

Founded in 1957, Fastcut Tool lives up to its name with America's most extensive, fast-cutting line of roughing end mills. For over five decades, Fastcut has specialized in the manufacture of quality end mills sold nationally through industrial distributors. This new catalog represents the results of our continuing commitment to our industry. New products include an expanded line of metric cast iron taps and over 70 sizes of spiral fluted, 50° helix taps.

Fastcut manufactures Ruff-N-Cutte, the original U.S. made roughing mill designed for accelerated stock removal. Ruff-N-Tuff, fine-pitch roughers for cutting high-temperature alloys, and Ruff-NTouch ${ }^{\oplus}$, end mills for roughing and finishing in one operation. All three enable users to increase productivity while achieving outstanding results.

Fastcut's longstanding quality and commitment to American industry have made us a trusted source for distributors and manufacturers for generations. Our channel partners include traditional distributors, multi-location distributors and specialized cutting tool houses. Our enduser customer list includes major aerospace companies, automotive and automotive parts suppliers, large capital equipment manufacturers, fastener, pipe fitting and valve manufacturers, as well as large, mid-sized and small machine shops. All are vitally important to us and reflect our steadfast commitment to, and belief in, American manufacturing.

Whether your manufacturing needs call for a standard end mill or a large diameter tool with custom geometry, standard or special taps, we can meet all of your round tool cutting needs. Please call us and let us show you why Fastcut has remained a leading supplier to American industry since 1957.

American Made

American Owned

| Taper Pipe, Aeronautical | 142 |
| :--- | :--- | :--- |
| Taper Pipe, Short Projection | 144 |
| Straight Pipe | 150 |
| Straight Pipe, Dryseal | 152 |

PREIMIUM STEEL/ HIGH PERFORMANCE
Spiral Pointed, Plug 17023
Spiral Fluted 17224

TITANIUM NITRIDED
Machine Screw 19025
Hand 19225
Spiral Pointed, Plug 19426
Spiral Fluted $50^{\circ} \quad 19727$
metric
Hand, Cast Iron 1075
Thread Forming, True Lead, Metric 124M 15
Hand 23028

Spiral Pointed, Plug 23229
Spiral Fluted, $50^{\circ} 23430$
Hand, Spark Plug 23630
N O T E : See Page ii for Standard Tap Package Quantities.

HIGHSPEEDSTEEL
Adjustable Round Split

CARBON STEEL

Hexagon Rethreading 30532
Hexagon Rethreading, Sets 306

Standard Hand Taps, Dimensions, Screw, Fractional and Metric Sizes
Standard Pipe Taps,
Dimensions, Straight and Taper, Ground Thread
American National And Dryseal,
American National Standard Taper Pipe Threads
Measurement of Taper Pipe Taps,
Reaming Data And Tap Drill Sizes
Tap Recommendations For Classes 2, 3, 2B \& 3B Unified And American Screw Threads
Forming Tap Recommendations For Clases $2,2 \mathrm{~B}$ \& 3B
Unified And American Screw Threads
Tap Recommendations For Classes 4H \& 6H
Metric Screw Threads

Technical Information
Standard Machine Screw Taps For Tapping Unified And American National Coarse And Fine Threads
Standard Hand Taps For Tapping Unified And American National Coarse And Fine Threads42

Ordering Information For Taps 43
Tap Drill Sizes For Unified Inch Screw Threads 44
Tap Drill Sizes For Screw Thread Inserts 45
Tap Drill Sizes For Metric Screw Threads 46
Forming Tap Drill Sizes For Unified Inch Screw Threads 47
Forming Tap Drill Sizes For Metric Screw Threads 48
Tapping Information and Surface Treatments \& Coatings 49
Standard Marking Symbols For Taps 50 LIST

Tap Standard Package Quantities

tapsize	Units
\#0-1/2"	12 Pcs
9/16"-1"	3 Pcs
1-1/8" \& Larger	1 Pc

tapsize	Units
Thru M12	12 Pcs
M14-M24	3 Pcs
M27 \& Larger	1 Pc

PIPE TAPS

TAPSIZE	UNIT S
$1 / 16^{\prime \prime} \& 1 / 8^{\prime \prime}$	12 PCS
$1 / 4^{\prime \prime}-1 / 2^{\prime \prime}$	6 PCS
$3 / 4^{\prime \prime}-1 "$	3 Pcs
$1-1 / 4^{\prime \prime} \&$ Larger	1 Pc

Limited Warranty

Fastcut Tool warrants to original equipment manufacturers, distributors and industrial and commercial users of its products that each new product which it manufactures or supplies is free from defects in material and workmanship. Its sole obligation under this warranty is limited to furnishing, without additional charge, a replacement for, or, at its option, repairing or issuing credit for any such product which shall, within one year from the date of sale by Fastcut Tool, be returned freight prepaid to Fastcut Tool and which, upon inspection, is determined by Fastcut Tool to be defective in materials or workmanship. The provisions of this warranty shall not apply to any product which has been subjected to misuse, improper operating conditions, or which has been repaired or altered, if such would adversely affect performance of the product. Complete written information with respect to all such matters must be furnished to Fastcut Tool as a prerequisite to its consideration of any claim or complaint under this warranty.
The repair, replacement or issuance of credit for parts provided for in this warranty constitutes the Buyer's exclusive remedy. The warranty is in lieu of all other warranties, express or implied, including any implied warranty of merchantability or fitness for a
particular purpose. Fastcut Tool has no liability or responsibility on any claim of any kind, whether in contract, tort or otherwise, for any loss or damage arising out of, connected with, or resulting from the manufacture, sale, delivery or use of any product sold hereunder, in excess of the cost of replacement or repair as provided herein. In no event shall Fastcut Tool be liable for any special, incidental or consequential damages. Fastcut Tool makes no other warranty, express or implied, except as set forth above; and neither assumes nor authorizes any other person or entity to assume for it any other obligation or liability in connection with any of its products.
WARNING
Any cutting tool may break or shatter under improper use. Government regulations require use of safety glasses and other appropriate safety equipment at all times in the vicinity of use. Wet or dry grinding of cutting tools produces potentially hazardous dusts or mists; to avoid adverse health effects, use adequate ventilation and read the material Safety Data Sheet for further applicable tool material or grade before grinding.

These general purpose taps can be used by hand or under power, in through or blind holes and are suitable for tapping most materials. The chips are retained in the flutes during use. Three-fluted taps have the greatest chip holding capacity and should be used, in the size range where available, for tapping holes deeper than 1-1/2 diameters. A variety of surface treatments are available to improve performance. See Page 49 for recommendations. See Table 302 on Page 33 for tap dimensions.

STZE	$\underset{\mathrm{NS}}{\mathrm{NC}}{ }^{\mathrm{NF}}$	h-hivit	FLUTES	EDP NO.			
				TAPER	PLUG	воттом	SET
0-80	NF	H1	2	10000	10001	10002	10003
0-80	NF	H2	2		10005	10006	
1-64	NC	H1	2	10008	10009	10010	10011
1-64	NC	H2	2		10013		
1-72	NF	H1	2	10016	10017	10018	10019
1-72	NF	H2	2		10021	10022	
2-56	NC	H1	3	10028	10029	10030	10031
2-56	NC	H2	2		10033	10034	
2-56	NC	H2	3	10036	10037	10038	10039
2-64	NF	H2	3	10044	10045	10046	10047
3-48	NC	H1	3		10049		
3-48	NC	H2	2		10053	10054	
3-48	NC	H2	3	10056	10057	10058	10059
3-56	NF	H2	3	10060	10061	10062	10063
4-40	NC	H1	2		10065		
4-40	NC	H1	3	10068	10069	10070	10071
4-40	NC	H2	2		10073	10074	
4-40	NC	H2	3	10076	10077	10078	10079
4-48	NF	H1	3		10081		
4-48	NF	H2	3	10084	10085	10086	10087
4-36	NS	H2	3	10088	10089	10090	10091
5-40	NC	H1	3		10093	10094	
5-40	NC	H2	2		10097	10098	
5-40	NC	H2	3	10100	10101	10102	10103
5-44	NF	H2	2		10105		
5-44	NF	H2	3	10108	10109	10110	10111
6-32	NC	H1	2		10113		
6-32	NC	H1	3	10116	10117	10118	10119
6-32	NC	H2	2		10121	10122	
6-32	NC	H2	3	10124	10125	10126	10127
6-32	NC	H3	2		10129	10130	
6-32	NC	H3	3	10132	10133	10134	10135
6-32	NC	H7	3		10137	10138	
6-40	NF	H1	3		10141		
6-40	NF	H2	2		10145		
6-40	NF	H2	3	10148	10149	10150	10151
8-32	NC	H1	2		10153		
8-32	NC	H1	3		10157	10158	
8-32	NC	H1	4	10160	10161	10162	10163
8-32	NC	H2	2		10165	10166	

Machine Screw High Speed Steel
 THREAD FORM
 American National
 CHAMFER STYLE

Taper (7 to 10 threads), Plug (3 to 5 threads), Bottoming (1 to 2 threads) If chamfer style is not specified, plug will be furnished

LIST

102 continued
Machine Screw High Speed Steel

	NC				EDF NO.		
SIZE	NS	H-LIVIIT	FLUTES	TAPER	PLUG	BOTTOM	SET
$8-32$	NC	H2	3		10169	10170	
$8-32$	NC	H2	4	10172	10173	10174	10175
$8-32$	NC	H3	2		10177	10178	
$8-32$	NC	H3	3		10181	10182	
$8-32$	NC	H3	4	10184	10185	10186	10187
$8-32$	NC	H7	3		10189	10190	
$8-32$	NC	H7	4		10193	10194	
$8-36$	NF	H1	4		10197		
$8-36$	NF	H2	4	10200	10201	10202	10203
$10-24$	NC	H1	3		10205		
$10-24$	NC	H1	4	10208	10209	10210	10211
$10-24$	NC	H2	2		10213	10214	
$10-24$	NC	H2	3		10217		
$10-24$	NC	H2	4	10220	10221	10222	10223
$10-24$	NC	H3	2		10225	10226	
$10-24$	NC	H3	3		10229	10230	
$10-24$	NC	H3	4	10232	10233	10234	10235
$10-24$	NC	H7	3		10237	10238	
$10-24$	NC	H7	4		10241	10242	
$10-32$	NF	H1	2		10245	10246	
$10-32$	NF	H1	3		10249		
$10-32$	NF	H1	4	10252	10253	10254	10255
$10-32$	NF	H2	2		10257	10258	
$10-32$	NF	H2	3		10261	10262	
$10-32$	NF	H2	4	10264	10265	10266	10267
$10-32$	NF	H3	2		10269	10270	
$10-32$	NF	H3	3		10273	10274	
$10-32$	NF	H3	4	10276	10277	10278	10279
$10-32$	NF	H7	3		10281	10282	
$10-32$	NF	H7	4		10285	10286	
$12-24$	NC	H3	4	10288	10289	10290	10291
$12-28$	NF	H1	4		10293		
$12-28$	NF	H3	4	10296	10297	10298	10299

LIST

106 Hand

High Speed Steel
THREAD FORM
American National
CHAMEERTYLE
Taper (7 to 10 threads), Plug (3 to 5 threads), Bottoming (1 to 2 threads) If chamfer style is not specified, plug will be furnished

	NC NF			EDP NO.			
STZE	NS	H-LIVIIT	FLUTES	TAPER	PLUG	BOTTOM	SET
$1 / 4-20$	NC	H1	3		10301		
$1 / 4-20$	NC	H1	4	10304	10305	10306	10307
$1 / 4-20$	NC	H2	3		10309		
$1 / 4-20$	NC	H2	4	10311	10312	10313	10314
$1 / 4-20$	NC	H3	2		10316	10317	
$1 / 4-20$	NC	H3	3		10320	10321	
$1 / 4-20$	NC	H3	4	10323	10324	10325	10326
$1 / 4-20$	NC	H5	3		10328	10329	
$1 / 4-20$	NC	H5	4		10332	10333	
$1 / 4-28$	NF	H1	4		10336	10337	
$1 / 4-28$	NF	H2	4		10340	10341	
$1 / 4-28$	NF	H3	2		10344	10345	
$1 / 4-28$	NF	H3	3		10348	10349	
$1 / 4-28$	NF	H3	4	10351	10352	10353	10354
$1 / 4-28$	NF	H4	4		10356	10357	
contin ued							

STZE	$\underset{\mathrm{NS}}{\mathrm{NC}}$	H-LINIIT	flutes	EDPNO.				continued	$\begin{aligned} & \text { LIST } \\ & 106 \end{aligned}$
				TAPER	PLUG	воттом	SET		
5/16-18	NC	H1	4	10359	10360	10361		Hand	
5/16-18	NC	H2	4	10363	10364	10365	10366	High Speed Steel	
5/16-18	NC	H3	2		10368	10369		High speed steel	
5/16-18	NC	H3	3		10372	10373			
5/16-18	NC	H3	4	10375	10376	10377	10378		
5/16-18	NC	H5	3		10380	10381			
5/16-18	NC	H5	4		10384	10385			
5/16-24	NF	H1	4	10387	10388	10389			
5/16-24	NF	H2	4		10392	10393			
5/16-24	NF	H3	3		10396	10397			
5/16-24	NF	H3	4	10399	10400	10401	10402		
5/16-24	NF	H4	4		10404	10405			
3/8-16	NC	H1	3		10408				
3/8-16	NC	H1	4		10411	10412			
3/8-16	NC	H2	4	10414	10415	10416	10417		
3/8-16	NC	H3	3		10419	10420			
3/8-16	NC	H3	4	10422	10423	10424	10425		
3/8-16	NC	H5	3		10427	10428			
3/8-16	NC	H5	4		10431	10432			
3/8-24	NF	H1	4	10434	10435	10436			
3/8-24	NF	H2	4		10439	10440			
3/8-24	NF	H3	3		10443	10444			
3/8-24	NF	H3	4	10446	10447	10448	10449		
3/8-24	NF	H4	4		10451	10452			
7/16-14	NC	H1	4		10455	10456			
7/16-14	NC	H2	4		10459	10460			
7/16-14	NC	H3	3		10463				
7/16-14	NC	H3	4	10465	10466	10467	10468		
7/16-14	NC	H5	4		10470	10471			
7/16-20	NF	H1	4		10474	10475			
7/16-20	NF	H2	4		10478	10479			
7/16-20	NF	H3	3		10482				
7/16-20	NF	H3	4	10484	10485	10486	10487		
7/16-20	NF	H5	4		10489	10490			
1/2-13	NC	H1	4		10493	10494			
1/2-13	NC	H2	4		10497	10498			
1/2-13	NC	H3	3		10501	10502			
1/2-13	NC	H3	4	10504	10505	10506	10507		
1/2-13	NC	H5	4		10509	10510			
1/2-20	NF	H1	4	10512	10513	10514			
1/2-20	NF	H2	4		10517	10518			
1/2-20	NF	H3	3		10521				
1/2-20	NF	H3	4	10523	10524	10525	10526		
1/2-20	NF	H5	4		10528	10529			
9/16-12	NC	H2	4		10532				
9/16-12	NC	H3	4	10535	10536	10537	10538		
9/16-12	NC	H5	4		10540	10541			
9/16-18	NF	H2	4		10544				
9/16-18	NF	H3	4	10546	10547	10548	10549		
9/16-18	NF	H5	4		10551	10552			

continued

LIST

106 continued

Hand
 High Speed Steel

	NC NF			EDP NO.			
STZE	NS	H-LIIITT	FLUTES	TAPER	PLUG	BOTTOM	SET
$5 / 8-11$	NC	H1	4		10555		
$5 / 8-11$	NC	H2	4		10558		
$5 / 8-11$	NC	H3	4	10561	10562	10563	10564
$5 / 8-11$	NC	H5	4		10566	10567	
$5 / 8-18$	NF	H1	4		10570		
$5 / 8-18$	NF	H2	4		10574	10575	
$5 / 8-18$	NF	H3	4	10577	10578	10579	10580
$5 / 8-18$	NF	H5	4		10582	10583	
$11 / 16-11$	NS	H3	4	10585	10586	10587	10588
$11 / 16-16$	NS	H3	4	10589	10590	10591	10592
$3 / 4-10$	NC	H1	4		10594		
$3 / 4-10$	NC	H2	4		10597		
$3 / 4-10$	NC	H3	4	10600	10601	10602	10603
$3 / 4-10$	NC	H5	4		10605	10606	
$3 / 4-16$	NF	H1	4		10609		
$3 / 4-16$	NF	H2	4		10612		
$3 / 4-16$	NF	H3	4	10615	10616	10617	10618
$3 / 4-16$	NF	H5	4		10620	10621	
$7 / 8-9$	NC	H2	4		10624		
$7 / 8-9$	NC	H4	4	10626	10627	10628	10629
$7 / 8-9$	NC	H6	4		10631		
$7 / 8-14$	NF	H2	4		10634		
$7 / 8-14$	NF	H4	4	10636	10637	10638	10639
$7 / 8-14$	NF	H6	4		10641		
$1-8$	NC	H2	4		10644		
$1-8$	NC	H4	4	10646	10647	10648	10649
$1-8$	NC	H6	4		10651		
$1-12$	NF	H4	4	10653	10654	10655	10656
$1-14$	NS	H2	4		10658		
$1-14$	NS	H4	4	10660	10661	10662	10663
$1-14$	NS	H6	4	10664	10665	10666	
$1-1 / 8-7$	NC	H4	4	10668	10669	10670	10671
$1-1 / 8-12$	NF	H4	4	10672	10673	10674	10675
$1-1 / 4-7$	NC	H4	4	10676	10677	10678	10679
$1-1 / 4-12$	NF	H4	6	10680	10681	10682	10683
$1-3 / 8-6$	NC	H4	4	10684	10685	10686	10687
$1-3 / 8-12$	NF	H4	6	10688	10689	10690	10691
$1-1 / 2-6$	NC	H4	4	10692	10693	10694	10695
$1-1 / 2-12$	NF	H4	6	10696	10697	10698	10699

The geometry of these taps is specifically designed for cast iron or irons producing small or powdery chips. They will also work well in Bakelite, cast brass and other brasses which produce similar chips. They can be used by hand or under power, in through or blind holes. The chips are retained in the flutes during use. They are provided with a Nitride and Oxide surface treatment to retard wear and prolong tool life. See Table 302 on Page 33 for tap dimensions.

				EDP NO.	
STZE	NS			PLUG	BOTTOM
$1 / 4-20$	NS	HCLIITT	FLUTES	4	10716
$1 / 4-20$	NC	H3	4	10718	10717
$1 / 4-28$	NF	H3	4	10720	10721
$5 / 16-18$	NC	H3	4	10724	10725
$5 / 16-18$	NC	H5	4	10726	10727
$5 / 16-24$	NF	H3	4	10728	10729
$3 / 8-16$	NC	H3	4	10732	10733
$3 / 8-16$	NC	H5	4	10734	10735
$3 / 8-24$	NF	H3	4	10736	10737
$7 / 16-14$	NC	H3	4	10740	10741
$7 / 16-14$	NC	H5	4	10742	10743
$7 / 16-20$	NF	H3	4	10744	10745
$1 / 2-13$	NC	H3	4	10748	10749
$1 / 2-13$	NC	H5	4	10750	10751
$1 / 2-20$	NF	H3	4	10752	10753
$9 / 16-12$	NC	H3	4	10756	10757
$9 / 16-18$	NF	H3	4	10760	10761
$5 / 8-11$	NC	H3	4	10764	10765
$5 / 8-11$	NC	H5	4	10766	10767
$5 / 8-18$	NF	H3	4	10768	10769
$3 / 4-10$	NC	H3	4	10772	10773
$3 / 4-10$	NC	H5	4	10774	10775
$3 / 4-16$	NF	H3	4	10776	10777

				EDP NO.	
STIE	PTTCH	D-LIVITT	FLUTES	PLUG	BOTTCM
M6	1.0	GD5	4	23138	23139
M8	1.25	GD5	4	23140	23141
M10	1.5	GD6	4	23142	23143
M12	1.75	GD6	4	23144	23145

Nitride and Steam Oxide Treated

Bright Finish

Hand, For Cast Iron
LIS T High Speed Steel

THREAD FORM
American National
CHAMFER STYLE
Plug (3 to 5 threads), Bottoming (1 to 2 threads) If chamfer style is not specified, plug will be furnished

		pitp		
	1			
,				

These general purpose taps can be used by hand or under power, in through or blind holes and are suitable for tapping most materials. The chips are retained in the flutes during use. A variety of surface treatments are available to improve performance. See Page 49 for recommendations. See Table 302 on Page 33 for tap dimensions.

LIST

108 Hand, Eight Pitch Series High Speed Steel

THREAD FORM
American National
CHAMFER STYLE
Taper (7 to 10 threads), Plug (3 to 5 threads), Bottoming (1 to 2 threads) If chamfer style is not specified, plug will be furnished

	NC NF			EDP NO.			
STZE	NS	H-LIVITT	FLUTES	TAPER	PLUG	BOTTOM	SET
$1-1 / 8-8$	N	H5	4	10800	10801	10802	
$1-1 / 4-8$	N	H5	4	10804	10805	10806	
$1-3 / 8-8$	N	H5	4	10808	10809	10810	
$1-1 / 2-8$	N	H5	6	10812	10813	10814	
$1-5 / 8-8$	N	H6	6	10816	10817	10818	
$1-3 / 4-8$	N	H6	6	10820	10821	10822	
$1-7 / 8-8$	N	H6	6	10824	10825	10826	
$2-8$	N	H6	6	10828	10829	10830	
$2-1 / 4-8$	N	H6	6	10832	10833	10834	
$2-1 / 2-8$	N	H6	6	10836	10837	10838	

These taps will produce threads with a pitch diameter which is .005 larger than the basic pitch diameter. They are used primarily where the part will be plated or heat treated after tapping or where loss of size, for any reason, is anticipated. They can be used by hand or under power, in through or blind holes and are suitable for tapping most materials. The chips are retained in the flutes during use. A variety of surface treatments are available to improve performance. See Page 49 for recommendations. See Table 302 on Page 33 for tap dimensions.

