

Tally.ERP 9 – Integration Capabilities

The information contained in this document represents the current view of Tally Solutions Pvt. Ltd., (‘Tally’ in short) on the topics
discussed as of the date of publication. Because Tally must respond to changing market conditions, it should not be interpreted to be a
commitment on the part of Tally, and Tally cannot guarantee the accuracy of any information presented after the date of publication.

This document is for informational purposes only. TALLY MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS
DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of
this document may be reproduced, stored in, or introduced into a retrieval system, or transmitted in any form, by any means (electronic,
mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Tally Solutions Pvt.
Ltd.

Tally may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this
document. Except as expressly provided in any written licence agreement from Tally, the furnishing of this document does not give you
any licence to these patents, trademarks, copyrights, or other intellectual property.

© 2009 Tally Solutions Pvt. Ltd. All rights reserved.

Tally, Tally 9, Tally9, Tally.ERP, Tally.ERP 9, Shoper, Shoper 9, Shoper POS, Shoper HO, Shoper 9 POS, Shoper 9 HO,
TallyDevel¬oper, Tally Developer, Tally.Developer 9, Tally.NET, Tally Development Environment, Tally Extender, Tally Integrator,
Tally Inte¬grated Network, Tally Service Partner, TallyAcademy & Power of Simplicity are either registered trademarks or trademarks
of Tally Solutions Pvt. Ltd. in India and/or other countries. All other trademarks are properties of their respective owners.

Version: Tally.ERP 9 – Integration Capabilities/1.0/July 2009

Contents

Contents

 Lesson1:Integration –The Overall Perspective ... 1

0.1 Introduction ... 1
0.2 Need and Benefits of Integration .. 1
0.3 Tally Interfaces – For Integration ... 2

0.3.1 Tally ODBC Interface (Read Only) .. 2
0.3.2 Tally XML Interface (Read and Write) ..3

0.4 XML Messaging Formats .. 3
0.4.1 Template used for XML Message Format ...4
0.4.2 Request Template ...4
0.4.3 Response Template ..5
0.4.4 Generic Failure Format ..6

0.5 Components of Request / Response .. 7
0.5.1 Header Information ...7
0.5.2 Body Information ... 8

0.6 Significance of all Tags ... 8
0.6.1 Header Tags ...8
0.6.2 Body Tags ..11

0.7 Case Study – Using the above XML Request/Response Formats .. 17
0.7.1 Export ..17
0.7.2 Import ..33
0.7.3 Execute ...39

 Lesson2:Integration Using XML Interface ... 41

0.8 Tally.ERP 9 as a Server – Using External application as Front End .. 42
0.8.1 Case Study I – Importing Masters from Excel to Tally.ERP 9 .. 42
0.8.2 Case Study II - Creation and Alteration of Vouchers through VB ..47
0.8.3 Case Study III – Exporting Ledger Masters from Tally.ERP 9 to External Application59

0.9 Tally.ERP 9 as a Client – Tally as a Front end for Web Services .. 62
0.9.1 Introduction ...62
0.9.2 Collection attribute – Remote URL ...64
0.9.3 Collection attribute – XML Object Path ..65
0.9.4 Collection attribute – XML Object ..65
0.9.5 Collection attribute – Remote Request ..66
0.9.6 Action – HTTP POST ...68
0.9.7 Event – On Form Accept ..69
0.9.8 Event – On Focus ...70

0.10 Collection Capability to Accept File as a Data Source ... 70
0.10.1 The Collection attribute – Data Source ...70

0.11 Case Study ... 71
 i

Contents

 Lesson 3:Integration using ODBC Interface .. 79

0.12 Tally.ERP 9 – ODBC Interface ... 79
0.13 Tally.ERP 9 as a Client – Retrieving Data from External Database .. 81

0.13.1 TDL Collection to gather data from MS Access ..82
0.13.2 TDL Collection to gather data from MS Excel ...84

0.14 Tally.ERP 9 as a Server – Retrieving Data from Tally DB using an External Application 84
0.14.1 Retrieving Data Using Tables ...85
0.14.2 Retrieving Data By Calling an SQL Procedure ..94
0.14.3 Collection Attribute – SQLParms ..95
0.14.4 Collection Attribute – SQLValues ...95
 ii

Lesson1: Integration –The Overall Perspective
1.1 Introduction
Large and medium sized businesses use disparate applications to run their business and one of
the major areas that need to converge amongst these applications is the Accounting, Financial
and Inventory information. Tally being the default accounting, Inventory and Statutory Compliance
software used by enterprises in these segments. Therefore the need arises to discuss on the Inte-
gration Capabilities of Tally.
Integration Solutions are designed to ensure that the existing investments in Software (ERP,
Legacy and other Enterprise systems) remain intact by seamlessly integrating information with
new systems, technologies and custom applications within the enterprise, as well as with
companies with whom the business deals with.

1.2 Need and Benefits of Integration
To meet the challenges of the new business environment, information systems need to communi-
cate with each other as seamlessly as possible, provide right-time visibility of transactions across
the entire enterprise and be flexible enough to accommodate the changing structure of the
business. When more and more information needs to be shared across traditional business
boundaries, the way you integrate your systems and processes is rapidly becoming one of the
most important priorities in business today.

The following figure gives a complete perspective on the overall Integration Capabilities of
Tally.ERP 9

Lesson Objectives

On the completion of this chapter you will be able to

Understand the need and benefits of Integration
Understand the different Tally Interfaces used for Integration
Understand the XML messaging format using XML Interface
 1

 Integration - The Overall Perspective

 Figure1.1 Tally.ERP 9 – Integration Capabilities

1.3 Tally Interfaces – For Integration
Tally communicates with the external world mainly using two Interfaces.

Tally ODBC Interface (Read Only)
Tally XML Interface (Read and Write)

1.3.1 Tally ODBC Interface (Read Only)
ODBC (Open Database Connectivity) makes it possible to access data from any application,
regardless of which Database Management System (DBMS) is handling the data. ODBC
manages this by inserting a middle layer, called a database driver between an application and the
DBMS. The purpose of this layer is to translate the application's database queries into commands
that the DBMS can understand. For this to function, both the application and the DBMS must be
ODBC compliant i.e., the application must be capable of issuing ODBC commands and the DBMS
must be capable of responding to them.

Tally provides the ODBC Interface which makes it possible for applications to talk to Tally
Database. By using this interface, external applications will be able to retrieve data from Tally.
Tally acts as a Server delivering Data to external applications.
 2

 Integration - The Overall Perspective

Using the ODBC Interface, Tally.ERP 9 can make ODBC calls to an External Database and
retrieve data from them. In such a case Tally acts as a Client to pull Data from disparate Data
Sources. This data can be consumed in Tally as per requirement.
The usage and techniques for the same will be discussed in Lesson 3.

1.3.2 Tally XML Interface (Read and Write)
XML (Extensible Markup Language) is the standard for information exchange with external
systems. Tally.ERP 9 supports standardized message formats for Request/Response. Tally.ERP
9 can communicate with any environment capable of sending and receiving XML over HTTP.
Tally can act as an HTTP Server capable of receiving an XML Request and responding with an
XML Response. The entire Tally Data can be made available to the requesting application. It is
also possible for the application to store data into Tally Database.
Using the same interface, Tally has the capability to interact with a Web Service delivering Data
over HTTP. In this scenario, Tally behaves as a client retrieving and storing data into an external
database. The Web Service capable of handling Tally Request/Response serves as a layer
between Tally and External Database.
In this Lesson we will be discussing the XML Messaging Formats supported by Tally. The applica-
tion and usage will be discussed in detail in Lesson 2.

1.4 XML Messaging Formats
A message format is an encoded spatial or time-sequential arrangement of the parts of a
message that is recorded in or on a data storage medium.
XML Messaging format is specified for exchanging structured information in the implementation of
Web Services in computer networks. An XML interface can form the foundation layer of a web
services protocol stack, providing a basic messaging framework upon which web services can be
built.
XML standard format has lots of potential as a data representation and messaging mechanism.
Data representation typically involves translating the data from a local format into XML, and then
back into the same format or even a completely different one, on the other end of a connection.
In Tally.ERP 9, XML messaging format is used for the purpose of integration. Here Tally.ERP 9
uses XML format for communication with external applications including other instances of
Tally.ERP 9. The data exchange happens by way of Request / Response. Tally.ERP 9 identifies
certain tags for Request and sends a Response accordingly based on the Request.
All Requests and Responses are used in Tally.NET Messages contain custom HTTP headers to
identify the requests that needs to be processed or forwarded.
 3

 Integration - The Overall Perspective

An XML fragment is everything from the start tag to the end tag. A fragment
can contain other fragments, simple text or a mixture of both. Fragments can
also have attributes. XML documents do not carry information about how to
display the data. Since XML tags are "invented" by the author of the XML
document, browsers do not know if a tag like <table> describes an HTML
table or a dining table. Without any information about how to display the data,
most browsers will just display the XML document as it is.

1.4.1 Template used for XML Message Format
Tally.ERP 9 follows the XML interface for exchanging data with other systems or with other
Tally.ERP 9 instances. This XML interface specifies the following format for communication.

<ENVELOPE>

 <HEADER> . . . </HEADER>

 <BODY> . . . </BODY>

</ENVELOPE>

1.4.2 Request Template
The XML structure used for requesting messages is as follows:

<ENVELOPE>

<HEADER>

<VERSION>Version Number</VERSION>

<TALLYREQUEST>Request Type</TALLYREQUEST>

<TYPE>Information Type</TYPE>

<SUBTYPE>Sub Type</SUBTYPE>

<ID >Identifier</ID>

</HEADER>

<BODY>

<DESC>

<STATICVARIABLES>

Static Variables Specification

</STATICVARIABLES>
 4

 Integration - The Overall Perspective

<REPEATVARIABLES>

Repeat Variables Specification

</REPEATVARIABLES>

<FETCHLIST>

Fetch Specification

</FETCHLIST>

<FUNCPARAMLIST>

Parameter Specification in the case of function type

</FUNCPARAMLIST>

<TDL>

TDL Information

</TDL>

</DESC>

<DATA>

Data (if applicable)

</DATA>

</BODY>

</ENVELOPE>

1.4.3 Response Template
The XML structure used for response is as follows:

<ENVELOPE>

<HEADER>

<VERSION>Version Number</VERSION>

<STATUS>-1/0/1</STATUS>

</HEADER>

<BODY>

<DESC>

<STATICVARIABLES>

Static Variables Specification

</STATICVARIABLES>

<REPEATVARIABLES>

Repeat Variables Specification

</REPEATVARIABLES>

<FETCHLIST>
 5

 Integration - The Overall Perspective

Fetch Specification

</FETCHLIST>

<FUNCPARAMLIST>

Parameter Specification

</FUNCPARAMLIST>

<TDL>

TDL Information

</TDL>

</DESC>

<DATA>

Data (if applicable)

</DATA>

</BODY>

</ENVELOPE>

1.4.4 Generic Failure Format
In case of a failure, all responses could be made to respond using the following format:

<ENVELOPE>

<HEADER>

<VERSION>Version</VERSION>

<STATUS>0</STATUS>

</HEADER>

<BODY>

<DATA>

<STATUS.LIST>

<STATUS>

<CODE>Code</CODE>

<DESC>Description</DESC>

</STATUS>

…

<STATUS.LIST>

</DATA>

</BODY>

</ENVELOPE>
 6

 Integration - The Overall Perspective

Example 1:
<ENVELOPE>

<HEADER>

 <VERSION>1</VERSION>

 <STATUS>0</STATUS>

 </HEADER>

 <BODY>

 <DATA>

 </DATA>

 </BODY>

</ENVELOPE>

1.5 Components of Request / Response
<ENVELOPE> is the top element of the XML fragment which is representing the message.
Both Request and Response consists of two sections:

Header
Body

1.5.1 Header Information
Header section will give all identification information to the recipient such as authentication, trans-
action management, and payment so on. This section determines how the recipient of the
message should process the information. Header information is classified in two ways, one is for
Request and the other is for Response. All the information about Request or Response is
enclosed with Header Tags.

In case of Request, header information includes mainly four elements which are Version, TallyRe-
quest, Type and ID. Version gives the version of the message format. Second element TallyRe-
quest will identify the type of request as Import or Export in the messaging format. If the value of
Tally Request is Import then the type of information would be Data, and the request will be identi-
fied by the report name specified in ID. If the value of Tally Request is Export then the type of
information would be Data, Collection, Object or Function. The ID specifies the name of Report,
Collection, Object or function.

In the case of Response, there are mainly two elements which are Version and Status. Version
gives the version of the message format. Status indicates whether the request is success or
failure.
 7

 Integration - The Overall Perspective

1.5.2 Body Information
It exchanges the information intended for the recipient of the message. This section gives the
actual details of the message. It is further divided into two sections:

Description for Request/Response
Data required for the Request/Response

Description section is used to give the description for message, request or response. Description
element mainly includes all types of variable information, storage information, computational infor-
mation and user defined TDLs. All the description information is enclosed with <DESC> tags.
Data section includes all the data information being transferred. All the data should be enclosed
within the <DATA> tags.

1.6 Significance of all Tags
Following are some significant tags that are required for requesting any info from Tally.ERP 9.
The tags are divided into two categories:

Header Tags
Body Tags

1.6.1 Header Tags
Header tags are enclosed with the tag <HEADER> and </HEADER>. These tag gives all the
header information.
<VERSION>
It gives the version of the messaging format. The tag <VERSION> is a mandatory tag which is
used in Header tags.
<TALLYREQUEST>
TALLYREQUEST tag specifies the type of request. This tag is vital as it determines the response
required. The permissible values for this tag are Import, Export and Execute. This value further
determines the range of values required for this tag.

Import
Import is specified when we want Tally to import data from the XML fragment to Tally. i.e Tally
validates and saves the data. A request is made to Import Data or File which can be specified
within the subsequent tags.

Export
Export is specified when we want to retrieve data from Tally. A request is made to Export Data,
Collection, Object, Function, etc. which is specified within the tag <TYPE>.

Execute
Execute is specified when we want to execute some TDLAction in Tally.ERP 9. Here the request
is made to Execute TDL Action which can be specified within the <TYPE> tag.
 8

 Integration - The Overall Perspective

The following table describes the value of <TALLYREQUEST> tag.

<TYPE>
The <TYPE> tag provides the type of information being requested / responded. The tag TALLYR-
EQUEST determines the value for this tag.

