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Complexes

Complexes

Complexes are the combinatorial building blocks used in TDA.

The two types of complexes we’ll focus on are simplicial complexes
and cubical complexes.

Simplicial complexes are easier to “construct” with, and more
common in algebraic topology.

Cubical complexes are better adapted to image/pixelated/voxel data.
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Complexes Simplicial complexes

Simplices

A geometric n-simplex σ is the set

σ =

{
n∑

i=0

aiei :
∑
i

ai = 1, ai ≥ 0

}
,

where the ei are standard basis vectors for Rn.
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Complexes Simplicial complexes

Examples of simplices, dim 0 and 1
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Complexes Simplicial complexes

Examples of simplices, dim 2 and 3
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Complexes Simplicial complexes

Simplices and barycentric coordinates

Given an n-simplex σ, we can specify points within σ using barycentric
coordinates:

(a0, ..., a1) 7→
n∑

i=0

aiei ∈ σ.
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Complexes Simplicial complexes

Faces and facets

The face maps ∂j , defined on n-simplexes, are the restriction of a simplex
σ’s barycentric coordinates to aj = 0, i.e.

∂jσ = {
n∑

i=0

aiei :
∑
i

ai = 1, ai ≥ 0, aj = 0}.

The jth face of a simplex σ is the set ∂jσ.
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Complexes Simplicial complexes

Examples of faces
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Complexes Simplicial complexes

Simplicial complexes

A simplicial complex K is a set of simplexes (any dimension) such that

1 Every face of a simplex from K is also in K , and

2 If two simplexes in K have a non-empty intersection, then said
intersection is a face of each simplex.
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Complexes Simplicial complexes

Examples of simplicial complexes
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Complexes Simplicial complexes

Non-examples of simplicial complexes
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Complexes Simplicial complexes

Non-examples of simplicial complexes
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Complexes Simplicial complexes

Abstract vs. geometric simplicial complexes

An abstract simplicial complex on a set S (such as S = {1, ..., n}) is a
collection ∆ of non-empty subsets of S , such that when Y ⊂ X ∈ ∆,
Y ∈ ∆ as well.

The sets in ∆ are the faces of the simplicial complex.

The “intersection” property for (geometric) simplicial complexes is
automatically satisfied by abstract simplicial complexes.

Given a geometric simplicial complex, we can recover an abstract
simplicial complex. Also vice-versa.
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Complexes Simplicial complexes

Abstract simplicial complex non-example

K = {{0, 1, 2}}

The issue is that the faces of {0, 1, 2} aren’t also in K .

K = {{0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}} is a “quick” fix.
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Complexes Simplicial complexes

Abstract simplicial complex example

K = {{0}, {1}, {2}, {3}, {0, 1}, {0, 2}, {1, 2}, {1, 3}, {0, 3}, {2, 3}, {0, 2, 3}}
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Complexes Simplicial complexes

Abstract simplicial complex example

K = {{0}, {1}, {2}, {3}, {0, 1}, {0, 2}, {1, 2}, {1, 3}, {0, 3}, {2, 3}, {0, 2, 3}}
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Complexes Cubical complexes

Cubes

An (elementary) interval is an interval I ⊂ R of the form

I = [l , l + 1], or I = [l , l ]

where l ∈ Z.

An n-interval is a product of n elementary intervals. An n-interval
with n > 1 is degenerate if any of its factors is a singleton.
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Complexes Cubical complexes

Examples of cubes, dim 0 and 1
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Complexes Cubical complexes

Examples of cubes, dim 2 and 3
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Complexes Cubical complexes

Faces and facets

For a non-degenerate cube I = [l1, l1+1]× · · · × [lk , lk+1], the ith
upper and lower faces are:

∂+
i I = [l1, l1+1]× · · · × [li+1]× · · · × [lk , lk+1],
∂−i I = [l1, l1+1]× · · · × [li ]× · · · × [lk , lk+1].

For a degenerate cube I = [l1, l1+1]× · · · [li , li ]× · · · × [lk , lk+1], we
define the ith (upper and lower) face(s) to be empty.
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Complexes Cubical complexes

Cubical face example
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Complexes Cubical complexes

Cubical complexes

A cubical complex K is a set of cubes (any dimension) such that

1 Every face of a cube from K is also in K , and

2 If two cubes in K have a non-empty intersection, then said
intersection is a face of each simplex.
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Complexes Cubical complexes

Examples of cubical complexes

31 / 89



Filtrations

Filtrations

Suppose our (simplicial or cubical) complex comes with more information:

each simplex is added to the complex at some time/index (dynamic
formulation), or

we have a function defined on the simplices/cubes (function
formulation).
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Filtrations

Filtrations

We can use this extra information to filter our complex, and analyze
pieces at different times (dynamic) or level sets (function).