LIST

109 Hand, . 005 Oversize
High Speed Steel
THREAD FORM
American National
CHAMFER STYLE
Plug (3 to 5 threads)

	NC	NF			EDPNO.	
STZE	NS	H-LIVIIT	FLUTES	PLUG	BOTTOM	
$1 / 4-20$	NC	H11	4	10940		
$5 / 16-18$	NC	H11	4	10946		
$3 / 8-16$	NC	H11	4	10950		
$7 / 16-14$	NC	H11	4	10954		
$1 / 2-13$	NC	H11	4	10958		
$5 / 8-11$	NC	H11	4	10966		

These taps are primarily designed for tapping through holes, however, they can also be used in blind holes which are deep enough to allow for chip accumulation in the bottom of the hole. The spiral point forces the chips ahead of the tap, thereby preventing clogging and recutting of chips. Long holes, in excess of 1-1/2 diameters, can be tapped as a result. They can be used by hand or under power and are suitable for tapping most materials, especially those with high ductility. A variety of surface treatments are available to improve performance. See Page 49 for recommendations. See Table 302 on Page 33 for tap dimensions.

	$\mathrm{NC} \mathbf{N F}$			EDPNO.			
stze	Ns	H-Livit	flutes	TAPER	PLUG	воттом	SET
0-80	NF	H1	2		11000		
0-80	NF	H2	2		11001		
1-64	NC	H1	2		11002		
1-64	NC	H2	2		11003		
1-72	NF	H1	2		11004		
1-72	NF	H2	2		11005		
2-56	NC	H1	2		11006		
2-56	NC	H2	2		11007		
2-64	NF	H1	2		11008		
2-64	NF	H2	2		11009		
3-48	NC	H1	2		11010		
3-48	NC	H2	2		11011		
3-56	NF	H1	2		11012		
3-56	NF	H2	2		11013		
4-40	NC	H1	2		11014		
4-40	NC	H2	2		11015		
4-48	NF	H1	2		11016		
4-48	NF	H2	2		11017		
4-36	NS	H2	2		11018		
5-40	NC	H1	2		11019		
5-40	NC	H2	2		11020		
5-44	NF	H2	2		11021		
6-32	NC	H1	2		11022		
6-32	NC	H2	2		11023		
6-32	NC	H3	2		11024		
6-32	NC	H7	2		11025		
6-40	NF	H1	2		11026		
6-40	NF	H2	2		11027		
8-32	NC	H1	2		11028		
8-32	NC	H2	2		11029		
8-32	NC	H3	2		11030		
8-32	NC	H7	2		11031		
8-36	NF	H1	2		11032		
8-36	NF	H2	2		11033		
10-24	NC	H1	2		11034		
10-24	NC	H2	2		11035		
10-24	NC	H3	2		11036		
10-24	NC	H7	2		11037		
10-32	NF	H1	2		11038		
10-32	NF	H2	2		11039		
10-32	NF	H3	2		11040		
10-32	NF	H7	2		11041		
12-24	NC	H1	2		11042		
12-24	NC	H3	2		11043		
12-28	NF	H3	2		11044		

Plug (3 to 5 threads)

LIST

110 continued
Spiral Pointed, Plug High Speed Steel

	NC ${ }^{\text {NF }}$			EDP NO.			
stze	ns	H-Livit	FLutes	TAPER	PLUG	воттам	SET
1/4-20	NC	H1	2		11045		
1/4-20	NC	H2	2		11046		
1/4-20	NC	H3	2		11047		
1/4-20	NC	H3	3		11048		
1/4-20	NC	H5	2		11049		
1/4-20	NC	H5	3		11050		
1/4-28	NF	H1	2		11051		
1/4-28	NF	H2	2		11052		
1/4-28	NF	H2	3		11053		
1/4-28	NF	H3	2		11054		
1/4-28	NF	H4	2		11055		
1/4-28	NF	H4	3		11056		
5/16-18	NC	H1	2		11057		
5/16-18	NC	H2	2		11058		
5/16-18	NC	H3	2		11059		
5/16-18	NC	H3	3		11060		
5/16-18	NC	H5	2		11061		
5/16-18	NC	H5	3		11062		
5/16-24	NF	H1	2		11063		
5/16-24	NF	H2	2		11064		
5/16-24	NF	H2	3		11065		
5/16-24	NF	H3	2		11066		
5/16-24	NF	H4	2		11067		
5/16-24	NF	H4	3		11068		
3/8-16	NC	H1	3		11069		
3/8-16	NC	H2	3		11070		
3/8-16	NC	H3	3		11071		
3/8-16	NC	H5	3		11072		
3/8-24	NF	H1	3		11073		
3/8-24	NF	H2	3		11074		
3/8-24	NF	H3	3		11075		
3/8-24	NF	H4	3		11076		
7/16-14	NC	H2	3		11077		
7/16-14	NC	H3	3		11078		
7/16-14	NC	H5	3		11079		
7/16-20	NF	H2	3		11080		
7/16-20	NF	H3	3		11081		
7/16-20	NF	H5	3		11082		
1/2-13	NC	H1	3		11083		
1/2-13	NC	H2	3		11084		
1/2-13	NC	H3	3		11085		
1/2-13	NC	H5	3		11086		
1/2-20	NF	H1	3		11087		
1/2-20	NF	H2	3		11088		
1/2-20	NF	H3	3		11089		
1/2-20	NF	H5	3		11090		
9/16-12	NC	H3	3		11091		
9/16-18	NF	H3	3		11092		
5/8-11	NC	H3	3		11093		
5/8-11	NC	H5	3		11094		
5/8-18	NF	H3	3		11095		
3/4-10	NC	H3	3		11096		
3/4-10	NC	H5	3		11097		
3/4-16	NF	H3	3		11098		

These taps are primarily designed for tapping short, blind holes which require full threads close to the bottom of the hole. While the spiral point pushes chips into the hole, removal of the male center creates additional chip space at the front of the tap to accommodate these chips. The thicker chip, resulting from the short chamfer, tends to break up rather than be long and stringy. They can be used by hand or under power and are suitable for tapping most materials, especially those with high ductility. A variety of surface treatments are available to improve performance. See Page 49 for recommendations. See Table 302 on Page 33 for tap dimensions.

STzE	$\underset{\mathrm{NS}}{\mathrm{NC}}$	H-LIVITT	Flutes	EDP NO.				Spiral Pointed, Bottom High Speed Steel	$\begin{aligned} & \text { LIST } \\ & 112 \end{aligned}$
				TAPER	PLUG	воттом	SET		
0-80	NF	H1	2			11200			
0-80	NF	H2	2			11201		thread form	
1-64	NC	H2	2			11203		American National	
1-72	NF	H2	2			11205		Aneran National	
2-56	NC	H1	2			11206		Champer Style	
2-56	NC	H2	2			11207		Bottoming (1 to 2 threads)	
3-48	NC	H2	2			11211			
3-56	NF	H2	2			11213			
4-40	NC	H1	2			11214		\cdots ? madududumudumu	
4-40	NC	H2	2			11215			
4-48	NF	H2	2			11217			
5-40	NC	H2	2			11220			
5-44	NF	H2	2			11221			
6-32	NC	H1	2			11222			
6-32	NC	H2	2			11223			
6-32	NC	H3	2			11224			
6-32	NC	H7	2			11225			
6-40	NF	H2	2			11227			
8-32	NC	H1	2			11228			
8-32	NC	H2	2			11229			
8-32	NC	H3	2			11230			
8-32	NC	H7	2			11231			
8-36	NF	H2	2			11233			
10-24	NC	H1	2			11234			
10-24	NC	H2	2			11235			
10-24	NC	H3	2			11236			
10-32	NF	H1	2			11238			
10-32	NF	H2	2			11239			
10-32	NF	H3	2			11240			
12-24	NC	H3	2			11243			
1/4-20	NC	H3	2			11247			
1/4-28	NF	H3	2			11254			
5/16-18	NC	H3	2			11259			
5/16-24	NF	H3	2			11266			

These taps are primarily designed for tapping short through holes, of one diameter or less, under high torque conditions. They also work well when tapping two legs of a U-shaped part where thread alignment and continuity are important. The spiral point forces the chips ahead of the tap, thereby preventing clogging and recutting of chips. They can be used by hand or under power and are suitable for tapping most materials, especially those with high ductility. A variety of surface treatments are available to improve performance. See Page 49 for recommendations. See Table 302 on Page 33 for tap dimensions.

LIST

114 Spiral Pointed, Fluteless
High Speed Steel
THREAD FORM
American National
CHAMFER STYLE
Plug (3 to 5 threads)

	NC NF			EDP NO.			
STzE	ns	H-Livit	Gashes	TAPER	PLUG	воттам	SET
4-40	NC	H2	2		11415		
5-40	NC	H2	2		11420		
6-32	NC	H3	2		11424		
8-32	NC	H3	2		11430		
10-24	NC	H3	2		11436		
10-32	NF	H3	2		11440		
12-24	NC	H3	2		11443		
1/4-20	NC	H3	2		11447		
5/16-18	NC	H3	2		11459		
3/8-16	NC	H3	3		11471		
1/2-13	NC	H3	3		11485		

These taps will produce threads with a pitch diameter which is .005 larger than the basic pitch diameter. They are used primarily where the part will be plated or heat treated after tapping or where loss of size, for any reason, is anticipated. The spiral point forces the chips ahead of the tap, thereby preventing clogging and recutting of chips. Long holes, in excess of $1-1 / 2$ diameters, can be tapped as a result. They can be used by hand or under power and are suitable for tapping most materials, especially those with high ductility. A variety of surface treatments are available to improve performance. See Page 49 for recommendations. See Table 302 on Page 33 for tap dimensions.

LIST

117 Spiral Pointed, Plug, . 005 Oversize
High Speed Steel
THREAD FORM
American National
CHAMFER STYLE

	NC NF			EDPNO.	
STZE	NS	H-LIVITT	FLUTES	PLUG	BOTTOM
$1 / 4-20$	NC	H11	2	11749	
$5 / 16-18$	NC	H11	2	11761	
$3 / 8-16$	NC	H11	3	11772	
$7 / 16-14$	NC	H11	3	11779	
$1 / 2-13$	NC	H11	3	11786	
$5 / 8-11$	NC	H11	3	11794	

Plug (3 to 5 threads)

These taps are primarily designed for tapping blind holes. The spiral flutes draw the chips out of the hole, thereby preventing clogging and recutting of chips. Spiral flutes will also effectively bridge a keyway, or slot inside the hole, without binding. These taps can be used by hand or under power and are suitable for tapping most materials, especially mild steel and brass. A variety of surface treatments are available to improve performance. See Page 49 for recommendations. See Table 302 on Page 33 for tap dimensions.

	NC ${ }^{\text {ar }}$			EDP NO.			
STzE	ns	h-livit	FLUTES	TAPER	PLUG	воттом	SET
4-40	NC	H2	2		11806	11807	
5-40	NC	H2	2		11810	11811	
6-32	NC	H3	2		11814	11815	
8-32	NC	H3	2		11822	11823	
10-24	NC	H3	2		11826	11827	
10-32	NF	H3	2		11830	11831	
1/4-20	NC	H3	2		11838	11839	
1/4-28	NF	H3	2		11842	11843	
5/16-18	NC	H3	3		11846	11847	
5/16-24	NF	H3	3		11850	11851	
3/8-16	NC	H3	3		11854	11855	
3/8-24	NF	H3	3		11858	11859	
7/16-14	NC	H3	3		11862	11863	
7/16-20	NF	H3	3		11866	11867	
1/2-13	NC	H3	3		11870	11871	
1/2-20	NF	H3	3		11874	11875	

Spiral Fluted, 30° Helix 118 High Speed Steel

THREAD FORM
American National
CHAMFER STYLE
Plug (3 to 5 threads), Bottoming (1 to 2 threads) If chamfer style is not specified, plug will be furnished

These taps are primarily designed for tapping blind holes and preferred for tapping relatively deep ones. The high spiral flutes draw the chips out of the hole at a faster rate, thereby preventing clogging and recutting of chips. Spiral flutes will also effectively bridge a keyway, or slot inside the hole, without binding. These taps can be used by hand or under power and are suitable for tapping most materials, especially mild steel, aluminum, magnesium, copper and brass. A variety of surface treatments are available to improve performance. See Page 49 for recommendations. See Table 302 on Page 33 for tap dimensions.

	NC NE			EDP NO.			
STEE	ns	H-LIVITT	FLUTES	TAPER	PLUG	воттом	SET
3-48	NC	GH2	2		12002	12003	
3-56	NF	GH2	2		---	12000	
4-40	NC	GH1	2		12001	12004	
4-40	NC	GH2	2		12006	12007	
4-48	NF	GH2	2		---	12005	
5-40	NC	GH1	2		12008	12009	
5-40	NC	GH2	2		12010	12011	
5-44	NF	GH2	2		---	12012	
6-32	NC	GH1	2		12013	12016	
6-32	NC	GH3	2		12014	12015	
6-40	NF	GH2	2		---	12017	
8-32	NC	GH1	3		12018	12019	

Spiral Fluted, 50° Helix $\mathbf{1 2 0}$ High Speed Steel

THREAD FORM
American National
CHAMFER STYLE
Plug (3 to 5 threads), Bottoming (1 to 2 threads) If chamfer style is not specified, plug will be furnished

LIST

120 continued
Spiral Fluted, 50° Helix High Speed Steel

	$\mathrm{NC}_{\mathrm{NS}} \mathrm{NF}$		FLUTES	EDP NO.			
SIZE		H-hilit		TAPER	PLUG	воттом	SET
8-32	NC	GH3	3		12022	12023	
8-36	NF	GH3	3		12020	12021	
10-24	NC	GH1	3		12024	12025	
10-24	NC	GH3	3		12026	12027	
10-32	NF	GH1	3		12028	12029	
10-32	NF	GH3	3		12030	12031	
12-24	NC	GH3	3		12034	12035	
12-28	NF	GH3	3		12032	12033	
1/4-20	NC	GH1	3		12036	12037	
1/4-20	NC	GH3	3		12038	12039	
1/4-20	NC	GH5	3		12040	12041	
1/4-28	NF	GH1	3		12044	12045	
1/4-28	NF	GH3	3		12042	12043	
5/16-18	NC	GH1	3		12048	12049	
5/16-18	NC	GH3	3		12046	12047	
5/16-18	NC	GH5	3		12052	12053	
5/16-24	NF	GH1	3		12056	12057	
5/16-24	NF	GH3	3		12050	12051	
3/8-16	NC	GH1	3		12060	12061	
3/8-16	NC	GH3	3		12054	12055	
3/8-16	NC	GH5	3		12064	12065	
3/8-24	NF	GH1	3		12068	12069	
3/8-24	NF	GH3	3		12058	12059	
7/16-14	NC	GH1	3		12072	12073	
7/16-14	NC	GH3	3		12062	12063	
7/16-14	NC	GH5	3		12076	12077	
7/16-20	NF	GH1	3		12078	12079	
7/16-20	NF	GH3	3		12066	12067	
7/16-20	NF	GH5	3		12081	12082	
1/2-13	NC	GH1	3		12083	12084	
1/2-13	NC	GH3	3		12070	12071	
1/2-13	NC	GH5	3		12085	12086	
1/2-20	NF	GH1	3		12087	12088	
1/2-20	NF	GH3	3		12074	12075	
1/2-20	NF	GH5	3		12089	12091	
9/16-12	NC	GH3	4		12092	12093	
9/16-18	NF	GH3	4		12094	12096	
5/8-11	NC	GH3	4		12097	12098	
5/8-11	NC	GH5	4		12099	12141	
5/8-18	NF	GH1	4		12142	12151	
5/8-18	NF	GH3	4		12152	12153	
3/4-10	NC	GH3	4		12154	12155	
3/4-10	NC	GH5	4		12156	12157	
3/4-16	NF	GH1	4		12158	12159	
3/4-16	NF	GH3	4		12160	12161	

These taps will produce threads with a pitch diameter which is slightly more than two thread heights larger than the basic pitch diameter. This allows for the installation of a screw thread insert. Inserts are primarily used in soft material which is prone to thread stripping or to repair damaged threads. These taps can be used by hand or under power, in through or blind holes and are suitable for tapping most materials. The chips are retained in the flutes during use. A variety of surface treatments are available to improve performance. See Page 49 for recommendations. See Table 302 on Page 33 for tap dimensions.

				EDPNO.	
STIE	NC NF				
	NS	H-LIVITT	FLUTES	PLUG	BOTTOM
$4-40$	NC	H1	3	12204	12205
$5-40$	NC	H1	3	12210	12211
$6-32$	NC	H2	3	12214	12215
$6-32$	NC	H3	3	12216	12217
$6-40$	NF	H1	3	12218	12219
$8-32$	NC	H2	3	12220	12221
$8-32$	NC	H3	3	12222	12223
$10-24$	NC	H2	3	12226	12227
$10-24$	NC	H3	3	12228	12229
$10-32$	NF	H2	3	12230	12231
$10-32$	NF	H3	3	12232	12233
$12-24$	NC	H2	3	12234	12235
$12-24$	NC	H3	3	12236	12237
$1 / 4-20$	NC	H2	3	12238	12239
$1 / 4-20$	NC	H3	3	12240	12241
$1 / 4-28$	NF	H2	3	12242	12243
$1 / 4-28$	NF	H3	3	12244	12245
$5 / 16-18$	NC	H3	4	12246	12247
$5 / 16-24$	NF	H2	4	12248	12249
$3 / 8-16$	NC	H3	4	12250	12251
$3 / 8-24$	NF	H2	4	12252	12253
$7 / 16-14$	NC	H3	4	12254	12255
$7 / 16-20$	NF	H3	4	12256	12257
$1 / 2-13$	NC	H3	4	12258	12259
$1 / 2-20$	NF	H3	4	12260	12261

Machine Screw \& Hand, LIST
Screw Thread Insert High Speed Steel
thread form
American National

CHAMFER STYLE
Plug (3 to 5 threads), Bottoming (1 to 2 threads) If chamfer style is not specified, plug will be furnished

These taps will produce threads with a pitch diameter which is slightly more than two thread heights larger than the basic pitch diameter. This allows for the installation of a screw thread insert. Inserts are primarily used in soft material which is prone to thread stripping or to repair damaged threads. The spiral point forces the chips ahead of the tap, thereby preventing clogging and recutting of chips. Long holes, in excess of 1$1 / 2$ diameters, can be tapped as a result. They can be used by hand or under power and are suitable for tapping most materials, especially those with high ductility. A variety of surface treatments are available to improve performance. See Page 49 for recommendations. See Table 302 on Page 33 for tap dimensions.

STZE	$\underset{\mathrm{NS}}{\mathrm{NC}}$	H-LIVIIT	FLUTES	EDPNO.	
				PLUG	воттом
4-40	NC	H1	2	12315	
5-40	NC	H1	2	12320	
6-32	NC	H2	2	12324	
6-40	NF	H1	2	12327	
8-32	NC	H2	2	12330	
10-24	NC	H2	2	12336	
10-32	NF	H2	2	12340	
12-24	NC	H2	2	12343	
1/4-20	NC	H2	2	12347	
1/4-28	NF	H2	2	12354	
5/16-18	NC	H3	3	12360	
5/16-24	NF	H2	3	12368	
3/8-16	NC	H3	3	12371	
3/8-24	NF	H2	3	12375	
7/16-14	NC	H3	3	12378	
7/16-20	NF	H3	3	12381	
1/2-13	NC	H3	3	12385	
1/2-20	NF	H3	3	12389	

Spiral Pointed,
Screw Thread Insert High Speed Steel

THREAD FORM
American National
CHAMFER STYLE
Plug (3 to 5 threads)

LIST
123

True Lead Forming Taps do not cut threads, rather, they cold form threads, displacing material from the major diameter toward the minor diameter. They will not function in materials of low ductility, however, they are extremely effective in ductile materials such as aluminum, copper, brass, leaded steels, low carbon steels and stainless steels. These taps must be run under power and usually at speeds of 150% to 200% in excess of cutting taps. Because the tap usually displaces metal above the mouth of the hole, countersinking, before or after tapping, is recommended. Since the hole diameter is reduced by the forming process, a larger tap drill is required for a forming tap than for a cutting tap. See Pages 47 and 48 for tap drill sizes. A variety of surface treatments are available to improve performance. See Page 49 for recommendations. See Table 302 on Page 33 for tap dimensions.

LIST
 124 Thread Forming, True Lead High Speed Steel
 THREAD FORM

American National

POINT STYLE

Plug (3 to 5 threads), Bottoming (1 to 2-1/2 threads) If point style is not specified, plug will be furnished

NOTE: Forming taps require larger holes than cutting taps. See page 47 for tap drill sizes.