The possible values of <TYPE> tag are as follows:
Data - Request for the data or Response of data
Collection - Collection Request or Response
Object - Object Request or Response
Action - Action to be performed by the message recipient
Function - Execute the Function Request

<SUBTYPE>
<SUBTYPE> is an optional tag. In cases the <TYPE> tag alone is not sufficient to identify the
entity then SUBTYPE tag will be used. For example OBJECT refers to various types of objects
such as GROUP, LEDGER, and CURRENCY etc.

<ID>
<ID> tag provides the identification of Request. The TYPE attribute of this tag can be used to
identify specific instance of an entity. The attribute Type can be used like the following example:
 <HEADER>

<VERSION>1</VERSION>

<TALLYREQUEST>EXPORT</TALLYREQUEST>

<TYPE>OBJECT</TYPE>

<SUBTYPE>Ledger</SUBTYPE>

<ID TYPE="Name">ABC India Pvt. Ltd. </ID>

</HEADER>

Request Type Action Comments
Import Set Requesting recipient to import the

data.
Export Get Request for Exporting Data from

other end.
Execute Run Request for executing the action in

Tally
 9

 Integration - The Overall Perspective

<STATUS>
The <STATUS> tag is applicable only for Response. Value within this tag indicates success or
failure of the request made. Possible values are SUCCESS (1), FAILURE (0).

Example for a Failure Response
<ENVELOPE>

 <HEADER>

 <VERSION>1</VERSION>

 <TALLYREQUEST>EXPORT</TALLYREQUEST>

 <TYPE>DATA</TYPE>

 <ID>All masters</ID>

 </HEADER>

<BODY>

<DESC>

 </DESC>

 </BODY>

</ENVELOPE>

Failure Response
<ENVELOPE>

 <HEADER>

 <VERSION>1</VERSION>

 <STATUS>0</STATUS>

 </HEADER>

TYPE ID - Value Qualification
DATA Name of the Request / Report Not Applicable

COLLECTION Name of the Collection Not Applicable

OBJECT Object ID or Name of the Object Object Identifier
Attribute

ACTION Name of the Action to be per-
formed - As of now, only the
action Sync is introduced

Not Applicable

FUNCTION Name of the Function to be exe-
cuted

Not Applicable
 10

 Integration - The Overall Perspective

 <BODY>

 <DATA>

 </DATA>

 </BODY>

</ENVELOPE>

1.6.2 Body Tags
As discussed, there are two sections under the tag <BODY>:

<DESC>: Description for Request/Response
<DATA>: Data required for Request/Response

<DESC>: Description for Request/Response
The description block is used for providing description of Request / Response. Following are the
different types of descriptions available inside the description tag:

StaticVariables
RepeatVariables
ComputeList
FetchList
Function ParamList
TDL

<STATICVARIABLES>
The STATICVARIABLES provides all configuration details and all global variable details. All tags
inside Staticvariable would be any of the system variables. In the following example SVCurrent-
Company, SVFromDate and SVToDate are the system variables. All elements inside the tag
<STATICVARIABLES> would be starting with SV.

At the time of request within <HEADER>...</HEADER>, all tags must have
appropriate value. Only <SUBTYPE> is optional and can be used where
applicable. In case of Response Header has only two tags i.e., <VERSION>
tag to indicate the version of the messaging format and <STATUS> tag to
indicate Success / Failure.
 11

 Integration - The Overall Perspective

<DESC>

<STATICVARIABLES>

<SVCURRENTCOMPANY>

ABC Company Ltd

</SVCURRENTCOMPANY>

<SVFROMDATE TYPE="Date">1-Apr-2008</SVFROMDATE>

<SVTODATE TYPE="Date">31-Mar-2009</SVTODATE>

</STATICVARIABLES>

</DESC>

<REPEATVARIABLES>
REPEATVARIABLES is used to specify the details for all the repeated variable information such
as Date Range, Block Range etc. All the information related to repeated variables will be
enclosed within the tag <REPEATSET>. Here also the value will be enclosed with the system
variables. In the following example shows the repeated usage of variables.

<REPEATVARIABLES>

<REPEATSET>

<SVFROMDATE>1-Apr-2007</SVFROMDATE>

<SVFROMDATE>1-Oct-2007</SVFROMDATE>

</REPEATSET>

<REPEATSET>

<SVTODATE>30-Sep-2007</SVTODATE>

<SVTODATE>31-Mar-2008</SVTODATE>

</REPEATSET>

</REPEATVARIABLES>

<FETCHLIST>
FETCHLIST is used to specify the list of storages to be fetched. In case of type object the
methods that need to be retrieved within the <FETCHLIST> Tag using <FETCH> Tags.

<FETCHLIST>

<FETCH>TBalClosing</FETCH>

<FETCH>TBalOpening</FETCH>

<FETCH>StkClBalance</FETCH>

 <FETCH>StkOpBalance</FETCH>

</FETCHLIST>
 12

 Integration - The Overall Perspective

<FUNCPARAMLIST>
It is used to specify the parameters used for function execution. In the time of using Function as a
type with parameters then the parameter list will come under the tag <PARAMLIST>. The
structure of PARAMLIST as follows:

<FUNCPARAMLIST>

 <PARAM>@@FirstParameter</PARAM>

 <PARAM TYPE="Number">0.10</PARAM>

</FUNCPARAMLIST>

<TDL>
It is used to specify the TDL related information. The complete TDL to be executed in order to
handle the Request; will be sent within the TDL block. TDL tag is specified, when Report, Collec-
tion, Object or Function is to be sent as a request to Tally. Tally application will respond depends
on the TDL request. A TDL specification is required only when the TDL required for serving the
request does not exist at the Tally end.
The TDL program is sent using TDL tag as per the following structure:

<TDL>

 <TDLMESSAGE>

<REPORT NAME="TDL Report" ISMODIFY="No" ISFIXED="No"

ISINITIALIZE="No" ISOPTION="No" ISINTERNAL="No">

 <FORMS>First TDL Form</FORMS>

 </REPORT>

 <FORM NAME="First TDL Form" ISMODIFY="No" ISFIXED="No"

ISINITIALIZE="No" ISOPTION="No" ISINTERNAL="No">

 <TOPPARTS>First TDL Part</TOPPARTS>

 </FORM>

.

.

.

<FIELD NAME="First TDL Field" ISMODIFY="No"

 ISFIXED="No" ISINITIALIZE="No" ISOPTION="No"

ISINTERNAL="No">

 <SET>"Welcome to the world of TDL"</SET>

 </FIELD>

</TDLMESSAGE>

</TDL>

TDL request should be enclosed within <TDL> tags. The <TDLMESSAGE> tag is mandatory
inside the <TDL> tag. Inside that we can write all the definitions and its attributes with their
 13

 Integration - The Overall Perspective

values. All definitions and attributes are represented as tags. Consider the following examples
which demonstrate the usage of <HEADER> values:
Report specification in TDL

 <HEADER>

 <VERSION>1</VERSION>

 <TALLYREQUEST>Export</TALLYREQUEST>

 <TYPE>Data</TYPE>

 <ID>Report Name </ID>

 </HEADER>

In the above header format the value of TallyRequest is Export and the Type is data. Specifying
the value of ID is ReportName. This report name should come inside the tag <REPORT> within
the <TDL> tag.
For Eg:

<TDL>

<TDLMESSAGE>

<REPORT NAME="TDL Report" ISMODIFY="No" ISFIXED="No"

ISINITIALIZE="No" ISOPTION="No" ISINTERNAL="No">

 <FORMS>First TDL Form</FORMS>

 </REPORT>

.

.

</TDLMESSAGE>

</TDL>

Collection specification in TDL
<HEADER>

 <VERSION>1</VERSION>

 <TALLYREQUEST>Export</TALLYREQUEST>

 <TYPE>Collection</TYPE>

 <ID>Collection Name</ID>

</HEADER>

In the above template the value of TallyRequest is Export and the Type is Collection. Specifying
the value of ID is CollectionName. This collection name should come inside the tag <COLLEC-
TION > within the <TDL> tag.
 14

 Integration - The Overall Perspective

<TDL>

<TDLMESSAGE>

<COLLECTION NAME="Collection of Ledgers"

ISMODIFY="No" ISFIXED="No" ISINITIALIZE="No"

ISOPTION="No" ISINTERNAL="No">

 <TYPE>Ledger</TYPE>

 </COLLECTION>

.

.

.

</TDLMESSAGE>

</TDL>

Object specification in TDL
<HEADER>

 <VERSION>1</VERSION>

 <TALLYREQUEST>Export</TALLYREQUEST>

 <TYPE>Object</TYPE>

 <ID>Object Name</ID>

 </HEADER>

In the above template the value of TallyRequest is Export and the Type is Object. Specifying the
value of ID is ObjectName. This object name should come inside the tag <OBJECT> within the
<TDL> tag.
Consider the following example:

<TDL>

<TDLMESSAGE>

<OBJECT NAME="Ledger" ISINITIALIZE="Yes">

<LOCALFORMULA>

TNetBalance: $$AsPositive: $$AmountSubtract:

$ClosingBalance: $OpeningBalance

</LOCALFORMULA>

</OBJECT>

</TDLMESSAGE>

</TDL>
 15

 Integration - The Overall Perspective

Function specification in TDL
<HEADER>

<VERSION>1</VERSION>

<TALLYREQUEST>Export</TALLYREQUEST>

<TYPE>Function</TYPE>

<ID>Function Name</ID>

</HEADER>

In the above template the value of TallyRequest is Export and the Type is Function. Specifying
the value of ID is FunctionName.

<DESC>

<FUNCPARAMLIST>

<PARAM>@@FirstParameter</PARAM>

<PARAM TYPE="Number">0.10</PARAM>

</FUNCPARAMLIST>

<TDL>

<TDLMESSAGE>

<SYSTEM TYPE="Formulae" NAME="FirstParameter" >

1242849 / 1000

</SYSTEM>

</TDLMESSAGE>

</TDL>

</DESC>

In the above example, the function parameter list enclosed with the tag <FUNCPARAMLIST>.
The formula which is used inside the Function parameter list is specified inside TDL Tag

<DATA>: Data required for the Request/Response
Data contains the actual data being transferred from one system to another. If the information is
retrieved then the data will be obtained inside the <DATA> tag.

<DATA>

<COLLECTION>

<OBJECT NAME="CDROM Disks 10s - Defective">

<NAME TYPE="String">CDROM Disks 10s - Defective</NAME>

</OBJECT>

<OBJECT NAME="TVS MSP 245 132 Col Printer">

<NAME TYPE="String">TVS MSP 245 132 Col Printer</NAME>
 16

 Integration - The Overall Perspective

</OBJECT>

<OBJECT NAME="Assembled PIV">

<NAME TYPE="String">Assembled PIV</NAME>

</OBJECT>

</COLLECTION>

</DATA>

In the case of importing data to be sent to Tally, to be specified within the <DATA> tag.
<DATA>

<TALLYMESSAGE>

<LEDGER Action = "Create" >

<NAME>ICICI Test</NAME>

<PARENT>Bank Accounts</PARENT>

<OPENINGBALANCE>13500</OPENINGBALANCE>

</LEDGER>

</TALLYMESSAGE>

<DATA>

After having a clear idea about all the important tags and their usage, will concentrate on some
examples.

1.7 Case Study – Using the above XML Request/Response Formats
Let us consider different scenarios to understand the Request and Response XML structure.

Export
 Request to Export Data and Corresponding response
 Request to Export different TDL components and the corresponding response

Import
 Request to Import Data and the corresponding response

Execute
 Request to Execute Action and Corresponding response

1.7.1 Export
Request to Export Data & Corresponding Response
Tags used for sending a request to export data from Tally.ERP 9
<HEADER> contains the following:

Tag <TALLYREQUEST> must contain value Export
Tag <TYPE> must contain value Data and
Tag <ID> should contain the Name of the TDL Report
 17

 Integration - The Overall Perspective

<BODY> contains the following:
Tag <DESC> can contain report settings like Company Name, Format, etc. as desired
which should be enclosed within <STATICVARIABLES> tag.
If the Report Name specified in the <ID> tag does not exist within Tally running at the spec-
ified port, the TDL defining the Report & other supporting definition needs to be described
and enclosed within tag <TDL>.

Request for a detailed Trial Balance in XML Format from Tally
Where Report exists in Tally

<ENVELOPE>

 <HEADER>

 <VERSION>1</VERSION>

 <TALLYREQUEST>Export</TALLYREQUEST>

 <TYPE>Data</TYPE>

 <ID>Trial Balance</ID>

 </HEADER>

 <BODY>

 <DESC>

 <STATICVARIABLES>

 <EXPLODEFLAG>Yes</EXPLODEFLAG>

 <SVEXPORTFORMAT>$$SysName:XML</SVEXPORTFORMAT>

 </STATICVARIABLES>

 </DESC>

</BODY>

</ENVELOPE>

 Example 1.1 Request for Trial Balance in XML Format

In the above XML request, <HEADER> describes the expected result.
The value of the Tag <TALLYREQUEST> is Export which indicates that some information
needs to be exported from Tally.
The value of the Tag <TYPE> is Data which indicates that the data needs to be exported
from Tally.
The value of the Tag <ID> must be a TDL Report Name, if the previous Tag <TYPE> con-
tains Data and Tag <TALLYREQUEST> contains Export. Any Report which needs to be
exported from Tally can be specified within this Tag.
 18

 Integration - The Overall Perspective

<BODY> Tag contains parameters, if any. Additional settings for the report like format
required, company from which data is required, etc. can be passed within <STATICVARIA-
BLES> Tag enclosed within <DESC> Tag. All variables are considered as Tag Names and
their value are enclosed within these tags. For e.g., in the above XML, variables SVEX-
PORTFORMAT and EXPLODEFLAG are considered as Tags and their respective values
$$SysName:XML and Yes are enclosed within. TDL Internal Function SysName is evalu-
ated at Tally end and the response is being sent accordingly.

XML Response received is as shown:
<ENVELOPE>

 <DSPACCNAME>

 <DSPDISPNAME>Capital Account</DSPDISPNAME>

 </DSPACCNAME>

 <DSPACCINFO>

 <DSPCLDRAMT>

 <DSPCLDRAMTA></DSPCLDRAMTA>

 </DSPCLDRAMT>

 <DSPCLCRAMT>

 <DSPCLCRAMTA>100000.00</DSPCLCRAMTA>

 </DSPCLCRAMT>

 </DSPACCINFO>

 </DSPACCNAME>

 <DSPACCINFO>

 <DSPCLDRAMT>

 <DSPCLDRAMTA>-100000.00</DSPCLDRAMTA>

 </DSPCLDRAMT>

 <DSPCLCRAMT>

 <DSPCLCRAMTA></DSPCLCRAMTA>

 </DSPCLCRAMT>

 </DSPACCINFO>

.