A filtration F of a complex K is a sequence of subsets Kα ⊂ K , such
that whenever α < β, Kα ⊂ Kβ.

Note that we haven’t specified what the indices α are; they could by
integers, reals, or any other object from a poset.
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Filtrations

Examples of filtrations (indexed by integers)
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Filtrations

Examples of filtrations (indexed by a function)
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Filtrations

Examples of filtrations (indexed by a function)
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Filtrations

Examples of filtrations

We can also have filtrations over lattices:

the index set might be Z×Z = {(m, n) : m, n ∈ Z},
the partial order is (x1, y1) ≤ (x2, y2) if x1 ≤ x2 and y1 ≤ y2.

Example coming soon...
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From data to filtrations

From data to filtrations

In practice, we’re given a point cloud and want to construct a
complex from the points.

There are many ways to do this, depending on what extra information
you have:

Vietoris-Rips filtrations (need a metric),
Sub/super level set filtrations (need a function),
Cubical filtrations (need a voxelization and function),
Alpha-shape filtrations (need the points to be in R2 or R3),
Graph-based filtrations,
etc...
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From data to filtrations Vietoris-Rips filtrations

Vietoris-Rips complexes

Given a finite set S = {x1, ..., xN}, a metric d : S × S → [0,∞), and a
distance δ, the δ-Vietoris-Rips complex (δ-VR complex) is the
abstract simplicial complex ∆δ constructed by adding an n-simplex
whenever n + 1 points from S are pairwise within δ distance of each
other.

I.e., {xi1 , ..., xin+1} ∈ ∆δ if d(xil , xik ) ≤ δ for all 1 ≤ l , k ≤ n + 1.

Can be thought of as: a disc of radius δ is placed around each xi , and
whenever the discs around xi and xj intersect, an edge is glued in, etc.
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From data to filtrations Vietoris-Rips filtrations

Vietoris-Rips filtrations

Suppose ∆δ is the VR complex constructed on (S , d) using distance
δ. Note that ∆δ ⊂ ∆δ′ whenever δ ≤ δ′.

The Vietoris-Rips filtration VR is the union ∪δ∈[0,∞]∆δ, with the
corresponding sequence of complexes {∆δ}δ∈[0,∞].

Note that, since ∆δ ⊂ ∆δ′ whenever δ ≤ δ′,

∪δ∈[0,∞]∆δ = ∆∞.
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From data to filtrations Vietoris-Rips filtrations
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From data to filtrations Vietoris-Rips filtrations

Simplicial filtration from data

VR filtrations are the most basic to implement, and can be
implemented for virtually any data set (as long as you have an
underlying metric).

Popular metrics are Euclidean (or any lp), as long as your data is
“vectorizable”.
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From data to filtrations Vietoris-Rips filtrations

Example of VR filtration from data: noisy circle
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From data to filtrations Vietoris-Rips filtrations

Example of VR filtration from data: “TDA”
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From data to filtrations Vietoris-Rips filtrations

Example of VR filtration from data: “TDA”

The “end complex” ∆∞ has:

37 0-simplices,

666 1-simplices,

7, 770 2-simplices,

66, 045 3-simplices,

...

1 37-simplex.
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From data to filtrations Sub/superlevel set filtrations

Sub/superlevel sets

Suppose we have a fixed simplicial (or cubical) complex K , and a
function f : K → R. Here, we interpret the domain of f to be all
possible simplices in K . We can filter K by considering sublevel sets
of f , by setting K−δ = f −1((−∞, δ]).

For this construction to be “well-defined”, we need f to be increasing
along face inclusions (otherwise an edge may appear without its
boundary vertices, etc.).

To be precise, we say f is increasing along face inclusions if
whenever σ is a subface of τ , then f (σ) ≤ f (τ). Likewise, we say f is
decreasing along face inclusions if whenever σ is a subface of τ ,
then f (σ) ≥ f (τ).

Symbolically, f : K → R is increasing if whenever σ ≤ τ , then
f (σ) ≤ f (τ).
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From data to filtrations Sub/superlevel set filtrations

Sub/superlevel set filtrations

If f : K → R is increasing, then f −1((−∞, δ]) will be a subcomplex of
K , and moreover a subcomplex of f −1((−∞, δ′]) whenever δ ≤ δ′.

