0 mod 3) for large e. 

Consider a number a E Z, such that [a/p] = 1; that is, the cube root of a exists. Consider the 

ring 

with the usual operations (Y3 = a) and the direct product Z, x Z, x Z,. Then, we have the 

following proposition. 

PROPOSITION 3.1. R and Z, x Z, x Z, are isomorphic rings. 

PROOF. Consider zro E Z, a cube root of a, that is, x g E a mod p and the function cp : R --+ 

Z, x Z, x Z, defined by 

cp (o + ,BY + yY2) = (o + Pzo + yx;, (I: + PEXO + yc2x;, cr + pc2xo + rexi) . 
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The linear system 

cy + ,&x0 + ye2xi = y modp, 

cx + pe2xc + YEX~ z z modp, 

has a unique solution because the determinant of the system 3a(e - 1) is nonzero (a $ Omodp, 

p # 2 and p # 3). Then cp is a bijection. It is an isomorphism of rings, because it verifies 

d-z1 + z2) = cp(-zl) + cp(zz), P( ~1.~2) = ‘p(zl)‘p(z2) for every 21, z2 E R and ~(1) = (l,l, 1). 1 

As a consequence of the isomorphism, Fermat’s little theorem holds in R. 

COROLLARY 3.2. Foreveryz E R*, tP_’ = 1. 

PROOF. If p(z) = ( T, s, t) then cp(zP-‘) = (rp-‘, sp-’ , tpml) = (1, 1,l) = ~(1) and that is why 
,$-I = 1. I 

The first algorithm we propose uses this last corollary. If we know z E R’ in such a way that 

z(P-~)/~ = PY for some p E Z, then 

fi = p-1, 

because if ,z(P-~)/~ = PY then 1 5 ,B3amodp and (p-‘)3 E amodp. 

The next algorithm is proposed to find a cube root of a cubic residue a E Z,. 

ALGORITHM 3.3. For a prime p = 1 mod 3 

Input: a cubic residue a modulo p 

Output: x E Z, such that x3 G amodp 

(1) Choose z E R* at random. 

(2) Compute .z(~-~)/~ = cy + PY + yY2. 

(3) If (Y = y = 0, then write@-’ modp) otherwise go to Step 1. 

It is relevant to ask what the probability of a randomly chosen z E R* verifying .z(P-~)/~ = BY 

for some ,8 E Z, might be. 

PROPOSITION 3.4. Pr(t (P-l)/3 = /3Y for some p E Zp 1 z E R*)= l/9. 

PROOF. If z E R* is such that z(P-~)/~ = PY for some /3 E Z,, and q(z) = (T,s, t), then 
(r(P-1)/s, ~(p-r)/~, t(pe1)i3) = (@rs, &Q,, pc2xc). Since ~(p-l)/~, ~(p-l)/~, &‘-1)/3 E { l,e, c2} the 

number p must be p E x,‘$ modp for some i = 0, 1,2 and [r/p] = ci, [s/p] = @+l, [t/p] = F2. 

On the other hand, z = cp-‘(r,s,t) with [r/p] = 8, [s/p] = eifl, [t/p] = ei+2 for i = O,l, 2 
verifies ~(p-r)/~ = x;‘eiY because ~(.z(P-‘)/~) = (ei,~i+1,~i+2) = ‘p(xi’8Y). Then we have 

3((P - 1)/3)3 P ossible values for (r, s, t) among (p - 1)3 possible values of invertible elements. I 

The probabilistic part of the algorithm has a high probability of success. 

From the proof of Proposition 3.4 one may observe that for i = 0 one of the cube roots can 

be found, the second one for i = 1 and the last one for i = 2. That is why Algorithm 3.3 finds 

every cube root with the same probability. In order to find all the cube roots, we will iterate the 

algorithm until two different cube roots x0, x1 are found, and the third one can be computed as 

22 = -Ice - Xl. 

In order to determine when an element is invertible, we use the conjugate of a number cy + 

,0Y+yY2witha,p,y~Zpa.s 

Using this ring isomorphism, the norm of a number of R is the element of Z, 

iv(z) = i?. f ..z. 
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This application verifies that N(zlzz) = N(tl)N( ) zz an d we can check if an element is invertible 

with its norm in the following way: z E R* if and only if N(z) # 0. Now we are able to translate 

Step 1 of the algorithm. 

(1’) Choose z E R at random, such that N(z) # 0. 

Observe that it is enough to choose z on Step (1) of the form z = 1 + j3Y + yY2. 

The next proposition give us a faster algorithm. 

PROPOSITION 3.5. 