	$\mathrm{NC} \mathbf{N F}$		EDPNO.	
STzE	ns	H-LIVIIT	PLUG	воттам
0-80	NF	H2	12400	12401
0-80	NF	H3	15500	15501
1-64	NC	H2		12403
1-72	NF	H2		12405
2-56	NC	H2	12406	12407
2-56	NC	H3	12408	12409
2-64	NF	H2		12411
2-64	NF	H3		12413
3-48	NC	H2		15547
3-48	NC	H3		12415
3-56	NF	H2		15557
3-56	NF	H3		12417
4-40	NC	H3	12418	12419
4-40	NC	H5	12420	12421
4-48	NF	H3	12422	12423
4-48	NF	H5	15578	15579
5-40	NC	H3	12424	12425
5-40	NC	H5	12426	12427
5-44	NF	H3	12428	12429
5-44	NF	H5	15594	15595
6-32	NC	H3	12432	12433
6-32	NC	H5	12434	12435
6-32	NC	H7	15606	15607
6-40	NF	H3	12436	12437
6-40	NF	H5	12438	12439
8-32	NC	H3	12440	12441
8-32	NC	H5	12442	12443
8-32	NC	H7	15634	15635
8-36	NF	H3	12444	12445
10-24	NC	H4	12448	12449
10-24	NC	H6	12450	12451
10-32	NF	H4	12452	12453
10-32	NF	H6	12454	12455
12-24	NC	H4	12456	12457
12-24	NC	H6	12458	12459
12-28	NF	H4	12460	12461
1/4-20	NC	H3	15716	15717
1/4-20	NC	H4	12462	12463
1/4-20	NC	H6	12464	12465
1/4-28	NF	H4	12466	12467

continued

STZE	$\underset{\text { NS }}{\text { NT }}$	H-LIVIIT	EDP NO.		continued	$\begin{aligned} & \text { LIST } \\ & 124 \end{aligned}$
			PLuG	воттам		
1/4-28	NF	H6	15734	15735	Thread Forming,	
5/16-18	NC	H5	12468	12469	True Lead	
5/16-18	NC	H7	12470	12471	True Lead	
5/16-24	NF	H5	12472	12473	High Speed Steel	
5/16-24	NF	H7	12474	12475		
3/8-16	NC	H5	12476	12477		
3/8-16	NC	H7	12478	12479		
3/8-24	NF	H5	12480	12481		
3/8-24	NF	H7	12482	12483		
7/16-14	NC	H5	12484	12485		
7/16-14	NC	H8	12486	12487		
7/16-20	NF	H5	12488	12489		
7/16-20	NF	H8	15834	15835		
1/2-13	NC	H5	12492	12493		
1/2-13	NC	H8	12494	12495		
1/2-20	NF	H5	12496	12497		
1/2-20	NF	H8	15870	15871		
9/16-12	NC	H7	15886	15887		
9/16-12	NC	H10	15892	15893		
9/16-18	NF	H7	15904	15905		
9/16-18	NF	H10	15910	15911		
5/8-11	NC	H7	15924	15925		
5/8-11	NC	H10	15930	15931		
5/8-18	NF	H7	15948	15949		
5/8-18	NF	H10	15954	15955		
3/4-10	NC	H7	15972	15973		
3/4-10	NC	H10	15978	15979		
3/4-16	NF	H7	15996	15997		
3/4-16	NF	H10	16002	16003		

STZE	PTTCH	D-LIIVITT	PLUG	BOTTOM
M3	.50	D5	16464	16465
M4	.70	D6	16466	16467
M5	.80	D7	16468	16469
M6	1.00	D8	16470	16471
M8	1.25	D9	16472	16473
M10	1.50	D10	16474	16475
M12	1.75	D11	16476	16477

Thread Forming,
True Lead, Metric High Speed Steel

THREAD FORM
M-Profile
Point style
Plug (3 to 5 threads), Bottoming (1 to 2-1/2 threads) If point style is not specified, plug will be furnished

NOTE: Forming taps require larger holes than cutting taps. See page 48 for tap drill sizes.

LIST

LIST
124T Thread Forming,
True Lead, Taper Pipe
High Speed Steel
THREAD FORM
American Standard NPT
POINT STYLE
Standard (2 to 3-1/2 threads)

STZE	TYPE	EDP NO.
$1 / 16-27^{*}$	NPT	16800
$1 / 8-27^{*}$	NPT	16801
$1 / 8-27$	NPT	16802
$1 / 4-18$	NPT	16803
$3 / 8-18$	NPT	16804
$1 / 2-14$	NPT	16805
$3 / 4-14$	NPT	16806

*Small Shank

These taps are designed to tap nuts. They have a very long chamfer, which produces low chip loads. The tap is not reversed and the nuts pass on to the long shank where they accumulate. When the shank becomes loaded with nuts, the tap is removed and the nuts are dumped from the shank. A variety of surface treatments are available to improve performance. See Page 49 for recommendations

LIST

126 Nut
High Speed Steel
THREAD FORM
American National

CHAMFER STYLE
Standard(16 to 24 threads)

These taps are designed to tap the set screw thread in pulley hubs. The various lengths allow the machine spindle to clear the pulley sheave. They can also be used as extension taps in many applications. The shank diameter is usually sized only for the chucking length. A variety of surface treatments are available to improve performance. See Page 49 for recommendations.

STZE	$\mathrm{NC}_{\mathrm{NS}} \mathrm{NF}$	H-LIVIIT	FLUTES	EDP NO.				THREAD
				$\stackrel{6^{\prime \prime}}{\text { LENGTH }}$	$\begin{gathered} 8^{\prime \prime} \\ \text { LENGTH } \end{gathered}$	$\stackrel{\text { 10" }}{\text { LENGTH }}$	$\begin{gathered} 12 " \\ \text { LENGTH } \end{gathered}$	
1/4-20	NC	H3	4	12722	12723			1
5/16-18	NC	H3	4	12730	12731			1-1/8
3/8-16	NC	H3	4	12738	12739	12740		1-1/4
7/16-14	NC	H3	4	12746	12747			1-7/16
1/2-13	NC	H3	4	12754	12755	12756	12757	1-21/32
5/8-11	NC	H3	4	12762	12763	12764	12765	1-13/16
3/4-10	NC	H3	4			12772	12773	2

The geometry of these taps is specifically designed for cast iron or irons producing small or powdery chips. They will also work well in cast brass and other brasses which produce similar chips. The chips are retained in the flutes during use. Assembly of NPT threads requires a sealant such as Teflon tape or pipe joint compound. Nominal tap size is based upon the fitting size, not the actual size of the tap. See Page 36 for tap drill and reaming data. They are provided with a Nitride and Oxide surface treatment to retard wear and prolong tool life. See Table 311 on Page 34 for tap dimensions.

sTze	TYPE	FLuTES	EDP No.
$1 / 8-27$	NPT	4	13002
$1 / 8-27^{*}$	NPT	4	13004
$1 / 4-18$	NPT	4	13006
$3 / 8-18$	NPT	4	13008
$1 / 2-14$	NPT	4	13010
$3 / 4-14$	NPT	5	13012
$1-11-1 / 2$	NPT	5	13014
$1-1 / 4-11-1 / 2$	NPT	5	13016
$1-1 / 2-11-1 / 2$	NPT	7	13018
$2-11-1 / 2$	7	13020	

*Small Shank

Pulley
High Speed Steel
THREAD FORM
American National
CHAMFER STYLE
Plug (3 to 5 threads)

Taper Pipe, Regular,
For Cast Iron
High Speed Steel
THREAD FORM
American Standard NPT, Regular
CHAMFER STYLE
Standard (2 to 3-1/2 threads)
SHANK
Unless otherwise specified, orders for $1 / 8$ " pipe taps will be filled with taps having a large shank

The geometry of these taps is specifically designed for cast iron or irons producing small or powdery chips. They will also work well in cast brass and other brasses which produce similar chips. The chips are retained in the flutes during use. Assembly of NPTF threads does not require sealants. Seal is attained by metal-to-metal contact. Nominal tap size is based upon the fitting size, not the actual size of the tap. See Page 36 for tap drill and reaming data. They are provided with a Nitride and Oxide surface treatment to retard wear and prolong tool life. See Table 311 on Page 34 for tap dimensions.

LIST

Taper Pipe, Dryseal,
For Cast Iron
High Speed Steel
THREAD FORM
American Standard NPTF, Dryseal
CHAMEER STYLE
Standard (2 to 3-1/2 threads)
SHANK
Unless otherwise specified, orders for $1 / 8$ " pipe taps will be filled with taps having a large shank

STZE	TYPE	FLUTES	EDP No.
$1 / 8-27$	NPTF	4	13202
$1 / 8-27^{*}$	NPTF	4	13204
$1 / 4-18$	NPTF	4	13206
$3 / 8-18$	NPTF	4	13208
$1 / 2-14$	NPTF	4	13210
$3 / 4-14$	NPTF	5	13212
$1-11-1 / 2$	NPTF	5	13214
$1-1 / 4-11-1 / 2$	NPTF	5	13216
$1-1 / 2-11-1 / 2$	NPTF	7	13218
$2-11-1 / 2$	NPTF	7	13220

*Small Shank

These general purpose taps are suitable for tapping most materials. The chips are retained in the flutes during use. Assembly of NPT threads requires a sealant such as Teflon tape or pipe joint compound. Nominal tap size is based upon the fitting size, not the actual size of the tap. See Page 36 for tap drill and reaming data. A variety of surface treatments are available to improve performance. See Page 49 for recommendations. See Table 311 on Page 34 for tap dimensions.

LIST

134 Taper Pipe, Regular High Speed Steel

THREAD FORM
American Standard NPT, Regular
CHAMFER STYLE
Standard (2 to 3-1/2 threads)

SHANK

Unless otherwise specified, orders for 1/8" pipe taps will be filled with taps having a large shank

STZE	TYPE	FLUTES	EDP NO.
$1 / 16-27$	NPT	4	13400
$1 / 8-27$	NPT	4	13402
$1 / 8-27^{*}$	NPT	4	13404
$1 / 4-18$	NPT	4	13406
$3 / 8-18$	NPT	4	13408
$1 / 2-14$	NPT	4	13410
$3 / 4-14$	NPT	5	13412
$1-11-1 / 2$	NPT	5	13414
$1-1 / 4-11-1 / 2$	NPT	5	13416
$1-1 / 2-11-1 / 2$	NPT	7	13418
$2-11-1 / 2$	NPT	7	13420

*Small Shank

Interrupted threads provide additional chip space, better coolant flow and reduce drag.
These general purpose taps are suitable for tapping most materials. The chips are retained in the flutes during use. Assembly of NPT threads requires a sealant such as Teflon tape or pipe joint compound. Nominal tap size is based upon the fitting size, not the actual size of the tap. See Page 36 for tap drill and reaming data. A variety of surface treatments are available to improve performance. See Page 49 for recommendations. See Table 311 on Page 34 for tap dimensions.

STZE			
$1 / 8-27$	TYPE	FLUTES	EDP NO.
$1 / 8-27^{\star}$	NPT	5	13602
$1 / 4-18$	NPT	5	13604
$3 / 8-18$	NPT	5	13606
$1 / 2-14$	NPT	5	13608
$3 / 4-14$	NPT	5	13610
$1-11-1 / 2$	NPT	5	13612
$1-1 / 4-11-1 / 2$	NPT	5	13614
$1-1 / 2-11-1 / 2$	NPT	5	13616
$2-11-1 / 2$	NPT	7	13618

*Small Shank

Taper Pipe, Regular

CHAMFER STYLE
Standard (2 to 3-1/2 threads)
SHANK
Unless otherwise specified, orders for $1 / 8^{\prime \prime}$ pipe taps will be filled with taps having a large shank

These general purpose taps are suitable for tapping most materials. The chips are retained in the flutes during use. Assembly of NPTF threads does not require sealants. Seal is attained by metal-to-metal contact. Nominal tap size is based upon the fitting size, not the actual size of the tap. See Page 36 for tap drill and reaming data. A variety of surface treatments are available to improve performance. See Page 49 for recommendations. See Table 311 on Page 34 for tap dimensions.

sTZE	TYPE	FLuTES	EDP No.
$1 / 16-27$	NPTF	4	13800
$1 / 8-27$	NPTF	4	13802
$1 / 8-27^{*}$	NPTF	4	13804
$1 / 4-18$	NPTF	4	13806
$3 / 8-18$	NPTF	4	13808
$1 / 2-14$	NPTF	4	13810
$3 / 4-14$	NPTF	5	13812
$1-11-1 / 2$	NPTF	5	13814
$1-1 / 4-11-1 / 2$	NPTF	5	13816
$1-1 / 2-11-1 / 2$	NPTF	7	13818
$2-11-1 / 2$	NPTF	7	13820

[^0]Taper Pipe, Dryseal
High Speed Steel
THREAD FORM
American Standard NPTF, Dryseal
CHAMFER STYLE
Standard (2 to 3-1/2 threads)
SHANK
Unless otherwise specified, orders for $1 / 8^{\prime \prime}$ pipe taps will be filled with taps having a large shank

LIST

Interrupted threads provide additional chip space, better coolant flow and reduce drag. These general purpose taps are suitable for tapping most materials. The chips are retained in the flutes during use. Assembly of NPTF threads does not require sealants. Seal is attained by metal-to-metal contact. Nominal tap size is based upon the fitting size, not the actual size of the tap. See Page 36 for tap drill and reaming data. A variety of surface treatments are available to improve performance. See Page 49 for recommendations.
See Table 311 on Page 34 for tap dimensions.

LIST

140 Taper Pipe, Dryseal, Interrupted Thread

 High Speed SteelTHREAD FORM
American Standard NPTF, Dryseal
Chamfer style
Standard (2 to 3-1/2 threads)

SHANK

Unless otherwise specified, orders for 1/8" pipe taps will be filled with taps having a large shank

STZE	TYPE	FLUTES	EDP NO.
$1 / 8-27$	NPTF	5	14002
$1 / 8-27^{*}$	NPTF	5	14004
$1 / 4-18$	NPTF	5	14006
$3 / 8-18$	NPTF	5	14008
$1 / 2-14$	NPTF	5	14010
$3 / 4-14$	NPTF	5	14012
$1-11-1 / 2$	NPTF	5	14014
$1-1 / 4-11-1 / 2$	NPTF	5	14016
$1-1 / 2-11-1 / 2$	NPTF	7	14018
$2-11-1 / 2$	NPTF	7	14020
*Small Shank			

These taps produce threads that conform to military specification MIL-P-7105B. Gaging consists of two thread plug gages, L1 and L3, and a Plain Taper Plug Truncation Gage. The general form and dimensions are equivalent to NPT threads. These general purpose taps are suitable for tapping most materials. The chips are retained in the flutes during use. Assembly of ANPT threads requires a sealant such as Teflon tape or pipe joint compound. Nominal tap size is based upon the fitting size, not the actual size of the tap. See Page 36 for tap drill and reaming data. A variety of surface treatments are available to improve performance. See Page 49 for recommendations. See Table 311 on Page 34 for tap dimensions.

Taper Pipe, Aeronautical High Speed Steel

THREAD FORM
American Standard ANPT, Aeronautical

CHAMEER STYLE

Standard (2 to 3-1/2 threads)

SHANK

Unless otherwise specified, orders for $1 / 8$ " pipe taps will be filled with taps having a large shank

STZE	TYPE	FLuTES	EDPNo.
$1 / 16-27$	ANPT	4	14200
$1 / 8-27$	ANPT	4	14202
$1 / 8-27^{*}$	ANPT	4	14204
$1 / 4-18$	ANPT	4	14206
$3 / 8-18$	ANPT	4	14208
$1 / 2-14$	ANPT	4	14210
$3 / 4-14$	ANPT	5	14212
$1-11-1 / 2$	ANPT	5	14214
$1-1 / 4-11-1 / 2$	ANPT	5	14216
$1-1 / 2-11-1 / 2$	ANPT	7	14218
$2-11-1 / 2$	ANPT	7	14220
*Small			

*Small Shank

These taps are designed for use where tapping depth is limited. They will still produce $\mathrm{L} 1+\mathrm{L} 3$ length of full thread. They are suitable for tapping most materials. The chips are retained in the flutes during use. Assembly of PTF threads does not require sealants. Seal is attained by metal-to-metal contact. Nominal tap size is based upon the fitting size, not the actual size of the tap. See Page 36 for tap drill and reaming data. A variety of surface treatments are available to improve performance. See Page 49 for recommendations. See Table 311 on Page 34 for tap dimensions.

STZE	TYPE	FLUTES	EDPNO.
$1 / 16-27$	PTF	4	14400
$1 / 8-27$	PTF	4	14402
$1 / 4-18$	PTF	4	14406
$3 / 8-18$	PTF	4	14408
$1 / 2-14$	PTF	4	14410
$3 / 4-14$	PTF	5	14412

LIS T
Taper Pipe, Dryseal 144
Short Projection High Speed Steel

THREAD FORIM
American Standard PTF, Dryseal
CHAMFER STYLE
Standard (1-1/2 to 2 threads)
SHANK
Orders for $1 / 8^{\prime \prime}$ pipe taps will be furnished with large shanks only

These taps will produce threads for low pressure applications and can be assembled with taper pipe threads. These general purpose taps are suitable for tapping most materials. The chips are retained in the flutes during use. Assembly of NPS threads requires a sealant such as Teflon tape or pipe joint compound. Nominal tap size is based upon the fitting size, not the actual size of the tap. A variety of surface treatments are available to improve performance. See Page 49 for recommendations. See Table 311 on Page 34 for tap dimensions.

STZE	TYPE	FLUTES	EDP NO.
$1 / 8-27$	NPS	4	15002
$1 / 4-18$	NPS	4	15006
$3 / 8-18$	NPS	4	15008
$1 / 2-14$	NPS	4	15010
$3 / 4-14$	NPS	5	15012
$1-11-1 / 2$	NPS	5	15014

These taps will produce threads for low pressure applications and can be assembled with taper pipe threads. These general purpose taps are suitable for tapping most materials. The chips are retained in the flutes during use. Assembly of NPSF threads does not require sealants. Seal is attained by metal-to-metal contact. Nominal tap size is based upon the fitting size, not the actual size of the tap. A variety of surface treatments are available to improve performance. See Page 49 for recommendations. See Table 311 on Page 34 for tap dimensions.

LIST
 152 Straight Pipe, Drysea High Speed Steel

THREAD FORM
American Standard NPSF, Dryseal
Chamfer style

STZE	TYPE	FLUTES	EDPNO.
$1 / 8-27$	NPSF	4	15202
$1 / 4-18$	NPSF	4	15206
$3 / 8-18$	NPSF	4	15208
$1 / 2-14$	NPSF	4	15210
$3 / 4-14$	NPSF	5	15212
$1-11-1 / 2$	NPSF	5	15214

Plug (3 to 5 threads)

The geometry of these taps is specifically designed for difficult-to-machine materials and they are manufactured from a premium grade of Vanadium High Speed Steel. They are primarily designed for tapping through holes, however, they can also be used in blind holes which are deep enough to allow for chip accumulation in the bottom of the hole. The spiral point forces the chips ahead of the tap, thereby preventing clogging and recutting of chips. Long holes, in excess of 1-1/2 diameters, can be tapped as a result. They can be used by hand or under power and are suitable for tapping most materials. The neck allows for less drag and increased coolant flow into the hole. A variety of surface treatments are available to improve performance. See Page 49 for recommendations. See Table 302 on Page 33 for tap dimensions.

STZE	${ }_{\text {NS }}^{\text {NS }}$	H-Lilvit	FLUTES	EDP NO.	
				PLUG	воттом
4-40	NC	H2	2	17015	
6-32	NC	H3	2	17024	
8-32	NC	H3	3	17030	
10-24	NC	H3	3	17036	
10-32	NF	H3	3	17040	
1/4-20	NC	H3	3	17048	
1/4-28	NF	H3	3	17054	
5/16-18	NC	H3	3	17060	
5/16-24	NF	H3	3	17066	
3/8-16	NC	H3	3	17071	
3/8-24	NF	H3	3	17075	
7/16-14	NC	H3	4	17078	
7/16-20	NF	H3	4	17081	
1/2-13	NC	H3	4	17085	
1/2-20	NF	H3	4	17089	
5/8-11	NC	H3	4	17093	
5/8-18	NF	H3	4	17095	
3/4-10	NC	H3	4	17096	
3/4-16	NF	H3	4	17098	

Spiral Pointed, Plug

The geometry of these taps is specifically designed for difficult-to-machine materials and they are manufactured from a premium grade of Vanadium High Speed Steel. They are primarily designed for tapping blind holes. The spiral flutes draw the chips out of the hole, thereby preventing clogging and recutting of chips. The modified bottoming chamfer allows for threading close to the bottom of the hole while providing additional cutting threads for hard, tough materials. Spiral flutes will also effectively bridge a keyway, or gap inside the hole, without binding. These taps can be used by hand or under power and are suitable for tapping most materials. The neck allows for less drag, additional chip space and increased coolant flow into the hole. A variety of surface treatments are available to improve performance. See Page 49 for recommendations. See Table 302 on Page 33 for tap dimensions.

