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INTRODUCTION

In this course we are going to follow closely SGA1 and SGA4 to develop an abstract framwork
of fundamental groups and cohomology theory. To do this we first need a generalization of
a topological space, and this would be the Grothendieck topology. The notion of sheaves on
a topological space would be generalized to the notion of topos. The sheaf cohomology will
be replaced by the derived category of a ringed topos. This general framwork serves like a
machine: whenever one puts in a concrete Grothendieck topology one gets the correspond-
ing cohomology theory out, and after some further work one may also get the corresponding
fundamental group. In this course we are going to put in the étale topology in, and study the
output, namely the étale cohomology and the étale fundamental group, which are also the
most important output of this machine.

REFERENCES

[AM] M. Atiyah, I.G. Macdonald, Introduction to commutative algebra, Addison-Wesley
Publishing Company, 1969.

[Fu] L. Fu, Etale Cohomology Theory, Revised Edition, World Scientific, 2015.

[Fu2] L. Fu, Algebraic Geometry, Tsinghua University Press and Springer-Verlag, 2006.

[Mil] J. S. Milne, Étale Cohomology, Princeton University Press, Princeton, New Jersey,
1980.

[Gir] J. Giraud, Cohomologie non abélienne, Springer-Verlag, 1971.

1



[SGA1] A. Grothendieck, Revêtements Étale et Groupe Fondamental, Lecture Notes in
Math 224, Springer-Verlag (1971).

[SGA4] A. Grothendieck, M. Artin, and J. L. Verdier, Théorie des Topos et Cohomologie Étale
des Schémas, I, II, III, Lecture Notes in Math 269, 270, 305, Springer-Verlag (1972-
1973).

1 FINITE MORPHISMS OF SCHEMES (19/10/2016)

Definition 1. Let A be a commutative ring. We define Spec(A) to be the set of prime ideas
of A. We equip Spec(A) with a topology (the Zariski topology) by defining a closed subset
to be a subset of the form V (I ), where I ⊆ A is an ideal and V (I ) is the collection of primes
of A containing I . One can show that the subsets {Spec(A f )} f ∈A form a topological basis of
Spec(A). We define OSpec(A) to be the sheaf of rings sending each open of the form Spec(A f )
to A f . Note that to define a sheaf it is enough to define it on a open basis. By abuse of notation
we often write Spec(A) for the pair (Spec(A),OSpec(A)).

Definition 2. Let (X ,OX ) be a ringed space, i.e. a pair with X a topological space and OX

a sheaf of rings on X . The ringed space (X ,OX ) is called a scheme if there exists an open
covering {Ui }i∈I of X such that (X ,OX )|Ui

∼= (Spec(A),OSpec(A)). By abuse of notation we often
write X for the pair (X ,OX ).

Definition 3. Let X ,Y be two schemes. A morphism of schemes f : X → Y is just a morphism
of ringed spaces (X ,OX ) → (Y ,OY ) such that for each x ∈ X the induced map of rings OY , f (x) →
OX ,x is a local homomorphism, i.e. a morphism which sends the maximal ideal of OY , f (x) to
the maximal ideal of OX ,x .

Lemma 1.1. Let X be a scheme and let A be a commutative ring. We have

HomSch(X ,Spec(A)) = HomRing(A,Γ(X ,OX ))

Proof. We may assume that X = Spec(B) is an affine scheme. Giving a ring morphism h : A →
B we get a morphism of topological spaces f : Spec(B) → Spec(A). Also for any canonical
open subset Spec(Aa) ⊆ Spec(A). It is clear that f −1(Spec(Aa)) = Spec(Bh(a)). The maps
Aa → Bh(a) for all a ∈ A define a map OSpec(A) → f∗OSpec(B), which together with f define a
map of schemes Spec(B) → Spec(A).
On the other hand given a map of schemes f : Spec(B) → Spec(A), we take the global sections
of the map of sheaves OSpec(A) → f∗OSpec(B). This gives us a map h : A → B . Let y ∈ Spec(B)
and let x := f (y) ∈ Spec(A). Using the map of sheaves we get a commutative diagram

A
h //

��

B

��

Ax
// By

This shows that the map of topological spaces Spec(B) → Spec(A) induced by h is precisely
f . Using this and the universality of localization we can see easily that the map of sheaves
OSpec(A) → f∗OSpec(B) also coincides with the one given by f .
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Definition 4. Let f : X → Y be a morphism of schemes. The map f is called affine if there is
an open affine covering {Vi }i∈I of Y such that the inverse image f −1Vi is affine for each i .

Lemma 1.2. A morphism of schemes f : X → Y is affine iff for any open affine V ⊆ Y , f −1V is
affine.

Proof. One quickly reduces the problem to the case when Y = Spec(A) is affine. Suppose that
{Vi }i∈I is a covering of Y such that all Ui = f −1Vi are affine, where Vi = Spec(Aai ) for ai ∈ A.
Let B = Γ(X ,OX ). Then we have a commutative diagram

X
h //

f
##

Spec(B)

g
xx

Spec(A)

Since Γ(Ui ,OX ) = Bai and Ui is affine, we have Ui = Spec(Bai ). At the same time g−1Vi =
Spec(Bai ). Thus h|Ui is an isomorphism for all i , and is therefore an isomorphism. So X is
affine.

Definition 5. Let f : X → Y be a morphism of schemes. The map f is called finite if there is
an open affine covering {Vi = Spec(Ai )}i∈I of Y such that the inverse image f −1Vi = Spec(Bi )
is affine for each i , and Bi is a finite Ai -module.

Lemma 1.3. A morphism of schemes f : X → Y is finite iff for any open affine V = Spec(A) ⊆ Y ,
f −1V = Spec(B) is affine and B is a finite A-module.

Proof. Clearly we may assume that Y = Spec(A), X = Spec(B) are affine, and that there exist
{ai }1≤i≤n in A which generate the unit ideal of A and Bai are finitely generated Aai -modules.
We have to show that B is a finitely generated A-module. Now for each i we choose a finite set
of generators of Bai over Aai which are liftable to B . Then we let i vary, and collect all the lifts
of the local generators to get a finite subset {bi }1≤i≤m . We claim that this is a set of generators
of B over A. Suppose x ∈ B , then set

I := { a ∈ A | ax is a linear combination of {bi }1≤i≤m}

Clearly I is an ideal of A, and it contains all ai s, so it must be the unit ideal. Hence x is a linear
combination of {bi }1≤i≤m .

Lemma 1.4. 1. A closed immersion is finite;

2. The composite of two finite (affine) morphisms is finite;

3. Any base change of a finite (an affine) morphism is finite (affine);

Proof. Let i : Y ,→ X be a closed embedding of schemes, i.e. a morphism (Y ,OY ) → (X ,OX )
in which the topological map embeds Y as a closed subspace of X and the map of sheaves
OX → i∗OY is surjective. We have to show that i is finite. To do this we may assume that
X = Spec(A) is affine. Since the open subsets Xa = Spec(Aa) ⊆ Y , with a run over all elements
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in A, form a topological basis of X , Xa
⋂

Y also form an open basis of Y . As Y is a scheme, it
is covered by open affine subsets {Ui }i∈I . Now each Ui = ⋃

1≤ti≤ni
Y ∩ Xati

. Since Ui → X is
affine and Y ∩Xati

is the inverse image of Xati
in Ui , Y ∩Xati

is affine. Thus {Xati
}i∈I ,1≤ti≤ni is

a covering of X whose inverse images are affine. This means i is affine. Let Y = Spec(B). The
condition that OX → i∗OY is surjective implies that A → B is surjective. Thus B is a finitely
generated A module. The rest claims are completely trivial.

Definition 6. A morphism f : X → Y is called separated if the diagonal ∆ : X → X ×Y X is a
closed embedding.

Example 1.5. If f is affine, then f is separated. To see this one just have to reduce the problem
to the case that Y = Spec(A) and X = Spec(B) are affine. In this case ∆ corresponds to the
surjective ring map B ⊗A B �B , so it is a closed embedding.

Remark 1.6. The notion of separated in algebraic geometry corresponds to that of Hausdorff
space in topology. Let X be a topological space then X is Hausdorff if and only if the diagonal
X → X ×X is a closed subspace.

Definition 7. A morphism f : X → Y is called closed if for any closed subset D ⊆ X , f (D) is
closed. The map f is called universally closed if for any morphism T → Y the base change
map X ×Y T → T is a closed morphism.

Definition 8. A morphism f : X → Y is called proper if it is separated, of finite type and
universally closed.

Lemma 1.7. Any finite f : X → Y morphism is proper.

Proof. We know that f is separated and of finite type. We only have to show that it is uni-
versally closed. Since base change of a finite morphism is still finite, we only have to show
that finite morphisms are closed. For this we may assume that Y = Spec(A), X = Spec(B)
and f corresponds to a morphism φ : A → B . Since φ factors as A � A′ ,→ B and Spec(A′) →
Spec(A) is a closed embedding, replacing Spec(A) by Spec(A′) we may assume that φ is in-
jective. Now let I ⊆ B be an ideal, it is enough to show that f (V (I )) = V (I

⋂
A). Clear that

f (V (I )) ⊆V (I
⋂

A), so we have to show the converse. Let p ∈V (I
⋂

A). Consider the following
diagram

A
a // //� _

φ

��

A/(I
⋂

A)� _

b
��

B
c // // B/I

Let p̄ be the ideal of A/(I
⋂

A) such that a−1(p̄) = p. As b is integral there is an ideal q̄ ∈ B/I
such that b−1(q̄) = p̄. Then q := c−1(q̄) is an ideal in V (I ) such that φ−1(q) = p.

Lemma 1.8. Let k be a field. Let X → Spec(k) be a morphism of finite type. The the following
statements are equivalent.

1. X is affine and Γ(X ,OX ) is an artinian local ring;
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2. X → Spec(k) is finite;

3. The underlying topological space of X is discrete.

Proof. Clear!

Definition 9. A morphism of schemes f : X → Y is called quasi-finite if it is of finite type and
for any y ∈ Y the fibre f −1(y) is finite as a set.

Example 1.9. A finite morphism is quasi-finite.

Theorem 1.10. Let f : X → Y be a morphism of noehterian schemes. Then the following con-
ditions are equivalent.

1. f is finite;

2. f is proper and affine;

3. f is proper and quasi-finite.

Proof. 1⇒2 and 1⇒3 are clear. 2⇒1 and 3⇒1 goes as follows. For any proper morphism f we
have that f∗OX is a coherent OY -module. This gives us a diagram

X
a //

f
��

X ′ := SpecOY
( f∗OX )

b
ww

Y

where O ′
X → a∗OX is an isomorphism, b∗OX ′ = f∗OX and b is finite. For example, if f is affine,

then a is an isomorphism. So f is finite.

2 FLAT MORPHISMS (26/10/2016)

Definition 10. Let f : A → B be a morphism of commutative rings. We say that f is flat
if B is a flat A-module, i.e. for any injective map of A-modules M ,→ M ′ the induced map
M ⊗A B → M ′⊗A B is injective. A map of schemes f : X → Y is called flat if for any point x ∈ X
the induced map OX ,x →OY , f (x) is flat.

Example 2.1. Let S be a multiplicative subset of A then the localization map A → S−1 A is flat.

Lemma 2.2. Let M be an A-module. Then the following are equivalent.

1. The module M is a flat A-module;

2. The module Mp is a flat Ap-module for all p ∈ Spec(A);

3. The module Mm is a flat Am-module for all maximal ideals m in A.
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Proof. The point is that a module M is 0 if and only if Mm = 0 for all maximal ideal m of A. So
if we have an injective A-linear map N ,→ N ′ then N ⊗A M → N ′⊗A M is injective if and only
if Nm⊗Am Mm ,→ N ′

m⊗Am Mm is injective for all maximal ideal m in A.

Lemma 2.3. Let f : A → B be a morphism of commutative rings. Then the following are equiv-
alent.

1. The map f is flat.

2. For any prime ideal q ∈ B, Ap → Bq is flat, where p := f −1(q).

3. For any maximal ideal m ∈ B, An → Bm is flat, where n := f −1(m).

Proof. The point is that a B-module M is 0 if and only if Mm = 0 for all maximal ideal m of B .
So if we have an injective A-linear map N ,→ N ′ then N ⊗A B ,→ N ′⊗A B is injective if and only
if Nn⊗An Bm ,→ N ′

n⊗An Bm is injective for all maximal ideal m in A.

In light of 2.3, we have the following:

Lemma 2.4. A map of commuative rings A → B is flat if and only if the corresponding map
Spec(B) → Spec(A) is flat.

Lemma 2.5. Let f : X → Y be a morphism of schemes. Then

1. The map f is flat;

2. There exists an affine open covering {Ui }i∈I of X such that for each Ui = Spec(Ai ) there
is an affine open Spec(Bi ) =Vi ⊆ Y satisfying f (Ui ) ⊆Vi and Ai → Bi is flat.

3. For any open affine Spec(A) =U ⊆ X and any open affine Spec(B) =V ⊆ Y with f (U ) ⊆
V the corresponding map A → B is flat.

Proof. "1 ⇔ 2 ⇔ 3" follows from the definition.

Lemma 2.6. 1. An open immersion is flat.

2. The composite of flat morphisms is flat.

3. base change of flat morphisms is still flat.

Proof. Leave as an exercise.

Theorem 2.7. Let A be a commuative ring, and let M be an A-module of finite presentation.
The following statements are equivalent:

1. M is a flat A-module;

2. M is a projective A-module;

3. Mp is a free Ap-module for each p ∈ Spec(A);
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4. There exist {ai }i∈I ⊆ A with 〈ai 〉i∈I = A such that Mai is a free Aai -module;

Proof. 4⇒3⇒2⇒1 is easy, maybe the only point to think about is that a finitely generated
module is projective if and only if it so at each prime ideal. 1⇒2 too technical therefore omit-
ted. 2⇒3: For this we may assume that A is local with maximal ideal p and M is an A-module
of finite presentation. Since M/pM is a finite dimensional A/p-vector space. Lifting a basis
of M/pM to M we get a surjection φ : A⊕n � M whose mod p reduction is an isomorphism.
Since M is projective, we get a split exact sequence

0 → N → A⊕n φ−→ M → 0

Thus N = A⊕n/M is finitely generated. But we have N /pN = 0 (becauseφ⊗A A/p is an isomor-
phism). By Nakayma’s lemma N = 0. So φ is an isomorphism. 3⇒4: The point is that if N is a
finitely generated A module then Np = 0 for some p ∈ Spec(A) implies that there exists a ∈ A
such that Na = 0. Now choose a morphism φ : A⊕n → M so that the induced map A⊕n

p → Mp

is an isomorphism. Since the cokernel is finitely generated, after some localization we may
assume that φ is surjective. Since M is projective Ker(φ) is finitely generated. Thus ∃ a ∈ A
such that φa is an isomorphism.

Theorem 2.8. Let f : X → Y be a flat morphism locally of finite presentation, then f is open,
i.e. it sends open subsets of X to open subsets of Y .

Proof. The proof uses Chevalley’s theorem on constructible sets. We leave it as an exercise.

Corollary 2.9. Let F be a coherent sheaf on a Noetherian scheme X . Then F is locally free, i.e.
there is an open covering {Ui }i∈I of X such that F |Ui is a free OUi -module, if and only if F is
flat, i.e. Fx is a flat OX ,x -module for each x ∈ X .

Definition 11. Let f : A → B be a morphism of commutative rings. We say that f is faithfully
flat if B is a faithfully flat A-module, i.e. for any map of A-modules M ,→ M ′ the induced map
M ⊗A B → M ′⊗A B is injective if and only if M ,→ M ′ is injective.

Lemma 2.10. Let f : A → B be a morphism of commutative rings. The following statements
are equivalent.

1. The map f is faithfully flat;

2. The map f is flat and for any non-zero A-module M, M ⊗A B is non-zero;

3. The map f is flat and the induced map Spec(B) → Spec(A) is surjective;

4. The map f is flat and any maximal ideal p ∈ Spec(A) is an inverse image of a maximal
ideal q ∈ Spec(B);

5. The map f is flat injective and B/ f (A) is a flat A-module.
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Proof. (1) ⇒ (2) M = 0 ⇔ 0 → M → 0 is exact ⇔ 0 → M⊗A B → 0 is exact ⇔ M⊗A B = 0 (2) ⇒ (1)

Let M ′ f−→ M
g−→ M" be a sequence of A-modules such that M ′⊗A B → M ⊗A B → M"⊗A B is

exact. This means that knowing that the two submodules Ker(g ) and Im( f ) of M are equal
after tensoring with B we have to show that Ker(g ) = Im( f ). Since Im( f )⊗A B = Ker(g )⊗A B ,
we have that (Ker(g )+ Im( f )/Im( f ))⊗A B = 0. By (2) we see that Ker(g )+ Im( f )/Im( f ) = 0,
i.e. Ker(g )+ Im( f ) = Im( f ). So Ker(g ) ⊆ Im( f ). (2) ⇒ (3) Take p ∈ Spec(A). Since pAp ( Ap ⇔
Ap/pAp 6= 0 ⇔ Ap/pAp⊗A B 6= 0 ⇔ Bp/pBp 6= 0 ⇔ pBp ( Bp. Now we take any maximal ideal
q ∈ Bp containing pBp. Then the inverse image of q under B → Bp is a maximal ideal lying
over p ∈ A. (3) ⇒ (4) Trivial. (4) ⇒ (2) Let N 6= 0 be an A-module. Then ∃x ∈ N such that x 6= 0.

