Math 2 Lesson Title: Understanding Expressions with Rational Exponents and Radicals

Unit 1: Extending the Number System (Lesson 1 of 4)

Time Frame: 1 week Essential Question:

- How can radical and rational exponents be written equivalently?
- Do the properties of integer exponents apply to rational exponents?

Targeted Content Standard(s): N.RN. 1 Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define $\left(5^{1 / 3}\right)^{3}$ must equal 5 because we want $\left(5^{1 / 3}\right)^{3}=5^{(1 / 3) 3}$ to hold, so $\left(5^{1 / 3}\right)^{3}$ must equal 5 . N.RN. 2 Rewrite expressions involving radicals and rational exponents using the properties of exponents.
1 Make sense of problems and persevere in solving them. 2 Reason abstractly and quantitatively. 3 Construct viable arguments and critique the reasoning of others. 4 Model with mathematics. 5 Use appropriate tools strategically. 6 Attend to precision. 7 Look for and make use of structure. 8 Look for an express regularity in repeated reasoning.
Supporting Content Standard(s): (optional)

Student Friendly Learning Targets

I can...

- Use properties of integer exponents and apply those to rational exponents.
- Convert between exponential and radical form.

Purpose of Lesson:

The purpose of this lesson is to guide students in making connections between integer and rational exponents and radical expressions and expressions with rational exponents.

Explanation of Rigor: (Fill in those that are appropriate.)

Conceptual:

Students will extend properties of integer exponents to rational exponents. (N-RN.1)

Procedural:
Students will convert between exponential and radical form, write exponential equations and inequalities to model situations, and solve exponential equations and inequalities. (N-RN.2)

Application:

Radical expression
Equivalent forms

Evidence of Learning (Assessment):

Pre-Assessment: Properties of Exponents for Integers
Formative Assessment(s): Check Their Work-Rational Exponents
Summative Assessment: Unit 1 will be assessed as a whole with a Summative Assessment

Self-Assessment: On the $2^{\text {nd }}$ day, use Quick Quiz to have students self-assess

Math 2 Lesson Title: Understanding Expressions with Rational Exponents and Radicals

Unit 1: Extending the Number System (Lesson 1 of 4)
 Time Frame: 1 week

 Essential Question:- How can radical and rational exponents be written equivalently?
- Do the properties of integer exponents apply to rational exponents?

Lesson Procedures:

Segment 1

Math 2 Lesson Title: Understanding Expressions with Rational Exponents and Radicals

Unit 1: Extending the Number System (Lesson 1 of 4)

Time Frame: 1 week Essential Question:

- How can radical and rational exponents be written equivalently?
- Do the properties of integer exponents apply to rational exponents?

Lesson Procedures:

Segment 2

Approximate Time Frame:	Lesson Format:	Resources:
45-50 minutes	Whole Group	
	\square Small Group	
	\square Independent	

Math Practice Look For(s):

- MP\#8 - Look for and express regularity in repeated reasoning. Students will see that they are using the same processes for rational exponents as they used previously with integer exponents.

Potential Pitfall(s):

Students may have difficulty with addition and multiplication of rational numbers.

Independent Practice (Homework):

Steps:

1. Review of Integer Exponent Properties

- Provide expression and ask the student to make recommendations for how to simplify.
- For example, use $x^{2} * x^{3}=$?. What do the individual parts of this equation stand for? What does x^{2} mean? x^{3} ? Can we rewrite this expression to demonstrate that the property we learned is true?
- Provide multiple examples of these including products, quotients, powers raised to powers, and equivalent exponents to generate discussion about each property of exponents.

2. Extend to Rational Exponents

- Give students an example with rational exponents.
- For example, $x^{\frac{1}{5}} * x^{\frac{3}{5}}=$?
- Ask students to discuss possible approaches to

Differentiation for Remediation:

Provide students with guided practice for operating on rational numbers including fractions with common denominators and fractions with non-common denominators.

Differentiation for English Language Learners:

Allow students to work in small groups with peers that also speak their native language and assist these groups in translating prior to sharing with their peers.

Differentiation for Enrichment:

Teacher Notes/Reflections:

Teacher Notes/Reflections:

Math 2 Lesson Title: Understanding Expressions with Rational Exponents and Radicals Unit 1: Extending the Number System (Lesson 1 of 4) Time Frame: 1 week Essential Question:

- How can radical and rational exponents be written equivalently?
- Do the properties of integer exponents apply to rational exponents?
simplify this expression with a partner or small group.
- Give 2-3 more examples addressing the other properties stated above.
- Ask groups to volunteer to share for one of the given problems and ask the rest of the students to give feedback.
- Ask students to draw conclusions from the day's discussion.