.

.

</ENVELOPE>

 Figure 1.2 Response- Trial Balance in XML Format
 19

 Integration - The Overall Perspective

Where Report do not exist in Tally
<ENVELOPE>

<HEADER>

<VERSION>1</VERSION>

<TALLYREQUEST>Export</TALLYREQUEST>

<TYPE>Data</TYPE>

<ID>Simple Trial balance</ID>

</HEADER>

<BODY>

<DESC>

<STATICVARIABLES>

<EXPLODEFLAG>Yes</EXPLODEFLAG>

<SVEXPORTFORMAT>$$SysName:XML</SVEXPORTFORMAT>

</STATICVARIABLES>

<TDL>

<TDLMESSAGE>

<REPORT NAME="Simple Trial balance">

<FORMS>Simple Trial balance</FORMS>

<TITLE>"Trial Balance"</TITLE>

</REPORT>

<FORM NAME="Simple Trial balance">

<TOPPARTS>Simple TB Part</TOPPARTS>

<HEIGHT>100% Page</HEIGHT>

<WIDTH>100% Page</WIDTH>

</FORM>

<PART NAME="Simple TB Part">

<TOPLINES>Simple TB Title,

Simple TB Details</TOPLINES>

<REPEAT>

Apart from XML,<SVEXPORTFORMAT>Tag can contain the values
$$SysName:HTML, $$SysName:ASCII, $$SysName:SDF and BinaryXML.
 20

 Integration - The Overall Perspective

Simple TB Details : Simple TB Ledgers

</REPEAT>

<SCROLLED>Vertical</SCROLLED>

<COMMONBORDERS>Yes</COMMONBORDERS>

</PART>

<LINE NAME="Simple TB Title">

<USE>Simple TB Details</USE>

<LOCAL>

Field : Default : Type : String

</LOCAL>

<LOCAL>

Field : Default : Align : Centre

</LOCAL>

<LOCAL>

Field : Simple TB Name Field : Set as: "Particulars"

</LOCAL>

<LOCAL>

Field : Simple TB Amount Field: Set as: "Amount"

</LOCAL>

<BORDER>Flush Totals</BORDER>

</LINE>

<LINE NAME="Simple TB Details">

 <LEFTFIELDS>Simple TB Name Field</LEFTFIELDS>

<RIGHTFIELDS>Simple TB Amount Field</RIGHTFIELDS>

</LINE>

<FIELD NAME="Simple TB Name Field">

<USE>Name Field</USE>

<SET>$Name</SET>

</FIELD>

<FIELD NAME="Simple TB Amount Field">

<USE>Amount Field</USE>

<SET>$ClosingBalance</SET>

<BORDER>Thin Left</BORDER>

</FIELD>

<COLLECTION NAME="Simple TB Ledgers">

<TYPE>Ledger</TYPE>
 21

 Integration - The Overall Perspective

<FILTERS>NoProfitsimple</FILTERS>

</COLLECTION>

<SYSTEM TYPE="Formulae" NAME="NoProfitSimple">

NOT $$IsLedgerProfit

</SYSTEM>

</TDLMESSAGE>

</TDL>

 </DESC>

</BODY>

</ENVELOPE>

The above XML Request is similar to the previous Trial Balance Report request. The difference is
the Report Name contained within the <ID> Tag is not defined in Tally.

In the <BODY> Tag within <DESC> Tag, an additional tag <TDL> must be specified with
the TDL describing the Report and its components enclosed within Tag <TDLMESSAGE>.

XML Response received is as shown:
<ENVELOPE>

<SIMPLETBNAMEFIELD>Bank of India</SIMPLETBNAMEFIELD>

<SIMPLETBAMOUNTFIELD>351265.00</SIMPLETBAMOUNTFIELD>

<SIMPLETBNAMEFIELD>Cash</SIMPLETBNAMEFIELD>

<SIMPLETBAMOUNTFIELD>-147600.00</SIMPLETBAMOUNTFIELD>

<SIMPLETBNAMEFIELD>Conveyance</SIMPLETBNAMEFIELD>

<SIMPLETBAMOUNTFIELD>-157665.00</SIMPLETBAMOUNTFIELD>

 '

 '

</ENVELOPE>

Request to Export different TDL components & Corresponding Response
The different TDL components used for exporting are:

Object
Collection
Function
 22

 Integration - The Overall Perspective

Request To Export Object & Corresponding Response
For sending a request to export an Object Info from Tally,
<HEADER> contains the following

Tag <TALLYREQUEST> must contain value Export
Tag <TYPE> must contain value Object
Tag <SUBTYPE> must contain the Type of Object and
Tag <ID> should contain the Object Identifier

<BODY> contains the following within <DESC> Tag
Settings like Company Name, Format to be exported, etc. as desired enclosed within
<STATICVARIABLES> Tag.
Methods that need to be retrieved within the <FETCHLIST> Tag under each <FETCH>
Tag.
External Methods, if any, must be specified within <LOCAL FORMULA> Tag enclosed
within <OBJECT> Tag.
Above Local Formula, if dependent on any Local or Global Formula needs to be specified

Request for an Object info in XML Format from Tally.ERP 9
<ENVELOPE>

 <HEADER>

 <VERSION>1</VERSION>

 <TALLYREQUEST>EXPORT</TALLYREQUEST>

 <TYPE>OBJECT</TYPE>

 <SUBTYPE>Ledger</SUBTYPE>

 <ID TYPE="Name">ABC India Pvt. Ltd. </ID>

 </HEADER>

 <BODY>

 <DESC>

 <STATICVARIABLES>

 <SVEXPORTFORMAT>$$SysName:XML</SVEXPORTFORMAT>

 </STATICVARIABLES>

 <FETCHLIST>

 <FETCH>Name</FETCH>

 <FETCH>TNetBalance</FETCH>

 <FETCH>LedgerPhone</FETCH>

 </FETCHLIST>

 <TDL>
 23

 Integration - The Overall Perspective

<TDLMESSAGE>

 <OBJECT NAME="Ledger" ISINITIALIZE="Yes">

 <LOCALFORMULA>

 TNetBalance: $$AsPositive:
 $$AmountSubtract: $ClosingBalance:

$OpeningBalance

 </LOCALFORMULA>

 </OBJECT>

 </TDLMESSAGE>

 </TDL>

 </DESC>

 </BODY>

</ENVELOPE>

 Figure 1.3 Request- Methods of a Ledger Object in XML Format

In the above XML request, <HEADER> describes the expected result.
The value of the Tag <TALLYREQUEST> is Export which indicates that some information
needs to be exported from Tally.
The value of the Tag <TYPE> is Object which indicates that information pertaining to some
Object needs to be exported from Tally.
The value of the Tag <SUBTYPE> is Ledger which indicates that Ledger Object info needs
to be exported from Tally.
The value of the Tag <ID> must contain the Ledger Identifier which is the name of the
ledger
The <BODY> Tag contains description within <DESC> Tag which requires all info pertain-
ing to the Object required

XML Response received is as shown:
<ENVELOPE>

 <HEADER>

 <VERSION>1</VERSION>

 <STATUS>1</STATUS>

 </HEADER>

 <BODY>

 <DESC>

 </DESC>

 <DATA>
 24

 Integration - The Overall Perspective

 <TALLYMESSAGE>

 <LEDGER NAME="ABC India Pvt. Ltd." RESERVEDNAME="">

 <NAME.LIST TYPE="String">

 <NAME TYPE="String">ABC India Pvt. Ltd.</NAME>

 <NAME/>

 </NAME.LIST>

 <RESERVEDNAME TYPE="String"></RESERVEDNAME>

 <LEDGERPHONE TYPE="String">9940421583</LEDGERPHONE>

 <TNETBALANCE TYPE="Amount">-13240.00</TNETBALANCE>

 </LEDGER>

 </TALLYMESSAGE>

 </DATA>

 </BODY>

</ENVELOPE>

 Figure 1.4 Response- Methods of a Ledger Object in XML Format

The above response has been received based on the XML request specified. The required detail
of the Ledger "ABC India Pvt Ltd" i.e., Phone No, Contact, Opening, Closing has been sent from
Tally.

Request To Export Collection & Corresponding Response
For sending a request to export Collection data from Tally,

<HEADER> contains the following
Tag <TALLYREQUEST> must contain value Export
Tag <TYPE> must contain value Collection
Tag <ID> should contain the Collection Name which is being described within the <DESC>
Tag

<BODY> contains the following within <DESC> Tag
Tag <DESC> can contain settings like Company Name, Format, etc. as desired which
should be enclosed within <STATICVARIABLES> tag.
Collection declared within the <HEADER> tag <TYPE> must be defined within <TDLMES-
SAGE> tag under <TDL> tag.
All the TDL Collection Attributes must be specified as tags and their respective values
within the relevant tag.
 25

 Integration - The Overall Perspective

Where Collection exists in Tally
Request for Collection Data in XML Format from Tally.ERP 9

<ENVELOPE>

 <HEADER>

 <VERSION>1</VERSION>

 <TALLYREQUEST>EXPORT</TALLYREQUEST>

 <TYPE>COLLECTION</TYPE>

 <ID>Remote Ledger Coll</ID>

 </HEADER>

 <BODY>

 <DESC>

 <STATICVARIABLES>

 <SVEXPORTFORMAT>$$SysName:XML</SVEXPORTFORMAT>

 </STATICVARIABLES>

 <TDL>

 <TDLMESSAGE>

 <COLLECTION NAME="Remote Ledger Coll"

ISINITIALIZE="Yes">

 <TYPE>Ledger</TYPE>

 <NATIVEMETHOD>Name</NATIVEMETHOD>

 <NATIVEMETHOD>OpeningBalance

</NATIVEMETHOD>

 </COLLECTION>

 </TDLMESSAGE>

 </TDL>

 </DESC>

</BODY>

</ENVELOPE>

 Figure 1.5 Request- Collection data in XML Format

In the above XML request, <HEADER> describes the expected result.
The value of the Tag <TALLYREQUEST> is Export which indicates that some information
needs to be exported from Tally.
The value of the Tag <TYPE> is Collection which indicates that information pertaining to
Collection needs to be exported from Tally.
The value of the Tag <ID> must contain the Collection Name which is defined available
Tally
 26

 Integration - The Overall Perspective

Response in XML
<ENVELOPE>

 <HEADER>

 <VERSION>1</VERSION>

 <STATUS>1</STATUS>

 </HEADER>

 <BODY>

 <DESC>

 </DESC>

 <DATA>

<STOCKITEM NAME="Item" RESERVEDNAME="">

 <LANGUAGENAME.LIST>

 <NAME.LIST TYPE="String">

 <NAME>Item</NAME>

 </NAME.LIST>

 <LANGUAGEID TYPE="Number"> 1033</LANGUAGEID>

 </LANGUAGENAME.LIST>

 </STOCKITEM>

 </COLLECTION>

</DATA

</BODY>

</ENVELOPE>

 Figure 1.6 Response- Collection data in XML Format

Where Collection does not exist in Tally
In such case, Collection Tag must be defined along with their attributes as sub tags inside the
Body Tag enclosed within TDL Message Tag.
Request for Collection Data in XML Format from Tally.ERP 9

<ENVELOPE>

<HEADER>

<VERSION>1</VERSION>

<TALLYREQUEST>EXPORT</TALLYREQUEST>

<TYPE>COLLECTION</TYPE>

<ID>Remote Ledger Coll</ID>

</HEADER>

<BODY>

<DESC>
 27

 Integration - The Overall Perspective

<STATICVARIABLES>

<SVEXPORTFORMAT>$$SysName:XML</SVEXPORTFORMAT>

</STATICVARIABLES>

<TDL>

<TDLMESSAGE>

<COLLECTION NAME="Remote Ledger Coll"

ISINITIALIZE="Yes">

<TYPE>Ledger</TYPE>

<NATIVEMETHOD>Name</NATIVEMETHOD>

 <NATIVEMETHOD>OpeningBalance</NATIVEMETHOD>

</COLLECTION>

</TDLMESSAGE>

</TDL>

</DESC>

 </BODY>

</ENVELOPE>

 Figure 1.7 Request- Collection data in XML Format

In the above XML request, <HEADER> describes the expected result.
The value of the Tag <TALLYREQUEST> is Export which indicates that some information
needs to be exported from Tally.
The value of the Tag <TYPE> is Collection which indicates that information pertaining to
Collection needs to be exported from Tally.
The value of the Tag <ID> must contain the Collection Name which is defined below in
<TDLMESSAGE> Tag within <DESC> Tag under the Tag <BODY>.

Response XML Fragment for the above :
<ENVELOPE>

<HEADER>

<VERSION>1</VERSION>

<STATUS>1</STATUS>

</HEADER>

<BODY>

<DESC>

</DESC>

<DATA>

<COLLECTION>
 28

 Integration - The Overall Perspective

<LEDGER NAME="ABC India Pvt. Ltd." RESERVEDNAME="">

<OPENINGBALANCE TYPE="Amount">

5000.00

</OPENINGBALANCE>

<LANGUAGENAME.LIST>

<NAME.LIST TYPE="String">

<NAME>ABC India Pvt. Ltd.</NAME>

</NAME.LIST>

<LANGUAGEID TYPE="Number"> 1033</LANGUAGEID>

</LANGUAGENAME.LIST>

</LEDGER>

<LEDGER NAME="XYZ Loan A/c" RESERVEDNAME="">

<OPENINGBALANCE TYPE="Amount">

0.00

</OPENINGBALANCE>

<LANGUAGENAME.LIST>

<NAME.LIST TYPE="String">

<NAME>XYZ Loan A/c</NAME>

</NAME.LIST>

<LANGUAGEID TYPE="Number"> 1033</LANGUAGEID>

</LANGUAGENAME.LIST>

</LEDGER>

<LEDGER NAME="Accum. Dep. on Airconditioner" RESERVEDNAME="">

<OPENINGBALANCE TYPE="Amount">0.00</OPENINGBALANCE>

<LANGUAGENAME.LIST>

<NAME.LIST TYPE="String">

<NAME>Accum. Dep. on Airconditioner</NAME>

</NAME.LIST>

<LANGUAGEID TYPE="Number"> 1033</LANGUAGEID>

</LANGUAGENAME.LIST>

</LEDGER>

</COLLECTION>

 </DATA>

 </BODY>

</ENVELOPE>

 Figure 1.8 Response - Collection data in XML Format
 29

 Integration - The Overall Perspective

The above response has been received based on the XML request specified. All the Ledgers with
the required Methods i.e., Name and Opening Balance are sent from Tally.
Request To Export Function & Corresponding Response
For sending a request to evaluate the result of Function from Tally.ERP 9
<HEADER> contains the following

Tag <TALLYREQUEST> must contain value Export
Tag <TYPE> must contain value Function
Tag <ID> should contain the Function which is being described within the <DESC> Tag
within the Tag <BODY>

<BODY> contains the following:
Tag <DESC> can contain settings like Company Name, Format, etc. as desired which
should be enclosed within <STATICVARIABLES> Tag.

