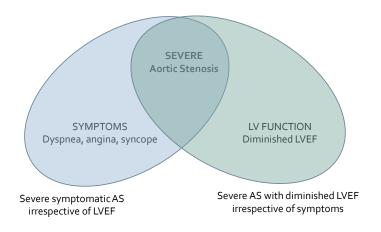
2017 ASE Florida, Orlando, FL

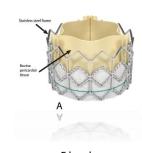
October 10, 2017 | 8:00 - 8:25 AM | 25 min

TAVR: Echo Measurements Pre, Post And Intra Procedure

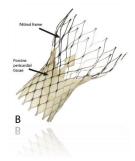

Muhamed Sarić MD, PhD, MPA
Director of Noninvasive Cardiology | Echo Lab
Associate Professor of Medicine

Disclosures

Speakers Bureau (Philips, Medtronic) Advisory Board (Siemens)


PRIMARY INDICATIONS FOR SURGICAL OR PERCUTANEOUS TREATMENT OF AORTIC STENOSIS

TAVR Indications Based on STS Risk Score


Low Risk	INTERMEDIATE	HIGH RISK
(< 4 %)	(4 – 8 %)	(> 8 %)
TAVR vs. surgical AVR trials in progress		effective alternative ical AVR

TAVR Prostheses Used in United States

Sapien Valves

Balloon-expandable bovine pericardial aortic valve prosthesis

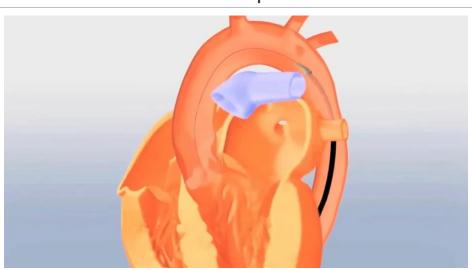
Medtronic CoreValves

Self-expandable porcine pericardial aortic valve prosthesis

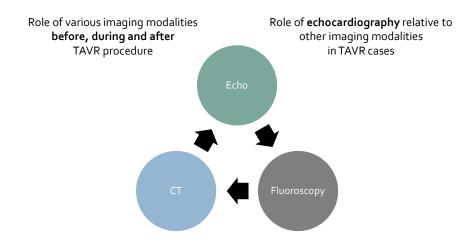
TAVR Prostheses Used in United States

Sapien Valve

Balloon Expandable


CoreValve

Self Expanding


Sapien Valve Implantation

CoreValve Implantation

IMAGING IN PATIENTS UNDERGOING TAVR

IMAGING IN PATIENTS UNDERGOING TAVR

BEFORE **TAVR** Procedure

ECHOCARDIOGRAPHY

- : Primary means of establishing diagnosis, severity and subtype of aortic stenosis
- : Secondary means of TAVR valve sizing

CHEST CT

: Primary means of TAVR valve sizing

DURING TAVR Procedure

ECHOCARDIOGRAPHY

: Primary means of assessing for paravalvular leak, overall valve function and possible complications.

FLUOROSCOPY / CINE : Primary means of AVR valve implantation guidance

AFTER **TAVR** Procedure

ECHOCARDIOGRAPHY

: Primary means of assessing for prosthetic and overall cardiac function.

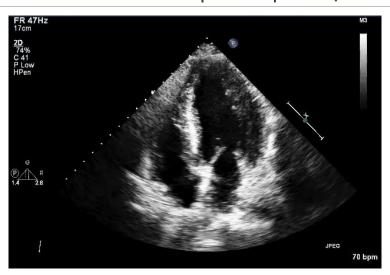

Saric M, Williams MR. Transthoracic echocardiography guidance for TAVR. J Am Coll Cardiol Img. 2015;8(3):363-67.