Consider the exact sequence 0 → I → A
g−→ N , where g is the map sending 1 → x. We have

A/I ⊆ N and I ( A. But A/I ⊗A B ⊆ N ⊗A B . It is enough to show that A/I ⊗A B 6= 0, i.e. I B 6= B .
Take any maximal ideal A ) p⊃ I . Then there exists q ∈ Spec(B) such that f −1(q) = p. Thus we
have I B ⊆ pB ⊆ q( B . (1) ⇒ (5) Claim: For any A-module M the sequence 0 → M → B ⊗A M
is exact. To check this one just has to check the exactness for the pullback

0 → B ⊗A M → B ⊗A B ⊗A M

But the pullback has a retraction, namely the map B⊗AB⊗A M → B⊗A M sending b1⊗b2⊗m 7→
b1b2 ⊗m. This shows the injectivity. To show that B/ f (A) is flat we consider the following
diagram

0 // I //

��

A //

��

A/I

��

// 0

0 // I ⊗A B //

��

B //

��

A/I ⊗A B

��

// 0

I ⊗A B/ f (A) //

��

B/ f (A) //

��

A/I ⊗A B/ f (A)

��

// 0

0 0 0

where I is any ideal of A. Since the upper vertical arrows are all injective, we have that I ⊗A

B/ f (A) → B/ f (A) is injective. Thus B/ f (A) is flat. (5) ⇒ (1) If B/ f (A) is flat, then the left
arrow in the above diagram is injective, so it follows that I ⊗A B → B is injective. Thus f is flat.
But this also implies that A/I → A/I ⊗A B is injective. So A/I 6= 0 implies that B/I B 6= 0. Thus
f is faithfully flat.

Definition 12. A morphism of schemes f : X → Y is called faithfully flat if it is flat and surjec-
tive.

Example 2.11. The inclusion Z→ Q is flat but not faithfully flat. In fact a localization map
A → S−1 A is faithfully flat if and only if it is an isomorphism. The reason is that if the map
is faithfully flat then S is not contained in any maximal ideal of A, thus elements in S are
invertible. Also open embeddings are faithfully flat if and only if they are isomorphisms. Any
morphism from a non-empty scheme X to a spectrum of a field k is faithfully flat.
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Definition 13. Let X be a scheme. A sheaf F of OX -modules is called quasi-coherent if only
if for any point x ∈ X there is an open neighborhood U of x and an exact sequence

O⊕I
U →O⊕J

U →F |U → 0

A sheaf F of OX -modules is called of finite type (resp. of finite presentation) if only if for any
point x ∈ X there is an open neighborhood U of x and an exact sequence

O⊕n
U →F |U → 0 ( resp. O⊕m

U →O⊕n
U →F |U → 0 )

We denote the category of quasi-coherent sheaves by Qcoh(X ) and the category of sheaves of
finite type by Coh(X ).

Definition 14. Let f : X → Y be a morphism of schemes. Let Qcoh( f ) be the category whose

objects are pairs (F ,φ), where F is in Qcoh(X ), φ is an isomorphism p∗
1 F

∼=−→ p∗
2 F satisfying

the cocycle condition p∗
23φ◦p∗

12φ= p∗
13φ, where p1, p2, p12, p23, p13 are the projection maps:

X ×Y X ×Y X

p12,p23,p13−−−−−−−−→−−−−−−−−→−−−−−−−−→ X ×Y X×Y

p1−−→−−→
p2

X
f−→ Y

The morphisms in Qcoh( f ) are morphisms in Qcoh(X ) which are compatible with the given
isomorphisms in a natural way. The isomorphism φ with the cocycle condition is called de-
scent data of F .

Theorem 2.12. Let f : X → Y be a faithfully flat and quasi-compact or faitfhully flat and
locally of finite presentation morphism of schemes. Then there is a canonical equivalence be-
tween Qcoh(Y ) and Qcoh( f ).

Proof. By some general non-sense, for example in Notes on Grothendieck topologies, fibered
categories and descent theory, Chapter 4, Lemma 4.25, pp. 89, we may assume that X =
Spec(B) and Y = Spec(A) are affine. In this case Qcoh( f ) is equivalent to the category ModA→B

of B-modules with descent data. Given M ∈ ModA we get a B-module B ⊗A M with an iso-
morphism φ : (B ⊗A M)⊗A B → B ⊗A (B ⊗A M) sending b1 ⊗m ⊗ b2 7→ b1 ⊗ b2 ⊗m. It is an
easy calculation that φ satisfies cocycle condition. In this way we get a functor F : ModA →
ModA→B . Conversely given a pair (N ,φ), where N is a B-module and φ : N ⊗A B → B ⊗A N

is a B ⊗A B-linear isomorphism, we define Nφ to be the kernel of N
φ◦λ1−λ2−−−−−−→ B ⊗A N , where

λ1 : N → N ⊗A B sends n 7→ n ⊗1 and λ2 : N → B ⊗A N sends n 7→ 1⊗n. This defines a functor
G : ModA→B → ModA . Then one can check that F and G are quasi-inverse to each other. For
details see Notes on Grothendieck topologies, fibered categories and descent theory, Chapter
4, Theorem 4.21, pp. 80.

Corollary 2.13. Let f : X → Y be a faithfully flat and quasi-compact or faitfhully flat and
locally of finite presentation morphism of schemes. Then the pullback functor F : Qcoh(Y ) →
Qcoh( f ) induces an equivalence between Coh(Y ) and Coh( f ).
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Proof. Clearly F sends the full subcategory Coh(Y ) to Coh( f ). We have to show that if F ∈
Qcoh(Y ) and if F (F ) ∈ Coh( f ), then F ∈ Coh( f ). For this we may assume that Y = Spec(A)
and X = Spec(B). Suppose M is an A-module and M ⊗A B is finitely generated, say by a
family {ni = ∑

j∈J mi j ⊗bi j }i∈I , where I , J are finite sets. Then {mi j ⊗1}i∈I , j∈J also generates
M ⊗A B . Let λ : A⊕I×J → M be a map sending the free basis ei j 7→ mi j . Then we have φ⊗A B
is surjective. Thus φ is also surjective, so M is finitely generated.

Corollary 2.14. Let f : X → Y be a faithfully flat and quasi-compact or faitfhully flat and
locally of finite presentation morphism of schemes. Then the pullback functor f ∗ induces an
equivalence between Aff(Y ) (resp. Fin(Y )) and Aff( f ) (resp. Fin(Y )), where Aff(Y ) (resp. Fin(Y ))
is the category of affine (resp. finite) schemes on Y and Aff( f ) (resp. Fin(Y )) is the category of
affine (resp. finite) schemes on X equipped with descent data.

Remark 2.15. The category Aff(Y ) (resp. Fin(Y )) is defined to be the category of affine (resp.
finite) morphisms with target Y . The category Aff( f ) (resp. Fin( f )) is the category of pairs
(X ′ → X ,φ), where X ′ → X is an affine (resp. finite) morphism and φ : p∗

1 X ′ → p∗
2 X ′ is a mor-

phism of X ×Y X -schemes satisfying cocycle condition. One can check that Aff(Y ) is equiv-
alent to the category of quasi-coherent OY -algebras (see the exercise). This is the starting
point of the proof of this corollary.

Proof. Since we have that Aff(Y ) is equivalent to the category of quasi-coherent OY -algebras,

i.e. the category with the following data {A ∈ Qcoh(Y ),A ⊗A
mA−−→ A ,OY

uA−−→ A }, where
mA ,uA ∈ Qcoh(Y ) satisfies obvious conditions which make A an OY -algebra. By the equiv-

alence between Qcoh(Y ) and Qcoh( f ) we see that {A ∈ Qcoh(Y ),A ⊗A
mA−−→ A ,OY

uA−−→ A }

is equivalent to the category {B ∈ Qcoh(X ),B⊗B
mB−−→ B,OY

uB−−→ A } with mB ,uB ∈ Qcoh( f )
satisfies obvious conditions which make B an OX -algebra. Now one checks that the category

{B ∈ Qcoh(X ),B⊗B
mB−−→B,OY

uB−−→A } is literally the written up version of Aff( f ).

Theorem 2.16. Let f : X → Y be a morphism of schemes, and let Y ′ → Y be a faithfully flat
and quasi-compact or faitfhully flat and locally of finite presentation morphism of schemes. If
the base change f ′ : X ′ = X ×Y Y ′ → Y ′ has one of the following properties:

1. separated;

2. quasi-compact;

3. locally of finite presentation;

4. proper;

5. affine;

6. finite;

7. flat;

8. smooth;
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9. unramified;

10. étale;

11. an open embedding;

12. a closed embedding;

13. injective;

14. surjecgtive,

then f has the same property.

Proof. You can find the proof in EGA IV2, Proposition 2.7.1. Assuming 3, let’s do 1,2,4,7 11,
12, 13, 14 as examples. First a small lemma:

Lemma 2.17. For any some subset T ⊆ X , we have g−1( f (T )) = f ′(h−1(T )) inside Y ′.

X ′ f ′
//

h
��

Y ′

g

��

X
f
// Y

Proof. Clearly g ( f ′(h−1(T ))) ⊆ f (T ). This implies that f ′(h−1(T )) ⊆ g−1( f (T )). Suppose that
y ′ ∈ g−1( f (T )), t ∈ T such that y ′ = f (t ). We have to show that ∃ x ′ ∈ X ′ such that f ′(x ′) = y ′

and h(x ′) = t . We have maps Spec(κ(t )) → X , Spec(κ(y ′)) → Y . Now

Spec(κ(t ))×Y Spec(κ(y ′)) = Spec(κ(t ))×κ(y) Spec(κ(y ′)) 6= ;

Thus any point x ′ ∈ Spec(κ(t ))×Y Spec(κ(y ′)) would do the job.

Let’s prove 13: Take x1, x2 ∈ X and assume that f (x1) = f (x2) = y . Choose y ′ ∈ Y ′ so that
g (y ′) = y . If we take T to be {x1}, then we get y ′ ∈ f ′(h−1(T )), i.e. there exists x ′

1 ∈ X ′ such that
y ′ = f ′(x ′

1) and h(x ′
1) = x1. To the same for x2, we find x ′

2 such that y ′ = f ′(x ′
2) and h(x ′

2) = x2.
Since f ′ is injective, we must have x ′

1 = x ′
2. Therefore we have x1 = h(x ′

1) = h(x ′
2) = x2.

14 is a direct check: g ◦ f ′ is surjective implies that f is surjective.

Let’s show that f ′ is universally closed implies that f is universally closed. Clearly, to prove
that it is enough to show that f ′ is closed implies that f is closed. Let T ⊆ X be a closed
subset. By 2.17 we have f ′(h−1(T )) = g−1( f (T )). By the continuity of h and the assumption
that f ′ is closed, we have that g−1( f (T )) = f ′(h−1(T )) is closed in Y ′. We have Y \ f (T ) =
g (g−1(Y \ f (T ))) = g (X \ g−1( f (T ))). Since g is flat, by EGA IV2, Proposition 2.4.6 and our Ex
2.3, we see that Y \ f (T ) is open, i.e. f (T ) is closed.
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Let’s show 7. For this we only need to show that if we have successive maps X ′ h−→ X
f−→ Y ,

and if we know that h is faithfully flat and f ◦h is flat then f is flat. For this we may as-
sume that X ′ = Spec(B ′), X = Spec(B) and Y = Spec(A). Let 0 → M ′ → M be an exact se-
quence of A-modules. Then 0 → M ′⊗A B ′ → M ′⊗A B ′ is exact. But M ⊗A B ′ = M ⊗A B ⊗B B ′

(M ⊗A B ′ = M ⊗A B ⊗B B ′), and B → B ′ is faithfully flat, thus 0 → M ′⊗A B → M ′⊗A B is exact.

Now we are in the position to prove 11 (resp. 12). Since by 3 and 7 (resp. by the proof for uni-
versally closed morphisms) f is an open map (resp. a closed map). As f is injective by 13, f
embeds X as an open (resp. a closed) subset of Y . So we only have to show that for each point
x ∈ X , the map OY , f (x) → OX ,y is an isomorphism (resp. surjective). The problem is local, we
may assume that Y = Spec(A), X = Spec(B), and Y ′ = Spec(A′). Assume further that A,B , A′

are local rings. Now the claim follows as A → B is an isomorphism (resp. surjective) if and
only if A′ → A′⊗A B is an isomorphism (resp. surjective).

Let’s show 1: For this we just have to consider the cartesian diagram

X ′ ∆′
//

��

X ′×Y ′ X ′

��

X
∆ // X ×Y X

Using 12 we see that ∆′ is a closed embedding implies that ∆ is a closed embedding.

4 follows from 1, 3 and the proof for univerally closed maps.

Let’s show 2: For this we may assume that Y = Spec(A) is affine. We can also take a finitely
many open affines {Ui }1≤i≤n of Y ′ so that

⋃
0≤i≤n g (Ui ) = Y . Since quasi-compact maps are

stable under base change, replacing Y ′ by
∐

0≤i≤n Ui we may assume that Y ′ is affine. Then
by Ex 3.2 X ′ is quasi-compact. But X ′ � X is surjective, so X is quasi-compact.

Corollary 2.18. Let f : X → Y be a morphism of S-schemes. Let S′ → S be a faithfully flat and
quasi-compact or faitfhully flat and locally of finite presentation morphism of schemes. Then
f ′ : X ×S S′ → Y ×S S′ is an isomorphism if and only if f is an isomorphism.

Proof. The problem is local on Y , we may assume that S,Y are affine. Then by 2.16 we see
that X is also affine. Then the claim follows from 2.12.

3 ÉTALE MORPHISMS (02/11/2016)

Definition 15. A morphism f : X → Y is called unramified if it is locally of finite presentation
and if for any x ∈ X , OX ,x /mY , f (x)OX ,x is a field, where mY , f (x) ⊆ OY , f (x) is the maximal ideal,
and the residue field extension κ(y) ⊆ κ(x) is a separable field extension.

Remark 3.1. In other words a locally of finite presentation morphism f is unramified iff
mY , f (x)OX ,x = mX ,x and κ(y) ⊆ κ(x) is a separable field extension. By Hilbert’s Nullstellen-
satz κ(y) ⊆ κ(x) is automatically a finite field extension.
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Proposition 3.2. Let f : X → Y be a locally of finite presentation morphism of schemes. Then
the following are equivalent.

1. The map f is unramified;

2. For all y ∈ Y , f −1(y) → Spec(κ(y)) is unramified;

3. For all y ∈ Y , f −1(ȳ) → Spec(κ(y)) is unramified;

4. For all y ∈ Y , f −1(y) is a disjoint union of Spec(Ki ) where Ki /k is a finite separable
extension;

5. For all y ∈ Y , f −1(ȳ) is a disjoint union of Spec(κ(y)).

Here f −1(y) := Spec(κ(y))×Y X and f −1(ȳ) := Spec(κ(y))×Y X .

Proof. Step 1: We first reduce to the case when X = Spec(B) and Y = Spec(A).

Step 2: Assume that A is a local ring with maximal ideal p.

Step 3: Replacing A by A/p and B by B/pB we may assume that A is a field.

Step 4: In this case we have: f is unramified ⇔ the localization at each maximal ideal m of B
is a field which is a field separable extension of k ⇔ B is a reduced Artinian ring all of whose
residue fields are finite separable extensions of k ⇔ (2), (3), (4), (5). Everything follows from
Ex 1.5.

Proposition 3.3. Let f : X → Y be a morphism locally of finite presentation. Then the following
are equivalent.

1. f is unramified;

2. Ω1
X /Y = 0;

3. ∆ : X → X ×Y X is an open embedding.

Proof. 1 ⇒ 2 Step 1. Assume X = Spec(B) and Y = Spec(A). We can do this because unram-
ified is a local property and Ω1

X /Y can be computed locally, i.e. for V ⊆ Y , U ⊆ X such that
f (U ) ⊆ Y we have Ω1

X /Y |U =ΩU /V .
Step 2. Assume that A is a local ring with maximal ideal m. We can do this because for any
pSpec(A), we have (ΩB/A)p =ΩBp/Ap .
Step 3. Assume that A is a field. We can do this because for any A-algebra C we haveΩB/A ⊗A

C = ΩB⊗C /C . If C is chosen to be A/m, then ΩB⊗C /C = 0 would imply that ΩB/A = mΩB/A .
Since B is finitely generated over A, Ω1

B/A is of finite type, thus by Nakayama ΩB/A = 0.
Step 4. Assume that B is a field. We can do this because in this case by 3.2 B is a finite product
of fields which are finite separable extensions of A.
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Step 5. We have Ω1
K /k = 0 if K /k is finite separable. Suppose that K = k[X ]/( f (X )) with f (X )

a separable polynomial. We have the following exact sequence

( f (X ))/( f (X ))2 → K ⊗k[X ]Ω
1
k[X ]/k →Ω1

K /k → 0

Here K ⊗k[X ]Ω
1
k[X ]/k is a 1-dimensional K -vector space generated by d X . The image of f (X )

in K ⊗k[X ]Ω
1
k[X ]/k is f ′(X )d X , so the image of ( f (X ))/( f (X ))2 is the subspace of K d X gener-

ated by f ′(X )d X . But f ′(X ) is invertible in K = k[X ]/( f (X )), as f ′(X ) is a separable polyno-
mial. Thus ( f (X ))/( f (X ))2 → K ⊗k[X ]Ω

1
k[X ]/k is surjective and Ω1

K /k is therefore 0 by the exact
sequence.
2 ⇒ 3 Recall the definition of Ω1

X /Y . We have the exact sequence

0 →I →∆−1OX×Y X →OX → 0

Since f : X → Y is finitely presented, I is finitely generated. By Nakayama I /I 2 = 0 im-
plies that I = 0. This implies that for any x ∈ X , OX×Y X ,∆(x) → OX ,x is an isomorphism. In
particular ∆ is flat. The claim now follows from the following general phenomenon:

Lemma 3.4. If A is a ring, and if I ⊆ A is a finitely generated ideal, then A → A/I is flat iff
Spec(A/I ) → Spec(A) is an open embedding.