Request for evaluating function in Tally without parameter
<ENVELOPE>

 <HEADER>

 <VERSION>1</VERSION>

 <TALLYREQUEST>EXPORT</TALLYREQUEST>

 <TYPE>FUNCTION</TYPE>

 <ID>$$NumStockItems</ID>

 </HEADER>

 <BODY>

 <DESC>

</DESC>

 </BODY>

</ENVELOPE>

 Figure 1.9 Request- Function without Parameter evaluation

In the above XML request,
<HEADER> describes the expected result.
The value of the Tag <TALLYREQUEST> is Export which indicates that some information
needs to be exported from Tally.
The value of the Tag <TYPE> is Function which indicates that some Function needs to be
evaluated within Tally and some value is returned as a response in XML.
The value of the Tag <ID> must contain the Function Name prefixed with $$ since Function
in TDL is activated by $$.
 30

 Integration - The Overall Perspective

Response XML Fragment for the above would be
<ENVELOPE>

 <HEADER>

 <VERSION>1</VERSION>

 <STATUS>1</STATUS>

 </HEADER>

<BODY>

 <DESC>

 </DESC>

 <DATA>

 <RESULT TYPE="Number">33</RESULT>

 </DATA>

 </BODY>

</ENVELOPE>

 Figure 1.10 Response- Function without Parameter evaluation

Request for evaluating function with Parameters in Tally
<ENVELOPE>

 <HEADER>

 <VERSION>1</VERSION>

 <TALLYREQUEST>EXPORT</TALLYREQUEST>

 <TYPE>FUNCTION</TYPE>

 <ID>$$Round</ID>

 </HEADER>

 <BODY>

 <DESC>

 <FUNCPARAMLIST>

 <PARAM>@@FirstParameter</PARAM>

 <PARAM TYPE="Number">0.10</PARAM>

 </FUNCPARAMLIST>

 <TDL>

 <TDLMESSAGE>

 <SYSTEM TYPE="Formulae"

NAME="FirstParameter" >

1242849 / 1000

</SYSTEM>
 31

 Integration - The Overall Perspective

 </TDLMESSAGE>

 </TDL>

 </DESC>

 </BODY>

</ENVELOPE>

 Figure 1.11 Request- Function evaluation with Parameters

The above XML request is similar to the previous request except for this Function evaluation
request needs Parameters to be specified.

All the Parameters must be specified within the Tag <FUNCPARAMLIST> in the <DESC>
Tag under <BODY> Tag.
Each parameter must be enclosed within <PARAM> Tag.
Parameters must follow exactly in the order required by the Function which is specified in
the <ID> Tag.
Dependency, if any i.e., Global/System Formula must be defined with <TDLMESSAGE>
Tag under Tag <TDL>.

Response XML Fragment for the above would be:
<ENVELOPE>

 <HEADER>

 <VERSION>1</VERSION>

 <STATUS>1</STATUS>

 </HEADER>

 <BODY>

 <DESC>

 </DESC>

 <DATA>

 <RESULT TYPE="Number">1242.80</RESULT>

 </DATA>

 </BODY>

</ENVELOPE>

 Figure 1.12 Response- Function evaluation with Parameters

The above response has been generated from Tally based on the request specified. <DATA> Tag
contains the <RESULT> Tag which holds the result after function evaluation.
 32

 Integration - The Overall Perspective

1.7.2 Import
Request to Import Data and Corresponding Response
Tally can import data objects either in the form of a Master or Voucher.
<HEADER> contains the following

Tag <TALLYREQUEST> must contain value Import
Tag <TYPE> must contain value Data and
Tag <ID> should contain the Import TDL Report i.e., either All Masters or Vouchers

<BODY> contains the following
Tag <DESC> can contain report settings like Company Name, behavior of Import in case of
duplicates found; as desired which should be enclosed within <STATICVARIABLES> Tag.
Tag <DATA> must contain the XML Data Fragment within Tag <TALLYMESSAGE> that
needs to be imported

Request for importing Master data in Tally
<ENVELOPE>

 <HEADER>

 <VERSION>1</VERSION>

 <TALLYREQUEST>Import</TALLYREQUEST>

 <TYPE>Data</TYPE>

 <ID>All Masters</ID

</HEADER>

 <BODY>

<DESC>

 <STATICVARIABLES>

 <IMPORTDUPS>@@DUPCOMBINE</IMPORTDUPS>

 </STATICVARIABLES>

 </DESC>

 <DATA>

 <TALLYMESSAGE>

 <LEDGER NAME="ICICI" Action = "Create">

 <NAME>ICICI</NAME>

 <PARENT>Bank Accounts</PARENT>

 <OPENINGBALANCE>-12500</OPENINGBALANCE>

 </LEDGER>

 <GROUP NAME=" Bangalore Debtors" Action = "Create">

 <NAME>Bangalore Debtors</NAME>
 33

 Integration - The Overall Perspective

 <PARENT>Sundry Debtors</PARENT>

 </GROUP>

 <LEDGER NAME="RK Builders Pvt Ltd" Action = "Create">

 <NAME>RK Builders Pvt Ltd</NAME>

 <PARENT>Bangalore Debtors</PARENT>

 <OPENINGBALANCE>-1000</OPENINGBALANCE>

 </LEDGER>

 </TALLYMESSAGE>

 </DATA>

 </BODY>

</ENVELOPE>

 Figure 1.13 Request- Import Master in Tally

In the above XML Request, Create action is used. Any of the following system formulae can be
used to choose the required behaviour in case the system encounters a ledger with the same
name. The behavior is for the treatment of the Opening Balance which is being imported.
DupModify specifies that the current Opening Balance should be modified with the new one that
is being imported.
DupIgnoreCombine specifies that the ledger if exists need to be ignored.
DupCombine specifies the system to combine both the Opening Balances. Ideally, this option is
used when Data pertaining to Group Companies are merged together into a single company.
On processing the above request for importing ledgers, the requested ledgers are created in Tally
and the following response is received:

<RESPONSE>

 <CREATED>2</CREATED>

 <ALTERED>0</ALTERED>

 <LASTVCHID>0</LASTVCHID>

 <LASTMID>0</LASTMID>

 <COMBINED>0</COMBINED>

 <IGNORED>0</IGNORED>

 <ERRORS>0</ERRORS>

</RESPONSE>

 Figure 1.14 Response - After Ledger Master Import in Tally

The above XML Response is a log of masters created, altered, combined, ignored or not imported
due to some errors. It also contains information pertaining to the last Master ID imported.
For Alteration and Deletion of Masters, the Object action needs to be Alter or Delete respectively.
 34

 Integration - The Overall Perspective

For instance, in the above example,
<LEDGER NAME="ICICI" Action = "Alter">

<NAME>HDFC</NAME>

Name of an existing ledger ICICI will get altered to HDFC.

In case of Deletion, following line suffices
<LEDGER NAME="ICICI" Action = "Delete">

Request for importing Voucher in Tally (Voucher Creation)
<ENVELOPE>

<HEADER>

<VERSION>1</VERSION>

<TALLYREQUEST>Import</TALLYREQUEST>

<TYPE>Data</TYPE>

<ID>Vouchers</ID>

</HEADER>

<BODY>

<DESC>

</DESC>

<DATA>

<TALLYMESSAGE>

<VOUCHER>

<DATE>20080402</DATE>

<NARRATION>Ch. No. Tested</NARRATION>

<VOUCHERTYPENAME>Payment</VOUCHERTYPENAME>

<VOUCHERNUMBER>1</VOUCHERNUMBER>

<ALLLEDGERENTRIES.LIST>

<LEDGERNAME>Conveyance</LEDGERNAME>

<ISDEEMEDPOSITIVE>Yes</ISDEEMEDPOSITIVE>

<AMOUNT>-12000.00</AMOUNT>

</ALLLEDGERENTRIES.LIST>

<ALLLEDGERENTRIES.LIST>

<LEDGERNAME>Bank of India</LEDGERNAME>

<ISDEEMEDPOSITIVE>No</ISDEEMEDPOSITIVE>

<AMOUNT>12000.00</AMOUNT>

</ALLLEDGERENTRIES.LIST>
 35

 Integration - The Overall Perspective

</VOUCHER>

<VOUCHER>

<DATE>20080402</DATE>

<NARRATION>Ch. No. : Tested</NARRATION>

<VOUCHERTYPENAME>Payment</VOUCHERTYPENAME>

<VOUCHERNUMBER>2</VOUCHERNUMBER>

<ALLLEDGERENTRIES.LIST>

<LEDGERNAME>Conveyance</LEDGERNAME>

<ISDEEMEDPOSITIVE>Yes</ISDEEMEDPOSITIVE>

<AMOUNT>-5000.00</AMOUNT>

</ALLLEDGERENTRIES.LIST>

<ALLLEDGERENTRIES.LIST>

<LEDGERNAME>Bank of India</LEDGERNAME>

<ISDEEMEDPOSITIVE>No</ISDEEMEDPOSITIVE>

<AMOUNT>5000.00</AMOUNT>

</ALLLEDGERENTRIES.LIST>

</VOUCHER>

</TALLYMESSAGE>

 </DATA>

</BODY>

</ENVELOPE>

 Figure 1.15 Request- Import Voucher in Tally - Creation

On processing the above request for importing vouchers, the requested vouchers are created in
Tally and the following response is received:

<ENVELOPE>

 <HEADER>

 <VERSION>1</VERSION>

 <STATUS>1</STATUS>

 </HEADER>

 <BODY>

 <DATA>

 <IMPORTRESULT>

 <CREATED>2</CREATED>

 <ALTERED>0</ALTERED>

 <LASTVCHID>119</LASTVCHID>

 <LASTMID>0</LASTMID>
 36

 Integration - The Overall Perspective

 <COMBINED>0</COMBINED>

 <IGNORED>0</IGNORED>

 <ERRORS>0</ERRORS>

 </IMPORTRESULT>

 </DATA>

 </BODY>

</ENVELOPE>

 Figure 1.16 Response- After Voucher Import in Tally - Creation

The above XML Response is a log of vouchers created, altered, combined, ignored or not
imported due to some errors. It also contains information pertaining to last Voucher ID imported.

Request for importing Voucher in Tally (Voucher Alteration)
In case of Voucher Alteration, Cancellation or Deletion, vital information required is the voucher
identifier. Identification of Voucher can be direct Methods within Voucher Object. For example,
Master ID, Voucher Number, Reference, Narration, etc. Specifying Voucher Date is mandatory.

<ENVELOPE>

 <HEADER>

 <VERSION>1</VERSION>

 <TALLYREQUEST>Import</TALLYREQUEST>

 <TYPE>Data</TYPE>

 <ID>Vouchers</ID>

 </HEADER>

 <BODY>

<DESC>

 </DESC>

 <DATA>

 <TALLYMESSAGE>

 <VOUCHER DATE="02-Apr-2008" TAGNAME = "Voucher Number"
TAGVALUE="3" Action="Alter" VCHTYPE = "Sales">

 <DATE>20080402</DATE>

 <NARRATION>Being Goods sold</NARRATION>

 </VOUCHER>

 </TALLYMESSAGE>

 </DATA>

 </BODY>

</ENVELOPE>

 Figure 1.17 Request- Import Voucher in Tally - Alteration
 37

 Integration - The Overall Perspective

Request for importing Voucher in Tally (Voucher Cancellation)
Voucher cancellation is similar to above Voucher Alteration. For Voucher Cancellation, Action
must be set to "Cancel"

<ENVELOPE>

 <HEADER>

 <VERSION>1</VERSION>

 <TALLYREQUEST>Import</TALLYREQUEST>

 <TYPE>Data</TYPE>

 <ID>Vouchers</ID>

 </HEADER>

 <BODY>

<DESC>

 </DESC>

 <DATA>

 <TALLYMESSAGE>

 <VOUCHER DATE="02-Apr-2008" TAGNAME = "Voucher Number"
 TAGVALUE="3" VCHTYPE = "Sales" ACTION="Cancel">

 <NARRATION>

Being cancelled due to XYZ Reasons

</NARRATION>

 </VOUCHER>

 </TALLYMESSAGE>

 </DATA>

 </BODY>

</ENVELOPE>

 Figure 1.18 Request- Import Voucher in Tally - Cancellation

Request for importing Voucher in Tally (Voucher Deletion)
Voucher Deletion is similar to above Voucher Alteration or Cancellation. For Voucher Deletion,
Action must be set to "Delete".

<ENVELOPE>

 <HEADER>

 <VERSION>1</VERSION>

 <TALLYREQUEST>Import</TALLYREQUEST>

 <TYPE>Data</TYPE>

 <ID>Vouchers</ID>

 </HEADER>
 38

 Integration - The Overall Perspective

 <BODY>

<DESC>

 </DESC>

 <DATA>

 <TALLYMESSAGE>

 <VOUCHER DATE="02-Apr-2008" TAGNAME = "Voucher Number"
TAGVALUE="3" VCHTYPE = "Sales" ACTION="Delete">

 </VOUCHER>

 </TALLYMESSAGE>

 </DATA>

 </BODY>

</ENVELOPE>

 Figure 1.19 Request- Import Voucher in Tally - Deletion

1.7.3 Execute
Request to Execute Action & Corresponding Response
Tags used for sending a request to Execute an action from Tally.ERP 9

<HEADER> contains the following:
Tag <TALLYREQUEST> must contain value Execute
Tag <TYPE> must contain value TDLAction and
Tag <ID> should contain the Name of the TDL Action

As of now only Sync action is introduced. For sync no parameters are required.