Let z = a + @Y + yY2 be an element of R with at least two nonzero coefficients 

(1) if z3 = cd with cr’ E Zi, then 

(la) if p, y $ 0 mod p, then $i = a//3, 

(lb) if p z Omodp,cr,y f Omodp, then fi = (l/u)(a/~)~, 

(Ic) if-y = Omodp,a,/?fOmodp, then fi= -a/P, 

(2) if .z3 = ,B’Y with ,O’ E I&E, then fi = N(z)/P, 

(3) if z3 = y’Y2 with y’ E Zg, then $i = (N(~))~/(y’)~a. 

PROOF 1. 

(a) Since 

Z3 = (a+PY +yyq3 

= cx3 + y3a2 + a (6cuP-y + /3”) + 3 ( (wy2 + P”+y) a + a2P) Y + 3 (a2y + ap2 + ,By2a) Y2, 

is an element of Zc, 

(ay2 + ,0”r) a + cu2p E 0 modp, 

a2y + (rp2 + py2a E 0 modp 

multiplying the first equation by p and subtracting the second multiplied by cr, we have 

P3yu - (r3y E 0 modp, and then a z (cY/~)~ modp if p, y # Omodp. 

(b) If z3 = ((Y + yY2)3 E Zc, conjugating E3 = ((Y + ye2Y2)3 E “6, then the product z3z3 = 

(a2 + e2y2uY + ay(1 + E~)Y~)~ E Z$ and using l(a), we obtain the result. 

(c) If t3 = (a + pY)3 E ZE, conjugating .Z3 = (CE + PEY)~ E ZE, then the product z3z3 = 

(a2 + (1 + ~)a/3Y + /32~Y2)3 E ZE, and using l(a), we obtain the result, since 1 + E $ 

Omodp (P # 2), and the inverse of 1 + 6 is --E. 

PROOF 2. We have .Z~ = P’Y, then N(z3) E P’3umodp and a E (iV(~)/fl’)~modp. 

PROOF 3. We have ,z3 = y’Y2, then (z~)~ = T’~uY. Using Proof 2, $i = N(~~)/y’~a = 

(N(4)2/r’2a. I 

Let z E R* be an element with at least two nonzero coefficients and such that its cube has two 

coefficients equal to zero. As a consequence of Proposition 3.5, a cube root of a can be computed 

in terms of z and z3. One option to find such a z E R* is using the fact that (z”)~‘. = 1, because 

Corollary 3.2 for z E R*. The procedure is to compute zQ, and after that cubing is repeated as 

many times as necessary until a cube with two zeros is found, and then Proposition 3.5 is used. 

Only when 9 has two zeros this method cannot be applied. The algorithm proposed here is the 

following. 

ALGORITHM 3.6. For a prime p = 3eq + 1 such that q f Omod3 with e > 1 
Input: a cubic residue a modulo p 

Output: z E Z, such that x3 E umodp 

(1) Choose z E R at random such that N(z) # 0 with no two coefficients equal to zero. 

(2) Compute ~1 := zq. 
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(3) If -zl has two coefficients equal to zero, then go to 1. 

(4) Compute 2:’ for i = 1,2,. . . by repeated cubing until z;’ has two coefficients equal 

zero, then output a cube root applying formulae of Proposition 3.5 to zf’-l and 2:‘. 

What is the probability of z’J having two zeros for a random chosen z E R*? 

PROPOSTIONS 3.7. Let p be a prime such that p = 3eq + 1 (q $0 mod 3), then 

Pr (zq has at least two nonzero coefficients 1 z E R*) = 1 - &. 

PROOF. Let z E R* be an element such that ZQ has two zeros. The corresponding element 

Z; x Z; x Z; is (T, s, t) = cp(.~) with ( ~9, s’J, tq) equal to either (a, (u, CX) or (pz,, PQE, Px,$) 

(Y~;,Y&,2 3 Y44. 
In the first case, (r/t)9 EE 1, (s/t)q z 1 modp. Using the fact that (ZG, .) is isomorphic 

to 

in 

or 

to 

(ii&l, +), we know that the equation x 9 E 1 modp has gcd(q, 3eq) = q solutions al,. . . , aq. 

Then (T, s, t) = (ait, ajt,t) for i,j = 1,. . . , q and t = 1,. . . , p - 1 represent every element of R* , 

such that 9 E Z,. We have q2(p - 1) = 3eq3 different elements. 

It is easy to check that the same computation is true in the second case when (r/t)4 E e, 

(s/t)” E c2 modp, and in the third case when (r/t)” E c2, (s/t)9 E e modp. 

Summarizing, we have 3e+1q3 different elements, and then the probability is l-3e+1q3/(3eq)3 = 

1 - l/32+‘. I 

The running time of the nonprobabilistic part of both algorithms is 0(log3p), but the second 

algorithm is in general computationally more efficient. 

4. TONELLI-SHANKS METHOD EXTENSION 

A probabilistic algorithm for taking cube roots of a number analogous to the Tonelli-Shanks 

[1,3] for square roots is found. 