LIST

172 Spiral Fluted,

High Performance,
37° Helix
CPM Tungsten Vanadium High Speed Steel

THREAD FORM
American National

Chamfer style

Modified Bottoming (2 to 3 threads)

STZE	NC NF NS	H-LIVIIT	FLUTES	MODIIIED BOTTCM
$4-40$	NC	H2	3	17207
$6-32$	NC	H3	3	17215
$8-32$	NC	H3	3	17223
$10-24$	NC	H3	3	17227
$10-32$	NF	H3	3	17231
$1 / 4-20$	NC	H3	3	17239
$1 / 4-28$	NF	H3	3	17243
$5 / 16-18$	NC	H3	3	17247
$5 / 16-24$	NF	H3	3	17251
$3 / 8-16$	NC	H3	3	17255
$3 / 8-24$	NF	H3	3	17259
$7 / 16-14$	NC	H3	4	17263
$7 / 16-20$	NF	H3	4	17267
$1 / 2-13$	NC	H3	4	17271
$1 / 2-20$	NF	H3	4	17275
$5 / 8-11$	NC	H3	4	17279
$5 / 8-18$	NF	H3	4	17283
$3 / 4-10$	NC	H3	4	17287
$3 / 4-16$	NF	H3	4	17291

These taps have a high quality, PVD process Titanium Nitride coating which produces a high surface hardness with a low coefficient of friction. This can substantially increase tool life. They can be used by hand or under power, in through or blind holes and are suitable for tapping most materials. The chips are retained in the flutes during use. See Table 302 on Page 33 for tap dimensions.

STZE	$\underset{\mathrm{NS}}{\mathrm{NF}}$	H-Liditi	flutes	EDP NO.	
				PLUG	воттам
0-80	NF	H1	2	19000	19001
1-64	NC	H1	2	19004	19005
1-72	NF	H1	2	19008	19009
2-56	NC	H2	3	19014	19015
2-64	NF	H2	3	19018	19019
3-48	NC	H2	3	19022	19023
3-56	NF	H2	3	19024	19025
4-40	NC	H2	3	19028	19029
4-48	NF	H2	3	19032	19033
5-40	NC	H2	3	19038	19039
5-44	NF	H2	3	19042	19043
6-32	NC	H3	3	19050	19051
6-40	NF	H2	3	19054	19055
8-32	NC	H3	4	19064	19065
8-36	NF	H2	4	19068	19069
10-24	NC	H3	4	19080	19081
10-32	NF	H3	4	19092	19093
12-24	NC	H3	4	19094	19095
12-28	NF	H3	4	19098	19099

Machine Screw, High Speed Steel

THREAD FORM
American National
Chamfer style
Plug (3 to 5 threads), Bottoming (1 to 2 threads) If chamfer style is not specified, plug will be furnished

These taps have a high quality, PVD process Titanium Nitride coating which produces a high surface hardness with a low coefficient of friction. This can substantially increase tool life. They can be used by hand or under power, in through or blind holes and are suitable for tapping most materials. The chips are retained in the flutes during use. See Table 302 on Page 33 for tap dimensions.

STzE	$\mathrm{NC}_{\mathrm{NS}}^{\mathrm{NF}}$	H-LiviIt	FLUTES	EDP NO.	
				PLUG	воттам
1/4-20	NC	H3	4	19206	19207
1/4-28	NF	H3	4	19212	19213
5/16-18	NC	H3	4	19220	19221
5/16-24	NF	H3	4	19224	19225
3/8-16	NC	H3	4	19232	19233
3/8-24	NF	H3	4	19236	19237
7/16-14	NC	H3	4	19240	19241
7/16-20	NF	H3	4	19244	19245
1/2-13	NC	H3	4	19248	19249
1/2-20	NF	H3	4	19252	19253
9/16-12	NC	H3	4	19254	19255
9/16-18	NF	H3	4	19256	19257
5/8-11	NC	H3	4	19260	19261
5/8-18	NF	H3	4	19262	19263
3/4-10	NC	H3	4	19266	19267
3/4-16	NF	H3	4	19270	19271

Hand,
Titanium Nitride Coated High Speed Steel

THREAD FORM
American National
CHAMFER STYLE
Plug (3 to 5 threads), Bottoming (1 to 2 threads) If chamfer style is not specified, plug will be furnished

LIS T

These taps have a high quality, PVD process Titanium Nitride coating which produces a high surface hardness with a low coefficient of friction. This can substantially increase tool life. These taps are primarily designed for tapping through holes, however, they can also be used in blind holes which are deep enough to allow for chip accumulation in the bottom of the hole. The spiral point forces the chips ahead of the tap, thereby preventing clogging and recutting of chips. Long holes, in excess of 1-1/2 diameters, can be tapped as a result. They can be used by hand or under power and are suitable for tapping most materials, especially those with high ductility. See Table 302 on Page 33 for tap dimensions.

LIST

194 Spiral Pointed, Plug,
Titanium Nitride Coated High Speed Steel

THREAD FORM
American National
CHAMFER STYLE
Plug (3 to 5 threads)

STZE	$\underset{\mathrm{NS}}{\mathrm{NC}}{ }^{\mathrm{NF}}$	h-livit	FLUTES	EDP NO.	
				PLUG	воттом
0-80	NF	H2	2	19401	
1-64	NC	H2	2	19403	
1-72	NF	H2	2	19405	
2-56	NC	H2	2	19407	
2-64	NF	H2	2	19409	
3-48	NC	H2	2	19411	
3-56	NF	H2	2	19413	
4-40	NC	H2	2	19415	
4-48	NF	H2	2	19417	
5-40	NC	H2	2	19420	
5-44	NF	H2	2	19421	
6-32	NC	H3	2	19424	
6-40	NF	H2	2	19427	
8-32	NC	H3	2	19430	
8-36	NF	H2	2	19433	
10-24	NC	H3	2	19436	
10-32	NF	H3	2	19440	
12-24	NC	H3	2	19443	
12-28	NF	H3	2	19444	
1/4-20	NC	H3	2	19447	
1/4-28	NF	H3	2	19454	
5/16-18	NC	H3	2	19459	
5/16-24	NF	H3	2	19466	
3/8-16	NC	H3	3	19471	
3/8-24	NF	H3	3	19475	
7/16-14	NC	H3	3	19478	
7/16-20	NF	H3	3	19481	
1/2-13	NC	H3	3	19485	
1/2-20	NF	H3	3	19489	
5/8-11	NC	H3	3	19493	
5/8-18	NF	H3	3	19495	
3/4-10	NC	H3	3	19496	
3/4-16	NF	H3	3	19498	

These taps have a high quality, PVD process Titanium Nitride coating which produces a high surface hardness with a low coefficient of friction. This can substantially increase tool life. They are primarily designed for tapping blind holes and preferred for tapping relatively deep ones. The high spiral flutes draw the chips out of the hole at a faster rate, thereby preventing clogging and recutting of chips. Spiral flutes will also effectively bridge a keyway, or slot inside the hole, without binding. These taps can be used by hand or under power and are suitable for tapping most materials, especially mild steel, aluminum, magnesium, copper and brass. See Table 302 on Page 33 for tap dimensions.

STZE	$\underset{\text { NS }}{\text { NC }}$	H-LIVITI	FLUTES	EDP NO.	
				PLUG	воттом
3-48	NC	H2	2	19702	19703
4-40	NC	H2	2	19706	19707
5-40	NC	H2	2	19710	19711
6-32	NC	H3	2	19714	19715
8-32	NC	H3	3	19722	19723
10-24	NC	H3	3	19726	19727
10-32	NF	H3	3	19730	19731
12-24	NC	H3	3	19734	19735
1/4-20	NC	H3	3	19738	19739
1/4-28	NF	H3	3	19742	19743
5/16-18	NC	H3	3	19746	19747
5/16-24	NF	H3	3	19750	19751
3/8-16	NC	H3	3	19754	19755
3/8-24	NF	H3	3	19758	19759
7/16-14	NC	H3	3	19762	19763
7/16-20	NF	H3	3	19766	19767
1/2-13	NC	H3	3	19770	19771
1/2-20	NF	H3	3	19774	19775

Spiral Fluted,
LIST
Titanium Nitride Coated, 50° Helix High Speed Steel

THREAD FORM
American National
CHAMFER STYLE
Plug (3 to 5 threads), Bottoming (1 to 2 threads) If chamfer style is not specified, plug will be furnished

These general purpose taps can be used by hand or under power, in through or blind holes and are suitable for tapping most materials. The chips are retained in the flutes during use. A variety of surface treatments are available to improve performance. See Page 49 for recommendations. Metric tap general dimensions are equivalent to inch taps. See Table 302 on Page 33 for dimensions.

LIST

230 Hand, Metric
High Speed Steel
THREAD FORM
M-Profile
CHAMFER STYLE
Taper (7 to 10 threads), Plug (3 to 5 threads), Bottoming (1 to 2 threads)
If chamfer style is not specified, plug will be furnished

				EDP NO.		
STZE	PTTCH	D-LIVIT	FLUTES	TAPER	PLUG	BOTTOM
M1.6	0.35	D3	2		23002	
M2	0.4	D3	3	23007	23008	23009
M2.5	0.45	D3	3		23014	
M3	0.5	D3	3	23016	23017	23018
M3.5	0.6	D4	3		23020	
M4	0.7	D4	4	23022	23023	23024
M4.5	0.75	D4	4		23026	
M5	0.8	D4	4	23028	23029	23030
M6	1	D5	4	23031	23032	23033
M7	1	D5	4	23037	23038	23039
M8	1.25	D5	4	23043	23044	23045
M10	1.25	D5	4	23046	23047	23048
M10	1.5	D6	4	23049	23050	23051
M12	1.25	D5	4	23052	23053	23054
M12	1.75	D6	4	23055	23056	23057
M14	1.5	D6	4	23058	23059	23060
M14	2	D7	4	23061	23062	23063
M16	1.5	D6	4	23064	23065	23066
M16	2	D7	4	23067	23068	23069
M18	1.5	D6	4	23070	23071	23072
M18	2.5	D7	4	23073	23074	23075
M20	2.5	D7	4	23076	23077	23078
M24	3	D8	4	23082	23083	23084
M27	3	D8	4	23085	23086	23087
M30	3.5	D9	4	23088	23089	23090
M33	3.5	D9	4	23091	23092	23093
M36	4	D9	4	23094	23095	23096

These taps are primarily designed for tapping through holes, however, they can also be used in blind holes which are deep enough to allow for chip accumulation in the bottom of the hole. The spiral point forces the chips ahead of the tap, thereby preventing clogging and recutting of chips. Long holes, in excess of 1-1/2 diameters, can be tapped as a result. They can be used by hand or under power and are suitable for tapping most materials, especially those with high ductility. A variety of surface treatments are available to improve performance. See Page 49 for recommendations. Metric tap general dimensions are equivalent to inch taps. See Table 302 on Page 33 for dimensions.

				EDP NO.	
STZE	PTTCH	D-LIVIT	FLUTES	PLUG	BOTTOM
M1.6	0.35	D3	2	23202	
M2	0.4	D3	2	23208	
M2.5	0.45	D3	2	23214	
M3	0.5	D3	2	23217	
M3.5	0.6	D4	2	23220	
M4	0.7	D4	2	23223	
M4.5	0.75	D4	2	23226	
M5	0.8	D4	2	23229	
M6	1	D5	2	23232	
M7	1	D5	2	23238	
M8	1.25	D5	2	23244	
M10	1.5	D6	3	23250	
M12	1.75	D6	3	23256	
M14	2	D7	3	23262	
M16	2	D7	3	23268	
M18	2.5	D7	3	23274	
M20	2.5	D7	4	23277	

Spiral Pointed, Metric
LIST
High Speed Steel
THREAD FORM
M-Profile
CHAMFER STYLE
Plug (3 to 5 threads)

These taps are primarily designed for tapping blind holes and preferred for tapping relatively deep ones. The high spiral flutes draw the chips out of the hole at a faster rate, thereby preventing clogging and recutting of chips. Spiral flutes will also effectively bridge a keyway, or slot inside the hole, without binding. These taps can be used by hand or under power and are suitable for tapping most materials, especially mild steel, aluminum, magnesium, copper and brass. A variety of surface treatments are available to improve performance. See Page 49 for recommendations. Metric tap general dimensions are equivalent to inch taps. See Table 302 on Page 33 for dimensions.

LIST

234 Spiral Fluted, Metric, 50° Helix

 High Speed SteelTHREAD FORM
M-Profile

CHAMEER STYLE

Plug (3 to 5 threads), Bottoming (1 to 2 threads) If chamfer style is not specified, plug will be furnished

				EDPNO.	
STZE	PTTCH	D-LIIVIT	FLUTES	PLUG	BOTTCM
M3	0.5	D3	2	23417	23418
M3.5	0.6	D4	3	23420	23421
M4	0.7	D4	3	23423	23424
M4.5	0.75	D4	3	23426	23427
M5	0.8	D4	3	23429	23430
M6	1	D5	3	23432	23433
M8	1.25	D5	3	23444	23445
M10	1.5	D6	3	23450	23451
M12	1.75	D6	3	23456	23457

These taps can be used by hand or under power to produce or repair threads for spark plugs. A variety of surface treatments are available to improve performance. See Page 49 for recommendations. Metric tap general dimensions are equivalent to inch taps. See Table 302 on Page 33 for dimensions.

LIST

236 Hand, Spark Plug,
Metric
High Speed Steel

				EDP NO.	
STZE	PTTCH	D-LIVIIT	FLUTES	PLUG	BOTTOM
M14	1.25	D7	4	23662	23663
M18	1.5	D7	4	23674	23675

THREAD FORM
M-Profile

CHAMFER STYLE

Plug (3 to 5 threads), Bottoming (1 to 2 threads)
If chamfer style is not specified, plug will be furnished

STEE	$\underset{\mathrm{NS}}{\mathrm{NC}} \mathbf{N F}$	EDPNO.			
		13/16" OD	1"OD	1-1/2" OD	2"OD
5-40	NC	40110			
5-44	NF	40111			
6-32	NC	40112	40113		
6-40	NF	40114			
8-32	NC	40115	40116		
8-36	NF	40117			
10-24	NC	40118	40119		
10-32	NF	40120	40121		
12-24	NC	40122	40123		
12-28	NF	40124			
1/4-20	NC	40127	40128	40129	
1/4-28	NF	40130	40131	40132	
5/16-18	NC	40135	40136	40137	
5/16-24	NF	40138	40139	40140	
3/8-16	NC		40143	40144	
3/8-24	NF		40146	40147	
7/16-14	NC		40149	40150	
7/16-20	NF		40152	40153	
1/2-13	NC			40155	
1/2-20	NF			40156	
9/16-12	NC			40159	
9/16-18	NF			40161	
5/8-11	NC			40163	40164
5/8-18	NF			40166	40167
3/4-10	NC				40171
3/4-16	NF				40173
7/8-9	NC				40175
7/8-14	NF				40177

Adjustable Round Split
High Speed Steel
FRACTIONALAND MACHINE SCREW SIZES

THREAD FORM
American National
OUTSIDE
diametert thiciness

LIST

305 Hexagon Rethreading Carbon Steel
thread form
American National

STZE	$\underset{\mathrm{NS}}{\mathrm{NC}}$	divienstions		EDP NO.
		ACROSS FLATS	THCKINESS	
1/4-20	NC	19/32	1/4	30529
1/4-28	NF	19/32	1/4	30532
5/16-18	NC	11/16	5/16	30537
5/16-24	NF	11/16	5/16	30540
3/8-16	NC	25/32	3/8	30544
3/8-24	NF	25/32	3/8	30547
7/16-14	NC	7/8	7/16	30550
7/16-20	NF	7/8	7/16	30553
1/2-13	NC	1-1/16	1/2	30555
1/2-20	NF	1-1/16	1/2	30557
9/16-12	NC	1-1/16	1/2	30559
9/16-18	NF	1-1/16	1/2	30561
5/8-11	NC	1-1/4	5/8	30563
5/8-18	NF	1-1/4	5/8	30566
11/16-11	NS	1-7/16	3/4	30568
11/16-16	N	1-7/16	3/4	30569
3/4-10	NC	1-7/16	3/4	30571
3/4-16	NF	1-7/16	3/4	30573
7/8-9	NC	1-5/8	7/8	30575
7/8-14	NF	1-5/8	7/8	30577
1-8	NC	1-13/16	1	30579
1-12	NF	1-13/16	1	30581
1-14	NS	1-13/16	1	30583
1-1/8-7	NC	2	1	30584
1-1/8-12	NF	2	1	30585
1-1/4-7	NC	2-3/16	1	30586
1-1/4-12	NF	2-3/16	1	30587
1-3/8-6	NC	2-3/8	1	30588
1-3/8-12	NF	2-3/8	1	30589
1-1/2-6	NC	2-9/16	1	30590
1-1/2-12	NF	2-9/16	1	30591

These sets consist of an assortment of Hexagon Rethreading Dies in American National form of thread. These dies are neatly packed in a wooden case.

LIST
306 Hexagon Rethreading
in Sets
Carbon Steel

	30620	$1 / 4$ to $1-1 / 2$	-	$1 / 2-1 / 2$

NOMIINAL DIA. ${ }_{\text {MIA }}$ CHINENONIINAL						OVERALI	thread	SOUARE	SHANK	STZE OF
OVER	$\begin{gathered} \text { TO } \\ \text { (INCL.) } \end{gathered}$	$\begin{aligned} & \text { sTVE } \\ & \text { no. } \end{aligned}$	DIAVIETER (IN.)	DIAMETER (NIV)	STYLE	$\underset{A}{\text { LENGTH }}$	$\begin{gathered} \text { LENGTH } \\ \text { B } \end{gathered}$	$\underset{\text { C }}{\substack{\text { LENGTH }}}$	$\stackrel{\text { DIA }}{\mathbf{D}}$	$\underset{\mathbf{E}}{\text { SQUARE }}$
. 052	. 065	0	1/16	M1.6	1	1-5/8	5/16	3/16	. 141	. 110
. 065	. 078	1		M1.8	1	1-11/16	3/8	3/16	. 141	. 110
. 078	. 091	2		M2, M2.2	1	1-3/4	7/16	3/16	. 141	. 110
. 091	. 104	3	3/32	M2.5	1	1-13/16	1/2	3/16	. 141	. 110
. 104	. 117	4			1	1-7/8	9/16	3/16	. 141	. 110
. 117	. 130	5	1/8	M3, M3.15	1	1-15/16	5/8	3/16	. 141	. 110
. 130	. 145	6		M3.5	1	2	11/16	3/16	. 141	. 110
. 145	. 171	8	5/32	M4	1	2-1/8	3/4	1/4	. 168	. 131
. 171	. 197	10	3/16	M4.5, M5	1	2-3/8	7/8	1/4	. 194	. 152
. 197	. 223	12	7/32		1	2-3/8	15/16	9/32	. 220	. 165
. 223	. 260	14	1/4	M6, M6.3	2	2-1/2	1	5/16	. 255	. 191
. 260	. 323		5/16	M7, M8	2	2-23/32	1-1/8	3/8	. 318	. 238
. 323	. 395		3/8	M10	2	2-15/16	1-1/4	7/16	. 381	. 286
. 395	. 448		7/16		3	3-5/32	1-7/16	13/32	. 323	. 242
. 448	. 510		1/2	M12, M12.5	3	3-3/8	1-21/32	7/16	. 367	. 275
. 510	. 573		9/16	M14	3	3-19/32	1-21/32	1/2	. 429	. 322
. 573	. 635		5/8	M16	3	3-13/16	1-13/16	9/16	. 480	. 360
. 635	. 709		11/16	M18	3	4-1/32	1-13/16	5/8	. 542	. 406
. 709	. 760		3/4		3	4-1/4		11/16	. 590	. 442
. 760	. 823		13/16	M20	3	4-15/32	2	11/16	. 652	. 489
. 823	. 885		7/8	M22	3	4-11/16	2-7/32	3/4	. 697	. 523
. 885	. 948		15/16	M24	3	4-29/32	2-7/32	3/4	. 760	. 570
. 948	1.010		1	M25	3	5-1/8	2-1/2	13/16	. 800	. 600
1.010	1.073		1-1/16	M27	3	5-1/8	2-1/2	7/8	. 896	. 672
1.073	1.135		1-1/8		3	5-7/16	2-9/16	7/8	. 896	. 672
1.135	1.198		1-3/16	M30	3	5-7/16	2-9/16	1	1.021	. 766
1.198	1.260		1-1/4		3	5-3/4	2-9/16	1	1.021	. 766
1.260	1.323		1-5/16	M33	3	5-3/4	2-9/16	1-1/16	1.108	. 831
1.323	1.385		1-3/8		3	6-1/16	3	1-1/16	1.108	. 831
1.385	1.448		1-7/16	M36	3	6-1/16	3	1-1/8	1.233	. 925
1.448	1.510		1-1/2			6-3/8	3	1-1/8	1.233	. 925

TOLERANCES

EIEVIENT	NOMINAL DIANETERRANGE-INCHES		direction	TOLERANCE-INCHES GROUND thread
	OVER	TO (INCL.)		
Length Overall-A	. 052	1.010	Plus or Minus	1/32
	1.010	1.510	Plus or Minus	1/16
Length of Thread-B	. 052	. 223	Plus or Minus	3/64
	. 223	. 510	Plus or Minus	1/16
	. 510	1.510	Plus or Minus	3/32
Length of Square-C	. 052	1.010	Plus or Minus	1/32
	1.010	1.510	Plus or Minus	1/16
Diameter of Shank-D	. 052	. 223	Minus	. 0015
	. 223	. 635	Minus	. 0015
	. 635	1.010	Minus	. 002
	1.010	1.510	Minus	. 002
Size of Square-E	. 052	. 510	Minus	. 004
	. 510	1.010	Minus	. 006
	1.010	1.510	Minus	. 008