Request for Executing Synchronization in Tally

<ENVELOPE>

 <HEADER>

 <VERSION>1</VERSION>

 <TALLYREQUEST>Execute</TALLYREQUEST>

 <TYPE>TDLAction</TYPE>

 <ID>Sync</ID>

 </HEADER>

</ENVELOPE>

 Figure 1.20 Request for synchronization in XML format
 39

 Integration - The Overall Perspective

In the above XML request, <HEADER> describes the expected result.
The value of the Tag <TALLYREQUEST> is Execute which indicates that some action
needs to be executed in Tally.
The value of the Tag <TYPE> is TDLAction which indicates that some TDLAction has to be
executed in Tally.
The value of the Tag <ID> must be a TDL Action Name. Any action which needs to be exe-
cuted in Tally can be specified within this Tag.

Response XML Fragment for the above would be:
<ENVELOPE>

 <HEADER>

 <VERSION>1</VERSION>

 <STATUS>1</STATUS>

 </HEADER>

</ENVELOPE>

Ensure the following while executing the sync action:

 All synchronization setup has to be done at server end as well as client
end

 Set the Option Enable ODBC server in Advanced configuration to Yes

 Pass the Request from the client end only
 40

Lesson2: Integration Using XML Interface
Lesson Objectives

Introduction
Tally.ERP 9 has supported integration with web scripting languages such as ASP/Perl/PHP and
other languages like VB or any environment capable of supporting XML and HTTP. Integration
with these products is possible as XML import and export capability is built into Tally.ERP 9.

In fact, Tally.ERP 9 delivers most of the functionalities of Web Services provided by Micro-
soft's.NET framework. All Tally.ERP 9 data is accessible to any number of potentially disparate
systems through the use of Internet standards such as XML and HTTP. In other words,
Tally.ERP 9 can communicate with any environment capable of sending and receiving XML over
HTTP.

This chapter explains how Tally.ERP 9 will act as a server/client while it is connecting to external
applications. The following figure shows the XML Messaging Format through external application/
Web services, acting Tally.ERP 9 as a Server/Client.

On the completion of this chapter you will be able to

Understand the functionality of Tally as a Server using External applica-
tions
Understand the functionality of Tally as a Client using Web Services
 41

 Integration Using XML Interface

2.1 Tally.ERP 9 as a Server – Using External application as Front End
Data can be accessed from Tally.ERP 9 once the connection is established between Tally.ERP 9
and other external applications. Here we are usingData can be posted from Visual Basic to
Tally.ERP 9 through XML Interface. The existing Tally.ERP 9 data can be altered and deleted from
Visual Basic. Let us discuss some scenarios for using external application as front end.

2.1.1 Case Study I – Importing Masters from Excel to Tally.ERP 9
A Company "Global Enterprises" was using external software as on 31st March 2008. As on 1st
April 2008, they have procured Tally.ERP 9. There is a requirement for all their ledgers and
inventory masters to be transferred to Tally without entering them. The external software has an
option to export its master data to Excel. Using the same, all ledger and inventory masters have
been exported in Excel Sheets. The data files thus exported are displayed below.

 Figure 1.1 Ledger Master

 Figure 1.2 Inventory Master
 42

 Integration Using XML Interface

 A Company Global Enterprises has been created in Tally.ERP 9 and only default masters exist as
shown in the screen below:

 Figure 1.3 Statistics prior to Import

The data in Excel needs to be converted to Tally understandable XML format and sent to the port
in which Tally.ERP 9 is running.

To achieve this, an interface is built in VB to import all the masters from Excel and generate a Tally
compatible XML which is subsequently posted in Tally.ERP 9. The interface application created
for the same has been displayed below.
 43

 Integration Using XML Interface

 Figure 1.4 Data Transfer to Tally

On selecting Type "Stock Items" or "Ledgers" and clicking on Export to Tally button, it transfers all
the relevant masters to Tally.ERP 9. On the Export to Tally Button, required XML as discussed
earlier is constructed and posted to Tally.ERP 9 which is up at a predefined port.

The XML is generated through the following VB Code Snippet:-

Private Function LedgerMasterText(ByVal intI As Integer) As String

 Dim strTemp As String

 Dim strTxt As String

 sbExport.SimpleText = intI & ": " & Trim$(xlWS.Cells(intI, 2))

 strTxt = vbNullString

 strTxt = _

 "<ENVELOPE>" & vbCrLf & _

 "<HEADER>" & vbCrLf & _

 "<VERSION>1</VERSION>" & vbCrLf & _

 "<TALLYREQUEST>Import </TALLYREQUEST>" & vbCrLf & _

 "<TYPE>Data</TYPE>" & vbCrLf & _

 "<ID>All Masters</ID>" & vbCrLf & _

 "</HEADER>" & vbCrLf & _

 "<BODY>" & vbCrLf & _

 "<DESC>" & _

 "<STATICVARIABLES>" & _

 "<SVCURRENTCOMPANY>" & _

"##SVCurrentCompany" & _
 44

 Integration Using XML Interface

"</SVCURRENTCOMPANY>" & _

 "</STATICVARIABLES>" & _

 "</DESC>" & _

 "<DATA>" & vbCrLf & _

 "<TALLYMESSAGE>" & vbCrLf & _

 "<LEDGER>" & vbCrLf & _

 "<NAME.LIST>" & vbCrLf & _

 "<NAME>" & ReplaceXmlText(Trim$(xlWS.Cells(intI, 2))) &
"</NAME>" & vbCrLf

 If Trim$(xlWS.Cells(intI, 1)) <> vbNullString Then

 strTxt = strTxt & "<NAME>" &

ReplaceXmlText(Trim$(xlWS.Cells(intI, 1))) & "</NAME>" & vbCrLf

 End If

 strTxt = strTxt & _

 "</NAME.LIST>" & vbCrLf & _

 "<PARENT>" & ReplaceXmlText(Trim$(xlWS.Cells(intI, 3))) &

"</PARENT>" & vbCrLf

 '-----Optional----------

 If Trim$(xlWS.Cells(intI, 4)) <> vbNullString Then

 strTxt = strTxt & "<ADDRESS.LIST>" & vbCrLf

 strTxt = strTxt &

"<ADDRESS>" & ReplaceXml Text(Trim$(xlWS.Cells(intI, 4))) &

"</ADDRESS>" _ & vbCrLf 'Address 1

 If Trim$(xlWS.Cells(intI, 5)) <> vbNullString Then

strTxt = strTxt & _

"<ADDRESS>" & ReplaceXmlText(Trim$(xlWS.Cells(intI, 5))) &

"</ADDRESS>" & vbCrLf 'Address 2

 If Trim$(xlWS.Cells(intI, 6)) <> vbNullString Then

strTxt = strTxt & _

"<ADDRESS>" & ReplaceXmlText(Trim$(xlWS.Cells(intI, 6))) &
"</ADDRESS>" & vbCrLf 'Address 3

 strTxt = strTxt & "</ADDRESS.LIST>" & vbCrLf

 End If

 If Trim$(xlWS.Cells(intI, 7)) <> vbNullString Then

 strTxt = strTxt & _

"<STATENAME>" & ReplaceXmlText(Trim$(xlWS.Cells(intI, 7))) &
 45

 Integration Using XML Interface

 "</STATENAME>"

 End If

 If Trim$(xlWS.Cells(intI, 8)) <> vbNullString Then

 strTxt = strTxt &

"<LEDGERPHONE>" & ReplaceXmlText(Trim$(xlWS.Cells(intI, 8))) & _

 "</LEDGERPHONE>"

 End If

 If Trim$(xlWS.Cells(intI, 9)) <> vbNullString Then

 strTxt = strTxt &

"<LEDGERFAX>" & ReplaceXmlText(Trim$(xlWS.Cells(intI, 9))) & _

 "</LEDGERFAX>"

 End If

 If Trim$(xlWS.Cells(intI, 10)) <> vbNullString Then

 strTxt = strTxt &

"<EMAIL>" & ReplaceXmlText(Trim$(xlWS.Cells(intI, 10))) & _

"</EMAIL>"

 End If

 strTemp = ReplaceXmlText(Trim$(xlWS.Cells(intI, 2)))

 strTxt = strTxt &

"<ADDITIONALNAME>" & Trim$(strTemp) & _

"</ADDITIONALNAME>" & _ vbCrLf

 strTxt = strTxt & _

 "</LEDGER>" & vbCrLf & _

 "</TALLYMESSAGE>" & vbCrLf & _

 "</DATA>" & vbCrLf & _

"</BODY>" & vbCrLf & _

"</ENVELOPE>" & vbCrLf

LedgerMasterText = strTxt

End Function

The following VB Code Snippet sends the above generated XML Data to Tally.ERP 9 which is
running at a predefined port.

objXml.open "POST", "http://localhost:9000", False

objXml.send XMLToPost
 46

 Integration Using XML Interface

On importing both Ledgers and Inventory Masters, statistics is as shown below:

 Figure 1.5 Statistics post Import

In the above figure, we can observe that 5 Ledgers and 6 Stock Items have been imported from
Excel. If there are some errors while Importing, Tally.imp can be referred for Import Log.

2.1.2 Case Study II - Creation and Alteration of Vouchers through VB
A Company Global Enterprises needs to design an interface for entering their receipt vouchers
and altering the same, if required. At the end of Voucher Entry, the same needs to be posted to
Tally.ERP 9.
The following interface has been designed for Receipt Voucher Entry.
 47

On hitting Option Create, it enters a new form designed for Receipt Creation as shown below.

The Masters created in Tally.ERP 9 are collected and being displayed for selection by the user.
Collections pertaining to Cash or Bank Ledgers and Party Ledgers have been written in a TDL
File which must be associated before executing this VB code.

 Integration Using XML Interface

 On hitting POST Button, XML fragment get generated and the same is being posted to Tally.ERP
9 running in a predefined port.

The VB Code for the same is:
Private Sub Command1_Click()

 Dim ComboString1 As String

 Dim ComboString2 As String

 Dim ComboString3 As String

 Dim ComboString11 As String

 Dim ComboString21 As String

 Dim ComboString31 As String

 ComboString11 = Combo1.Text

 ComboString21 = Combo2.Text

 ComboString31 = Text5.Text

 ComboString1 = Combo1.Text

 ComboString2 = Combo2.Text

 ComboString3 = Text5.Text

If Combo1.Text = "" Or Combo2.Text = "" _

Or Text1.Text = "" Or Text4.Text = "" Then

 MsgBox "Enters All The information", _
 49

 Integration Using XML Interface

vbApplicationModal, "Voucher Creation"

Else

 date2 = Format(Text1.Text, "dd/mm/yyyy")

 Temp = Str$(Text4.Text * -1)

If InStrRev(ComboString11, "&") Then

 ComboString1 = Replace(ComboString11, "&", "" & "")

End If

If InStrRev(ComboString21, "&") Then

 ComboString2 = Replace(ComboString21, "&", "" & "")

End If

If InStrRev(ComboString31, "&") Then

 ComboString3 = Replace(ComboString31, "&", "" & "")

End If

xmlstc = "<ENVELOPE>" + vbCrLf & _

 "<HEADER>" + vbCrLf & _

 "<VERSION>1</VERSION>" + vbCrLf & _

 "<TALLYREQUEST>Import</TALLYREQUEST>" + vbCrLf & _

 "<TYPE>Data</TYPE>" + vbCrLf & _

 "<ID>Vouchers</ID>" + vbCrLf & _

 "</HEADER>" + vbCrLf & _

 "<BODY>" + vbCrLf & _

 "<DESC>" + vbCrLf & _

 "</DESC>" + vbCrLf & _

 "<DATA>" + vbCrLf & _

 "<TALLYMESSAGE >" + vbCrLf & _

 "<VOUCHER VCHTYPE=""Receipt"" ACTION=""Create"">" + vbCrLf& _

 "<DATE>" + date2 + "</DATE>" + vbCrLf & _

 "<NARRATION>" + ComboString3 + "</NARRATION>" + vbCrLf & _

 "<VOUCHERTYPENAME>Receipt</VOUCHERTYPENAME>" + vbCrLf & _

 "<EFFECTIVEDATE>" + date2 + "</EFFECTIVEDATE>" + vbCrLf & _

 "<ALLLEDGERENTRIES.LIST>" + vbCrLf & _

 "<LEDGERNAME>" + ComboString2 + "</LEDGERNAME>" + vbCrLf & _
 50

 Integration Using XML Interface

 "<AMOUNT>" + Text4.Text + "</AMOUNT>" + vbCrLf & _

 "</ALLLEDGERENTRIES.LIST>" + vbCrLf & _

 "<ALLLEDGERENTRIES.LIST>" + vbCrLf

 xmlstc = xmlstc + "<LEDGERNAME>" + ComboString1 +

"</LEDGERNAME>" + vbCrLf & _

 "<ISDEEMEDPOSITIVE>Yes</ISDEEMEDPOSITIVE>" + vbCrLf & _

 "<AMOUNT>" + Temp + "</AMOUNT>" + vbCrLf & _

 "</ALLLEDGERENTRIES.LIST>" + vbCrLf & _

 "</VOUCHER>" + vbCrLf & _

 "</TALLYMESSAGE>" + vbCrLf & _

 "</DATA>" + vbCrLf & _

 "</BODY>" + vbCrLf & "</ENVELOPE>"

ServerHTTP.Open "POST", "http://localhost:" + PortNumber

ServerHTTP.send xmlstc

' Response from Tally - ServerHTTP.responseText

 responsstr = ServerHTTP.responseText

 newstring = InStrRev(responsstr, "<LINEERROR>")

If newstring = 0 Then]

XMLDOM.loadXML (responsstr)

 MsgBox "Response String " + responsstr

 Set CHILDNODE = _

XMLDOM.selectNodes("ENVELOPE/BODY/DATA/IMPORTRESULT/LASTVCHID")

 MsgBox "Voucher Created with MASTER ID " +

CHILDNODE(0).Text, ,"Voucher Creation"

Else

 MsgBox "Failed to POST"

End If

responsestr = ServerHTTP.responseText

 Text4.Text = ""

 Text5.Text = ""

 End If

End Sub

Similar to Master Import, the following VB Code snippet sends the above generated XML Data to
Tally.ERP 9 which is running at a predefined port.
 51

 Integration Using XML Interface

ServerHTTP.Open "POST", "http://localhost:" + PortNumber 'for example:
http://localhost:9000

ServerHTTP.send xmlstc

On creating Vouchers in Tally.ERP 9, it sends the Response is parsed and Master ID is displayed
as shown above

The above Screen displays the Receipt Entry created from the external Interface.
 52

 Integration Using XML Interface

The above Interface is designed for Receipt Alteration based on Master ID of all the Vouchers. It
lists the Master IDs of all the Receipt Vouchers in the List Box. On selection of a Master ID, it
extracts all the Info pertaining to the selected Voucher as shown in the next figure.
 53

 Integration Using XML Interface

The above Interface displays the details of the Voucher pertaining to the selected Master ID. Only
Alteration of Amount and Narration have been allowed in the external interface alteration.
 54

 Integration Using XML Interface

Amount has been altered from 12000 to 12600. On hitting Alter, XML Fragment will be generated
and sent to Tally running at a predefined port.

