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Introduction 

Calculus curriculum tends to provide numerous applications of its content. However, 
some literature on mathematics education argues that these applications tend to be biased 
towards those in engineering and physical sciences – often leaving out the social sciences such as 
economics as well as business disciplines such as Finance (628). Schroder notes this may be due 
to the fact applications in these disciplines tend to require much more mathematical maturity to 
work through then one has while in a Calculus sequence (629). While it is true that some 
applications (particularly in economics) require more formal training in mathematics to work 
through, there are many topics in which examples appropriate for Calculus students can be found 
for those with interests outside of engineering and physical sciences. Taylor’s Theorem, which 
has extensive usage in finance (both at a relatively basic level and at an advanced level) 
constitutes such a topic. To demonstrate this point, this paper is organized as follows: A review 
of Taylor’s Theorem and its proof is provided followed by a survey of its typical applications 
(specifically, numerical approximation, derivation of inequalities, extrema, and convexity). 
Then, the paper shifts to provide an example of how Taylor’s Theorem can be used to derive an 
important result concerning the change in a bond price. 

 

Taylor’s Theorem 

In informal terms, Taylor’s Theorem posits that a function with 𝑛 + 1 derivatives (the 
first 𝑛 derivatives being continuous on some interval) can be written as an infinite series – this 
infinite series being the Taylor Series. A more formal definition of Taylor’s Theorem, taken from 
Bartle and Sherbert appears below: 

 

Taylor’s Theorem: 𝐿𝑒𝑡	𝑛 ∈ ℕ, 𝑙𝑒𝑡	𝐼 ≔ 𝑎, 𝑏 , 𝑎𝑛𝑑	𝑙𝑒𝑡	𝑓: 𝐼 → ℝ	𝑏𝑒	𝑠𝑢𝑐ℎ	𝑡ℎ𝑎𝑡	𝑓	𝑎𝑛𝑑	𝑖𝑡𝑠	 
𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑠	𝑓<, 𝑓<<, … , 𝑓>	𝑎𝑟𝑒	𝑐𝑜𝑛𝑡𝑖𝑛𝑖𝑜𝑢𝑠	𝑜𝑛	𝐼	𝑎𝑛𝑑	𝑡ℎ𝑎𝑡	𝑓>@A𝑒𝑥𝑖𝑠𝑡𝑠	𝑜𝑛	 𝑎, 𝑏 . 𝐼𝑓	𝑥D ∈ 𝐼,	 
𝑡ℎ𝑒𝑛	𝑓𝑜𝑟	𝑎𝑛𝑦	𝑥	𝑖𝑛	𝐼	𝑡ℎ𝑒𝑟𝑒	𝑒𝑥𝑖𝑠𝑡𝑠	𝑎	𝑝𝑜𝑖𝑛𝑡	𝑐	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	𝑥	𝑎𝑛𝑑	𝑥D	𝑠𝑢𝑐ℎ	𝑡ℎ𝑎𝑡 

 

𝑓 𝑥 = 𝑓 𝑥D + 𝑓< 𝑥D 𝑥 − 𝑥D +
𝑓<< 𝑥D
2!

𝑥 − 𝑥D L + ⋯+
𝑓> 𝑥D
𝑛!

𝑥 − 𝑥D >

+
𝑓>@A 𝑐
𝑛 + 1 !

𝑥 − 𝑥D >@A.	 

 

Recall that N
OPQ R
>@A !

 constitutes the error term while the first 𝑛 + 1 terms constitute the Taylor 
Polynomial. Thus, for shorthand, let 𝑃> denote the 𝑛th Taylor Polynomial and let 𝑅> denote the 
remainder term. Hence, we have that	𝑓 𝑥 = 𝑃> 𝑥 + 𝑅>(𝑥). The corresponding proof (which 
again is based off Bartle and Sherbert) appears on the following page. 

 

 



Proof. Let 𝑥D and 𝑥 be given and let 𝐼 be the closed interval with endpoints 𝑥D and	𝑥. First, we 
define a function F as appears below. Note that F is essentially equivalent to 𝑅> in the theorem. 

 

𝐹 𝑡 ≔ 𝑓 𝑥 − 𝑓 𝑡 − 𝑥 − 𝑡 𝑓< 𝑡 − ⋯−
𝑥 − 𝑡 >

𝑛!
𝑓>(𝑡) 

 

for 𝑡 ∈ 𝐼. Differentiating with respect to 𝑡 will yield 

 

𝐹< 𝑡 = −𝑓< 𝑡 − 𝑥 − 𝑡 𝑓<< 𝑡 + 𝑓< 𝑡 −
𝑓<<< 𝑡
2!