Echocardiography Prior to TAVR

ROLE OF ECHO PRIOR TO TAVR

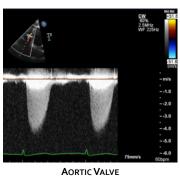
- Establish whether indications for TAVR are present
 - Severity of aortic stenosis
 - Subtype of aortic stenosis (high vs. low-gradient)
- Asses LV ejection fraction
- · Assist in TAVR valve sizing

Types of Aortic Stenosis

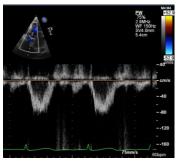

Severe Aortic Stenosis | TTE Apical 3-Chamber


Severe Aortic Stenosis | TTE Apical 3-Chamber

Severe Aortic Stenosis | TTE Apical 4-Chamber



Severe Aortic Stenosis | TTE Apical 5-Chamber


SEVERE AORTIC STENOSIS

Continuous Wave (CW) Doppler

VTI = 134 cm

Vmax = 4.3 m/sec Peak/Mean Gradient 74/43 mm Hg Pulsed Wave (PW) Doppler

LVOT

VTI = 24 cm Vmax = 0.8 m/sec Area 3.14 cm²

Dimensionless Index = 24 / 134 = 0.18 | Aortic Valve Area = 0.6 cm²

SEVERE SENILE CALCIFIC AORTIC STENOSIS OF A TRILEAFLET AORTIC VALVE

	Severe Aortic Stenosis	Our Patient
Peak velocity (V _{max})	≥ 4 m/sec	4.3 m/sec
Mean gradient (ΔP_{mean})	≥ 40 mm Hg	43 mm Hg
Dimensionless Index	≤ 0.25	0.18
Aortic valve area (AVA)	≤ 1.0 cm ²	0.6 cm ²
AVA Index	\leq 0.6 cm ² /m ²	0.3 cm ² /m ²

ASE/EAE Guidelines on Valvular Stenosis J Am Soc Echocardiogr. 2009 May;22(5):442.

TTE STUDY CONCLUSIONS

- Severe senile calcific high-gradient aortic stenosis of a trileaflet native aortic valve with preserved LVEF
- If symptoms attributable to aortic stenosis are:
 - Present >>> Refer for TAVR evaluation
 - Absent >>> Consider stress testing

SEVERE SENILE CALCIFIC AORTIC STENOSIS OF A TRILEAFLET AORTIC VALVE

	Severe Aortic Stenosis	Our Patient
Peak velocity (V _{max})	≥ 4 m/sec	3.1 m/sec
Mean gradient (ΔP_{mean})	≥ 40 mm Hg	26 mm Hg
Dimensionless Index	≤ 0.25	0.26
Aortic valve area (AVA)	≤ 1.0 cm ²	o.6 cm ²
AVA Index	≤ 0.6 cm²/m²	0.3 cm ² /m ²

ASE/EAE Guidelines on Valvular Stenosis J Am Soc Echocardiogr. 2009 May;22(5):442.

