
3

C H A P T E R

like output a string, compute a math expression, or display a widget
screen. Tcl casts everything into the mold of a command, even programmi
I. Tc
l Ba

sic
s

 1
Tcl Fundamentals 1

This chapter describes the basic syntax rules for the Tcl scripting language. It
describes the basic mechanisms used by the Tcl interpreter: substitution
and grouping. It touches lightly on the following Tcl commands: puts,
format, set, expr, string, while, incr, and proc.
Tcl is a string-based command lan-
guage. The language has only a few fundamental constructs and relatively little
syntax, which makes it easy to learn. The Tcl syntax is meant to be simple. Tcl is
designed to be a glue that assembles software building blocks into applications.
A simpler glue makes the job easier. In addition, Tcl is interpreted when the
application runs. The interpreter makes it easy to build and refine your applica-
tion in an interactive manner. A great way to learn Tcl is to try out commands
interactively. If you are not sure how to run Tcl on your system, see Chapter 2
for instructions for starting Tcl on UNIX, Windows, and Macintosh systems.

This chapter takes you through the basics of the Tcl language syntax. Even
if you are an expert programmer, it is worth taking the time to read these few
pages to make sure you understand the fundamentals of Tcl. The basic mecha-
nisms are all related to strings and string substitutions, so it is fairly easy to
visualize what is going on in the interpreter. The model is a little different from
some other programming languages with which you may already be familiar, so
it is worth making sure you understand the basic concepts.

Tcl Commands

Tcl stands for Tool Command Language. A command does something for you,

on the
ng con-

PTR
This is a sample chapter of "Practical Programming in Tcl/Tk", 4th edition
ISBN: 0-13-03850-3
For the full test, visit http://www.prenhall.com
© 2003 Pearson Education.
All Rights Reserved

4 Tcl Fundamentals Chap. 1

structs like variable assignment and procedure definition. Tcl adds a tiny
amount of syntax needed to properly invoke commands, and then it leaves all the
hard work up to the command implementation.

The basic syntax for a Tcl command is:
command arg1 arg2 arg3 ...

The command is either the name of a built-in command or a Tcl procedure.
White space (i.e., spaces or tabs) is used to separate the command name and its
arguments, and a newline (i.e., the end of line character) or semicolon is used to
terminate a command. Tcl does not interpret the arguments to the commands
except to perform grouping, which allows multiple words in one argument, and
substitution, which is used with programming variables and nested command
calls. The behavior of the Tcl command processor can be summarized in three
basic steps:

• Argument grouping.
• Value substitution of nested commands, variables, and backslash escapes.
• Command invocation. It is up to the command to interpret its arguments.

This model is described in detail in this Chapter.

Hello, World!

Example 1–1 The “Hello, World!” example.

puts stdout {Hello, World!}
=> Hello, World!

In this example, the command is puts, which takes two arguments: an I/O
stream identifier and a string. puts writes the string to the I/O stream along
with a trailing newline character. There are two points to emphasize:

• Arguments are interpreted by the command. In the example, stdout is used
to identify the standard output stream. The use of stdout as a name is a
convention employed by puts and the other I/O commands. Also, stderr is
used to identify the standard error output, and stdin is used to identify the
standard input. Chapter 9 describes how to open other files for I/O.

• Curly braces are used to group words together into a single argument. The
puts command receives Hello, World! as its second argument.

The braces are not part of the value.
The braces are syntax for the interpreter, and they get stripped off before

the value is passed to the command. Braces group all characters, including new-
lines and nested braces, until a matching brace is found. Tcl also uses double
quotes for grouping. Grouping arguments will be described in more detail later.

I. Tc
l Ba

sic
s

Variables 5

Variables

The set command is used to assign a value to a variable. It takes two arguments:
The first is the name of the variable, and the second is the value. Variable names
can be any length, and case is significant. In fact, you can use any character in a
variable name.

It is not necessary to declare Tcl variables before you use them.
The interpreter will create the variable when it is first assigned a value.

The value of a variable is obtained later with the dollar-sign syntax, illustrated
in Example 1–2:

Example 1–2 Tcl variables.

set var 5
=> 5
set b $var
=> 5

The second set command assigns to variable b the value of variable var.
The use of the dollar sign is our first example of substitution. You can imagine
that the second set command gets rewritten by substituting the value of var for
$var to obtain a new command.

set b 5

The actual implementation of substitution is more efficient, which is important
when the value is large.

Command Substitution

The second form of substitution is command substitution. A nested command is
delimited by square brackets, []. The Tcl interpreter takes everything between
the brackets and evaluates it as a command. It rewrites the outer command by
replacing the square brackets and everything between them with the result of
the nested command. This is similar to the use of backquotes in other shells,
except that it has the additional advantage of supporting arbitrary nesting of
commands.

Example 1–3 Command substitution.

set len [string length foobar]
=> 6

In Example 1–3, the nested command is:
string length foobar
This command returns the length of the string foobar. The string com-
mand is described in detail starting on page 49. The nested command runs first.

6 Tcl Fundamentals Chap. 1

Then, command substitution causes the outer command to be rewritten as if it
were:

set len 6

If there are several cases of command substitution within a single com-
mand, the interpreter processes them from left to right. As each right bracket is
encountered, the command it delimits is evaluated. This results in a sensible
ordering in which nested commands are evaluated first so that their result can
be used in arguments to the outer command.

Math Expressions

The Tcl interpreter itself does not evaluate math expressions. Tcl just does
grouping, substitutions and command invocations. The expr command is used to
parse and evaluate math expressions.

Example 1–4 Simple arithmetic.

expr 7.2 / 4
=> 1.8

The math syntax supported by expr is the same as the C expression syntax.
The expr command deals with integer, floating point, and boolean values. Logi-
cal operations return either 0 (false) or 1 (true). Integer values are promoted to
floating point values as needed. Octal values are indicated by a leading zero (e.g.,
033 is 27 decimal). Hexadecimal values are indicated by a leading 0x. Scientific
notation for floating point numbers is supported. A summary of the operator pre-
cedence is given on page 20.

You can include variable references and nested commands in math expres-
sions. The following example uses expr to add the value of x to the length of the
string foobar. As a result of the innermost command substitution, the expr com-
mand sees 6 + 7, and len gets the value 13:

Example 1–5 Nested commands.

set x 7
set len [expr [string length foobar] + $x]
=> 13

The expression evaluator supports a number of built-in math functions.
(For a complete listing, see page 21.) Example 1–6 computes the value of pi:

Example 1–6 Built-in math functions.
set pi [expr 2*asin(1.0)]
=> 3.1415926535897931

I. Tc
l Ba

sic
s

Backslash Substitution 7

The implementation of expr is careful to preserve accurate numeric values
and avoid conversions between numbers and strings. However, you can make
expr operate more efficiently by grouping the entire expression in curly braces.
The explanation has to do with the byte code compiler that Tcl uses internally,
and its effects are explained in more detail on page 15. For now, you should be
aware that these expressions are all valid and run faster than the examples
shown above:

Example 1–7 Grouping expressions with braces.

expr {7.2 / 4}
set len [expr {[string length foobar] + $x}]
set pi [expr {2*asin(1.0)}]

Backslash Substitution

The final type of substitution done by the Tcl interpreter is backslash substitu-
tion. This is used to quote characters that have special meaning to the inter-
preter. For example, you can specify a literal dollar sign, brace, or bracket by
quoting it with a backslash. As a rule, however, if you find yourself using lots of
backslashes, there is probably a simpler way to achieve the effect you are striv-
ing for. In particular, the list command described on page 65 will do quoting for
you automatically. In Example 1–8 backslash is used to get a literal $:

Example 1–8 Quoting special characters with backslash.

set dollar \$foo
=> $foo
set x $dollar
=> $foo

Only a single round of interpretation is done.
The second set command in the example illustrates an important property

of Tcl. The value of dollar does not affect the substitution performed in the
assignment to x. In other words, the Tcl parser does not care about the value of a
variable when it does the substitution. In the example, the value of x and dollar
is the string $foo. In general, you do not have to worry about the value of vari-
ables until you use eval, which is described in Chapter 10.

You can also use backslash sequences to specify characters with their Uni-
code, hexadecimal, or octal value:

set escape \u001b
set escape \0x1b

set escape \033
The value of variable escape is the ASCII ESC character, which has char-
acter code 27. Table 1–1 on page 20 summarizes backslash substitutions.

8 Tcl Fundamentals Chap. 1

A common use of backslashes is to continue long commands on multiple
lines. This is necessary because a newline terminates a command. The backslash
in the next example is required; otherwise the expr command gets terminated by
the newline after the plus sign.

Example 1–9 Continuing long lines with backslashes.

set totalLength [expr [string length $one] + \
[string length $two]]

There are two fine points to escaping newlines. First, if you are grouping an
argument as described in the next section, then you do not need to escape new-
lines; the newlines are automatically part of the group and do not terminate the
command. Second, a backslash as the last character in a line is converted into a
space, and all the white space at the beginning of the next line is replaced by this
substitution. In other words, the backslash-newline sequence also consumes all
the leading white space on the next line.

Grouping with Braces and Double Quotes

Double quotes and curly braces are used to group words together into one argu-
ment. The difference between double quotes and curly braces is that quotes allow
substitutions to occur in the group, while curly braces prevent substitutions.
This rule applies to command, variable, and backslash substitutions.

Example 1–10 Grouping with double quotes vs. braces.

set s Hello
=> Hello
puts stdout "The length of $s is [string length $s]."
=> The length of Hello is 5.
puts stdout {The length of $s is [string length $s].}
=> The length of $s is [string length $s].

In the second command of Example 1–10, the Tcl interpreter does variable
and command substitution on the second argument to puts. In the third com-
mand, substitutions are prevented, so the string is printed as is.

In practice, grouping with curly braces is used when substitutions on the
argument must be delayed until a later time (or never done at all). Examples
include loops, conditional statements, and procedure declarations. Double quotes
are useful in simple cases like the puts command previously shown.