𝑥 − 𝑡 L + 𝑓<< 𝑡 𝑥 − 𝑡  

−⋯−
𝑓>@A 𝑡
𝑛!

𝑥 − 𝑡 > +
𝑓> 𝑡
𝑛 − 1 !

𝑥 − 𝑡 >@A. 

 

Canceling out the like terms leaves 

 

𝐹< 𝑡 = −
𝑓>@A 𝑡
𝑛!

𝑥 − 𝑡 >. 

 

Now define 𝐺 on 𝐼 as follows: 

 

𝐺 𝑡 = 𝐹 𝑡 −
𝑥 − 𝑡
𝑥 − 𝑥D

>@A
𝐹(𝑥D) 

 

for 𝑡 ∈ 𝐼. Note that 

 

𝐺 𝑥D = 𝐹 𝑥D −
𝑥 − 𝑥D
𝑥 − 𝑥D

>@A
𝐹 𝑥D = 𝐹 𝑥D − 𝐹 𝑥D = 0 

 

and 

𝐺 𝑥 = 𝐹 𝑥 −
𝑥 − 𝑥
𝑥 − 𝑥D

>@A
𝐹 𝑥D = 𝐹 𝑥 = 𝑓 𝑥 − 𝑓 𝑥 −

𝑥 − 𝑥
𝑖!

𝑓>
>

\]A

= 0 



Hence, 𝐺 𝑥D = 𝐺 𝑥 = 0. Recall Rolle’s Theorem, which states that if 𝑓	is continuous on a 
closed interval 𝐽 = [𝑎, 𝑏] and if the derivative 𝑓′ exists at every point of the open interval	(𝑎, 𝑏), 
and that 𝑓 𝑎 = 𝑓 𝑏 = 0, then there exists at least one point 𝑐 in (𝑎, 𝑏) such that 𝑓< 𝑐 = 0. 

 

Thus, applying Rolle’s Theorem here gives a point 𝑐 between 𝑥 and 𝑥D such that 

 

0 = 𝐺< 𝑐 = 𝐹< 𝑐 + 𝑛 + 1
𝑥 − 𝑐 >

𝑥 − 𝑥D >@A 𝐹 𝑥D . 

 

The final step requires solving for 𝐹(𝑥D): 

 

𝐹 𝑥D 𝑛 + 1
𝑥 − 𝑐 >

𝑥 − 𝑥D >@A = −𝐹′(𝑐) 

 

→ 𝐹(𝑥D)	
𝑥 − 𝑐 >

𝑥 − 𝑥D >@A = −
𝐹 𝑐
𝑛 + 1

 

 

→ 𝐹 𝑥D = −
1

𝑛 + 1
𝑥 − 𝑥D >@A

𝑥 − 𝑐 > 𝐹′(𝑐) 

 

Recall that	𝐹< 𝑡 = − NOPQ b
>!

𝑥 − 𝑡 >	. Thus, 

𝐹 𝑥D =
1

𝑛 + 1
𝑥 − 𝑥D >@A

𝑥 − 𝑐 >
𝑓>@A 𝑐
𝑛!

𝑥 − 𝑐 > 

 

→ 𝐹 𝑥D =
𝑓>@A 𝑐
𝑛 + 1 !

𝑥 − 𝑥D >@A. 

 

But, recall that 𝐹 is equivalent to	𝑅>. Hence, 𝑅> 𝑥 = 𝐹(𝑥D). This completes the proof. 	∎	 

  

 

 



 As a side note to the above formulation of Taylor’s Theorem as well as its proof pertains 
to the fact that Taylor’s Theorem has numerous forms. In fact, Taylor’s Theorem has numerous 
forms. For instance, Numerical Mathematics and Computing by Cheney and Kincaid provides 
four variations of Taylor’s Theorem. The differences simply relate to the presentation of the 
error term, 𝑅>. Similarly, many more proof techniques for Taylor’s Theorem exist in addition to 
the technique presented above. For example, a common alternative utilizes multiple invocations 
of L’Hopital’s rule to reach the required result.  

 

Mathematical Applications 

Taylor’s Theorem, as alluded to in the introduction, has a plethora of applications. In 
addition to its applications in finance, four mathematical applications are discussed below: 
numerical approximation, inequalities, extrema, and convexity. 

