
TCP Socket Options in Android

Vsevolod Geraskin

Page 1 of 16

Table of Contents
INTRODUCTION...3
SOCKET OPTIONS AND TEST SCENARIOS...3

SO_KEEPALIVE..3
SO_LINGER...3
SO_OOBINLINE..3
SO_RCVBUF and SO_SNDBUF...4
SO_TIMEOUT..4
TCP_NODELAY...4

TEST RESULTS..4
TEST 1: SO_KEEPALIVE...4

a. Connect with SO_KEEPALIVE set to false (Wireshark/test1a.pcap)..4
b. Connect with SO_KEEPALIVE set to true (Wireshark/test1b.pcap)...4

TEST 2: SO_LINGER..5
a. Connect with SO_LINGER set to false (Wireshark/test2a.pcap)...5
b. Connect with SO_LINGER set to true and 5 seconds delay (Wireshark/test2b.pcap).................5
c. Connect with SO_LINGER set to true and 0 seconds delay (Wireshark/test2c.pcap).................6

TEST 3: SO_OOBINLINE...6
Connect with SO_OOBINLINE set to true and send URG byte (Wireshark/test3.pcap)................6

TEST 4: SO_RCVBUF and SO_SNDBUF..6
a. Send a 10mb file with buffers set to 1024 bytes (Wireshark/test4a.pcap)....................................6
b. Send a 10mb file with buffers set to 4096 bytes (Wireshark/test4b.pcap)...................................8
c. Send a 10mb file with buffers set to 65536 bytes (Wireshark/test4c.pcap)................................10

TEST 5: SO_TIMEOUT..11
a. Connect with SO_TIMEOUT set to 0. Attempt to read the socket for more than 5 seconds,
then disconnect. (Wireshark/test5a.pcap)...11
b. Connect with SO_TIMEOUT set to 5000. Attempt to read the socket for more than 5 seconds,
then disconnect. (Wireshark/test5b.pcap)...11

TEST 6: TCP_NODELAY...11
Connect with TCP_NODELAY set to true (Wireshark/test6.pcap)..11

CONCLUSION AND FURTHER DISCUSSION...12
SO_KEEPALIVE..12
SO_LINGER...13
SO_OOBINLINE..13
SO_RCVBUF and SO_SNDBUF...13

Optimal buffer for uploading large files...13
TCP window size in Android..13
CSMA/CA and TCP Congestion Control in 802.11 Wireless Networks..14

SO_TIMEOUT..16
TCP_NODELAY...16

Page 2 of 16

INTRODUCTION
The goal of this project is to understand Android TCP/IP socket options and analyze potential
scenarios when each option should be used. For some of the socket options, also evaluate
the impact on TCP connection. For the above purposes, each TCP socket option is
independently set and tested in Android client / Linux server environment on 802.11 wireless
network. At the same time, TCP packets are captured and analyzed in Wireshark.

Software used:
• Fedora Release 15 32-bit
• Multiprocess socket server written in C
• Wireshark Packet Capture Analyzing Tool
• Android 4.2.2
• Android socket client written in Java

Hardware used:
• Samsung Tablet: Galaxy Tab 3 8.0
• Compaq Laptop: Intel® Pentium(R) Dual CPU T2390 @ 1.86GHz × 2, 3 gigs of RAM

Both server and client are connected to 802.11n/g/b wireless network provided by Dlink DIR-
615 router. Global IP is 24.86.116.244, Linux Server IP is 192.168.0.101, and Android Client
IP is 192.168.0.106. Wireshark is capturing packets on the Fedora Linux server.

SOCKET OPTIONS AND TEST SCENARIOS

SO_KEEPALIVE

Description: specifies whether the kernel sends keep-alive messages.
Test: Connect to TCP socket server with SO_KEEPALIVE set to false. Disconnect,
then connect to TCP socket server with SO_KEEPALIVE set to true. Using Wireshark,
capture and examine keep-alive TCP packet and explore the cases when this options
might be used.

