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Complexes

Complexes

Complexes are the combinatorial building blocks used in TDA.

The two types of complexes we'll focus on are simplicial complexes
and cubical complexes.

Simplicial complexes are easier to “construct” with, and more
common in algebraic topology.

@ Cubical complexes are better adapted to image/pixelated /voxel data.



Complexes Simplicial complexes

Simplices

A geometric n-simplex ¢ is the set

n
o = Za,-e;: E a,-zl,a,-zo 5
i=0 i

where the ¢; are standard basis vectors for R”.



Complexes Simplicial complexes

Examples of simplices, dim 0 and 1




Complexes Simplicial complexes

Examples of simplices, dim 2 and 3

6



Complexes Simplicial complexes

Simplices and barycentric coordinates

Given an n-simplex o, we can specify points within ¢ using barycentric
coordinates:

n
(ao, ey 31) — Z aje € o.
i=0

~
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Complexes Simplicial complexes

Faces and facets

The face maps 0;, defined on n-simplexes, are the restriction of a simplex
o's barycentric coordinates to a; = 0, i.e.

n
@-az{Za,-e,-: Za;zl,aizo,aj:O}.
i=0 i



Complexes Simplicial complexes

Faces and facets

The face maps 0;, defined on n-simplexes, are the restriction of a simplex
o's barycentric coordinates to a; = 0, i.e.

n
@-az{Za,-e,-: Za;zl,aizo,aj:O}.
i=0 i

The jth face of a simplex o is the set ;0.



Examples of faces

Complexes

Simplicial complexes



Complexes Simplicial complexes

Simplicial complexes

A simplicial complex K is a set of simplexes (any dimension) such that
@ Every face of a simplex from K is also in K, and

@ If two simplexes in K have a non-empty intersection, then said
intersection is a face of each simplex.



Complexes Simplicial complexes

Examples of simplicial complexes




Complexes Simplicial complexes

Non-examples of simplicial complexes




Complexes Simplicial complexes

Non-examples of simplicial complexes




Complexes Simplicial complexes

Abstract vs. geometric simplicial complexes

An abstract simplicial complex on a set S (such as S ={1,...,n}) is a
collection A of non-empty subsets of S, such that when Y C X € A,
Y € A as well.



Complexes Simplicial complexes

Abstract vs. geometric simplicial complexes

An abstract simplicial complex on a set S (such as S ={1,...,n}) is a
collection A of non-empty subsets of S, such that when Y C X € A,
Y € A as well.

@ The sets in A are the faces of the simplicial complex.

@ The “intersection” property for (geometric) simplicial complexes is
automatically satisfied by abstract simplicial complexes.

@ Given a geometric simplicial complex, we can recover an abstract
simplicial complex.
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Complexes Simplicial complexes

Abstract vs. geometric simplicial complexes

An abstract simplicial complex on a set S (such as S ={1,...,n}) is a
collection A of non-empty subsets of S, such that when Y C X € A,
Y € A as well.
@ The sets in A are the faces of the simplicial complex.
@ The “intersection” property for (geometric) simplicial complexes is
automatically satisfied by abstract simplicial complexes.
@ Given a geometric simplicial complex, we can recover an abstract
simplicial complex. Also vice-versa.



Complexes Simplicial complexes

Abstract simplicial complex non-example

o K=1{{0,1,2}}



Complexes Simplicial complexes

Abstract simplicial complex non-example

o K={{0,1,2}}
@ The issue is that the faces of {0,1,2} aren't also in K.
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Complexes Simplicial complexes

Abstract simplicial complex non-example

o K={{0,1,2}}
@ The issue is that the faces of {0,1,2} aren't also in K.
o K ={{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2}} is a “quick” fix.
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Complexes Simplicial complexes

Abstract simplicial complex example

K ={{0}, {1}, {2}, {3},{0,1},{0,2},{1,2},{1,3},{0, 3}, {2,3},{0,2,3}}



Complexes Simplicial complexes

Abstract simplicial complex example

K ={{0}, {1}, {2}, {3},{0,1},{0,2},{1,2},{1,3},{0, 3}, {2,3},{0,2,3}}

N
N
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Complexes Cubical complexes

Cubes

@ An (elementary) interval is an interval /| C R of the form
I =[I,1+1], or I =[I,1]

where | € Z.
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Complexes Cubical complexes

Cubes

@ An (elementary) interval is an interval /| C R of the form
I =[I,1+1], or I =[I,1]

where | € Z.