AORTIC STENOSIS

		2	014 ACC/AHA Va	alvular Heart Disease	Guidelines		
	C: As	ymptomatic severe AS					
	C1	Asymptomatic severe AS	Severe leaflet calcification or congenital stenosis with severely reduced leaflet opening	• Aortic $V_{max} \ge 4$ m/s or mean $\Delta P \ge 40$ mm Hg • AVA typically is ≤ 1.0 cm ² (or AVAI ≤ 0.6 cm ² /m ²) • Very severe AS is an aortic $V_{max} \ge 6$ m/s or mean $\Delta P \ge 60$ mm Hg	LV diastolic dysfunction Mild LV hypertrophy Normal LVEF	None: Exercise testing is reasonable to confirm symptom status	
	C2	Asymptomatic severe AS with LV dysfunction	 Severe leaflet calcification or congenital stenosis with severely reduced leaflet opening 	Aortic V _{max} ≥4 m/s or mean ΔP ≥40 mm Hg AVA typically ≤1.0 cm ² (or AVAI ≤0.6 cm ² /m ²)	• LVEF <50%	• None	
D: Symptomatic severe AS							
	D1	Symptomatic severe high-gradient AS	Severe leaflet calcification or congenital stenosis with severely reduced leaflet opening	• Aortic V _{max} ≥4 m/s or mean ΔP ≥40 mm Hg • AVA typically 5.1.0 cm ² (or AVAI ≤0.6 cm ² /m ²) but may be larger with mixed AS/AR	LV diastolic dysfunction LV hypertrophy Pulmonary hypertension may be present	Exertional dyspnea or decreased exercise tolerance Exertional angina Exertional syncope or presyncope	
Low Gradient AS	D2	Symptomatic severe low-flow/low- gradient AS with reduced LVEF	 Severe leaflet calcification with severely reduced leaflet motion 	 AVA ≤1.0 cm² with resting aortic V_{max} <4 m/s or mean ΔP <40 mm Hg Dobutamine stress echocardiography shows AVA ≤1.0 cm² with V_{max} ≥4 m/s at any flow rate 	LV diastolic dysfunction LV hypertrophy LVEF <50%	HF Angina Syncope or presyncope	Lov LVE
	D3	Symptomatic severe low-gradlent AS with normal LVEF or paradoxical low-flow severe AS	Severe leaflet calcification with severely reduced leaflet motion	AVA ≤1.0 cm² with aortic V _{max} <4 m/s or mean ΔP <40 mm Hg indexed AVA ≤0.6 cm²/m² and Stroke volume index <35 mL/m² Measured when patient is normotensive (systolic BP <140 mm Hg)	Increased LV relative wall thickness Small LV chamber with low stroke volume Restrictive diastolic filling LVEF >50%	HF Angina Syncope or presyncope	Norn LVE

AORTIC STENOSIS

2014 ACC/AHA Valvular Heart Disease Guidelines Asymptomatic severe LV diastolic dysfunction Mild LV hypertrophy AVA typically is ≤1.0 cm (or AVAi ≤0.6 cm²/m²) Very severe AS is an ao LVEF < 50% LV diastolic dysfunction LV hypertrophy AVA typically ≤1.0 cm (or AVAI ≤0.6 cm²/m²) but may be larger with mixed AS/AR **DOBUTAMINE** Low **STRESS ECHO LVEF** (LV Contractile Reserve) Low Gradient low-gradient AS with normal LVEF or paradoxical low-flow **EXERCISE** AS Normal **STRESS TESTING** LVEF (Symptoms)

Echocardiography During TAVR Procedure

Question | Echo Type

Should I use **transesophageal** echo (TEE) or **transthoracic** echo (TTE) during TAVR procedures?

JACC: CARDIOVASCULAR IMAGING
© 2015 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION
PUBLISHED BY ELSEVIER IN C.

VOL. 8, NO. 3, 2015 ISSN 1936-878X/\$36.00 http://dx.doi.org/10.1016/j.jcmg.2014.12.014

Recommendations for Comprehensive Intraprocedural Echocardiographic Imaging During TAVR

Rebecca T. Hahn, MD,* Stephen H. Little, MD,† Mark J. Monaghan, PrD,† Susheel K. Kodali, MD,* Mathew Williams, MD,§ Martin B. Leon, MD,* Linda D. Gillam, MD, MPH|

ABSTRACT

Recent multicenter trials have shown that transcatheter aortic valve replacement is an alternative to surgery in a high risk population of patients with severe, symptomatic aortic stenosis. Echocardiography and multislice computed tomographic imaging are accepted tools in the pre-procedural imaging of the aortic valve complex and vascular access. Transesophageal echocardiography can be valuable for intraprocedural confirmation of the landing zone morphology and measurements, positioning of the valve and post-procedural evaluation of complications. The current paper provides recommendations for pre-procedural and intraprocedural imaging used in assessing patients for transcatheter aortic valve replacement with either balloon expandable or self-expanding transcatheter heart valves. (J Am Coll Cardiol Img 2015;8:261-87) © 2015 by the American College of Cardiology Foundation.

These recommendations support the use of TEE for TAVR.