Another common use of quotes is with the format command. This is similar
to the C printf function. The first argument to format is a format specifier that
often includes special characters like newlines, tabs, and spaces. The easiest way

to specify these characters is with backslash sequences (e.g., \n for newline and
\t for tab). The backslashes must be substituted before the format command is

I. Tc
l Ba

sic
s

Grouping with Braces and Double Quotes 9

called, so you need to use quotes to group the format specifier.
puts [format "Item: %s\t%5.3f" $name $value]

Here format is used to align a name and a value with a tab. The %s and
%5.3f indicate how the remaining arguments to format are to be formatted. Note
that the trailing \n usually found in a C printf call is not needed because puts
provides one for us. For more information about the format command, see page
56.

Square Brackets Do Not Group

The square bracket syntax used for command substitution does not provide
grouping. Instead, a nested command is considered part of the current group. In
the command below, the double quotes group the last argument, and the nested
command is just part of that group.

puts stdout "The length of $s is [string length $s]."

If an argument is made up of only a nested command, you do not need to
group it with double-quotes because the Tcl parser treats the whole nested com-
mand as part of the group.

puts stdout [string length $s]

The following is a redundant use of double quotes:
puts stdout "[expr $x + $y]"

Grouping before Substitution

The Tcl parser makes a single pass through a command as it makes group-
ing decisions and performs string substitutions. Grouping decisions are made
before substitutions are performed, which is an important property of Tcl. This
means that the values being substituted do not affect grouping because the
grouping decisions have already been made.

The following example demonstrates how nested command substitution
affects grouping. A nested command is treated as an unbroken sequence of char-
acters, regardless of its internal structure. It is included with the surrounding
group of characters when collecting arguments for the main command.

Example 1–11 Embedded command and variable substitution.

set x 7; set y 9
puts stdout $x+$y=[expr $x + $y]
=> 7+9=16

In Example 1–11, the second argument to puts is:
$x+$y=[expr $x + $y]

The white space inside the nested command is ignored for the purposes of

grouping the argument. By the time Tcl encounters the left bracket, it has
already done some variable substitutions to obtain:

10 Tcl Fundamentals Chap. 1

7+9=

When the left bracket is encountered, the interpreter calls itself recursively
to evaluate the nested command. Again, the $x and $y are substituted before
calling expr. Finally, the result of expr is substituted for everything from the left
bracket to the right bracket. The puts command gets the following as its second
argument:

7+9=16

Grouping before substitution.
The point of this example is that the grouping decision about puts’s second

argument is made before the command substitution is done. Even if the result of
the nested command contained spaces or other special characters, they would be
ignored for the purposes of grouping the arguments to the outer command.
Grouping and variable substitution interact the same as grouping and command
substitution. Spaces or special characters in variable values do not affect group-
ing decisions because these decisions are made before the variable values are
substituted.

If you want the output to look nicer in the example, with spaces around the
+ and =, then you must use double quotes to explicitly group the argument to
puts:

puts stdout "$x + $y = [expr $x + $y]"

The double quotes are used for grouping in this case to allow the variable and
command substitution on the argument to puts.

Grouping Math Expressions with Braces

It turns out that expr does its own substitutions inside curly braces. This is
explained in more detail on page 15. This means you can write commands like
the one below and the substitutions on the variables in the expression still occur:

puts stdout "$x + $y = [expr {$x + $y}]"

More Substitution Examples

If you have several substitutions with no white space between them, you
can avoid grouping with quotes. The following command sets concat to the value
of variables a, b, and c all concatenated together:

set concat ab$c

Again, if you want to add spaces, you’ll need to use quotes:
set concat "$a $b $c"

In general, you can place a bracketed command or variable reference any-
where. The following computes a command name:

[findCommand $x] arg arg

When you use Tk, you often use widget names as command names:

$text insert end "Hello, World!"

I. Tc
l Ba

sic
s

Procedures 11

Procedures

Tcl uses the proc command to define procedures. Once defined, a Tcl procedure
is used just like any of the other built-in Tcl commands. The basic syntax to
define a procedure is:

proc name arglist body

The first argument is the name of the procedure being defined. The second
argument is a list of parameters to the procedure. The third argument is a com-
mand body that is one or more Tcl commands.

The procedure name is case sensitive, and in fact it can contain any charac-
ters. Procedure names and variable names do not conflict with each other. As a
convention, this book begins procedure names with uppercase letters and it
begins variable names with lowercase letters. Good programming style is impor-
tant as your Tcl scripts get larger. Tcl coding style is discussed in Chapter 12.

Example 1–12 Defining a procedure.

proc Diag {a b} {
set c [expr {sqrt($a * $a + $b * $b)}]
return $c

}
puts "The diagonal of a 3, 4 right triangle is [Diag 3 4]"
=> The diagonal of a 3, 4 right triangle is 5.0

The Diag procedure defined in the example computes the length of the diag-
onal side of a right triangle given the lengths of the other two sides. The sqrt
function is one of many math functions supported by the expr command. The
variable c is local to the procedure; it is defined only during execution of Diag.
Variable scope is discussed further in Chapter 7. It is not really necessary to use
the variable c in this example. The procedure can also be written as:

proc Diag {a b} {

return [expr {sqrt($a * $a + $b * $b)}]

}

The return command is used to return the result of the procedure. The
return command is optional in this example because the Tcl interpreter returns
the value of the last command in the body as the value of the procedure. So, the
procedure could be reduced to:

proc Diag {a b} {

expr {sqrt($a * $a + $b * $b)}
}

Note the stylized use of curly braces in the example. The curly brace at the
end of the first line starts the third argument to proc, which is the command
body. In this case, the Tcl interpreter sees the opening left brace, causing it to

ignore newline characters and scan the text until a matching right brace is
found. Double quotes have the same property. They group characters, including
newlines, until another double quote is found. The result of the grouping is that

12 Tcl Fundamentals Chap. 1

the third argument to proc is a sequence of commands. When they are evaluated
later, the embedded newlines will terminate each command.

The other crucial effect of the curly braces around the procedure body is to
delay any substitutions in the body until the time the procedure is called. For
example, the variables a, b, and c are not defined until the procedure is called, so
we do not want to do variable substitution at the time Diag is defined.

The proc command supports additional features such as having variable
numbers of arguments and default values for arguments. These are described in
detail in Chapter 7.

A Factorial Example

To reinforce what we have learned so far, below is a longer example that uses a
while loop to compute the factorial function:

Example 1–13 A while loop to compute factorial.

proc Factorial {x} {
set i 1; set product 1
while {$i <= $x} {

set product [expr {$product * $i}]
incr i

}
return $product

}
Factorial 10
=> 3628800

The semicolon is used on the first line to remind you that it is a command
terminator just like the newline character. The while loop is used to multiply all
the numbers from one up to the value of x. The first argument to while is a bool-
ean expression, and its second argument is a command body to execute. The
while command and other control structures are described in Chapter 6.

The same math expression evaluator used by the expr command is used by
while to evaluate the boolean expression. There is no need to explicitly use the
expr command in the first argument to while, even if you have a much more
complex expression.

The loop body and the procedure body are grouped with curly braces in the
same way. The opening curly brace must be on the same line as proc and while.
If you like to put opening curly braces on the line after a while or if statement,
you must escape the newline with a backslash:

while {$i < $x} \
{

set product ...
}

Always group expressions and command bodies with curly braces.

I. Tc
l Ba

sic
s

More about Variables 13

Curly braces around the boolean expression are crucial because they delay
variable substitution until the while command implementation tests the expres-
sion. The following example is an infinite loop:

set i 1; while $i<=10 {incr i}

The loop will run indefinitely.* The reason is that the Tcl interpreter will
substitute for $i before while is called, so while gets a constant expression 1<=10
that will always be true. You can avoid these kinds of errors by adopting a con-
sistent coding style that groups expressions with curly braces:

set i 1; while {$i<=10} {incr i}

The incr command is used to increment the value of the loop variable i.
This is a handy command that saves us from the longer command:

set i [expr {$i + 1}]

The incr command can take an additional argument, a positive or negative
integer by which to change the value of the variable. Using this form, it is possi-
ble to eliminate the loop variable i and just modify the parameter x. The loop
body can be written like this:

while {$x > 1} {

set product [expr {$product * $x}]
incr x -1

}

Example 1–14 shows factorial again, this time using a recursive definition.
A recursive function is one that calls itself to complete its work. Each recursive
call decrements x by one, and when x is one, then the recursion stops.

Example 1–14 A recursive definition of factorial.

proc Factorial {x} {
if {$x <= 1} {

return 1
} else {

return [expr {$x * [Factorial [expr {$x - 1}]]}]
}

}

More about Variables

The set command will return the value of a variable if it is only passed a single
argument. It treats that argument as a variable name and returns the current
value of the variable. The dollar-sign syntax used to get the value of a variable is
really just an easy way to use the set command. Example 1–15 shows a trick you
can play by putting the name of one variable into another variable:
* Ironically, Tcl 8.0 introduced a byte-code compiler, and the first releases of Tcl 8.0 had a bug in the com-
piler that caused this loop to terminate! This bug is fixed in the 8.0.5 patch release.

14 Tcl Fundamentals Chap. 1

Example 1–15 Using set to return a variable value.

set var {the value of var}
=> the value of var
set name var
=> var
set name
=> var
set $name
=> the value of var

This is a somewhat tricky example. In the last command, $name gets substi-
tuted with var. Then, the set command returns the value of var, which is the
value of var. Nested set commands provide another way to achieve a level of
indirection. The last set command above can be written as follows:

set [set name]

=> the value of var

Using a variable to store the name of another variable may seem overly
complex. However, there are some times when it is very useful. There is even a
special command, upvar, that makes this sort of trick easier. The upvar com-
mand is described in detail in Chapter 7.

Funny Variable Names

The Tcl interpreter makes some assumptions about variable names that
make it easy to embed variable references into other strings. By default, it
assumes that variable names contain only letters, digits, and the underscore.
The construct $foo.o represents a concatenation of the value of foo and the lit-
eral “.o”.

If the variable reference is not delimited by punctuation or white space,
then you can use curly braces to explicitly delimit the variable name (e.g., ${x}).
You can also use this to reference variables with funny characters in their name,
although you probably do not want variables named like that. If you find yourself
using funny variable names, or computing the names of variables, then you may
want to use the upvar command.

Example 1–16 Embedded variable references.

set foo filename
set object $foo.o
=> filename.o
set a AAA
set b abc${a}def
=> abcAAAdef
set .o yuk!
set x ${.o}y

=> yuk!y

I. Tc
l Ba

sic
s

More about Math Expressions 15

The unset Command

You can delete a variable with the unset command:
unset ?-nocomplain? ?--? varName varName2 ...