SO_LINGER

Description: specifies number of seconds to wait when closing a socket if there is still
some buffered data to be sent.
Test: Connect to TCP socket server with SO_LINGER set to false. Send some data,
then issue a socket close call right away. Then, connect to TCP socket server with
SO_LINGER set to true and interval set to 0 and 5 seconds. Send some data, then
issue a socket close call right away. Using Wireshark, capture FIN TCP packet and
compare the time intervals.

SO_OOBINLINE

Description: specifies whether sending TCP urgent data is supported on this socket or

Page 3 of 16

not.
Test: Connect to TCP socket server with SO_OOBINLINE set to true. Send urgent
data byte to the server. Using Wireshark, capture URG TCP packet and explore the
cases when this option might be used.

SO_RCVBUF and SO_SNDBUF

Description: specifies the size in bytes of a socket's receive and send buffers.
Test: Connect to TCP socket server with SO_RCVBUF and SO_RSNDBUF set to
1024, 4096, and 65536 bytes. Set the matching buffer size on the server. For each
buffer size, send 10mb file from Android tablet to Linux server. Using Android client,
capture the time stamps of start and end of file transfer. Using Wireshark, capture the
TCP packets and graph the throughput. Analyze the results, determine what buffer
size is optimal (out of three buffer sizes), and explore the reasons why.

SO_TIMEOUT

Description: specifies integer timeout in milliseconds for blocking accept or
read/receive operations (but not write/send operations).
Test: Connect to TCP socket server with SO_TIMEOUT set to 0. Then, connect to
TCP socket server with SO_TIMEOUT set to 5000 (5 seconds). Attempt to read the
socket and wait for more than five seconds. Determine the behaviour in each case,
and explore the cases when this option might be used.

TCP_NODELAY

Description: specifies whether data is sent immediately on this socket.
Test: Connect to TCP socket server with TCP_NODELAY set to false. Disconnect, and
connect to server with TCP_NODELAY set to true. Using Wireshark, capture the
packets and examine the difference in each case. Explore the cases when this option
might be used.

TEST RESULTS

TEST 1: SO_KEEPALIVE

a. Connect with SO_KEEPALIVE set to false (Wireshark/test1a.pcap)

Data capture only contains a standard 3-step TCP handshake (SYN, SYN/ACK, ACK packets)
and TCP disconnect (FIN/ACK, ACK packets).

b. Connect with SO_KEEPALIVE set to true (Wireshark/test1b.pcap)

Data capture contains a standard 3-step TCP handshake and TCP disconnect. Also, TCP
Keep-Alive packet is captured after listening on the wire for two hours (packet 4). Default
Keep-Alive interval in Android is two hours, which cannot be changed, thus severely limiting
its usability.

Page 4 of 16

TCP Keep-Alive packet:

0000 00 1a 73 f6 f3 6e 6c b7 f4 71 14 15 08 00 45 00 ..s..nl. .q....E.
0010 00 34 38 e5 40 00 40 06 7f bf c0 a8 00 6a c0 a8 .48.@.@.j..
0020 00 65 a1 99 22 6b 2e 46 64 28 9b 5e ec 7e 80 10 .e.."k.F d(.^.~..
0030 00 e5 ec 51 00 00 01 01 08 0a 02 a2 60 00 08 52 ...Q....`..R
0040 be 21 .!

TEST 2: SO_LINGER

a. Connect with SO_LINGER set to false (Wireshark/test2a.pcap)

Data capture shows that disconnect is sent right away and 10 MB transfer is interrupted.
Connection is normally closed with FIN/ACK packet (red).

Android FIN/ACK packet 404:
0000 00 1a 73 f6 f3 6e 6c b7 f4 71 14 15 08 00 45 00 ..s..nl. .q....E.
0010 00 34 31 e8 40 00 40 06 86 bc c0 a8 00 6a c0 a8 .41.@.@.j..
0020 00 65 bb 8d 22 6b bf f6 7d dc d9 f6 08 31 80 11 .e.."k.. }....1..
0030 00 e5 d4 5d 00 00 01 01 08 0a 02 52 86 ec 07 31 ...].... ...R...1
0040 90 f6 ..