311 Standard Pipe Tap
Dimensions, Straight and Taper, Ground Thread

GENERAL DIMENSIONS

NOMINALL SIZES INCHES	OVERALI LENGTH A	$\begin{gathered} \text { LENGTH OF } \\ \text { THREAD } \\ \text { B } \end{gathered}$	$\begin{gathered} \text { LENGTH OF } \\ \text { SQUARE } \\ \text { C } \end{gathered}$	$\begin{gathered} \text { DIANETER OF } \\ \substack{\text { SHANK } \\ \text { D }} \end{gathered}$	SIZE OF SQUARE E
1/16	2-1/8	11/16	3/8	. 3125	. 234
1/8*	2-1/8	3/4	3/8	. 3125	. 234
1/8	2-1/8	3/4	3/8	. 4375	. 328
1/4	2-7/16	1-1/16	7/16	. 5625	. 421
3/8	2-9/16	1-1/16	1/2	. 7000	. 531
1/2	3-1/8	1-3/8	5/8	. 6875	. 515
3/4	3-1/4	1-3/8	11/16	. 9063	. 679
1	3-3/4	1-3/4	13/16	1.1250	. 843
1-1/4	4	1-3/4	15/16	1.3125	. 984
1-1/2	4-1/4	1-3/4	1	1.5000	1.125
2	4-1/2	1-3/4	1-1/8	1.8750	1.406
2-1/2	5-1/2	2-9/16	1-1/4	2.2500	1.687
3	6	2-5/8	1-3/8	2.6250	1.968
3-1/2	6-1/2	2-11/16	1-1/2	2.8125	2.108
4	6-3/4	2-3/4	1-5/8	3.0000	2.250

*Small Shank

TOLERANCES

Elevient	RANGE	direction	TOLERANCE
Length Overall-A	$1 / 16^{\prime \prime}$ to $3 / 4^{\prime \prime}$ incl. 1" to 4" incl.	Plus or Minus Plus or Minus	$\begin{aligned} & \hline 1 / 32^{\prime \prime} \\ & 1 / 16^{\prime \prime} \end{aligned}$
Length of Thread-B	$1 / 16^{\prime \prime}$ to $3 / 4^{\prime \prime}$ incl. $1^{\prime \prime}$ to $1-1 / 4$ " incl. $1-1 / 2^{\prime \prime}$ to $4^{\prime \prime}$ incl.	Plus or Minus Plus or Minus Plus or Minus	$\begin{gathered} 1 / 16^{\prime \prime} \\ 3 / 32^{\prime \prime} \\ 1 / 8^{\prime \prime} \end{gathered}$
Length of Square-C	$\begin{gathered} 1 / 16 \text { " to } 3 / 4^{\prime \prime} \text { incl. } \\ 1 \text { " to } 4^{\prime \prime} \text { incl. } \end{gathered}$	Plus or Minus Plus or Minus	$\begin{aligned} & \hline 1 / 32^{\prime \prime} \\ & 1 / 16^{\prime \prime} \end{aligned}$
Dia. of Shank-D	$1 / 16^{\prime \prime}$ to $1 / 8^{\prime \prime}$ incl. $1 / 4^{\prime \prime}$ to $1 / 2^{\prime \prime}$ incl. $3 / 4$ " to $1^{\prime \prime}$ incl. $1-1 / 4^{\prime \prime}$ to $4^{\prime \prime}$ incl.	Minus Minus Minus Minus	$\begin{aligned} & .0015^{\prime \prime} \\ & .0020^{\prime \prime} \\ & .0020 " \\ & .0030^{\prime \prime} \end{aligned}$
Size of Square-E	$1 / 16^{\prime \prime}$ to $1 / 8^{\prime \prime}$ incl. $1 / 4^{\prime \prime}$ to $3 / 4^{\prime \prime}$ incl. 1" to 4" incl.	Minus Minus Minus	$\begin{aligned} & .0040^{\prime \prime} \\ & .0060 " \prime \prime \\ & .0080^{\prime \prime} \end{aligned}$

	Outside Dia．of Pipe Inches											N N H H 品 管	
	D	n	p	E_{1}	L_{1}	L_{2}	L_{3}	L_{4}	E_{3}	E_{0}	K_{0}	NPT \＆ NPTF	
1／16	． 3125	27	． 03704	． 28118	． 160	． 2611	． 1111	． 3896	． 26424	． 27118	． 2416	C	9／16
1／8	． 405	27	． 03704	． 37360	． 1615	． 2639	． 1111	． 3924	． 35656	． 36351	． 3339	Q	19／32
1／4	． 540	18	． 05556	． 49163	． 2278	． 4018	． 1667	． 5946	． 46697	． 47739	． 4329	7／16	13／16
3／8	． 675	18	． 05556	． 62701	． 240	． 4078	． 1667	． 6006	． 60160	． 61201	． 5676	9／16	13／16
1／2	． 840	14	． 07143	． 77843	． 320	． 5337	． 2143	.7815	． 74504	． 75843	． 7013	45／64	1－1／32
3／4	1.050	14	． 07143	． 98887	． 339	． 5457	． 2143	． 7935	． 95429	． 96768	． 9105	29／32	1－1／32
1	1.315	11－1／2	． 08696	1.23863	． 400	． 6828	． 2609	． 9845	1.19733	1.21363	1.1441	1－9／64	1－1／4
1－1／4	1.660	11－1／2	． 08696	1.58338	． 420	． 7068	． 2609	1.0085	1.54083	1.55713	1.4876	1－31／64	1－9／32
1－1／2	1.900	11－1／2	． 08696	1.82234	． 420	． 7235	． 2609	1.0252	1.77978	1.79609	1.7265	1－23／32	1－5／16
2	2.375	11－1／2	． 08696	2.29627	． 436	． 7565	． 2609	1.0582	2.25272	2.26902	2.1995	2－3／16	1－9／32
2－1／2	2.875	8	． 12500	2.76216	． 682	1.1375	． 2501	1.5712	$2.70391{ }^{1}$	2.71953	2.6195	2－39／64	1－27／32
3	3.500	8	． 12500	3.38850	． 766	1.2000	． 2502	1.6337	3.32500^{2}	3.34062	3.2406	3－15／64	1－29／32
3－1／2	4.000	8	． 12500	3.88881	． 821	1.2500	． 250	1.6837	3.82188	3.83750	3.7375		2
4	4.500	8	． 12500	4.38712	． 844	1.3000	． 250	1.7337	4.31875	4.33438	4.2344		2－1／16
5	5.563	8	． 12500	5.44929	． 937	1.4063	． 250	1.8400	5.37511	5.39073	5.2907		
6	6.625	8	． 12500	6.50597	． 958	1.5125	． 250	1.9462	6.43047	6.44609	6.3461		
8	8.625	8	． 12500	8.50003	1.063	1.7125	． 250	2.1462	8.41797	8.43359	8.3336		
10	10.750	8	． 12500	10.62094	1.210	1.9250	． 250	2.3587	10.52969	10.54531	10.4453		
12	12.750	8	． 12500	12.61781	1.360	2.1250	． 250	2.5587	12.51719	12.53281	12.3428		

${ }_{1} 2-1 / 2^{\prime \prime}$ NPTF and ANPT $L_{3}=375, E_{3}=2.69609 \quad 2_{3}{ }^{\prime \prime}$ NPTF and ANPT $L_{3}=.375$ ，E3－3．31719
＊Methods of inspection vary．Care should be taken to use a tap drill or taper reamer which can meet thread specifications．Sizes given permit direct tapping without reaming the hole，but only give a full thread for approx． L_{1} distance．See columns K_{0} and L_{3}

357 Measurement of Taper Pipe Taps, Reaming Data and Tap Drill Sizes

STZE	PROTECTION				$\begin{gathered} \text { REAMM } \\ \text { DIA. } \\ \text { LARGE } \\ \text { END } \end{gathered}$	$\begin{aligned} & \text { GAGE } \\ & \text { WIDTH } \\ & \mathrm{I}_{1} \end{aligned}$	REAMED LENGTH $\mathrm{I}_{1}+\mathrm{L}_{3}$	$\begin{gathered} \text { TRP } \\ \text { DRIL } \\ \text { FOR USE } \\ \text { WTITH } \\ \text { REAMING } \end{gathered}$	$\begin{aligned} & \text { TAP } \\ & \text { DRILL } \\ & \text { FOR USE } \\ & \text { WITHOUT } \\ & \text { REAMING } \end{aligned}$	FORMING TAPDRUL FOR USE WITHOUT REAMIING
	NPT\&NPTF		SAE-SHORT							
	MIIN.	MAXX	MIIN.	MAX						
1/16-27	. 250	. 375	. 222	. 259	. 2515	. 1600	. 2711	15/64	C	\|
1/8-27	. 250	. 375	. 222	. 259	. 3340	. 1615	. 2726	21/64	Q	9.25 mm
1/4-18	. 397	. 521	. 333	. 389	. 4472	. 2278	. 3945	27/64	7/16	12.1 mm
3/8-18	. 392	. 516	. 333	. 389	. 5826	. 240	. 4067	9/16	9/16	5/8
1/2-14	. 517	. 641	. 429	. 500	. 7213	. 320	. 5343	11/16	45/64	19.3 mm
3/4-14	. 503	. 627	. 429	. 500	. 9317	. 339	. 5533	57/64	29/32	31/32
1-11-1/2	. 584	. 772			1.1691	. 400	. 6609	1-1/8	1-9/64	
1-1/4-11-1/2	. 592	. 780			1.5138	. 420	. 6809	1-15/32	1-31/64	
1-1/2-11-1/2	. 606	. 792			1.7528	. 420	. 6809	1-45/64	1-23/32	
2-11-1/2	. 574	. 760			2.2267	. 436	. 6969	2-3/16	2-3/16	

Tap Recommendations for Classes 2, 3, 2B \& 3B Unified and American Screw Threads

	THREADSPERINCH		RECOMIIENDED TAP FOR CLASS OF THREAD				MIN. ALL CLASSES (BASIC)	PTTCHDIAMETERLINITTS FOR CLASS OF THREAD			
STEE	$\begin{aligned} & \text { NC } \\ & \text { AND } \\ & \text { UNC } \end{aligned}$	$\begin{gathered} \mathrm{NF} \\ \text { AND } \\ \text { UNF } \end{gathered}$	$\begin{gathered} \text { CLASS } \\ \hline \end{gathered}$	$\begin{gathered} \text { CLASS } \\ 3 \end{gathered}$	$\underset{\text { CLASS }}{\text { CL }}$	$\begin{gathered} \text { CLASS } \\ 3 B \end{gathered}$		$\begin{aligned} & \text { MIAXX } \\ & { }_{2}^{\text {CLASS }} \end{aligned}$	$\begin{gathered} \text { MIAX } \\ { }_{3}^{\text {CLASS }} \end{gathered}$		$\begin{aligned} & \text { MAXX } \\ & \text { CLASS } \\ & \text { 3B } \end{aligned}$
0	**	80	G H1	G H1	G H2	G H1	. 0519	. 0536	. 0532	. 0542	. 0536
1	64	**	G H1	G H1	G H2	G H1	. 0629	. 0648	. 0643	. 0655	. 0648
1	**	72	G H1	G H1	G H2	G H1	. 0640	. 0658	. 0653	. 0665	. 0659
2	56	**	G H1	G H1	G H2	G H1	. 0744	. 0764	. 0759	. 0772	. 0765
2	**	64	G H1	G H1	G H2	G H1	. 0759	. 0778	. 0773	. 0786	. 0779
3	48	**	G H1	G H1	G H2	G H1	. 0855	. 0877	. 0871	. 0885	. 0877
3	**	56	G H1	G H1	G H2	G H1	. 0874	. 0894	. 0889	. 0902	. 0895
4	40	**	G H2	G H1	G H2	G H2	. 0958	. 0982	. 0975	. 0991	. 0982
4	**	48	G H1	G H1	G H2	G H1	. 0985	. 1007	. 1001	. 1016	. 1008
5	40	**	G H2	G H1	G H2	G H2	. 1088	. 1112	. 1105	. 1121	. 1113
5	**	44	G H1	G H1	G H2	G H1	. 1102	. 1125	. 1118	. 1134	. 1126
6	32	**	G H2	G H1	G H3	G H2	. 1177	. 1204	. 1196	. 1214	. 1204
6	**	40	G H2	G H1	G H2	G H2	. 1218	. 1242	. 1235	. 1252	. 1243
8	32	**	G H2	G H1	G H3	G H2	. 1437	. 1464	. 1456	. 1475	. 1465
8	**	36	G H2	G H1	G H2	G H2	. 1460	. 1485	. 1478	. 1496	. 1487
10	24	**	G H3	G H1	G H3	G H3	. 1629	. 1662	. 1653	. 1672	. 1661
10	**	32	G H2	G H1	G H3	G H2	. 1697	. 1724	. 1716	. 1736	. 1726
12	24	**	G H3	G H1	G H3	G H3	. 1889	. 1922	. 1913	. 1933	. 1922
12	**	28	G H3	G H1	G H3	G H3	. 1928	. 1959	. 1950	. 1970	. 1959

The above recommended taps normally produce the Class of Thread indicated in average materials when used with reasonable care. However, if the tap specified dies not give a satisfactory gage fit in the work, a choice of some other limit tap will be necessary.

Tap Recommendations for Classes 2, 3, 2B \& 3B
Unified and American Screw Threads

FRACTIONALSIZES

	THREADS PER INCH		RECOMIIENDED TAP FOR CLASS OF THREAD				MIIN. ALL CLASSES (BASIC)	PITCH DIAVIETER LIIVITS FOR CLASS OF THREAD			
STZE	$\begin{gathered} \text { NC } \\ \text { AND } \\ \text { UNC } \end{gathered}$	$\begin{gathered} \text { NF } \\ \text { AND } \\ \text { UNF } \end{gathered}$	$\begin{gathered} \text { CLASS } \\ 2 \end{gathered}$	$\begin{gathered} \text { CLASS } \\ 3 \end{gathered}$	$\begin{gathered} \text { CLASS } \\ \dagger 2 \mathrm{BB} \end{gathered}$	$\begin{gathered} \text { CLASS } \\ 3 B \end{gathered}$		$\begin{gathered} \hline \text { MIAX } \\ \text { CLASS } \\ 2 \end{gathered}$	MAX. CLASS 3	$\begin{aligned} & \text { MAX. } \\ & \text { CLASS } \end{aligned}$ 2B	MAX. CLASS 3B
1/4	20	**	G H3	G H2	G H5	G H3	. 2175	. 2211	. 2201	. 2223	. 2211
1/4	**	28	G H3	G H1	G H4	G H3	. 2268	. 2299	. 2290	. 2311	. 2300
5/16	18	**	G H3	G H2	G H5	G H3	. 2764	. 2805	. 2794	. 2817	. 2803
5/16	**	24	G H3	G H1	G H4	G H3	. 2854	. 2887	. 2878	. 2902	. 2890
3/8	16	**	G H3	G H2	G H5	G H3	. 3344	. 3389	. 3376	. 3401	. 3387
3/8	**	24	G H3	G H1	G H4	G H3	. 3479	. 3512	. 3503	. 3528	. 3516
7/16	14	**	G H5	G H3	G H5	G H3	. 3911	. 3960	. 3947	. 3972	. 3957
7/16	**	20	G H3	G H1	G H5	G H3	. 4050	. 4086	. 4076	. 4104	. 4091
1/2	13	**	G H5	G H3	G H5	G H3	. 4500	. 4552	. 4537	. 4565	. 4548
1/2	**	20	G H3	G H1	G H5	G H3	. 4675	. 4711	. 4701	. 4731	. 4717
9/16	12	**	G H5	G H3	G H5	G H3	. 5084	. 5140	. 5124	. 5152	. 5135
9/16	**	18	G H3	G H2	G H5	G H3	. 5264	. 5305	. 5294	. 5323	. 5308
5/8	11	**	G H5	G H3	G H5	G H3	. 5660	. 5719	. 5702	. 5732	. 5714
5/8	**	18	G H3	G H2	G H5	G H3	. 5889	. 5930	. 5919	. 5949	. 5934
3/4	10	**	G H5	G H3	G H5	G H5	. 6850	. 6914	. 6895	. 6927	. 6907
3/4	**	16	G H3	G H2	G H5	G H3	. 7094	. 7139	. 7126	. 7159	. 7143
7/8	9	**	G H6	G H4	G H6	G H4	. 8028	. 8098	. 8077	. 8110	. 8089
7/8	**	14	G H4	G H2	G H6	G H4	. 8286	. 8335	. 8322	. 8356	. 8339
1	8	**	G H6	G H4	G H6	G H4	. 9188	. 9264	. 9242	. 9276	. 9254
1	**	12	G H4	G H2	G H6	G H4	. 9459	. 9515	. 9499	. 9535	. 9516
1		14 NS	G H4	G H2	G H6	G H4	. 9536	. 9585	. 9572	. 9609	. 9590
1-1/8	7	**	G H8	G H4	G H8	G H4	1.0322	1.0407	1.0381	1.0416	1.0393
1-1/8	**	12	G H4	G H4	G H6	G H4	1.0709	1.0765	1.0749	1.0787	1.0768
1-1/4	7	**	G H8	G H4	G H8	G H4	1.1572	1.1657	1.1631	1.1668	1.1644
1-1/4	**	12	G H4	G H4	G H6	G H4	1.1959	1.2015	1.1999	1.2039	1.2019
1-3/8	6	**	G H8	G H4	G H8	G H4	1.2667	1.2768	1.2738	1.2771	1.2745
1-3/8	**	12	G H4	G H4	G H6	G H4	1.3209	1.3265	1.3249	1.3291	1.3270
1-1/2	6	**	G H8	G H4	G H8	G H4	1.3917	1.4018	1.3988	1.4022	1.3996
1-1/2	**	12	G H4	G H4	G H6	G H4	1.4459	1.4515	1.4499	1.4542	1.4522

The above recommended taps normally produce the Class of Thread indicated in average materials when used with reasonable care. However, if the tap specified does not give a satisfactory gage fit in the work, a choice of some other limit tap will be necessary.

Forming Tap Recommendations for Classes 2, 2 B \& 3B Unified and American Screw Threads

	THREADS PER INCH		RECOMIIENDEDLIVIIT		
SCREW SIZES	$\begin{aligned} & \text { NC } \\ & \text { AND } \\ & \text { UNC } \end{aligned}$	$\begin{gathered} \hline \text { NF } \\ \text { AND } \\ \text { UNF } \end{gathered}$	$\begin{gathered} \text { CLASS } \\ 2 \end{gathered}$	$\underset{2 B}{\text { CLASS }}$	$\underset{3 \mathrm{~B}}{\text { CLASS }}$
0		80	G H2	G H3	G H2
1	64	72	$\begin{aligned} & \text { G H2 } \\ & \text { G H2 } \end{aligned}$	$\begin{aligned} & \text { G H3 } \\ & \text { G H3 } \end{aligned}$	$\begin{aligned} & \text { G H2 } \\ & \text { G H2 } \end{aligned}$
2	56	64	$\begin{aligned} & \text { G H2 } \\ & \text { G H2 } \end{aligned}$	$\begin{aligned} & \text { G H3 } \\ & \text { G H3 } \end{aligned}$	$\begin{aligned} & \text { G H2 } \\ & \text { G H2 } \end{aligned}$
3	48	56	$\begin{aligned} & \text { G H2 } \\ & \text { G H2 } \end{aligned}$	$\begin{aligned} & \text { G H3 } \\ & \text { G H3 } \end{aligned}$	$\begin{aligned} & \text { G H2 } \\ & \text { G H2 } \end{aligned}$
4	40	48	$\begin{aligned} & \text { G H3 } \\ & \text { G H3 } \end{aligned}$	$\begin{aligned} & \text { G H5 } \\ & \text { G H5 } \end{aligned}$	$\begin{aligned} & \text { G H3 } \\ & \text { G H3 } \end{aligned}$
5	40	44	$\begin{aligned} & \text { G H3 } \\ & \text { G H3 } \end{aligned}$	$\begin{aligned} & \text { G H5 } \\ & \text { G H5 } \end{aligned}$	$\begin{aligned} & \text { G H3 } \\ & \text { G H3 } \end{aligned}$
6	32	40	$\begin{aligned} & \text { G H3 } \\ & \text { G H3 } \end{aligned}$	$\begin{aligned} & \text { G H5 } \\ & \text { G H5 } \end{aligned}$	$\begin{aligned} & \text { G H3 } \\ & \text { G H3 } \end{aligned}$
8	32	36	$\begin{aligned} & \text { G H3 } \\ & \text { G H3 } \end{aligned}$	$\begin{aligned} & \text { G H5 } \\ & \text { G H5 } \end{aligned}$	$\begin{aligned} & \text { G H3 } \\ & \text { G H3 } \end{aligned}$
10	24	32	$\begin{aligned} & \text { G H4 } \\ & \text { G H4 } \end{aligned}$	$\begin{aligned} & \text { G H6 } \\ & \text { G H6 } \end{aligned}$	$\begin{aligned} & \text { G H4 } \\ & \text { G H4 } \end{aligned}$
12	24	28	$\begin{aligned} & \text { G H4 } \\ & \text { G H4 } \end{aligned}$	$\begin{aligned} & \text { G H6 } \\ & \text { G H6 } \end{aligned}$	$\begin{aligned} & \text { G H4 } \\ & \text { G H4 } \end{aligned}$
RACTIONAL SIZE					
1/4	20	28	$\begin{aligned} & \text { G H4 } \\ & \text { G H4 } \end{aligned}$	$\begin{aligned} & \text { G H6 } \\ & \text { G H6 } \end{aligned}$	$\begin{aligned} & \text { G H4 } \\ & \text { G H4 } \end{aligned}$
5/16	18	24	$\begin{aligned} & \text { G H5 } \\ & \text { G H5 } \end{aligned}$	$\begin{aligned} & \text { G H7 } \\ & \text { G H7 } \end{aligned}$	$\begin{aligned} & \text { G H5 } \\ & \text { G H5 } \end{aligned}$
3/8	16	24	$\begin{aligned} & \text { G H5 } \\ & \text { G H5 } \end{aligned}$	$\begin{aligned} & \text { G H7 } \\ & \text { G H7 } \end{aligned}$	$\begin{aligned} & \text { G H5 } \\ & \text { G H5 } \end{aligned}$
7/16	14	20	$\begin{aligned} & \text { G H5 } \\ & \text { G H5 } \end{aligned}$	$\begin{aligned} & \text { G H8 } \\ & \text { G H8 } \end{aligned}$	$\begin{aligned} & \text { G H5 } \\ & \text { G H5 } \end{aligned}$
1/2	13	20	$\begin{aligned} & \text { G H5 } \\ & \text { G H5 } \end{aligned}$	$\begin{aligned} & \text { G H8 } \\ & \text { G H8 } \end{aligned}$	$\begin{aligned} & \text { G H5 } \\ & \text { G H5 } \end{aligned}$
9/16	12	18	$\begin{aligned} & \text { G H7 } \\ & \text { G H7 } \end{aligned}$	$\begin{aligned} & \text { G H10 } \\ & \text { G H10 } \end{aligned}$	$\begin{aligned} & \text { G H7 } \\ & \text { G H7 } \end{aligned}$
5/8	11	18	$\begin{aligned} & \text { G H7 } \\ & \text { G H7 } \end{aligned}$	$\begin{aligned} & \text { G H10 } \\ & \text { G H1O } \end{aligned}$	$\begin{aligned} & \text { G H7 } \\ & \text { G H7 } \end{aligned}$
3/4	10	16	$\begin{aligned} & \text { G H7 } \\ & \text { G H7 } \end{aligned}$	$\begin{aligned} & \text { G H10 } \\ & \text { G H10 } \end{aligned}$	$\begin{aligned} & \text { G H7 } \\ & \text { G H7 } \end{aligned}$
7/8	9	14	$\begin{aligned} & \text { G H9 } \\ & \text { G H9 } \end{aligned}$	$\begin{aligned} & \text { G H12 } \\ & \text { G H12 } \end{aligned}$	$\begin{aligned} & \text { G H9 } \\ & \text { G H9 } \end{aligned}$
1	8	12	$\begin{aligned} & \text { G H9 } \\ & \text { G H9 } \end{aligned}$	$\begin{aligned} & \text { G H12 } \\ & \text { G H12 } \end{aligned}$	$\begin{aligned} & \text { G H9 } \\ & \text { G H9 } \end{aligned}$

The above recommended taps normally produce the Class of Thread indicated in average materials when used with reasonable care. However, if the tap specified does not give a satisfactory gage fit in the work, a choice of some other limit tap will be necessary. All the H -Limits shown will produce a Class 2 B fit.

