TDA: Lecture 2
 Complexes and filtrations

Wesley Hamilton

University of North Carolina - Chapel Hill
wham@live.unc.edu
02/05/20
(1) Complexes

- Simplicial complexes
- Cubical complexes
(2) Filtrations
(3) From data to filtrations
- Vietoris-Rips filtrations
- Sub/superlevel set filtrations
- Alpha shapes

Complexes

- Complexes are the combinatorial building blocks used in TDA.
- The two types of complexes we'll focus on are simplicial complexes and cubical complexes.
- Simplicial complexes are easier to "construct" with, and more common in algebraic topology.
- Cubical complexes are better adapted to image/pixelated/voxel data.

Simplices

A geometric n-simplex σ is the set

$$
\sigma=\left\{\sum_{i=0}^{n} a_{i} e_{i}: \sum_{i} a_{i}=1, a_{i} \geq 0\right\}
$$

where the e_{i} are standard basis vectors for \mathbb{R}^{n}.

Examples of simplices, $\operatorname{dim} 0$ and 1

Examples of simplices, dim 2 and 3

Simplices and barycentric coordinates

Given an n-simplex σ, we can specify points within σ using barycentric coordinates:

$$
\left(a_{0}, \ldots, a_{1}\right) \mapsto \sum_{i=0}^{n} a_{i} e_{i} \in \sigma
$$

Faces and facets

The face maps ∂_{j}, defined on n-simplexes, are the restriction of a simplex σ 's barycentric coordinates to $a_{j}=0$, i.e.

$$
\partial_{j} \sigma=\left\{\sum_{i=0}^{n} a_{i} e_{i}: \sum_{i} a_{i}=1, a_{i} \geq 0, a_{j}=0\right\}
$$

Faces and facets

The face maps ∂_{j}, defined on n-simplexes, are the restriction of a simplex σ 's barycentric coordinates to $a_{j}=0$, i.e.

$$
\partial_{j} \sigma=\left\{\sum_{i=0}^{n} a_{i} e_{i}: \sum_{i} a_{i}=1, a_{i} \geq 0, a_{j}=0\right\}
$$

The j th face of a simplex σ is the set $\partial_{j} \sigma$.

Examples of faces

Simplicial complexes

A simplicial complex K is a set of simplexes (any dimension) such that
(1) Every face of a simplex from K is also in K, and
(2) If two simplexes in K have a non-empty intersection, then said intersection is a face of each simplex.

Examples of simplicial complexes

Non-examples of simplicial complexes

Non-examples of simplicial complexes

Abstract vs. geometric simplicial complexes

An abstract simplicial complex on a set S (such as $S=\{1, \ldots, n\}$) is a collection Δ of non-empty subsets of S, such that when $Y \subset X \in \Delta$, $Y \in \Delta$ as well.

Abstract vs. geometric simplicial complexes

An abstract simplicial complex on a set S (such as $S=\{1, \ldots, n\}$) is a collection Δ of non-empty subsets of S, such that when $Y \subset X \in \Delta$,
$Y \in \Delta$ as well.

- The sets in Δ are the faces of the simplicial complex.
- The "intersection" property for (geometric) simplicial complexes is automatically satisfied by abstract simplicial complexes.
- Given a geometric simplicial complex, we can recover an abstract simplicial complex.

Abstract vs. geometric simplicial complexes

An abstract simplicial complex on a set S (such as $S=\{1, \ldots, n\}$) is a collection Δ of non-empty subsets of S, such that when $Y \subset X \in \Delta$,
$Y \in \Delta$ as well.

- The sets in Δ are the faces of the simplicial complex.
- The "intersection" property for (geometric) simplicial complexes is automatically satisfied by abstract simplicial complexes.
- Given a geometric simplicial complex, we can recover an abstract simplicial complex. Also vice-versa.

Abstract simplicial complex non-example

- $K=\{\{0,1,2\}\}$

Abstract simplicial complex non-example

- $K=\{\{0,1,2\}\}$
- The issue is that the faces of $\{0,1,2\}$ aren't also in K.

Abstract simplicial complex non-example

- $K=\{\{0,1,2\}\}$
- The issue is that the faces of $\{0,1,2\}$ aren't also in K.
- $K=\{\{0\},\{1\},\{2\},\{0,1\},\{0,2\},\{1,2\},\{0,1,2\}\}$ is a "quick" fix.