Optimal Imaging for Guiding TAVR: Transesophageal or Transthoracic Echocardiography, or Just Fluoroscopy?

Itzhak Kronzon, MD, Vladimir Jelnin, MD, Carlos E. Ruiz, MD, PnD, Muhamed Saric, MD, PnD, Mathew Russell Williams, MD, Albert M. Kasel, MD, Anupama Shivaraju, MD, Antonio Colombo, MD, Adnan Kastrati, MD

Section Editor: Partho P. Sengupta, MD

THE FOLLOWING IFORUM DEBATE FEATURES 3 VIEWPOINTS related to the most practical and effective imaging strategy for guiding transcatheter aortic valve replacement (TAVR). Kortoon, et al., provide evidence that enhanced analysis of aortic valve anatomy and improved appreciation of complications mandate the use of transeso-phageal echocardiography as front-tine imaging modality for ALL patients undergoing TAVR. On the other hand, Saric and colleagues compare and contrast the approach of performing TAVR under transthroacie guidance. Lastly, kasel and co-workers provide preliminary evidence that TAVR could be performed under fluoroscopic guidance without the need for additional imaging technique. Although the use of less-intensive section or anesthesia might reduce the procedural time, we need more randomized data to establish the most cost-effective approach in guiding TAVR.

J Am Coll Cardiol Img. 2015;8(3):363-67.

Evolution of Anesthesia & Echo Imaging for TAVR

INITIAL TAVE EXPERIENCE

General anesthesia

Endotracheal intubation

TEE guidance

SUBSEQUNT TAVE EXPEDIENCE

Moderate sedation

No endotracheal intubation

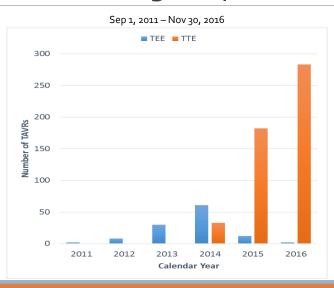
TTE guidance

Review

A Practical Approach to Managing Transcatheter Aortic Valve Replacement With Sedation

Seminars in Cardiothoracic and Vascular Amesthesia 1–11

© The Author(s) 2016
Reprints and permissions: sagepub.com/journals/Permissions.ns.
DOI: 10.1177/1089253215625111
scv.sagepub.com/


Peter J. Neuburger, MD¹, Muhamed Saric, MD, PhD¹, Conan Huang, BS¹, and Mathew Russell Williams, MD¹

Abstract

Transcatheter aortic valve replacement is increasingly performed as a minimally invasive treatment option for aortic valve disease. The typical anesthetic management for this procedure was traditionally similar to surgical aortic valve replacement and involved general anesthesia and transesophageal echocardiography. In this review, we discuss the technological advances in transcatheter valve systems that have improved outcomes and allow for use of sedation instead of general anesthesia. We describe an anesthetic protocol that avoids general anesthesia and utilizes transthoracic echocardiography for procedural guidance.

Semin Cardiothorac Vasc Anesth. 2016;20(2):147-57.

NYUTAVR Program | TEE vs. TTE

What to Look For During TAVR on Echo?

- TAVR Valve Function
- · Paravalvular Leak
- Complications

TAVR | Intraprocedural Echo Evaluation

When..

- Proper preprocedural TAVR valve sizing is done, and
- When newer generation TAVR valves are used,
- By a an experienced TAVR team
- ... TAVR procedure is typically uneventful
- ... Complications are relatively rare

TAVR Valve Function

TAVR: Markers of Good Implantation

Valve Shape & Location

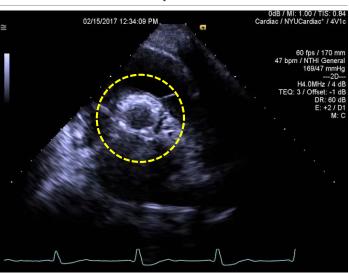
- Short axis: Circular rather than ovoid
- Long axis: Proximal end just a few millimeters in the LVOT