Server ACK packet 405:
0000 6c b7 f4 71 14 15 00 1a 73 f6 f3 6e 08 00 45 00 l..q.... s..n..E.
0010 00 34 76 1e 40 00 40 06 42 86 c0 a8 00 65 c0 a8 .4v.@.@. B....e..
0020 00 6a 22 6b bb 8d d9 f6 08 31 bf f6 7d dd 80 10 .j"k.... .1..}...
0030 01 4b 82 46 00 00 01 01 08 0a 07 31 91 24 02 52 .K.F.... ...1.$.R
0040 86 ec ..

b. Connect with SO_LINGER set to true and 5 seconds delay
(Wireshark/test2b.pcap)

Data capture shows that disconnect is also sent right away and 10 MB transfer is interrupted.
Connection is normally closed with FIN/ACK packet (red).. This behaviour is the same
regardless of SO_LINGER delay.

Android FIN/ACK packet 740:
0000 00 1a 73 f6 f3 6e 6c b7 f4 71 14 15 08 00 45 00 ..s..nl. .q....E.
0010 00 34 7d 32 40 00 40 06 3b 72 c0 a8 00 6a c0 a8 .4}2@.@. ;r...j..
0020 00 65 cb 29 22 6b 63 d0 5b df 95 a3 74 3b 80 11 .e.)"kc. [...t;..
0030 00 e5 aa 45 00 00 01 01 08 0a 02 52 ef 14 07 33 ...E.... ...R...3
0040 99 b4

Server ACK packet 741: ..
0000 6c b7 f4 71 14 15 00 1a 73 f6 f3 6e 08 00 45 00 l..q.... s..n..E.
0010 00 34 1f a1 40 00 40 06 99 03 c0 a8 00 65 c0 a8 .4..@.@.e..
0020 00 6a 22 6b cb 29 95 a3 74 3b 63 d0 5b e0 80 10 .j"k.).. t;c.[...

Page 5 of 16

0030 01 4b 82 46 00 00 01 01 08 0a 07 33 99 ea 02 52 .K.F.... ...3...R
0040 ef 14 ..

c. Connect with SO_LINGER set to true and 0 seconds delay
(Wireshark/test2c.pcap)

Data capture shows that disconnect is also sent right away and 10 MB transfer is interrupted.
Connection is immediately forcefully closed with RST packet (red), without waiting for ACK
packet from the server.

0000 00 1a 73 f6 f3 6e 6c b7 f4 71 14 15 08 00 45 00 ..s..nl. .q....E.
0010 00 28 00 00 40 00 40 06 b8 b0 c0 a8 00 6a c0 a8 .(..@.@.j..
0020 00 65 de e7 22 6b 7f 0e 59 42 00 00 00 00 50 04 .e.."k.. YB....P.
0030 00 00 54 1d 00 00 ..T...

TEST 3: SO_OOBINLINE

Connect with SO_OOBINLINE set to true and send URG byte
(Wireshark/test3.pcap)

Data capture shows tcp packet received with PSH/ACK/URG flag set in segment 4 (in red).
Data byte sent was “1” (in blue).

Captured URG packet:

0000 00 1a 73 f6 f3 6e 6c b7 f4 71 14 15 08 00 45 00 ..s..nl. .q....E.
0010 00 35 d8 a1 40 00 40 06 e0 01 c0 a8 00 6a c0 a8 .5..@.@.j..
0020 00 65 93 fe 22 6b cf e4 68 99 5b 84 f4 3c 80 38 .e.."k.. h.[..<.8
0030 00 e5 8f ea 00 01 01 01 08 0a 02 5b bb c6 07 5f [..._
0040 5e 7a 01

TEST 4: SO_RCVBUF and SO_SNDBUF

a. Send a 10mb file with buffers set to 1024 bytes (Wireshark/test4a.pcap)

In the Android TCP client log, transfer took 32 seconds. Since 1024 bytes buffer size was
only a suggestion to the Android kernel, the system set buffer sizes to 2048 bytes. TCP
window size was set at 14600 (red) in the initial SYN packet and the scale factor was set at 6
(blue) (x64). When the data transfer started, client TCP window was shown as 229, but,
considering the scale factor, the actual size was 229 x 64 = 14656 bytes.