Proof. Consider the sequence 0 → I → A. Since A → A/I is flat, 0 → I /I 2 → A/I is exact. Since
I /I 2 → A/I is the 0 map, I = I 2. Thus for any p ∈ Spec(A/I ), we have Ip = Ip p2. Thus Ip = 0.
If p ∉ Spec(A/I ) then Ip = A. But Spec(A/I ) = {p ∈ Spec(A)|Ip = 0} is also open as I is finitely
generated. Thus Spec(A/I ) ⊆ Spec(A) is an open embedding.

3 ⇒ 1 We may assume that Y = Spec(k) and k = k̄ is algebraically closed. We need to show
that X is a disjoint union of Spec(k). Replacing X by a connected component, we may assume
that X is connected. Now take x : Spec(k) → X a point, and consider the following cartesian
diagram

Spec(k)

x
��

x // X

(id,x)
��

X
∆ // X ×k X

This diagram implies that x is an open embedding. Since X is connected and the point x is
both open and closed, X is a one point scheme. Thus x : Spec(k) → X is an isomorphism.

Definition 16. A morphism f : X → Y is called étale if f is unramified and flat.

Example 3.5. 1. A closed embedding with a finitely generated ideal sheaf is unramified
and not étale in general.

2. An open embedding is étale.

3. A disjoint union:
∐

i∈I X → X is étale.

4. A finite separable field extension is étale.
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Lemma 3.6. 1. The composition of unramified (resp. étale) morphisms is unramified (resp.
étale).

2. The base change of an unramified (resp. étale) is still unramified (resp. étale).

3. Let f : X → Y , g : Y → X be morphisms of schemes. If g ◦ f is unramified (resp. étale)
and g is arbitrary (resp. unramified), then f is unramified (resp. étale).

Proof. See exercises.

Lemma 3.7. Any finite étale surjective morphism f : X → Y there is a finite étale surjective
Y ′ → Y such that X ′ := X ×Y Y ′ is isomorphic to

∐
1≤i≤n Y ′ as an Y ′-scheme.

Proof. See the exercise.

Lemma 3.8. Let f , g : X → Y be two morphisms between two S-schemes. If X is connected and
Y /S is étale separated, then f = g if and only if ∃ a geometric point x : Spec(k) → X such that
the two compositions

Spec(k̄)
x // X

f
++

g
33 Y

are equal.

Proof. Consider the following diagram

X

f (resp. g )
��

Γ f (resp. Γg )
// X ×S Y

( f ,id)(resp. (g ,id))
��

Y
∆ // Y ×S Y

Since ∆ is a both open and closed embedding, Γ f (resp. Γg ) is also a both open and closed
embedding. The point x ensures thatΓ f (X ) = Γg (X ) as two connected components of X ×S Y .
Let Γ denote Γ f (X ) = Γg (X ). Since Γ f is an isomorphism from X → Γ, the restriction map
φ : Γ⊆ X ×S Y → X is an isomorphism, and it is also the inverse of Γ f . The same holds for Γg .
ThusΓ f = Γg as they are both the inverse ofφ. Finally f = g because they are all compositions
of Γ f = Γg with the second projection X ×S Y → Y .

Definition 17. Let f : X → Y be a morphism of schemes. We call f an étale cover or a cover if
it is finite étale and surjective.

Remark 3.9. If Y is connected and f is finite étale, then f is a cover if and only if X is non-
empty.

Lemma 3.10. Let f : X → Y be a finite étale morphism of schemes, and let Y be a connected
scheme. Then for each two geometric point y1, y2 : Spec(Ω) → Y with Ω algebraically closed
field, we have

#( f −1(y1)) = #( f −1(y2)) = dimΩ H 0(O f −1(y1)) = dimΩ H 0(O f −1(y2)) = rankOY ( f∗OX )
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Remark 3.11. Since f is finite, f∗OX is a finite OY -module. As f is flat and locally of finite
presentation, by 2.7, f∗OX is a locally free OY -module of finite rank. Since Y is connected,
the rank is constant.

Proof. It is enough to show that dimΩ(H 0(O f −1(y1))) = rankOY ( f∗OX ). Now consider the fol-
lowing cartesian diagram

f −1(y1)

h
��

g
// X

f

��

Spec(Ω)
y1
// Y

We have a canonical morphism y∗
1 f∗OX → h∗ f∗OX , and it is an isomorphism because f is

affine. But then

rankOY ( f∗OX ) = rankΩ(y∗
1 f∗OY ) = dimΩ(y∗

1 f∗OY ) = dimΩ(h∗ f∗OX ) = dimΩ(H 0(O f −1(y1)))

Definition 18. A finite étale morphism f : X → Y is called of degree n ∈N if all its geometric
fibres have cardinality n.

Remark 3.12. A finite étale morphism of degree 0 is the empty morphism. A degree 1 mor-
phism f : X → Y is an isomorphism: Assume that Y = Spec(A) then Y = Spec(B). Since f is
faithfully flat we know that A → B is injective. But by the assumption, i.e. rankOY ( f∗OX ) we
know that B is generated by 1 ∈ B as an A-module, so A → B is also surjective.

Corollary 3.13. Let Y be a connected locally Noetherian scheme, and let y : Spec(Ω) → Y be a
geometric point. Suppose that we have a commutative diagram

X
g

//

f
��

X ′

f ′
~~

Y

where f , f ′ are étale covers. If g induces an isomorphism f −1(y) → f ′−1(y), then g is an iso-
morphism.

Proof. We may assume that X ′ is connected. In this case g is also finite étale and the degree
is 1 (because f −1(y) → f ′−1(y) is an isomorphism). Therefore g is an isomorphism.

Definition 19. A morphism f : X → Y is called formally unramified (resp. formally étale) if
and only if for any diagram

T0

i
��

a // X

f
��

T

>>

b // Y

where T0,T are schemes affine over Y and i is closed embedding whose ideal sheaf is square
0, there exists at most one (resp. exactly one) broken arrow which makes all the triangles
commutative.
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Remark 3.14. It is easy to see that formally unramified and formally étale are locally proper-
ties of morphisms, that is f : X → Y is formally unramified or formally étale if and only if for
an open covering {Ui ⊆ X }i∈I and {V j ⊆ Y } j∈J , with the property that each f (Ui ) is contained
in some V j , the restriction Ui →V j is formally unramified or formally étale.

Theorem 3.15. Let f : X → Y be a morphism locally of finite presentation. Then f is formally
unramified (resp. formally étale) if and only if f is unramified (resp. étale).

Proof. By 3.14 we may assume that Y = Spec(A), X = Spec(B). Let’s first look at formally
unramified:
Consider the following diagram

A

c
��

a // C

d
��

B

<<

b
// C /N

We have to show that the following are equivalent:

1. There exists at most one the broken arrow in the middle making everything commuta-
tive.

2. The module Ω1
B/A = 0

1 ⇒ 2: Take C := B ⊗A B/I 2, where I := Ker(B ⊗A B → B), and take N := Ker(B ⊗A B/I 2 → B).
Let b : B → B be the identity. There are two broken arrows λ1,λ2 : B → B ⊗A B/I 2 sending b to
b ⊗1 and 1⊗b respectively. By the assumption d = λ1 −λ2 = 0. But d : B → B ⊗A B/I 2 factors
through Ω1

B/A ⊆ B ⊗A B/I 2, and d : B →Ω1
B/A is by definition the derivation map. Since Ω1

B/A
is generated by {d x|x ∈ B}, Ω1

B/A = 0 as desired.

2 ⇒ 1: Suppose that λ1,λ2 are two broken arrows. Let λ := λ1 −λ2. Clearly λ : B → C is an
A-linear map which factors through N ⊆ C and which kills A. The B ⊗A B-module N is also
a B-module defined by bn = λ1(b)n for all b ∈ B and n ∈ N . Note that since N 2 = 0, we have
λ1(b)n = λ2(b)n. We will show that λ also satisfies the Leibniz rule, so λ is an A-derivation,
which is necessarily 0 as Ω1

B/A = 0.
Now λ(bb′) = (λ1−λ2)(bb′) =λ1(b)λ1(b′)−λ2(b)λ2(b′) =λ1(b′)(λ1(b)−λ2(b))+λ2(b)(λ1(b′)−
λ2(b′)) = b′λ(b)+bλ(b′) as desired.

If f is étale, then for any diagram

T0

i
��

a // X

f
��

T

>>

b // Y

we have to show that the broken arrow exists uniquely. Replacing X by X×T Y we may assume

17



that Y = T and b is the identity. Now consider the diagram

T0

a
��

Γa // X ×T T0

(id,a)
��

(id,i )
// X ×T T = X

X
∆ // X ×T X

From the diagram it is clear that Γa is an open embedding and (id, i ) is a square 0 closed
embedding. Let Γ := (id, i ) ◦Γa(T0). This is an open subset of X and we equip it with the
open subscheme structure. Now Γ→ X → T becomes a degree 1 étale morphism, so it is an
isomorphism. We take the broken arrow to be the inverse of this isomorphism.
The other direction is a little technique, we omit it.

Lemma 3.16. Let k be a field. Let P (X ) ∈ k[T ]. then the following statements are equivalent:

1. The k-algebra k[T ]/(P (T )) is étale.

2. The polynomial P (T ) has no multiple roots in k̄.

3. The formal derivative P ′(T ) is coprime to P (T ), i.e. P (T ) and P ′(T ) generates the trivial
ideal k[T ].

4. There exist u(T ), v(T ) and an equation u(T )P (T )+ v(T )P ′(T ) = 1.

5. The element P ′(T ) is invertible in k[T ]/(P (T )).

Proof. 2,3,4,5 are clearly equivalent. We just have to show 1 ⇔ 2. For this we just have to
assume it in the case when k = k̄ is algebraically closed. In this case everything follows from
3.2.

Definition 20. Let A be a ring. Let P (T ) ∈ A[T ] be a polynomial. We say that P (T ) is separable
if P (T ) and P ′(T ) generated the unit ideal A[T ].

Lemma 3.17. The following are equivalent:

1. The polynomial P (T ) is separable.

2. There exist u(T ), v(T ) and an equation u(T )P (T )+ v(T )P ′(T ) = 1.

3. The element P ′(T ) is invertible in A[T ]/(P (T )).

Proof. This is obvious.

Lemma 3.18. Let g (T ),P (T ) ∈ A[T ]. Then P ′[T ] is invertible in A[T ]g (T )/(P (T )) if and only if
it is so seeing as a polynomial in Ap/pAp[T ] for all p ∈ Spec(A). In particular if g (T ) = 1, then
P (T ) is separable if and only if it is so seeing as a polynomial in Ap/pAp[T ] for all p ∈ Spec(A).
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Proof. If we have a relation u(T )P (T )+v(T )P ′(T ) = 1 then the relation still holds when we go
to Ap/pAp. Conversely let I := (P (T ),P ′(T )). If I 6= A[T ]g (T ), then take a maximal ideal P ⊇ I
of A[T ]g (T ). Consider the diagram

A //

��

Ap/pAp

uu ��

A[T ]/P Ap/pAp[T ]
φ

oo

where the broken arrows exist uniquely by the universal property. Now the relationφ(u(T ))φ(P (T ))+
φ(v(T ))φ(P ′(T )) = 1 provides an equation 0 = 1 in A[T ]/P which is a contradiction.

Lemma 3.19. Let g (T ),P (T ) ∈ A[T ]. Then P ′[T ] is invertible in A[T ]g (T )/(P (T )) if and only if
A[T ]g (T )/(P (T )) is étale over A.

Proof. In light of 3.18 we may assume that A = k is a field. Let I := (P (T ),P ′(T )) ⊆ A[T ]g (T )/(P (T )).
By Lemma 2.10 (2) I = A[T ]g (T )/(P (T )) if and only if I ⊗k k̄ = A[T ]g (T )/(P (T ))⊗k k̄. Thus we
may assume that k = k̄. In this case g (T ),P (T ) split into linear factors. Let Q(T ) ∈ k[T ] be the
factor of P (T ) removing all the factors (T−ai ) where ai is a root of g (T ). Then A[T ]g (T )/(P (T )) =
A[T ]/(Q(T )). In this case the statement is clear.

Definition 21. Let f : X → Y be an étale morphism of schemes. We call f a standard étale
morphism if Y = Spec(A), X = Spec(A[T ]g (T )/(P (X ))) and f is the canonical projection.

Theorem 3.20. Let f : X → Y be a morphism of schemes. Let x ∈ X be a point which is étale
over Y . Then there is an open affine U = Spec(B) ⊆ X containing x and an open affine V =
Spec(A) ⊆ Y containing f (x), such that f (U ) ⊆V and f |U : U →V is standard étale.

Proof. See Stack Project, Lemma 28.34.14.

Corollary 3.21. Let f : X → Y be a morphism of schemes. Let x ∈ X be a point which is
étale over Y . Then there is an open affine U = Spec(B) ⊆ X containing x and an open affine
V = Spec(A) ⊆ Y containing f (x), such that f (U ) ⊆ V and B as an A-algebra is of the form
A[T1, · · · ,Tn]/(P1, · · · ,Pn) with the property that det( ∂Pi

∂T j
)i j is invertible in B.

Proof. " ⇒ " By 3.20 we get B = A[T ]g (T )/(P (T )) = A[T,S]/(P (T ),Sg (T )−1) with P ′(T ) being

invertible in B . Compute the determinant of the matrix we get det( ∂Pi
∂T j

)i j = g (T )P ′(T ) which

is clearly invertible in B .

" ⇐ " Let I := (P1,P2, · · · ,Pn). Look at the exact sequence of B-modules:

I /I 2 →Ω1
A[T1,··· ,Tn ]/A ⊗A[T1,··· ,Tn ] B →Ω1

B/A → 0

We see that Ω1
B/A is the free module 〈T1, · · · ,Tn〉 devided by the relation

〈 ∑
1≤ j≤n

∂P1

∂T j
, · · · ,

∑
1≤ j≤n

∂Pn

∂T j
〉
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This means that Ω1
B/A = 0 if and only if det( ∂Pi

∂T j
)i j is invertible in B . The algebra B is always

flat over A (24.6.G, 24.6.7), so f being étale is equivalent to Ω1
B/A = 0, whence the proof.

Corollary 3.22. Let i : X0 ,→ X be a nilpotent closed embedding, i.e. a closed embedding which
is a homeomorphism on the topological spaces. The the pullback functor sending Y → X to
Y ×X0 X induces an equivalence between the category of étale X -schemes and the category of
étale X0-schemes.

Proof. We first show the fully faithfulness. In fact to give a morphism in HomX (Y , Z ) is equiv-
alent to giving a morphism HomY (Y ,Y ×X Z ). The correspondence is just taking a morphism
to its graph. Since Y ×X Z is étale over Y , any element in HomY (Y ,Y ×X Z ) is étale. This
plus the fact that any element in HomY (Y ,Y ×X Z ) is a locally closed embedding allow us to
conclude that any element in HomY (Y ,Y ×X Z ) is an open embedding. Thus HomX (Y , Z ) is
in one to one correspondence with open subschemes of Y ×X Z which map isomorphically
to Z via the second projection.

Let Y0 := Y ×X X0 and Z0 := Z ×X X0. Given an open subscheme U0 ⊆ Y0 ×X0 Z0 which maps
isomorphically to Z0 we get an open subscheme U ⊆ Y ×X Z such that the second projec-
tion induces a universal homeomorphism U → Z . By Exercise 5.5 we see that U → Z is an
isomorphism. This means that the open subschemes of Y ×X Z which map isomorphically
to Z via the second projection is in one-to-one correspondence with the open subschemes
of Y0 ×X0 Z0 which map isomorphically to Z0 via the second projection. Hence we have
HomX (Y , Z ) = HomX0 (Y0, Z0).

Thanks to the fully faithfulness, to prove the essential surjectivity it is enough to work Zariski
locally. Now suppose Y0 → X0 is an étale morphism of schemes we want to find Y → X étale
such that its restriction to X0 is Y0. Since we can work Zariski locally, we may assume that
X = Spec(A), X0 = Spec(A0) and Y0 = Spec(B0). Assume further that B0 = A0[T ]g0(T )/(P0(T ))
is the standard étale algebra. Now we can lift g0(T ) (resp. P0(T )) to a polynomial (resp. monic
polynomial) in A[T ]. In this case Y := Spec(A[T ]g (T )/(P (T )) would be a lift of Y0, and it is easy
to see that Y is a standard étale algebra, i.e. P ′(T ) is invertible in Spec(A[T ]g (T )/(P (T )).

