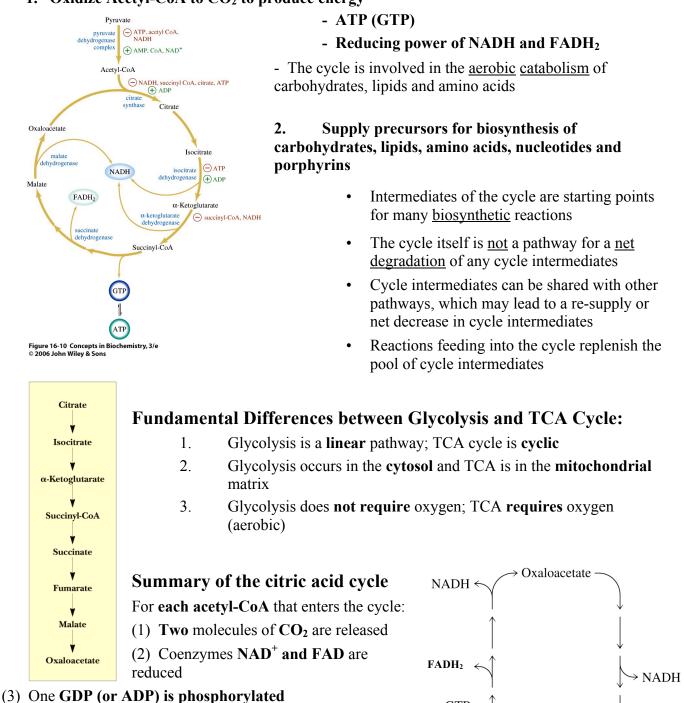

TCA CYCLE (Citric Acid Cycle)

- The Citric Acid Cycle is also known as:
 - Kreb's cycle
 - Sir Hans Krebs
 - Nobel prize, 1953
 - TCA (tricarboxylic acid) cycle
- The citric acid cycle requires **aerobic** conditions!!!!
 - Cells have evolved to use oxygen
 - Oxygen serves as the final electron acceptor as pyruvate (from glycolysis) is converted (oxidized) completely to CO₂ and H₂O
 - If cell is under anaerobic conditions energy production is not too efficient - ~10% of energy possible is generated
 - **Pyruvate** converted to **Acetyl-CoA by PDH** and then **Acetyl-CoA** enters the TCA cycle


Energy in the citric acid cycle

- Energy of the oxidation reactions is largely conserved as <u>reducing power</u>
- Coenzymes reduced:
 - NAD⁺/NADH
 - FAD/FADH₂
- Reduced coenzymes used by electron transport chain and oxidative phosphorylation to make ATP

The Tricarboxylic acid (TCA) cycle (citric acid cycle) is **amphibolic** (both *<u>catabolic</u> and <u>anabolic</u>)*

The TCA Cycle Serves Two Purposes:

1. Oxidize Acetyl-CoA to CO₂ to produce energy

GTP

or

ATP

(4) The initial acceptor molecule oxaloacetate is reformed

Energy conservation by the cycle

• Energy is conserved in the reduced coenzymes NADH, FADH₂ and one GTP

> NADH

- NADH, FADH₂ can be oxidized to produce ATP by oxidative phosphorylation
- Energy is also conserved in either ATP or GTP- produced by **substrate-level phosphorylation** (from the thioester bond in succinyl-CoA.)
- The use of many steps in the oxidation of acetyl CoA to CO₂ enables conservation of most of the energy as work with little lost as heat