Let p be a prime such that p = 3eq + l(q $ 0 mod3). We know that (ZE, .) is isomorphic 

to (Z&-1, +). Since &,_11 = 3eq there exists G the unique 3-Sylow subgroup [8], which is a 

subgroup G of 3e elements which contains any subgroup of order divisor of 3=. This fact can 

be expressed using a generator g as G = {gi 1 0 5 i < 3e}, because it is cyclic. Using the next 

proposition, cube roots in terms of g can be found. 

PROPOSITION 4.1. Let p be a prime such that p = 3=q + 1 (q $0 mod 3) and G = (g) the unique 

3-Sylow subgroup of Zg. There exist 0 < k < 3e such that if q 3 1 mod 3 then fi = a(2qf1)/3gk, 

and if q z 2 mod 3, then &i = a(q+l)13gk. 

PROOF. We may observe that an element is a cube in G if and only if the element order is a 

divisor of 3e-‘. Since a(P-1)/3 E 1 modp, then (aq)3”-1 E 1 modp and the order of aQ is a divisor 
of 3e-1 ; that is, a number of the form 3i for some i = 1, . . . , e - 1. As a consequence, a’J is a cube 

in G and the S-subgroup (a”) generated by aq is a subgroup of G, then uq E G. It follows that 

there exists a number 0 5 i < 3e such that aQ E g3i modp. 

If q E 2 mod3, then q + 1 is a multiple of 3 and uq+1g-3i z amodp can be rewritten as 
@q+1)/3 g --i 3 - ) = amodp, and then $6 = a(q+1)/3gk for some k. 

If q E 1 mod 3, then 2q E 2 mod 3. Since 2q + 1 is a multiple of 3 and a2qg-6i = 1 modp, then 
$q+l 9 -6i z amodp and (u(2q+1)/3g-2i)3 EE amodp, so @ = ac2’Jf1)i3gk for some k. I 

In order to find a generator of the group G, we will look for a noncubic residue h E iZ;; that 

is, [h/p] # 1. Consequently, g = hQ is a generator of G: g3’ = h3”q = hp-l 3 1 modp, but 

93c-’ = hs”-‘q = h(P-1)/3 = [h/p] $ 1 modp. 

We propose the following algorithm. 
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ALGORITHMS 4.2. For a prime p = 3eq + 1 such that q $0 mod 3 with e 2 1. 

Input: a E Z, 
Output: All x E Z, such th& x3 = ‘amodp if x is a cubic residue, otherwise there is a 

nonexistence of cube root message. 

(1) Find h E Z, at random such that [h/p] # 1 modp. 

(2) Initialize: g := hq; symbol := [h/p]; y := g; r := e; If q E 2mod3 then x := o(q-2)/3; 

otherwise x := u(2q-2)/3 b := a2x3; x := ax. 

(3) Find exponent or finish. If b E 1 modp, then write (x,x. symbol, x. symbo12) and stop. 

Otherwise find m := min{i 1 b3i E 1 modp}. If m = r then write (‘there is no cube root’) 

and stop. 
(4) Reduce exponent: if symbol = b3”‘-’ then t := y2, symbol := symbo12. Otherwise, t := y. 

3“-‘“.-1 
t:=t ; y := t3; r := m; x := xt; b := by; go to Step 3. 

It is easy to check that this algorithm computes six sequences defined by 

r,+l = min{i ( bz’ E lmodp}, tn+l = y~n3”“‘-“‘i+1-1, 

Ynfl = t:+,, x,+1 = xntn+lr bn+l = b,Y,+l, 

with k, = 2 if yi“‘‘-’ E b~‘iz’l-l modp and k, = 1 otherwise; xi = a(2q+1)/3, bl = a2q if 

q E 1 mod 3 and x1 = c.z(~+~)/~, b - r-aqifq=2mod3;rr=e,yr=g.Theyverify 

ab, E xi, Y3?“’ - 1 It z E or e2, bz’“-l E 1 modp, 

and the sequence of numbers r, is strictly decreasing. For this reason, when r, arrives to r, = 1, 

b, is 1 and x, is such that a z xi modp. In fact, with this algorithm we can compute the value 

of the exponent k in Proposition 4.1 as k = Cy=“=, ICI.. . k+13e-ri-1. 

If we call G, to the subgroup of the elements with order divisor of 3’, we have G, = (y) and 

b E G,._I. The sequence of subgroups G, is strictly decreasing, G, c G,_i with length shorter 

than e, and when r = 1 the corresponding subgroup is G, = (1). 

The only probabilistic part of the algorithm is Step 1. The probability of finding a noncubic 

residue in ZE is 2/3, a very high probability. The number of loops of Steps 3 and 4 is at 

most e times. The running time of this algorithm is 0(log4p) because the running time of one 

multiplication with a modular reduction is 0(log2 p). 
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