Valve Gradient

Vmax typically < 2.0 m/sec

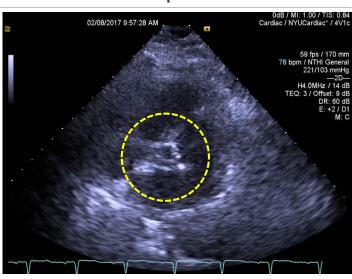
Valve Regurgitation

• No significant paravalvular or transvalvular aortic regurgitation


If one or more suboptimal, consider:

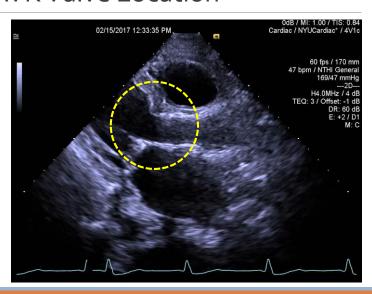
- Repositioning TAVR valve (for self-expanding valves)
- Post-dilatation of TAVR valve with a balloon
- Implantation of another TAVR valve (valve-in-valve procedure)

TAVR Valve Shape


TAVR Valve Shape

OPTIMAL SHAPE
Circular

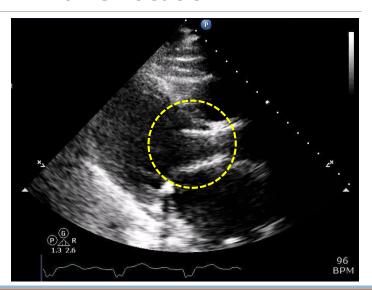
TAVR Valve Shape



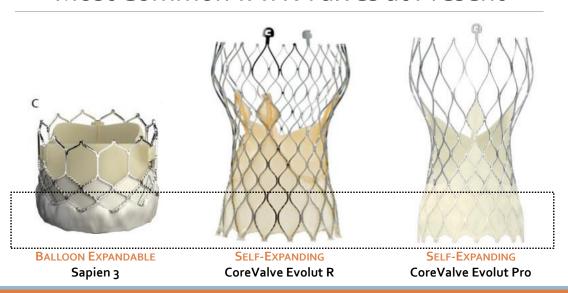
TAVR Valve Location

OPTIMAL LOCATION

No excessive protrusion into LVOT

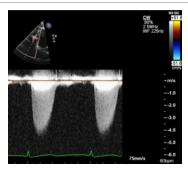


TAVR Valve Location

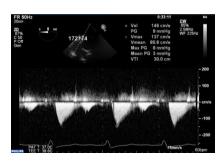

SUBOPTIMAL LOCATION

Too deep

into LVOT



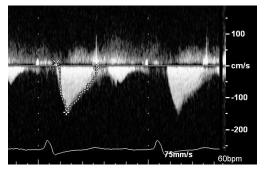
Most Common TAVR Valves at Present


TAVR Valve Gradients

Aortic Valve Gradients | Pre & Post TAVR

Before TAVR (Severe native valve stenosis)

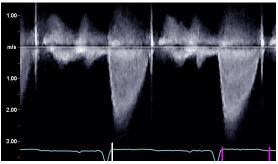
Vmax = 4.3 m/sec
Peak/Mean Gradient 74/43 mm Hg
Time to peak gradient
140 msec (late peaking)


After TAVR (Minimal aortic valve gradients)

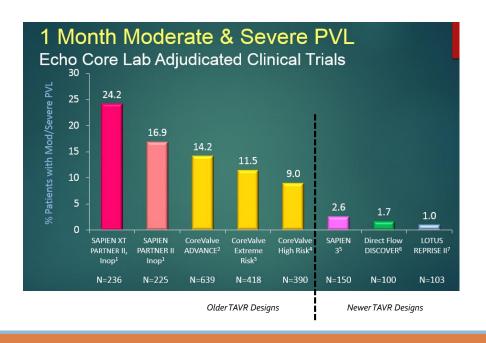
Vmax = 1.4 m/sec
Peak/Mean Gradient 9/3 mm Hg
Time to peak gradient
95 msec (early peaking)