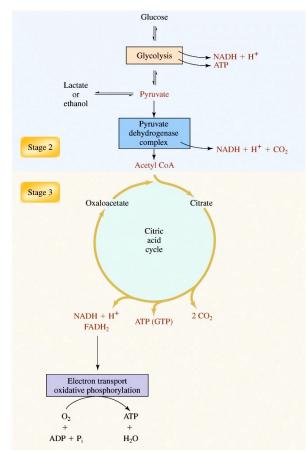
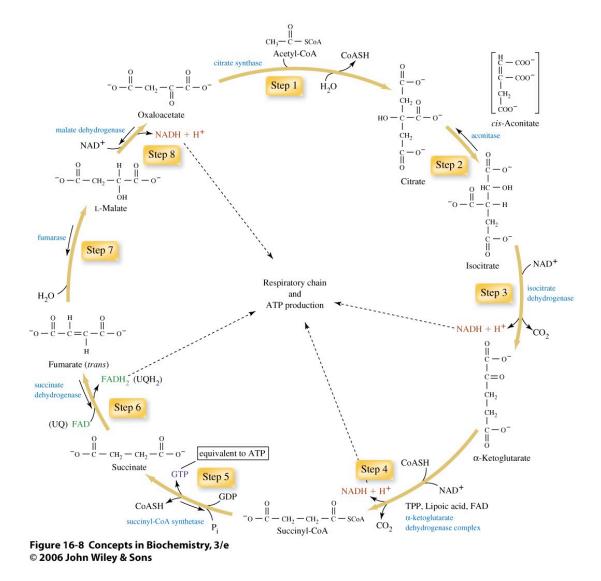
Reaction Number ^a	Reaction	Enzyme	Prosthetic Group	Reaction Type ^b
1	Acetyl-CoA + oxaloacetate + $H_2O \implies$ citrate + CoA	Citrate synthase		3,4
2	Citrate \implies cis-aconitate \implies isocitrate	Aconitase	Fe–S	4
3	Isocitrate + NAD ⁺ \implies α -ketoglutarate + CO ₂ + NADH + H ⁺	Isocitrate dehydrogenase		1, 4
4	α -Ketoglutarate + NAD ⁺ + CoA \rightleftharpoons succinyl-CoA + CO ₂ + NADH + H ⁺	α-Ketoglutarate dehydrogenase complex	Lipoamide, FAD, TPP	1,4
5	Succinyl-CoA + P_i + ADP or GDP \implies succinate + ATP or GTP + CoA	Succinyl-CoA synthetase		2
6	Succinate + FAD (enzyme bound) ==== fumarate + FADH ₂ (enzyme bound)	Succinate dehydrogenase	FAD, Fe–S	1
7	Fumarate + $H_2O \implies L$ -malate	Fumarase		4
8	L-Malate + $NAD^+ \implies$ oxaloacetate + $NADH + H^+$	Malate dehydrogenase		1

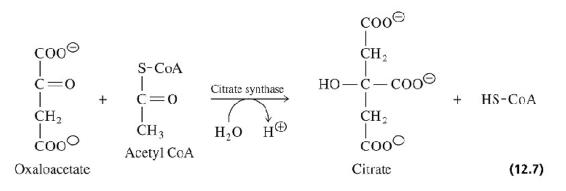
^{*a*} The reaction numbers correspond to the steps in Figure 16.8.

^b Reaction type: 1, oxidation-reduction; 2, phosphoryl group transfer; 3, hydrolysis; 4, nonhydrolytic cleavage (addition or elimination);

5, isomerization-rearrangement; 6, bond formation coupled to ATP cleavage.

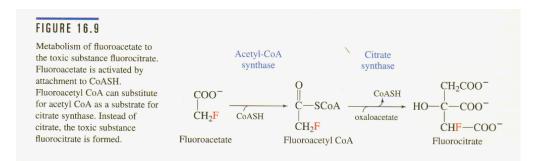
Table 16-2 Concepts in Biochemistry, 3/e © 2006 John Wiley & Sons

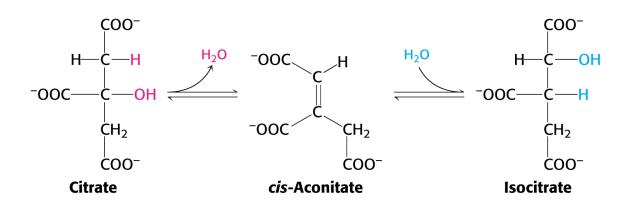

Figure 16-1 Concepts in Biochemistry, 3/e © 2006 John Wiley & Sons

8 REACTIONS OF THE TCA CYCLE:

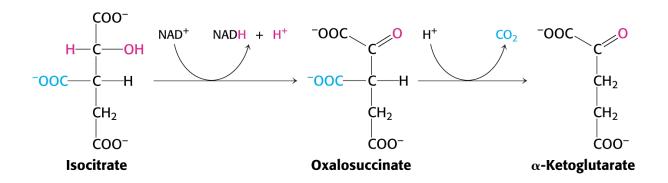
1. Formation of Citrate


- Citrate formed from condensation of acetyl CoA and oxaloacetate
- Addition of acetyl to the keto double bond of OAA = aldol condensation
- Only cycle reaction with C-C bond formation
- No energy of ATP hydrolysis needed
- **Synthase** is an enzyme that catalyzes addition to a double bond or elimination to form a double bond without needing ATP hydrolysis
- Both Hydrolysis Reaction and Non-hydrolytic cleavage (addition or elimination)

• Locoweed is toxic because it accumulates fluoroacetate

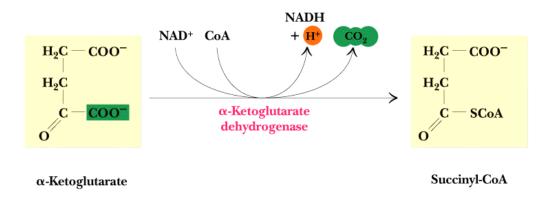


Locoweed contains fluoroacetate, which is transformed to toxic fluorocitrate in animals.