@ An n-interval is a product of n elementary intervals. An n-interval
with n > 1 is degenerate if any of its factors is a singleton.



Complexes Cubical complexes

Examples of cubes, dim 0 and 1

Q



Complexes Cubical complexes

Examples of cubes, dim 2 and 3
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Complexes Cubical complexes

Faces and facets

@ For a non-degenerate cube | = [l, h41] X -+ X [Ix, Ix+1], the ith
upper and lower faces are:
) 3#/ = [/1, Il+1] X e X [/;+1] X e X [/k, /k+1],
° 8,’/ = [/1,/1+1] X oo X [/,] X e X [/k>/k+1]'

N
~
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Complexes Cubical complexes

Faces and facets

@ For a non-degenerate cube | = [l, h41] X -+ X [Ix, Ix+1], the ith
upper and lower faces are:
o 3#/ = [/1, Il+1] X X [/;+1] X X [/k, /k+1],
o 8,’/ = [/1,/1+1] X o+ X [/,] X e X [/k>/k+1]'
@ For a degenerate cube | = [l, 1] X - [li, li] X -+ X [lk, lk+1], we
define the ith (upper and lower) face(s) to be empty.
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Cubical complexes

Complexes

Cubical face example
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Complexes Cubical complexes

Cubical complexes

A cubical complex K is a set of cubes (any dimension) such that
© Every face of a cube from K is also in K, and

@ If two cubes in K have a non-empty intersection, then said
intersection is a face of each simplex.

30/¢€



Complexes Cubical complexes

Examples of cubical complexes

31
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Filtrations

Filtrations

Suppose our (simplicial or cubical) complex comes with more information:

@ each simplex is added to the complex at some time/index (dynamic
formulation), or

@ we have a function defined on the simplices/cubes (function
formulation).



Filtrations

Filtrations

@ We can use this extra information to filter our complex, and analyze
pieces at different times (dynamic) or level sets (function).
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Filtrations

Filtrations

@ We can use this extra information to filter our complex, and analyze
pieces at different times (dynamic) or level sets (function).

o A filtration F of a complex K is a sequence of subsets K, C K, such
that whenever o < 3, K, C Kj.
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Filtrations

Filtrations

@ We can use this extra information to filter our complex, and analyze
pieces at different times (dynamic) or level sets (function).

o A filtration F of a complex K is a sequence of subsets K, C K, such
that whenever o < 3, K, C Kj.

@ Note that we haven't specified what the indices « are; they could by
integers, reals, or any other object from a poset.



Filtrations

Examples of filtrations (indexed by integers)

<€
aﬁ*oa*
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Filtrations

Examples of filtrations (indexed by a function)
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Filtrations

Examples of filtrations (indexed by a function)

o uvF GG
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Filtrations

Examples of filtrations

@ We can also have filtrations over lattices:

o the index set might be Z x Z = {(m, n): m,n € Z},
o the partial order is (x1,y1) < (x2,¥2) if x1 < x2 and y; < y».
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Filtrations

Examples of filtrations

@ We can also have filtrations over lattices:
o the index set might be Z x Z = {(m, n): m,n € Z},
o the partial order is (x1, 1) < (x2,¥2) if x1 < x2 and y; < y».

@ Example coming soon...

40



From data to filtrations

From data to filtrations

@ In practice, we're given a point cloud and want to construct a
complex from the points.
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From data to filtrations

From data to filtrations

@ In practice, we're given a point cloud and want to construct a
complex from the points.