XML generated for Altering the above is:

Private Sub Command1_Click ()

 Dim ComboString1 As String

 Dim ComboString2 As String

 Dim ComboString3 As String

 Dim ComboString11 As String

 Dim ComboString21 As String

 Dim ComboString31 As String

 55

 Integration Using XML Interface

 ComboString11 = Text2.Text

 ComboString21 = Text3.Text

 ComboString31 = Text5.Text

 ComboString1 = Text2.Text

 ComboString2 = Text3.Text

 ComboString3 = Text5.Text

 If InStrRev(ComboString11, "&") Then

 ComboString1 = Replace(ComboString11, "&", "" & "")

 End If

 If InStrRev(ComboString21, "&") Then

 ComboString2 = Replace(ComboString21, "&", "" & "")

 End If

 If InStrRev(ComboString31, "&") Then

 ComboString3 = Replace(ComboString31, "&", "" & "")

 End If

 date2 = Format(Text1.Text, "dd-mmm-yyyy")

 If Text4.Text = "" Then

 MsgBox ("Please enter some value")

 Text4.SetFocus

 Else

 Temp = Str$(Text4.Text * -1)

 xmlstc = _

 "<ENVELOPE>" + vbCrLf & _

 "<HEADER>" + vbCrLf & _

 "<VERSION>1</VERSION>" & _

 "<TALLYREQUEST>Import</TALLYREQUEST>" + vbCrLf & _

 "<TYPE>Data</TYPE>" + vbCrLf & _

 "<ID>Vouchers</ID>" + vbCrLf & _

 "</HEADER>" + vbCrLf & _

 "<BODY>" + vbCrLf & _

 "<DESC>" + vbCrLf & _

 "</DESC>" + vbCrLf & _

 "<DATA>" + vbCrLf & _
 56

 Integration Using XML Interface

 "<TALLYMESSAGE>" + vbCrLf & _

 "<VOUCHER DATE=" + """" + date2 + """" +

"TAGNAME=""MASTER ID"" TAGVALUE=" + """" +

List1.Text + """" + " ACTION=""Alter""

VCHTYPE = ""Receipt"">" + vbCrLf & _

 xmlstc = xmlstc & _

 "<ALLLEDGERENTRIES.LIST>" + vbCrLf & _

 "<LEDGERNAME>" + ComboString2 + "</LEDGERNAME>" + vbCrLf & _

 "<AMOUNT>" + Text4.Text + "</AMOUNT>" + vbCrLf & _

 "</ALLLEDGERENTRIES.LIST>" + vbCrLf & _

 "<ALLLEDGERENTRIES.LIST>" + vbCrLf & _

 "<LEDGERNAME>" + ComboString1 + "</LEDGERNAME>" + vbCrLf & _

 "<ISDEEMEDPOSITIVE>Yes</ISDEEMEDPOSITIVE>" + vbCrLf & _

 "<AMOUNT>" + Temp + "</AMOUNT>" + vbCrLf & _

 "</ALLLEDGERENTRIES.LIST>" + vbCrLf & _

 "<NARRATION>" + ComboString3 + "</NARRATION>" + vbCrLf & _

 "</VOUCHER>" + vbCrLf & _

 "</TALLYMESSAGE>" + vbCrLf & _

 "</DATA>" + vbCrLf & _

 "</BODY>" + vbCrLf & _

 "</ENVELOPE>"

 ServerHTTP.Open "POST", "http://localhost:" + PortNumber

 ServerHTTP.send xmlstc

 responsstr = ServerHTTP.responseText

 newstring = InStrRev(responsstr, "<LINEERROR>")

 If newstring = 0 Then

 MsgBox "Save Successful", vbOKOnly, "Voucher : "

 Else

 MsgBox responsstr

 MsgBox "Failed to POST"

 End If

 Text1.Text = ""

 Text2.Text = ""

 Text3.Text = ""

Text4.Text = ""
 57

 Integration Using XML Interface

Text5.Text = ""

Text6.Text = ""

Text7.Text = ""

End If

End Sub

On executing the above code, the Tally Voucher containing the above selected Master ID gets
altered with the given Amount and Narration details.

The above Tally.ERP 9 Screen displays the Voucher which has been altered from an external
interface application.
 58

 Integration Using XML Interface

2.1.3 Case Study III – Exporting Ledger Masters from Tally.ERP 9 to External
Application
A Company Global Enterprises needs to design an interface for displaying list of ledgers in VB
and allowing the user to alter the same through external interface. Finally the altered ledger must
be posted to Tally.ERP 9.

Ensure that the TDL Ledger Report.txt has been associated in Tally.ERP 9. This TDL report is
written for displaying List of Ledgers with the required XML Tags since when an export request is
sent to Tally.ERP 9, these XML Tags can be located and displayed in the Interface.

The above Tally.ERP 9 Screen displays the List of Ledgers prior to alteration in Company Global
Enterprises.

The following interface has been designed in VB for Ledger Alteration. The Ledgers in Global
Enterprises Company has been gathered through XML and displayed in drop down list for user
selection.
 59

 Integration Using XML Interface

On selection of the Ledger, an additional input field Enter New Name allows the user to give a
different name to the selected ledger.

On hitting Alter Ledger button, the XML for Ledger Alteration is generated and posted to Tally.ERP
9 and the Tally.ERP 9 Ledger is altered accordingly as shown in the following Tally.ERP 9 screen.
 60

 Integration Using XML Interface

The above screen displays that the Ledger Emco Transformers has been renamed to Emco
Transformers Pvt Ltd through external interface application.
 61

 Integration Using XML Interface

2.2 Tally.ERP 9 as a Client – Tally as a Front end for Web Services
2.2.1 Introduction
With the new enhancements now Tally can send a request to the HTTP Server and display the
response. Tally sends the request as an XML and receives the response in XML format. Tally can
collect data directly from an XML file or from a web service running on the server. Even data can
be sent along with the request to the web service which can process the data and return the result
as an XML. The web service in turn might be operating on an external data base.

Following Figure shows the functionality when Tally acting as a client interacts with a web service
operating on the external data.

Collection capability has been enhanced to gather live data from HTTP/web-service delivering
XML. The entire XML is now automatically converted to TDL objects and is available natively in
TDL reports as $ based methods. Reports can be shown in Tally with live data from an HTTP
server. Coupled with the new [OBJECT:] extensions and Using POST action data can be
submitted data back to the server almost operating Tally as a client to HTTP-XML web-services.

This capability allows us to retrieve and store data as objects in Collection. The attributes in col-
lection for gathering XML based data from a remote server over HTTP are RemoteURL, Remot-
eRequest, XMLObjectPath, and XMLObject. Whenever the collection is referred the data is
fetched from the remote server and is populated in the collection.

Events On Focus, On Form Accept and Action - HTTP - POST are used providing the flexibility to
send a request automatically to server when a particular event occurs.
 62

 Integration Using XML Interface

Consider that the file TestXML.xml contains data and Tally sends a request to fetch the data. Once
the data is available any data manipulation operation can be performed on it.
The TestXML.xml file contains the following:

<CUSTOMER>

 <NAME>Sapna Awasthi</NAME>

 <EMPID>1000</EMPID>

 <PHONE>

 <OFFICENO>080-66282559</OFFICENO>

 <HOMENO>011-22222222</HOMENO>

 <MOBILE>990201234</MOBILE>

 </PHONE>

 <ADDRESS>

 <ADDRLINE>C/o. Info Solutions</ADDRLINE>

 <ADDRLINE>Technology Street</ADDRLINE>

 <ADDRLINE>Tech Info Park</ADDRLINE>

 </ADDRESS>

</CUSTOMER>

Prerequisites for Data Transfer over HTTP

In order to retrieve the data available in TestXML.xml File from a remote
server (Pre-defined IP Address) ensure that web service is running on the
machine. Check for IIS Server Installation. The file TestXML.xml can be
copied to the directory C:\Inetpub\wwwroot to be accessible at the root and
then the URL can be specified as follows http://localhost/TestXML.xml.

If the XML request needs to be processed at the remote server by a file (.asp,
.php, etc.), at least one web server (e.g., IIS, Apache etc) and PHP/ASP must
be installed on the system.

Collection attributes introduced to facilitate these capabilities are:
[Collection: <Collection Name>]

 RemoteURL : <http-url formula>

 RemoteRequest : <Request-report-name>,+

 <pre-request-display-report>: +

 <Encoding type>

 XMLObjectPath : <Start-node> : <Path-to-start-node>

 XMLObject : <TDL-Object-Name>
 63

 Integration Using XML Interface

Once the collection is populated with the objects it can be used in TDL reports to display the
retrieved data. The XML TAG names can be used as methods in the TDL programs.
The methods names must be in the same case as the XML Tag name.
Example :

If the XML tag name is written as <NAME> then $NAME must be used as method name
while referring it in TDL.
If the XML tag name is written as <Name> then $Name must be used as method name
while referring it in TDL.

2.2.2 Collection attribute – Remote URL
Remote-URL attribute is used to specify the Universal Resource Locator (URL) of the HTTP
server delivering the XML data. The URL can be directly specified as string or through a String
formula. This attribute is mandatory to access the data in XML format from remote server in a col-
lection.
The collection is created as follows to populate XML Data available at the URL http://localhost/
TestXML.xml :
Syntax

 RemoteURL : <http-url formula>

Where,
<http-url formula> This can be any string formula which resolves as an URL.

Example :
[Collection: XML Get Collection]

 Remote URL : "http://localhost/TestXML.xml"

This collection can be used in a TDL Report to display the data retrieved. In order to display the
retrieved data the line is repeated over this collection.

Repeat: XMLDetLn : XMLGetCollection

In the field the XML TAG names are used as method names.
[Field : CustNm]

Set As : $NAME

To display the PHONE and ADDRESS details, the line can be exploded.
[Line : XMLDetLn]

Explode : PhPart

Explode : AddPart
 64

 Integration Using XML Interface

n the Exploded parts the line is repeated over the PHONE and ADDRESS collection respectively.
[Part : PhPart]

Repeat : PhLine : PHONE

[Part: AddPart]

Repeat: AddLine : ADDRESS

2.2.3 Collection attribute – XML Object Path
By default, all the data from XML file is made available in the collection. If only a specific data
fragment is required it can be obtained using the collection attribute XML Object Path. This
attributes converts the extracted fragment as TDL Objects in Collection. By default, it takes the
root node.
Syntax

XMLObjectPath : <Start-node> : <Path-to-start-node>

Where,
<Start-Node> allows you to specify the name and position of the XML node from which the data
should be extracted. The parameter is specified as follows:

<Node Name> : <Position>
<Path-to-Start-Node> is used to specify the path to reach the <start node> from the root node.
The path specification is:

<Root-node>: <Child Node> : <Start Pos> : <Child Node> : <Start Pos> …

Example :
From the XML file, if only address is required then the collection is defined as follows:

[Collection: XML Get CollObjPath]

Remote URL : "http://localhost/TestXML.xml"

XML Object Path : ADDRESS: 1: CUSTOMER

2.2.4 Collection attribute – XML Object
XMLObject attribute is used to specify the TDL Object specification.
Syntax

XMLObject : <TDL-Object-Name>

Where,
<TDL -Object Name> is user defined name. The data is required to be mapped as TDL Objects.
The following syntax is used for object specification:
 65

 Integration Using XML Interface

[Object: <Object Name>]

Storage : <Name> : Type

Collection : <Name> : Type

The second Parameter in the Collection Type can be an Object type in case of a complex collec-
tion or a simple data type in case of simple collection.

Example :
The data available in XML format is at the URL "http://Remoteserver/TestXML.xml". The collection
attribute XML Object is used to specify the object name to which the obtained data is mapped.

[Collection: XML Get Collection]

 Remote URL : "http://Remoteserver/TestXML.xml"

 XML Object : Customer Data

The Object specification for "Customer Data" is as follows:

[Object: Customer Data]

 Storage : Name : String

 Storage : EmpId : String

 Collection : Phone : XML Phone Coll ;; Complex Collection

 Collection : ADDRESS : XML AddressColl ;; Complex Collection

[Object: XML Phone Coll]

 Storage : OfficeNo : String

 Storage : HomeNo : String

 Storage : Mobile : String

[Object: XML AddressColl]

 Collection : AddrLine : String ;; Simple collection

2.2.5 Collection attribute – Remote Request
A TDL report can be sent to the HTTP server as an XML request and the XML response is to be
obtained in the collection. RemoteRequest attribute is used to specify the Report name which is to
be sent to the HTTP server as an XML Request. If the report requires user inputs then it has to be
accepted before the request is sent. Pre-request is used to specify the name of the report which
accepts the user-input.
 66

 Integration Using XML Interface

Syntax

RemoteRequest: <request-report-name>,<pre-request-report>: +

 <encoding type>

Where,
<Encoding Type> specifies the encoding to be used while transmitting information to the
receiving end. The valid encoding formats are ASCII and UNICODE. UNICODE is set by default.
<Request Report Name> is the name of the TDL Report which will be used for generating XML
Request to be sent.
<Pre-Request Report Name> is the name of the TDL Report which accepts the user-input.

Example :
The Test.php page on the remote server accepts the data in the following XML format.

<ENVELOPE>

 <REQUEST>

 <NAME>Tally</NAME>

 <EMPID>00000</EMPID>

 </REQUEST>

</ENVELOPE>

Following collection sends request in the above XML format with the help of a TDL report XML-
PostReqRep. The encoding scheme selected is ASCII.

[Collection: XML Post Collection]

 Remote URL : "http://Remoteserver/test.php"

 RemoteRequest : XMLPostReqRep : ASCII

The report XMLPostReqRep is automatically executed when the collection is referred.

The Request Report
In the request report XMLPostReqRep, the XMLTAG attribute is used at Part and Field Defini-
tions. The XML Tag <Envelope> is added by Tally while sending the XML request.
In the part definition the XMl TAG is specified as "REQUEST".

 [Part: XMLPostReqRep]

 XML Tag : "REQUEST"

 Scroll : Vertical

In the field definitions the tag names "NAME" and "EMPID" are specified.
 67

 Integration Using XML Interface

[Field: XMLPostReqRepName]

 XML Tag : "NAME"

 Set As : " Tally "

[Field: XMLPostReqRepId]

 XML Tag : " EMPID "

 Set As : " 00000 "

The response received from "http://Remoteserver/test.php" page is the same XML given previ-
ously. The data now available in the collection can be displayed in a TDL report.