SYN Packet:
0000 00 1a 73 f6 f3 6e 00 26 5a ca fa 17 08 00 45 00 ..s..n.& Z.....E.
0010 00 3c db 92 40 00 3f 06 11 d2 18 56 74 f4 c0 a8 .<..@.?. ...Vt...
0020 00 65 c7 3c 22 6b e7 f5 83 e5 00 00 00 00 a0 02 .e.<"k..
0030 39 08 10 44 00 00 02 04 05 b4 04 02 08 0a 02 63 9..D....c
0040 58 77 00 00 00 00 01 03 03 06 Xw...... ..

Page 6 of 16

The following data capture graphs demonstrate TCP data flow over time and throughput of
10mb file transfer. The loss of throughput is evident on the next two graphs between 15 and
20 second marks. Abnormally, there is almost a .25 second delay between transmitted packet
5220 and acknowledgement packet 5221, and some other packets afterwards. This could be
attributed to 802.11 CSMA/CA frame collision avoidance algorithm sensing the channel busy
and delaying sending TCP packets until deciding the wireless channel is free. Unfortunately,
it is difficult to tell if this indeed is observed with certainty because Wireshark is unable to
capture wireless frames on most wireless adapters, and the capture is done on the server
side.

Test 4a Graph 1 -Time/Sequence

Page 7 of 16

Test 4a Graph 2 – Throughput

b. Send a 10mb file with buffers set to 4096 bytes (Wireshark/test4b.pcap)

In the Android TCP client log, transfer took 29 seconds. Since 4096 bytes buffer size was
only a suggestion to the Android kernel, the system doubled buffer sizes to 8192 bytes to
account for bookkeeping overhead. Again, Android TCP window size was set at 14600 in
the initial SYN packet and the scale factor was set at 6. When the data transfer started, client
TCP window was again 14656 bytes. On the Linux server, using the same socket options
resulted in TCP window being set at 2896 (red) bytes in SYN/ACK packet:

0000 00 26 5a ca fa 17 00 1a 73 f6 f3 6e 08 00 45 00 .&Z..... s..n..E.
0010 00 3c 00 00 40 00 40 06 ec 64 c0 a8 00 65 18 56 .<..@.@. .d...e.V
0020 74 f4 22 6b cb 1f 14 b4 90 e5 bd f2 34 b5 a0 12 t."k....4...
0030 0b 50 4e 86 00 00 02 04 05 b4 04 02 08 0a 07 f4 .PN.....
0040 f0 d8 02 79 9a 25 01 03 03 00 ...y.%.. ..

The following data capture graphs demonstrate TCP data flow over time and throughput of
10mb file transfer. The graphs look almost identical to the ones on previous test. Again we
encountered the loss of throughput between 9 and 14 second mark possibly due to CSMA/CA
frame collision avoidance algorithm.

Page 8 of 16

Test 4b Graph 3 -Time/Sequence

Test 4b Graph 4 -Throughput

Page 9 of 16

c. Send a 10mb file with buffers set to 65536 bytes (Wireshark/test4c.pcap)

In the Android TCP client log, transfer took 22 seconds. Since 65536 bytes buffer size was
only a suggestion to the Android kernel, the system doubled buffer sizes to 131072 bytes to
account for bookkeeping overhead. Again, Android TCP window size was set at 14600 and
the scale factor was 6. On the Linux server, using the same socket options resulted in TCP
window being set at 14480 and the scale factor at 1 (x2). The server TCP window grew until
it reached 64088 bytes (32044x2) (red) in packet 39:

0000 00 26 5a ca fa 17 00 1a 73 f6 f3 6e 08 00 45 00 .&Z..... s..n..E.
0010 00 34 93 6f 40 00 40 06 58 fd c0 a8 00 65 18 56 .4.o@.@. X....e.V
0020 74 f4 22 6b ea 98 3b b5 2c 87 f4 e9 b2 28 80 10 t."k..;. ,....(..
0030 7d 2c 4e 7e 00 00 01 01 08 0a 07 eb c4 35 02 77 },N~....5.w
0040 c4 6a .j

The following data capture graphs demonstrate TCP data flow over time and throughput of
10mb file transfer. Both graphs show a complete loss of throughput at 5, 9, and 19 second
marks. Wireshark capture shows three duplicate ACKs in TCP packets 2836-2840, resulting
in fast retransmission in packet 2841. This demonstrates TCP congestion mechanism in
action, where TCP receives a triple-duplicate ACK event, and initiates fast retransmission.
The TCP protocol also reduces congestion window by half after this event. However, we
cannot observe this directly because the cwnd value is not stored in TCP/IP packets, but
rather a local value on sender side.