 Numerical Approximation. Out of the four mathematical applications, numerical 
approximation is likely the one that gets utilized the most. To understand the motivation, 
consider estimating the value of the following three functions at 𝑥 = 0.039. 

 

𝑓 𝑥 = 𝑥 

𝑔 𝑥 = 𝑥 

ℎ 𝑥 = 1 + 𝑥g  

 

Estimating 𝑓is, of course, trivial. 𝑔(𝑥) may not be immediately obvious, but if one notes that 
0.04 = 0.02, one might reasonably guess that 0.039 ≈ 0.198. Using a calculator, one can see 

that this quick mental estimation is not that far off: 0.039 ≈ 0.19748. ℎ 𝑥 , on the other hand, 
might prove to be a challenge to estimate mentally since there is no good “mental anchor.” 
However, by utilizing Taylor’s Theorem a relatively precise estimate can be obtained without the 
need to resort to a calculator with a cube root function! 

 For ℎ 𝑥 , apply Taylor’s Theorem with 𝑛 = 3 and 𝑥D = 0. To do so, first take the 
necessary derivatives of ℎ 𝑥 : 

 

ℎ 𝑥 = 1 + 𝑥g = 1 + 𝑥
A
l 

ℎ< 𝑥 =
1
3
1 + 𝑥 mLl 

ℎ<< 𝑥 = −
2
9
1 + 𝑥 m n

l  

ℎ<<< 𝑥 =
10
27

1 + 𝑥 m o
p  



Plugging this into Taylor’s Theorem yields the following: 

 

ℎ 𝑥 = ℎ 0 + ℎ< 0 𝑥 +
ℎ<< 0
2

𝑥L +
ℎ<<< 0
6

𝑥l + 𝑅l 

→ ℎ 𝑥 = 1 +
1
3
𝑥 −

1
9
𝑥L +

5
81
𝑥l + 𝑅l 

 

Thus,  

 

ℎ 0.039 ≈ 1.012835. 

 

One should note the precision of this estimate: 

 

𝑅l 𝑥 =
𝑓\s 𝑐
24

𝑥t = −
10
243

1 + 𝑐 mAAl 𝑥t 

 

Since 𝑐 ∈ 𝑥D, 𝑥 = 0, 0.039 , then 1 + 𝑐 mQQg < 1. Hence, a bound for the error will be 
𝑅l 0.039 ≤ AD

Ltl
0.039 t = 9.52×10mo. In other the words, the error is quite miniscule. 

Moreover, using a calculator, one will get 1.01283. Hence, Taylor’s Theorem provides a very 
precise estimate. 

 

 Inequalities. Determining bounds for various functions can be very useful. For instance, 
the bounds on sin	(𝑥) and cos 𝑥  often prove to be quite useful in a variety of situations: 

 

−𝑥 ≤ sin 𝑥 ≤ 𝑥 

−𝑥 ≤ cos 𝑥 ≤ 𝑥 

 

Various techniques exist to derive such inequalities. One technique, of course, is Taylor’s 
Theorem. For a more interesting example, consider the following two numbers: 𝜋~ and 𝑒�. 
Which one is greatest? At first it might seem to be impossible to determine without a calculator. 
However, a quick application of Taylor’s Theorem makes the answer easy to derive. 

 

 



To begin, first establish the following: 𝑒� > 1 + 𝑥 for 𝑥 ≠ 0. This can be done via 
Taylor’s Theorem with 𝑛 = 1	and 𝑥D = 0: 

 

𝑒� = 1 + 𝑥 + 𝑅A(𝑥) 

Note that 

𝑅A 𝑥 = A
L
𝑒R𝑥L > 0 for 𝑥 ≠ 0. 

Also note that 

𝜋 > 𝑒. 

Taking 𝑥 = �
~
− 1 > 0, then 𝑒

�
�mA > 1 + �

~
− 1 = �

~
. So, 𝑒

�
� > �

~
𝑒 = 𝜋. It follows that 

 𝑒� > 𝜋~. 