Any number of variable names can be passed to the unset command. How-
ever, unset will raise an error if a variable is not already defined, unless the
-nocomplain is given. Use -- to unset a variable named -nocomplain.

Using info to Find Out about Variables

The existence of a variable can be tested with the info exists command.
For example, because incr requires that a variable exist, you might have to test
for the existence of the variable first.

Example 1–17 Using info to determine if a variable exists.

if {![info exists foobar]} {
set foobar 0

} else {
incr foobar

}

Example 7–6 on page 92 implements a version of incr which handles this case.

More about Math Expressions

This section describes a few fine points about math in Tcl scripts. In Tcl 7.6 and
earlier versions math is not that efficient because of conversions between strings
and numbers. The expr command must convert its arguments from strings to
numbers. It then does all its computations with double precision floating point
values. The result is formatted into a string that has, by default, 12 significant
digits. This number can be changed by setting the tcl_precision variable to the
number of significant digits desired. Seventeen digits of precision are enough to
ensure that no information is lost when converting back and forth between a
string and an IEEE double precision number:

Example 1–18 Controlling precision with tcl_precision.

expr 1 / 3
=> 0
expr 1 / 3.0
=> 0.333333333333
set tcl_precision 17
=> 17
expr 1 / 3.0

The trailing 1 is the IEEE rounding digit
=> 0.33333333333333331

16 Tcl Fundamentals Chap. 1

In Tcl 8.0 and later versions, the overhead of conversions is eliminated in
most cases by the built-in compiler. Even so, Tcl was not designed to support
math-intensive applications. You may want to implement math-intensive code in
a compiled language and register the function as a Tcl command as described in
Chapter 47.

There is support for string comparisons by expr, so you can test string val-
ues in if statements. You must use quotes so that expr knows to do string com-
parisons:

if {$answer == "yes"} { ... }

However, the string compare and string equal commands described in
Chapter 4 are more reliable because expr may do conversions on strings that
look like numbers. The issues with string operations and expr are discussed on
page 52. Tcl 8.4 introduced eq and ne expr operators to allow strict string based
comparison.

Expressions can include variable and command substitutions and still be
grouped with curly braces. This is because an argument to expr is subject to two
rounds of substitution: one by the Tcl interpreter, and a second by expr itself.
Ordinarily this is not a problem because math values do not contain the charac-
ters that are special to the Tcl interpreter. The second round of substitutions is
needed to support commands like while and if that use the expression evaluator
internally.

Grouping expressions can make them run more efficiently.
You should always group expressions in curly braces and let expr do com-

mand and variable substitutions. Otherwise, your values may suffer extra con-
versions from numbers to strings and back to numbers. Not only is this process
slow, but the conversions can lose precision in certain circumstances. For exam-
ple, suppose x is computed from a math function:

set x [expr {sqrt(2.0)}]

At this point the value of x is a double-precision floating point value, just as
you would expect. If you do this:

set two [expr $x * $x]

then you may or may not get 2.0 as the result! This is because Tcl will substitute
$x and expr will concatenate all its arguments into one string, and then parse
the expression again. In contrast, if you do this:

set two [expr {$x * $x}]

then expr will do the substitutions, and it will be careful to preserve the floating
point value of x. The expression will be more accurate and run more efficiently
because no string conversions will be done. The story behind Tcl values is
described in more detail in Chapter 47 on C programming and Tcl.

Comments
Tcl uses the pound character, #, for comments. Unlike in many other languages,
the # must occur at the beginning of a command. A # that occurs elsewhere is not

I. Tc
l Ba

sic
s

Substitution and Grouping Summary 17

treated specially. An easy trick to append a comment to the end of a command is
to precede the # with a semicolon to terminate the previous command:

Here are some parameters

set rate 7.0 ;# The interest rate
set months 60 ;# The loan term

One subtle effect to watch for is that a backslash effectively continues a
comment line onto the next line of the script. In addition, a semicolon inside a
comment is not significant. Only a newline terminates comments:

Here is the start of a Tcl comment \

and some more of it; still in the comment

The behavior of a backslash in comments is pretty obscure, but it can be
exploited as shown in Example 2–3 on page 27.

A surprising property of Tcl comments is that curly braces inside comments
are still counted for the purposes of finding matching brackets. The motivation
for this odd feature was to keep the original Tcl parser simpler. However, it
means that the following will not work as expected to comment out an alternate
version of an if expression:

if {boolean expression1} {

if {boolean expression2} {
some commands

}

The previous sequence results in an extra left curly brace, and probably a
complaint about a missing close brace at the end of your script! A technique I use
to comment out large chunks of code is to put the code inside an if block that
will never execute:

if {0} {

unused code here
}

Substitution and Grouping Summary

The following rules summarize the fundamental mechanisms of grouping and
substitution that are performed by the Tcl interpreter before it invokes a com-
mand:

• Command arguments are separated by white space, unless arguments are
grouped with curly braces or double quotes as described below.

• Grouping with curly braces, { }, prevents substitutions. Braces nest. The
interpreter includes all characters between the matching left and right
brace in the group, including newlines, semicolons, and nested braces. The
enclosing (i.e., outermost) braces are not included in the group’s value.

18 Tcl Fundamentals Chap. 1

• Grouping with double quotes, " ", allows substitutions. The interpreter
groups everything until another double quote is found, including newlines
and semicolons. The enclosing quotes are not included in the group of char-
acters. A double-quote character can be included in the group by quoting it
with a backslash, (e.g., \").

• Grouping decisions are made before substitutions are performed, which
means that the values of variables or command results do not affect group-
ing.

• A dollar sign, $, causes variable substitution. Variable names can be any
length, and case is significant. If variable references are embedded into
other strings, or if they include characters other than letters, digits, and the
underscore, they can be distinguished with the ${varname} syntax.

• Square brackets, [], cause command substitution. Everything between
the brackets is treated as a command, and everything including the brack-
ets is replaced with the result of the command. Nesting is allowed.

• The backslash character, \, is used to quote special characters. You can
think of this as another form of substitution in which the backslash and the
next character or group of characters are replaced with a new character.

• Substitutions can occur anywhere unless prevented by curly brace grouping.
Part of a group can be a constant string, and other parts of it can be the
result of substitutions. Even the command name can be affected by substi-
tutions.

• A single round of substitutions is performed before command invocation.
The result of a substitution is not interpreted a second time. This rule is
important if you have a variable value or a command result that contains
special characters such as spaces, dollar signs, square brackets, or braces.
Because only a single round of substitution is done, you do not have to
worry about special characters in values causing extra substitutions.

Fine Points

• A common error is to forget a space between arguments when grouping with
braces or quotes. This is because white space is used as the separator, while
the braces or quotes only provide grouping. If you forget the space, you will
get syntax errors about unexpected characters after the closing brace or
quote. The following is an error because of the missing space between } and
{:

if {$x > 1}{puts "x = $x"}

• A double quote is only used for grouping when it comes after white space.
This means you can include a double quote in the middle of a group without
quoting it with a backslash. This requires that curly braces or white space
delimit the group. I do not recommend using this obscure feature, but this

is what it looks like:

set silly a"b

I. Tc
l Ba

sic
s

Fine Points 19

• When double quotes are used for grouping, the special effect of curly braces
is turned off. Substitutions occur everywhere inside a group formed with
double quotes. In the next command, the variables are still substituted:

set x xvalue

set y "foo {$x} bar"
=> foo {xvalue} bar

• When double quotes are used for grouping and a nested command is encoun-
tered, the nested command can use double quotes for grouping, too.

puts "results [format "%f %f" $x $y]"

• Spaces are not required around the square brackets used for command sub-
stitution. For the purposes of grouping, the interpreter considers every-
thing between the square brackets as part of the current group. The
following sets x to the concatenation of two command results because there
is no space between] and [.

set x [cmd1][cmd2]

• Newlines and semicolons are ignored when grouping with braces or double
quotes. They get included in the group of characters just like all the others.
The following sets x to a string that contains newlines:

set x "This is line one.

This is line two.

This is line three."

• During command substitution, newlines and semicolons are significant as
command terminators. If you have a long command that is nested in square
brackets, put a backslash before the newline if you want to continue the
command on another line. This was illustrated in Example 1–9 on page 8.

• A dollar sign followed by something other than a letter, digit, underscore, or
left parenthesis is treated as a literal dollar sign. The following sets x to the
single character $.

set x $

20 Tcl Fundamentals Chap. 1

Reference

Backslash Sequences

Arithmetic Operators

Table 1–1 Backslash sequences.

\a Bell. (0x7)

\b Backspace. (0x8)

\f Form feed. (0xc)

\n Newline. (0xa)

\r Carriage return. (0xd)

\t Tab. (0x9)

\v Vertical tab. (0xb)

\<newline> Replace the newline and the leading white space on the next line with a space.

\\ Backslash. (‘\’)

\ooo Octal specification of character code. 1, 2, or 3 octal digits (0-7).

\xhh Hexadecimal specification of character code. 1 or 2 hex digits. Be careful
when using this in a string of characters, because all hexadecimal characters
following the \x will be consumed, but only the last 2 will specify the value.

\uhhhh Hexadecimal specification of a 16-bit Unicode character value. 4 hex digits.

\c Replaced with literal c if c is not one of the cases listed above. In particular,
\$, \", \{, \}, \], and \[are used to obtain these characters.

Table 1–2 Arithmetic operators from highest to lowest precedence.

- ~ ! Unary minus, bitwise NOT, logical NOT.

* / % Multiply, divide, remainder.

+ - Add, subtract.

<< >> Left shift, right shift.

< > <= >= Comparison: less, greater, less or equal, greater or equal.

== != eq ne Equal, not equal, string equal (Tcl 8.4), string not equal (Tcl 8.4).

& Bitwise AND.

^ Bitwise XOR.

| Bitwise OR.

&& Logical AND.
|| Logical OR.

x?y:z If x then y else z.