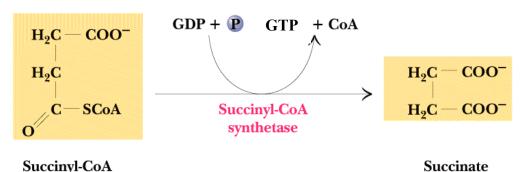

2. Aconitase

- Isomerization of citrate (3° alcohol) to isocitrate (2° alcohol)
- Aconitase contains an iron-sulfur center as a prosthetic group
- Catalyzes a **lyase** reaction that results in rearrangement of citrate with a tertiary alcohol to isocitrate with a secondary alcohol
 - Non-hydrolytic cleavage (addition or elimination)
 - Goes through an enzyme bound cis-aconitate intermediate
 - Elimination of H₂O from citrate to form C=C bond of *cis*-aconitate
 - Rearrangement allows the further oxidation of the molecule

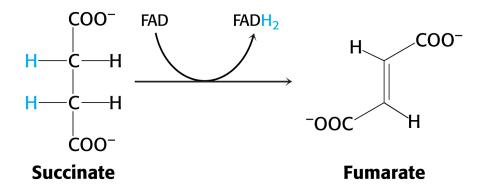
3. Isocitrate Dehydrogenase


- First oxidative decarboxylation of isocitrate to α-ketoglutarate (α-kg)
- Metabolically irreversible reaction
- One of four oxidation-reduction reactions of the cycle
- Also a Non-hydrolytic cleavage reaction (addition or elimination)
- Hydride ion from the C-2 of isocitrate is transferred to NAD⁺ to form NADH
- Oxalosuccinate is **decarboxylated** to α-ketoglutarate

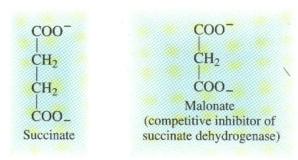
4. α-Ketoglutarate Dehydrogenase Complex


- Second oxidative decarboxylation reaction
- Also a Non-hydrolytic cleavage reaction (addition or elimination)
- α-Ketoglutarate converted to Succinyl-CoA
- Similar to pyruvate dehydrogenase complex except a succinyl group is activated, not acetyl
 - Same coenzymes, identical mechanisms
- Succinyl-CoA thioester is VERY high energy
- Generates NADH

- Purpose of step: Collect energy from α-ketoglutarate decarboxylation into the high energy succinyl-CoA molecule


5. Succinyl-CoA Synthetase (Formation of succinate)

- Free energy in thioester bond of succinyl CoA is conserved as GTP (or ATP in plants, some bacteria)
- Enzyme: Succinyl-CoA Synthetase
 - Two forms in higher animals: One prefers ADP the other GDP)
 - **SUBSTRATE-LEVEL PHOSPHORYLATION** = Formation of ATP directly coupled to the reaction (group transfer reaction)
 - Only step where ATP (GTP) is formed directly in the TCA cycle
 - All other ATP is produced by oxidative phosphorylation
 - *Oxidative phosphorylation* is the oxidation of reduced co-factors NADH and FADH₂ to O₂ release of energy drives ATP formation from ADP + Pi



6. The Succinate Dehydrogenase (SDH) Complex

- Located on the inner mitochondrial membrane (other components are in the matrix)
- **Oxidation-reduction** reaction that forms a carbon-carbon double bond
- Succinate is oxidized to fumarate, while FAD is reduced to FADH₂
 - NAD⁺ functions in reactions that interconvert hydroxyl and carbonyl groups
- Dehydrogenation is stereospecific; only the trans isomer is formed
- Also known as Complex II of the electron transport chain direct feed of electrons from FADH₂ into the electron transport chain.