 

 Extrema. In Calculus settings, the term extrema likely brings to mind something like the 
First Derivative Test (as well as other similar tests). These “tests” are actually theorems – the 
majority of which utilize Taylor’s Theorem in their respective proofs. To demonstrate, consider 
the more generalized theorem (statement based off of presentation in Bartle and Sherbert) for 
determining relative extrema: 

 

Generalized Derivative Test. 𝐿𝑒𝑡	𝐼	𝑏𝑒	𝑎𝑛	𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙, 𝑙𝑒𝑡	𝑥D	𝑏𝑒	𝑎𝑛	𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟	𝑝𝑜𝑖𝑛𝑡	𝑜𝑓	𝐼,  
𝑎𝑛𝑑	𝑙𝑒𝑡	𝑛 ≥ 2. 𝑆𝑢𝑝𝑝𝑜𝑠𝑒	𝑡ℎ𝑎𝑡	𝑡ℎ𝑒	𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑠	𝑓<, 𝑓<<, …	𝑓>	𝑒𝑥𝑖𝑠𝑡	𝑎𝑛𝑑	𝑎𝑟𝑒	𝑐𝑜𝑛𝑡𝑖𝑛𝑜𝑢𝑠	𝑖𝑛	𝑎 
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑	𝑜𝑓	𝑥D𝑎𝑛𝑑	𝑡ℎ𝑎𝑡	𝑓< 𝑥D = ⋯ = 𝑓>mA 𝑥D = 0, 𝑏𝑢𝑡	𝑓> 𝑥D ≠ 0. 𝑇ℎ𝑒𝑛, 
 
𝑖 					𝐼𝑓	𝑛	𝑖𝑠	𝑒𝑣𝑒𝑛	𝑎𝑛𝑑	𝑓>(𝑥D) > 0, 𝑡ℎ𝑒𝑛	𝑓	ℎ𝑎𝑠	𝑎	𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑚𝑖𝑛𝑚𝑢𝑚	𝑎𝑡	𝑥D. 
𝑖𝑖 			𝐼𝑓	𝑛	𝑖𝑠	𝑒𝑣𝑒𝑛	𝑎𝑛𝑑	𝑓> 𝑥D < 0, 𝑡ℎ𝑒𝑛	𝑓	ℎ𝑎𝑠	𝑎	𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑚𝑎𝑥𝑖𝑚𝑢𝑚	𝑎𝑡	𝑥D.	 
𝑖𝑖𝑖 	𝐼𝑓	𝑛	𝑖𝑠	𝑜𝑑𝑑, 𝑡ℎ𝑒𝑛	𝑓	ℎ𝑎𝑠	𝑛𝑒𝑖𝑡ℎ𝑒𝑟	𝑎	𝑛	𝑎	𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑚𝑖𝑛𝑖𝑚𝑢𝑚	𝑛𝑜𝑟	𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑚𝑎𝑥𝑖𝑚𝑢𝑚	𝑎𝑡	𝑥D. 

 
 
A proof of the above theorem appears on the following page (and like the proof of Taylor’s 
Theorem is partially based off of the proof provided in Bartle and Sherbert). 
 
 
 
 
 
 
 
 
 
 



Proof. For 𝑥D and 𝑥 both ∈ 𝐼, Taylor’s Theorem yields the following: 
 
 

𝑓 𝑥 = 𝑓 𝑥D +
𝑓> 𝑐
𝑛!

𝑥 − 𝑥D > 
 

where 𝑐 ∈ (𝑥D, 𝑥). Note that if 𝑓> 𝑥D ≠ 0, then, since 𝑓> is continuous, there must be an 
interval 𝑈 containing 𝑥D such that 𝑓>(𝑥) will have the same sign as 𝑓>(𝑥D) for 𝑥 ∈ 𝑈. Since 𝑥 ∈
𝑈, 𝑐 must also belong to 𝑈 (since 𝑐 ∈ 𝑥D, 𝑥 	). Thus, 𝑓>(𝑐) and 𝑓>(𝑥D) will have the same sign. 
 
First, suppose that 𝑛 is even and consider the two cases: 
 
 𝑖 	𝑓> 𝑥D > 0.	Since 𝑓>(𝑐) has the same sign, then 𝑓> 𝑐 > 0. Moreover,
 𝑥 − 𝑥D > ≥ 0 for 𝑥 ∈ 𝑈, meaning that 𝑅>mA 𝑥 ≥ 0. In other words, 𝑓 𝑥 ≥ 𝑓(𝑥D) for 
  𝑥 ∈ 𝑈, which means that 𝑓 has a relative minimum at 𝑥D. 
 
 (𝑖𝑖) 𝑓> 𝑥D < 0. This implies that 𝑅>mA 𝑥 ≤ 0 for 𝑥 ∈ 𝑈. Thus, 𝑓 𝑥 ≤ 𝑓(𝑥D) for 
 𝑥 ∈ 𝑈, meaning that 𝑓 has a relative maximum at 𝑥D. 
 