4 HENSELIAN RINGS (09/11/2016)

In this section let (R,m,κ) be a local ring with m the maximal ideal and κ := R/m the residue
field.

Definition 22. 1. We say R is henselian if for every monic f ∈ R[T ] and every root a0 ∈ κ
of f̄ such that f̄ ′(a0) 6= 0 there exists an a ∈ R such that f (a) = 0 and a0 = ā.

2. We say that R is strictly henselian if R is henselian and its residue field is separably
closed.

Theorem 4.1. The following are equivalent.

1. The ring R is henselian.
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2. For any étale morphism f : Y → Spec(R) with a κ−point y ∈ Y such that f (y) corre-
sponds to the maximal ideal m ∈ Spec(R).

3. For any monic f ∈ R[T ] and any factorization f̄ = g0h0 with g0,h0 coprime, there exists
monic polynomials g ,h such that f = g h and ḡ = g0, h̄ = h0.

4. Any finite R-algebra A is of the form
∏

1≤i≤n Ai where Ai are local R-algebras.

Proof. 1 ⇒ 2 We may assume that Y = Spec(A) equipped with a maximal ideal m′ ⊆ A (i.e. y ∈
Y ) lying over m with residue field A/m′ = κ. By 3.20 we may assume that A = R[T ]g (T )/(P (T ))
is standard étale over R. Consider the commutative diagram

A
φ

//

φ̄

))

a
��

R

b
��

A⊗R κ
λ // A/m′ = R/m= κ

where a,b are mod m reduction maps, φ̄ is the mod m′ reduction map, and λ is the unique
map induced by φ̄. We need to find the R-algebra map φ which is indicated by the broken
arrow in the above diagram. But the map λ provides an element x̄ ∈ κ satisfying P̄ (x̄) = 0,
ḡ (x̄) 6= 0. Since A is standard étale we know that u(T )P (T )+ v(T )P ′(T ) = g (T )n . Thus P̄ ′(ā) 6=
0. By 1 we can find an element x ∈ R lifting x̄ with the property that P (x) = 0. Since ḡ (x̄) 6= 0,
g (x) is invertible in R. Thus we get the desired map φ defined by x.

2 ⇒ 3 Follows readily from 4.3.

3 ⇒ 1 Trivial.

4 ⇒ 3 Let A := R[T ]/( f (T )). Then A is a free R module whose rank is equal to the degree
of f (T ). By 4, A = A1 × A2 × ·· · × An where Ai are finite local R-algebras. Since A/mA =
κ[T ]/( f̄ (T )) = κ[T ]/(g0(T ))×κ[T ]/(h0(T )). Since Ai /mAi are connected components of A/mA,
after reordering we may assume that

κ[T ]/(g0(T )) = ∏
1≤i≤r

Ai /mAi and κ[T ]/(h0(T )) = ∏
r+1≤i≤n

Ai /mAi

By 2.7
∏

1≤i≤r Ai is a free R-module of rank equal to deg(g0(T )). Let g (T ) be the characteristic
polynomial of the R-linear map

T0 :
∏

1≤i≤r
Ai →

∏
1≤i≤r

Ai

where T0 is the image of T under R[T ]/( f (T )) = A �
∏

1≤i≤r Ai . Clearly we have g (T ) is
monic, ḡ (T ) = g0(T ), and g (T0) = 0 by Hamilton-Cayley. Thus there is a surjective morphism

R[T ]/(g (T ))�
∏

1≤i≤r
Ai
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sending T 7→ T0, which is also an isomorphism because both sides are free R-modules of rank
equal to deg(g0(T )) = deg(g (T )). Now the commutative diagram

R[T ]/( f (T )) //

''

R[T ]/(g (T ))

∼=
ww∏

1≤i≤r Ai

tells us that f (T ) is 0 in R[T ]/(g (T )), i.e. f (T ) = g (T )h(T ). Clearly h(T ) is monic and h̄(T ) =
h0(T ).

3 ⇒ 4 First suppose that A = R[T ]/( f (T )) where f (T ) ∈ R[T ] is a monic polynomial. In this
case we use induction on the degree of f (T ). If A is not local, then A/m = κ[T ]/( f̄ (T )) is
not local either, as all maximal ideals of A lie over m (because A is finite over R). But then
f̄ (T ) is not irreducible, so f̄ (T ) = g0(T )h0(T ) for non-trivial monic polynomials g0(T ),h0(T ) ∈
κ[T ]. By 4 we are able to lift g0(T ),h0(T ) to monic polynomials g (T ),h(T ) ∈ R[T ] so that
f (T ) = g (T )h(T ). But g (T ),h(T ) generate the unit ideal in A (If not then there is a maximal
ideal P ⊆ A which contains g (T ),h(T ) and which lies over m ⊆ R. Then we would have 0 =
(A/P )×R κ = A/P .), so by Chinese reminder theorem A = R[T ]/(g (T ))×R[T ]/(h(T )). Now
we can apply the induction hypothesis. If A is arbitrary finite R-algebra, and if A is not local,
then Spec(A/m) is not connected. Take a non-trivial idempotent b̄ ∈ A/m. We can lift b̄ to
b ∈ A. As A is finite over R we can find a monic polynomial f (T ) ∈ R[T ] such that f (b) = 0.
Now consider the following diagram

R[T ]/( f (T ))
φ

//

��

A

��

κ[T ]/( f (T )) // // B �
�

// A/m

where B is the image and φ is the map which sends T 7→ b. Applying what we just discussed
we get R[T ]/( f (T )) = C1 ×C2 × ·· · ×Cn and κ[T ]/( f (T )) = C1/mC1 ×C2/mC2 × ·· · ×Cn/mCn

where Ci (and hence Ci /mCi ) are all local rings. Now the non-trivial idempotent b̄ ∈ A/m is
contained in B as it is the image of T ∈ κ[T ]/( f (T )). By Chinese reminder theorem we have
B = B/b̄ ×B/(1− b̄). Since Spec(B) ,→ Spec(κ[T ]/( f (T ))) is a closed embedding, we have
surjections (after a reodering) C1×·· ·×Cr �B/b̄ and Cr+1×·· ·×Cn �B/(1−b̄). Thus we find
a ∈ R[T ]/( f (T )) an idempotent which maps to b̄, so φ(a) ∈ A is also an idempotent. Applying
Chinese reminder theorem we get A = A/φ(a)× A/(1−φ(a)). Now we can use induction on
the κ-dimension of A/m.

Lemma 4.2. Let n,m ≥ 1 be integers. Consider the ring map:

R =Z[A1, · · · , An+m] −→ A =Z[B1, · · · ,Bn ,C1, . . . ,Cm]

which sends Ak 7→ Ak (Bi ,C j ) :=∑
i+ j=k Bi C j . Clearly we have A as an R-algebra can be written

as
A = R[B1, · · · ,Bn ,C1, . . . ,Cm]/(Ak (Bi ,C j )− Ak )1≤k≤m+n
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Then we have a matrix

M := (
∂(Ak (Bi ,C j )− Ak )

∂Tl
)kl

where Tl = Bl when 1 ≤ l ≤ n and Tl =Cl−n if 1+n ≤ l ≤ m +n. Let

g (T ) := T n +B1T n−1 +·· ·+Bn and h(T ) := T m +C1T m−1 +·· ·+Cm

The determinant of M is usually denoted by∆ or Res(g ,h) and called the resultant of g ,h. Now
suppose that q⊆ A is a prime ideal. Then the following statements are equivalent:

1. The map R → A is étale at q.

2. The element ∆ ∈ A is not contained in q.

3. The polynomials ḡ (T ), h̄(T ) as reductions of g (T ),h(T ) in κ(q) have no common factor.

Proof. By 3.21 we have 1 ⇔ 2. For 1 ⇔ 2 one just have to notice that M is the transpose the
matrix of the A-linear map

λ : A[T ]<m
⊕

A[T ]<n −→ A[T ]<m+n

sending a[T ]⊕b[T ] to a[T ]g [T ]+b[T ]h[T ]. But ∆ ∉ q⇔ M ⊗A κ(q) is invertible ⇔ λ⊗A κ(q)
is an isomorphism ⇔ λ⊗A κ(q) is an injective ⇔ ḡ (T ), h̄(T ) have no common factor.

Lemma 4.3. Let R be a ring. Let f (T ) ∈ R[T ] be a monic polynomial. Let p be a prime ideal
of R. Let f̄ = g0h0 be a factorization of monic polynomials in κ(p)[T ]. If g0(T ) and h0(T ) are
coprime, then there exist

1. an étale ring map R → R ′,

2. a prime p′ ⊆ R ′ lying over p, and

3. a factorization f (T ) = g (T )h(T ) ∈ R ′[T ]

such that

1. κ(p) = κ(p′),

2. ḡ (T ) = g0(T ), h̄(T ) = h0(T ) and

3. The polynomials g (T ),h(T ) generate the unit ideal in R ′[T ].

Proof. Suppose that g0(T ) = T n + b̄1T n−1 +·· ·+ b̄n and h0(T ) = T m + c̄1T m−1 +·· ·+ c̄m with
b̄i , c̄ j ∈ κ(p). Write f (T ) = T m+n +a1T m+n−1 +·· ·+am+n with ak ∈ R. Now define

S := R ⊗Z[A1,··· ,An+m ]Z[B1, · · · ,Bn ,C1, . . . ,Cm]

where Z[A1, · · · , An+m] → R sends Ai to ai and Z[A1, · · · , An+m] → Z[B1, · · · ,Bn ,C1, . . . ,Cm] is
the map defined in 4.2. By the assumption we have a map

λ : S = R[B1, · · · ,Bn ,C1, . . . ,Cm]/(Ak (Bi ,C j )−ak )1≤k≤m+n → κ(p)
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sending Bi 7→ b̄i and C j 7→ c̄ j . Let p′ ⊆ S be the kernel of λ, which is the prime ideal. Let
g (T ) := T n +B1T n−1+·· ·+Bn and h(T ) := T m +C1T m−1+·· ·+Cm . Since the reduction ofg (T )
(resp. h(T )) in κ(p′) = κ(p) is g0(T ) (resp. h0(T )) and since g0(T ) is coprime with h0(T ), the
resultant ∆= Res(g ,h) is not in p′ by 4.2, and R → S is therefore étale at p′. Now let R ′ := S[ 1

∆ ].
By 3.21 R → R ′ is étale, and by construction f (T ) = g (T )h(T ). Since the R ′-linear map

λ : R ′[T ]<m
⊕

R ′[T ]<n −→ R ′[T ]<m+n

is now invertible, there exists a(T ),b(T ) ∈ R ′[T ] such that a(T )g (T )+b(T )h(T ) = 1.

Lemma 4.4. If (R,m,κ) is a Henselian local ring, then all finite local A-algebra and any quo-
tient A/I with I a proper ideal of A are Henselian.

Proof. Clear!

Lemma 4.5. All complete local rings are Henselian.

Proof. See Atiyah-Macdonald Introduction to Commutative Algebra, Exercise 9, pp. 115.

Theorem 4.6. Let (R,m,κ) be a local ring. There exists a local ring map R → Rh with the
following properties

1. Rh is henselian,

2. Rh is a filtered colimit of étale R-algebras,

3. mRh is the maximal ideal of Rh , and κ= Rh/mRh .

Proof. We would like to take the category I consisting of pairs (A,p) where A is an étale R-
algebra and p is a prime ideal of A with the property that p lies over m and κ(p) ⊆ κ(m) is an
isomorphism. We would like to define

Rh := lim−−→
i∈I

Ai

But to do that we need to justify the definition, i.e. we have to check that I is filtered. Recall
that a category is called cofiltered iff

(i) the category I has at least one object,

(ii) for every pair of objects x, y of I there exists an object z and morphisms x → z, y → z,
and

(iii) for every pair of objects x, y ∈ I and every pair of morphisms a,b : x → y ∈ I there exists
a morphism c : y → z ∈ I such that c ◦a = c ◦b as morphisms in I .
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(i) is given by (R,m,κ). (ii) is given by the diagram

Spec(κ) = Spec(κ(m)) = Spec(κ(p1)) = Spec(κ(p2))

Spec(A1 ⊗R A2) Spec(A1)

Spec(A2) Spec(R)

p2

p1

u

(iii) is given by the following diagram

Spec(κ) = Spec(κ(m)) = Spec(κ(p1)) = Spec(κ(p2))

Spec(A3) Spec(A2)

Spec(A1) Spec(A1 ⊗R A1)

p2

p1

u

(a,b)

∆

Next we show that Rh is a local ring. Suppose (A,p) ∈ I is an object. By definition we have a

morphism (R,m)
f−→ (A,p) such that f −1(p) =m. Let p1, · · · ,pn ∈ Spec(A) be the other prime

ideals (different from p) in A which lie over m. We can choose s ∈ p1
⋂ · · ·⋂pn but s ∉ p. Then

(As ,pAs) ∈ I and it has exactly one maximal ideal lying over m, i.e. pAs . Since As/mAs is
unramified over R/mR and has only one prime ideal p/mA, we have pAs/mAs = 0, i.e. pAs =
mAs . Suppose x ∈ Rh , then there exists (A,p) with mA = p and x comes from xA ∈ A. If
x ∉mRh , then xA ∉mA = p. Thus xA

1 ∈ (AxA ,pAxA ) is invertible and its image in Rh is x. So x is
invertible Rh . This shows that Rh is local with maximal ideal mRh . Clearly Rh/mRh = κ. The
fact that Rh is Henselian follows from 4.3.

Theorem 4.7. Let (R,m,κ) be a local ring. Let κ⊆ κsep be a separable algebraic closure. There
exists a commutative diagram

R //

��

Rh

��

// R sh

��

κ // κ // κsep

with the following properties

1. the map Rh → R sh is local,

2. R sh is strictly henselian,
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3. R sh is a filtered colimit of étale R-algebras,

4. mR sh is the maximal ideal of R sh , and κsep = R sh/mR sh .

Proof. The proof is roughly the same as before, but here we take I as pairs (A,φ) with A an
étale R-algebra with a fixed point φ : Spec(ksep) → Spec(A).

5 THE ÉTALE FUNDAMENTAL GROUP (I) (16/11/2016)

In this lecture we would like to define the notion of Galois Category.

Definition 23. Let C be a category, and let F be a functor C → (Fsets), where (Fsets) denotes
the category of finite sets. We call the pair (C ,F ) a Galois category if it satisfy the following
axioms.

1. The category C has a final object and fibered products. (This is equivalent to saying
that C has finite projective limits.)

2. The category C has finite coproducts, and for any A ∈ C the quotient by a finite sub-
group G ⊆ Aut(A) exists.

3. Let u : Y1 → Y2 be a morphism in C . Then u factorises as a strict epimorphism followed
by a monomorphism

Y1 � Y ,→ Y2 = Y
∐

(Y2 \ Y )

which embeds the image Y as a direct summand of Y2,

4. The functor F : C → (Fsets) is left exact, i.e. it takes final object to final object and
fibered products to fibered products.

5. The functor F : C → (Fsets) commutes with finite direct sums, translates strict epi-
morphisms to epimorphisms, and commutes with quotient by finite subgroups of the
automorphism group.

6. If u : Y1 → Y2 induces an isomorphism F (u) : F (Y1) → F (Y2), then u is an isomorphism.

Theorem 5.1. Let X be a locally Noetherian scheme, and let x : Spec(k) → X be a geometric
point. Let Ét(X ) be the category of finite étale morphisms with target X , and let Fx be the
functor Ét(X ) → (Fsets) sending a finite étale morphism Y → X to the k-points of the k-scheme
f −1(x) := Y ×X Spec(k). Then (Ét(X ),Fx ) is a Galois category.

Proof. For axiom 1, the final object in Ét(X ) is X equipped with the identity structure map.
For the fibred product we just take it in the category of schemes and that would work.

For axiom 2, we take the disjoint union in the category of schemes. The quotient condition
follows from the theorem of quotients by finite flat group schemes, see for example Abelian
Varities, Chapter 4.
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For axiom 3, we just have to notice that u(Y1) is a both open and closed subscheme of Y2. then
we just have to take Y to be u(Y1). We know from the discussion of faithfully flat morphisms
of scheme that any faithfully flat morphism is a strict epimorphism.

For axiom 4, the final object in Ét(X ) is X equipped with the identity structure map, but in this
case f −1(x) is just Spec(k). For the fibred products we just have to notice that the category
of finite sets is equivalent to the category of finite étale schemes over k = k̄. So if one has a
fibred product in Ét(X ), then by taking fibered at x one gets a fibred product in Ét(Spec(k))
which gives, via the equivalence, a fibred product in (Fsets).

For axiom 5, the claims for finite diect sum and strict epimorphism are clear. The claim about
quotient follows again from the theorem of quotients by finite flat group schemes.

For axiom 6, we just have to remind you of 3.13.