Tap Recommendations for Classes 4 H \& 6 H Metric Screw Threads

thread PER INCH		RECOMIVIENDED TAP FOR CLASS OF THREAD		PITCH DIAIMETER LIIIITTS FOR CLASS OF THREAD							
		Mmulivieters	INCH CONVERSION								
NOMINAL DIAMETER	PTTCH			4 H	6H	MIIN. ALL CLASSES (BASIC)	$\underset{4 \mathrm{H}}{\operatorname{MAX}}$	$\underset{6 \mathrm{H}}{\operatorname{MAXX}}$	$\begin{aligned} & \text { IIIN. ALL } \\ & \text { CLASSES } \\ & \text { (BASIC) } \end{aligned}$	$\underset{4 \mathrm{H}}{\operatorname{MAX}}$	$\underset{6 \mathrm{H}}{\operatorname{MAX}}$
M1.6	0.35	D1	D3	1.373	1.426	1.458	. 0541	. 0561	. 0574		
M2	0.4	D1	D3	1.740	1.796	1.830	. 0685	. 0707	. 0720		
M2.5	0.45	D1	D3	2.208	2.268	2.303	. 0869	. 0893	. 0907		
M3	0.5	D1	D3	2.675	2.738	2.775	. 1053	. 1078	. 1092		
M3.5	0.6	D1	D4	3.110	3.181	3.222	. 1224	. 1252	. 1268		
M4	0.7	D2	D4	3.545	3.620	3.663	. 1396	. 1425	. 1442		
M4.5	0.75	D2	D4	4.013	4.088	4.131	. 1580	. 1609	. 1626		
M5	0.8	D2	D4	4.480	4.560	4.605	. 1764	. 1795	. 1813		
M6	1	D3	D5	5.350	5.445	5.500	. 2106	. 2144	. 2165		
M6	0.75	D2	D3	5.513	5.598	5.645	. 2170	. 2204	. 2222		
M7	1	D3	D5	6.350	6.445	6.500	. 2500	. 2537	. 2559		
M7	0.75	D2	D4	6.513	6.598	6.645	. 2564	. 2598	. 2616		
M8	1.25	D3	D5	7.188	7.288	7.348	. 2830	. 2869	. 2893		
M8	1	D3	D5	7.350	7.445	7.500	. 2894	. 2931	. 2953		
M10	1.5	D3	D6	9.026	9.138	9.206	. 3554	. 3598	. 3624		
M10	1.25	D3	D5	9.188	9.288	9.348	. 3617	. 3657	. 3680		
M12	1.75	D3	D6	10.863	10.988	11.063	. 4277	. 4326	. 4356		
M12	1.25	D3	D5	11.188	11.300	11.368	. 4405	. 4449	. 4476		
M14	2	D3	D7	12.701	12.833	12.913	. 5000	. 5052	. 5084		
M14	1.5	D3	D6	13.026	13.144	13.216	. 5128	. 5175	. 5203		
M16	2	D4	D7	14.701	14.833	14.913	. 5788	. 5840	. 5871		
M16	1.5	D3	D6	15.026	15.144	15.216	. 5916	. 5962	. 5990		
M18	2.5	D4	D7	16.376	16.516	16.600	. 6447	. 6502	. 6535		
M18	1.5	D3	D6	17.026	17.144	17.216	. 6703	. 6750	. 6778		
M20	2.5	D4	D7	18.376	18.516	18.600	. 7235	. 7290	. 7323		
M20	1.5	D3	D5	19.026	19.144	19.216	. 7490	. 7537	. 7565		
M24	3	D4	D8	22.051	22.221	22.316	. 8681	. 8748	. 8786		
M24	1.5	D3	D5	23.026	23.151	23.226	. 9065	. 9114	. 9144		
M27	3	D5	D8	25.051	25.221	25.316	. 9863	. 9930	. 9967		
M27	2	D5	D7	25.701	25.841	25.925	1.0118	1.0174	1.0207		
M30	3.5	D5	D9	27.727	27.907	28.007	1.0916	1.0987	1.1026		
M30	2	D5	D7	28.701	28.841	28.925	1.1300	1.1355	1.1388		
M33	3.5	D5	D9	30.727	30.907	31.007	1.2097	1.2168	1.2207		
M33	2	D5	D7	31.701	31.841	31.925	1.2481	1.2536	1.2569		
M36	4	D5	D9	33.402	33.592	33.702	1.3150	1.3225	1.3268		
M36	2	D5	D7	34.701	34.841	34.925	1.3662	1.3717	1.3750		

The above recommended taps normally produce the Class of Thread indicated in average materials when used with reasonable care. However, if the tap specified does not give a satisfactory gage fit
in the work, a choice of some other limit tap will be necessary.
D1 Limit to have minus . 0005 tolerance.

Standard Machine Screw Taps for Tapping
Unified and American National Coarse and Fine Threads

STIE	THREADS PER INCH			MAJOR DIAMETER					BASICPTTCH DIA.	PTTCHDIAMETERLIVIITS									
	$\begin{aligned} & \text { NC } \\ & \text { AND } \\ & \text { UNC } \end{aligned}$	$\begin{gathered} \text { NC } \\ \text { AND } \\ \text { UNF } \end{gathered}$	NS	ND TT			CUT THREAD			H1				CUT THD.					
				BASIC	Min.	MAX	Min.	MAX											
										MIIN.	M ${ }^{\text {ax }}$	min.	MAX.			NIIN.	MAX	vin	MAX
0	**	80	**	. 0600	. 0605	. 0616	. 0609	. 0624	. 0519	. 0519	. 0524	. 0524	. 0529	****	****	. 0521	. 0531		
1	64	**	**	. 0730	. 0736	. 0750	. 0740	. 0755	. 0629	. 0629	. 0634	. 0634	. 0639	****	****	. 0631	. 0641		
1	**	72	**	. 0730	. 0736	. 0748	. 0740	. 0755	. 0640	. 0640	. 0645	. 0645	. 0650	****	****	. 0642	. 0652		
2	56	**	**	. 0860	. 0867	. 0883	. 0872	. 0887	. 0744	. 0744	. 0749	. 0749	. 0754	****	***	. 0746	. 0756		
2	**	64	**	. 0860	. 0866	. 0880	. 0870	. 0885	. 0759	. 0759	. 0764	. 0764	. 0769	****	****	. 0761	. 0771		
3	48	**	**	. 0990	. 0999	. 1017	. 1003	. 1018	. 0855	. 0855	. 0860	. 0860	. 0865	****	****	. 0857	. 0867		
3	**	56	**	. 0990	. 0997	. 1013	. 1002	. 1017	. 0874	. 0874	. 0879	. 0879	. 0884	****	****	. 0876	. 0876		
4	**	**	36	1120	. 1135	. 1156	. 1137	. 1157	. 0940	****	****	. 0945	. 0950	****	****	. 0942	. 0957		
4	40	**	**	. 1120	. 1133	. 1152	. 1136	. 1156	. 0958	. 0958	. 0963	. 0963	. 0968	****	****	. 0960	. 0975		
4	**	48	**	. 1120	. 1129	. 1147	. 1133	. 1153	. 0985	. 0985	. 0990	. 0990	. 0995	****	****	. 0987	. 1002		
5	40	**	**	. 1250	. 1263	. 1282	. 1266	. 1286	. 1088	. 1088	. 1093	. 1093	. 1098	****	****	. 1090	. 1105		
5	**	44	**	. 1250	. 1263	. 1280	. 1264	. 1284	. 1102	. 1102	. 1107	. 1107	. 1112	****		. 1104	. 1119		
6	32	**	**	. 1380	. 1401	. 1421	. 1402	. 1422	. 1177	. 1177	. 1182	. 1182	. 1187	. 1187	. 1192	. 1182	. 1197		
6		40	**	. 1380	. 1393	. 1412	. 1396	. 1416	. 1218	. 1218	. 1223	. 1223	. 1228			. 1220	. 1235		
8	32	**	**	. 1640	. 1661	. 1681	. 1662	. 1682	. 1437	. 1437	. 1442	. 1442	. 1447	. 1447	. 1452	. 1442	. 1457		
8		36	**	. 1640	. 1655	. 1676	. 1657	. 1677	. 1460	. 1460	. 1465	. 1465	. 1470			. 1462	. 1477		
10	24	**	**	. 1900	. 1927	. 1954	. 1928	. 1948	. 1629	. 1629	. 1634	. 1634	. 1639	. 1639	. 1644	. 1634	. 1649		
10	**	32	**	. 1900	. 1921	. 1941	. 1922	. 1942	. 1697	. 1697	. 1702	. 1702	. 1707	. 1707	. 1712	. 1702	. 1717		
12	24	**	**	. 2160	. 2187	. 2214	. 2188	. 2208	. 1889	. 1889	. 1894	****	****	. 1899	. 1904	. 1894	. 1909		
12	**	28	**	. 2160	. 2183	. 2206	. 2184	. 2204	. 1928	. 1928	. 1933	****	****	. 1938	. 1943	. 1933	. 1948		

327 Standard Hand Taps for Tapping Unified and American National Coarse and Fine Threads

		THREADS PERINCH		MAjor diavieter					PTTCHDIAMETERLITVITS																		CUT THD.	
				GROUND THREAD CUT THREAD					GROUND THREAD																			
									LILIVIIT		${ }^{\text {BASIC }}$ DIA.	Hl Livit		H2LIVIIT		H3LIVITT		H4LIVITT		HSLIVIT		H6LIVIT		H8LIVITT				
STIEE	$\begin{aligned} & \text { NC } \\ & \text { AND } \\ & \text { UNC } \end{aligned}$	$\begin{gathered} \text { NF } \\ \text { AND } \\ \text { UNF } \end{gathered}$	NS	BASIC	MIIN.	MIEX.	MIIN.	MAX	MIIN.	MAX		MIIN.	MAX	MIIN.	M MAX	MIIN.	MAX	MIIN.	M ${ }^{\text {ax }}$	MIIN.	M ${ }^{\text {ax }}$	MIIN.	M MX	MIIN	MAX	MIIN.	MAX	
1/4	20	**	**	. 2500	. 2533	. 2565	. 2532	. 2557	. 2170	. 2175	2175	. 2175	. 2180	. 2180	2185	. 2185	2190	***********)	**********)	. 2195	. 2200	*************)		*********)	***	\pm	. 2180	2200
1/4	**	28	**	. 2500	. 2523	. 2546	. 2524	. 2549	***	***	. 2268	. 2268	. 2273	. 2273	2278	. 2278	. 2283	. 2283	. 2288	***	***	***		+.**	*************)	****	. 2273	. 2288
5/16	18	**	**	. 3125	. 3161	. 3197	. 3160	. 3185	. 2759	. 2764	. 2764	. 2764	. 2769	. 2769	2774	. 2774	. 2779	**************)	***************)	. 2784	2789	***************)		***	***********)	***	. 2769	. 2288
5/16	*	24	**	. 3125	. 3152	. 3179	. 3153	. 3178		**	. 2854	. 2854	. 2859	. 2859	. 2864	. 2864	. 2869	. 2869	. 2874			****		***	************)	***	. 2859	. 2874
3/8	16	**	**	. 3750	. 3790	. 3831	. 3789	. 3814	. 3339	. 3344	. 344	. 3344	. 3349	. 3349	3354	. 3354	. 3359	+**	****************)	. 3364	.3369	****		*********)	**********)	***********)	. 3349	. 3369
3/8	**	24	**	. 3750	. 3777	. 3804	. 3778	. 3803	****	***	. 3479	. 3479	. 3484	. 3484	. 3489	. 3489	. 3494	. 3494	. 3499	***	***	***		***	****	****	. 3484	. 3499
7/16	14	**	**	. 4375	. 4422	. 4468	. 4419	. 4449	. 3906	. 3911	. 3911	. 3911	. 3916	. 3916	. 3921	. 3921	. 3926	***	***	. 3931	. 3936	************)		*********)	***	****	. 3916	. 3941
7/16	**	20	**	. 4375	. 4408	. 4440	. 4407	. 4437		***	. 4050	. 4050	. 4055	. 4055	. 4060	. 4060	. 4065	***************)	****	. 4070	4075	************)		*************)	***	****	. 4055	. 4075
1/2	13	**	**	. 5000	. 5050	. 5100	. 5047	. 5077	. 4495	. 4500	. 4500	. 4500	. 4505	. 4505	. 4510	. 4510	. 4515	**********)	***	. 4520	4525	***		***********)	***	***	. 4505	. 5430
1/2	**	20	**	. 5000	. 5033	. 5065	. 5032	. 5062	***	***	. 4675	. 4675	. 4680	. 4680	. 4685	. 4685	. 4690	************)	***	. 4695	4700	************)		*************)	**********)	****	. 4680	. 4700
9/16	12	**	**	. 5625	. 5679	. 5733	. 5675	. 5705	***	***	. 5084	. 5084	. 5089	. 5089	. 5094	. 5094	. 5099	***********)	************)	. 5104	. 5109	***********)		***********)	***	***	. 5089	. 5114
9/16	**	18	*	. 5625	. 5661	. 5697	. 5660	. 5690	*****************)	***************)	. 5264	. 5264	. 5269	. 5269	. 5274	. 5274	. 5279	************)	****************)	. 5284	. 5289	************)		***	***	***************)	. 5269	. 5289
5/8	11	**	**	. 6250	. 6309	. 6368	. 6304	. 6334	****	*************)	. 5660	. 5660	. 5665	. 5665	. 5670	. 5670	. 5675	***********)	*************)	. 5680	. 5685	************)		***	**********)	***	5665	. 5690
5/8	**	18	**	. 6250	. 6286	. 6322	. 6285	. 6315	+	**********)	. 5889	. 5889	. 5894	. 5894	5899	. 5899	. 5904	+	****************)	. 5909	. 5914	***************)		***********)	****	***	. 5894	. 5914
11/16	**	**	11	. 6875	. 6934	. 6993	. 6929	. 6996	****	***********)	. 6285	***	***	***	+	. 6295	. 6300	************)	*************)	***********)	***	**********)		***	*********)	***	. 6290	. 6320
11/16	**	**	16	. 6875	. 6915	. 6956	. 6914	. 6954	***	***	. 6469	***********)	***	****	***	. 6479	. 6484	*************)	***	****	**********)	****		***	***	****	. 6474	. 6499
3/4	10	**	**	. 7500	. 7565	. 7630	. 7559	. 7599	****	***	. 6850	. 6850	. 6855	. 6855	6860	. 6860	. 6865	***	***	. 6870	. 6875	*************)		***	****	***	. 6855	. 6885
3/4	**	16	**	. 7500	. 7540	. 7581	. 7539	. 7579	***	***	. 7094	. 7094	. 7099	. 7099	. 7104	. 7104	. 7109	**********)	***	. 7114	. 7119	************)		***	***	***	. 7099	. 7124
$7 / 8$	9	**	**	. 8750	. 8822	. 8894	. 8820	. 8860	***	*************)				. 8033		***	**********)			**************)	***	. 8053		. 8058	***********)	***	. 8038	
718	**	14	**	. 8750	. 8797	. 8843	. 8799	. 8839	***	***	. 8286	. 8286	. 8291	$8291 .$	8296	***	***	$8301 .$. 8306	****	***	. 8311		. 8316	***	***	. 8296	8321
1	8	**	**	1.0000	1.0081	. 10162	1.0078	1.0118	****	*************)	. 9188	. 9188	. 9193	. 9193	9198	****	***	. 9203	. 9208	***********)	***	. 9213		2218	***	***	. 9198	. 9228
1	**	12	**	1.0000	1.0054	1.0108	1.0055	1.0095	****	***	. 9459		***			\pm	***	. 9474	. 9479	***********)	****	***			****	****	. 9469	. 9499
1	**	**	14	1.000	1.0047	1.0093	1.0049	1.0089	***	****************)	. 9536	+	***	. 9541	9546	***********)	*************)	. 9551	. 9556	*************)	***	. 9561		956	****	****	. 9546	. 9571
1-1/8	7	**	**	1.1250	1.1343	1.1436	1.1337	1.1382	***	***********)	1.0322	*************)	**********)	***********)	***********)	**********)	*************)	1.0332	1.0342	************)	**********)	****		***	**********)	***	1.0332	1.0367
1-1/8	**	12	**	1.1250	1.1304	1.1358	1.1305	1.1350	****************)	**************)	1.0709	********)	**********)	+********)	********)	********)	***	1.0719	1.0729	***	**********)	****		***	****	****	1.0719	1.0749
1-1/4	7	*	**	1.2500	1.2593	1.2686	1.2587	1.2632	***	***************)	1.1572	***********)	*********)	***	****	*********)	***	1.1582	1.1592	**************)	**********)	****		**********)	**********)	***	1.15482	1.1617
1-1/4	**	12	**	1.2500	1.2554	1.2608	1.2555	1.2600	***********)	***	1.1959	\ldots	***	***	***	***********)	***	1.1969	1.1979	*************)	***********)	****		***	***	***	1.1969	1.9999
1-3/8	6	**	**	1.3750	1.3859	1.3967	1.3850	1.3895	***	***	1.2667	************)	***	***********)	***	***********)	************)	1.2677	1.2687	****	***********)	***		***	***	***	1.2677	1.2712
1-3/8	**	12	**	1.3750	1.3804	1.3858	1.3805	1.3850	***	$* * *$	1.3209	****************)	**********)	***	***	**************)	*************)	1.3219	1.3229	***	***	**********)		***	****	****	1.3219	1.3249
1-1/2	6	**	**	1.5000	1.5109	1.5217	1.5100	1.5145	***	***	1.3917	***********)	***********)	***********)	****	***	*********)	1.3927	1.3937	+	***********)	**********)		***	***	***	1.3927	
1-1/2	*	12	**	1.500	1.5054	1.5108	1.5055	1.5100	***	****	1.4459	***********)	***	**********)	***********)	***	**************)	1.4469	1.4479	***	***			***	****	***	1.4499	1.4469

1. Quantity \qquad
2. List number \qquad and Catalog number \qquad
3. Inch size \qquad or Metric size \qquad
4. Threads per inch \qquad or Metric pitch \qquad RH or LH^{*} \qquad
5. Thread designation (NC, NPT, etc.) \qquad
6. Thread limit \qquad or Class of fit required \qquad
7. Number of flutes \qquad Straight or spiral* \qquad RH or LH^{\star} \qquad
8. Style of chamfer \qquad and Hardness \qquad
9. Material being tapped \qquad
10. Required thread depth \qquad
11. Depth of hole \qquad
12. Type of hole: Thru \qquad Blind \qquad Interrupted \qquad
13. Number of starts, if multiple thread* \qquad
14. Overall length* \qquad Thread length* \qquad
15. Shank length* \qquad Shank diameter* \qquad and Style* \qquad
16. Depth of flutes* \qquad Degree of hook or rake* \qquad
17. Other* \qquad
18. Describe machine being used \qquad and Coolant \qquad
In addition to the above information, it is helpful when a print or sample of the part being tapped is furnished. *Important information for special taps.