Now suppose that 𝑛 is odd. 
 
Note that 𝑥 − 𝑥D > > 0 for 𝑥 > 𝑥D and that 𝑥 − 𝑥D > < 0	for 𝑥 < 𝑥D. If 𝑥 ∈ 𝑈, then 𝑅>mA(𝑥) 
will have different signs to the left and right of 𝑥D. This means that 𝑓 does not have a relative 
minimum nor a relative maximum at 𝑥D.       ∎ 
 

One should note that this just one of many various tests. Many more exist – and the 
results of nearly all of them can be derived with a quick use for Taylor’s Theorem. A survey of 
many such tests can be found in the paper by Sheldon Gordon. 
 
 Convexity. Recall that a function 𝑓 is convex on some interval if for any 𝑡 such that 
 0 < 𝑡 < 1 and points 𝑥A, 𝑥L in the interval then 
 
 

𝑓 1 − 𝑡 𝑥A + 𝑥L ≤ 1 − 𝑡 𝑓 𝑥A + 𝑡𝑓 𝑥L . 
 
 At first glance, Taylor’s Theorem may not appear to be applicable here. However, 
Taylor’s Theorem is actually quite useful in proving some results regarding convexity. 
Moreover, Taylor’s Theorem provides an useful tool for quickly seeing whether a function is 
convex or not. 
 To see this, first recall that an inflection point, in informal terms, is a point at which a 
function changes from being concave (i.e., concave downward) to convex (i.e., concave upward). 
One of the “tests” in the paper by Gordon mentioned above allows for determining whether a 
function has an inflection point at a certain point (89). 
 
 
 



Third Derivative Test for Inflection Points. Suppose that a function 𝑓 is such that 𝑓< 𝑥D = 0 
and 𝑓<< 𝑥D = 0. Then,  
 
𝑖 	𝐼𝑓	𝑓<<< 𝑥D ≠ 0, 𝑡ℎ𝑒𝑛	𝑓	ℎ𝑎𝑠	𝑎𝑛	𝑖𝑛𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛	𝑝𝑜𝑖𝑛𝑡	𝑎𝑡	𝑥D. 
𝑖𝑖 𝐼𝑓	𝑓<<< 𝑥D = 0, 𝑡ℎ𝑒𝑛	𝑡ℎ𝑒	𝑡𝑒𝑠𝑡	𝑖𝑠	𝑖𝑛𝑐𝑜𝑛𝑐𝑙𝑢𝑠𝑖𝑣𝑒. 

  
Rather than prove this result, an example demonstrating the applicability of Taylor’s Theorem 
follows. 
 
 Gordon provides a nice example (: 𝑓 𝑥 = 𝑒m�g (91). At first glance, it is likely not clear 
where an inflection point might fall (or if 𝑓 even has an inflection point). But, consider applying 
Taylor’s Theorem with 𝑛 = 3 and 𝑥D = 0. Note that 𝑓< 0 = 𝑓<< 0 = 0. 
 

𝑒m�g ≈ 1 − 6
𝑥l

6
= 1 − 𝑥l 

 
From this approximation, it more readily apparent that 𝑓 has inflection point (specifically, at 
 𝑥D = 0). Indeed, 𝑓′′′(0) ≠ 0. By the above theorem, then, 𝑓 has an inflection point at 0. 
 
 

A Financial Application of Taylor’s Theorem 
 
 Finance has made great use of Taylor’s Theorem. The reason primarily corresponds to 
the ability of Taylor’s Theorem in making relatively precise approximations. Indeed, the 
application that follows is just a numerical approximation problem in a more practical setting. 
 This application will concern approximating the change in the price of a bond (note that 
the logic can extend to other types of assets as well). First, some preliminaries. An overarching 
assumption is that bond prices as functions of interest rates. The goal is to understand how bond 
prices respond to a change in the interest rate 𝑟. In other words, the following needs to be 
approximated: 
 

𝑝 𝑟 − 𝑝 𝑟D  
 

For clarity, note that the first term in any series Taylor approximation is 𝑓(𝑥D). In the above, this 
term has simply been moved to the left-hand side. All that is left to do is to determine what is on 
the right-hand side. In order to do so, the following concepts are need: bond duration and bond 
convexity. 
 In informal terms, bond duration constitutes the amount of time (on average) that a bond 
holder must wait before receiving cash flows. Note the price of a bond is simply the present 
value of its cash flows 𝑐\ at time 𝑡\: 
 