Theorem 5.2. Let (C ,F ) be a Galois category. Then there is a profinite group Π, and if we
denoteΠ−Fsets the category of finite sets equipped with a continuous action fromΠ (we always
give finite sets the discrete topology), then there is an equivalence of categories

G : C ←−Π−Fsets

such that f ◦G = F , where f :Π−Fsets → Fsets is the forgetful functor.

Remark 5.3. A topological groupΠ is called profinite if it is isomorphic as a topological group
to lim←−−i∈I

Gi where I is a cofiltered category with Gi a finite group. Here the topology on
lim←−−i∈I

Gi is the coarsest topology so that all the projections lim←−−i∈I
Gi →Gi are continuous.

Proof. Step 1. The functor F is representable. We start with a definition:

Definition 24. Let D be any category. We can define Pro(D) to be the category whose objects
are functors I →D where I is a small cofiltered category. One can write an object P ∈ Pro(D)
in the form {Pi }i∈I . A morphism between {Pi }i∈I and {Q j } j∈J is defined as the following set

lim←−−
j∈J

lim−−→
i∈I

HomC (Pi ,Q j )

Indeed one can also embed Pro(D) into the presheaves of D by seeing {Pi }i∈I as the projective
limit of presheaves lim←−−i∈I

P i , where P i denotes the presheaf on D defined by Pi ∈D.

What we mean here is that there is an object P := {Pi }i∈I equipped with the following isomor-
phism of functors

F (−)
∼=−→ HomPro(C )(P,−)

In fact we can choose P so that all the transition mapsφ j i : P j → Pi are epimorphism, and we
can also assume that for any epimorphism λ : P j → Q there is some i ∈ I such that λ ∼= φ j i .
We denote the canonical projection map P → Pi in Pro(C ) as φi .

Step 2. The previously constructed Pi are connected and not equal to the initial object ;C .
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Definition 25. An object P ∈C is called connected if there is no isomorphism P ∼= A
∐

B with
both A and B are not ;C .

Step 3. Any morphism u : X → Y ∈C with X 6= ;C and Y connected is a strict epimorphism.
All endomorphism of a connected object is an automorphism.
Indeed, we can factorize u as X � Y ′ ,→ Y where the first is a strict epimorphism and the sec-
ond is an embedding of a direct summand. Since X 6= ;C , we have F (X ) 6= ;, so F (Y ′) 6= ;,
and therefore Y ′ 6= ;C . But Y is connected, so Y \ Y ′ = ;C , i.e. Y ′ ,→ Y is an isomorphism.
For the second claim we have to show that if u : X → X is any morphism, then u is an isomor-
phism. For this we may suppose that X 6= ;. Then F (u) is a surjective map of sets by the first
claim and axiom 5. But this implies that F (u) is an isomorphism as F (X ) is a finite set. Thus
by axiom 6 u is an isomorphism.

Step 4. The following conditions are equivalent.

(i) The map HomC (Pi ,Pi ) → HomPro(C )(P,Pi ) = F (Pi ) is surjective.

(ii) The map HomC (Pi ,Pi ) → HomPro(C )(P,Pi ) = F (Pi ) is bijective.

(iii) The group AutC (Pi ) acts transitively on F (Pi ).

(iv) The group AutC (Pi ) acts transitively and freely on F (Pi ).

Indeed (i) ⇔ (iii) and (ii) ⇔ (iv) follow from the fact that both (i) and (iii) are equivalent to the
following: For any φ : P → Pi , ∃ Pi

u−→ Pi ∈ AutC (Pi ) such that φi = φ ◦u. (iii) ⇔ (iv) follows
from the fact that φi : P → Pi is, in the obvious sense, an epimorphism. Thus if we have
u, v : Pi → Pi and if u ◦φi = v ◦φi then u = v .

Definition 26. An object Pi is called Galois if it satisfies one of the above conditions.

Step 5. For any X ∈ C there exists Pi Galois such that for all u ∈ HomPro(C )(P, X ) there is

a factorization P
φi−→ Pi → X of u. In particular for P

φ j−→ P j there exists Pi Galois and a
morphism φi j : Pi → P j . Now let I ′ ⊆ I be the full subcategory so that Pi is Galois for all
i ∈ I ′. Then we have HomPro(C )(P,P ) = lim←−−i∈I

HomPro(C )(P,Pi ) = lim←−−i∈I ′
HomPro(C )(P,Pi ) =

lim←−−i∈I
HomC (Pi ,Pi ) = lim←−−i∈I

AutC (Pi ). The equality also reveals that

HomPro(C )(P,P ) = AutPro(C )(P )

Step 6. Define Π to be Aut(F ) = AutPro(C )(P ) = lim←−−i∈I
AutC (Pi ). Clearly Π acts on F (X ) for

each X ∈ C . Step 5 actually shows that the action of Aut(F ) on F (X ) factors through a fi-
nite quotient Aut(F ) → AutC (Pi ). Thus the action is continuous. Now we obtain a functor
C →Π−Fsets.

Step 7. The above functor is an equivalence.

28



Definition 27. Let X be a connected locally Noetherian scheme. Let x : Spec(k) → X be a
geometric point. We call πét

1 (X , x) the étale fundamental group of (X , x) if πét
1 (X , x) is the

profinite group associated with the Galois category (Ét(X ),Fx ).

Example 5.4. If X = Spec(k) and x : Spec(k̄) → X , then {Pi }i∈I ′ is just the system of finite
Galois extensions of k inside the fixed algebraic closure k̄, so

πét
1 (X , x) = Aut(Fx ) = lim←−−

i∈I ′
Aut(Pi ) = lim←−−

i∈I ′
Gal(Pi /k) = Gal(k)

6 THE ÉTALE FUNDAMENTAL GROUP (II) (23/11/2016)

The construction of the projective system P = {Pi }i∈I ∈ Pro(C ).
Let I be the category of pairs (P,ξ) where P ∈ C is connected and P 6= ;C , and ξ ∈ F (P ). A
typical example would be when C = Ét(X ) and x : Spec(k) → X a geometric point. Then a
pair (P,ξ) is just a commutative diagram

Y

��

Spec(k)
x //

ξ
;;

X

A morphism (P1,ξ1) → (P2,ξ2) is a morphism P1 → P2 in C such that F (P1) → F (P2) sends
ξ1 → ξ2. If C = Ét(X ), then a morphism is just a morphism of étale schemes over X which
preserves the prescribed point.

Lemma 6.1. 1. If (P,ξ) ∈ I , if P ′ ,→ P is a monomorphism in C and ξ′ ∈ F (P ′) such that
F (ξ′) = ξ, then P ′ = P.

2. If (P,ξ) ∈ I , (P ′,ξ′) is a pair with P ′ ∈ C , then there is at most one morphism (P,ξ) →
(P ′,ξ′).

3. If (P,ξ) ∈ I , (P ′,ξ′) u−→ (P,ξ) with P ′ ∈C , then u : P ′ → P is an epimorphism.

Proof. For 1, P ′ → P factorizes as P ′ � Q ,→ P , where � is a strict epimorphism and ,→
embeds Q as a direct summand of P . Since P ′ → P is monomorphism, P ′ → Q is also a
monomorphism. This implies that F (P ′) → F (Q) is injective. But F (P ′) → F (Q) is already
surjective by axiom 4, so it is an isomorphism. By axiom 6, P ′ → P is an isomorphism.

For 2, Suppose u1,u2 : (P,ξ) → (P ′,ξ′) are two morphisms. Since we have finite limits in C , we
can take the kernel Q of u1 and u2, so that we get the exact sequence

Q // P

u1
##

u2

==P
′
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Since u1(ξ) = ξ′ = u2(ξ), we see that ξ ∈ F(P ) is contained in F (Q) ⊆ F (P ). Thus (Q,ξ) ⊆ (P,ξ),
and this implies that Q = P by 1). Thus u1 = u2.

The third is trivial.

Now we define the forgetful functor P : I →C sending (P,ξ) 7→ P to be the pro-object {Pi }i∈I ∈
Pro(C ).

Lemma 6.2. 1. For any pair (P,ξ) with P ∈ C , ξ ∈ F (P ), there exists (Q,η) ∈ I and a map
(Q,η) → (P,ξ).

2. The category I is a cofiltered category.

3. The transition maps P j → Pi are epimorpohisms.

4. For any connected object P ∈C , there exists i ∈ I such that Pi
∼= P.

Proof. Only 1 deserves an argument. 2 follows from 1, and 3,4 are trivial. Let P ∈ C If
P = P1

∐
P2 and Pi 6= ;C , then ξ ∈ F (P ) = F (P1)

∐
F (P2). Say, ξ ∈ F (P1). Then we have

(P1,ξ) ⊆ (P,ξ), and F (P1) ( F (P2). Using induction on the number of elements in F (P ) we
can conclude the proof.

Proposition 6.3. The object P := {Pi }i∈I represents F .

Proof. By Yoneda lemma a pair (T,ξ) is equivalent to a morphism of functors T → F , where
T (−) = Hom(T,−). Thus the system {P i }i∈I defines a system of compatible maps of functors

P i
//

��

F

P j
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This defines a map of functors φ : lim←−−i∈I
P i → F . Since for any T ∈C we have

(lim←−−
i∈I

P i )(T ) = lim←−−
i∈I

HomC (Pi ,T ) = HomPro(C )(P,T )

Thus it is enough to show that φ is an isomorphism.

The map φ is surjective. Take a pair (T,η) with T ∈ C and η ∈ F (T ) we need to show that η
comes from (lim←−−i∈I

P i )(T ). Since there exists (Q,ξ) → (T,η) with Q connected and if the claim
works for (Q,ξ) then we are done, we could replace (T,η) by (Q,ξ). Now let i = (Q,ξ) ∈ I . Then
Pi =Q and we have a diagram

P i
ξ

''
��

lim←−−i∈I
P i

φ
// F
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Thus clearly we have id 7→ ξ under P i (Pi ) = Hom(Pi ,Pi ) → F (Pi ).

The map φ is injective. Suppose that ξ1,ξ2 ∈ (lim←−−i∈I
P i )(T ) such that φ(ξ1) = φ(ξ2). We need

to show that ξ1 = ξ2. Since
(lim←−−

i∈I

P i )(T ) = lim←−−
i∈I

HomC (Pi ,T )

We may assume that ξ1,ξ2 come from η1,η2 ∈ HomC (Pi ,T ) for i large. Since φ(η1) = φ(η2),
we have a morphism

(Pi ,ξ)

η1

,,

η2

22
(T,φ(η1) =φ(η2))

By 6.1 we have η1 = η2

Recall that an object Pi in {Pi }i∈I is called Galois if it satisfies one of the following equivalent
conditions.

(i) The map HomC (Pi ,Pi ) → HomPro(C )(P,Pi ) = F (Pi ) is surjective.

(ii) The map HomC (Pi ,Pi ) → HomPro(C )(P,Pi ) = F (Pi ) is bijective.

(iii) The group AutC (Pi ) acts transitively on F (Pi ).

(iv) The group AutC (Pi ) acts transitively and freely on F (Pi ).

Definition 28. An object A ∈ C is called Galois if there is a Galois object Pi in the projective
system such that A ∼= Pi .

Proposition 6.4. Let f : Y → X ∈ Ét(X ) be an object. The following statements are equivalent.

1. The object f : Y → X ∈ Ét(X ) is Galois.

2. The object f : Y → X ∈ Ét(X ) is connected and #(AutX (Y )) is equal to the degree of f .

3. The object f : Y → X ∈ Ét(X ) is connected and f is a torsor under the abstract group
G := AutX (Y ), i.e. Y /G = X .

Proof. One just has to notice that in Ét(X ) the fiber functor Fx takes f to its fiber at x. So the
degree of f is equal to the cardinality of Fx (Y ).

Recall that For i = (Pi ,ξi ) ∈ I there exists (P j ,ξ j ) with P j Galois and a morphism (P j ,ξ j ) →
(Pi ,ξi ). We take I ′ ⊆ I to be the full subcategory consisting of Galois objects. Clearly P =
{Pi }i∈I = {Pi }i∈I ′ .

Theorem 6.5. Let (C ,F ) be a Galois category, and let Π be the corresponding profinite group.

1. There is a one-to-one correspondence between the set of isomorphic classes of pairs (P,ξ),
where P ∈C is connected and ξ ∈ F (P ), and the open subgroups of Π.
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2. There is a one-to-one correspondence between the set of isomorphic classes of pairs (P,ξ),
where P ∈C is connected and ξ ∈ F (P ), and the open normal subgroups of Π.

Proof. For the first statement one just have to notice that P ∈ C Galois ⇔ F (P ) ∈Π−Fsets is
connected ⇔Π acts transitively on F (P ).
For the second statement we have to show that the open subgroup H ⊆ Π corresponding
to (P,ξ) is normal if and only if P is Galois. First suppose that P ∈ C is Galois, so Π/H =
{H , g1H , g2H , · · · , gn H } is also Galois as an object in Π−Fsets. Suppose a ∈ AutΠ−Fsets(Π/H),
then a(H) = gi H , and for any g ∈ Π we have a(g H) = a(g (H)) = g (a(H)) = g gi H . Thus we
know that a is determined by its value on H , i.e. AutΠ−Fsets(Π/H) ⊆Π/H . But since both sides
have the same cardinality we know that the ⊆ is actually =. Thus for any gi H there exists
a ∈ AutΠ−Fsets(Π/H) such that a(H) = gi H . Thus there exists h ∈ H such that gi H = hgi H .
Hence gi H g−1

i ⊆ H , i.e. H ⊆Π is normal.
Conversely if H ⊆Π is normal, then Π/H is a group. Then we have

AutΠ−Fsets(Π/H) = AutΠ/H−Fsets(Π/H) =Π/H

Theorem 6.6. The functor sending an object in Pro(Π−Fsets) to its projective limit in the cat-
egory of topological spaces equipped with a continuous Π-action induces an equivalence be-
tween Pro(Π−Fsets) and the category of Hausdorf, quasi-compact, totally disconnected topo-
logical spaces equipped with a continuous Π-action.

Proof. See [SGA1, Proposition 5.2, pp.127].

Corollary 6.7. The isomorphism class of pairs (P,ξ), where P is a connected object in Pro(Π−
Fsets) and ξ is an element in the corresponding compact totally disconnected topological space
on which Π-acts continuously, is in one-to-one correspondence with closed subgroups of Π.

Proof. This follows readily from 6.6.

Corollary 6.8. If F,G are two fiber functors of C , then F ∼=G.

Proof. Let (C ,F ) ∼= (Π−Fsets,F ). Since there exists a connected object P := {Pi }i∈I in Pro(C )
with Pi Galois such that G(−) = HomPro(C )(P,−). Then there exists H ⊆Π closed which corre-
sponds to P with an arbitrarily chosen point ξ ∈ F (P ) (Here we identify P via 6.6 to a Π-space
and F is the forgetful functor). Now for any normal open subgroup N ⊆ Π there is an iso-
morphism (Pi ,ξ) ∼= (Π/N ,e), where e ∈Π/N is the unit. Thus the base point preserving map
P → Pi provides a map Π/H → Π/N which sends e 7→ e. In this way we get an inclusion
H ⊆ N . Thus H is contained in all normal open subgroups of Π, and is therefore trivial. Now
(P,ξ) corresponds to (Π,e), and the pointed pro-object which represents F also corresponds
to (Π,e), thus they have to be isomorphic. This shows that F ∼=G .

Corollary 6.9. If X is a locally Noetherian connected scheme, and if x1, x2 : Spec(k) → X are
two geometric points, then Fx1

∼= Fx2 . Thus we have an isomorphism πét
1 (X , x1) = Aut(Fx1 ) ∼=

Aut(Fx2 ) =πét
1 (X , x2).
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Proposition 6.10. If (C ,F ), (C ′,F ′) are Galois categories, and if H : (C ,F ) → (C ′,F ′) is a func-
tor, then H induces a continuous map Π(C ,F ) →Π(C ′,F ′).

Proof. See [SGA1, Proposition 6.1, pp. 134].

Theorem 6.11. (Riemann existence theorem) Let X be a normal connected scheme of finite
type over C. Then the association

(Y → X ) 7→ (Y an → X an)

induces an equivalence between Ét(X ) and finite topological covers of X an . Thus if x is a C
rational point of X , then πét

1 (X , x) is the profinite completion of the topological fundamental

group πtop
1 (X an , x).

Proof. See Hartshorne’s Algebraic Geometry, Appendix B, pp. 44, Theorem 3.2.

Theorem 6.12. Let f : X → Y be a proper separable morphism with Y a locally Noetherian
connected scheme. Suppose that OY → f∗OX is an isomorphism. Then for any geometric point
x : Spec(k) → X with y := f (x), we have an exact sequence

πét
1 (X y , x) →πét

1 (X , x) →πét
1 (Y , y) → 1

where X y is the fiber of f at y.

Proof. See [SGA1, Exposé X, Corollaire 1.4, pp. 263].

Theorem 6.13. Let X be a geometrically connected k-scheme with a geometric point

x : Spec(k̄) → X

Suppose that X ×k k̄ is Noetherian. Then we have an exact sequence

1 →πét
1 (X̄ , x̄) →πét

1 (X , x) →πét
1 (k, x) = Gal(k) → 1

where x̄ is any lift of x.

Proof. See [SGA1, Exposé IX, Théorèm 6.1, pp. 253].