@ There are many ways to do this, depending on what extra information
you have:

Vietoris-Rips filtrations (need a metric),

Sub/super level set filtrations (need a function),

Cubical filtrations (need a voxelization and function),

Alpha-shape filtrations (need the points to be in R? or R?),

Graph-based filtrations,

etc...



From data to filtrations Vietoris-Rips filtrations

Vietoris-Rips complexes

@ Given a finite set S = {xy, ..., xn}, a metric d: S x S — [0,00), and a
distance 4, the J-Vietoris-Rips complex (4-VR complex) is the
abstract simplicial complex Aj constructed by adding an n-simplex
whenever n + 1 points from S are pairwise within § distance of each

other.
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From data to filtrations Vietoris-Rips filtrations

Vietoris-Rips complexes

@ Given a finite set S = {xy, ..., xn}, a metric d: S x S — [0,00), and a
distance 4, the J-Vietoris-Rips complex (4-VR complex) is the
abstract simplicial complex Aj constructed by adding an n-simplex
whenever n + 1 points from S are pairwise within § distance of each
other.

o le, {xXi,.... Xj,,, } € D if d(x;,x;,) <o forall1 </ k<n+1.
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From data to filtrations Vietoris-Rips filtrations

Vietoris-Rips complexes

@ Given a finite set S = {xy, ..., xn}, a metric d: S x S — [0,00), and a
distance 4, the J-Vietoris-Rips complex (4-VR complex) is the
abstract simplicial complex Aj constructed by adding an n-simplex
whenever n + 1 points from S are pairwise within § distance of each
other.

o le, {xXi,.... Xj,,, } € D if d(x;,x;,) <o forall1 </ k<n+1.
@ Can be thought of as: a disc of radius ¢ is placed around each x;, and
whenever the discs around x; and Xx; intersect, an edge is glued in, etc.



From data to filtrations Vietoris-Rips filtrations

Vietoris-Rips filtrations

@ Suppose Ay is the VR complex constructed on (S, d) using distance
0. Note that Ay C As whenever § < §'.
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From data to filtrations Vietoris-Rips filtrations

Vietoris-Rips filtrations

@ Suppose Ay is the VR complex constructed on (S, d) using distance
0. Note that Ay C As whenever § < §'.

e The Vietoris-Rips filtration VR is the union Usc(p o]As, with the
corresponding sequence of complexes {As}sc0,o]-



From data to filtrations Vietoris-Rips filtrations

Vietoris-Rips filtrations

@ Suppose Ay is the VR complex constructed on (S, d) using distance
0. Note that Ay C As whenever § < §'.

e The Vietoris-Rips filtration VR is the union Usc(p o]As, with the
corresponding sequence of complexes {As}sc0,o]-

o Note that, since As C As whenever § < ¢,

Use[0,00] D6 = Aoo-

48 /&



From data to filtrations Vietoris-Rips filtrations

Simplicial filtration from data

@ VR filtrations are the most basic to implement, and can be
implemented for virtually any data set (as long as you have an
underlying metric).

49



From data to filtrations Vietoris-Rips filtrations

Simplicial filtration from data

@ VR filtrations are the most basic to implement, and can be
implemented for virtually any data set (as long as you have an
underlying metric).

@ Popular metrics are Euclidean (or any /P), as long as your data is
“vectorizable”.