Pre- request Report
A Pre Request Report is required when some inputs are to be accepted from the user and the
XML Request is to be generated out of those inputs. In that case, a TDL report is used which has
to be accepted first. If the data captured through pre request report has to be sent to remote
server for processing then it has to be made available in the Request Report. The input report
name is specified as Pre Request Report.

[Collection: XML Post Collection]

 Remote URL : "http://localhost/test.php"

 RemoteRequest : XMLPostReqRep, XML PreReqRep : ASCII

The Report XMLPostReqRep sends the XML request to the page Test.php in the format
described earlier. Before sending the XML request to the page, the data entered in the report
XML PreReqRep must be accepted. The data entered in the Pre-Request report can also be sent
to the remote server in the XML request. Both the reports are triggered when the collection is
referred. PreRequest Report is only used to accept value from the user. These values are sent to
the HTTP Server through the Request Report Only.

2.2.6 Action – HTTP POST
A new Key/ Button Action HTTP Post has been introduced which will help in exchanging data with
external applications using web services. In other words, HTTP Post Action can be used to
submit data to a server over HTTP and gather the response. This will enable a TDL Report to
perform a HTTP Post to a remote location.
Syntax

[Key: <Key Name>]

 Key : <Key Combination>

 Action : HTTP Post : <URL Formula> : <Encoding> : <Request Report>: +

 <Error Report> : <Success Report >
 68

 Integration Using XML Interface

Where,
<URL Formula> can be any string formula which resolves as an URL and is defined under
System Definition.
<Encoding> is the encoding scheme ASCII or UNICODE .
<Request Report> is the name of the TDL Report which will be used for generating XML
Request to be sent.
<Error Report > is displayed in case of failure.
<Succes Report> is displayed when the post is successful.
The details pertaining to URL (at the receiving end), Encoding Format, RequestReport , Error
Report and Success Report should be specified along with HTTP Post Action. The Request, Error
and Success reports are optional.
Success and failure is determined by <STATUS> tag in the standard message format. If it is 1
then success else it is failure. Based on the value of the <STATUS> tag 0/1, the error report and
success report are executed respectively. It will not close or accept the form if status is not equal
to 1.

Example :
[Key: XMLReqResp]

 Key : Ctrl + R

 Action : HTTP Post : @@MyUrl : ASCII : ReqRep: ERRRespRep: SuccRep

 Scope : Selected Lines

;;URL Specification must be done as a system formula
[System: Formula]

 MyUrl : http://127.0.0.1:9000

The defined Key XMLReqResp in the snippet above must be attached to an initial Report. When
the report is activated and this Key is pressed, the Action HTTP Post activates a defined report
ReqRep which generates the request XML. The response data is made available in collection
called Parameter Collection. The reports ERRRespRep and SuccRep can use the Parameter Col-
lection to display the error message/data in the Report.
Two events are introduced in Tally.ERP 9, they are:

OnFormAccept
OnFocus

2.2.7 Event – On Form Accept
A new event is introduced in Form definition, On: Form Accept. A list of actions can be executed
when the form is accepted. The execution can be based on a condition.
Syntax

 On: Form Accept: <Condition>: Action: Action parameters
 69

 Integration Using XML Interface

Where,
<Condition> should return a logical value.
<Action> any one of the actions
<Action Parameters> parameters of the actions specified.
Example :

[Form : TestForm]

On:FormAccept:Yes:HttpPost:@@SCURL:ASCII:SCPostNewIssue:SC NewIssueResp

2.2.8 Event – On Focus
In the definitions Part, Line and Field a new event On : Focus is introduced. When the Part, Line
or Field receives a focus list of action can be executed. A condition can also be specified. When
the condition returns true then only the actions will be executed.
Syntax

On : Focus : condition : Action : Action parameters

<Condition> should return a logical value
<Action> any one of the actions
<Action Parameters> parameters of the actions specified
Its a list type attribute so as many actions can be specified.

[Part : TestPart1]

 On : FOCUS : Yes : HTTP Post : @@MyUrl : ASCII : ReqRep, RespRep

[Part : TestPart2]

On : FOCUS : Yes : Call : SCSetVariables : $$Line

2.3 Collection Capability to Accept File as a Data Source
Collection is enhanced to support a generalized data source structure. All types of data sources
are currently made available through different attributes of collection. For example: To retrieve
data from ODBC collection attributes, ODBC, SQL, and SQL Object are used.
The new attribute Data Source can be used for any type of Data source.

2.3.1 The Collection attribute – Data Source
As of now the attribute data source allows to specify XML file as data source. The collection can
be created directly from the specified XML file and the data in the XML file can be displayed in a
report.
Syntax

 DataSource : <Type> : <Encoding> : <Identity>
 70

 Integration Using XML Interface

<Type> specifies the type of data source. Eg. File Xml, HTTP XML, ODBC etc
<Encoding> ASCII or UNICODE. This is Optional .The default value is UNICODE.
<Identity> Data source file path
Example :

[Collection: My XML Coll]

DataSource : File Xml : "C:\MyFile.xml"

In the above code snippet the type of file is 'File XML ' as the data source is XML file. The
encoding is Unicode by default as it is not specified.

2.4 Case Study
A web service running on the remote server is used to extract data from the external data base. It
sends the response in the following XML format based on the data available in the database.

<ENVELOPE>

<HEADER>

 <VERSION>version</VERSION>

 <TALLYREQUEST>Import</TALLYREQUEST>

 <TYPE>DATA</TYPE>

 <STATUS>1</STATUS>

 </HEADER>

<BODY>

 <DATA>

 <STKITNAME>

 <ITNAME>Item 1</ITNAME>

 <STKBAT>

 <BATNAME>B1</BATNAME>

<BATQTY>100</BATQTY>

<BATRATE>10</BATRATE>

<BATAMT>1000</BATAMT>

 </STKBAT>

 <STKBAT>

Support for other data sources like ODBC, HTTP will also be available in future
builds.
 71

 Integration Using XML Interface

<BATNAME>B2</BATNAME>

<BATQTY>10</BATQTY>

<BATRATE>10</BATRATE>

<BATAMT>100</BATAMT>

 </STKBAT>

 </STKITNAME>

 <STKITNAME>

<ITNAME>Item 2</ITNAME>

<STKBAT>

<BATNAME>B3</BATNAME>

<BATQTY>100</BATQTY>

<BATRATE>10</BATRATE>

<BATAMT>1000</BATAMT>

</STKBAT>

<STKBAT>

<BATNAME>B4</BATNAME>

<BATQTY>10</BATQTY>

<BATRATE>10</BATRATE>

<BATAMT>100</BATAMT>

</STKBAT>

 </STKITNAME>

 </DATA>

</BODY>

</ENVELOPE>

Tally can use the web service to fetch data from the data base and perform following operation:
Display the retrieved data in Tally as a Report
Retrieve data based on the request sent by Tally
Send the request based on user input to the web server and display the response in a
report

Display the retrieved data in Tally as a Report:
To retrieve the data from the database the STKXML.php page is used and this page sends the
response to Tally in the XML format mentioned above.

To display the data as a report in Tally, a TDL report needs to be designed. A line in the report
repeats over a collection of objects obtained from the XML. As the header information is also
available in the XML, XML Object Path attributes must be used to specify the node from which the
data should be retrieved in collection.
 72

 Integration Using XML Interface

A collection is created as follows:
[Collection : STKItColl]

Remote URL : "http://remoteserver/STKXML.php"

XML Object Path : STKITNAME:1:ENVELOPE:BODY:1:DATA:1

In the part definition a line is repeated over the collection STKItColl as shown:
[Part : StkItDisp]

Line : StkItDisp

Repeat : StkItDisp : STKItColl

In this line only the Name can be displayed as there are multiple batches the line should be
exploded to display the Batch Details.

[Line : StkItDisp]

Field : StkItDispNm

Explode : StkItDispBat

In the exploded part the line must be repeated over the collection StkBat in order to display the
batch details.

[Part :StkItDispBat]

Line : StkItDispBat

Repeat: StkItDispBat :STKBAT

Data Retrieval based on the request sent by Tally:
In the scenario when the data is to be retrieved based on the request sent by Tally.ERP 9,
Request report should be designed. Consider that this report generates the following XML format
which is sent to the web server running the php page:

<ENVELOPE>

<HEADER>

 <VERSION>version</VERSION>

<TALLYREQUEST>Export</TALLYREQUEST>

 <TYPE>DATA</TYPE>

</HEADER>

 73

 Integration Using XML Interface

<BODY>

 <DATA>

 <SVSTKITEM> Item 1 </SVSTKITEM>

 </DATA>

</BODY>

</ENVELOPE>

The Item name is sent along with the request and all the batches of this item should be retrieved
from the data base.
The collection is defined as follows:

[Collection : STKItColl]

Remote URL : "http://remoteserver/STKXML.php"

XML Object Path : STKITNAME:1:ENVELOPE:BODY:1:DATA:1

Remote Request : StkItReq :ASCII

The report "StkItReq" generates the XML format which is sent from Tally to the web service. The
Request report "StkItReq" must contain two parts to provide the Header and Body tag informa-
tion.

[From : StkItReq]

Part : StkItReqh, StkItReqb

The parts will have the tags "HEADER" and "BODY" respectively. The attribute Scroll : Vertical
must be specified for in both the parts.

[Part : StkItReqh]

XML TAG : "HEADER"

The three fields in the line will have tags "VERSION", "TALLYREQUEST" and "TYPE" respec-
tively. These are hard coded in this scenario.

[Part : StkItReqb]

XML TAG : "BODY"

The Line in the part StkItReqb will have the XML tag as "DATA"
[Line : StkItReqbln]

Field : StkItReqbfld

XML TAG: DATA
 74

 Integration Using XML Interface

The field contains the XML tag as " SVStkItem". The Item name passed as the value of the field in
the request sent as XML.

[Field: StkItReqbfld]

Set As : ##SVStkItem

XML TAG: SVSTKITEM

The following response is received from the web service
<ENVELOPE>

<HEADER>

 <VERSION>version</VERSION>

 <TALLYREQUEST>Import</TALLYREQUEST>

 <TYPE>DATA</TYPE>

 <STATUS>1</STATUS>

 </HEADER>

<BODY>

 <DATA>

 <STKITNAME>

 <ITNAME>Item 1</ITNAME>

 <STKBAT>

 <BATNAME>B1</BATNAME>

<BATQTY>100</BATQTY>

<BATRATE>10</BATRATE>

<BATAMT>1000</BATAMT>

 </STKBAT>

 <STKBAT>

<BATNAME>B2</BATNAME>

<BATQTY>10</BATQTY>

<BATRATE>10</BATRATE>

<BATAMT>100</BATAMT>

 </STKBAT>

 </STKITNAME>

 </DATA>

</BODY>

</ENVELOPE>
 75

 Integration Using XML Interface

Data Retrieval based on the user input sent as request to the web server:
The data to be sent in the request can be accepted from the user. User can enter the name of the
Item in the Pre Request Report. The values entered in the fields are passed through global
variables to the request report. The Collection is defined as follows:

Example :
[Collection : STKItColl]

Remote URL : "http://remoteserver/STKXML.php"

XML Object Path : STKITNAME:1:ENVELOPE:BODY:1:DATA:1

Remote Request : StkItReq, StkItPreReqRep :ASCII

The Pre Request Report "StkItPreReqRep" is created as a simple report which accepts the name
of Stock Item from the user and stores the value in a global variable.

[Field : StkPreReqFld]

Modifies : SVStkItem

[System: Variables]

SVStkItem : ""

[Variable: SVStkItem]

Type : String

In the Request Report, the variables value is set in a field as follows:

[Field : StkItReqbfld]

Set As : ##SVStkItem

XML TAG: SVSTKITEM

Data Storage in External Database using data input in Tally
Consider the scenario when the batch details corresponding to a particular Stock Item are entered
by the user in a report in Tally. This data needs to be sent to the Web Service which interacts and
stores data in the External Database.

The data can be sent to the web service through a Request Report in two ways:
Using the Request Report as a value for collection attribute Remote Request and referring
to the collection
Using the Request Report as parameter for action HTTP Post through a button
 76

 Integration Using XML Interface

Specifying Request Report in Collection
In Tally a report should be designed to send the request to the web service using the collection
attribute Remote Request.
The collection is created as follows:

[Collection : STKItColl]

Remote URL : "http://remoteserver/STKXML.php"

XML Object Path : STKITNAME: 1: ENVELOPE: BODY: 1: DATA: 1

Remote Request : StkItReq, StkPreReq :ASCII

The report "StkItReq" generates the XML format which is sent from Tally to the web service. The
pre-request report "StkPreReq" is executed first and the data entered by the user is passed to the
request report "StkItReq" . The request report "StkItReq" generates the XML and send s it to the
web server in following format.

<ENVELOPE>

<HEADER>

 <VERSION>version</VERSION>

<TALLYREQUEST>Export</TALLYREQUEST>

 <TYPE>DATA</TYPE>

</HEADER>

 <BODY>

 <DATA>

 <SVSTKITEM>Item 1</ SVSTKITEM >

<BATNAME>B3</BATNAME>

<BATQTY>75</BATQTY>

<BATRATE>100</BATRATE>

<BATAMT>7500</BATAMT>

 </DATA>

</BODY>

</ENVELOPE>

The request report is created in the similar fashion as explained in the previous section. The web
service is programmed to store the data in the database.
 77

 Integration Using XML Interface

Specifying Request Report with HTTP Post
The button can be added to an existing report which when clicked will execute the HTTP Post
action.
In case of action HTTP Post the response received is available in the collection "Parameter Col-
lection". Based on the Success or Failure of the action appropriate message should be displayed
in the Error Report and Success Reports.

The Button is defined as explained in the section "Action HTTP Post".
 78

Lesson 3: Integration using ODBC Interface
Lesson Objectives

3.1 Tally.ERP 9 – ODBC Interface
Open Database Connectivity (ODBC) is an interface for accessing data in a heterogeneous envi-
ronment of relational and non- relational database management systems.