- Substrate analog malonate is a competitive inhibitor of the SDH complex
- Malonate is a structural analog of succinate
- Malonate binds to the enzyme active site, and is a competitive inhibitor

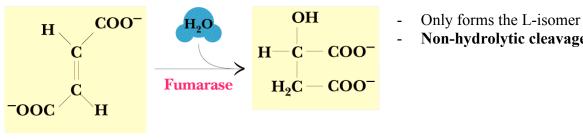


FIGURE 16.10

Structures of succinate, the normal substrate for succinate dehydrogenase, and a competitive inhibitor of succinate dehydrogenase, malonate. Malonate is toxic since it blocks a reaction in the citric acid cycle.

7. Fumarase

Stereospecific trans addition of water to the double bond of fumarate to form L-malate

Non-hydrolytic cleavage reaction

NAD⁺

Malate

dehydrogenase

NAD+ NADH

NADH

+ H⁺

0

H₉C

COO

COO.

Oxaloacetate

Fumarate

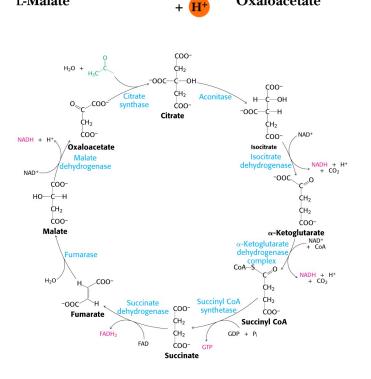
Malate

H----C

H₉C

OH

L-Malate


COOT

COO

- 8. Malate Dehydrogenase
 - Regeneration of oxaloacetate from Lmalate
 - Enzyme: malate dehydrogenase (oxidation - reduction reaction)
 - Generates NADH

OVERALL SUMMARY OF TCA CYCLE:

- 1. Oxidation of Acetyl-CoA to CO₂
 - CO₂ leaves at steps 3 and 4
- 2. 3 NAD+ are reduced to NADH by dehydrogenase reactions
 - Steps 3, 4, and 8 _
 - isocitrate dehydrogenase -
 - α -ketoglutarate dehydrogenase -
 - malate dehydrogenase _
- 3. 1 molecule of FAD reduced to FADH2
 - Step 6 Succinate dehydrogenase
- 4. 1 phosphoanhydride bond formed in ATP or GTP
 - Substrate level phosphorylation at step 5: Succinyl-CoA Synthetase -
 - Generated from energy stored in CoA thioester

So, per pyruvate:

4 NADH (one from pyruvate dehydrogenase complex + 3 TCA) 1 ATP or GTP 1 FADH₂

ANIMATION:

http://www.wiley.com/college/fob/anim/ Chapter 16

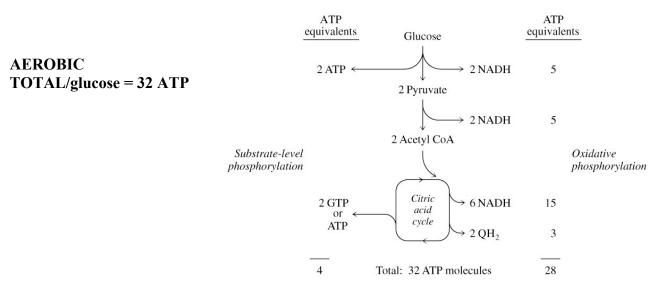
• Fig. 16-2 -- The Reactions of the Citric Acid Cycle

ENERGY FROM THE TCA CYCLE:

Reduced Coenzymes Fuel the Production of ATP

- Each acetyl CoA entering the cycle nets:
 - (1) **3 NADH**
 - (2) 1 FADH₂
 - (3) **1 GTP** (or **1 ATP**)
- Oxidation of each NADH yields 2.5 ATP
- Oxidation of each FADH₂ yields **1.5** ATP
- <u>Complete oxidation</u> of 1 acetyl CoA = 10 ATP

Table 16.3


The ATP, NADH, and FADH₂ balance sheet for the pyruvate dehydrogenase complex and the citric acid cycle

Reaction		ATP (GTP) Change ^b	NADH Change ^b	FADH ₂ Change ^b
Number ^a	Reaction	(per pyruvate)		
	Pyruvate oxidation			
	Pyruvate dehydrogenase complex	0	+1	0
	Pyruvate oxidation total <i>Citric acid cycle</i>	0	+1	0
3	Isocitrate + $NAD^+ \implies \alpha$ -ketoglutarate + CO_2 + $NADH$ + H^+	0	+1	0
4	$\alpha \text{-Ketoglutarate} + \text{NAD}^{+} + \text{CoA} \Longrightarrow \text{succinyl-CoA} + \text{CO}_2 + \text{NADH} + \text{H}^{+}$	0	+1	0
5	Succinyl-CoA + GDP or ADP + $P_i \implies$ succinate + GTP or ATP + CoASH	+1	0	0
6	Succinate + FAD \implies fumarate + FADH ₂	0	0	+1
8	L-Malate + NAD ⁺ \implies oxaloacetate + NADH + H ⁺	0	+1	0
	Citric acid cycle total	+1	+3	+1
	Grand Total	+1	+4	+1

^{*a*} The reaction numbers correspond to the steps in Figure 16.8.