Abstract simplicial complex example

$$
K=\{\{0\},\{1\},\{2\},\{3\},\{0,1\},\{0,2\},\{1,2\},\{1,3\},\{0,3\},\{2,3\},\{0,2,3\}\}
$$

Abstract simplicial complex example

$$
K=\{\{0\},\{1\},\{2\},\{3\},\{0,1\},\{0,2\},\{1,2\},\{1,3\},\{0,3\},\{2,3\},\{0,2,3\}\}
$$

Cubes

- An (elementary) interval is an interval $I \subset \mathbb{R}$ of the form

$$
I=[I, I+1], \text { or } I=[I, I]
$$

where $I \in \mathbb{Z}$.

Cubes

- An (elementary) interval is an interval $I \subset \mathbb{R}$ of the form

$$
I=[I, I+1], \text { or } I=[I, I]
$$

where $I \in \mathbb{Z}$.

- An n-interval is a product of n elementary intervals. An n-interval with $n>1$ is degenerate if any of its factors is a singleton.

Examples of cubes, dim 0 and 1

Examples of cubes, dim 2 and 3

Faces and facets

- For a non-degenerate cube $I=\left[I_{1}, I_{1+1}\right] \times \cdots \times\left[I_{k}, I_{k+1}\right]$, the i th upper and lower faces are:
- $\partial_{i}^{+} I=\left[I_{1}, I_{1+1}\right] \times \cdots \times\left[I_{i+1}\right] \times \cdots \times\left[I_{k}, I_{k+1}\right]$,
- $\partial_{i}^{-} I=\left[I_{1}, I_{1+1}\right] \times \cdots \times\left[I_{i}\right] \times \cdots \times\left[I_{k}, I_{k+1}\right]$.

Faces and facets

- For a non-degenerate cube $I=\left[I_{1}, I_{1+1}\right] \times \cdots \times\left[I_{k}, I_{k+1}\right]$, the i th upper and lower faces are:
- $\partial_{i}^{+} I=\left[l_{1}, l_{1+1}\right] \times \cdots \times\left[I_{i+1}\right] \times \cdots \times\left[I_{k}, I_{k+1}\right]$,
- $\partial_{i}^{-} I=\left[I_{1}, I_{1+1}\right] \times \cdots \times\left[I_{i}\right] \times \cdots \times\left[I_{k}, I_{k+1}\right]$.
- For a degenerate cube $I=\left[I_{1}, I_{1+1}\right] \times \cdots\left[I_{i}, I_{i}\right] \times \cdots \times\left[I_{k}, I_{k+1}\right]$, we define the i th (upper and lower) face(s) to be empty.

Cubical face example

Cubical complexes

A cubical complex K is a set of cubes (any dimension) such that
(1) Every face of a cube from K is also in K, and
(2) If two cubes in K have a non-empty intersection, then said intersection is a face of each simplex.

Examples of cubical complexes

Filtrations

Suppose our (simplicial or cubical) complex comes with more information:

- each simplex is added to the complex at some time/index (dynamic formulation), or
- we have a function defined on the simplices/cubes (function formulation).

Filtrations

- We can use this extra information to filter our complex, and analyze pieces at different times (dynamic) or level sets (function).

Filtrations

- We can use this extra information to filter our complex, and analyze pieces at different times (dynamic) or level sets (function).
- A filtration \mathcal{F} of a complex K is a sequence of subsets $K_{\alpha} \subset K$, such that whenever $\alpha<\beta, K_{\alpha} \subset K_{\beta}$.

Filtrations

- We can use this extra information to filter our complex, and analyze pieces at different times (dynamic) or level sets (function).
- A filtration \mathcal{F} of a complex K is a sequence of subsets $K_{\alpha} \subset K$, such that whenever $\alpha<\beta, K_{\alpha} \subset K_{\beta}$.
- Note that we haven't specified what the indices α are; they could by integers, reals, or any other object from a poset.

Examples of filtrations (indexed by integers)

Examples of filtrations (indexed by a function)

Examples of filtrations (indexed by a function)

Examples of filtrations

- We can also have filtrations over lattices:
- the index set might be $\mathbb{Z} \times \mathbb{Z}=\{(m, n): m, n \in \mathbb{Z}\}$,
- the partial order is $\left(x_{1}, y_{1}\right) \leq\left(x_{2}, y_{2}\right)$ if $x_{1} \leq x_{2}$ and $y_{1} \leq y_{2}$.

Examples of filtrations

- We can also have filtrations over lattices:
- the index set might be $\mathbb{Z} \times \mathbb{Z}=\{(m, n): m, n \in \mathbb{Z}\}$,
- the partial order is $\left(x_{1}, y_{1}\right) \leq\left(x_{2}, y_{2}\right)$ if $x_{1} \leq x_{2}$ and $y_{1} \leq y_{2}$.
- Example coming soon...