On the completion of this chapter you will be able to

Understand the Tally.ERP 9 – ODBC Interface
Understand the functionality of Retrieving Data from External Database
 79

 Integration Using ODBC

ODBC is an Application Program Interface (API) specification that allows applications to access
multiple database systems using Structured Query Language (SQL). ODBC provides maximum
interoperability-a single application can access many different database systems. This allows an
ODBC developer to develop an application, without targeting a specific type of data source.
A typical ODBC implementation will have following components

ODBC Client
ODBC Driver
ODBC Server

ODBC Client
An ODBC client implements ODBC API. The ODBC API in turn will communicate with the ODBC
Driver provided by the Database.

ODBC Driver
The ODBC driver is a library that implements the functions supported by the ODBC API. It
processes ODBC function calls, submits SQL requests to Database, and returns results back to
the application.

ODBC Server
A database which supports ODBC can understand the SQL. Normally ODBC Driver submits SQL
request from the ODBC client and these SQL request will be executed and result will be given
back to the ODBC client
Tally.ERP 9 is a application which can act as ODBC Server as well as ODBC Client
If any Application supports ODBC interface, then it needs to implement the ODBC API. The
ODBC API in turn will communicate with the ODBC Driver provided by the Database. The ODBC
driver is a library that implements the functions supported by the ODBC API. It processes ODBC
function calls, submits SQL requests to Database, and returns results back to the application.
Tally.ERP 9 can act as Application i.e. as ODBC client as well as Database i.e. ODBC server.
 80

 Integration Using ODBC

3.2 Tally.ERP 9 as a Client – Retrieving Data from External Database

Tally.ERP 9 is an ODBC enabled application. It can talk to ODBC Drivers of any external
Database. In TDL, Collection is a definition which holds the data. Collection Definition has a capa-
bility to gather the data from the external data source through ODBC.
A Collection definition can communicate to the ODBC drivers of the external database either
through Data Source Name (DSN) of the external database or through DSN less i.e. directly by
mentioning ODBC Driver, Drive ID, path of the source, etc. In Collection Definition, SQL queries
are used to gather the required information the external database.
 81

 Integration Using ODBC

Once required data is brought in to the Tally.ERP 9 application, the each row is treated as one
Object and each column of that row as method of that Object. Thus the external data can be
utilized inside the application.
Syntax

[Collection:<Collection Name>]

 ODBC : <Driver Info>

 SQL : <SQL Statement>

Where <Driver Info> can be a DSN or ODBC driver, Driver ID & path of the data source can be
mentioned and <SQL Statement> is SELECT query.

Example 1: Import the Ledger Master from MS Access
Sample Data

3.2.1 TDL Collection to gather data from MS Access
[Collection: Led Coll From Access]

ODBC : "Driver={Microsoft Access Driver +

 (*.mdb)};Dbq=C:\Masters.mdb;Uid=;Pwd=;"

SQL : Select * From LedgerMaster

[Collection: Led Coll]

Source Collection : Led coll From Access

Compute : LedName : $_1

Compute : LedParent : $_2

Compute : LedOpBal : $$AsAmount:$_3
 82

 Integration Using ODBC

Alternatively TDL Collection gathers data from MS Access in following way
[Collection: Led Coll From Access]

ODBC : "Driver={Microsoft Access Driver +

 (*.mdb)};Dbq=C:\Masters.mdb;Uid=;Pwd=;"

SQL : Select * From LedgerMaster

SQL Object : AccessObj

[Object: AccessObj]

LedName : $_1

LedParent : $_2

LedOpBal : $$AsAmount:$_3

Utilizing the ODBC Collection in a user defined Function to store the Ledger Objects in Tally DB
[Function: Ledger Import]

01 : WALK COLLECTION: Led Coll

02 : IF : @@LedgerExists > 0

03 : NEW OBJECT: Ledger : $LedName

04 : CALL : Set Values

05 : SAVE TARGET

06 : ELSE

07 : NEW OBJECT: Ledger

08 : CALL : Set Values

09 : SAVE TARGET

10 : END IF

11 : END WALK

12 : MSGBOX : "Status" : "Process completed successfully!!"

13 : RETURN

[Function : Set Values]

01 : SET VALUE : Name : $LedName

02 : SET VALUE : Parent: $LedParent

03 : SET VALUE : Opening Balance : $LedOpBal

[System : Formula]

Ledger Exists : $$FilterCount:Ledger:IsMyLedger

IsMyLedger : $Name = $$ReqObject:$LedName
 83

 Integration Using ODBC

Example 2 : Import the Ledger Master from MS Excel
3.2.2 TDL Collection to gather data from MS Excel

[Collection: ExcelData]

 ODBC : "Driver={Microsoft Excel Driver

(*.xls)};Dbq=C:\Masters.xls;DriverId=790"

 SQL : "Select * From [Sheet1$]"

3.3 Tally.ERP 9 as a Server – Retrieving Data from Tally DB using an
External Application
A Client application can access Tally.ERP 9 data in two forms

Tables
Calling a Procedure
 84

 Integration Using ODBC

3.3.1 Retrieving Data Using Tables
Tally.ERP 9 stores the data in terms of Objects. But for the external application each Object is
mapped to a row and a Collection to a Table.

When Tally.ERP 9 is running as a Server to an ODBC client, not all the data i.e. Collection(s) are
available to Client application. A Collection can be made available to ODBC by following two
steps procedure.
1. By exposing methods of the Object(s) of the Collection.
2. By using Collection attribute 'Is ODBC Table'
 85

 Exposing Methods to ODBC
By prefixing '_ to external method(s) of an internal object or method(s) of an external Object can
be exposed to ODBC.
Note:

By default all the methods of the internal objects are exposed to ODBC
Only First level methods of an Object can be exposed directly

Example :
[#Object : Ledger]

_Difference : $ClosingBalance -$OpeningBalance

The code snippet alters an internal object, Ledger, to add an external method, _Difference and
exposes it to ODBC.

Exposing Collections to ODBC
A Collection is exposed to ODBC by using the attribute, IsODBCTable.
Example :

[Collection : Vouchers]

Type : Voucher

Is ODBCTable: Yes

The Collection Vouchers is exposed to ODBC by using the attribute IsODBCTable.

Example 1: Firing SQL statements from MS Excel to Tally.ERP 9 ODBC Server

Step 1 : - Open a New Work Book in MS Excel
Step 2 :- Go to Data -> Import External Data -> New Database Query

 Integration Using ODBC

Step 3:- Select Tally ODBC Driver from 'Choose Data Source' window.
 87

 Integration Using ODBC

Step 4:- Select required Columns from Ledger Table from the 'Query Wizard - Choose Columns'
window
 88

 Integration Using ODBC

Step 5:- Filter the Data to specify which rows to include in query from 'Query Wizard - Filter Data'
window
 89

 Integration Using ODBC

Step 6:- Sort the data from 'Query Wizard - Sort Order' window
 90

 Integration Using ODBC

Step 7:- From 'Query Wizard - Finish' window 'Return Data to Microsoft Office Excel'
 91

 Integration Using ODBC

Step 8:- View the result in Excel sheet.
 92

 Integration Using ODBC

Example 2: Firing SQL statements from a VB application to Tally.ERP 9 ODBC Server
Below mentioned code snippet can be used establish ODBC connection with Tally.ERP 9 and to
then SQL queries can be fired.

Dim TallyCn As ADODB.Connection

Set TallyCn = New ADODB.Connection

TallyCn.Open "TallyODBC_9000"

Set rst = New ADODB.Recordset

rst.Open "Select $Name From Ledger", TallyCn, adOpenDynamic, adLockOptimis-
tic
 93

 Integration Using ODBC

3.3.2 Retrieving Data By Calling an SQL Procedure

A Client application can call a SQL Procedure of a Tally.ERP 9. But within Tally.ERP 9 this is a
Collection with its name prefixed with an underscore. The Collection attribute, SQLParms is used
to pass parameters to procedures. This Collection takes the parameter from the Client application
by using the Collection attribute 'SQL Params'. The Collection attributes 'SQL Values' is used to
return the values from procedure back to the client application.
 94

 Integration Using ODBC

3.3.3 Collection Attribute – SQLParms
This attribute is used to pass parameter(s) to a SQL Procedure. The parameter is a System
variable.

SQL Parms : <Parameter>

Where <Parameter> is a name of the Variable

3.3.4 Collection Attribute – SQLValues
This attribute returns value to client application. SQLValues require two parameters, the Column
Name and the values for the column.

SQL Values : <Column Name> : <Expression>

Where <Column Name> is a name of the column i.e. column header and <Expression> is the
expression which evaluates to a value and returned back to the client application.

Usage of SQL Procedure
The SQL Procedure '_StkBatches' displays the Batch name and Closing Balance for a given
Stock Item.

[Collection : _StkBatches]

Type : Batches

Childof : ##StkItemName

SQLParms : StkItemName

SQLValues : Name : $Name

SQLValues : Amount :$ClosingBalance

[Variable:StkItemName]

Type : String

Example 1: Calling the SQL Procedure '_StkBatches' in MS Excel
Step 1 : - Open a New Work Book in MS Excel
Step 2 :- Go to Data -> Import External Data -> New Database Query
 95

 Integration Using ODBC

Step 3:- Select Tally ODBC Driver from 'Choose Data Source' window to open 'Microsoft Query'
screen

 96

 Integration Using ODBC

Step 4 :- Go to File -> Execute SQL

 97

 Integration Using ODBC

Step 5:- In 'Execute SQL' window click on 'Procedures'
 98

 Integration Using ODBC

 99

 Integration Using ODBC

Step 6 : In 'Select Procedures' window, select procedure '_StkBatches'

Step 7: Pass appropriate stock item name as parameter to the procedure and 'Execute'
 100

 Integration Using ODBC

Step 8:- View the result in 'Query1' window
 101

 Integration Using ODBC

Step 9:- From 'Microsoft Query' screen, Go to File -> Return Data to Microsoft Office Excel
 102

 Integration Using ODBC

Step 10 :- View the Result in Excel sheet .
 103

 Integration Using ODBC

Example 2: Calling the SQL Procedure from a VB Application

Dim DBcon As New ADODB.Connection

Dim objCmd As New ADODB.Command

Dim objRs As New ADODB.Recordset

DBcon.CursorLocation = adUseClient

'Establish the connection using Tally ODBC Driver

 DBcon.Open "TallyODBC_9000"

 objCmd.ActiveConnection = DBcon

 objCmd.CommandType = adCmdStoredProc

 objCmd.CommandText = "_PartyBills"

'Pass the the Stock Item Name as Parameter

 objCmd.CreateParameter (ODBCMAIN.CmbLedger.Text)

'Call the SQL procedure

 Set objRs = objCmd.Execute
 104

 Integration Using ODBC

Using calculator pane for testing SQL commands
Tally.ERP 9 has an in-built SQL processor that processes SQL Select statements on collections.
By default, only the collections at first level are available for selection.
Syntax

Select [<Method Name/s> <*>] from <Collection / Table> where <Condition>
order by <Method Name/s>

Example :
Select $Name from Ledger
Select $Name, $ClosingBalance from Ledger
Select * from Ledger
Select $Name from ODBCTables
Select $Name, $ClosingBalance from Ledger where $$IsDr:$ClosingBalance order by
$ClosingBalance DESC
Select $Name, $ClosingBalance from Ledger where $$IsDr:$ClosingBalance order by
$ClosingBalance
Select TOP 2 from Ledger
 105

	Lesson1: Integration -The Overall Perspective
	1.1 Introduction
	1.2 Need and Benefits of Integration
	1.3 Tally Interfaces - For Integration
	1.3.1 Tally ODBC Interface (Read Only)
	1.3.2 Tally XML Interface (Read and Write)

	1.4 XML Messaging Formats
	1.4.1 Template used for XML Message Format
	1.4.2 Request Template
	1.4.3 Response Template
	1.4.4 Generic Failure Format

	1.5 Components of Request / Response
	1.5.1 Header Information
	1.5.2 Body Information

	1.6 Significance of all Tags
	1.6.1 Header Tags
	<VERSION>
	<TALLYREQUEST>
	<STATUS>

	1.6.2 Body Tags
	<DESC>: Description for Request/Response
	<DATA>: Data required for the Request/Response

	1.7 Case Study - Using the above XML Request/Response Formats
	1.7.1 Export
	Request to Export Data & Corresponding Response
	Request To Export Object & Corresponding Response
	Request To Export Collection & Corresponding Response
	Request To Export Function & Corresponding Response

	1.7.2 Import
	Request to Import Data and Corresponding Response
	Request for importing Voucher in Tally (Voucher Creation)
	Request for importing Voucher in Tally (Voucher Alteration)
	Request for importing Voucher in Tally (Voucher Cancellation)
	Request for importing Voucher in Tally (Voucher Deletion)

	1.7.3 Execute
	Request to Execute Action & Corresponding Response

	Lesson2: Integration Using XML Interface
	2.1 Tally.ERP 9 as a Server - Using External application as Front End
	2.1.1 Case Study I - Importing Masters from Excel to Tally.ERP 9
	2.1.2 Case Study II - Creation and Alteration of Vouchers through VB
	2.1.3 Case Study III - Exporting Ledger Masters from Tally.ERP 9 to External Application

	2.2 Tally.ERP 9 as a Client - Tally as a Front end for Web Services
	2.2.1 Introduction
	2.2.2 Collection attribute - Remote URL
	2.2.3 Collection attribute - XML Object Path
	2.2.4 Collection attribute - XML Object
	2.2.5 Collection attribute - Remote Request
	The Request Report
	Pre- request Report

	2.2.6 Action - HTTP POST
	2.2.7 Event - On Form Accept
	2.2.8 Event - On Focus

	2.3 Collection Capability to Accept File as a Data Source
	2.3.1 The Collection attribute - Data Source

	2.4 Case Study
	Display the retrieved data in Tally as a Report:
	Data Retrieval based on the request sent by Tally:
	Data Retrieval based on the user input sent as request to the web server:
	Data Storage in External Database using data input in Tally
	Specifying Request Report in Collection
	Specifying Request Report with HTTP Post

	Lesson 3: Integration using ODBC Interface
	3.1 Tally.ERP 9 - ODBC Interface
	3.2 Tally.ERP 9 as a Client - Retrieving Data from External Database
	3.2.1 TDL Collection to gather data from MS Access
	3.2.2 TDL Collection to gather data from MS Excel

	3.3 Tally.ERP 9 as a Server - Retrieving Data from Tally DB using an External Application
	3.3.1 Retrieving Data Using Tables
	Exposing Methods to ODBC
	Exposing Collections to ODBC

	3.3.2 Retrieving Data By Calling an SQL Procedure
	3.3.3 Collection Attribute - SQLParms
	3.3.4 Collection Attribute - SQLValues
	Using calculator pane for testing SQL commands

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