7 THE GROTHENDIECK TOPOLOGY, SITES, SHEAVES (30/11/2016)

In this section we fix a category E , and set Ê the category of presheaves on E , i.e. the con-
travariant functors from E to the category of sets.

Definition 29. A topology on E is an association, to each S ∈ E we associate a non-empty set
J (S), which is the subset of the following set

{ R | R ⊆ S an inclusion in the category Ê }

i.e. the set of sub presheaves of S. The association S 7→ J (S) has to satisfy the following axioms:

33



1. For any arrow T → S ∈ E and any R ∈ J (S), T ×S R as a sub presheaf of T is in J (T ).

2. For any subsheaf R ′ ⊆ S and any R ⊆ S which is contained in J (S), one has R ′ ∈ J (S) as
long as for each T → R ⊆ S (where T ∈ E) the pullback T ×S R is J (T ).

We call an element of J (S) a refinement of S. We call the pair (E , J ) a site.

Lemma 7.1. (i) The intersection of two refinements of S is still a refinement;

(ii) A sub presheaf of S which contains a refinement of S is a refinement.
In particular the biggest sub presheaf S = S is in J (S).

Proof. For (i) suppose that R1,R2 ∈ J (S). Then for any T → R2 ⊆ S we have T ×S (R1 ∩R2) =
T ×S R1. By 29 axiom 1, T ×S R1 is in J (T ), and by 29 axiom 2, we have R1 ∩R2 ∈ J (S).
For (ii) suppose that R1 ⊆ R and R1 ∈ J (S). We have for any T → R1 ⊆ S, T ×S R = T ×S R1. By
axiom (1) T ×S R ∈ J (T ) thus by axiom (2) R ∈ J (S).

Definition 30. A pretopology on E is an association: To each S ∈ E we associate a set Cov(S)
of covers of S whose elements are of the form S = (Si → S)i∈I . The association has to satisfy
the following axioms

1. For any S ∈ E , any (Si → S)i∈I ∈ Cov(S) and any T → S ∈ E , Ti := T ×S Si exist and
(Ti → T )i∈I is in Cov(T ).

2. If (Si → S)i∈I ∈ Cov(S) and (Si j → Si ) j∈J ∈ Cov(Si ), then we have (Si j → S)i∈I , j∈J ∈
Cov(S).

3. If S ∈ E , then idS : S = S is in Cov(S).

Construction. Given a cover (Si
ui−→ S)i∈I ∈ Cov(S) set ui (Si ) ⊆ S the image of Si under ui .

Let R ⊆ S be the union of ui (Si ) of all i inside S. We collect all these R ⊆ S which are defined
by elements of Cov(X ) and denote it by J ′(S). The association S 7→ J ′(S) is in general not a
topology for E . But we take the smallest topology J on E containing J ′(S) for each S ∈ E and
call it the topology generated by the pretopology Cov.

Example 7.2. 1. Let X be a topological space. Let E be the category of open subsetes
U ⊆ X with inclusions as morphisms. For each U ∈ E , a cover of U is just a familiy of
open subsets Ui ⊆U such that ∪i∈IUi =U .

2. Let X be a scheme. Let E be the category of étale morphisms U → X with maps of
X -schemes as morphisms. For each U → X ∈ E , a cover of U → X is just a familiy of
arrows

Ui

  

ui // U

��

X

such that ∪i∈I ui (Ui ) =U .
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Definition 31. Let (E , J ) be a site, and let F ∈ Ê be a presheaf. We call F a sheaf (resp. a
separated presheaf) if for all S ∈ E and all R ∈ J (S) the natural morphism

HomÊ (S,F ) → HomÊ (R,F )

is an isomorphism (resp. injective).

Proposition 7.3. Let F ∈ Ê be a presheaf. For all S ∈ E, let J (S) be the set of sub presheaves of
R ⊆ S such that for any T → S the natural map

HomÊ (T ,F ) → HomÊ (T ×S R,F )

is an isomorphism (resp. injective). Then the association S 7→ J (S) is a topology on E.

Proof. The axiom 1 of 29 follows from the construction, so we only have to show axiom 2.
Axiom 2 follows from the following lemma:

Lemma 7.4. (a) If R1 ⊆ R2 ⊆ S, if for any T → R2 ⊆ S we have T ×S R1 ∈ J (T ) and R2 ∈ J (S).

(b) If R1 ⊆ R2 ⊆ S, and if R1 ∈ J (S), then R2 ∈ J (S).

Proof. Let’s prove (a), (b) simultaneously. Note that for both (a) and (b) we have for any T →
R2, the following morphism

HomÊ (T ,F ) → HomÊ (T ×S R1,F ) = HomÊ (T ×R2 R1,F )

is an isomorphism (resp. injective). This would imply that the natural map

λ : HomÊ (R2,F ) → HomÊ (R1,F )

is an isomorphism (resp. injective). For example, let’s prove that λ is injective. Suppose
a,b ∈ HomÊ (R2,F ) be two different elements. Since a 6= b, there exist T ∈ E and x ∈ R(T ) such
that a(x) 6= b(x). By Yoneda’s Lemma x corresponds to a map x∗ : HomÊ (R2,F ) → HomÊ (T ,F )
which sends a,b to the functors that correspond to a(x),b(x). Now look at the commutative
diagram

HomÊ (R2,F )
λ //

x∗

��

HomÊ (R1,F )

φ

��

HomÊ (T ,F )
∼= // HomÊ (T ×R2 R1,F )

Since a(x) 6= b(x), x∗(a) 6= x∗(b). Thus φ◦λ(a) 6= φ◦λ(b). So we have λ(a) 6= λ(b). Now look
at the diagram

HomÊ (R2,F )
λ // HomÊ (R1,F )

HomÊ (S,F )

α
77

β

gg

Since λ is an isomorphism α is an isomorphism iff β is an isomorphism. Note that our argu-
ment is stable by base change. Thus R1 ∈ J (S) iff R1 ∈ J (S) for both (a) and (b).
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For the proposition, we take R ∩R ′ ⊆ R and R ′∩R ⊆ R ′. Claim (a) implies that R ∩R ′ ∈ J (S),
claim (b) then implies that R ′ ∈ J (S).

Corollary 7.5. Let Cov be a pretopology on E, and let F ∈ Ê . We have F is a sheaf (resp. sepa-
rated presheaf) on E if and only if for all cover S := (Si → S)i∈I the sequence

(∗) F (S) →Πi∈I F (Si )⇒Πi , j∈I F (Si ×S S j )

is exact.

Proof. Let’s just prove the sheaf case because the other case is actually the same. Let R ⊆ S be
the sub presheaf corresponding to the cover S . Then we have an exact sequence

Hom(R,F ) →Πi∈I Hom(Si ,F )⇒Πi , j∈I Hom(Si ×S S j ,F )

By Yoneda lemma we have that (∗) is exact iff Hom(R,F ) = Hom(S,F ). Thus (∗) is exact iff all
elements in J ′(S) are contained in the topology constructed in 7.3, but the last condition is
equivalent to that the topology generated by Cov is contained in the topology constructed in
7.3, i.e. F is a sheaf on the topology generated by E .

Corollary 7.6. If {Fi }i∈I is a collection of elements of Ê , then the association

S 7→ J (S) := {R ⊆ S|∀T → S, Hom(T ×S R,Fi )
∼=−→ Hom(T ,Fi ) for all i }

defines a topology on E. In particular, if Fi are taken to be the collection of all representable
presheaves on E, then the resulting topology is called the canonical topology on E.

Proof. Clear.

Theorem 7.7. Let (E , J ) be a site. Let Ẽ ⊆ Ê be the full subcategory consisting of presheaves
which are sheaves. Then the forgetful functor i : Ẽ → Ê admits a left adjoint a : Ê → Ẽ which is
compatible with finite projective limits.

Proof. For a proof we refer to [SGA4, Exposé II, §3]. But we actually recommend a proof in
the case when J comes from a pretopology Cov. One can find the details of the proof in Notes
on Grothendieck topologies, fibered categories and descent theory, 2.3.7, pp. 39. Note that
by exercise 10.5 any topology comes from a pretopology. Thus this proof does not reduce the
generality.

8 TOPOI (07/12/2016)

In this section we fix the following notations: If C is a category, we denote Ĉ the category
presheaves on C . In (C , J ) is a site, we denote C̃ the category of sheaves on (C , J ). We have
natural functors η : C → Ĉ sending an object to a representable presheaf. There is also a func-
tor i : C̃ → Ĉ and a functor a : Ĉ → C̃ , the forgetful functor and the sheafification functor,
which are adjoint to each other.
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Definition 32. Let X ,Y be two sites. A functor f −1 : Y → X is called continuous if for any
F ∈ X̃ the presheaf f̃∗F ∈ Ỹ which is defined as F ◦ f −1 is a sheaf.

Proposition 8.1. Suppose that f −1 : Y → X is a functor. Then the functor f̂∗ : X̂ → Ŷ sending
F 7→F ◦ f −1 has a left adjoint f̂ ∗.

Proof. Define f̂ ∗ : Ŷ → X̂ as follows. Given U ∈ X we define the category IU to be the category
of pairs (U ′,φ) with U ′ ∈ Y and φ : U → f −1(U ′). A morphism between two objects (U1,φ1) →
(U2,φ2) consists of a morphism a : U1 →U2 in Y and a commutative diagram

f −1(U1)

f −1(a)

��

U

φ2
''

φ1

77

f −1(U2)

Given F ∈ Ŷ we define f̂ ∗F to be the association U 7→ lim−−→i∈IU
F (Ui ), where i = (Ui ,φi ). Now

consider a : U →V in Y . We want to define

f̂ ∗F (V ) = lim−−→
i∈IV

F (Vi ) −→ lim−−→
i∈IU

F (Vi ) = f̂ ∗F (U )

This is obtained as follows. Given an index (Vi ,φi ) ∈ IV , we obtain an index (Vi ,φi ◦ a) ∈ IU .
This index induces a map of sets F (Vi ) −→ lim−−→i∈IU

F (Ui ). If we have a morphism (Vi1 ,φi1 ) →
(Vi2 ,φi2 ), then there is a commutative diagram

f −1(Vi1 )

f −1(a)

��

U
a // V

φi2 ''

φi1

77

f −1(Vi2 )

that is a morphism (Vi1 ,φi1 ◦a) → (Vi2 ,φi2 ◦a) in IU . Thus we have a commutative diagram

F (Vi1 )

))

lim−−→i∈IU
F (Ui )

F (Vi2 )

OO

55
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This induces the desired map by the universal property of the inductive limit. Thus f̂ ∗F ∈ X̂ .
Now let’s show the adjointness. First consider V ∈ Y then (V , id f −1(V )) ∈ I f −1(V ), where id f −1(V ) :

f −1(V )
=−→ f −1(V ). This index defines a map F (V ) −→ f̂ ∗F ( f −1(V )) = lim−−→i∈I f −1(V )

F (Vi ). If we

have a : U →V , the diagram

f −1(V )

f −1(a)

��

f −1(V )

f −1(a)

��

f −1(U ) f −1(U )

induces the commutative diagram

F (V ) //

��

f̂ ∗F ( f −1(V )) = lim−−→i∈I f −1(V )
F (Vi )

��

F (U ) // f̂ ∗F ( f −1(U )) = lim−−→i∈I f −1(U )
F (Ui )

Thus we get a map ψ : F → f̂∗ f̂ ∗F . Given G ∈ X̂ , U ∈ X , (U ′,φ) ∈ IU , there is a morphism
G ( f −1(U ′)) →G (U ) which is induced by φ, and if we have (U1,φ1) → (U2,φ2) ∈ IU , then there
will be a commutative diagram

G ( f −1(U1))

((

G (U )

G ( f −1(U2))

OO

66

Thus we have a unique map lim−−→i∈IU
G ( f −1(Ui )) = lim−−→i∈IU

f̂∗G (Ui ) → G (U ). If a : U → V is a

morphism in X , then we have a commutative diagram

lim−−→i∈IV
f̂∗G (Vi ) //

��

G (V )

��

lim−−→i∈IU
f̂∗G (Ui ) // G (U )
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In this way we get a map ϕ : f̂ ∗ f̂∗G →G . Now we get maps

λ1 : HomX̂ ( f̂ ∗F ,G ) → HomŶ (F , f̂∗G ) ( f̂ ∗F →G ) 7→ (F
ψ−→ f̂∗ f̂ ∗F → f̂∗G )

λ2 : HomŶ (F , f̂∗G ) → HomX̂ ( f̂ ∗F ,G ) (F → f̂∗G ) 7→ ( f̂ ∗F → f̂ ∗ f̂∗G
ϕ−→G )

One checks that λ1 ◦λ2 and λ2 ◦λ1 are identities, so they are isomorphisms.

Theorem 8.2. Suppose that f −1 : Y → X is a continuous functor between two sites. Then the
functor f̃∗ : X̃ → Ỹ sending F 7→F ◦ f −1 has a left adjoint f̃ ∗.

Proof. Given F ∈ Ỹ we define f̃ ∗F := a f̂ ∗i (F ). Now by the adjointness of a, i and f̂ ∗, f̂∗ we
have the following equations

HomX̃ (a f̂ ∗i (F ),G ) = HomX̂ ( f̂ ∗i (F ), i (G ))

= HomŶ (i (F ), f̂∗i (G ))

= HomŶ (i (F ), i ( f̃∗G ))

= HomỸ (F , f̃∗G )

which finishes the proof.

Definition 33. Let X ,Y be two sites. A morphism of sites

f : X → Y

consists of a continuous functor f −1 : Y → X such that f̃∗ : X̃ → Ỹ admits a left adjoint f̃ ∗ :
Ỹ → X̃ which commutes with finite projective limits.

Lemma 8.3. If F ∈ Ŷ , then we have a f̂ ∗(F ) = f̃ ∗a(F ).

Proof. Let G ∈ X̃ . We have the following equations

HomX̃ ( f̃ ∗a(F ),G ) = HomỸ (a(F ), f̃∗(G ))

= HomŶ (F , i ( f̃∗G ))

= HomŶ (F , f̂∗i (G ))

= HomŶ ( f̂ ∗F , i (G ))

= HomỸ (a f̂ ∗F ,G )

which finish the proof.

Lemma 8.4. If f : X → Y is a morphism of sites, then we have a commutative diagram:

X
aη
// X̃

Y
aη
//

f −1

OO

Ỹ

f̃ ∗
OO
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Proof. Let V ∈ Y . We have V ∈ Ŷ . For any G ∈ X̃ we have the following equations.

HomX̃ ( f̃ ∗a(V ),G ) = HomX̃ (a( f̂ ∗(V )),G )

= HomX̂ ( f̂ ∗(V ), i (G ))

= HomŶ (V , f̂∗i (G ))

= f̂∗i (G )(V )

=G ( f −1(V ))

= HomX̂ ( f −1(V ), i (G ))

= HomX̃ (a( f −1(V )),G )

Thus we have f̃ ∗a(η(V )) = a(η( f −1(V ))), and this finishes the proof.

Example 8.5. 1. Let f : X → Y be a map of topological spaces. Let EX (resp. EY ) be the
category of opens of X (resp. Y ). Then we have a map f −1 : EY → EX sending V ∈ EY to
f −1(V ). It is obviously continuous and hence admits a left adjoint. See Exercise 11 that
this defines a morphism of sites.

2. Let f : X → Y be a map of schemes. Then the pullback functor f −1 : Yét → Xét defines
a continuous functor. Thus we get a pair of adjoint functors. See Exercise 11 that this
defines a morphism of sites.

Definition 34. A site is called standard if it is coarser than the canonical topology and finite
fibred products exist in the category.

Theorem 8.6. Let T be a category, then the following are equivalent.

1. There exists a site (E , J ) such that T ∼= Ẽ .

2. There exists a standard a site (E , J ) such that T ∼= Ẽ .

3. Equip T with its canonical topology T becomes a site in which all the sheaves are repre-
sentable.

4. Equip T with its canonical topology T becomes a site, and it satisfies the following ax-
ioms

a) Projective limits exist.

b) Direct sums exist and are universal and disjoint.

c) All equivalence relations are effective and universal.

Proof. For an explaination of the terminologies see [Gir, 2.6.2, pp. 8]. For a proof the theorem
see [SGA4, Exposé IV, §1].

Definition 35. A category T is called a topos if it satisfies one of the above four conditions.
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Theorem 8.7. Let E be a category. Then there exists a bijection between the topologies on E
and the full subcategory i : T ⊆ Ê which is a topos such that the inclusion i admits a left adjoint
which commutes with finite projective limits.

Proof. We have seen the association in the two directions. If we have a topology J on E , then
T := Ẽ ⊆ Ê . If we have a topos with the embedding, then we take the finest topology so that
all the presheaves in T are sheaves.

Theorem 8.8. Let X ,Y be topoi, and let f ∗ : Y → X a functor. Then the following are equiva-
lent.

1. The functor f ∗ commutes with finite projective limit and arbitrary colimits.

2. The functor f ∗ commutes with finite projective limit and has a right adjoint.

Definition 36. A morphism of topoi X → Y is a pair of adjoint functors ( f ∗, f∗) such that f ∗

commutes with finite projective limits.