Tap Drill Sizes for
Unified Inch Screw Thread

$\begin{aligned} & \text { TAP } \\ & \text { STEE } \end{aligned}$	$\begin{aligned} & \text { TAP } \\ & \text { DRIIL } \\ & \text { STZE } \end{aligned}$	EQUIV. OF TAPDRILI (INCHES)	frobable PERCENT OF THREAD ENGMT.
0-80	$\begin{gathered} 56 \\ 3 / 64 \\ 1.25 \mathrm{~mm} \end{gathered}$	$\begin{aligned} & .0465 \\ & .0469 \\ & .0492 \end{aligned}$	$\begin{aligned} & 74 \\ & 72 \\ & 57 \end{aligned}$
1-64	$\begin{gathered} 54 \\ 1.45 \mathrm{~mm} \\ 53 \end{gathered}$	$\begin{aligned} & .0550 \\ & .0571 \\ & .0595 \end{aligned}$	$\begin{aligned} & 81 \\ & 71 \\ & 59 \end{aligned}$
1-72	$\begin{gathered} 1.5 \mathrm{~mm} \\ 53 \\ 1.55 \mathrm{~mm} \end{gathered}$	$\begin{aligned} & .0591 \\ & .0595 \\ & .0610 \end{aligned}$	$\begin{aligned} & 69 \\ & 66 \\ & 58 \end{aligned}$
2-56	$\begin{gathered} 51 \\ 1.75 \mathrm{~mm} \\ 50 \end{gathered}$	$\begin{aligned} & .0670 \\ & .0689 \\ & .0700 \end{aligned}$	$\begin{aligned} & 75 \\ & 67 \\ & 62 \end{aligned}$
2-64	$\begin{gathered} 50 \\ 1.8 \mathrm{~mm} \\ 49 \end{gathered}$	$\begin{aligned} & .0700 \\ & .0709 \\ & .0730 \end{aligned}$	$\begin{aligned} & 71 \\ & 67 \\ & 56 \end{aligned}$
3-48	$\begin{gathered} 48 \\ 5 / 64 \\ 46 \end{gathered}$	$\begin{aligned} & .0760 \\ & .0781 \\ & .0810 \end{aligned}$	$\begin{aligned} & 79 \\ & 71 \\ & 60 \end{aligned}$
3-56	$\begin{gathered} 46 \\ 45 \\ 2.1 \mathrm{~mm} \end{gathered}$	$\begin{aligned} & .0810 \\ & .0820 \\ & .0827 \end{aligned}$	$\begin{aligned} & 71 \\ & 66 \\ & 63 \end{aligned}$
4-40	$\begin{gathered} 44 \\ 43 \\ 2.3 \mathrm{~mm} \end{gathered}$	$\begin{aligned} & .0860 \\ & .0890 \\ & .0906 \end{aligned}$	$\begin{aligned} & 75 \\ & 66 \\ & 61 \end{aligned}$
4-48	$\begin{gathered} 2.3 \mathrm{~mm} \\ 42 \\ 2.4 \mathrm{~mm} \end{gathered}$	$\begin{aligned} & .0906 \\ & .0935 \\ & .0945 \end{aligned}$	$\begin{aligned} & 73 \\ & 62 \\ & 58 \end{aligned}$
5-40	$\begin{gathered} 39 \\ 38 \\ 2.6 \mathrm{~mm} \end{gathered}$	$\begin{aligned} & .0995 \\ & .1015 \\ & .1024 \end{aligned}$	$\begin{aligned} & 73 \\ & 67 \\ & 64 \end{aligned}$
5-44	$\begin{gathered} 38 \\ 2.6 \mathrm{~mm} \\ 37 \end{gathered}$	$\begin{aligned} & .1015 \\ & .1024 \\ & .1040 \\ & \hline \end{aligned}$	$\begin{aligned} & 74 \\ & 71 \\ & 65 \\ & \hline \end{aligned}$
6-32	$\begin{gathered} 36 \\ 7 / 64 \\ 34 \end{gathered}$	$\begin{aligned} & .1065 \\ & .1095 \\ & .1110 \end{aligned}$	$\begin{aligned} & 73 \\ & 66 \\ & 62 \end{aligned}$
6-40	$\begin{gathered} 33 \\ 2.9 \mathrm{~mm} \\ 32 \end{gathered}$	$\begin{aligned} & .1130 \\ & .1142 \\ & .1160 \end{aligned}$	$\begin{aligned} & 72 \\ & 68 \\ & 62 \end{aligned}$
8-32	$\begin{aligned} & \hline 3.4 \mathrm{~mm} \\ & 29 \\ & 3.5 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & .1339 \\ & .1360 \\ & .1378 \end{aligned}$	$\begin{aligned} & 70 \\ & 64 \\ & 60 \end{aligned}$
8-36	$\begin{gathered} 29 \\ 3.5 \mathrm{~mm} \\ 9 / 64 \end{gathered}$	$\begin{aligned} & .1360 \\ & .1378 \\ & .1406 \end{aligned}$	$\begin{aligned} & 72 \\ & 67 \\ & 60 \end{aligned}$
10-24	$\begin{gathered} 3.7 \mathrm{~mm} \\ 25 \\ 24 \end{gathered}$	$\begin{aligned} & .1457 \\ & .1495 \\ & .1520 \end{aligned}$	$\begin{aligned} & 78 \\ & 71 \\ & 67 \end{aligned}$

$\begin{gathered} \text { TAPP } \\ \text { STZE } \end{gathered}$			$\begin{gathered} \text { PROBABLE } \\ \text { PERENT } \\ \text { OF } \\ \text { THREAD } \end{gathered}$
		decimal	
		EQUV. OF	
		TAPDRILI	
	STZE	(INCHES)	
10-32	5/32	. 1563	78
	22	. 1570	77
	21	. 1590	72
12-24	11/64	. 1719	78
	17	. 1730	76
	16	. 1770	68
12-28	16	. 1770	80
	15	. 1800	73
	14	. 1820	69
1/4-20	9	. 1960	80
	7	. 2010	72
	13/64	. 2031	69
1/4-28	5.4 mm	. 2126	76
	3	. 2130	75
	5.5 mm	. 2165	67
5/16-18	F	. 2570	74
	6.6 mm	. 2598	70
	G	. 2610	68
5/16-24	H	. 2660	82
	6.8 mm	. 2677	78
	I	. 2720	70
3/8-16	7.8 mm	. 3071	81
	5/16	. 3125	74
	0	. 3160	69
3/8-24	8.4 mm	. 3307	77
	Q	. 3320	75
	8.5 mm	. 3346	70
7/16-14	23/64	. 3594	81
	9.3 mm	. 3661	74
	9.4 mm	. 3701	70
7/16-20	W	. 3860	75
	25/64	. 3906	68
	10.0 mm	. 3937	63
1/2-13	10.5 mm	. 4134	84
	27/64	. 4219	75
	11.0 mm	. 4331	64
1/2-20	11.4 mm	. 4488	74
	29/64	. 4531	67
	11.6 mm	. 4567	62
9/16-12	15/32	. 4688	84
	31/64	. 4844	69
	12.5 mm	. 4921	62
9/16-18	1/2	. 5000	82
	13.0 mm	. 5118	66
	33/64	. 5156	60
5/8-11	17/32	. 5313	76
	13.7 mm	. 5394	70
	35/64	. 5469	63

The percent of thread engagement in this table is based upon the probable hole size the drill will cut.The actual hole size may vary as a result of the condition of the drill, machine and material being drilled. The actual percent of thread engagement may be determined by pin gaging the hole.

Tap Drill Sizes for
Screw Thread Inserts

$\begin{aligned} & \text { TAP } \\ & \text { STZEE } \end{aligned}$	ALUVIINUM				STEEL, PLASTIC, MAA GNESTUM			
	$\begin{gathered} \text { TAP } \\ \text { DRILI } \\ \text { STZE } \end{gathered}$	dectivil EQUIV. OF TAPDRIL(INCHES)	MINORDIA.IVNITIS(AFTER TAPPING)		$\begin{gathered} \text { TAP } \\ \text { DRTIL } \\ \text { STZE } \end{gathered}$	DECIMIAL EQUIV. OF TAPDRILI(INCHES)	$\begin{gathered} \text { MIINORDIA. } \\ \text { IIVIIIS } \\ \text { (AFTER TAPPING) } \end{gathered}$	
			MIIN.	MAX			MIIN.	MAX.
4-40	\#31	. 1200	. 116	. 121	\#31	. 1200	. 119	. 124
5-40	\#30	. 1285	. 128	. 133	\#29	. 1360	. 131	. 136
6-32	\#25	. 1495	. 144	. 150	\#25	. 1495	. 148	. 154
6-40	\#26	. 1470	. 144	. 149	\#25	. 1495	. 148	. 153
8-32	\#17	. 1730	. 170	. 176	\#16	. 1770	. 174	. 180
10-24	13/64	. 2031	. 199	. 205	\#5	. 2055	. 203	. 209
10-32	\#7	. 2010	. 196	. 202	13/64	. 2031	. 200	. 206
12-24	\#2	. 2210	. 221	. 227	\#1	. 2280	. 225	. 231
1/4-20	17/64	. 2656	. 261	. 267	17/64	. 2656	. 265	. 271
1/4-28	G	. 2610	. 257	. 264	17/64	. 2656	. 261	. 268
5/16-18	Q	. 3320	. 328	. 334	Q	. 3320	. 331	. 337
5/16-24	21/64	. 3281	. 323	. 330	Q	. 3320	. 327	. 334
3/8-16	X	. 3970	. 390	. 398	X	. 3970	. 396	. 402
3/8-24	25/64	. 3906	. 385	. 392	25/64	. 3906	. 389	. 396
7/16-14	29/64	. 4531	. 453	. 463	15/32	. 4687	. 461	. 471
7/16-20	29/64	. 4531	. 450	. 458	29/64	. 4531	. 453	. 461
1/2-13	33/64	. 5156	. 515	. 525	17/32	. 5312	. 523	. 533
1/2-20	33/64	. 5156	. 513	. 522	33/64	. 5156	. 515	. 524

NOTE: Tap Drills listed above should produce holes within the required limits. However, variations in material and equipment may require the use of drills which are larger or smaller than those recommended.
NOTE: Minor Diameter Limits for steel, plastic, and magnesium are such as to allow for material contraction and provide maximum tap life

Tap Drill Sizes for
Unified Inch Screw Thread

$\begin{aligned} & \text { TAP } \\ & \text { STEE } \end{aligned}$	$\begin{aligned} & \text { TAP } \\ & \text { DRIIL } \\ & \text { STZE } \end{aligned}$	EQUIV. OF TAPDRILI (INCHES)	frobable PERCENT OF THREAD ENGMT.
0-80	$\begin{gathered} 56 \\ 3 / 64 \\ 1.25 \mathrm{~mm} \end{gathered}$	$\begin{aligned} & .0465 \\ & .0469 \\ & .0492 \end{aligned}$	$\begin{aligned} & 74 \\ & 72 \\ & 57 \end{aligned}$
1-64	$\begin{gathered} 54 \\ 1.45 \mathrm{~mm} \\ 53 \end{gathered}$	$\begin{aligned} & .0550 \\ & .0571 \\ & .0595 \end{aligned}$	$\begin{aligned} & 81 \\ & 71 \\ & 59 \end{aligned}$
1-72	$\begin{gathered} 1.5 \mathrm{~mm} \\ 53 \\ 1.55 \mathrm{~mm} \end{gathered}$	$\begin{aligned} & .0591 \\ & .0595 \\ & .0610 \end{aligned}$	$\begin{aligned} & 69 \\ & 66 \\ & 58 \end{aligned}$
2-56	$\begin{gathered} 51 \\ 1.75 \mathrm{~mm} \\ 50 \end{gathered}$	$\begin{aligned} & .0670 \\ & .0689 \\ & .0700 \end{aligned}$	$\begin{aligned} & 75 \\ & 67 \\ & 62 \end{aligned}$
2-64	$\begin{gathered} 50 \\ 1.8 \mathrm{~mm} \\ 49 \end{gathered}$	$\begin{aligned} & .0700 \\ & .0709 \\ & .0730 \end{aligned}$	$\begin{aligned} & 71 \\ & 67 \\ & 56 \end{aligned}$
3-48	$\begin{gathered} 48 \\ 5 / 64 \\ 46 \end{gathered}$	$\begin{aligned} & .0760 \\ & .0781 \\ & .0810 \end{aligned}$	$\begin{aligned} & 79 \\ & 71 \\ & 60 \end{aligned}$
3-56	$\begin{gathered} 46 \\ 45 \\ 2.1 \mathrm{~mm} \end{gathered}$	$\begin{aligned} & .0810 \\ & .0820 \\ & .0827 \end{aligned}$	$\begin{aligned} & 71 \\ & 66 \\ & 63 \end{aligned}$
4-40	$\begin{gathered} 44 \\ 43 \\ 2.3 \mathrm{~mm} \end{gathered}$	$\begin{aligned} & .0860 \\ & .0890 \\ & .0906 \end{aligned}$	$\begin{aligned} & 75 \\ & 66 \\ & 61 \end{aligned}$
4-48	$\begin{gathered} 2.3 \mathrm{~mm} \\ 42 \\ 2.4 \mathrm{~mm} \end{gathered}$	$\begin{aligned} & .0906 \\ & .0935 \\ & .0945 \end{aligned}$	$\begin{aligned} & 73 \\ & 62 \\ & 58 \end{aligned}$
5-40	$\begin{gathered} 39 \\ 38 \\ 2.6 \mathrm{~mm} \end{gathered}$	$\begin{aligned} & .0995 \\ & .1015 \\ & .1024 \end{aligned}$	$\begin{aligned} & 73 \\ & 67 \\ & 64 \end{aligned}$
5-44	$\begin{gathered} 38 \\ 2.6 \mathrm{~mm} \\ 37 \end{gathered}$	$\begin{aligned} & .1015 \\ & .1024 \\ & .1040 \\ & \hline \end{aligned}$	$\begin{aligned} & 74 \\ & 71 \\ & 65 \\ & \hline \end{aligned}$
6-32	$\begin{gathered} 36 \\ 7 / 64 \\ 34 \end{gathered}$	$\begin{aligned} & .1065 \\ & .1095 \\ & .1110 \end{aligned}$	$\begin{aligned} & 73 \\ & 66 \\ & 62 \end{aligned}$
6-40	$\begin{gathered} 33 \\ 2.9 \mathrm{~mm} \\ 32 \end{gathered}$	$\begin{aligned} & .1130 \\ & .1142 \\ & .1160 \end{aligned}$	$\begin{aligned} & 72 \\ & 68 \\ & 62 \end{aligned}$
8-32	$\begin{aligned} & \hline 3.4 \mathrm{~mm} \\ & 29 \\ & 3.5 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & .1339 \\ & .1360 \\ & .1378 \end{aligned}$	$\begin{aligned} & 70 \\ & 64 \\ & 60 \end{aligned}$
8-36	$\begin{gathered} 29 \\ 3.5 \mathrm{~mm} \\ 9 / 64 \end{gathered}$	$\begin{aligned} & .1360 \\ & .1378 \\ & .1406 \end{aligned}$	$\begin{aligned} & 72 \\ & 67 \\ & 60 \end{aligned}$
10-24	$\begin{gathered} 3.7 \mathrm{~mm} \\ 25 \\ 24 \end{gathered}$	$\begin{aligned} & .1457 \\ & .1495 \\ & .1520 \end{aligned}$	$\begin{aligned} & 78 \\ & 71 \\ & 67 \end{aligned}$

$\begin{gathered} \text { TAPP } \\ \text { STZE } \end{gathered}$			$\begin{gathered} \text { PROBABLE } \\ \text { PERENT } \\ \text { OF } \\ \text { THREAD } \end{gathered}$
		decimal	
		EQUV. OF	
		TAPDRILI	
	STZE	(INCHES)	
10-32	5/32	. 1563	78
	22	. 1570	77
	21	. 1590	72
12-24	11/64	. 1719	78
	17	. 1730	76
	16	. 1770	68
12-28	16	. 1770	80
	15	. 1800	73
	14	. 1820	69
1/4-20	9	. 1960	80
	7	. 2010	72
	13/64	. 2031	69
1/4-28	5.4 mm	. 2126	76
	3	. 2130	75
	5.5 mm	. 2165	67
5/16-18	F	. 2570	74
	6.6 mm	. 2598	70
	G	. 2610	68
5/16-24	H	. 2660	82
	6.8 mm	. 2677	78
	I	. 2720	70
3/8-16	7.8 mm	. 3071	81
	5/16	. 3125	74
	0	. 3160	69
3/8-24	8.4 mm	. 3307	77
	Q	. 3320	75
	8.5 mm	. 3346	70
7/16-14	23/64	. 3594	81
	9.3 mm	. 3661	74
	9.4 mm	. 3701	70
7/16-20	W	. 3860	75
	25/64	. 3906	68
	10.0 mm	. 3937	63
1/2-13	10.5 mm	. 4134	84
	27/64	. 4219	75
	11.0 mm	. 4331	64
1/2-20	11.4 mm	. 4488	74
	29/64	. 4531	67
	11.6 mm	. 4567	62
9/16-12	15/32	. 4688	84
	31/64	. 4844	69
	12.5 mm	. 4921	62
9/16-18	1/2	. 5000	82
	13.0 mm	. 5118	66
	33/64	. 5156	60
5/8-11	17/32	. 5313	76
	13.7 mm	. 5394	70
	35/64	. 5469	63

The percent of thread engagement in this table is based upon the probable hole size the drill will cut.The actual hole size may vary as a result of the condition of the drill, machine and material being drilled. The actual percent of thread engagement may be determined by pin gaging the hole.

Tap Drill Sizes for
Screw Thread Inserts

$\begin{aligned} & \text { TAP } \\ & \text { STZEE } \end{aligned}$	ALUVIINUM				STEEL, PLASTIC, MAA GNESTUM			
	$\begin{gathered} \text { TAP } \\ \text { DRILI } \\ \text { STZE } \end{gathered}$	dectivil EQUIV. OF TAPDRIL(INCHES)	MINORDIA.IVNITIS(AFTER TAPPING)		$\begin{gathered} \text { TAP } \\ \text { DRTIL } \\ \text { STZE } \end{gathered}$	DECIMIAL EQUIV. OF TAPDRILI(INCHES)	$\begin{gathered} \text { MIINORDIA. } \\ \text { IIVIIIS } \\ \text { (AFTER TAPPING) } \end{gathered}$	
			MIIN.	MAX			MIIN.	MAX.
4-40	\#31	. 1200	. 116	. 121	\#31	. 1200	. 119	. 124
5-40	\#30	. 1285	. 128	. 133	\#29	. 1360	. 131	. 136
6-32	\#25	. 1495	. 144	. 150	\#25	. 1495	. 148	. 154
6-40	\#26	. 1470	. 144	. 149	\#25	. 1495	. 148	. 153
8-32	\#17	. 1730	. 170	. 176	\#16	. 1770	. 174	. 180
10-24	13/64	. 2031	. 199	. 205	\#5	. 2055	. 203	. 209
10-32	\#7	. 2010	. 196	. 202	13/64	. 2031	. 200	. 206
12-24	\#2	. 2210	. 221	. 227	\#1	. 2280	. 225	. 231
1/4-20	17/64	. 2656	. 261	. 267	17/64	. 2656	. 265	. 271
1/4-28	G	. 2610	. 257	. 264	17/64	. 2656	. 261	. 268
5/16-18	Q	. 3320	. 328	. 334	Q	. 3320	. 331	. 337
5/16-24	21/64	. 3281	. 323	. 330	Q	. 3320	. 327	. 334
3/8-16	X	. 3970	. 390	. 398	X	. 3970	. 396	. 402
3/8-24	25/64	. 3906	. 385	. 392	25/64	. 3906	. 389	. 396
7/16-14	29/64	. 4531	. 453	. 463	15/32	. 4687	. 461	. 471
7/16-20	29/64	. 4531	. 450	. 458	29/64	. 4531	. 453	. 461
1/2-13	33/64	. 5156	. 515	. 525	17/32	. 5312	. 523	. 533
1/2-20	33/64	. 5156	. 513	. 522	33/64	. 5156	. 515	. 524

NOTE: Tap Drills listed above should produce holes within the required limits. However, variations in material and equipment may require the use of drills which are larger or smaller than those recommended.
NOTE: Minor Diameter Limits for steel, plastic, and magnesium are such as to allow for material contraction and provide maximum tap life