Math 2 Lesson Title: Understanding Expressions with Rational Exponents and Radicals

 Unit 1: Extending the Number System (Lesson 1 of 4) Time Frame: 1 week Essential Question:- How can radical and rational exponents be written equivalently?
- Do the properties of integer exponents apply to rational exponents?

Segment 3

Approximate Time Frame: 45-50 minutes	Lesson Format: Whole Group Small Group Independent	Resources:
Focus: Reviewing properties of exponents and extending those properties to rational exponents.	\boxtimes Modeled Guided Collaborative A Assessment	Modalities Represented: Concrete/Manipulative Picture/Graph Table/Chart Symbolic Oral/Written Language Real-Life Situation

Math Practice Look For(s):

- MP\#7: Look for and make use of structure. Students will see the relationship between radical and exponential notation.
- MP\#8: Look for and express regularity in repeated reasoning. Students will see that they are using the same processes for rational exponents as they used previously with integer exponents.

Potential Pitfall(s):

Students may arrive at incorrect conclusions when trying to find a pattern. (i.e. 4 raised to the $1 / 2$ is equivalent to 4 divided by 2)

Independent Practice (Homework):

Steps:	Teacher Notes/Reflections:
1. Reinforcement of Properties of Rational Exponents - Create an entrance "quick quiz" to assess students' level of understanding of the properties used in the previous day. - Be sure to include examples of each property from Day 1. - Self-grade or partner grade for correctness.	
2. Exploration of Rewriting Expressions Involving Rational Exponents into Radical Expressions (numerator $=1$) - Each student will need a calculator (additional scaffolding may be needed for use of calculator to input rational exponents). - Have students compute the following:	Teacher Notes/Reflections:

Math 2 Lesson Title: Understanding Expressions with Rational Exponents and Radicals Unit 1: Extending the Number System (Lesson 1 of 4) Time Frame: 1 week Essential Question:

- How can radical and rational exponents be written equivalently?
- Do the properties of integer exponents apply to rational exponents?
- 4 raised to the $1 / 2$
- 9 raised to the $1 / 2$
- 16 raised to the $1 / 2$
- As a large group, ask for any patterns students see.
- Goal is for students to see the pattern that the number from their calculator is the square root of the original number.
- Write equivalent expressions and predict what 25 raised to the $1 / 2$ would look like.
- Ex. $4^{1 / 2}=\sqrt{4}$
- Following the same process from above, have students compute the following:
- 8 raised to the $1 / 3$
- 27 raised to the $1 / 3$
- 64 raised to the $1 / 3$
- If more reinforcement is needed, continue with numbers raised to the $1 / 4$ power.

Math 2 Lesson Title: Understanding Expressions with Rational Exponents and Radicals

 Unit 1: Extending the Number System (Lesson 1 of 4) Time Frame: 1 week Essential Question:- How can radical and rational exponents be written equivalently?
- Do the properties of integer exponents apply to rational exponents?

Segment 4

Approximate Time Frame: 45-50 minutes	Lesson Format: Whole Group Small Group Independent	Resources: Create an exit slip for the end of the lesson.
Focus: Rewriting expressions involving rational exponents as equivalent radical expressions (numerator >1).	\square Modeled \otimes Guided \boxtimes Collaborative \square Assessment	Modalities Represented: Concrete/Manipulative Picture/Graph Table/Chart Symbolic Oral/Written Language Real-Life Situation

Math Practice Look For(s):

- MP\#7: Look for and make use of structure. Students will see the relationship between radical and exponential notation.

Potential Pitfall(s):

Students may incorrectly multiply fractions by whole numbers.

Students may write the numerator of the exponent as the index of the radical or as the radicand.

Independent Practice (Homework):

Steps:	Teacher Notes/Reflections:

1. Give students the following example:
$\left(8^{2}\right)^{1 / 3} \&\left(8^{1 / 3}\right)^{2}$

- In partners or small groups, have students show work or write 1-2 sentences explaining why these two expressions are equivalent.

2. Instruct students to rewrite these expressions in as many different ways as possible.

- The goal is for students to connect Day 2 learning to this lesson.
- Use student response to highlight the following:

$$
\begin{aligned}
& \left(8^{1 / 3}\right)^{2}=\left(8^{2}\right)^{1 / 3}=\sqrt[3]{8^{2}}=(\sqrt[3]{8})^{2}= \\
& 8^{2 / 3}
\end{aligned}
$$

3. With their partners, have students come up with their own examples writing equivalent expressions (no evaluating) using exponents involving numbers other than $1,2,3$ as an "exit slip" activity.