From data to filtrations

- In practice, we're given a point cloud and want to construct a complex from the points.

From data to filtrations

- In practice, we're given a point cloud and want to construct a complex from the points.
- There are many ways to do this, depending on what extra information you have:
- Vietoris-Rips filtrations (need a metric),
- Sub/super level set filtrations (need a function),
- Cubical filtrations (need a voxelization and function),
- Alpha-shape filtrations (need the points to be in \mathbb{R}^{2} or \mathbb{R}^{3}),
- Graph-based filtrations,
- etc...

Vietoris-Rips complexes

- Given a finite set $S=\left\{x_{1}, \ldots, x_{N}\right\}$, a metric $d: S \times S \rightarrow[0, \infty)$, and a distance δ, the δ-Vietoris-Rips complex (δ-VR complex) is the abstract simplicial complex Δ_{δ} constructed by adding an n-simplex whenever $n+1$ points from S are pairwise within δ distance of each other.

Vietoris-Rips complexes

- Given a finite set $S=\left\{x_{1}, \ldots, x_{N}\right\}$, a metric $d: S \times S \rightarrow[0, \infty)$, and a distance δ, the δ-Vietoris-Rips complex (δ-VR complex) is the abstract simplicial complex Δ_{δ} constructed by adding an n-simplex whenever $n+1$ points from S are pairwise within δ distance of each other.
- I.e., $\left\{x_{i_{1}}, \ldots, x_{i_{n+1}}\right\} \in \Delta_{\delta}$ if $d\left(x_{i_{l}}, x_{i_{k}}\right) \leq \delta$ for all $1 \leq I, k \leq n+1$.

Vietoris-Rips complexes

- Given a finite set $S=\left\{x_{1}, \ldots, x_{N}\right\}$, a metric $d: S \times S \rightarrow[0, \infty)$, and a distance δ, the δ-Vietoris-Rips complex (δ-VR complex) is the abstract simplicial complex Δ_{δ} constructed by adding an n-simplex whenever $n+1$ points from S are pairwise within δ distance of each other.
- I.e., $\left\{x_{i_{1}}, \ldots, x_{i_{n+1}}\right\} \in \Delta_{\delta}$ if $d\left(x_{i_{l}}, x_{i_{k}}\right) \leq \delta$ for all $1 \leq I, k \leq n+1$.
- Can be thought of as: a disc of radius δ is placed around each x_{i}, and whenever the discs around x_{i} and x_{j} intersect, an edge is glued in, etc.

Vietoris-Rips filtrations

- Suppose Δ_{δ} is the VR complex constructed on (S, d) using distance δ. Note that $\Delta_{\delta} \subset \Delta_{\delta^{\prime}}$ whenever $\delta \leq \delta^{\prime}$.

Vietoris-Rips filtrations

- Suppose Δ_{δ} is the VR complex constructed on (S, d) using distance δ. Note that $\Delta_{\delta} \subset \Delta_{\delta^{\prime}}$ whenever $\delta \leq \delta^{\prime}$.
- The Vietoris-Rips filtration $V R$ is the union $\cup_{\delta \in[0, \infty]} \Delta_{\delta}$, with the corresponding sequence of complexes $\left\{\Delta_{\delta}\right\}_{\delta \in[0, \infty]}$.

Vietoris-Rips filtrations

- Suppose Δ_{δ} is the VR complex constructed on (S, d) using distance δ. Note that $\Delta_{\delta} \subset \Delta_{\delta^{\prime}}$ whenever $\delta \leq \delta^{\prime}$.
- The Vietoris-Rips filtration $V R$ is the union $\cup_{\delta \in[0, \infty]} \Delta_{\delta}$, with the corresponding sequence of complexes $\left\{\Delta_{\delta}\right\}_{\delta \in[0, \infty]}$.
- Note that, since $\Delta_{\delta} \subset \Delta_{\delta^{\prime}}$ whenever $\delta \leq \delta^{\prime}$,

$$
\cup_{\delta \in[0, \infty]} \Delta_{\delta}=\Delta_{\infty}
$$

Simplicial filtration from data

- VR filtrations are the most basic to implement, and can be implemented for virtually any data set (as long as you have an underlying metric).

Simplicial filtration from data

- VR filtrations are the most basic to implement, and can be implemented for virtually any data set (as long as you have an underlying metric).
- Popular metrics are Euclidean (or any I^{P}), as long as your data is "vectorizable".

Example of VR filtration from data: noisy circle

Example of VR filtration from data: "TDA"

Example of VR filtration from data: "TDA"

The "end complex" Δ_{∞} has:

- 37 0-simplices,
- 666 1-simplices,
- 7,770 2-simplices,
- 66,045 3-simplices,
...