Tap Drill Sizes for Metric

Screw Threads

$\begin{aligned} & \text { TAP } \\ & \text { STZE } \end{aligned}$	$\begin{gathered} \text { TAP } \\ \text { DRIL } \\ \text { STZE } \end{gathered}$	DECIVIAL EQUIV. OF (INCHES)	PROBABLE PERCENT OF THREAD ENGMTT.
M1.6x.35	1.22 mm	. 0480	75
	1.25 mm	. 0492	69
	1.28 mm	. 0504	62
M2x. 4	1.57 mm	. 0618	75
	1/16	. 0625	72
	52	. 0635	67
M2.5x. 45	2.02 mm	. 0795	75
	45	. 0820	64
	2.11 mm	. 0831	60
M3x. 5	40	. 0980	72
	39	. 0995	66
	38	. 1015	58
M3.5x. 6	33	. 1130	75
	32	. 1160	65
	3.0 mm	. 1181	58
M4x. 7	30	. 1285	76
	3.3 mm	. 1299	72
	3.4 mm	. 1339	61
M4.5x. 75	26	. 1470	74
	25	. 1495	67
	24	. 1520	61
M5x. 8	19	. 1660	71
	18	. 1695	62
	11/64	. 1719	56
M6x1	9	. 1960	75
	8	. 1990	69
	7	. 2010	65
M7x1	15/64	. 2344	76
	B	. 2380	69
	C	. 2420	61

			Probable
		dectival	PERCENT
	TAP	EQUVV. OF	OF
TAP	DRILI	TAPDRILI	thread
STZE	STzE	(INCHES)	Englit.
M8x1.25	17/64	. 2656	74
	\|	. 2720	64
	7.0 mm	. 2756	58
M10x1.25	11/32	. 3438	74
	S	. 3480	67
	9.0 mm	. 3543	57
M10x1.5	Q	. 3320	77
	R	. 3390	68
	11/32	. 3438	62
M12x1.25	27/64	. 4219	74
	10.9 mm	. 4291	63
	11.0 mm	. 4331	57
M12x1.75	Y	. 4040	73
	13/32	. 4062	71
	Z	. 4130	63
M14x1.5	12.5 mm	. 4921	73
	1/2	. 5000	62
	12.8 mm	. 5039	57
M14x2	15/32	. 4688	78
	12.1 mm	. 4764	70
	31/64	. 4844	62
M16x1.5	14.5 mm	. 5709	72
	37/64	. 5781	63
	14.8 mm	. 5827	57
M16x2	35/64	. 5469	78
	14.1 mm	. 5551	70
	9/16	. 5625	62
M18x1.5	16.5 mm	. 6496	72
	16.6 mm	. 6535	67
	21/32	. 6563	63

			Probabie
		dectival	Percent
	TAP	EQUIV. OF	OF
TAP	DRILI	TAPDRILI	THREAD
SIZE	STZE	(INCHES)	Engivi.
M18x2.5	39/64	. 6094	75
	15.7 mm	. 6181	68
	5/8	. 6250	63
M20x1.5	18.5 mm	. 7283	72
	47/64	. 7344	64
	18.7mm	. 7362	61
M20x2.5	11/16	. 6875	75
	45/64	. 7031	63
	18.0 mm	. 7087	58
M24x2	22.0 mm	. 8661	72
	7/8	. 875	64
	22.4 mm	. 8819	57
M24x3	53/64	. 8281	73
	27/32	. 8438	63
	21.5 mm	. 8465	61
M27x3	24.0 mm	. 9449	74
	61/64	. 9531	68
	31/32	. 9688	58
M30x3.5	1-3/64	1.0469	72
	1-1/16	1.0625	63
	1-5/64	1.0781	54
M 33×3.5	29.5 mm	1.1614	74
	1-11/64	1.1719	68
	1-3/16	1.1875	59
M36x4	1-17/64	1.2656	71
	1-9/32	1.2813	63
	33.0 mm	1.2992	55

The percent of thread engagement in this table is based upon the probable hole size the drill will cut.The actual hole size may vary as a result of the condition of the drill, machine and material being drilled. The actual percent of thread engagement may be determined by pin gaging the hole.

Probabie			
		DECTIVAL	PROBABLE PERCENT
	TAP	EQUIV. OF	OF
TAP	DRILIL	TAPDRILI	thread
STIE	STZE	(INCHES)	encilt.
0-80	1.33mm	. 0524	73
	1.35 mm	. 0531	63
	1.37 mm	. 0539	54
1-64	52	. 0635	75
	1.64 mm	. 0646	65
	1.67 mm	. 0657	54
1-72	1.64mm	. 0646	73
	1.66 mm	. 0654	65
	1.68 mm	. 0661	57
2-56	1.92 mm	. 0756	73
	1.94 mm	. 0764	66
	1.97 mm	. 0776	57
2-64	1.95mm	. 0768	72
	1.97 mm	. 0776	65
	47	. 0785	55
3-48	2.2 mm	. 0866	76
	2.24 mm	. 0882	65
	43	. 0890	59
3-56	2.24 mm	. 0882	76
	43	. 0890	69
	2.3 mm	. 0906	56
4-40	40	. 0980	72
	39	. 0995	64
	2.57 mm	. 1012	54
4-48	39	. 0995	76
	2.57 mm	. 1012	65
	2.6 mm	. 1024	56
5-40	2.8 mm	. 1102	77
	2.85 mm	. 1122	65
	33	. 1130	60
5-44	2.85 mm	. 1122	72
	33	. 1130	66
	2.91 mm	. 1146	57
6-32	3.05 mm	. 1201	76
	3.1 mm	. 1220	67
	3.16 mm	. 1244	56
6-40	3.15 mm	. 1240	72
	3.18 mm	. 1252	65
	3.23 mm	. 1272	54

$\begin{aligned} & \text { TAP } \\ & \text { STZE } \end{aligned}$	$\begin{gathered} \text { TAP } \\ \text { DRIIL } \\ \text { STZE } \end{gathered}$	DECIIVAL EQUIV. OF TAPDRILI (INCHES)	PROBABLE PERCENT OF thread ENGMTT.
8-32	3.7 mm	. 1457	78
	3.75 mm	. 1476	69
	25	. 1495	59
8-36	3.75 mm	. 1476	77
	25	. 1495	67
	3.85 mm	. 1516	56
10-24	19	. 1660	78
	18	. 1695	65
	11/64	. 1719	57
10-32	11/64	. 1719	76
	4.42 mm	. 1740	66
	4.45 mm	. 1752	61
12-24	4.9 mm	. 1929	75
	4.95 mm	. 1949	68
	5.0 mm	. 1969	61
12-28	9	. 1960	74
	5.05 mm	. 1988	63
	5.1 mm	. 2008	55
1/4-20	5.65 mm	. 2224	75
	5.7 mm	. 2244	69
	1	. 2280	58
1/4-28	5.85 mm	. 2303	73
	5.88 mm	. 2315	68
	15/64	. 2344	55
5/16-18	9/32	. 2813	77
	7.25 mm	. 2854	66
	7.3 mm	. 2874	60
5/16-24	7.35 mm	. 2894	74
	7.4 mm	. 2913	67
	7.45 mm	. 2933	60
3/8-16	8.65 mm	. 3406	75
	8.75 mm	. 3445	66
	S	. 3480	57
3/8-24	8.9 mm	. 3504	78
	9.0 mm	. 3543	64
	9.05 mm	. 3563	57
7/16-14	X	. 3970	78
	10.2 mm	. 4016	69
	13/32	. 4063	59

			probable
		decimil	PERCENT
	TAP	EQUIV. OF	OF
TAP	DRILI	TAPDRIL	thread
SIZE	Stze	(INCHES)	encmit.
7/16-20	10.4 mm	. 4094	75
	Z	. 4130	63
	10.54 mm	. 4150	58
1/2-13	11.6 mm	. 4567	77
	11.75 mm	. 4626	66
	11.8 mm	. 4646	62
1/2-20	12.0 mm	. 4724	73
	12.1 mm	. 4764	61
	12.15 mm	. 4783	55
9/16-12	33/64	. 5156	77
	13.25 mm	. 5217	67
	13.4 mm	. 5276	56
9/16-18	17/32	. 5313	74
	13.6 mm	. 5354	64
5/8-11	14.6 mm	. 5748	76
	14.75 mm	. 5807	66
	14.85 mm	. 5846	60
5/8-18	19/32	. 5938	73
	15.2 mm	. 5984	62
	15.25 mm	. 6004	56
3/4-10	17.7 mm	. 6969	73
	17.8 mm	. 7008	67
	17.9 mm	. 7047	61
3/4-16	18.2 mm	. 7165	70
	18.3 mm	. 7205	61
7/8-9	13/16	. 8125	77
	20.8 mm	. 8189	69
	21.0 mm	. 8268	59
7/8-14	21.25 mm	. 8366	71
	21.4 mm	. 8425	58
1-8	15/16	. 9375	68
	24.0 mm	. 9449	60
1-12	61/64	. 9531	74
	24.5 mm	. 9646	55

The percent of thread engagement in this table is based upon the probable hole size the drill will cut.The actual hole size may vary as a result of the condition of the drill, machine and material being drilled. The actual percent of thread engagement may be determined by pin gaging the hole.

Forming Tap Drill Sizes for
Metric Screw Threads

$\begin{aligned} & \text { TAP } \\ & \text { SIZE } \end{aligned}$	$\begin{aligned} & \text { TAP } \\ & \text { DRIIL } \\ & \text { STZE } \end{aligned}$	DECIVAL EQUIV. OF TAPDRIL (INCHES)	PROBABLE PERCENT OF THREAD ENGMTT.
M2x. 35	1.39 mm	. 0547	72
	1.41 mm	. 0555	64
	1.43 mm	. 0563	55
M2x. 4	1.76 mm	. 0693	74
	50	. 0700	67
	1.81 mm	. 0713	55
M3x. 45	2.24 mm	. 0882	71
	43	. 0890	65
	2.29 mm	. 0902	55
M3x. 5	2.7 mm	. 1063	75
	2.75 mm	. 1083	61
M4x. 6	3.15 mm	. 1240	75
	3.18 mm	. 1252	67
	3.22 mm	. 1268	57
M4x. 7	3.6 mm	. 1417	74
	3.65 mm	. 1437	64
	3.68 mm	. 1449	57
M5x. 75	4.06 mm	. 1598	77
	4.1 mm	. 1614	69
	4.15 mm	. 1634	59
M5x. 8	4.55 mm	. 1791	73
	4.6 mm	. 1811	64
	4.65 mm	. 1831	55
M6x1	5.45 mm	. 2146	73
	5.5 mm	. 2165	66
	7/32	. 2188	57

			Probable
		decinial	PERCENT
	TAP	EQUIV. OF	OF
TAP	DRILI	TAPDRIL	thread
STZE	STZE	(INCHES)	encivi.
M7x1	6.45 mm	. 2539	72
	6.5 mm	. 2559	65
	6.55 mm	. 2579	58
M8x1.25	7.3 mm	. 2874	75
	L	. 2900	67
	7.45 mm	. 2933	57
M10x1.25	9.3 mm	. 3661	74
	U	. 3680	69
	9.45 mm	. 3720	56
M10x1.5	9.15 mm	. 3602	77
	9.25 mm	. 3642	67
	9.35 mm	. 3681	57
M12x1.25	11.3 mm	. 4449	73
	11.35 mm	. 4469	67
	11.4 mm	. 4488	61
M12x1.75	11.0 mm	. 4331	78
	7/16	. 4375	68
	11.25 mm	. 4429	57
M14x1.5	13.2 mm	. 5197	70
	13.25 mm	. 5217	65
	13.3 mm	. 5236	60
M14x2	12.9 mm	. 5079	75
	13.0 mm	. 5118	67
	33/64	. 5156	60

			frobable
	TAP	DECTMAL EOUIV. OF	PERCENT
TAP	DRIIL	TAPDRILI	thread
STZE	STZE	(INCHES)	Engilt.
M16x1.5	15.1 mm	. 5945	79
	15.2 mm	. 5984	69
	15.3 mm	. 6024	60
M16x2	14.85 mm	. 5846	78
	15.0 mm	. 5906	67
	19/32	. 5938	61
M18x1.5	17.2 mm	. 6772	69
	17.3 mm	. 6811	59
M18x2.5	21/32	. 6563	73
	16.8 mm	. 6614	65
	16.9 mm	. 6654	59
M20x1.5	19.1 mm	. 7520	78
	19.2 mm	. 7559	68
	19.3 mm	. 7598	58
M20x2.5	18.6 mm	. 7323	76
	18.75 mm	. 7382	67
	18.9 mm	. 7441	58
M24x1.5	23.2 mm	. 9134	66
	23.25 mm	. 9154	61
M24x3	22.4 mm	. 8819	73
	22.5 mm	. 8858	68
	57/64	. 8906	62

The percent of thread engagement in this table is based upon the probable hole size the drill will cut.The actual hole size may vary as a result of the condition of the drill, machine and material being drilled. The actual percent of thread engagement may be determined by pin gaging the hole.

MAATERIAL		Tapping				Information
		TAPPING SPEEED FPM				SUFACE
		THREADS PER INCH				TREATIIENT
		7 OR LESS	8-15	16-24	OVER 24	OR COATING
Zinc \& Magnesium Alloys -	Wrought \& Cast	65	77	88	100	04, 88, 89
Aluminum Alloys -	Wrought	50	67	83	100	04, 88, 89
	Cast	50	67	83	100	04, 88, 89, 90
Brass		50	60	70	80	02, 04, 82, 88
Cast Iron-	Gray, As Cast	25	28	32	35	23, 84, 89
Copper		25	28	32	35	02, 04, 82, 88
Iron -	Ductile \& Malleable	20	27	33	40	03, 23, 84, 88, 89, 90
Bronze		20	25	30	35	02, 04, 82, 88
Carbon Steel -	Low Carbon, 1029, Also Leaded	20	30	40	50	03, 23, 84, 88, 89, 90
	Medium Carbon, 1030-1055	20	23	27	30	03, 23, 84, 88, 89, 90
Alloy Steel -	4 xxx Series	15	18	22	25	03, 23, 84, 88, 89, 90
Stainless Steel -	Free Machining, Cold Drawn	20	27	33	40	03, 23, 84, 88, 89, 90
	300 Series, Cold Drawn	15	18	22	25	03, 23, 84, 88, 89, 90
	Precipitation Hardening	8	12	16	20	03, 23, 84, 88, 89, 90
Titanium Alloys -	Under Rc30	15	18	22	25	04, 23, 82, 84, 90
	Rc 30-40	5	8	12	15	04, 23, 82, 84, 90
Tool \& Die Steels -	S, L, A, O \& D Series	10	13	17	20	03, 23, 84, 88, 89, 90
High Temperature Alloys -	Monel, Nickel	8	12	16	20	23, 82, 84, 88, 89, 90
	Inconel	5	7	8	10	$23,82,84,88,89,90$

Tapping speeds shown are approximate and may vary for each application.

CODE

NO.	DESCRIPTION	CHARACTERISTICS	
02	Nitride Approx. Hardness, 1200 HV, Rc 72	Consists of a thin, hardened case .0005 to .002 deep on the surface of the tool to resist abrasion and reduce galling.	
22	Double Nitride Approx. Hardness, 1400 HV, Rc 74	Consists of a higher hardened case on the surface of the tool to resist abrasion and reduce galling. Prone to brittleness and chipping.	
03	Steam Oxide Approx. Hardness, No change from Base Material	Consists of a layer of ferrous oxide on the surface of the tool which has good lubricant retaining properties. Improves toughness by relieving grinding stresses.	
23	Nitride and Oxide Approx. Hardness, 1200 HV, Rc 72	A combination of two treatments which produces the favorable characteristics of both, resistance to abrasion and galling.	
04	Chrome Plate Cr , Hard Chromium Approx. Hardness, 1200 HV, Rc 72	Consists of a very thin layer of hard chromium on the surface of the tool which reduces friction and prevents galling.	
88	Titanium Nitride TiN, PVD Process Approx. Hardness, $2400 \mathrm{HV},{ }^{* R C} 86$	Consists of a very hard coating on the surface of the tool which has outstanding wear resistance, reduces friction and prevents galling.	
89	Titanium Carbonitride TiCN, PVD Process Approx. Hardness, 3000 HV , *Rc 94	Consists of an extremely hard coating on the surface of the tool which has outstanding wear resistance, reduces friction and prevents galling.	
90	Chromium Carbide CrC, PVD Process Approx. Hardness, 1850 HV, Rc 80	Consists of a very hard coating on the surface of the tool which has excellent wear resistance, reduces friction and prevents galling.	
82	Chromium Nitride CrN, PVD Process, Approx. Hardness, 1750 HV, Rc 79	Consists of a very hard coating on the surface of the tool which has excellent wear resistance, reduces friction and prevents galling.	
84	Titanium Aluminum Nitride - TiAIN, PVD Process Approx. Hardness, 2600 HV, *RC 89	Consists of an extremely hard coating on the surface of the tool which has outstanding wear resistance, reduces friction and prevents galling. Forms an Aluminum Oxide layer at high speeds and elevated temperatures.	

* Theoretical values for approximate comparison to the Vickers Hardness values.

NOTE: While most surface treatments and coatings have anti-galling properties, they may cause galling in materials composed of or containing identical base elements. Also, Steam Oxide and some coatings may cause galling in soft materials such as Aluminum.

Surface Treatments and Coatings APPLICATION
Can be used in most Abrasive Materials, both Ferrous and Non-Ferrous. Not recommended where chipping may be a problem.
Can be used on Non-Metallic, Highly Abrasive Materials such as Bakelite, Plastics, Hard Rubber and Fibers.

Can be used in Low Carbon, Stainless and Free Machining Steels. Not recommended for use in soft, Non-Ferrous Materials where it may cause galling.
Can be used in Iron and Cast Iron, Stainless and High Tensile Steels. Not recommended for use in Non-Ferrous Materials where it may cause galling.
Can be used on most Ferrous, Non-Ferrous and Non-Metallic Materials. While unlikely, it may cause galling in High Chromium Stainless Steels.

Can be used on most Ferrous, Non-Ferrous and Non-Metallic Materials. While unlikely, it may cause galling in Titanium and Titanium Alloys.

Can be used on most Ferrous, Non-Ferrous and Abrasive Materials. Very effective at higher Speeds. While unlikely, it may cause galling in Titanium and Titanium Alloys.

Can be used on Titanium, Titanium Alloys, Exotic Materials and Die Cast Aluminum. Very effective at higher speeds and in many tapping applications. Under certain conditions it may cause galling in Wrought Aluminum. Can be used on Titanium, Titanium Alloys, Nickel-Base Alloys and Copper Alloys. Very effective at higher speeds and in many tapping applications. Under certain conditions it may cause galling in Wrought Aluminum.
Can be used on Titanium, Titanium Alloys, Nickel-Base Alloys, Stainless Steel and Cast Iron. Very effective at higher speeds and in some tapping applications. Not recommended for Wrought Aluminum, Copper and Brass.

Standard Marking Symbols for Taps

CODE	DEscription
NC	American National Coarse Thread Series
UNC	Unified Coarse Thread Series
NF	American National Fine Thread Series
UNF	Unified Fine Thread Series
NEF	American National Extra-Fine Thread Series
UNEF	Unified Extra-Fine Thread Series
N	American National 8, 12 and 16 Thread Series (8N, 12N, 16N)
UN	Unified Constant-Pitch Thread Series
NS	American National Thread - Special
UNS	Unified Thread - Special
UNM	Unified Miniature Thread Series
NR	American National Thread with a .018P to .144P Controlled Root Radius
UNR	Unified Constant-Pitch Thread Series with a .108P to .144P Controlled Root Radius
UNRC	Unified Coarse Thread Series with a .108P to .144P Controlled Root Radius
UNRF	Unified Fine Thread Series with a .108P to .144P Controlled Root Radius
*UNJ	Unified Thread Series with a .15011P to .18042P Controlled Root Radius
*UNJC	Unified Coarse Thread Series with a .15011P to .18042P Controlled Root Radius
*UNJF	Unified Fine Thread Series with a .15011P to .18042P Controlled Root Radius
NH	American National Hose Coupling and Firehose Coupling Threads
NPS	American Standard Straight Pipe Thread
NPSC	American Standard Straight Pipe Thread in Pipe Couplings (Mark NPS)
NPSF	Dryseal American Standard Pipe Thread (Fuel)
NPSH	American Standard Straight Pipe Thread for Hose Couplings and Nipples
NPSI	American Standard Dryseal Intermediate Straight Pipe Thread
NPSL	American Standard Straight Pipe Thread for Loose-Fitting Mechanical Joints with Locknuts
NPSM	American Standard Straight Pipe Threads for Free-Fitting Mechanical Joints for Fixtures (Mark NPS)
ANPT	Aeronautical National Form Taper Pipe Thread
NPT	American Standard Taper Pipe Thread
NPTF	Dryseal American Standard Taper Pipe Thread (Fuel)
NPTR	American Standard Taper Pipe Thread for Railing Joints (Mark NPT)
NGO	National Gas Outlet Thread R. H. or L. H.
NGS	National Gas Straight Thread
NGT	National Gas Taper Thread
PTF	Dryseal SAE Short Taper Pipe Thread
ACME-C	Acme Thread Centralizing
ACME-G	Acme Thread General Purpose
STUB ACME	Stub Acme Thread
N BUTT	American Buttress Thread
STI	Special Thread for Helical Wire Screw Thread Inserts
SGT	Special Gas Taper Thread

[^1]
CONTACT US

FASTCUTTOOL
200 FRONT STREET
MILLERSBURG, PA 17061

1-800-682-8832
Fax 717-692-2707
Toll Free 800-682-8832
Customer Service 800-682-8832
Technical Support 800-682-8832

www.fastcut.com

To find a distributor, go to www.fastcut.com and click on the
"Distributor Search" button or simply contact customer service.

FASTCUT TOOL

200 Front Street • Millersburg, PA 17061 • 800-682-8832 • fastcut.com
©2006 Dauphin Precision Tool, LLC
Form No. 62-23012 5/06

ISO 9001 Certified

[^0]: *Small Shank

[^1]: *Root Radius required on Male thread only.