From data to filtrations Vietoris-Rips filtrations

Example of VR filtration from data: noisy circle

Lop filzationat sten 0 rth time Q00— Loo
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From data to filtrations

Vietoris-Rips filtrations

Example of VR filtration from data: “TDA”

iltrgtiog astep 0 birth time 0.000 iltegtiop at step 20 birth time 1.013
2RI Vs % 60 g -
55
. . . 50
as
. . . s 40 —e
35
. . . 30
25
- 20 . °
25 50 75 100 125 150 175 200 25 50 75 100 175 200
25 50 75 100 125 150 175 200
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From data to filtrations Vietoris-Rips filtrations

Example of VR filtration from data: “TDA”

The “end complex” Ay has:
@ 37 O-simplices,
@ 666 1-simplices,
@ 7,770 2-simplices,
@ 66,045 3-simplices,

53 /89



From data to filtrations Vietoris-Rips filtrations

Example of VR filtration from data: “TDA”

The “end complex” Ay has:
@ 37 O-simplices,
@ 666 1-simplices,
@ 7,770 2-simplices,
@ 66,045 3-simplices,
° ...

@ 1 37-simplex.

54
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From data to filtrations  Sub/superlevel set filtrations

Sub/superlevel sets

@ Suppose we have a fixed simplicial (or cubical) complex K, and a
function f: K — R. Here, we interpret the domain of f to be all
possible simplices in K. We can filter K by considering sublevel sets
of f, by setting K; = f~*((—o0, d]).



From data to filtrations  Sub/superlevel set filtrations

Sub/superlevel sets

@ Suppose we have a fixed simplicial (or cubical) complex K, and a
function f: K — R. Here, we interpret the domain of f to be all
possible simplices in K. We can filter K by considering sublevel sets
of f, by setting K; = f~*((—o0, d]).

@ For this construction to be “well-defined”, we need f to be increasing
along face inclusions (otherwise an edge may appear without its
boundary vertices, etc.).



From data to filtrations  Sub/superlevel set filtrations

Sub/superlevel sets

@ Suppose we have a fixed simplicial (or cubical) complex K, and a
function f: K — R. Here, we interpret the domain of f to be all
possible simplices in K. We can filter K by considering sublevel sets
of f, by setting K; = f~*((—o0, d]).

@ For this construction to be “well-defined”, we need f to be increasing
along face inclusions (otherwise an edge may appear without its
boundary vertices, etc.).

@ To be precise, we say f is increasing along face inclusions if
whenever o is a subface of 7, then (o) < (7).

a
~
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From data to filtrations  Sub/superlevel set filtrations

Sub/superlevel sets

@ Suppose we have a fixed simplicial (or cubical) complex K, and a
function f: K — R. Here, we interpret the domain of f to be all
possible simplices in K. We can filter K by considering sublevel sets
of f, by setting K; = f~*((—o0, d]).

@ For this construction to be “well-defined”, we need f to be increasing
along face inclusions (otherwise an edge may appear without its
boundary vertices, etc.).

@ To be precise, we say f is increasing along face inclusions if
whenever o is a subface of 7, then f(o) < f(7). Likewise, we say f is
decreasing along face inclusions if whenever o is a subface of T,
then f(o) > f(7).



From data to filtrations  Sub/superlevel set filtrations

Sub/superlevel sets

@ Suppose we have a fixed simplicial (or cubical) complex K, and a
function f: K — R. Here, we interpret the domain of f to be all
possible simplices in K. We can filter K by considering sublevel sets
of f, by setting K; = f~*((—o0, d]).

@ For this construction to be “well-defined”, we need f to be increasing
along face inclusions (otherwise an edge may appear without its
boundary vertices, etc.).

@ To be precise, we say f is increasing along face inclusions if
whenever o is a subface of 7, then f(o) < f(7). Likewise, we say f is
decreasing along face inclusions if whenever o is a subface of T,
then f(o) > f(7).

@ Symbolically, f: K — R is increasing if whenever o < 7, then
f(o) < f(7).



From data to filtrations  Sub/superlevel set filtrations

Sub/superlevel set filtrations

o If f: K — R is increasing, then f~1((—o0c, ]) will be a subcomplex of
K, and moreover a subcomplex of f~1((—o0,d’]) whenever § < §'.
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From data to filtrations  Sub/superlevel set filtrations

Sub/superlevel set filtrations

o If f: K — R is increasing, then f~1((—o0c, ]) will be a subcomplex of
K, and moreover a subcomplex of f~1((—o0,d’]) whenever § < §'.