TAVR Valve Gradients

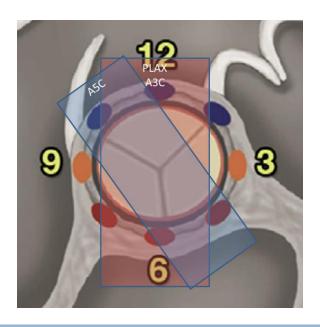
OPTIMAL GRADIENT


Vmax < 2.0 m/sec

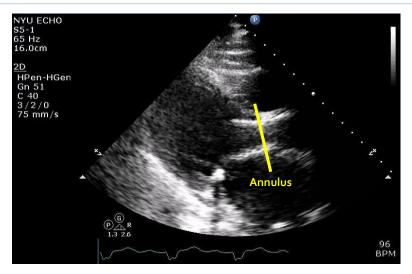
Vmax = 1.4 m/sec
Peak/Mean Gradient 9/3 mm Hg
Time to peak gradient
95 msec (early peaking)


SUBOPTIMAL GRADIENT

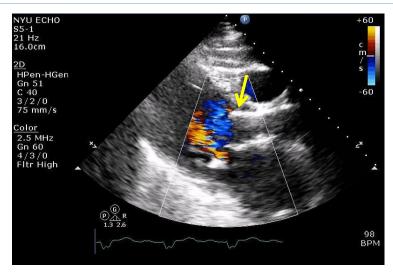

Vmax > 2.0 m/sec


Vmax = 2.6 m/sec
Peak/Mean Gradient 27/17 mm Hg
Time to peak gradient
> 100 msec (late peaking)

Paravalvular Leak Evaluation



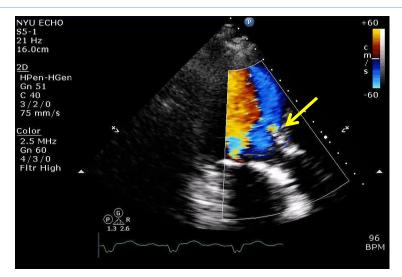
JACC Cardiovasc Imaging. 2015 Mar;8(3):340-60.



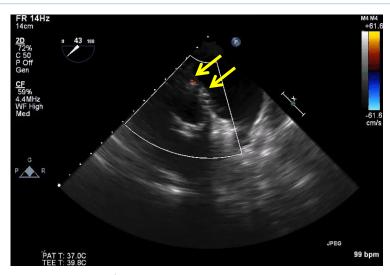
TAVR PROCEDURE | TRANSTHORACIC ECHO

CoreValve inserted too deep into LVOT

TAVR PROCEDURE | TRANSTHORACIC ECHO


Significant Paravalvular Aortic Regurgitation

TAVR PROCEDURE | TRANSTHORACIC ECHO


Significant Paravalvular Aortic Regurgitation

TAVR PROCEDURE | TRANSTHORACIC ECHO

Significant Paravalvular Aortic Regurgitation

POST TAVR | TRANSESOPHAGEAL ECHO

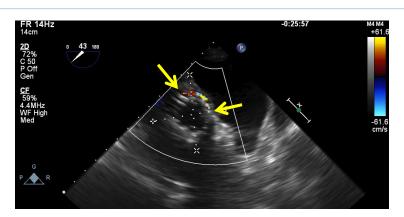
Significant Paravalvular Aortic Regurgitation