Example of VR filtration from data: "TDA"

The "end complex" Δ_{∞} has:

- 37 0-simplices,
- 666 1-simplices,
- 7,770 2-simplices,
- 66,045 3-simplices,
- 1 37-simplex.

Sub/superlevel sets

- Suppose we have a fixed simplicial (or cubical) complex K, and a function $f: K \rightarrow \mathbb{R}$. Here, we interpret the domain of f to be all possible simplices in K. We can filter K by considering sublevel sets of f, by setting $K_{\delta}^{-}=f^{-1}((-\infty, \delta])$.

Sub/superlevel sets

- Suppose we have a fixed simplicial (or cubical) complex K, and a function $f: K \rightarrow \mathbb{R}$. Here, we interpret the domain of f to be all possible simplices in K. We can filter K by considering sublevel sets of f, by setting $K_{\delta}^{-}=f^{-1}((-\infty, \delta])$.
- For this construction to be "well-defined", we need f to be increasing along face inclusions (otherwise an edge may appear without its boundary vertices, etc.).

Sub/superlevel sets

- Suppose we have a fixed simplicial (or cubical) complex K, and a function $f: K \rightarrow \mathbb{R}$. Here, we interpret the domain of f to be all possible simplices in K. We can filter K by considering sublevel sets of f, by setting $K_{\delta}^{-}=f^{-1}((-\infty, \delta])$.
- For this construction to be "well-defined", we need f to be increasing along face inclusions (otherwise an edge may appear without its boundary vertices, etc.).
- To be precise, we say f is increasing along face inclusions if whenever σ is a subface of τ, then $f(\sigma) \leq f(\tau)$.

Sub/superlevel sets

- Suppose we have a fixed simplicial (or cubical) complex K, and a function $f: K \rightarrow \mathbb{R}$. Here, we interpret the domain of f to be all possible simplices in K. We can filter K by considering sublevel sets of f, by setting $K_{\delta}^{-}=f^{-1}((-\infty, \delta])$.
- For this construction to be "well-defined", we need f to be increasing along face inclusions (otherwise an edge may appear without its boundary vertices, etc.).
- To be precise, we say f is increasing along face inclusions if whenever σ is a subface of τ, then $f(\sigma) \leq f(\tau)$. Likewise, we say f is decreasing along face inclusions if whenever σ is a subface of τ, then $f(\sigma) \geq f(\tau)$.

Sub/superlevel sets

- Suppose we have a fixed simplicial (or cubical) complex K, and a function $f: K \rightarrow \mathbb{R}$. Here, we interpret the domain of f to be all possible simplices in K. We can filter K by considering sublevel sets of f, by setting $K_{\delta}^{-}=f^{-1}((-\infty, \delta])$.
- For this construction to be "well-defined", we need f to be increasing along face inclusions (otherwise an edge may appear without its boundary vertices, etc.).
- To be precise, we say f is increasing along face inclusions if whenever σ is a subface of τ, then $f(\sigma) \leq f(\tau)$. Likewise, we say f is decreasing along face inclusions if whenever σ is a subface of τ, then $f(\sigma) \geq f(\tau)$.
- Symbolically, $f: K \rightarrow \mathbb{R}$ is increasing if whenever $\sigma \leq \tau$, then $f(\sigma) \leq f(\tau)$.

Sub/superlevel set filtrations

- If $f: K \rightarrow \mathbb{R}$ is increasing, then $f^{-1}((-\infty, \delta])$ will be a subcomplex of K, and moreover a subcomplex of $f^{-1}\left(\left(-\infty, \delta^{\prime}\right]\right)$ whenever $\delta \leq \delta^{\prime}$.

Sub/superlevel set filtrations

- If $f: K \rightarrow \mathbb{R}$ is increasing, then $f^{-1}((-\infty, \delta])$ will be a subcomplex of K, and moreover a subcomplex of $f^{-1}\left(\left(-\infty, \delta^{\prime}\right]\right)$ whenever $\delta \leq \delta^{\prime}$.
- Thus, we can filter K using the sequence of subcomplexes $\left\{f^{-1}((-\infty, \delta])\right\}_{\delta}$, giving rise to a sublevel set filtration on K.