@ Thus, we can filter K using the sequence of subcomplexes
{f~1((—o0, d])}s, giving rise to a sublevel set filtration on K.
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From data to filtrations  Sub/superlevel set filtrations

Sub/superlevel set filtrations

o If f: K — R is increasing, then f~1((—o0c, ]) will be a subcomplex of
K, and moreover a subcomplex of f~1((—o0,d’]) whenever § < §'.

@ Thus, we can filter K using the sequence of subcomplexes
{f~1((—o0, d])}s, giving rise to a sublevel set filtration on K.

o If f: K — R is decreasing, then f~1([6, o0)) will be a subcomplex of
K, and moreover a subcomplex of f~1([§’, 00)) whenever &' < 6.

@ Thus, we can filter K using the sequence of subcomplexes
{f71([5,0))}s, giving rise to a superlevel set filtration on K.

62 /8



From data to filtrations  Sub/superlevel set filtrations

Cubical filtration from data: voxelized “TDA”, STD = 0.3

Data “voxelized” by putting a Gaussian at each point (x7, y7) of the

“TDA" point set , and, for each grid center-point (x, y), computing
(—(XT—X)Z;(YT—)/)2)

. , 0 = 0.3. We filter based on these values.

exp
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From data to filtrations  Sub/superlevel set filtrations

Cubical filtration from data: voxelized “TDA”, STD = 0.3

5

filtration at step 270, birth time 0.357 filtration at step 410, birth time 0108
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From data to filtrations  Sub/superlevel set filtrations

Cubical filtration from data: voxelized “TDA”, STD = 1.0

| B

0 10

Data “voxelized” by putting a Gaussian at each point (x7, y7) of the
“TDA" point set , and, for each grid center-point (x, y), computing

(_(XT_X)(Z;Q_(yT_yF), o = 1.0. We filter based on these values.

exp
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From data to filtrations  Sub/superlevel set filtrations

Cubical filtration from data: voxelized “TDA”, STD = 1.0

filtration at step 270, birth time 0.357 filtration at step 270, birth time 1.295

o o

'S
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From data to filtrations  Sub/superlevel set filtrations

Cubical filtration from data: voxelized “TDA”, STD = 1.0

filtration at step 410, birth time 0.108 filtration at step 450, birth time 0.711
o o

'S



From data to filtrations  Sub/superlevel set filtrations

Cubical filtration from data: voxelized “TDA”, STD = 1.0

filtration at step 410, birth time 0.108 filtration at step 680, birth time 0.117
o o

'S
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From data to filtrations  Sub/superlevel set filtrations

Cubical filtration from data: voxelized “TDA” 2.0

What if instead of using a superlevel set filtration, we filter by ¢?
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From data to filtrations  Sub/superlevel set filtrations

Cubical filtration from data: voxelized “TDA” 2.0
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From data to filtrations  Sub/superlevel set filtrations

Cubical filtration from data: voxelized “TDA” 2.0

o .
. N

» ®

w B | B

o >

© ©

M 'tN
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From data to filtrations  Sub/superlevel set filtrations

Simplicial filtration from data: sphere with height function

filtration at step 0, birth time -0.999 filtration at step 30, birth time -0.386
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From data to filtrations  Sub/superlevel set filtrations

Simplicial filtration from data: sphere with height function

filtration at step 70, birth time 0.321 filtration at step 90, birth time 0.782

0755
029,009 55
05075 035
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From data to filtrations  Sub/superlevel set filtrations

Simplicial filtration from data: sphere with spherical
harmonic

Spherical harmonics are solutions u to the PDE

O2u+ aﬁu +0%u=0.