10/30/2017 NYU LEUN H. CHARNEY DIVISION OF CARDIOLOGY 52

26

PARAVALVULAR AORTIC REGURGITATION POST TAVR

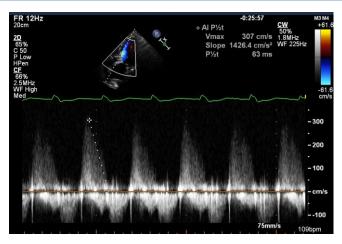
No easy way to grade it


Table 4 VARC II Recommendations for Evaluation of Aortic and/or Paravalvular Regurgitation After TAVR				
	Mild	Moderate	Severe	
Semiquantitative parameters				
Diastolic flow reversal in the descending aorta—pulsed wave	Absent or brief early diastolic	Intermediate	Prominent, holodiastolic	
Circumferential extent of prosthetic valve paravalvular regurgitation (%)*	<10	10-29	≥30	
Quantitative parameters†				
Regurgitant volume (ml/beat)	<30	30-59	≥60	
Regurgitant fraction (%)	<30	30-49	≥50	
Effective regurgitant orifice area (cm ²)	0.10	0.10-0.29	≥0.30	

*Not well validated and may overestimate severity compared with quantitative Doppler, †For LVOT >2.5 cm, significant stenosis criteria is <0.20. Adapted with permission from Kappetein et al. (66) ARC = Nave Academic Research Consortium other abhervalsions as in Table 3.

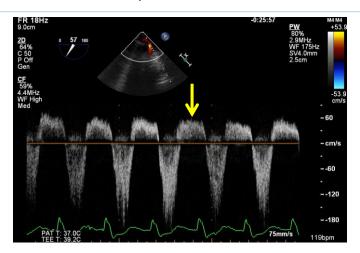
VARC II Criteria

An expert consensus without empiric validation


POST TAVR | TRANSESOPHAGEAL ECHO

AR occupies > 30% of prosthetic circumference

Consistent with severe aortic regurgitation


TAVR PROCEDURE | TRANSTHORACIC ECHO

Pressure Half-time = 63 msec

Consistent with acute aortic regurgitation

POST TAVR | TRANSESOPHAGEAL ECHO

Holodiastolic Flow Reversal in Descending Aorta

Consistent with severe aortic regurgitation

Echocardiography Post TAVR Procedure

What to Look For Post TAVR on Echo?

Assess for TAVR complications

- Pericardial effusion
 - LV rupture [LV wire related]
 - RV rupture [Pacing wire related]
- Annular rupture

Thank you!

New York University Langone Medical Center

Case #1

Pericardial Effusion Post LV Wire Removal

Prior to CoreValve Insertion

6:49:59 PMNo pericardial effusion

Post CoreValve Insertion But Wire Still in LV

7:23:03 PMFirst TEE image of CoreValve

7:26:036 PMStill no effusion

Post TAVR Insertion, LV Wire Removed

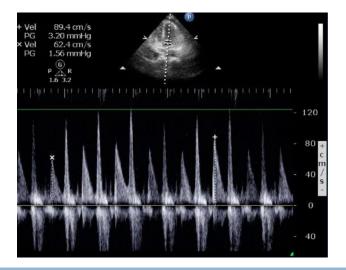
7:31:06 PMFirst appearance of effusion

7:39:01 PMMassive effusion

Case #2

Pericardial Effusion Post RV Wire Removal

Day o | Uneventfully implantation of a TAVR valve


No pericardial effusion

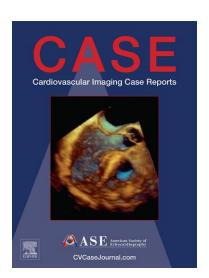
Day 1 | Hypotension minutes post removal of temporary RV pacing wire

New hemorrhagic pericardial effusion

Day 1 Hypotension minutes post removal of temporary RV pacing wire

Mitral Inflow

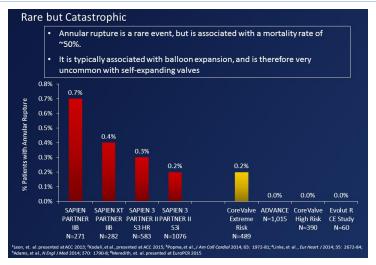
Marked respiratory variations indicative of tamponade