 

𝑝 𝑟 = 𝑐\𝑒m�b�
>

\]A

 

 



In more precise terms, bond duration can be defined as “a weighted average of the times when 
payments are made” (Hull 92). Mathematically, this is 
 

𝐷(𝑟) = 𝑡\
𝑐\𝑒m�b�
𝑝 𝑟

>

\]A

 

 
 
An important connection to make here concerns the fact that duration closely relates to the first 
derivative of 𝑝(𝑟). To see this, first note the following approximation: 
 

𝑝 𝑟 − 𝑝 𝑟D ≈ 𝑝′(𝑟)(𝑟D − 𝑟) 
 
Going a step further, note that by actually taking the first derivative of 𝑝(𝑟), the following is 
obtained: 
 

𝑝 𝑟 − 𝑝 𝑟D ≈ 𝑟 − 𝑟D 𝑐\𝑒m�b�
>

\]A

 

 
Note the change in sign of 𝑟D − 𝑟 , which implies that there is a negative relationship between 
the price of the bond and the interest rate. The above can be rewritten as follows: 
 

𝑝 𝑟 − 𝑝 𝑟D ≈ 𝑟 − 𝑟D 𝑝 𝑟 𝐷(𝑟). 
 
With this, the relationship between the duration and the first derivative can be seen: 
 

𝑝 𝑟 − 𝑝 𝑟D
𝑝 𝑟

≈ 𝑟 − 𝑟D 𝐷(𝑟) 

 
One should immediately note that the right-hand side is just the second term of the Taylor Series 
Expansion!  
 This approximation can be made more precise by utilizing bond convexity. Unlike 
duration which had a very precise financial defintion behind it, the concept of bond convexity is 
very much just the standard mathematical idea of convexity: it “measures the curvature” of 𝑝 𝑟 ” 
(95). Hence, in mathematical terms, convexity can be written as follows: 
 

𝐶 𝑟 =
1

𝑝 𝑟
𝑝<< 𝑟 =

𝑐\𝑒m�b�>
\]A

𝑝 𝑟
 

 
 
 
 
 
 
 



 Putting everything together, Taylor’s Theorem gives the following relationships: 
 

𝑝 𝑟 − 𝑝 𝑟D ≈ 𝑝< 𝑟 𝑟D − 𝑟 +
1
2
𝑝<< 𝑟 𝑟D − 𝑟 L	 

 
Rewriting, one can see that 
 

𝑝 𝑟 − 𝑝 𝑟D
𝑝 𝑟

≈ 𝑟 − 𝑟D 𝐷 𝑟 +
1
2
𝐶 𝑟 𝑟 − 𝑟D L 

 
Hence, Taylor’s Theorem makes an important result readily apparent: the change in the 

price of a bond in response to a change in the interest rate is related to a bond’s duration and 
convexity. Without Taylor’s Theorem, this result would be very difficult to see. With that said, 
this application of Taylor’s Theorem is quite straightforward – as stated earlier, this is simply 
numerical approximation in more general terms. Given the mathematical defintion of 𝑝(𝑟) and 
𝐷(𝑟), the above result is simple to derive as shown. The only real “trick” is finding duration in 
the first derivative of 𝑝 𝑟 .  

One might wonder: what use is this since we could just plug in 𝑟 and 𝑟D in the left-hand 
side of the result above? While true, the right-hand side of this result is nice for two reasons. 
First, note that the left-hand side is not all that “calculation friendly” (recall what 𝑝(𝑟) 
represents!). In contrast, one can make a quick, yet quite precise, approximation in a few seconds 
with the right-hand side. The second reason pertains to the discussion above: the right-hand side 
reveals some of the inner mechanics of what is driving the change in price in response to change 
in interest rate. 
  

Conclusion 
 

 What makes Taylor’s Theorem such a powerful tool is the fact that it makes relationships 
that may initially be unobservable readily apparent. From inequalities to extrema to inflection 
points, quick applications of Taylor’s Theorem can make many results apparent in seconds. More 
importantly, Taylor’s Theorem is an excellent topic to introduce business and finance related 
applications. Indeed, as shown above, a crucial result relating the change in a bond price in 
response to a change in the interest rate to duration and convexity can be derived quite easily with 
Taylor’s Theorem. In fact, the process of doing so, is just an exercise in numerical approximation. 
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