Sub/superlevel set filtrations

- If $f: K \rightarrow \mathbb{R}$ is increasing, then $f^{-1}((-\infty, \delta])$ will be a subcomplex of K, and moreover a subcomplex of $f^{-1}\left(\left(-\infty, \delta^{\prime}\right]\right)$ whenever $\delta \leq \delta^{\prime}$.
- Thus, we can filter K using the sequence of subcomplexes $\left\{f^{-1}((-\infty, \delta])\right\}_{\delta}$, giving rise to a sublevel set filtration on K.
- If $f: K \rightarrow \mathbb{R}$ is decreasing, then $f^{-1}([\delta, \infty))$ will be a subcomplex of K, and moreover a subcomplex of $f^{-1}\left(\left[\delta^{\prime}, \infty\right)\right)$ whenever $\delta^{\prime} \leq \delta$.
- Thus, we can filter K using the sequence of subcomplexes $\left\{f^{-1}([\delta, \infty))\right\}_{\delta}$, giving rise to a superlevel set filtration on K.

Cubical filtration from data: voxelized "TDA", STD $=0.3$

Data "voxelized" by putting a Gaussian at each point $\left(x_{T}, y_{T}\right)$ of the "TDA" point set, and, for each grid center-point (x, y), computing $\exp \left(\frac{-\left(x_{T}-x\right)^{2}-\left(y_{T}-y\right)^{2}}{\sigma^{2}}\right), \sigma=0.3$. We filter based on these values.

Cubical filtration from data: voxelized "TDA", STD $=0.3$

filtration at step 70, birth time 0.894

filtration at step 200, birth time 0.578

filtration at step 150, birth time 0.718

filtration at step 270, birth time 0.357

Cubical filtration from data: voxelized "TDA", STD $=1.0$

Data "voxelized" by putting a Gaussian at each point $\left(x_{T}, y_{T}\right)$ of the "TDA" point set, and, for each grid center-point (x, y), computing $\exp \left(\frac{-\left(x_{T}-x\right)^{2}-\left(y_{T}-y\right)^{2}}{\sigma^{2}}\right), \sigma=1.0$. We filter based on these values.

Cubical filtration from data: voxelized "TDA", STD $=1.0$

filtration at step 270, birth time 1.295

VS

Cubical filtration from data: voxelized "TDA", STD $=1.0$

filtration at step 410, birth time 0.108

filtration at step 450, birth time 0.711

VS

Cubical filtration from data: voxelized "TDA", STD $=1.0$

filtration at step 410, birth time 0.108

filtration at step 680, birth time 0.117

VS

Cubical filtration from data: voxelized "TDA" 2.0

What if instead of using a superlevel set filtration, we filter by σ ?

Cubical filtration from data: voxelized "TDA" 2.0

Cubical filtration from data: voxelized "TDA" 2.0

Simplicial filtration from data: sphere with height function

Simplicial filtration from data: sphere with height function

Simplicial filtration from data: sphere with spherical harmonic

Spherical harmonics are solutions u to the PDE

$$
\partial_{x}^{2} u+\partial_{y}^{2} u+\partial_{z}^{2} u=0
$$

Simplicial filtration from data: sphere with spherical harmonic

By No machine-readable author provided. Geoemyda assumed (based on copyright claims). - No machine-readable source provided. Own work assumed (based on copyright claims)., CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=4481840

Simplicial filtration from data: sphere with spherical harmonic

Simplicial filtration from data: sphere with spherical harmonic

Simplicial filtration from data: sphere with spherical harmonic

filtration at step 400, birth time -0.023

Alpha shapes

- Given a collection of points $\left\{x_{1}, \ldots, x_{n}\right\}$ in \mathbb{R}^{2} or \mathbb{R}^{3}, the ith Voronoi cell $V\left(x_{i}\right)$ is the set

$$
V\left(x_{i}\right)=\left\{y: \operatorname{dist}\left(x_{i}, y\right) \leq \operatorname{dist}\left(x_{j}, y\right) \text { for all } j \neq i\right\}
$$

The cells consist of points closer to the given x_{i} than any other x_{j}.

- The Voronoi cells of a collection of points tile \mathbb{R}^{2} or \mathbb{R}^{3}.
- We construct an alpha filtration in the same way as we do a VR filtration, except that each growing disc is intersected with the center point's Voronoi cell.

Alpha filtration example: noisy circle

Alpha filtration example: noisy circle

vS

Alpha filtration example: noisy circle

Alpha filtration example: noisy circle

Alpha filtration example: noisy sphere

Alpha filtration example: "TDA"

Alpha filtration example: "TDA"

Alpha filtration example: "TDA"

vS

Alpha filtration example: "TDA" 3D

Alpha filtration example: "TDA" 3D

How can other kinds of data be adapted?

- For data you're interested in, discuss which kinds of filtrations/complexes might be well adapted.
- In addition (or otherwise), here are some other kinds of data:
- Gene expression data/microarrays
- Text documents
- Video clips
- Audio clips
- Sensor networks
- Graph based data