I. Tc
l Ba

sic
s

Reference 21

Built-in Math Functions

Table 1–3 Built-in math functions.

acos(x) Arccosine of x.

asin(x) Arcsine of x.

atan(x) Arctangent of x.

atan2(y,x) Rectangular (x,y) to polar (r,th). atan2 gives th.

ceil(x) Least integral value greater than or equal to x.

cos(x) Cosine of x.

cosh(x) Hyperbolic cosine of x.

exp(x) Exponential, ex.

floor(x) Greatest integral value less than or equal to x.

fmod(x,y) Floating point remainder of x/y.

hypot(x,y) Returns sqrt(x*x + y*y). r part of polar coordinates.

log(x) Natural log of x.

log10(x) Log base 10 of x.

pow(x,y) x to the y power, xy.

sin(x) Sine of x.

sinh(x) Hyperbolic sine of x.

sqrt(x) Square root of x.

tan(x) Tangent of x.

tanh(x) Hyperbolic tangent of x.

abs(x) Absolute value of x.

double(x) Promote x to floating point.

int(x) Truncate x to an integer.

round(x) Round x to an integer.

rand() Return a random floating point value between 0.0 and 1.0.

srand(x) Set the seed for the random number generator to the integer x.

wide(x) Promote x to a wide (64-bit) integer. (Tcl 8.4)

22 Tcl Fundamentals Chap. 1

Core Tcl Commands

The pages listed in Table 1–4 give the primary references for the command.

Table 1–4 Built-in Tcl commands.

Command Pg. Description

after 228 Schedule a Tcl command for later execution.

append 56 Append arguments to a variable’s value. No spaces added.

array 97 Query array state and search through elements.

binary 59 Convert between strings and binary data.

break 83 Exit loop prematurely.

catch 83 Trap errors.

cd 122 Change working directory.

clock 183 Get the time and format date strings.

close 121 Close an open I/O stream.

concat 65 Concatenate arguments with spaces between. Splices lists.

console 29 Control the console used to enter commands interactively.

continue 83 Continue with next loop iteration.

error 85 Raise an error.

eof 116 Check for end of file.

eval 130 Concatenate arguments and evaluate them as a command.

exec 105 Fork and execute a UNIX program.

exit 124 Terminate the process.

expr 6 Evaluate a math expression.

fblocked 233 Poll an I/O channel to see if data is ready.

fconfigure 231 Set and query I/O channel properties.

fcopy 250 Copy from one I/O channel to another.

file 108 Query the file system.

fileevent 229 Register callback for event-driven I/O.

flush 116 Flush output from an I/O stream’s internal buffers.

for 82 Loop construct similar to C for statement.

foreach 79 Loop construct over a list, or lists, of values.
format 56 Format a string similar to C sprintf.

gets 119 Read a line of input from an I/O stream.

I. Tc
l Ba

sic
s

Reference 23

glob 122 Expand a pattern to matching file names.

global 90 Declare global variables.

history 196 Use command-line history.

if 76 Test a condition. Allows else and elseif clauses.

incr 12 Increment a variable by an integer amount.

info 186 Query the state of the Tcl interpreter.

interp 292 Create additional Tcl interpreters.

join 72 Concatenate list elements with a given separator string.

lappend 66 Add elements to the end of a list.

lindex 68 Fetch an element of a list.

linsert 68 Insert elements into a list.

list 65 Create a list out of the arguments.

llength 68 Return the number of elements in a list.

load 697 Load shared libraries that define Tcl commands.

lrange 68 Return a range of list elements.

lreplace 68 Replace elements of a list.

lsearch 69 Search for an element of a list that matches a pattern.

lset 62 Set an element in a list. (Tcl 8.4)

lsort 70 Sort a list.

namespace 213 Create and manipulate namespaces.

open 116 Open a file or process pipeline for I/O.

package 175 Provide or require code packages.

pid 124 Return the process ID.

proc 87 Define a Tcl procedure.

puts 119 Output a string to an I/O stream.

pwd 122 Return the current working directory.

read 120 Read blocks of characters from an I/O stream.

regexp 158 Match regular expressions.

regsub 162 Substitute based on regular expressions.

rename 88 Change the name of a Tcl command.

Table 1–4 Built-in Tcl commands. (Continued)
return 86 Return a value from a procedure.

24 Tcl Fundamentals Chap. 1

scan 58 Parse a string according to a format specification.

seek 121 Set the seek offset of an I/O stream.

set 5 Assign a value to a variable.

socket 239 Open a TCP/IP network connection.

source 26 Evaluate the Tcl commands in a file.

split 71 Chop a string up into list elements.

string 49 Operate on strings.

subst 140 Substitute embedded commands and variable references.

switch 77 Test several conditions.

tell 121 Return the current seek offset of an I/O stream.

time 202 Measure the execution time of a command.

trace 193 Monitor variable assignments.

unknown 178 Handle unknown commands.

unset 13 Delete variables.

uplevel 138 Execute a command in a different scope.

upvar 91 Reference a variable in a different scope.

variable 207 Declare namespace variables.

vwait 230 Wait for a variable to be modified.

while 79 Loop until a boolean expression is false.

Table 1–4 Built-in Tcl commands. (Continued)

	I
	Tcl Basics
	1

	Tcl Fundamentals
	Tcl is a string-based command language. The language has only a few fundamental constructs and relatively little syntax, which m...
	This chapter takes you through the basics of the Tcl language syntax. Even if you are an expert programmer, it is worth taking t...
	Tcl Commands

	The basic syntax for a Tcl command is:
	The command is either the name of a built-in command or a Tcl procedure. White space (i.e., spaces or tabs) is used to separate ...
	. Argument grouping.
	. Value substitution of nested commands, variables, and backslash escapes.
	. Command invocation. It is up to the command to interpret its arguments.

	This model is described in detail in this Chapter.
	Hello, World!
	Example 1-1 The “Hello, World!” example.

	In this example, the command is puts, which takes two arguments: an I/O stream identifier and a string. puts writes the string to the I/O stream along with a trailing newline character. There are two points to emphasize:
	. Arguments are interpreted by the command. In the example, stdout is used to identify the standard output stream. The use of st...

	The braces are syntax for the interpreter, and they get stripped off before the value is passed to the command. Braces group all...
	Variables

	The interpreter will create the variable when it is first assigned a value. The value of a variable is obtained later with the dollar-sign syntax, illustrated in Example 1-2:
	Example 1-2 Tcl variables.

	The second set command assigns to variable b the value of variable var. The use of the dollar sign is our first example of subst...
	Command Substitution
	Example 1-3 Command substitution.

	In Example 1-3, the nested command is:
	This command returns the length of the string foobar. The string command is described in detail starting on page 49. The nested command runs first. Then, command substitution causes the outer command to be rewritten as if it were:
	If there are several cases of command substitution within a single command, the interpreter processes them from left to right. A...
	Math Expressions
	Example 1-4 Simple arithmetic.

	The math syntax supported by expr is the same as the C expression syntax. The expr command deals with integer, floating point, a...
	You can include variable references and nested commands in math expressions. The following example uses expr to add the value of...
	Example 1-5 Nested commands.

	The expression evaluator supports a number of built-in math functions. (For a complete listing, see page 21.) Example 1-6 computes the value of pi:
	Example 1-6 Built-in math functions.

	The implementation of expr is careful to preserve accurate numeric values and avoid conversions between numbers and strings. How...
	Example 1-7 Grouping expressions with braces.
	Backslash Substitution
	Example 1-8 Quoting special characters with backslash.

	The second set command in the example illustrates an important property of Tcl. The value of dollar does not affect the substitu...
	You can also use backslash sequences to specify characters with their Unicode, hexadecimal, or octal value:
	The value of variable escape is the ASCII ESC character, which has character code 27. Table 1-1 on page 20 summarizes backslash substitutions.
	A common use of backslashes is to continue long commands on multiple lines. This is necessary because a newline terminates a com...
	Example 1-9 Continuing long lines with backslashes.

	There are two fine points to escaping newlines. First, if you are grouping an argument as described in the next section, then yo...
	Grouping with Braces and Double Quotes
	Example 1-10 Grouping with double quotes vs. braces.

	In the second command of Example 1-10, the Tcl interpreter does variable and command substitution on the second argument to puts. In the third command, substitutions are prevented, so the string is printed as is.
	In practice, grouping with curly braces is used when substitutions on the argument must be delayed until a later time (or never ...
	Another common use of quotes is with the format command. This is similar to the C printf function. The first argument to format ...
	Here format is used to align a name and a value with a tab. The %s and %5.3f indicate how the remaining arguments to format are ...
	Square Brackets Do Not Group

	The square bracket syntax used for command substitution does not provide grouping. Instead, a nested command is considered part ...
	If an argument is made up of only a nested command, you do not need to group it with double-quotes because the Tcl parser treats the whole nested command as part of the group.
	The following is a redundant use of double quotes:
	Grouping before Substitution

	The Tcl parser makes a single pass through a command as it makes grouping decisions and performs string substitutions. Grouping ...
	The following example demonstrates how nested command substitution affects grouping. A nested command is treated as an unbroken ...
	Example 1-11 Embedded command and variable substitution.

	In Example 1-11, the second argument to puts is:
	The white space inside the nested command is ignored for the purposes of grouping the argument. By the time Tcl encounters the left bracket, it has already done some variable substitutions to obtain:
	When the left bracket is encountered, the interpreter calls itself recursively to evaluate the nested command. Again, the $x and...
	The point of this example is that the grouping decision about puts’s second argument is made before the command substitution is ...
	If you want the output to look nicer in the example, with spaces around the + and =, then you must use double quotes to explicitly group the argument to puts:
	Grouping Math Expressions with Braces

	It turns out that expr does its own substitutions inside curly braces. This is explained in more detail on page 15. This means you can write commands like the one below and the substitutions on the variables in the expression still occur:
	More Substitution Examples

	If you have several substitutions with no white space between them, you can avoid grouping with quotes. The following command sets concat to the value of variables a, b, and c all concatenated together:
	Again, if you want to add spaces, you’ll need to use quotes:
	In general, you can place a bracketed command or variable reference anywhere. The following computes a command name:
	When you use Tk, you often use widget names as command names:
	Procedures

	The first argument is the name of the procedure being defined. The second argument is a list of parameters to the procedure. The third argument is a command body that is one or more Tcl commands.
	The procedure name is case sensitive, and in fact it can contain any characters. Procedure names and variable names do not confl...
	Example 1-12 Defining a procedure.