Day 1 | Post Pericardiocentesis

Resolution of pericardial effusion

Case #3

Annular Rupture After CoreValve Post Dilation

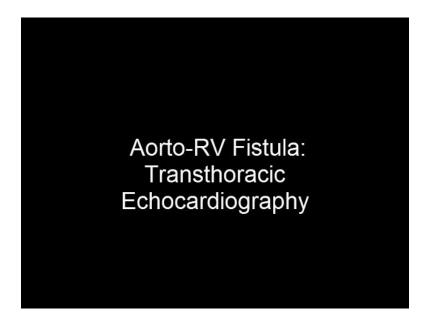

PERCUTANEOUS PERILS

Aorto-Right Ventricular Fistula
Post-Transcatheter Aortic Valve Replacement:
Multimodality Imaging of Successful
Percutaneous Closure

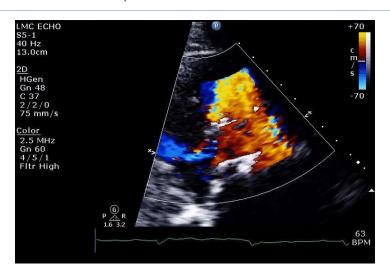
Alan F. Vainrib, MD, Homam Ibrahim, MD, Kazuhiro Hisamoto, MD, Cezar S. Staniloae, MD, Hasan Jilaihawi, MD, Ricardo J. Benenstein, MD, Larry Latson, MD, Mathew R. Williams, MD, and Muhamed Saric, MD, PhD, New York, New York

CASE 2017;1(2):70-74

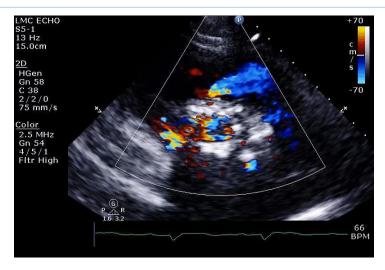
ANNULAR RUPTURE POST TAVR


Balloon Expandable TAVR

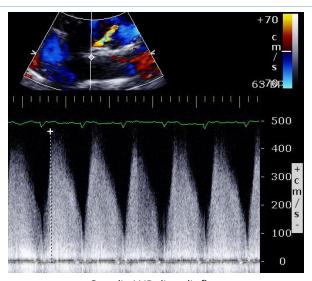
Self-expanding TAVR


Several Weeks Post CoreValve | Severe new-onset heart failure with normal LVEF

Bilateral pleural effusions



Several Weeks Post CoreValve | Severe new-onset heart failure with normal LVEF


Abnormal color Doppler jet at caudal end of CoreValve

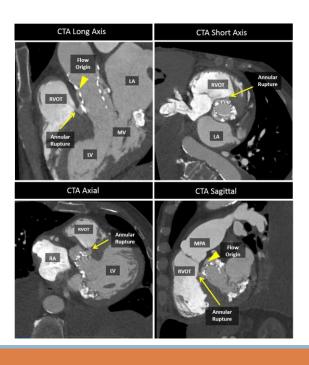
 $\textbf{Several Weeks Post CoreValve} \ | \ \textbf{Severe new-onset heart failure with normal LVEF}$

Abnormal color Doppler jet from CoreValve region to RVOT

$\textbf{Several Weeks Post CoreValve} \ | \ \textbf{Severe new-onset heart failure with normal LVEF}$

Systolic AND diastolic flow

TTE Study Conclusions


 $\label{peri-annular} \textit{Peri-annular rupture with ascending aorta} \ \textit{to RVOT communication}$

CONTRAST CT CONFIRMS ANNULAR RUPTURE

CONTRAST CT CONFIRMS ANNULAR RUPTURE

TEE & Fluoroscopy Guided Closure

Aorta-to-RV communication closed using an 8-mm Amplatzer Vascular Plug (AVP)

Cine Fluoroscopy: Aorto-RV Fistula Closure

Transesophageal Echocardiography

Aorto-RV Fistula Closure

NYUTAVR TEAM

Thank You!

New York University Langone Medical Center