Thus, we can filter K using the sequence of subcomplexes
{f −1((−∞, δ])}δ, giving rise to a sublevel set filtration on K .

If f : K → R is decreasing, then f −1([δ,∞)) will be a subcomplex of
K , and moreover a subcomplex of f −1([δ′,∞)) whenever δ′ ≤ δ.

Thus, we can filter K using the sequence of subcomplexes
{f −1([δ,∞))}δ, giving rise to a superlevel set filtration on K .
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From data to filtrations Sub/superlevel set filtrations

Cubical filtration from data: voxelized “TDA”, STD = 0.3

Data “voxelized” by putting a Gaussian at each point (xT , yT ) of the
“TDA” point set , and, for each grid center-point (x , y), computing

exp(−(xT−x)2−(yT−y)2

σ2 ), σ = 0.3. We filter based on these values.
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From data to filtrations Sub/superlevel set filtrations

Cubical filtration from data: voxelized “TDA”, STD = 0.3
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From data to filtrations Sub/superlevel set filtrations

Cubical filtration from data: voxelized “TDA”, STD = 1.0

Data “voxelized” by putting a Gaussian at each point (xT , yT ) of the
“TDA” point set , and, for each grid center-point (x , y), computing

exp(−(xT−x)2−(yT−y)2

σ2 ), σ = 1.0. We filter based on these values.
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From data to filtrations Sub/superlevel set filtrations

Cubical filtration from data: voxelized “TDA”, STD = 1.0

vs
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From data to filtrations Sub/superlevel set filtrations

Cubical filtration from data: voxelized “TDA” 2.0

What if instead of using a superlevel set filtration, we filter by σ?
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From data to filtrations Sub/superlevel set filtrations

Cubical filtration from data: voxelized “TDA” 2.0
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From data to filtrations Sub/superlevel set filtrations

Cubical filtration from data: voxelized “TDA” 2.0
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From data to filtrations Sub/superlevel set filtrations

Simplicial filtration from data: sphere with height function
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From data to filtrations Sub/superlevel set filtrations

Simplicial filtration from data: sphere with height function
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From data to filtrations Sub/superlevel set filtrations

Simplicial filtration from data: sphere with spherical
harmonic

Spherical harmonics are solutions u to the PDE

∂2
xu + ∂2

yu + ∂2
zu = 0.
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From data to filtrations Sub/superlevel set filtrations

Simplicial filtration from data: sphere with spherical
harmonic

By No machine-readable author provided. Geoemyda assumed (based on copyright claims). - No machine-readable source

provided. Own work assumed (based on copyright claims)., CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=4481840
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From data to filtrations Sub/superlevel set filtrations

Simplicial filtration from data: sphere with spherical
harmonic
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Simplicial filtration from data: sphere with spherical
harmonic
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From data to filtrations Sub/superlevel set filtrations

Simplicial filtration from data: sphere with spherical
harmonic
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From data to filtrations Alpha shapes

Alpha shapes

Given a collection of points {x1, ..., xn} in R2 or R3, the ith Voronoi
cell V (xi ) is the set

V (xi ) = {y : dist(xi , y) ≤ dist(xj , y) for all j 6= i}.

The cells consist of points closer to the given xi than any other xj .

The Voronoi cells of a collection of points tile R2 or R3.

We construct an alpha filtration in the same way as we do a VR
filtration, except that each growing disc is intersected with the center
point’s Voronoi cell.
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From data to filtrations Alpha shapes

Alpha filtration example: noisy circle

vs
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Alpha filtration example: noisy circle

vs
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From data to filtrations Alpha shapes

Alpha filtration example: noisy circle
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From data to filtrations Alpha shapes

Alpha filtration example: noisy circle

vs
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From data to filtrations Alpha shapes

Alpha filtration example: noisy sphere
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From data to filtrations Alpha shapes

Alpha filtration example: “TDA”
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From data to filtrations Alpha shapes

Alpha filtration example: “TDA”

vs
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From data to filtrations Alpha shapes

Alpha filtration example: “TDA”

vs
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From data to filtrations Alpha shapes

Alpha filtration example: “TDA” 3D
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From data to filtrations Alpha shapes

Alpha filtration example: “TDA” 3D
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From data to filtrations Alpha shapes

How can other kinds of data be adapted?

For data you’re interested in, discuss which kinds of
filtrations/complexes might be well adapted.

In addition (or otherwise), here are some other kinds of data:

Gene expression data/microarrays
Text documents
Video clips
Audio clips
Sensor networks
Graph based data
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