9 RINGED TOPOI (14/12/2016)

Let T be a topos. Then by definition there is a site (E , J ) and T is equivalent to Ẽ . The category
Ẽ is the sheaf of sets on (E , J ). Now we are going to define sheaves of abelian groups and sheaf
of rings. It turns out that once Ẽ is fixed the category of sheaves of abelian groups or rings does
not depend on (E , J ) any more.

Definition 37. Let C be a category which admits finite projective limits. An object O ∈ C

is called a ring object if there are operations m, a : O ×O → O , a zero morphism o : pt → O ,
a unit u : pt → O , and an additive inverse i : O → O . The morphisms (m, a,o,u, i ) subject
to the unique axioms so that when we see O as an object O ∈ Ĉ it becomes a presheaf of
rings on C with respect to (m, a,o,u, i ). The ringed objects of C form a category in which
a morphism between two ringed objects (O1,m1, a1,o1,u1, i1), (O2,m2, a2,o2,u2, i2) is just a
morphism O1 → O2 in C which is compatible with all the prescribed morphisms. We use
Ring(C ) to denote the category of ring objects in C . Similarly one can define group (resp.
abelian group) objects in C .

Definition 38. Let T be a topos, and let O ∈ Ring(T ). We call the pair (T,O ) a ringed topos.

Example 9.1. 1. If T is the category of sets, then Ring(T ) is the category of rings.

2. If (E , J ) is a site, then the constant functor A 7→ Z for all A ∈ E defines a constant
presheaf of rings on E . The associated sheaf OZ with all its multiplication, addition,
0,unit, inverse structures is a ring object in Ẽ . The pair (Ẽ ,OZ) is a ringed topos.

3. If (X ,OX ) is a ringed space, then this is a ringed topos.
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Definition 39. Let C be a category which admits finite projective limits. Let O be a ringed
object in C . We define an O-module object an abelian group object F in C together with a
morphism ρ : O ×F → F such that for each U ∈ C , F (U ) is a module under the ring O (U )
with the action ρ(U ). If (T,O ) is a ringed topos, then an O-module is just an O-module ob-
ject in T . A morphism between two O-module objects (F ,ρ1), (G ,ρ2) is just a morphism of
abelian group objects F → G which is compatible with ρ1,ρ2. The category of O-module
objects in T is denoted by Mod(T,O ).

Example 9.2. It is clear that an OZ-module object in Ẽ is just an abelian group object in Ẽ .

Proposition 9.3. Let (E , J ) be a site, and let O ∈ Ring(Ẽ). Then the adjoint pair i : Ẽ → Ê and
a : Ê → Ẽ induces an adjoint pair between the category of presheaves of O-modules and the
category Mod(Ẽ ,O ), which we still denote by i , a. Moreover the functor a commutes with finite
projective limits.

Proof. Let F be an O-module in Ê , and let G ∈ Mod(Ẽ ,O ). We have shown that

HomẼ (a(F ),G )
ϕ⇐==⇒
φ

HomÊ (F , i (G ))

Since i , a all commute with finite projective limits, the functors for sets induce the corre-
sponding functors for modules. Note that the set of morphisms of O-modules is a subset of
morphisms of (pre)sheaves of sets. It is enough to show that map of rings goes to map of rings
in both directions. The maps ϕ,φ were defined by the adjunctions

F → i (a(F ))

and
a(i (G )) →G

But since the adjunctions are morphisms of O-modules,φ,ϕ send modules maps to modules
maps. The fact that a commutes with finite projective limits follows from the fact that the
canonical morphism between sheaves of sets is an isomorphism iff it is an isomorphism as
sheaves of modules.

Proposition 9.4. Let E be a category. Then Mod(Ẽ ,O ) is an abelian category.

Proof. Follows readily from the above proposition and the fact that presheaves of O-modules
is an abelian category.

Definition 40. Let (T1,O1), (T2,O2) be two ringed topoi. A morphism of ringed topoi is a
morphism of topoi f := ( f ∗, f∗) plus a map of ring objects f # : f ∗O2 → O1, or equivalently
O2 → f∗O1. So it is a pair ( f , f #).

Proposition 9.5. Let ( f , f #) : (T1,O1) → (T2,O2) be a morphism of ringed topoi. Then the map
( f ∗, f∗) : T1 → T2 of topoi induces two adjoint functors

Mod(T1,O1) ⇐⇒ Mod(T2,O2)

which are still denoted by f ∗ and f∗. Moreover f∗ is left exact and f ∗ is right exact.
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Proof. f∗ : Mod(T1,O1) =⇒ Mod(T2,O2) is defined using the obvious map f 1# and the pull-
back

f ∗ : Mod(T2,O2) ⇐⇒ Mod(T1,O1)

is defined by F 7→F ⊗ f −1O2
O1. Note that there is a confusion between the ringed topoi pull-

back and the set topoi pullback. Whenever such a confusion exists we will use f −1 to denote
the set topoi pullback. The proof of the adjointness is basically the same as 9.3. The last
statement follows from the general property of adjoint functors.

Example 9.6. 1. If f : (X ,OX ) → (Y ,OY ) is a morphism of ringed spaces, then we have the
usual adjoint pairs ( f ∗, f∗).

2. If X is a scheme, then the functor Xét → (Rings) sending U → X to Γ(U ,OU ) is a sheaf of
rings. We call this sheaf of rings OXét . If X → Y is a map of schemes then there will be a
map of ringed topoi (X̃ét,OXét ) → (Ỹét,OYét ).

10 COHOMOLOGY OF RINGED TOPOS (04/01/2017)

Let A be an abelian category.

Definition 41. An object I ∈ A is called an injective object if for any injective morphism
f : A → B the induced map of groups

HomA (B , I ) −→ HomA (A, I )

is surjective. We say that the category A has enough injectives if any object A ∈A admits an
injection A ,→ I where I is an injective object.

Theorem 10.1. If (T,O ) is a ringed topos, then Mod(T,O ) has enough injectives.

Proof. Suppose (E , J ) is a site such that T = Ẽ . By Stack Project (Ẽ ,OZ) has enough injectives.
Note that the forgetful functor

ψ : Mod(T,O ) −→ Mod(T,OZ)

has a left adjoint −⊗OZ O

ϕ : Mod(T,OZ) −→ Mod(T,O )

and a right adjoint
φ : Mod(T,OZ) −→ Mod(T,O )

sending an object M ∈ Mod(T,OZ) to H omMod(T,OZ)(O , M). Now let M be in Mod(T,O ), then
δ :ψ(M) ,→ I , where I is an injective object in Mod(T,OZ). Applying φ to δ we get

0 →φ◦ψ(M) →φ(I )

Since for any injection A ,→ B ∈ Mod(T,O ) we want to show that

HomMod(T,O )(B ,φ(I )) −→ HomMod(T,O )(A,φ(I ))

43

http://stacks.math.columbia.edu/tag/01DL


is surjective. But the above is equal to

HomMod(T,OZ)(ψ(B), I ) −→ HomMod(T,OZ)(ψ(A), I )

which is a surjection because ψ is exact (it admits a left adjoint) and I is injective. Therefore
φ(I ) is injective. Since the adjunction map M →φ◦ψ(M) is clearly injective, we can conclude
the proof.

In general if A is an abelian category with enough injectives. Then for any object A ∈ A we
have an injective resolution

0 → A → I0 → I1 → I2 →···
where In are injective objects in A . Moreover if there is a left exact functor F : A →B where
B is another abelian category, then

F (I0) → F (I1) →···

is a complex in B. The i -th cohomology group is denoted by R i F (A) and R i F is called the i -th
derived functor. We have R0F = F . Indeed the value R i F (A) does not depend on the choice of
the injective resolution and for any map A → B we could get a natural map R i F (A) → R i F (B)
this makes R i F a functor.

Definition 42. Let (T,O ) be a ringed topos. Then we get a left exact functor

HomMod(T,O )(O ,−) : Mod(T,O ) → (AbelianGroups)

For any M ∈ Mod(T,O ) the value of the i -th right derived functors are called the cohomology
groups of M .

Example 10.2. If (T,O ) = (X̃ét,OXét ), then for any M ∈ Mod(T,O ) we have that

HomMod(T,O )(O , M) = M(X )

So the right derived functors are the derived functors of the global section functor. For each
M , the i -th cohomology group of M is called the i -th étale cohomology of M , and this is often
denoted by H i (Xét, M).

11 TRIANGULATED CATEGORIES (I) (11/01/2017)

We fix A an abelian category.

Definition 43. Let f , g : C · → D · be two maps of cochain complexes in A . We say f is homo-
topic to g if there are maps sn : C n → Dn−1 such that the following equation

f n − g n = d n−1sn + sn+1d n

holds. If g = 0, then we call f null homotopic. We call f a homotopy equivalence if there exists
h : D · →C · such that f ◦ g and g ◦ f are all homotopic to the identities.
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Lemma 11.1. Let f , g : C · → D · be two maps of cochain complexes in A . If f and g are homo-
topic, then the maps H n(C ·) → H n(D ·) induced by f and g are the same.

Proof. This is a direct computation.

Definition 44. Let f : B · →C · be a map of cochain complexes in A . The mapping cone if the
f is the cochain complex whose n-th degree part is B n+1 ⊕C n , and whose differentials are
given by the following formula:

d(b,c) = (b,c)

( −dB − f
0 dC

)
= (−dB (b),dC (c)− f (b))

for all b ∈ B n+1,c ∈C n . Note that in this way we get a complex:

d(d(b,c)) = d(−dB (b),dC (c)− f (b)) = (dB dB (c),dC dC (c)−dC ( f (b))+ f (dB (b))) = (0,0)

The new complex is denoted by Cone( f ).

Lemma 11.2. 1. If f is taken to be the identity map id : C · →C ·, then the complex Cone(C ·) : =
Cone(id) is split exact, that is, it is exact and there are maps sn : C n → C n−1 with the
property that d n−1snd n−1 = d n−1.

2. Let f : C · → D · be a map of cochain complexes. Then f is null homotopic if and only if f
extends to a map of complexes (−s, f ) : Cone(C ·) → D ·.

3. There is a short exact sequence

0 →C · λ−→ Cone( f )
δ−→ B ·[1] → 0

where λ(c) = (0,c) and δ(b,c) =−b. In this way we get a long exact sequence

· · ·→ H n−1(Cone( f )) → H n(B ·) ∂−→ H n(C ·) → H n(Cone( f )) → H n+1(B ·) →···
where ∂ is exactly the map induced by f .

Proof. For 1, we first show that Cone(C ·) is exact. Consider the sequence

C n ⊕C n−1 d−→C n+1 ⊕C n d−→C n+2 ⊕C n+1

Suppose that (b,c) ∈C n+1⊕C n and if d(b,c) = (−dC (b),dC (c)−b) = 0, then we have dC (c) = b.
Thus for (−c,0) ∈C n ⊕C n−1 we have d(−c,0) = (dC (c),c) = (b,c). Thus the sequence is exact.
The splitting is given by sn(x, y) = (−y,0). We have

d n−1snd n−1(b,c) = d n−1sn(−d n
C (b),d n−1

C (c)−b) = d n−1(b−d n−1
C (c),0) = (−dC (b),d n−1

C (c)−b)

For 2, first notice that f extends to (−s, f ) if and only if the following diagram is commutative:

C n+1 ⊕C n (−sn , f n )
//

d n

��

Dn

d n
D
��

C n+2 ⊕C n+1 (−sn+1, f n+1)
// Dn+1
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This is true if and only if d n
D ◦ (−sn , f n) = (−sn+1, f n+1) ◦d n . Now take (b,c) ∈ C n+1 ⊕C n , we

have −d n
D ◦ sn+1 +d n

D ◦ f n(c) = sn+2(d n+1(b))+ f n+1(d n(c))− f n+1(b). The the above equality
holds if and only if f n+1 = sn+2 ◦d n+1 +d n

D ◦ sn+1, that is, f is null homotopic.

For 3, If b ∈ B n+1 is a cocycle, then (−b,0) ∈ B n+1 ⊕C n is a lift of b. Applying the differential
we get (d n+1

B (b), f n+1(b)) = (0, f n+1(b)). Thus ∂(b) = f n+1(b).

Corollary 11.3. A map f : B · → C · be a map of cochain complexes is a quasi-isomorphism if
and only if Cone( f ) is exact.

Definition 45. Let f : B · → C · be a map of cochain complexes in A . A mapping cylinder
Cyl( f ) is defined as follows: The degree n part is B n ⊕B n+1 ⊕C n and the differential is

d(b,b′,c) = (b,b′,c)

 −dB 0 0
idB dB − f

0 0 dC

= (dB (b)+b′,−dB (b′),dC (c)− f (b′))

In this way we get a complex because

 −dB 0 0
idB dB − f

0 0 dC

2

=
 d 2

B 0 0
dB −dB d 2

B f dB −dC f
0 0 d 2

C


Proposition 11.4. Let f : B · →C · be a map of cochain complexes.

1. If f is taken to be the identity map id : C · → C ·, then we have the complex Cyl(C ·) : =
Cyl(id). Two cochain maps f , g : B · → C · are homotopic if and only if they extend to a
map ( f , s, g ) : Cyl(B ·) →C ·.

2. The natural map α : C · → Cyl( f ), c 7→ (0,0,c) is a chain homotopy, and the map to the
other direction is β : (b,b′,c) 7→ f (b)+ c.

3. There is a commutative diagram with exact rows

0 // C · λ //

α

��

Cone( f )
δ // B ·[1] // 0

0 // B · ϕ
// Cyl( f )

φ
// Cone( f ) // 0

where ϕ(b) = (b,0,0) and φ(b,b′,c) = (b′,c). In this way we get a commutative diagram
with exact rows.

· · · // H n−1(B ·[1])
f∗
// H n(C ·)

λ∗ //

α∗
��

H n(Cone( f ))
−δ∗ // H n(B ·[1]) // · · ·

· · · // H n(B ·)
ϕ∗

// H n(Cyl( f ))
φ∗
// H n(Cone( f ))

∂ // H n+1(B ·) // · · ·
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Proof. For 1, the commutativity of the diagram

B n ⊕B n+1 ⊕B n ( f n ,sn+1,g n )
//

d n

��

C n

d n
C
��

B n+1 ⊕B n+2 ⊕B n+1 ( f n+1,sn+2,g n+1)
// C n+1

is equivalent to that given (b,b′,c) ∈ B n ⊕B n+1 ⊕B n , we have

(b,b′,c) 7→ (d n
B (b)+b′,−d n+1

B (b′),d n
B (c)−b′)

7→ f n+1(d n
B (b))+ f n+1(b′)− sn+2(d n+1

B (b′))+ g n+1(d n
B (c))− g n+1(b′)

is equal to

(b,b′,c) 7→ f n(b)+ sn+1(b′)+ g n(c) 7→ d n
C ( f n(b))+d n

C (sn+1(b′))+d n
C (g n(c))

Thus we have f n+1(b′)− g n+1(b′) = sn+2(d n+1
B (b′))+d n

C (sn+1(b′)) if and only if the diagram is
commutative.

For 2, first notice that β◦α= idC · . Since α◦β(b,b′,c) = (0,0, f (b)+ c),

(α◦β− idCyl)(b,b′,c) = (−b,−b′, f (b))

On the other hand, let sn : B n ⊕B n+1 ⊕C n → B n+1 ⊕B n+2 ⊕C n+1 sending (b,b′,c) to (0,b,0).
Then (d n−1 ◦ sn + sn+1d n)(b,b′,c) = (b,−d n(b),− f (b))+ (0,d n(b)+b′,0) = (b,b′,− f (b)). This
means that α◦β is homotopic to idCyl.

For 3, it is enough to show that −δ∗ = ∂. Let (b,c) be an n-cocycle in Cone( f ), so d n+1
B (b) = 0

and f n+1(b) = d n
C (c). Now (0,b,c) is a lift of (b,c). Applying the differential we get

d(0,b,c) = (0+b,−d n+1
B (b),d n

C (c)− f n+1(b)) = (b,0,0)

Thus ∂(b,c) = b, but −δ∗(b,c) is, by its very definition, also b.

Definition 46. Let Ch(A ) or simply Ch, when A is clear from the context, be the category
of cochain complexes in A . Let K(A ) or simply K, when A is clear from the context, be
the homotopy category of cochain complexes in A , whose objects are precisely those in Ch
and whose morphisms between two objects HomK(A,B) is the set HomCh(A,B) modulo the
equivalence relation f ∼ g if and only if f and g are homotopic. In fact ∼ is an equivalent
relation because f − g = d s + sd and g −h = d t + td imply that f −h = d(s + t )+ (s + t )d , and
we also have that if f ∼ f ′, g ∼ g ′, then f ◦ g ∼ f ′ ◦ g ∼ f ′ ◦ g ′.

Proposition 11.5. (Universal property) Let F : Ch(A ) →D be any functor that sends a cochain
homotopy to an isomorphism. Then F factors uniquely through K(A ):

Ch(A )
F //

��

D

K(A )

∃!
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Proof. By 11.4, (2) we have α is a homotopy equivalence, and since β◦α = id, we have F (α)
is an isomorphism whose inverse is F (β). As α′ : B · → Cyl(B ·), b 7→ (b,0,0) satisfies β◦α′ = id,
we have F (α) = F (α′).
Now if f , g : B · →C · be two cochain homotopies, then by 11.4, (1) there is an extension ψ : =
( f , s, g ) : Cyl(B ·) →C ·. Moreover ψα′ = f and ψα= g . Hence we have F ( f ) = F (g ).