 ${}^{b}A$ + number indicates a production of ATP, NADH, or FADH₂. For example, for each pyruvate that is converted to acetyl-CoA by the pyruvate dehydrogenase complex, 1 NADH is formed.

Table 16-3 Concepts in Biochemistry, 3/e © 2006 John Wiley & Sons

Glucose degradation via glycolysis, citric acid cycle, and oxidative phosphorylation

If anerobic – Lactate is formed from pyruvate after glycolysis by *lactate dehydrogenase* and the NADH formed is USED. Therefore, net gain of 2 ATP/glucose, not 32! (Hence 5-10% efficiency)

- Occurs in muscles during exercise because they go into oxygen debt.
- Soreness due to H⁺ from lactic acid
- Metabolism in muscles returns to normal when oxygen replenished

**Should be able to determine #ATP produced given a starting and stopping point in glycolysis or citric acid cycle. (i.e. know where NADH/FADH₂ or ATP are made and how many.

Regulation of the Citric Acid Cycle

- Regulation depends on the ENERGY LEVEL of cells key to keep energy level constant
- When cells have lots of energy (ATP, NADH), the reactions involved in making more are slowed
- The reverse is also true.
- Pathway controlled by:
 - (1) Small molecule modulators (products of the cycle can inhibit)
 - (2) Covalent modification of cycle enzymes
 - (3) Supply of acetyl CoA

Regulation of the PDH complex

- Highly regulated

- Regulation of pyruvate dehydrogenase complex controls acetyl CoA supply
- Gatekeeper to aerobic metabolism
- Represents the committed step because pyruvate can still go back to glucose (gluconeogenesis) but acetyl-CoA cannot go back to glucose.
- Inhibitors: Indicators of high energy status
 - NADH, ATP, Acetyl-CoA, Fatty acids (degraded to form acetyl-CoA)
- Stimulators: Indicators of low energy status
 - \circ AMP, NAD⁺, Coenzyme A (CoA-SH)

Regulation of citrate synthase

- Inhibitors: NADH, ATP, succinyl-CoA, citrate
- Stimulators: ADP

Regulation of isocitrate dehydrogenase (ICDH)

- Inhibitors: NADH and ATP
- Stimulators: NAD⁺, ADP and Ca⁺²

Regulation of α -ketoglutarate dehydrogenase complex

- Inhibitors: NADH, ATP and succinyl-CoA
- Stimulators: NAD⁺, ADP, AMP

ANIMATION:

http://www.wiley.com/college/fob/anim/ Chapter 16

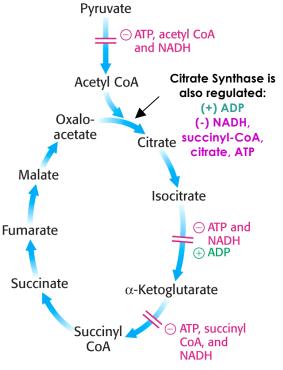

Fig. 16-14 -- Regulation of the Citric Acid Cycle

Table 16.4

The important regulatory enzymes o	f pyruvate and acetyl-CoA metabolism
------------------------------------	--------------------------------------

Enzyme Name	\oplus Modulators	\bigcirc Modulators	Comments
Pyruvate dehydrogenase complex	AMP, NAD ⁺ , CoA	ATP, acetyl-CoA, NADH	Also regulated by covalent modification
Citrate synthase	ADP	NADH, succinyl-CoA, citrate, ATP	Activity depends on metabolite concentrations
Isocitrate dehydrogenase	ADP	ATP	Activity depends on metabolite concentrations
α-Ketoglutarate dehydrogenase complex	—	Succinyl-CoA, NADH	Activity depends on metabolite concentrations

Table 16-4 Concepts in Biochemistry, 3/e © 2006 John Wiley & Sons

POINTS OF REGULATION