Teacher Notes/Reflections:

Teacher Notes/Reflections:

Math 2 Lesson Title：Understanding Expressions with Rational Exponents and Radicals

 Unit 1：Extending the Number System（Lesson 1 of 4） Time Frame： 1 week Essential Question：－How can radical and rational exponents be written equivalently？
－Do the properties of integer exponents apply to rational exponents？
Segment 5

Approximate Time Frame： 45-50 minutes	Lesson Format： \boxtimes Whole Group \square Small Group 【 Independent	Resources： Create practice problems worksheet
Focus： Combining expressions involving rational exponents and radicals．	\square Modeled \boxtimes Guided \boxtimes Collaborative \boxtimes Assessment	Modalities Represented： Concrete／Manipulative Picture／Graph Table／Chart Symbolic Oral／Written Language Real－Life Situation

Math Practice Look For（s）：

－MP\＃7：Look for and make use of structure．Students will see the relationship between radical and exponential notation．
－MP\＃8：Look for and express regularity in repeated reasoning．Students will see that they are using the same processes for rational exponents as they used previously with integer exponents．

Potential Pitfall（s）：

Students may still struggle with operations on rational numbers，especially adding，subtracting，and multiplying fractions．

Independent Practice（Homework）：

Finish practice problems．

Steps：

－Reflect on and discuss the previous day＇s exit slip activity．
－Have students share responses with another student，then have the other student share with the large group．
－As a large group，work several examples where students are asked to combine／simplify expressions involving rational exponents and radicals．
－Potential example problems：
－$\frac{y^{5 / 8}}{y^{2 / 3}}$
－$\left(x^{1 / 2} * y^{-2 / 3}\right)^{6}$

Teacher Notes／Reflections：

Math 2 Lesson Title: Understanding Expressions with Rational Exponents and Radicals Unit 1: Extending the Number System (Lesson 1 of 4) Time Frame: 1 week Essential Question:

- How can radical and rational exponents be written equivalently?
- Do the properties of integer exponents apply to rational exponents?
- $\sqrt[4]{18} * \sqrt{12}$
- Provide additional practice problems for students to work independently during a guided practice time.

Math 2 Lesson Title: Understanding Expressions with Rational Exponents and Radicals

 Unit 1: Extending the Number System (Lesson 1 of 4) Time Frame: 1 week Essential Question:- How can radical and rational exponents be written equivalently?
- Do the properties of integer exponents apply to rational exponents?

Segment 6

Approximate Time Frame: $35-40 \text { minutes }$	Lesson Format: Whole Group Small Group Independent	Resources: Check their work rational exponents
Focus: To assess students' ability to extend the properties of integer exponents to rational exponents and students' ability to rewrite radical expressions as expressions with rational exponents.	\square Modeled \square Guided \square Collaborative \boxtimes Assessment	Modalities Represented: Concrete/Manipulative Picture/Graph Table/Chart Symbolic Oral/Written Language Real-Life Situation

Math Practice Look For(s):

- MP\#3: Construct viable arguments and critique the reasoning of others. Students will analyze written work of others to make decisions about correct procedures and explain their reasoning.
- MP\#7: Look for and make use of structure. Students will see the relationship between radical and exponential notation.
- MP\#8: Look for and express regularity in repeated reasoning. Students will see that they are using the same processes for rational exponents as they used previously with integer exponents.

Potential Pitfall(s):

Students may have trouble putting into words their mathematical justifications.

Independent Practice (Homework):
Finish assignment individually if not finished at the end of class.

Steps:

1. "Check Their Work" Assessment

- Follow up on previous day's guided practice assignment.
- Go over problems that students struggled with.
- Assign students to groups of two and hand out the assessment:
- "Check Their Work Rational Exponents"

Differentiation for Remediation:

Based on the results of this assessment, students may need an additional activity with similar concepts.

Differentiation for English Language Learners:
Differentiation for Enrichment:

Teacher Notes/Reflections:

Math 2 Lesson Title: Understanding Expressions with Rational Exponents and Radicals Unit 1: Extending the Number System (Lesson 1 of 4)

Time Frame: 1 week

Essential Question:

- How can radical and rational exponents be written equivalently?
- Do the properties of integer exponents apply to rational exponents?