12 TRIANGULATED CATEGORIES (II) (18/01/2017)

Let A be an abelian category, and let K(A ) be the homotopy category of chain complexes. In
this lecture we will prove that K(A ) is a triangulated category.

Definition 47. Let u : A → B be a morphism in Ch(A ). Then we get a split exact sequence

0 → B · v−→ Cone(u)
δ−→ A·[1] → 0

This data provides a triangle of maps

Cone(u)
δ

zz
A· u // B ·

v
dd

in Ch(A ). Now if we have any triangle of maps in K(A ), i.e. maps u : A· → B ·, v : B · →C · and
w : C · → A·[1], then we will call the triple (u, v, w) a distinguished triangle if there is a triple
u′ : A′· → B ′·, v ′ : B ′· →C ′· and w ′ : C ′· → A′·[1] and a commutative diagram in K(A )

A· u //

f
��

B · v //

g
��

C · w //

h
��

A·[1]

f [1]
��

A′· u′
// B ′· v ′

// C ′· w ′
// A′·[1]

in which f , g ,h are isomorphisms in K(A ).

Lemma 12.1. Let A· ∈ Ch(A ). The complex A· is split exact, i.e. it is acyclic and ∃ a splitting s
such that d = d sd, if and only if the identity morphism idA ∈ Ch(A ) is null homotopic.

Proof. Let B ′n ⊆ An be the image of the composition An+1 sn+1

−−−→ An d n

−−→ An+1 sn+1

−−−→ An . Since
d = d sd , we have d n sn+1(An+1) = d n(B ′n) ⊆ An+1. This implies that d n sn+1 : An+1 → An+1

induces the identity map on d n(B ′n) ⊆ An+1. Let Z n ⊆ An be the cocycle. Then Z n ⋂
B ′n = 0

because d n sn+1(x) = 0 implies x = 0 and hence sn+1(x) = 0 for all x ∈ d n(B ′n). On the other
hand, we have

d n(An) = d n sn+1d n(An) ⊆ d n sn+1(An+1) = d n(B ′n) ⊆ d n(An)

So d n(An) = d n(B ′n), and this implies that Z n ⊕
B ′n = An . By definition An → An+1 sends

Z n to 0, and by exactness B ′n goes to Z n+1 = d n(An) = d n(B ′n). Moreover B ′n −→ Z n+1 is an
isomorphism.
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Now we define the splittings t n+1 : An+1 → An via the composition

An+1 = Z n+1
⊕

B ′n+1 � Z n+1 ∼=−→ B ′n ⊆ An

It is now clear that idAn = d n−1sn + sn+1d n .

Lemma 12.2. Every morphism u : A· → B · in K(A ) can be embedded in a distinguished tri-
angle (u, v, w). If u is A· = A· the identity and if C · = 0·, then the triangle (idA ,0,0) is a dis-
tinguished triangle. Any triangle which is isomorphic to a distinguished triangle is a distin-
guished triangle.

Proof. We only have to show that the triangle (idA ,0,0) is a distinguished triangle. But by 12.1
Cone(A·) which is split exact (11.2) is null homotopic. Thus Cone(A·) is isomorphic to 0 in
K(A ). Now the claim follows from the following commutative diagram

A· idA //

idA

��

A· //

idA

��

0 //

��

A·[1]

idA[1]

��

A· idA // A· // Cone(idA) // A·[1]

Lemma 12.3. Let (u, v, w) be a distinguished triangle on (A·,B ·,C ·) in K(A ), then both of its ro-
tates (v, w,−u[1]) and (−w[−1],u, v) are distinguished triangles on (B ·,C ·, A·[1]) and (C ·[−1], A·,B ·)
respectively.

Proof. We can suppose that we have a sequence in Ch(A ):

A· u−→ B · v−→ Cone(u)
w−→ A·[1]

Let’s first prove the lemma for (v, w,−u[1]). Look at the cochain complex

Cone(v)n = B n+1 ⊕Cone(u)n = B n+1 ⊕ An+1 ⊕B n

whose differential is given by

(b′, a,b) 7→ (−d n+1
B (b′),d n

Cone(u)(a,b)− (0,b′)) = (−d n+1
B (b′),−d n+1

A (a),d n
B (b)−un(a)−b′)

In this way we get a morphism of complexes φ : Cone(v) → A·[1] via the second projection.
We want to show that it is an homotopy equivalence. The homotopy inverse ϕ : A·[1] →
Cone(v) is given by a 7→ (−u(a), a,0). This defines a map in Ch(A ) because the following
two compositions are identical.

a 7→ −dA(a) 7→ (u(dA(a)),−dA(a),0)

a 7→ (−u(a), a,0) 7→ (dA(u(a)),−dA(a),0)
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Clearly φ ◦ϕ = id ∈ Ch(A ), so we only have to show that ϕ ◦φ is homotopic to the identity.
The homotopy sn+1 : Cone(v)n+1 → Cone(v)n is given by (b′, a,b) 7→ (b,0,0). Since we have

d n−1
Cone(v)(b,0,0)+ sn+1(−d n+1

B (b′),−d n+1
A (a),d n

B (b)−un(a)−b′)

=(−d n
B (b),0,−b)+ (d n

B (b)−un(a)−b′,0,0)

=(−un(a)−b′,0,−b)

=(−un(a), a,0)− (b′, a,b)

there is an equation ϕ◦φ− id = sd +d s. Now consider the following diagrams

B · v // Cone(u) // Cone(v)
δ //

−φ
��

B ·[1]

idB [1]
��

B · v // Cone(u)
w // A·[1]

−u[1]
// B ·[1]

It is enough to check that the last diagram is commutative in K(A ), i.e. we have δ= u[1]◦φ.
But this is the same as checking δ◦ϕ= u[1] which is obvious.

Now let’s first prove the lemma for (−w[−1],u, v). We can write the Cone(w[−1]) as the com-
plex An ⊕ An+1 ⊕B n with the differential d n : An ⊕ An+1 ⊕B n → An+1 ⊕ An+2 ⊕B n+1 sending

(a, a′,b) 7→ (dA(a)+a′,−dCone(u)[−1](a′,b)) = (dA(a)+a′,−dA(a′),dB (b)−u(a′))

Thus we have Cone(w[−1]) = Cyl(u). Now by 11.4 (2) the following commutative diagrams

Cone(u)[−1]
w[−1]

//

−id
��

A· // Cone(w[−1]) = Cyl(u)
δ //

β

��

Cone(u)

−idB [1]
��

Cone(u)[−1]
−w[−1]

// A· u // B · v // Cone(u)

with the same trick as above provides the desired distinguished triangle.

Definition 48. Suppose that K is an additive category equipped with an automorphism T :
K → K. We call K a triangulated category if K is equipped with a class of distinguished triangles
which are subject to the following four axioms:

1. (TR1) Any triangle isomorphic to a distinguished triangle is a distinguished triangle.
Any triangle of the form (X , X ,0, id,0,0) is distinguished. For any morphism f : X → Y
of K there exists a distinguished triangle of the form (X ,Y , Z , f , g ,h).

2. (TR2) The triangle (X ,Y , Z , f , g ,h) is distinguished if and only if the triangle (Y , Z ,T (X ), g ,h,−T ( f ))
is.

3. (TR3) Given a solid diagram

X
f
//

a
��

Y
g
//

b
��

Z
h //

∃ c
��

T (X )

T (a)
��

X ′ f ′
// Y ′ g ′

// Z ′ h′
// T (X ′)
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whose rows are distinguished triangles and which satisfies b ◦ f = f ◦ a, there exists a
morphism c : Z → Z ′ such that (a,b,c) is a morphism of triangles.

4. (TR4) Given objects X ,Y , Z of K, and morphisms f : X → Y , g : Y → Z , and distin-
guished triangles (X ,Y ,Q1, f , p1,d1), (X , Z ,Q2, g◦ f , p2,d2), and (Y , Z ,Q3, g , p3,d3), there
exist morphisms a : Q1 →Q2 and b : Q2 →Q3 such that

a) (Q1,Q2,Q3, a,b,T (p1)d3) is a distinguished triangle,

b) the triple (idX , g , a) is a morphism of triangles (X ,Y ,Q1, f , p1,d1) → (X , Z ,Q2, g ◦
f , p2,d2), and

c) the triple ( f , idZ ,b) is a morphism of triangles

(X , Z ,Q2, g ◦ f , p2,d2) → (Y , Z ,Q3, g , p3,d3)

The category K is called a pre-triangulated category if TR1-TR3 hold.

Corollary 12.4. Let K be a triangulated category, and let (X ,Y , Z , f , g ,h) be a distinguished
triangle. Then g ◦ f , h ◦ g and f [1]◦h are all 0.

Proof. By TR1 (X , X ,0,1,0,0) is a distinguished triangle. Applying TR3 we have a commuta-
tive diagram

X
id //

id
��

X
0 //

f
��

0
∃ //

∃ c
��

T (X )

id
��

X
f
// Y

g
// Z

h // T (X )

we get the dashed arrow c which has to be the unique arrow 0. Thus g ◦ f = 0 and TR2 takes
care of the others.

Proposition 12.5. The category K(A ) is a triangulated category.

Proof. TR1 and TR2 are proved in 12.2 and 12.3. TR3 is obvious from the functoriality of the
mapping cone. For TR4 we recommend Stack Project.

13 DERIVED CATEGORIES (25/01/2017)

Definition 49. Let S be a collection of morphisms in a category C . A localization of C with
respect to S is a category S−1C together with a functor q : C → S−1C such that

1. q(S) is an isomorphism in S−1C for every s ∈ S and,

2. any functor F : C →D such that F (s) is an isomorphism for all s ∈ S factors in a unique
way through q .

Example 13.1. If A is an abelian category, C := Ch(A ) and S is the collection of all the ho-
motopy equivalences in Ch(A ). We have seen in 11.5 that K(A ) with the natural projection
Ch(A ) → K(A ) is the localization of Ch(A ) at the homotopy equivalences.
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Definition 50. A collection S of morphisms in a category C is called a multiplicative system
in C if it satisfies the following axioms:

1. The collection S is closed under composition and contains all the identity morphisms.

2. If t : Z → Y is in S, then for every g : X → Y in C there is a commutative diagram g s = t f
in C with s ∈ S.

W

s
��

f
// Z

t
��

X
g
// Y

(13.1)

Moreover, the symmetric statement holds for any s and f .

3. If f , g are parallel morphisms in C , then the following two conditions are equivalent:

a) s f = sg for some s ∈ S and,

b) f t = g t for some t ∈ S.

Example 13.2. Let R be a possibly non-commutative ring, and let C be the category with only
one object E ∈ C whose morphisms are defined by the elements in R with its multiplicative
structure. If S ⊆ R is a subset which is contained in the center, then S is a multiplicative subset
if and only if it is a multiplicative subset in the usual sense.

Construction. Let C be a category, and let S a multiplicative system of C . We are going to
construct S−1C and q : C → S−1C .
Let S−1C be the category whose objects are precisely those of C , and whose morphisms

HomS−1C (X ,Y ) are the equivalent classes of (left) fractions f s−1 : X
s←− X1

f−→ Y where s ∈ S,

and f s−1 ∼ t−1g for g t−1 : X
t←− X2

g−→ Y if and only if there exists a left fraction φα−1 : X
α←−

X4
φ−→ Y with morphisms φα−1 ⇒ f s−1 and φα−1 ⇒ g t−1 making all the diagrams commuta-

tive. To check that ∼ is an equivalence relation we have to show that if hr−1 : X
r←− X3

h−→ Y

is equivalent to f s−1 : X
s←− X1

f−→ Y by a fraction φβ−1 : X
β←− X5

ϕ−→ Y then hr−1 ∼ g t−1. It is
enough to show that a : φα−1 ⇒ f s−1 and a : ϕβ−1 ⇒ f s−1 implies that φα−1 ∼ ϕβ−1. Apply
50, 2 to α,β we get X ← X ′

6 with two arrows X ′
6 → X4 and X ′

6 → X5. Applying 50 3 to s and
X ′

6 → X4 → X1, X ′
6 → X5 → X1 we get a morphism X6 → X ′

6 in S so that the two morphisms
X6 → X1 coincide. Now there is a unique morphism e : X6 → Y and a morphism u : X6 → X
which provides the left fraction eu−1 : X

u←− X6
e−→ Y and morphisms eu−1 ⇒ φα−1,eu−1 ⇒

ϕβ−1.

The composition

HomS−1C (X ,Y )×HomS−1C (Y , Z ) → HomS−1C (X , Z )
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is given by the following commutative diagram applying 50, 2:

W
u //

v

��

W2
g
//

t
��

Z

X W1 f
//

s
oo Y

(13.2)

where f s−1 ∈ HomS−1C (X ,Y ) and g t−1 ∈ HomS−1C (Y , Z ). We define the product of f s−1 and

g t−1 to be (g u)(sv)−1. Suppose that there is f ′s′−1 : X
s′←− W ′

1
f ′
−→ Y and a map f ′s′−1 ⇒ f s−1,

then we apply 50, 2 to v and W ′
1 → W1 we get the desired equivalence. Suppose that there is

g ′t ′−1 : Y
t ′←− W ′

2
g ′
−→ Z and a map g ′t ′−1 ⇒ g t−1, then we apply 50, 2 to tu and W ′

2 → W2
t−→ Y

and use 50, 3 to get the desired equivalence. The other direction can be proved similarly.

For the associativity is indicated in the following diagrams

Z

W2

OO

// Y

W3

OO

//W1

OO

// X

W6

OO

//W5

OO

//W4

OO

// T

where the dashed arrows are all in S. In this way S−1C becomes a category and q : C → S−1C

is defined in an obvious way.

Theorem 13.3. The category C with the functor q : C → S−1C is the localization of C at S.

Proof. The fact that elements of q(S) are convertible in S−1C can be seen via the diagrams

X X

s
��

X

X X s
// Y

X X
s // Y

X Xs
oo Y

(13.3)

For any functor F : C →D which sends S to isomorphisms, we define G : S−1C →D by send-
ing

(X
s←−W

f−→ Y ) 7→ (F (X )
F (s)−1

−−−−→ F (W )
F ( f )−−−→ F (Y ))

This does not depend on the choice of the representative, and using the diagrams we drew it
is clear that G is functor. We also have G ◦q = F . Clearly the functor G is unique, because for
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a morphism f s−1 : X
s←−W

f−→ Y ∈ HomS−1C (X ,Y ) we can write f s−1 = q( f )◦q(s)−1 according
to the following diagram

W W
f
// Y

X Ws
oo W

Lemma 13.4. If C is an additive category, then S−1C is also an additive category, and q is an
additive functor.

Proof. The proof is routine and will be left as an exercise.

Let K be triangulated category, and let H : K →A be a cohomological functor. We define S to
be the collection of morphisms of K whose image under H ◦T i are all isomorphisms for i ∈Z.

Theorem 13.5. Notations being as above, we have

1. S is a multiplicative system;

2. S−1K is still a triangulated category and q is a morphism between triangulated cate-
gories.

Proof. Let’s prove 1. 50, 1 is obvious. For50, 2 we start with f : X → Y and s : Y → Z , and
assume that s ∈ S. Embed s into a distinguished triangle (s,u,δ,Y , Z ,W ) and complete u f :
X → C to an distinguished triangle (t ,u f , v,W, X ,C ). Now have the following commutative
diagram by TR3:

W
t //

g

��

X
u f
//

f
��

C
v // T (W )

T (g )
��

Z
s // Y

u // C
δ // T (Z )

The fact that H i (s) is an isomorphism implies that H i (C ) = 0, which implies that H i (s) is an
isomorphism.

To see 50, 3 let’s consider the difference f − g : X → Y . Given s : Y → Y ′ in S with s f = sg ,
embed s in an exact triangle (u, s,δ, Z ,Y ,Y ′). Note that H i (Z ) = 0. Since HomK(X ,−) is a
cohomological functor,

HomK(X , Z )
u−→ HomK(X ,Y )

s−→ HomK(X ,Y ′)

is exact. Since s( f − g ) = 0, there is a h such that f − g = uh. Embed h into a distinguished
triangle (t ,h, w, X ′, X , Z ) we get ht = 0, so ( f − g )t = hut = 0. Since H i (Z ) = 0 we have that
t ∈ S, and this finishes the proof of 1.

For the second one define a distinguished triangle in S−1K to be those which are isomorphic
to an image of a distinguished triangle in K under q . One checks easily that TR1-TR3 are
satisfied. For details see Stack Project.
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Corollary 13.6. Notations and assumptions are as above. Let F : K → L be a morphism of
triangulated categories such that F (s) is an isomorphism for all s ∈ S. The induced functor
G : S−1K → L is morphism of triangulated categories.

Example 13.7. Let (T,O ) be a ringed topos, and let A be the category of O-module objects
in T . Then we get triangulated categories D(A ), Db(A ), D+(A ) and D−(A ) via localizing
the homotopy categories K(A ), Kb(A ), K+(A ) and K−(A ) (unbounded, bounded, bounded
from below, bounded from above).

14 THE ÉTALE TOPOS (01/02/2017)

15 THE ÉTALE COHOMOLOGY (08/02/2017)

16 THE SIX OPERATIONS (15/02/2017)
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