Test 4c Graph 5 -Time/Sequence

Page 10 of 16

Test 4c Graph 6 - Throughput

TEST 5: SO_TIMEOUT

a. Connect with SO_TIMEOUT set to 0. Attempt to read the socket for
more than 5 seconds, then disconnect. (Wireshark/test5a.pcap)

Data capture contains a standard 3-step TCP handshake, sent string, and TCP disconnect.

b. Connect with SO_TIMEOUT set to 5000. Attempt to read the socket for
more than 5 seconds, then disconnect. (Wireshark/test5b.pcap)

Data capture contains a standard 3-step TCP handshake, sent string, and TCP disconnect.
In addition, Java throws SocketTimeoutException error after 5 seconds of blocking on read.

Eclipse debugger output:
11-26 19:47:35.525: D/sev client(20477): sending a string...
11-26 19:47:40.525: W/System.err(20477): java.net.SocketTimeoutException

TEST 6: TCP_NODELAY

Connect with TCP_NODELAY set to true (Wireshark/test6.pcap)

Furthermore to suggested test, the 10mb file was sent with 65536 buffer size and
TCP_NODELAY set to true. At first, the transfer with TCP_NODELAY flag took longer than

Page 11 of 16

test 4c, 32 seconds, but consecutive transfers showed little difference between
TCP_NODELAY flag set to true or false.

CONCLUSION AND FURTHER DISCUSSION

SO_KEEPALIVE

This option can be used to verify the TCP connection, prevent disconnects from network
inactivity, and check for dead peers. The following diagrams show the logic of using the
option.
 _____ _____
A		B
_____		_____
 ^ ^
 |--->--->--->-------------- SYN -------------->--->--->---|
 |---<---<---<------------ SYN/ACK ------------<---<---<---|
 |--->--->--->-------------- ACK -------------->--->--->---|
 | |
 | system crash ---> X
 |
 | system restart ---> ^
 | |
 |--->--->--->-------------- PSH -------------->--->--->---|
 |---<---<---<-------------- RST --------------<---<---<---|
 | |

Graph 7: check for dead peers
(source http://tldp.org/HOWTO/html_single/TCP-Keepalive-HOWTO)

 _____ _____ _____
A		NAT		B
_____		_____		_____
 ^ ^ ^
 |--->--->--->---|----------- SYN ------------->--->--->---|
 |---<---<---<---|--------- SYN/ACK -----------<---<---<---|
 |--->--->--->---|----------- ACK ------------->--->--->---|
 | | |
 | | <--- connection deleted from table |
 | | |
 |--->- PSH ->---| <--- invalid connection |
 | | |

Graph 8: prevent disconnects from network inactivity
(source http://tldp.org/HOWTO/html_single/TCP-Keepalive-HOWTO)

Unlike Linux, Android current implementation does not allow us to set KEEP-ALIVE intervals.
The default and only intervals for KEEP-ALIVE packet is set at 2 hours. Thus, in most
application, this option is useless, and developers are advised to implement their own
application-level “heartbeat”.

Page 12 of 16

http://tldp.org/HOWTO/html_single/TCP-Keepalive-HOWTO
http://tldp.org/HOWTO/html_single/TCP-Keepalive-HOWTO

SO_LINGER

This option can be used to forcefully terminate TCP connection after a specified timeout in
seconds. The behaviour of TCP with this option OFF is attempt to send any queued data with
an infinite wait time before socket is closed. This could lead to performance issues where a
busy server could wait for a while to close a connection. Turning SO_LINGER option on
allows to control this behaviour by terminating connection with RST packet after timeout
expires without waiting for acknowledgement from a peer. This option is probably best used
when optimizing very busy servers with many simultaneous connections.