	The Diag procedure defined in the example computes the length of the diagonal side of a right triangle given the lengths of the ...
	The return command is used to return the result of the procedure. The return command is optional in this example because the Tcl...
	Note the stylized use of curly braces in the example. The curly brace at the end of the first line starts the third argument to ...
	The other crucial effect of the curly braces around the procedure body is to delay any substitutions in the body until the time ...
	The proc command supports additional features such as having variable numbers of arguments and default values for arguments. These are described in detail in Chapter 7.
	A Factorial Example
	Example 1-13 A while loop to compute factorial.

	The semicolon is used on the first line to remind you that it is a command terminator just like the newline character. The while...
	The same math expression evaluator used by the expr command is used by while to evaluate the boolean expression. There is no need to explicitly use the expr command in the first argument to while, even if you have a much more complex expression.
	The loop body and the procedure body are grouped with curly braces in the same way. The opening curly brace must be on the same ...
	Curly braces around the boolean expression are crucial because they delay variable substitution until the while command implementation tests the expression. The following example is an infinite loop:
	The loop will run indefinitely. The reason is that the Tcl interpreter will substitute for $i before while is called, so while g...
	The incr command is used to increment the value of the loop variable i. This is a handy command that saves us from the longer command:
	The incr command can take an additional argument, a positive or negative integer by which to change the value of the variable. U...
	Example 1-14 shows factorial again, this time using a recursive definition. A recursive function is one that calls itself to complete its work. Each recursive call decrements x by one, and when x is one, then the recursion stops.
	Example 1-14 A recursive definition of factorial.
	More about Variables
	Example 1-15 Using set to return a variable value.

	This is a somewhat tricky example. In the last command, $name gets substituted with var. Then, the set command returns the value...
	Using a variable to store the name of another variable may seem overly complex. However, there are some times when it is very us...
	Funny Variable Names

	The Tcl interpreter makes some assumptions about variable names that make it easy to embed variable references into other string...
	If the variable reference is not delimited by punctuation or white space, then you can use curly braces to explicitly delimit th...
	Example 1-16 Embedded variable references.
	The unset Command

	You can delete a variable with the unset command:
	Any number of variable names can be passed to the unset command. However, unset will raise an error if a variable is not already defined, unless the -nocomplain is given. Use -- to unset a variable named -nocomplain.
	Using info to Find Out about Variables

	The existence of a variable can be tested with the info exists command. For example, because incr requires that a variable exist, you might have to test for the existence of the variable first.
	Example 1-17 Using info to determine if a variable exists.
	More about Math Expressions
	Example 1-18 Controlling precision with tcl_precision.

	In Tcl 8.0 and later versions, the overhead of conversions is eliminated in most cases by the built-in compiler. Even so, Tcl wa...
	There is support for string comparisons by expr, so you can test string values in if statements. You must use quotes so that expr knows to do string comparisons:
	However, the string compare and string equal commands described in Chapter 4 are more reliable because expr may do conversions o...
	Expressions can include variable and command substitutions and still be grouped with curly braces. This is because an argument t...
	You should always group expressions in curly braces and let expr do command and variable substitutions. Otherwise, your values m...
	At this point the value of x is a double-precision floating point value, just as you would expect. If you do this:
	Comments

	One subtle effect to watch for is that a backslash effectively continues a comment line onto the next line of the script. In addition, a semicolon inside a comment is not significant. Only a newline terminates comments:
	The behavior of a backslash in comments is pretty obscure, but it can be exploited as shown in Example 2-3 on page 27.
	A surprising property of Tcl comments is that curly braces inside comments are still counted for the purposes of finding matchin...
	The previous sequence results in an extra left curly brace, and probably a complaint about a missing close brace at the end of y...
	Substitution and Grouping Summary
	. Command arguments are separated by white space, unless arguments are grouped with curly braces or double quotes as described below.
	. Grouping with curly braces, { }, prevents substitutions. Braces nest. The interpreter includes all characters between the matc...
	. Grouping with double quotes, " ", allows substitutions. The interpreter groups everything until another double quote is found,...
	. Grouping decisions are made before substitutions are performed, which means that the values of variables or command results do not affect grouping.
	. A dollar sign, $, causes variable substitution. Variable names can be any length, and case is significant. If variable referen...
	. Square brackets, [], cause command substitution. Everything between the brackets is treated as a command, and everything including the brackets is replaced with the result of the command. Nesting is allowed.
	. The backslash character, \, is used to quote special characters. You can think of this as another form of substitution in which the backslash and the next character or group of characters are replaced with a new character.
	. Substitutions can occur anywhere unless prevented by curly brace grouping. Part of a group can be a constant string, and other parts of it can be the result of substitutions. Even the command name can be affected by substitutions.

	Fine Points
	. A common error is to forget a space between arguments when grouping with braces or quotes. This is because white space is used...
	. A double quote is only used for grouping when it comes after white space. This means you can include a double quote in the mid...
	. When double quotes are used for grouping, the special effect of curly braces is turned off. Substitutions occur everywhere inside a group formed with double quotes. In the next command, the variables are still substituted:
	. When double quotes are used for grouping and a nested command is encountered, the nested command can use double quotes for grouping, too.
	. Spaces are not required around the square brackets used for command substitution. For the purposes of grouping, the interprete...
	. Newlines and semicolons are ignored when grouping with braces or double quotes. They get included in the group of characters just like all the others. The following sets x to a string that contains newlines:
	. During command substitution, newlines and semicolons are significant as command terminators. If you have a long command that i...

	Reference
	Backslash Sequences
	Table 1-1 Backslash sequences.

	Arithmetic Operators
	Table 1-2 Arithmetic operators from highest to lowest precedence.

	Built-in Math Functions
	Table 1-3 Built-in math functions.

	Core Tcl Commands

	The pages listed in Table 1-4 give the primary references for the command.
	Table 1-4 Built-in Tcl commands.
	2
	Getting Started

	This chapter explains how to run Tcl scripts on different computer systems. While you can write Tcl scripts that are portable am...
	The source Command
	UNIX Tcl Scripts
	Example 2-1 A standalone Tcl script on UNIX.
	Example 2-2 A standalone Tk script on UNIX.
	Example 2-3 Using /bin/sh to run a Tcl script.

	Windows Start Menu
	Macintosh OS 8/9 and ResEdit
	. First, make a copy of Wish and open the copy in ResEdit.
	. Pull down the Resource menu and select Create New Resource operation to make a new TEXT resource.
	. ResEdit opens a window and you can type in text. Type in a source command that names your script:
	Macintosh OS X

	The console Command
	Command-Line Arguments
	Example 2-4 The EchoArgs script.
	Command-Line Options to Wish
	Table 2-1 Wish command line options.

	Predefined Variables
	Table 2-2 Variables defined by tclsh and wish.
	3

	The Guestbook CGI Application
	This chapter presents a complete, but simple, guestbook program that computes an HTML document, or Web page, based on the conten...

	The chapter provides a very brief introduction to HTML and CGI programming. HTML is a way to specify text formatting, including ...
	A guestbook is a place for visitors to sign their name and perhaps provide other information. We will build a guestbook that tak...
	The Tcl scripts described in this chapter use commands and techniques that are described in more detail in later chapters. The g...
	A Quick Introduction to HTML

	The tags provide general formatting guidelines, but the browsers that display HTML pages have freedom in how they display things. This keeps the markup simple. The general syntax for HTML tags is:
	As shown here, the tags usually come in pairs. The open tag may have some parameters, and the close tag name begins with a slash...
	The <A> tag defines hypertext links that reference other pages on the Web. The hypertext links connect pages into a Web so that ...
	When this construct appears in a Web page, your browser typically displays "Brent Welch" in blue underlined text. When you click...
	Table 3-1 HTML tags used in the examples.
	CGI for Dynamic Pages

	In contrast, a dynamic page is computed each time it is viewed. This is how pages that give up-to-the-minute stock prices work, ...
	A CGI (Common Gateway Interface) program is used to compute Web pages. The CGI standard defines how inputs are passed to the pro...
	Example 3-1 A simple CGI script.

	The program computes a simple HTML page that has the current time. Each time a user visits the page, she will see the current ti...
	The clock command is used twice: once to get the current time in seconds, and a second time to format the time into a nice-looki...
	Example 3-2 Output of Example 3-1.

	This example is a bit sloppy in its use of HTML, but it should display properly in most Web browsers. Example 3-3 includes all the required tags for a proper HTML document.
	The guestbook.cgi Script
	Example 3-3 The guestbook.cgi script, version 1.
	Using a Script Library File

	If you write one CGI script, you are likely to write several. You could start making copies and modifying your first script, but...
	The Standard Tcl Library, tcllib, provides several packages of procedures that you can use. Later in this chapter, we will look ...
	The problem is that the current directory of the CGI process may not be the same as the directory that contains the CGI script o...
	You can also create script libraries as described in Chapter 12. That chapter describes tools to create an index of procedures s...
	Beginning the HTML Page

	The way you start your HTML page is a great candidate for capturing in a Tcl procedure. For example, I like to have the page tit...
	Example 3-4 The Cgi_Header procedure.

	The Cgi_Header procedure takes as arguments the title for the page and some optional parameters for the HTML BODY tag. The proce...
	Example 3-5 The guestbook.cgi script, version 2.

	Example 3-5 is a new version of the original CGI script that loads the cgihacks.tcl file and uses Cgi_Header. The Cgi_Header pro...
	Sample Output of the CGI Script

	The program tests to see whether there are any registered guests or not. The file command, which is described in detail on page 108, is used to see whether there is any data. The exclamation point means "not" in a boolean expression:
	If the database file does not exist, a different page is displayed to encourage a registration. The page includes a hypertext li...
	Example 3-6 Initial output of guestbook.cgi with no data.