From data to filtrations  Sub/superlevel set filtrations

Simplicial filtration from data: sphere with spherical
harmonic

By No machine-readable author provided. Geoemyda assumed (based on copyright claims). - No machine-readable source
provided. Own work assumed (based on copyright claims)., CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=4481840



From data to filtrations  Sub/superlevel set filtrations

Simplicial filtration from data: sphere with spherical
harmonic

filtration at step 0, birth time -0.431 filtration at step 100, birth time -0.264

76
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From data to filtrations  Sub/superlevel set filtrations

Simplicial filtration from data: sphere with spherical
harmonic

filtration at step 200, birth time -0.166 filtration at step 300, birth time -0.082

7
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From data to filtrations  Sub/superlevel set filtrations

Simplicial filtration from data: sphere with spherical
harmonic

filtration at step 400, birth time -0.023




From data to filtrations Alpha shapes

Alpha shapes

@ Given a collection of points {xi,...,x,} in R? or R3, the ith Voronoi
cell V(x;) is the set

V(x;) = {y: dist(x;, y) < dist(xj,y) for all j # i}.

The cells consist of points closer to the given x; than any other x;.
@ The Voronoi cells of a collection of points tile R? or R3.

@ We construct an alpha filtration in the same way as we do a VR
filtration, except that each growing disc is intersected with the center
point's Voronoi cell.



From data to filtrations

Alpha shapes

Alpha filtration example: noisy circle

itration at step 0. birth time 0.000,
100 g 100
.
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From data to filtrations

Alpha shapes

Alpha filtration example: noisy circle

ltration at step O_birth time 0.000
100 . 100
.
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From data to filtrations Alpha shapes

Alpha filtration example: noisy circle

it time 0,000 rasion at bith e .60
100 2 100
073 . o5
. s
0501 @ . 050
025 025
000 000
025 —ozs
. -
100 075 050 -025 000 o035 030 075 100 100 075 050 -025 o000 035 030 075 100
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From data to filtrations Alpha shapes

Alpha filtration example: noisy circle

025

-0.50

-0.75

-0.75

-1.00
-100 -0.75 -0.50 -0.25 000 025 050 075 100 -100 -075 -0.50 -0.25 000 025 050 075 100
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From data to filtrations Alpha shapes

Alpha filtration example: noisy sphere

filtration at step 0, birth time 0.000 filtration at step 100, birth time 0.270

filtration at step 250, birth time 0.532

.2
Bty
075

84 /89



From data to filtrations Alpha shapes

Alpha filtration example: “TDA"

lzgtion af step 10. birth tme 0,492

iltcgtion at step 0. birth time 0.0g0
R L

6.0 v, 6.0 v
55 55
5.0 . . . . 50 .
a5 45
40 . L . ® o0 40 . . o0 ®
35 35
30 . . o . 30 . . .
25 25
20 L1 20 L}
25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200
6.0 fllzation atstep 30. birth timg 0 — 60
55 55
50 50
45 45
40 40
35 35
30 30
25 25
20 20
25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200
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From data to filtrations Alpha shapes

Alpha filtration example: “TDA"
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From data to filtrations Alpha shapes

Alpha filtration example: “TDA"

VS
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From data to filtrations Alpha shapes

Alpha filtration example: “TDA"” 3D

filtration at step 0, birth time 0.000 filtration at step 10, birth time 0.470
1

filtration at step 30, birth time 0.563 ration at step 75, birth time 1.589
1

s o
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From data to filtrations Alpha shapes

Alpha filtration example: “TDA"” 3D

filtration at step 99, birth time 2.011 filtration at step 120, birth time 3.049
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From data to filtrations Alpha shapes

How can other kinds of data be adapted?

o For data you're interested in, discuss which kinds of
filtrations/complexes might be well adapted.

@ In addition (or otherwise), here are some other kinds of data:

Gene expression data/microarrays
Text documents

Video clips

Audio clips

Sensor networks

Graph based data

90 /&



	Complexes
	Simplicial complexes
	Cubical complexes

	Filtrations
	From data to filtrations
	Vietoris-Rips filtrations
	Sub/superlevel set filtrations
	Alpha shapes