SO_OOBINLINE

This option can be used to send out-of-band data that bypasses normal TCP connection
queue. This packets are sent with URG flag set, and require implementing a separate
process in application in order to send and receive them. Urgent bytes can be sent by a client
to a server to cancel an outstanding (unprocessed) request in order to save server resources.

SO_RCVBUF and SO_SNDBUF

Optimal buffer for uploading large files

Setting the larger buffers allowed 10mb file transfer to complete significantly faster on the
Android Tablet (32 seconds at 1024 bytes, 22 seconds at 65546 bytes). Further captures
using Android emulator instead (Wireshark/test4f.pcap and Wireshark/test4g.pcap) confirmed
the improved performance (116 seconds at 1024 bytes, 23 seconds at 65546 bytes). The
important note is that the socket buffers were set to the same sizes both on the server and
the client.

When using different buffer sizes at the server and the client, performance suffers. With
1024-sized buffers on the Linux server and 65536-byte buffers on the Android client, 10mb
transfer took over 70 seconds (Wireshark/test4d.pcap). On the other hand, with 65536-sized
buffers on the Linux server and 1024-byte buffers on the Android client
(Wireshark/test4e.pcap), 10mb transfer took 31 seconds.

In summary, the optimal buffer size for transferring 10mb file over the specified 802.11
wireless network is the largest possible: 65536 bytes. This seems logical because, when
dealing with large transfers, we want to improve throughput and reduce occurrence of flow
control. As seen in the tests, the Linux server's TCP window is affected by SO_RCVBUF and
SO_SNDBUF values. If the TCP window size is too small, then the buffer could be overrun,
and the flow control will stop the data transfer until the window is cleared.

TCP window size in Android

While these socket options can be used on Linux to affect TCP window size, the tests showed
that on both Android tablet and Android emulator clients the window size remained constant at
around 14600 bytes. This is probably due to Android sending the file and receiving only
acknowledgements from the server. Further tests were required to see if SO_SNDBUF and
SO_RCVBUF socket options were indeed affecting TCP window in Android. When data flow

Page 13 of 16

was reversed and Android tablet downloaded 10mb of data from the server
(Wireshark/test4h.pcap) using 65536-byte buffers, Android grew TCP window and advertised
the window as 98304 bytes (1536x64 with the scale factor of 6) in packet 92 (red):

0000 00 1a 73 f6 f3 6e 00 26 5a ca fa 17 08 00 45 00 ..s..n.& Z.....E.
0010 00 34 e0 3a 40 00 3f 06 0d 32 18 56 74 f4 c0 a8 .4.:@.?. .2.Vt...
0020 00 65 ca 07 22 6b 59 b5 49 78 76 6c 9c 40 80 10 .e.."kY. Ixvl.@..
0030 06 00 ed 5f 00 00 01 01 08 0a 03 9c ab 4c 0a 33 ..._....L.3
0040 d9 9c

Moreover, when Android tablet downloaded 10mb of data from the server
(Wireshark/test4i.pcap) using 1024-byte buffers, Android reduced TCP window and advertised
the window as 1728 bytes (27x64 with the scale factor of 6) in packet 31 (red):

0000 00 1a 73 f6 f3 6e 00 26 5a ca fa 17 08 00 45 00 ..s..n.& Z.....E.
0010 00 34 bb aa 40 00 3f 06 31 c2 18 56 74 f4 c0 a8 .4..@.?. 1..Vt...
0020 00 65 9d 34 22 6b d5 23 0a 12 8a 53 19 4e 80 10 .e.4"k.# ...S.N..
0030 00 1b 1d e5 00 00 01 01 08 0a 03 a1 b4 2b 0a 4d +.M
0040 05 d5

Now, the report can safely conclude that TCP socket options do indeed affect TCP window
size in Android kernel. Furthermore, the data agreed with previous conclusion about optimal
buffer size. With 65536-byte buffer, file download took 15 seconds rather than more than 60
seconds with 1024-byte buffer.