	Note the inconsistent indentation of the HTML that comes from the indentation in the puts command used for that part of the page...
	Example 3-7 shows the output of the guestbook.cgi script when there is some data in the data file:
	Example 3-7 Output of guestbook.cgi with guestbook data.
	Using a Tcl Array for the Database

	The data file contains Tcl commands that define an array that holds the guestbook data. If this file is kept in the same directory as the guestbook.cgi script, then you can compute its name:
	By using Tcl commands to represent the data, we can load the data with the source command. The catch command is used to protect ...
	The Guestbook variable is the array defined in guestbook.data. Array variables are the topic of Chapter 8. Each element of the array is defined with a Tcl command that looks like this:
	The person’s name is the array index, or key. The value of the array element is a Tcl list with two elements: their URL and some...
	The spaces in the name result in additional braces to group the whole variable name and each list element. This syntax is explai...
	The array names command returns all the indices, or keys, in the array, and the lsort command sorts these alphabetically. The foreach command loops over the sorted list, setting the loop variable x to each key in turn:
	The lsort command will sort the names based on the person’s first name. You can have lsort sort things in a variety of ways. One trick we can use here is to have lsort treat each key as a list and sort on the last item in the list (i.e., the last name):
	The lsort command is described in more detail on page 70. The foreach command assigns name to each key of the Guestbook array. We get the value like this:
	The two list elements are extracted with lindex, which is described on page 68.
	We generate the HTML for the guestbook entry as a level-three header that contains a hypertext link to the guest’s home page. We follow the link with any HTML markup text that the guest has supplied to embellish his or her entry:
	The homepage and markup variables are not strictly necessary, and the code could be written more compactly without them. However, the variables make the code more understandable. Here is what it looks like without the temporary variables:
	Defining Forms and Processing Form Data

	The guestbook page contains a link to newguest.html. This page contains a form that lets a user register his or her name, home p...
	The newguest.html Form

	An HTML form contains tags that define data entry fields, buttons, checkboxes, and other elements that let the user specify values. For example, a one- line entry field that is used to enter the home page URL is defined like this:
	The INPUT tag is used to define several kinds of input elements, and its type parameter indicates what kind. In this case, TYPE=...
	A general type-in window is defined with the TEXTAREA tag. This creates a multiline, scrolling text field that is useful for spe...
	A common parameter to the form tags is NAME=something. This name identifies the data that will come back from the form. The tags...
	Example 3-8 The newguest.html form.
	The ncgi and cgi.tcl Packages

	The newguest.cgi script uses the ncgi package to process form data. This is one of many packages available in the Standard Tcl L...
	The procedures in the ncgi package are in the ncgi namespace. Tcl namespaces are described in detail in Chapter 14. Procedures i...
	The "n" in ncgi is for "new". Don Libes wrote the original package for CGI scripts known as cgi.tcl. There is also the cgilib.tc...
	The newguest.cgi Script

	When the user clicks the Submit button in her browser, the data from the form is passed to the program identified by the ACTION ...
	The CGI specification defines how the data from the form is passed to the program. The data is encoded and organized so that the...
	Example 3-9 The newguest.cgi script.
	Using Tcl Scripts to Store Data

	The main idea of the newguest.cgi script is that it saves the data to a file as a Tcl command that defines an element of the Gue...
	The script opens the datafile in append mode so that it can add a new record to the end. Opening files is described in detail on...
	In this command, the variable out gets the result of the open command, which is either a file descriptor or an error message. This style of using catch is described in detail in Example 6-14 on page 83.
	The script writes the data as a Tcl set command. The list command is used to format the data properly:
	There are two lists. First, the url and html values are formatted into one list. This list will be the value of the array element. Then the whole Tcl command is formed as a list. In simplified form, the command is generated from this:
	Using the list command ensures that the result will always be a valid Tcl command that sets the variable to the given value. Thi...
	Handling Errors in CGI Scripts

	When you aim the browser at your CGI script, it should at least create the file. If not, then the Web server cannot find your sc...
	If your script suddenly stops working after you’ve modified it, then you have introduced a programming bug. I generally put all ...
	Example 3-10 The newguest.cgi script with error handling.
	Next Steps

	The details of how a CGI script is hooked up with a Web server vary from server to server. You should ask your local Webmaster f...
	The next few chapters describe basic Tcl commands and data structures. We return to the CGI example in Chapter 11 on regular expressions.
	4
	String Processing in Tcl
	Strings are the basic data item in Tcl, so it should not be surprising that there are a large number of commands to manipulate s...
	The string Command

	The first argument to string determines the operation. You can ask string for valid operations by giving it a bad one:
	This trick of feeding a Tcl command bad arguments to find out its usage is common across many commands. Table 4-1 summarizes the string command.
	Table 4-1 The string command.

	These are the string operations I use most:
	. The equal operation, which is shown in Example 4-2 on page 53.

	These new operations were added in Tcl 8.1 (actually, they first appeared in the 8.1.1 patch release):
	. The equal operation, which is simpler than using string compare.
	String Indices

	Several of the string operations involve string indices that are positions within a string. Tcl counts characters in strings starting with zero. The special index end is used to specify the last character in a string:
	Tcl 8.1 added syntax for specifying an index relative to the end. Specify end-N to get the Nth character before the end. For example, the following command returns a new string that drops the first and last characters from the original:
	There are several operations that pick apart strings: first, last, wordstart, wordend, index, and range. If you find yourself us...
	Strings and Expressions

	Strings can be compared with expr, if, and while using the comparison operators eq, ne, ==, !=, < and >. However, there are a nu...
	Despite the quotes, the expression operators that work on numbers and strings first convert try converting items to numbers if p...
	A safe way to compare strings is to use the string compare and string equal operations. The eq and ne expr operators were introd...
	Example 4-1 Comparing strings with string compare.

	The string equal command added in Tcl 8.1 makes this simpler:
	Example 4-2 Comparing strings with string equal.

	The eq operator added in Tcl 8.4 is semantically equal, but more compact. It also avoids any internal format conversions. There is also a ne operator to efficiently test for inequality.
	Example 4-3 Comparing strings with eq.
	String Matching

	The string match command implements glob-style pattern matching that is modeled after the file name pattern matching done by var...
	Table 4-2 Matching characters used with string match.

	Any other characters in a pattern are taken as literals that must match the input exactly. The following example matches all strings that begin with a:
	To match all two-letter strings:
	To match all strings that begin with either a or b:
	Be careful! Square brackets are also special to the Tcl interpreter, so you will need to wrap the pattern up in curly braces to prevent it from being interpreted as a nested command. Another approach is to put the pattern into a variable:
	You can specify a range of characters with the syntax [x-y]. For example, [a-z] represents the set of all lower-case letters, an...
	The set matches only a single character. To match more complicated patterns, like one or more characters from a set, then you need to use regular expression matching, which is described on page 158.
	If you need to include a literal *, ?, or bracket in your pattern, preface it with a backslash:
	In this case the pattern is quoted with curly braces because the Tcl interpreter is also doing backslash substitutions. Without ...
	Character Classes

	The string is command tests a string to see whether it belongs to a particular class. This is useful for input validation. For example, to make sure something is a number, you do:
	Classes are defined in terms of the Unicode character set, which means they are more general than specifying character sets with...
	Table 4-3 Character class names.
	Mapping Strings

	The string map command translates a string based on a character map. The map is in the form of a input, output list. Wherever a string contains an input sequence, that is replaced with the corresponding output. For example:
	The inputs and outputs can be more than one character and they do not have to be the same length:
	Example 4-4 is more practical. It uses string map to replace fancy quotes and hyphens produced by Microsoft Word into ASCII equi...
	Example 4-4 Mapping Microsoft World special characters to ASCII.
	The append Command

	The append command provides an efficient way to add items to the end of a string. It modifies a variable directly, so it can exploit the memory allocation scheme used internally by Tcl. Using the append command like this:
	The lappend command described on page 65 has similar performance benefits when working with Tcl lists.
	The format Command

	The spec argument includes literals and keywords. The literals are placed in the result as is, while each keyword indicates how ...
	. position specifier

	Example keywords include %f for floating point, %d for integer, and %s for string format. Use %% to obtain a single percent char...
	Table 4-4 Format conversions.

	A position specifier is i$, which means take the value from argument i as opposed to the normally corresponding argument. The po...
	The position specifier is useful for picking a string from a set, such as this simple language-specific example. The message cat...
	The flags in a format are used to specify padding and justification. In the following examples, the # causes a leading 0x to be ...
	Table 4-5 Format flags.

	After the flags you can specify a minimum field width value. The value is padded to this width with spaces, or with zeros if the 0 flag is used:
	You can compute a field width and pass it to format as one of the arguments by using * as the field width specifier. In this cas...
	The precision comes next, and it is specified with a period and a number. For %f and %e it indicates how many digits come after ...
	The storage length part comes last but it only became useful in Tcl 8.4 where wide integer support was added. Otherwise Tcl main...
	The scan Command

	The format for scan is nearly the same as in the format command. The %c scan format converts one character to its decimal value.
	The scan format includes a set notation. Use square brackets to delimit a set of characters. The set matches one or more charact...
	If the first character in the set is a right square bracket, then it is considered part of the set. If the first character in th...
	The binary Command

	This section describes the binary command that provides conversions between strings and packed binary data representations. The ...
	The binary scan command extracts values from a binary string according to a similar template. For example, this is useful for extracting data stored in binary data file. It assigns values to a set of Tcl variables:
	Format Templates

	The format template consists of type keys and counts. The count is interpreted differently depending on the type. For types like...
	Several type keys can be specified in a template. Each key-count combination moves an imaginary cursor through the binary data. ...
	Table 4-6 Binary conversion types.

	Numeric types have a particular byte order that determines how their value is laid out in memory. The type keys are lowercase fo...
	There are three string types: character (a or A), binary (b or B), and hexadecimal (h or H). With these types the count is the l...
	A binary string consists of zeros and ones. The b type specifies bits from low-to-high order, and the B type specifies bits from...
	Examples

	When you experiment with binary format and binary scan, remember that Tcl treats things as strings by default. A "6", for example, is the character 6 with character code 54 or 0x36. The c type returns these character codes:
	You can scan several character codes at a time:
	The previous example uses a single type key, so binary scan sets one corresponding Tcl variable. If you want each character code in a separate variable, use separate type keys:
	Use the H format to get hexadecimal values:
	Use the a and A formats to extract fixed width fields. Here the * count is used to get all the rest of the string. Note that A trims trailing spaces:
	Use the @ key to seek to a particular offset in a value. The following command gets the second double-precision number from a vector. Assume the vector is read from a binary data file:
	With binary format, the a and A types create fixed width fields. A pads its field with spaces, if necessary. The value is truncated if the string is too long:
	An array of floating point values can be created with this command:
	Remember that floating point values are always in native format, so you have to read them on the same type of machine that they ...
	Binary Data and File I/O

	When working with binary data in files, you need to turn off the newline translations and character set encoding that Tcl perfor...
	Related Chapters
	. To learn more about manipulating data in Tcl, read about lists in Chapter 5 and arrays in Chapter 8.
	5

	Tcl Lists

	Lists in Tcl have the same structure as Tcl commands. All the rules you learned about grouping arguments in Chapter 1 apply to c...
	Tcl Lists
	Table 5-1 List-related commands.