CSMA/CA and TCP Congestion Control in 802.11 Wireless Networks

Carrier sense multiple access with congestion avoidance algorithm in 802.11 networks
senses the wireless channel, and transmits TCP packets only when the channel is idle. If the
algorithm senses channel busy, it picks the random back-off value and starts countdown when
the channel is idle again. When the countdown reaches 0, the station transmits wireless
frame and waits for acknowledgement. This algorithm could be the reason for the abnormal
delay between packets seen in 10mb file transfer tests.

Furthermore, as observed in test 4c, sender could get ahead of the receiver and send packets
with sequence number greater than what the receiver expects, resulting in events such as
server sending three duplicate ACKs (graph below). In a case of such event, TCP congestion
control reduces congestion window by half as shown on the graph below after transmission
round 8, and throughput is reduced. The loss of TCP packets could be caused by them never
reaching server due to wireless frame collisions. In such cases, consecutive frame re-
transmissions are required. In common situations, when streaming media over 802.11
network with much channel noise, both collision avoidance delays and frame collisions could
cause the video to appear choppy and frozen at times.

Page 14 of 16

Graph 9: Triple-duplicate ACK event in test 4c

Graph 10: evolution of TCP congestion window
(source: Computer Networking, a Top-Down Approach, Kurose and Ross)

Page 15 of 16

SO_TIMEOUT

This is not a TCP socket option, but rather java.net.Socket option that throws
SocketTimeoutException after specified millisecond timeout. This option could be used to
timeout and close an idle connection.

TCP_NODELAY

This option is used to disable Nagle's algorithm. The algorithm (generally) improves the
efficiency of TCP/IP networks by buffering the packets which received no acknowledgement
from peer and, thus, delaying the send. However, multiple file uploads with this option turned
on and off yielded no meaningful results. In theory, this option should be used in very specific
cases, such as when encountering performance issues using Nagle's algorithm in
combination with TCP delayed acknowledgement algorithm, or in environment where many
small packets are passed between peers.

Page 16 of 16

	INTRODUCTION
	SOCKET OPTIONS AND TEST SCENARIOS
	SO_KEEPALIVE
	SO_LINGER
	SO_OOBINLINE
	SO_RCVBUF and SO_SNDBUF
	SO_TIMEOUT
	TCP_NODELAY

	TEST RESULTS
	TEST 1: SO_KEEPALIVE
	a. Connect with SO_KEEPALIVE set to false (Wireshark/test1a.pcap)
	b. Connect with SO_KEEPALIVE set to true (Wireshark/test1b.pcap)

	TEST 2: SO_LINGER
	a. Connect with SO_LINGER set to false (Wireshark/test2a.pcap)
	b. Connect with SO_LINGER set to true and 5 seconds delay (Wireshark/test2b.pcap)
	c. Connect with SO_LINGER set to true and 0 seconds delay (Wireshark/test2c.pcap)

	TEST 3: SO_OOBINLINE
	Connect with SO_OOBINLINE set to true and send URG byte (Wireshark/test3.pcap)

	TEST 4: SO_RCVBUF and SO_SNDBUF
	a. Send a 10mb file with buffers set to 1024 bytes (Wireshark/test4a.pcap)
	b. Send a 10mb file with buffers set to 4096 bytes (Wireshark/test4b.pcap)
	c. Send a 10mb file with buffers set to 65536 bytes (Wireshark/test4c.pcap)

	TEST 5: SO_TIMEOUT
	a. Connect with SO_TIMEOUT set to 0. Attempt to read the socket for more than 5 seconds, then disconnect. (Wireshark/test5a.pcap)
	b. Connect with SO_TIMEOUT set to 5000. Attempt to read the socket for more than 5 seconds, then disconnect. (Wireshark/test5b.pcap)

	TEST 6: TCP_NODELAY
	Connect with TCP_NODELAY set to true (Wireshark/test6.pcap)

	CONCLUSION AND FURTHER DISCUSSION
	SO_KEEPALIVE
	SO_LINGER
	SO_OOBINLINE
	SO_RCVBUF and SO_SNDBUF
	Optimal buffer for uploading large files
	TCP window size in Android
	CSMA/CA and TCP Congestion Control in 802.11 Wireless Networks

	SO_TIMEOUT
	TCP_NODELAY