	Constructing Lists
	The list command
	Example 5-1 Constructing a list with the list command.

	The lappend Command
	Example 5-2 Using lappend to add elements to a list.

	The lset Command
	Example 5-3 Using lset to set an element of a list.

	The concat Command
	Example 5-4 Using concat to splice lists together.
	Example 5-5 Double quotes compared to the concat and list commands.

	Getting List Elements: llength, lindex, and lrange
	Modifying Lists: linsert and lreplace
	Example 5-6 Modifying lists with lreplace.

	Searching Lists: lsearch
	Example 5-7 Deleting a list element by value.
	Table 5-2 Options to the lsearch command.

	Sorting Lists: lsort
	Example 5-8 Sorting a list using a comparison function.

	The split Command
	Example 5-9 Use split to turn input data into Tcl lists.

	The join Command
	Example 5-10 Implementing join in Tcl.

	Related Chapters
	. Arrays are the other main data structure in Tcl. They are described in Chapter 8.
	. List operations are used when generating Tcl code dynamically. Chapter 10 describes these techniques when using the eval command.
	. The foreach command loops over the values in a list. It is described on page 79 in Chapter 6.
	6

	Control Structure Commands
	Control structure in Tcl is achieved with commands, just like everything else. There are looping commands: while, foreach, and f...
	A control structure command often has a command body that is executed later, either conditionally or in a loop. In this case, it...
	Another pleasant property of curly braces is that they group things together while including newlines. The examples use braces in a way that is both readable and convenient for extending the control structure commands across multiple lines.
	Commands like if, for, and while involve boolean expressions. They use the expr command internally, so there is no need for you to invoke expr explicitly to evaluate their boolean test expressions.

	If Then Else
	The then and else keywords are optional. In practice, I omit then but use else as illustrated in the next example. I always use braces around the command bodies, even in the simplest cases:
	Example 6-1 A conditional if then else command.

	The style of this example takes advantage of the way the Tcl interpreter parses commands. Recall that newlines are command termi...
	The first argument to if is a boolean expression. As a matter of style this expression is grouped with curly braces. The express...
	This is a sloppy, albeit legitimate, if command that will either break out of a loop or continue with the next iteration dependi...
	When you are testing the result of a command, you can get away without using curly braces around the command, like this:
	However, it turns out that you can execute the if statement more efficiently if you always group the expression with braces, like this:
	You can create chained conditionals by using the elseif keyword. Again, note the careful placement of curly braces that create a single if command:
	Example 6-2 Chained conditional with elseif.

	Any number of conditionals can be chained in this manner. However, the switch command provides a more powerful way to test multiple conditions.

	Switch
	Any number of pattern-body pairs can be specified. If multiple patterns match, only the body of the first matching pattern is evaluated. You can also group all the pattern-body pairs into one argument:
	The first form allows substitutions on the patterns but will require backslashes to continue the command onto multiple lines. Th...
	There are four possible flags that determine how value is matched.
	The switch command raises an error if any other flag is specified or if the value begins with -. In practice I always use the -- flag before value so that I don’t have to worry about that problem.
	If the pattern associated with the last body is default, then this command body is executed if no other patterns match. The defa...
	Example 6-3 Using switch for an exact match.

	If you have variable references or backslash sequences in the patterns, then you cannot use braces around all the pattern-body pairs. You must use backslashes to escape the newlines in the command:
	Example 6-4 Using switch with substitutions in the patterns.

	In this example, the first and second patterns have substitutions performed to replace $key with its value and \t with a tab cha...
	If the body associated with a pattern is just a dash, -, then the switch command “falls through” to the body associated with the next pattern. You can tie together any number of patterns in this manner.
	Example 6-5 A switch with "fall through" cases.
	Comments in switch Commands

	A comment can occur only where the Tcl parser expects a command to begin. This restricts the location of comments in a switch co...
	Example 6-6 Comments in switch commands.

	While
	The while command repeatedly tests the boolean expression and then executes the body if the expression is true (nonzero). Becaus...
	The following behaves as expected:
	It is also possible to put nested commands in the boolean expression. The following example uses gets to read standard input. Th...
	Example 6-7 A while loop to read standard input.

	Foreach
	The first argument is the name of a variable, and the command body is executed once for each element in the list with the loop variable taking on successive values in the list. The list can be entered explicitly, as in the next example:
	Example 6-8 Looping with foreach.

	It is also common to use a list-valued variable or command result instead of a static list value. The next example loops through...
	Example 6-9 Parsing command-line arguments.

	The loop uses the state variable to keep track of what is expected next, which in this example is either a flag or the integer v...
	If the list of values is to contain variable values or command results, then the list command should be used to form the list. A...
	Example 6-10 Using list with foreach.

	The loop variable x will take on the value of a, the value of b, and the result of the foo command, regardless of any special characters or whitespace in those values.
	Multiple Loop Variables

	You can have more than one loop variable with foreach. Suppose you have two loop variables x and y. In the first iteration of th...
	Example 6-11 Multiple loop variables with foreach.

	If you have a command that returns a short list of values, then you can abuse the foreach command to assign the results of the c...
	The foreach command lets us do this much more compactly:
	The break in the body of the foreach loop guards against the case where the command returns more values than we expected. This trick is encapsulated into the lassign procedure in Example 10-4 on page 139.
	Multiple Value Lists

	The foreach command has the ability to loop over multiple value lists in parallel. In this case, each value list can also have o...
	Example 6-12 Multiple value lists with foreach.

	For
	The first argument is a command to initialize the loop. The second argument is a boolean expression that determines whether the loop body will execute. The third argument is a command to execute after the loop body:
	Example 6-13 A for loop.

	You could use for to iterate over a list, but you should really use foreach instead. Code like the following is slow and cluttered:
	This is the same as:

	Break and Continue
	Catch
	The first argument to catch is a command body. The second argument is the name of a variable that will contain the result of the...
	You should use curly braces to group the command instead of double quotes because catch invokes the full Tcl interpreter on the ...
	A more careful catch phrase saves the result and prints an error message:
	Example 6-14 A standard catch phrase.

	A more general catch phrase is shown in the next example. Multiple commands are grouped into a command body. The errorInfo variable is set by the Tcl interpreter after an error to reflect the stack trace from the point of the error:
	Example 6-15 A longer catch phrase.

	These examples have not grouped the call to catch with curly braces. This is acceptable because catch always returns an integer,...
	Catching More Than Errors

	The catch command catches more than just errors. If the command body contains return, break, or continue commands, these termina...
	Example 6-16 There are several possible return values from catch.

	Error
	The message becomes the error message stored in the result variable of the catch command.
	If the info argument is provided, then the Tcl interpreter uses this to initialize the errorInfo global variable. That variable ...
	Example 6-17 Raising an error.

	In the previous example, the error command itself appears in the trace. One common use of the info argument is to preserve the errorInfo that is available after a catch. In the next example, the information from the original error is preserved:
	Example 6-18 Preserving errorInfo when calling error.

	The code argument specifies a concise, machine-readable description of the error. It is stored into the global errorCode variabl...
	In addition, your application can define error codes of its own. Catch phrases can examine the code in the global errorCode variable and decide how to respond to the error.

	Return
	Exceptional return conditions can be specified with some optional arguments to return. The complete syntax is:
	The -code option value is one of ok, error, return, break, continue, or an integer. ok is the default if -code is not specified.
	The -code error option makes return behave much like the error command. The -errorcode option sets the global errorCode variable...
	Example 6-19 Raising an error with return.

	The return, break, and continue code options take effect in the caller of the procedure doing the exceptional return. If -code r...
	You can return integer-valued codes of your own with return -code, and trap them with catch in order to create your own control ...
	7
	Procedures and Scope

	Procedures parameterize a commonly used sequence of commands. In addition, each procedure has a new local scope for variables. T...
	The proc Command

	Example 7-1 Default parameter values.
	Example 7-2 Variable number of arguments.
	Changing Command Names with rename
	Scope

	Example 7-3 Variable scope and Tcl procedures.
	The global Command

	Example 7-4 A random number generator.
	Call by Name Using upvar

	Example 7-5 Print variable by name.
	Example 7-6 Improved incr procedure.
	Variable Aliases with upvar
	Associating State with Data
	Namespaces and upvar
	Commands That Take Variable Names
	8

	Tcl Arrays

	An array is a Tcl variable with a string- valued index. You can think of the index as a key, and the array as a collection of re...
	Array Syntax
	Example 8-1 Using arrays.
	Complex Indices
	Array Variables
	Example 8-2 Referencing an array indirectly.
	Example 8-3 Referencing an array indirectly using upvar.

	The array Command
	Table 8-1 The array command.
	Converting Between Arrays and Lists
	Passing Arrays by Name
	Example 8-4 ArrayInvert inverts an array.

	Building Data Structures with Arrays
	Simple Records
	Example 8-5 Using arrays for records, version 1.
	Example 8-6 Using arrays for records, version 2.
	Example 8-7 Using arrays for records, version 3.

	A Stack
	Example 8-8 Using a list to implement a stack.
	Example 8-9 Using an array to implement a stack.

	A List of Arrays
	Example 8-10 A list of arrays.
	Example 8-11 A list of arrays.

	A Simple In-Memory Database
	Example 8-12 A simple in-memory database.

	Alternatives to Using Arrays
	9

	Working with Files and Programs

	This chapter describes how to run programs and access the file system from Tcl. These commands were designed for UNIX. In Tcl 7....
	Running Programs with exec

	The standard output of the program is returned as the value of the exec command. However, if the program writes to its standard ...
	The exec command supports a full set of I/O redirection and pipeline syntax. Each process normally has three I/O channels associ...
	Example 9-1 Using exec on a process pipeline.

	Example 9-1 uses exec to run three programs in a pipeline. The first program is sort, which takes its input from the file /etc/p...
	Table 9-1 Summary of the exec syntax for I/O redirection.

	A trailing & causes the program to run in the background. In this case, the process identifier is returned by the exec command. ...
	If you look closely at the I/O redirection syntax, you’ll see that it is built up from a few basic building blocks. The basic id...
	The auto_noexec Variable

	The Tcl shell programs are set up during interactive use to attempt to execute unknown Tcl commands as programs. For example, you can get a directory listing by typing:
	This is handy if you are using the Tcl interpreter as a general shell. It can also cause unexpected behavior when you are just playing around. To turn this off, define the auto_noexec variable:
	Limitations of exec on Windows

	Windows 3.1 has an unfortunate combination of special cases that stem from console-mode programs, 16-bit programs, and 32-bit pr...
	Tcl 8.0p2 was the last release to officially support Windows 3.1. That release includes Tcl1680.dll, which is necessary to work ...
	AppleScript on Macintosh

	The exec command is not provided on the Macintosh. Tcl ships with an AppleScript extension that lets you control other Macintosh...
	The file Command
	Table 9-2 The file command options.

	Cross-Platform File Naming

	The good news is that Tcl provides operations that let you deal with file pathnames in a platform-independent manner. The file o...
	There are some ambiguous cases that can be specified only with native pathnames. On my Macintosh, Tcl and Tk are installed in a directory that has a slash in it. You can name it only with the native Macintosh name:
	Another construct to watch out for is a leading // in a file name. This is the Windows syntax for network names that reference f...
	If you must communicate with external programs, you may need to construct a file name in the native syntax for the current platf...
	Several of the file operations operate on pathnames as opposed to returning information about the file itself. You can use the d...
	Building up Pathnames: file join

	You can get into trouble if you try to construct file names by simply joining components with a slash. If part of the name is in...
	The platform-independent way to construct file names is with file join. The following command returns the name of the init.tcl file in native format:
	The file join operation can join any number of pathname components. In addition, it has the feature that an absolute pathname ov...
	On Macintosh, a relative pathname starts with a colon, and an absolute pathname does not. To specify an absolute path, you put a...
	In the next case, b:c is an absolute pathname with b: as the volume specifier. The absolute name overrides the previous relative name:
	The file join operation converts UNIX-style pathnames to native format. For example, on Macintosh you get this:
	Chopping Pathnames: split, dirname, tail

	The file split command divides a pathname into components. It is the inverse of file join. The split operation detects automatic...
	A common reason to split up pathnames is to divide a pathname into the directory part and the file part. This task is handled di...
	For a pathname with a single component, the dirname option returns ".", on UNIX and Windows, or ":" on Macintosh. This is the name of the current directory.
	The extension and root options are also complementary. The extension option returns everything from the last period in the name ...
	Manipulating Files and Directories

	File name patterns are not directly supported by the file operations. Instead, you can use the glob command described on page 122 to get a list of file names that match a pattern.
	Copying Files

	The file copy operation copies files and directories. The following example copies file1 to file2. If file2 already exists, the operation raises an error unless the -force option is specified:
	Several files can be copied into a destination directory. The names of the source files are preserved. The -force option indicates that files under directory can be replaced:
	Directories can be recursively copied. The -force option indicates that files under dir2 can be replaced:
	Creating Directories

	The file mkdir operation creates one or more directories:
	It is not an error if the directory already exists. Furthermore, intermediate directories are created if needed. This means that...
	The -force option is not understood by file mkdir, so the following command accidentally creates a folder named -force, as well as one named oops.
	Symbolic and Hard Links

	The file link operation allows the user to manipulate links. Hard links are directory entries that directly reference an existin...
	With only a single argument, file link returns the value of a symbolic link, or raises an error if the file is not a symbolic li...
	Deleting Files

	The file delete operation deletes files and directories. It is not an error if the files do not exist. A non-empty directory is not deleted unless the -force option is specified, in which case it is recursively deleted:
	To delete a file or directory named -force, you must specify a nonexistent file before the -force to prevent it from being interpreted as a flag (-force -force won’t work):
	Renaming Files and Directories

	The file rename operation changes a file’s name from old to new. The -force option causes new to be replaced if it already exists.
	Using file rename is the best way to update an existing file. First, generate the new version of the file in a temporary file. T...
	File Attributes
	Example 9-2 Comparing file modify times.

	You can use the optional time argument to mtime and atime to set the file’s time attributes, like the Unix touch command. The st...
	Table 9-3 Array elements defined by file stat.

	The array elements are listed in Table 9-3. All the element values are decimal strings, except for type, which can have the valu...
	Example 9-3 uses the device (dev) and inode (ino) attributes of a file to determine whether two pathnames reference the same file. These attributes are UNIX specific; they are not well defined on Windows and Macintosh.
	Example 9-3 Determining whether pathnames reference the same file.

	The file attributes operation was added in Tcl 8.0 to provide access to platform-specific attributes. The attributes operation lets you set and query attributes. The interface uses option-value pairs. With no options, all the current values are returned.
	These Macintosh attributes are explained in Table 9-4. The four-character type codes used on Macintosh are illustrated on page 600. With a single option, only that value is returned:
	The attributes are modified by specifying one or more option-value pairs. Setting attributes can raise an error if you do not have the right permissions:
	Table 9-4 Platform-specific file attributes.
	Input/Output Command Summary
	Table 9-5 Tcl commands used for file access.

	Opening Files for I/O

	The what argument is either a file name or a pipeline specification similar to that used by the exec command. The access argumen...
	Example 9-4 Opening a file for writing.

	The permissions argument is a value used for the permission bits on a newly created file. UNIX uses three bits each for the owne...
	Table 9-6 Summary of the open access arguments.
	Table 9-7 Summary of POSIX flags for the access argument.

	The following example illustrates how to use a list of POSIX access flags to open a file for reading and writing, creating it if needed, and not truncating it. This is something you cannot do with the simpler form of the access argument:
	In general, you should check for errors when opening files. The following example illustrates a catch phrase used to open files....
	Example 9-5 A more careful use of open.
	Opening a Process Pipeline

	You can open a process pipeline by specifying the pipe character, |, as the first character of the first argument. The remainder...
	Example 9-6 Opening a process pipeline.

	You can open a pipeline for both read and write by specifying the r+ access mode. In this case, you need to worry about bufferin...
	Expect

	If you are trying to do sophisticated things with an external application, you will find that the Expect extension provides a mu...
	Expect was created by Don Libes at the National Institute of Standards and Technology (NIST). Expect is described in Exploring Expect (Libes, O’Reilly & Associates, Inc., 1995). You can find the software on the CD and on the web at:
	Reading and Writing

	There may be cases when the standard I/O channels are not available. The wish shells on Windows and Macintosh have no standard I...
	The puts and gets Commands

	The puts command writes a string and a newline to the output channel. There are a couple of details about the puts command that ...
	Example 9-7 Prompting for input.

	The gets command reads a line of input, and it has two forms. In the previous example, with just a single argument, gets returns...
	Example 9-8 A read loop using gets.
	The read Command

	The read command reads blocks of data, and this capability is often more efficient. There are two forms for read: You can specif...
	Example 9-9 A read loop using read and split.

	For moderate-sized files, it is about 10 percent faster to loop over the lines in a file using the read loop in the second examp...
	Platform-Specific End of Line Characters

	Tcl automatically detects different end of line conventions. On UNIX, text lines are ended with a newline character (\n). On Mac...
	During output, text lines are generated in the platform-native format. The automatic handling of line formats means that it is easy to convert a file to native format. You just need to read it in and write it out:
	To suppress conversions, use the fconfigure command, which is described in more detail on page 234.
	Example 9-10 demonstrates a File_Copy procedure that translates files to native format. It is complicated because it handles directories.
	Example 9-10 Copy a file and translate to native format.
	Random Access I/O

	The seek and tell commands provide random access to I/O channels. Each channel has a current position called the seek offset. Ea...
	Closing I/O Channels

	The close command is just as important as the others because it frees operating system resources associated with the I/O channel...
	If the channel was a process pipeline and any of the processes wrote to their standard error channel, then Tcl believes this is ...
	The Current Directory - cd and pwd
	Matching File Names with glob

	The pattern syntax is similar to the string match patterns:
	. * matches zero or more characters.
	. ? matches a single character.
	. [abc] matches a set of characters.
	. {a,b,c} matches any of a, b, or c.

	Table 9-8 lists the options for the glob command.
	Table 9-8 glob command options.

	Unlike the glob matching in csh, the Tcl glob command matches only the names of existing files. In csh, the {a,b} construct can ...
	Example 9-11 shows the FindFile procedure, which traverses the file system hierarchy using recursion. At each iteration it saves...
	Example 9-11 Finding a file by name.

	The -types option allows for special filtered matching similar to the UNIX find command. The first form is like the -type option...
	The second form specifies types where all the types given must match. These are r (readable), w (writable) and x (executable) as...
	The two forms may be mixed, so -types {d f r w} will find all regular files OR directories that have both read AND write permissions.
	Expanding Tilde in File Names

	The glob command also expands a leading tilde (~) in filenames. There are two cases:
	. ~/ expands to the current user’s home directory.

	If you have a file that starts with a literal tilde, you can avoid the tilde expansion by adding a leading ./ (e.g., ./~foobar).
	The exit and pid Commands

	The pid command returns the process ID of the current process. This can be useful as the seed for a random number generator because it changes each time you run your script. It is also common to embed the process ID in the name of temporary files.
	You can also find out the process IDs associated with a process pipeline with pid:
	There is no built-in mechanism to control processes in the Tcl core. On UNIX systems you can exec the kill program to terminate a process:
	Environment Variables
	Example 9-12 Printing environment variable values.

	Note: Environment variables can be initialized for Macintosh applications by editing a resource of type STR# whose name is Tcl E...
	The registry Command

	The registry structure has keys, value names, and typed data. The value names are stored under a key, and each value name has da...
	The rootname is one of HKEY_LOCAL_MACHINE, HKEY_PERFORMANCE_DATA, HKEY_USERS, HKEY_CLASSES_ROOT, HKEY_CURRENT_USER, HKEY_CURRENT_CONFIG, or HKEY_DYN_DATA. Tables 9-9 and 9-10 summarize the registry command and data types:
	Table 9-9 The registry command.
	Table 9-10 The registry data types.

